WO1999004271A1 - Nozzle washing device - Google Patents

Nozzle washing device Download PDF

Info

Publication number
WO1999004271A1
WO1999004271A1 PCT/JP1998/003165 JP9803165W WO9904271A1 WO 1999004271 A1 WO1999004271 A1 WO 1999004271A1 JP 9803165 W JP9803165 W JP 9803165W WO 9904271 A1 WO9904271 A1 WO 9904271A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
cleaning
cleaning liquid
liquid
reaction
Prior art date
Application number
PCT/JP1998/003165
Other languages
French (fr)
Japanese (ja)
Inventor
Toshimi Kawamura
Yuzaburo Nanba
Syuji Takahashi
Eiji Ishiwata
Original Assignee
Sanko Junyaku Co., Ltd.
Eisai Co., Ltd.
Kanda Tsushin Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanko Junyaku Co., Ltd., Eisai Co., Ltd., Kanda Tsushin Kogyo Co., Ltd. filed Critical Sanko Junyaku Co., Ltd.
Publication of WO1999004271A1 publication Critical patent/WO1999004271A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1004Cleaning sample transfer devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices

Definitions

  • the present invention relates to an injection nozzle for injecting various liquids (reaction solution and washing liquid) into a reaction vessel (also referred to as a reaction tube) used in an automatic analyzer such as an automatic immunoassay apparatus, and an inlet for the liquid.
  • a reaction vessel also referred to as a reaction tube
  • an automatic analyzer such as an automatic immunoassay apparatus
  • an inlet for the liquid TECHNICAL FIELD
  • the present invention relates to a nozzle cleaning device capable of efficiently cleaning a suction nozzle that sucks a liquid from a reaction tube.
  • a method for measuring the amount of antigen contained in a sample such as blood collected from a patient by a one-step non-competitive sandwich method will be described.
  • an antibody (solid phase antibody) bound to an insoluble simple substance (solid phase) such as a synthetic resin container inner wall or particles (particles) and an antibody (labeled) bound to a labeling substance such as a radioactive substance, a fluorescent substance, or an enzyme Antibody) is added to the reaction tube to which the sample to be measured is added in advance.
  • the antigen contained in the sample undergoes an antigen-antibody reaction (immune reaction) with the solid-phase antibody to form an antigen-antibody complex, and at the same time, the antigen-antibody complex is labeled with the labeled antibody.
  • the complex also forms a complex in which the three components, solid-phase antibody and antigen-labeled antibody, are sandwiched. In this way, the label of the labeled antibody is bound to the solid phase using the antigen in the sample as an intermediate.
  • An automatic analyzer such as an automatic immunoassay is known as an apparatus for automatically performing the measurement in such an immunoassay.
  • this automatic analyzer it is necessary to wash the inside of the reaction tube, especially in the B / F separation process, and a suction nozzle that sucks the reaction solution and the washing solution from the reaction vessel and an injection that injects the washing solution into the reaction vessel.
  • Many nozzles are used. These nozzles must be cleaned each time they are used to prevent contamination of other solutions (contamination). Therefore, a nozzle cleaning device for cleaning the nozzle has been conventionally used.
  • the conventional nozzle cleaning apparatus 110 performs cleaning of the nozzles using a cleaning case 112 having an independent installation position and structure separately from a nozzle group (not shown).
  • the cleaning case 112 has a cleaning case body 116 having a recess 114 opened upward.
  • a cleaning liquid outlet 118 is provided, which penetrates the bottom wall 120 downward and opens.
  • Nozzle washing holes 1 2 2 and 1 2 2 are provided on the outside of the periphery of the outlet 1 1 8.
  • the nozzle washing holes 1 2 2 and 1 2 2 are provided in the washing case main body 1 1 6.
  • the cleaning liquid supply ports 124, 124 open through the bottom wall 120 of the cleaning liquid sideways.
  • the nozzles Nl and N2 are moved to the installation position and the washing position of the reaction tube T by a nozzle moving means (not shown) which moves in the X direction and the Z direction, respectively.
  • a nozzle moving means (not shown) which moves in the X direction and the Z direction, respectively.
  • required operations such as suction of the reaction solution and the cleaning solution and injection of the cleaning solution are performed, and at the cleaning position, the tips of the nozzles N1 and N2 are washed as described above.
  • the position where the reaction solution is sucked and the access for injecting and sucking the cleaning solution and the position of the cleaning case 112 are different. It was at a different position, and it was essential to move the nozzles Nl and N2 in two directions. Therefore, the volume of the conventional nozzle cleaning device 110 becomes large, and the cost increases accordingly.
  • the nozzles N 1 and N 2 are taken out of the nozzle washing holes 1 2 2 to suck and inject the reaction solution and the cleaning solution. It is repeated to be reinserted into 2 and washed. Therefore, if the opening area of the nozzle cleaning holes 122 is made small enough to allow the nozzles N1 and N2 to pass through, the nozzles N1 and N2 will be cleaned when the nozzles Nl and N2 are inserted. There was an inconvenience that it was broken along the edge of the hole 122. Further, in the conventional nozzle cleaning device 110, the amount of cleaning liquid used is large, which is uneconomical.
  • the cleaning liquid contains a special component, for example, a surfactant, a phenomenon occurs in which the crystals adhere to the cleaning case 112 during drying, and the crystals cause the cleaning case 112 to lose power. s There was a problem that the cleaning ability was deteriorated with time due to the contamination.
  • a surfactant for example, a surfactant
  • the present invention has been made in view of the above-described problems of the related art, and it is an object of the present invention to minimize the opening area of a nozzle cleaning hole, reduce the volume of an apparatus, and minimize the amount of a cleaning liquid to be used. It is another object of the present invention to provide a nozzle cleaning apparatus which enables the cleaning liquid and eliminates the adhesion of crystals to the nozzle and the nozzle cleaning case caused by the cleaning liquid. Disclosure of the invention
  • a nozzle cleaning device of the present invention is a device for cleaning a nozzle for sucking a liquid in a reaction container and a nozzle for injecting a liquid into the reaction container, and is provided above a position where the reaction container is installed. And a nozzle is advanced into the reaction vessel.
  • the nozzle cleaning mechanism may be configured to include a unit that jets a cleaning liquid into the nozzle passage and a unit that suctions the jetted cleaning liquid.
  • the nozzle cleaning mechanism opens a cleaning liquid jet port and a cleaning liquid suction port so as to face the nozzle path, and jets a cleaning liquid from the cleaning liquid jet port into the nozzle path to clean the nozzle. It is preferable that the cleaning liquid is sucked and discharged from the cleaning liquid suction port.
  • the flow of the cleaning liquid is piled up from the bottom by gravity and flows. As long as the effect is large and the cleaning liquid is sucked from the cleaning liquid suction port by a suction pump or the like, there is no accident that the cleaning liquid drops from the lower opening.
  • the installation distance between the cleaning liquid jet port and the cleaning liquid suction port is set to be longer than the length of the immersion portion of the nozzle when the nozzle enters the liquid in the reaction vessel, the nozzle is immersed in the liquid.
  • a nozzle holder having a nozzle through hole at the center is formed, and the diameter of the lower end of the nozzle insertion hole can be moved up and down in close contact with the nozzle.
  • FIG. 1 is a top view showing one embodiment of an automatic immunoassay apparatus including a nozzle cleaning apparatus according to the present invention.
  • FIG. 2 is a front view of FIG.
  • FIG. 3 is a partial cross-sectional side view of the nozzle cleaning device of the present invention, showing a state where the nozzle is housed in a cleaning case.
  • FIG. 4 is a partial cross-sectional side view similar to FIG. 3, showing a state in which the nozzle is projected to the position of the reaction vessel.
  • FIG. 5 is an enlarged sectional view of a main part of the nozzle cleaning device of the present invention.
  • FIG. 6 is a perspective view showing the cleaning case.
  • FIG. 7 is a sectional view taken along line AA of FIG.
  • FIG. 8 is an explanatory cross-sectional view showing a state where the nozzle holder is mounted on the cleaning case of FIG. 7 and the nozzle is inserted into the nozzle passage.
  • FIG. 9 is a schematic sectional explanatory view showing a conventional nozzle cleaning device.
  • reference numeral 12 denotes an automatic analyzer according to the present invention, specifically, an automatic immunoassay device, which has a reaction tube 14 which rotates intermittently at a predetermined speed.
  • a reaction tube holding portion 18 having a plurality of reaction tube holders 16 arranged in two rows, an inner circumferential row and an outer circumferential row. I have.
  • the number of the reaction tube holders 16 provided on the upper surface of the reaction tube 14 may be appropriately set according to the mode of the reaction, but in the example of FIG. The figure shows an example in which 0, a total of 60 reaction tube holders 14 are installed.
  • Reference numeral 20 denotes a reaction tube rack, which holds the reaction tubes in a large number of receiving portions 21 (the example of FIG. 1 shows a case where two reaction tube racks are installed).
  • Reference numeral 22 denotes a reaction tube transfer means, which has a reaction tube holding portion 22 a at a lower portion, and transfers the reaction tube held in the receiving portion 21 of the reaction tube rack 20 to the reaction tube holder 16. The operation of transferring and transferring the reaction tubes held in one reaction tube holder 16 to another reaction tube holder 16 by skipping the desired number of reaction tube holders 16 is performed.
  • reaction tubes held in the inner or outer rows of the reaction tube holders 16 can be transferred to the reaction tube holders 16 of the same circumference, or the reaction tubes of other circumferences can be transferred. It can also be transferred to 1-16.
  • the reaction tube transfer means 22 has a reaction tube supply operation of supplying a reaction tube to the reaction tube holding unit 18, and a reaction tube disposal operation of taking out a measured reaction tube from the reaction tube holding unit 18 and discarding it. Perform
  • Reference numeral 26 is a particle supply means for supplying particles to the reaction tube, and a particle nozzle 26a is provided below the particle supply means.
  • Reference numeral 28 denotes a reagent dispensing means for dispensing a labeled reagent into the reaction tube, and a reagent nozzle 28a is provided below the reagent dispensing means.
  • Reference numeral 30 denotes a nozzle cleaning device according to the present invention, which is used for B / F separation processing.
  • 32 is a measuring reagent dispensing means for dispensing the measuring reagent into the reaction tube.
  • Reference numeral 34 denotes a measuring means for measuring the amount of the label in the reaction solution after the reaction in the reaction tube.
  • Reference numeral 36 denotes a reagent table mechanism, which has a reagent table 37.
  • the reagent table 37 is provided with mounting holes 37a and 37a, and the reagent holders 38 and 38 are detachable via the mounting holes 37a and 37a. It is attached to.
  • a particle bin 40 and a labeling reagent bin 42 are individually mounted.
  • the nozzle cleaning device 30 has a base 50.
  • a guide rail 52 is provided in the longitudinal direction of one side of the base 50.
  • a movable support 54 is attached to the guide rail 52 so as to be vertically movable.
  • Reference numeral 56 denotes a timing belt connected to the movable column 54.
  • the evening belt 56 is suspended on a pair of pulleys 58, 58 driven by a drive source (not shown).
  • the movable support 54 is moved up and down by the rotation of the timing belt 56.
  • An arm member 60 serving as a nozzle holding means is provided at the upper end of the movable support 54 so as to extend to the side.
  • the arm member 60 holds an injection nozzle N1 for injecting a liquid into the reaction vessel T and a suction nozzle N2 for aspirating the liquid in the reaction vessel T, with the distal end thereof facing downward.
  • Reference numerals 62 and 62 denote mounting blocks embedded in the arm member 60 and into which the nozzles N1 and N2 are press-fitted.
  • the upper end of the injection nozzle N1 is connected to, for example, a cleaning liquid supply tank (not shown). Then, a required amount of liquid can be injected into the reaction tube T.
  • the upper end of the suction nozzle ⁇ 2 is connected to a liquid outlet (not shown), and the liquid such as the reaction solution or the cleaning liquid existing in the reaction vessel ⁇ is supplied to suction means such as a vacuum pump. It performs more suction and discharge from the liquid discharge port.
  • Reference numeral 64 denotes a cleaning case which is located below the arm member 60 and is provided to extend laterally from the base 50.
  • the injection nozzle passage 66a for the injection nozzle ⁇ 1 and the suction nozzle passage 66b for the suction nozzle N2 are vertically arranged corresponding to the injection and suction nozzles ⁇ 1 and ⁇ 2. Are formed.
  • a number of reaction vessels T held by the reaction tube holder 16 of the reaction tube turret 14 are intermittently rotated and positioned one after another.
  • the injection nozzle N1 only needs to enter the middle of the reaction vessel T to inject and discharge the liquid.
  • the suction nozzle N2 since the suction nozzle N2 needs to suck all the liquid in the reaction vessel T, the suction nozzle N2 enters the bottom of the reaction vessel T and performs a suction operation as shown in FIG.
  • nozzle holders 68, 68 are attached to the upper end portions of the injection nozzle passage 66a and the suction nozzle passage 66b.
  • Nozzle through holes 70, 70 are formed in the center of the nozzle holders 68, 68.
  • O-rings 72, 72 are fixed to lower ends of the nozzle insertion holes 70, 70, respectively.
  • the O-rings 7 2, 7 2 are in close contact with the respective outer peripheral surfaces of the nozzles N 1, N 2, and the nozzles N 1, N 2 are vertically movable with respect to the O-rings 7 2, 7 2 in a close state. Abuts.
  • the cleaning liquid jets 74 a and 76 a are connected to cleaning liquid supply ports 78 a and 80 a formed through the lower portion of the side wall of the cleaning case 64 via a liquid passage 82. I have.
  • the cleaning liquid suction ports 74 b and 76 b are connected to the cleaning liquid discharge ports 78 b and 8 Ob formed through the upper portion of the side wall of the cleaning case 64 via a liquid passage 82.
  • the cleaning liquid supplied from the cleaning liquid supply ports 78a and 80a is ejected from the cleaning liquid jet ports 74a and 76a into the nozzle paths 66a and 66b through the liquid passage 82, and the nozzles N1, N2 While washing, the liquid flows upward by the suction force of the cleaning liquid suction ports 74b and 76b, is sucked into the cleaning liquid suction ports 74b and 76b, and is discharged from the cleaning liquid discharge ports 78b and 80b through the liquid passage 82.
  • the reaction vessel T containing the reaction solution reaches the washing position, absorbs the reaction solution in the reaction vessel T, discards the reaction solution, and injects the washing solution. Cleaning is performed according to the procedure of aspirating and discarding the cleaning liquid. Therefore, for example, in the case where the reaction tube holders 16 are arranged in the reaction tube turret 14 in two rows of the inner circumference and the outer circumference, the suction nozzle N1 and the injection nozzle N2 are arranged as shown in FIG. Then, a washing operation of suction-injection-suction-injection-inhalation can be performed. In this case, two washes can be performed.
  • the reaction vessels T and ⁇ containing the reaction solution are suction nozzles at the far right end in FIG.
  • the suction nozzles ⁇ 2 and ⁇ 2 descend and enter the bottoms of the reaction vessels ⁇ and ⁇ (Fig. 4), and suck all the reaction solution.
  • the suction nozzles ⁇ 2 and ⁇ 2 rise and are stored in the suction nozzle passage 66b in the cleaning case 64 (FIG. 3). At this time, as shown in FIG.
  • the empty reaction vessels ⁇ and T which have sucked the reaction solution, then rotate below the second injection nozzles Nl and N1 from the right in FIG.
  • the injection nozzles N 1 and N 1 descend to enter the middle of an empty reaction vessel T, ⁇ (there is no need to enter the bottom because it is only injection), and the cleaning liquid is supplied to the reaction vessels ⁇ and ⁇ .
  • the injection nozzles Nl and N1 rise and are stored in the injection nozzle passage 66a in the cleaning case 64 (Fig. 3).
  • the injection nozzles N 1 and N 1 do not stain much because they only inject the cleaning liquid, but they also need to be cleaned in order to prevent contamination due to contamination or the like and increase measurement accuracy. Also in this case, if the lower ends of the injection nozzles Nl and N1 are located above the installation position of the cleaning liquid ejection port 74a, it is the same that good cleaning can be performed.
  • the cleaning liquid is jetted from the cleaning liquid jet port 74 a, and the jetted cleaning liquid is gravity driven by the suction force from the cleaning liquid suction port 74 b.
  • the cleaning liquid flows upward to wash the injection nozzles N1 and N1, and is sucked from the cleaning liquid suction port 74b and discharged from the cleaning liquid discharge ports 78b and 80b.
  • the reaction vessels ⁇ and T into which the cleaning liquid has been injected then turn below the third suction nozzles N2 and N2 from the right in FIG.
  • the suction nozzles N2 and N2 descend and enter the bottom of the reaction vessels T and T (Fig. 4), and suck all the cleaning liquid.
  • the suction is completed, it is stored in the suction nozzle passage 66b and washed as described above.
  • reaction vessels ⁇ and T further pivot below the fourth injection nozzles N 1 and N 1 from the right in FIG. 6, and the washing liquid is injected again as described above.
  • the injection nozzles N1 and N1 are similarly cleaned in the injection nozzle passage 66a.
  • the reaction vessels T and ⁇ into which the cleaning liquid has been injected are the fifth from the right in FIG.
  • the cleaning liquid in the reaction vessels ⁇ and ⁇ is sucked and discharged in the same manner as described above after reaching the rotation below the suction nozzles ⁇ 2 and ⁇ ⁇ 2.
  • suction nozzles ⁇ 2 and ⁇ 2 The cleaning is performed in the suction nozzle passage 66b.
  • the injection nozzle N1 and the suction nozzle N2 are washed in the injection nozzle passage 66a and the suction nozzle passage 66b immediately after performing the injection operation and the suction operation. Even if a special component, such as a surfactant, is contained, the crystals are not left for a period of time so as to dry and become crystals, so that the crystals do not adhere to the reaction tube at all.
  • a special component such as a surfactant
  • the washing in the B / F separation of the reaction vessel T is performed by suction (reaction solution), one injection (washing solution), one suction (washing solution), one injection (washing solution), and one suction ( Cleaning solution), the cleaning process was performed twice.
  • the opening area of the nozzle cleaning hole can be minimized, the volume of the device can be reduced, and the amount of the cleaning liquid to be used can be minimized.
  • the present invention has an effect that it is possible to eliminate the adhesion of the crystal to the nozzle and the nozzle cleaning case due to the cleaning liquid.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

A nozzle washing device capable of minimizing an opening area of a nozzle washing hole, being reduced in volume, minimizing an amount of a washing liquid used, and eliminating adhesion of crystallites to a reaction pipe which is caused by the washing liquid. Specifically, the device which washes nozzles for drawing liquid received in reaction vessels and nozzles for injecting liquid into the reaction vessels, and which comprises nozzle holding means provided above a location where the reaction vessels are installed and for holding the nozzles vertically movably so that the nozzles can enter the reaction vessels, a nozzle washing casing provided between the nozzle holding means and the location where the reaction vessels are installed, nozzle passages which are provided within the nozzle washing casing and through which the nozzles held by the nozzle holding means can pass vertically movably, and washing mechanisms disposed in the nozzle passages.

Description

明細書  Specification
ノズル洗浄装置 技術分野 本発明は、 免疫自動測定装置等の自動分析装置に用いられる反応容器 (反応管 ともいう) に各種の液 (反応溶液や洗浄用液) を注入する注入ノズル及び液の入 つた反応管から液を吸引する吸引ノズルの洗浄を効率よく行うことを可能とした ノズル洗浄装置に関する。 背景技術 Technical Field The present invention relates to an injection nozzle for injecting various liquids (reaction solution and washing liquid) into a reaction vessel (also referred to as a reaction tube) used in an automatic analyzer such as an automatic immunoassay apparatus, and an inlet for the liquid. TECHNICAL FIELD The present invention relates to a nozzle cleaning device capable of efficiently cleaning a suction nozzle that sucks a liquid from a reaction tube. Background art
従来、 抗原抗体反応を利用した免疫測定法としては、 1ステップ方式及び 2ス テップ方式の非競合サンドイツチ法及び競合法が知られている。  Conventionally, as immunoassays utilizing an antigen-antibody reaction, a one-step method and a two-step method, a non-competitive San Germanti method and a competitive method are known.
1ステップ方式の非競合サンドィツチ法により、 試料として患者から採取した 血液等の検体に含まれる抗原の量を測定する方法を説明する。 例えば、 合成樹脂 製の容器内壁や粒 (パーティクル) 等の不溶性の単体 (固相) に結合した抗体 ( 固相抗体) と、 放射性物質、 蛍光物質、 酵素等の標識物質を結合した抗体 (標識 抗体) とを予め添加してある反応管に、 測定対象の検体を添加する。  A method for measuring the amount of antigen contained in a sample such as blood collected from a patient by a one-step non-competitive sandwich method will be described. For example, an antibody (solid phase antibody) bound to an insoluble simple substance (solid phase) such as a synthetic resin container inner wall or particles (particles) and an antibody (labeled) bound to a labeling substance such as a radioactive substance, a fluorescent substance, or an enzyme Antibody) is added to the reaction tube to which the sample to be measured is added in advance.
これによつて反応管内においては、 検体中に含まれている抗原が上記固相抗体 と抗原抗体反応 (免疫反応) して抗原抗体複合体を生成し、 また同時にこの抗原 抗体複合体に標識抗体も複合して、 固相抗体—抗原一標識抗体という 3つの成分 がサンドイッチになった複合体が生成する。 このようにして、 検体中の抗原を仲 介物として、 標識抗体の標識を固相に結合させる。  As a result, in the reaction tube, the antigen contained in the sample undergoes an antigen-antibody reaction (immune reaction) with the solid-phase antibody to form an antigen-antibody complex, and at the same time, the antigen-antibody complex is labeled with the labeled antibody. The complex also forms a complex in which the three components, solid-phase antibody and antigen-labeled antibody, are sandwiched. In this way, the label of the labeled antibody is bound to the solid phase using the antigen in the sample as an intermediate.
次にこの固相に結合された標識以外のものであって、 反応管内に添加された抗 原とは結合しなかつた余分の標識抗体や、 免疫反応に関与しなかつた抗体成分等 を洗浄によって分離 (B/F分離) する操作を行ない、 最終的に、 固相に結合し た抗原量に比例する標識量を、 標識の性質を利用した物理的あるいは化学的な手 法で定量測定して、 検体中の抗原濃度を求める。  Next, extra labeled antibodies other than the label bound to the solid phase and not binding to the antigen added to the reaction tube or antibody components not involved in the immune reaction are washed out. The separation (B / F separation) operation is performed, and finally, the amount of the label, which is proportional to the amount of the antigen bound to the solid phase, is quantitatively measured by a physical or chemical method utilizing the properties of the label. Determine the antigen concentration in the sample.
一方、 2ステップ方式の非競合サンドイッチ法は、 まず固相抗体のみを予め添 加した反応管に、 検体を添加することで第 1の反応を行なわせた後に、 標識抗体 を添加して第 2の反応を行なわせ測定を行なう方法である。 On the other hand, in the two-step non-competitive sandwich method, only the solid phase antibody is first added in advance. This is a method in which the first reaction is performed by adding a sample to the reaction tube to which the sample is added, and then the labeled antibody is added to perform the second reaction to perform the measurement.
また、 これら非競合サンドイッチ法とは別に、 上述した固相抗体に対し、 予め 標識物質で標識した抗原 (標識抗原) と、 検体中の抗原を競争的に反応させる競 合法と称される方法も知られている。  In addition to the non-competitive sandwich method, there is also a method called a competitive method in which an antigen (labeled antigen) previously labeled with a labeling substance and an antigen in a sample are competitively reacted with the solid phase antibody described above. Are known.
このような免疫測定法における測定を自動的に実施する装置として、 免疫自動 測定装置等の自動分析装置が知られている。 この自動分析装置においては、 特に B/F分離工程において、 反応管内を洗浄する必要があり、 反応容器から反応溶 液や洗浄用液を吸引する吸引ノズルまた反応容器に洗浄用液を注入する注入ノズ ルが多数用いられる。 これらのノズルは他種溶液の混入 (コン夕ミネーシヨン) を防く、ため、 使用の都度洗浄する必要がある。 そこで、 ノズルを洗浄するための ノズル洗浄装置が従来から用いられている。  An automatic analyzer such as an automatic immunoassay is known as an apparatus for automatically performing the measurement in such an immunoassay. In this automatic analyzer, it is necessary to wash the inside of the reaction tube, especially in the B / F separation process, and a suction nozzle that sucks the reaction solution and the washing solution from the reaction vessel and an injection that injects the washing solution into the reaction vessel. Many nozzles are used. These nozzles must be cleaned each time they are used to prevent contamination of other solutions (contamination). Therefore, a nozzle cleaning device for cleaning the nozzle has been conventionally used.
従来のノズル洗浄装置 1 1 0は、 図 9に示すごとく、 不図示のノズル群とは別 に独立した設置位置及び構造を有する洗浄ケース 1 1 2を用いてノズルの洗浄を 行っていた。 該洗浄ケース 1 1 2は上方に開口した凹部 1 1 4を穿設した洗浄ケ —ス本体 1 1 6を有している。  As shown in FIG. 9, the conventional nozzle cleaning apparatus 110 performs cleaning of the nozzles using a cleaning case 112 having an independent installation position and structure separately from a nozzle group (not shown). The cleaning case 112 has a cleaning case body 116 having a recess 114 opened upward.
該洗浄ケース本体 1 1 6の中心部には底壁 1 2 0を下方に貫通して開口する洗 浄液の排出口 1 1 8が設けられている。 該排出口 1 1 8の周辺部外方には上方に 開口するノズル洗浄孔 1 2 2 , 1 2 2が設けられ、 該ノズル洗浄孔 1 2 2 , 1 2 2は該洗浄ケース本体 1 1 6の底壁 1 2 0を側方に貫通して開口する洗浄液の供 給口 1 2 4 , 1 2 4に連通している。  At the center of the cleaning case main body 116, a cleaning liquid outlet 118 is provided, which penetrates the bottom wall 120 downward and opens. Nozzle washing holes 1 2 2 and 1 2 2 are provided on the outside of the periphery of the outlet 1 1 8. The nozzle washing holes 1 2 2 and 1 2 2 are provided in the washing case main body 1 1 6. The cleaning liquid supply ports 124, 124 open through the bottom wall 120 of the cleaning liquid sideways.
ノズル N 1 , N 2の先端部を洗浄するには、 該ノズル洗浄孔 1 2 2 , 1 2 2に ノズル N 1 , 2の先端部を挿入し、 ノズル洗浄孔 1 2 2, 1 2 2から洗浄液を 連続的に注入し、 ノズル洗浄孔 1 2 2 , 1 2 2の底から上部開口に向かってォ一 バ一フローさせる。 この洗浄液の連続的なオーバ一フローによりノズル N 1 , N 2の先端部の洗浄が行なわれる。 ノズル洗浄孔 1 2 2 , 1 2 2からオーバーフロ —した洗浄液は排出口 1 1 8を通して外部に排出される。  To clean the tips of the nozzles N 1 and N 2, insert the tips of the nozzles N 1 and 2 into the nozzle cleaning holes 1 2 and 1 2 2, and from the nozzle cleaning holes 1 2 2 and 1 2 2 The cleaning liquid is continuously injected, and overflows from the bottom of the nozzle cleaning holes 122 and 122 toward the upper opening. With the continuous overflow of the cleaning liquid, the tips of the nozzles N 1 and N 2 are cleaned. The cleaning liquid overflowed from the nozzle cleaning holes 1 2 and 1 2 2 is discharged to the outside through the discharge port 1 18.
ノズル N l , N 2は、 X方向及び Z方向に移動するノズル移動手段 (図示せず ) によって反応管 Tの設置位置及び洗浄位置にそれそれ移動され、 反応管 Tの設 置位置においては反応溶液や洗浄用液の吸引や洗浄用液の注入などの所要の動作 を行い、 また洗浄位置においては上記したようにノズル N 1及び N 2の先端部の 洗浄が行なわれる。 The nozzles Nl and N2 are moved to the installation position and the washing position of the reaction tube T by a nozzle moving means (not shown) which moves in the X direction and the Z direction, respectively. At the installation position, required operations such as suction of the reaction solution and the cleaning solution and injection of the cleaning solution are performed, and at the cleaning position, the tips of the nozzles N1 and N2 are washed as described above.
図 9に示した従来のノズル洗浄装置 1 1 0においては、 反応溶液を吸引し、 ま た洗浄用液を注入、 吸引するためにアクセスする位置と、 洗浄ケース 1 1 2の位 置とがそれそれ異なる位置となり、 ノズル N l , N 2を 2方向に移動させること が必須であった。 したがって、 従来のノズル洗浄装置 1 1 0はその容積が大きく なり、 それだけコストがかかるものであった。  In the conventional nozzle cleaning device 110 shown in FIG. 9, the position where the reaction solution is sucked and the access for injecting and sucking the cleaning solution and the position of the cleaning case 112 are different. It was at a different position, and it was essential to move the nozzles Nl and N2 in two directions. Therefore, the volume of the conventional nozzle cleaning device 110 becomes large, and the cost increases accordingly.
ノズル N 1, N 2をノズル洗浄孔 1 2 2から外に出して反応溶液や洗浄用液の 吸引や注入を行い、 また一旦外に出たノズル N 1 , N 2は、 ノズル洗浄孔 1 2 2 に再び挿入され洗浄されるということが繰り返される。 そのため、 ノズル洗浄孔 1 2 2の開口面積をノズル N 1, N 2が通過できる程度に小さくしておくと、 ノ ズル N l, N 2を挿入する際にノズル N 1 , N 2がノズル洗浄孔 1 2 2の縁にあ たって壊れてしまうという不都合があった。 さらに従来のノズル洗浄装置 1 1 0 においては、 使用される洗浄液も大量となり不経済であった。  The nozzles N 1 and N 2 are taken out of the nozzle washing holes 1 2 2 to suck and inject the reaction solution and the cleaning solution. It is repeated to be reinserted into 2 and washed. Therefore, if the opening area of the nozzle cleaning holes 122 is made small enough to allow the nozzles N1 and N2 to pass through, the nozzles N1 and N2 will be cleaned when the nozzles Nl and N2 are inserted. There was an inconvenience that it was broken along the edge of the hole 122. Further, in the conventional nozzle cleaning device 110, the amount of cleaning liquid used is large, which is uneconomical.
洗浄用液が特殊な成分、 例えば界面活性等を含有している場合には、 乾燥時に 結晶体が洗浄ケース 1 1 2内に付着する現象が発生し、 当該結晶体によって洗浄 ケース 1 1 2力 s汚されてしまい、 洗浄能力が経時的に低下してしまうという問題 があった。  If the cleaning liquid contains a special component, for example, a surfactant, a phenomenon occurs in which the crystals adhere to the cleaning case 112 during drying, and the crystals cause the cleaning case 112 to lose power. s There was a problem that the cleaning ability was deteriorated with time due to the contamination.
本発明は、 上記した従来技術の問題点に鑑みなされたもので、 ノズル洗浄孔の 開口面積を最小にすることができ、 装置容積も小さくでき、 かつ使用する洗浄液 の量を極小にすることを可能とし、 また洗浄用液に起因する結晶体のノズル及び ノズル洗浄ケースへの付着を皆無としたノズル洗浄装置を提供することを目的と する。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the related art, and it is an object of the present invention to minimize the opening area of a nozzle cleaning hole, reduce the volume of an apparatus, and minimize the amount of a cleaning liquid to be used. It is another object of the present invention to provide a nozzle cleaning apparatus which enables the cleaning liquid and eliminates the adhesion of crystals to the nozzle and the nozzle cleaning case caused by the cleaning liquid. Disclosure of the invention
上記課題を解決するために、 本発明のノズル洗浄装置は、 反応容器中の液を吸 引するノズル及び反応容器に液を注入するノズルの洗浄を行う装置であり、 反応 容器の設置位置の上方に位置するように設けられかつノズルが該反応容器中に進 入可能なようにノズルを上下動自在に保持するノズル保持手段と、 該ノズル保持 手段と反応容器の設置位置の間に設けられたノズル洗浄ケースと、 該ノズル保持 手段に保持されたノズルが上下動自在に挿通できるように該ノズル洗浄ケース内 に設けられたノズル通路と、 該ノズル通路内に位置するノズルを洗浄する洗浄機 構とを有することを特徴とする。 In order to solve the above problems, a nozzle cleaning device of the present invention is a device for cleaning a nozzle for sucking a liquid in a reaction container and a nozzle for injecting a liquid into the reaction container, and is provided above a position where the reaction container is installed. And a nozzle is advanced into the reaction vessel. A nozzle holding means for vertically holding the nozzle so that it can be inserted, a nozzle cleaning case provided between the nozzle holding means and the installation position of the reaction vessel, and a nozzle held by the nozzle holding means, It is characterized by having a nozzle passage provided in the nozzle cleaning case so as to be movably insertable, and a cleaning mechanism for cleaning a nozzle located in the nozzle passage.
前記ノズル洗浄機構としては、 前記ノズル通路内に洗浄液を噴出する手段と、 噴出された洗浄液を吸引する手段とを有する構成とすることができる。  The nozzle cleaning mechanism may be configured to include a unit that jets a cleaning liquid into the nozzle passage and a unit that suctions the jetted cleaning liquid.
前記ノズル洗浄機構は、 前記ノズル通路に臨むように洗浄液噴出口および洗浄 液吸引口を開口せしめ、 該洗浄液噴出口から洗浄液を該ノズル通路内に噴出して ノズルの洗浄を行い、 該ノズル通路内の洗浄液を洗浄液吸引口から吸引排出する ように構成するのが好ましい。  The nozzle cleaning mechanism opens a cleaning liquid jet port and a cleaning liquid suction port so as to face the nozzle path, and jets a cleaning liquid from the cleaning liquid jet port into the nozzle path to clean the nozzle. It is preferable that the cleaning liquid is sucked and discharged from the cleaning liquid suction port.
前記洗浄液噴出口を前記ノズル通路の下部に設け、 前記洗浄液吸引口を前記ノ ズル通路の上部に設けることにより、 洗浄液の流れは下から上へ重力に杭して流 れることになるので、 洗浄効果がそれだけ大となり、 かつ吸引用バキュームポン プ等により該洗浄液吸弓 ί口から洗浄液を吸引している限り、 下部の開口から洗浄 液が落下するような事故は皆無となる。  By providing the cleaning liquid jet port at the lower part of the nozzle passage and providing the cleaning liquid suction port at the upper part of the nozzle path, the flow of the cleaning liquid is piled up from the bottom by gravity and flows. As long as the effect is large and the cleaning liquid is sucked from the cleaning liquid suction port by a suction pump or the like, there is no accident that the cleaning liquid drops from the lower opening.
前記洗浄液噴出口と洗浄液吸引口の設置距離が、 ノズルを反応容器内の液中に 進入させた場合のノズルの浸漬部分の長さよりも大であるようにすれば、 ノズル が液中への浸漬によって汚れた部分よりも広い部分が洗浄液によって確実に洗浄 されるので、 洗浄漏れがなくなるという利点がある。  If the installation distance between the cleaning liquid jet port and the cleaning liquid suction port is set to be longer than the length of the immersion portion of the nozzle when the nozzle enters the liquid in the reaction vessel, the nozzle is immersed in the liquid. There is an advantage that the cleaning liquid is surely cleaned over a wider portion than the contaminated portion by the cleaning liquid, so that there is no leakage of cleaning.
前記ノズル通路の上部に、 中央部にノズルを揷通するノズル揷通孔を穿設して なるノズルホルダーを取付け、 かつ該ノズル挿通孔の下端部の径をノズルが密接 状態で上下動できるように形成すれば、 洗浄液吸引口から洗浄液を吸引する際に 該ノズル挿通孔による吸引力の漏れや分散がなくなり、 全ての吸引力を洗浄液の 吸引に有効に利用することが可能となる。 図面の簡単な説明  At the top of the nozzle passage, a nozzle holder having a nozzle through hole at the center is formed, and the diameter of the lower end of the nozzle insertion hole can be moved up and down in close contact with the nozzle. With this configuration, when the cleaning liquid is sucked from the cleaning liquid suction port, there is no leakage or dispersion of the suction power due to the nozzle insertion hole, and all the suction power can be effectively used for suctioning the cleaning liquid. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係るノズル洗浄装置を具備した免疫自動測定装置の一つの実 施の形態を示す上面図である。 図 2は、 図 1の正面図である。 FIG. 1 is a top view showing one embodiment of an automatic immunoassay apparatus including a nozzle cleaning apparatus according to the present invention. FIG. 2 is a front view of FIG.
図 3は、 本発明のノズル洗浄装置の一部断面側面図で、 ノズルを洗浄ケースに 収納した状態を示す。  FIG. 3 is a partial cross-sectional side view of the nozzle cleaning device of the present invention, showing a state where the nozzle is housed in a cleaning case.
図 4は、 図 3と同様の一部断面側面図で、 ノズルを反応容器位置に突出させた 状態を示す。  FIG. 4 is a partial cross-sectional side view similar to FIG. 3, showing a state in which the nozzle is projected to the position of the reaction vessel.
図 5は、 本発明のノズル洗浄装置の要部の拡大断面図である。  FIG. 5 is an enlarged sectional view of a main part of the nozzle cleaning device of the present invention.
図 6は、 洗浄ケースの摘示斜視図である。  FIG. 6 is a perspective view showing the cleaning case.
図 7は、 図 6の A _ A線断面図である。  FIG. 7 is a sectional view taken along line AA of FIG.
図 8は、 図 7の洗浄ケースにノズルホルダを取りつけノズルをノズル通路に挿 通した場合の状態を示す断面説明図である。  FIG. 8 is an explanatory cross-sectional view showing a state where the nozzle holder is mounted on the cleaning case of FIG. 7 and the nozzle is inserted into the nozzle passage.
図 9は、 従来のノズル洗浄装置を示す概略断面説明図である。 発明を実施するための最良の形態  FIG. 9 is a schematic sectional explanatory view showing a conventional nozzle cleaning device. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の一つの実施の形態を添付図面に基づいて説明する。  An embodiment of the present invention will be described below with reference to the accompanying drawings.
図 1において、 1 2は本発明に係る自動分析装置、 具体的には免疫自動測定装 置で、 所定速度で間欠的に回転移動する反応管夕一レツト 1 4を有している。 該 反応管夕一レツト 1 4の上面周辺部には、 複数個の反応管ホルダ一 1 6を内周列 及び外周列の 2列に配設してなる反応管保持部 1 8が形成されている。 該反応管 夕一レツト 1 4上面に設けられる反応管ホルダー 1 6の設置数は、 反応の態様に より適宜設定すればよいが、 図 1の例では、 内周列及び外周列がそれそれ 3 0個 、 合計 6 0個の反応管ホルダー 1 4を設置した例を示している。  In FIG. 1, reference numeral 12 denotes an automatic analyzer according to the present invention, specifically, an automatic immunoassay device, which has a reaction tube 14 which rotates intermittently at a predetermined speed. At the periphery of the upper surface of the reaction tube evening plate 14, there is formed a reaction tube holding portion 18 having a plurality of reaction tube holders 16 arranged in two rows, an inner circumferential row and an outer circumferential row. I have. The number of the reaction tube holders 16 provided on the upper surface of the reaction tube 14 may be appropriately set according to the mode of the reaction, but in the example of FIG. The figure shows an example in which 0, a total of 60 reaction tube holders 14 are installed.
2 0は反応管ラックで、 多数の受け部 2 1に反応管を保持する (図 1の例では 2個の反応管ラックを設置した場合が示されている) 。 2 2は、 反応管移載手段 で、 下部に反応管把持部 2 2 aを有しており、 反応管ラック 2 0の受け部 2 1に 保持された反応管を反応管ホルダ一 1 6に移載し、 かつ一の反応管ホルダー 1 6 に保持された反応管を所望個数の反応管ホルダ一 1 6をスキップして他の反応管 ホルダー 1 6に移載する作用を行う。  Reference numeral 20 denotes a reaction tube rack, which holds the reaction tubes in a large number of receiving portions 21 (the example of FIG. 1 shows a case where two reaction tube racks are installed). Reference numeral 22 denotes a reaction tube transfer means, which has a reaction tube holding portion 22 a at a lower portion, and transfers the reaction tube held in the receiving portion 21 of the reaction tube rack 20 to the reaction tube holder 16. The operation of transferring and transferring the reaction tubes held in one reaction tube holder 16 to another reaction tube holder 16 by skipping the desired number of reaction tube holders 16 is performed.
この場合、 内周列又は外周列の反応管ホルダー 1 6に保持された反応管を同じ 周列の反応管ホルダー 1 6に移載することもできるし、 他の周列の反応管ホルダ 一 1 6に移載することもできる。 該反応管移載手段 2 2は該反応管保持部 1 8に 反応管を供給する反応管供給作用と、 該反応管保持部 1 8から測定済の反応管を 取り出し廃棄する反応管廃棄作用とを行なう。 In this case, the reaction tubes held in the inner or outer rows of the reaction tube holders 16 can be transferred to the reaction tube holders 16 of the same circumference, or the reaction tubes of other circumferences can be transferred. It can also be transferred to 1-16. The reaction tube transfer means 22 has a reaction tube supply operation of supplying a reaction tube to the reaction tube holding unit 18, and a reaction tube disposal operation of taking out a measured reaction tube from the reaction tube holding unit 18 and discarding it. Perform
2 6は、 該反応管にパーティクルを供給するパーティクル供給手段で、 その下 部にパーティクルノズル 2 6 aが設けられている。 2 8は、 該反応管に標識試薬 を分注する試薬分注手段で、 その下部に試薬ノズル 2 8 aが設けられている。 3 0は、 本発明に係るノズル洗浄装置であり、 B/F分離処理に用いられる。 3 2 は、 該反応管に測定用試薬を分注する測定用試薬分注手段である。 3 4は、 該反 応管の反応後の反応溶液における標識物の量を測定する測定手段である。  26 is a particle supply means for supplying particles to the reaction tube, and a particle nozzle 26a is provided below the particle supply means. Reference numeral 28 denotes a reagent dispensing means for dispensing a labeled reagent into the reaction tube, and a reagent nozzle 28a is provided below the reagent dispensing means. Reference numeral 30 denotes a nozzle cleaning device according to the present invention, which is used for B / F separation processing. 32 is a measuring reagent dispensing means for dispensing the measuring reagent into the reaction tube. Reference numeral 34 denotes a measuring means for measuring the amount of the label in the reaction solution after the reaction in the reaction tube.
3 6は、 試薬テーブル機構で、 試薬テーブル 3 7を有している。 該試薬テ一ブ ル 3 7には取付孔 3 7 a, 3 7 aが穿設されており、 該取付孔 3 7 a, 3 7 aを 介して試薬ホルダ一 3 8 , 3 8が着脱自在に取りつけられている。 該試薬ホルダ 一 3 8 , 3 8にはパ一テイクルビン 4 0及び標識試薬ビン 4 2がそれそれ着脱自 在に取りつけられている。  Reference numeral 36 denotes a reagent table mechanism, which has a reagent table 37. The reagent table 37 is provided with mounting holes 37a and 37a, and the reagent holders 38 and 38 are detachable via the mounting holes 37a and 37a. It is attached to. In the reagent holders 38, 38, a particle bin 40 and a labeling reagent bin 42 are individually mounted.
しかして、 本発明に係るノズル洗浄装置 3 0の一つの実施の形態を図 3〜図 8 に基づいて説明する。 図 3及び図 4において、 ノズル洗浄装置 3 0は、 基台 5 0 を有している。 該基台 5 0の一側面長手方向にはガイ ドレール 5 2が設けられて いる。  An embodiment of the nozzle cleaning device 30 according to the present invention will now be described with reference to FIGS. 3 and 4, the nozzle cleaning device 30 has a base 50. A guide rail 52 is provided in the longitudinal direction of one side of the base 50.
該ガイ ドレール 5 2には可動支柱 5 4が上下動自在に取りつけられている。 5 6は該可動支柱 5 4に接続されたタイミングベル卜で、 該夕ィミングベルト 5 6 は図示しない駆動源によって駆動される一対のプーリ 5 8, 5 8に懸架されてい る。 該タイミングベルト 5 6の回転により該可動支柱 5 4が上下動せしめられる o  A movable support 54 is attached to the guide rail 52 so as to be vertically movable. Reference numeral 56 denotes a timing belt connected to the movable column 54. The evening belt 56 is suspended on a pair of pulleys 58, 58 driven by a drive source (not shown). The movable support 54 is moved up and down by the rotation of the timing belt 56.
該可動支柱 5 4の上端部にはノズル保持手段となるアーム部材 6 0が側方に延 出して設けられている。 該アーム部材 6 0には反応容器 Tに液を注入する注入ノ ズル N 1と反応容器 T中の液を吸引する吸引ノズル N 2とが先端部を下方にして 保持されている。 6 2 , 6 2は該アーム部材 6 0に埋設され、 かつノズル N 1 , N 2がそれそれ圧入されている取付ブロックである。  An arm member 60 serving as a nozzle holding means is provided at the upper end of the movable support 54 so as to extend to the side. The arm member 60 holds an injection nozzle N1 for injecting a liquid into the reaction vessel T and a suction nozzle N2 for aspirating the liquid in the reaction vessel T, with the distal end thereof facing downward. Reference numerals 62 and 62 denote mounting blocks embedded in the arm member 60 and into which the nozzles N1 and N2 are press-fitted.
該注入ノズル N 1の上端部は、 例えば洗浄液の供給タンク (図示せず) に接続 されて、 必要量の液を反応管 T内に注入することができるようになつている。 ま た、 該吸引ノズル Ν 2の上端部は液排出口 (図示せず) に接続されており、 反応 容器 Τ中に存在する反応溶液や洗浄用液などの液を真空ポンプ等の吸引手段によ り吸引し液排出口から排出する作用を行うものである。 The upper end of the injection nozzle N1 is connected to, for example, a cleaning liquid supply tank (not shown). Then, a required amount of liquid can be injected into the reaction tube T. The upper end of the suction nozzle Ν2 is connected to a liquid outlet (not shown), and the liquid such as the reaction solution or the cleaning liquid existing in the reaction vessel に is supplied to suction means such as a vacuum pump. It performs more suction and discharge from the liquid discharge port.
6 4は該アーム部材 6 0の下方に位置し該基台 5 0から側方に延出して設けら れた洗浄ケースである。 該洗浄ケース 6 4には上記注入及び吸引ノズル Ν 1, Ν 2に対応して上下方向に注入ノズル Ν 1用の注入ノズル通路 6 6 a及び吸引ノズ ル N 2用の吸引ノズル通路 6 6 bが形成されている。  Reference numeral 64 denotes a cleaning case which is located below the arm member 60 and is provided to extend laterally from the base 50. In the cleaning case 64, the injection nozzle passage 66a for the injection nozzle Ν1 and the suction nozzle passage 66b for the suction nozzle N2 are vertically arranged corresponding to the injection and suction nozzles Ν1 and Ν2. Are formed.
該注入ノズル通路 6 6 a及び吸引ノズル通路 6 6 bの下方には反応管ターレッ ト 1 4の反応管ホルダー 1 6に保持された多数の反応容器 Tが間欠的に順次回動 して位置せしめられる。 該注入ノズル N 1は該反応容器 Tの中程まで進入して液 を注入吐出すればよい。 一方、 吸引ノズル N 2は反応容器 T中の全ての液を吸引 する必要があるため、 図 4に示すように反応容器 Tの底まで進入して吸引動作を 行う。  Below the injection nozzle passage 66a and the suction nozzle passage 66b, a number of reaction vessels T held by the reaction tube holder 16 of the reaction tube turret 14 are intermittently rotated and positioned one after another. Can be The injection nozzle N1 only needs to enter the middle of the reaction vessel T to inject and discharge the liquid. On the other hand, since the suction nozzle N2 needs to suck all the liquid in the reaction vessel T, the suction nozzle N2 enters the bottom of the reaction vessel T and performs a suction operation as shown in FIG.
図 8によく示されるように、 該注入ノズル通路 6 6 a及び吸引ノズル通路 6 6 bの上端部にはノズルホルダ一 6 8 , 6 8が取りつけられている。 該ノズルホル ダー 6 8 , 6 8の中心部にはノズル揷通孔 7 0 , 7 0が貫通して開穿させられて いる。 該ノズル挿通孔 7 0, 7 0の下端部には 0リング 7 2 , 7 2が固定されて いる。 該 0リング 7 2 , 7 2は、 それそれのノズル N l , N 2の外周面と密接し 、 該ノズル N l , N 2が密接状態で該 0リング 7 2 , 7 2に上下動自在に当接し ている。  As shown in FIG. 8, nozzle holders 68, 68 are attached to the upper end portions of the injection nozzle passage 66a and the suction nozzle passage 66b. Nozzle through holes 70, 70 are formed in the center of the nozzle holders 68, 68. O-rings 72, 72 are fixed to lower ends of the nozzle insertion holes 70, 70, respectively. The O-rings 7 2, 7 2 are in close contact with the respective outer peripheral surfaces of the nozzles N 1, N 2, and the nozzles N 1, N 2 are vertically movable with respect to the O-rings 7 2, 7 2 in a close state. Abuts.
該ノズル N l , N 2及び該◦リング 7 2 , 7 2によって該ノズル揷通孔 7 0 , 7 0の下端部は、 完全に密封された状態となるので、 洗浄液を洗浄液吸引口 7 4 b, 7 6 bから吸引する際に該ノズル挿通孔 7 0, 7 0からの空気漏れはないの で、 全ての吸引力を洗浄液の吸引に有効に利用することが可能となる。  Since the lower ends of the nozzle holes 70 and 70 are completely sealed by the nozzles Nl and N2 and the rings 72 and 72, the cleaning liquid suction port 74b , 76b, there is no air leakage from the nozzle insertion holes 70, 70, so that all suction power can be effectively used for suction of the cleaning liquid.
7 4 a , 7 6 a及び 7 4 b , 7 6 bは該ノズル通路 6 6 a, 6 6 bに臨むよう に該ノズル通路 6 6 a , 6 6 bの内壁面に穿設された洗浄液噴出口及び洗浄液吸 引口である。 該洗浄液噴出口 7 4 a , 7 6 aは該洗浄ケース 6 4の側壁下部から 突出して形成された洗浄液供給口 7 8 a , 8 0 aに液通路 8 2を介して接続して いる。 該洗浄液吸引口 74 b, 76 bは該洗浄ケース 64の側壁上部から突出し て形成された洗浄液排出口 78b, 8 Obに液通路 82を介して接続している。 該洗浄液供給口 78 a, 80 aから供給された洗浄液は液通路 82を通って洗 浄液噴出口 74 a, 76 aからノズル通路 66 a, 66 b内に噴出し、 ノズル N 1, N 2を洗浄しつつ洗浄液吸引口 74 b, 76 bの吸引力によって上方に流れ て該洗浄液吸引口 74b, 76bに吸引され、 液通路 82を通って洗浄液排出口 78 b, 80 bから排出される。 74 a, 76 a and 74 b, 76 b are provided with cleaning liquid jets formed in the inner wall surfaces of the nozzle passages 66 a, 66 b so as to face the nozzle passages 66 a, 66 b. Outlet and cleaning solution suction port. The cleaning liquid jets 74 a and 76 a are connected to cleaning liquid supply ports 78 a and 80 a formed through the lower portion of the side wall of the cleaning case 64 via a liquid passage 82. I have. The cleaning liquid suction ports 74 b and 76 b are connected to the cleaning liquid discharge ports 78 b and 8 Ob formed through the upper portion of the side wall of the cleaning case 64 via a liquid passage 82. The cleaning liquid supplied from the cleaning liquid supply ports 78a and 80a is ejected from the cleaning liquid jet ports 74a and 76a into the nozzle paths 66a and 66b through the liquid passage 82, and the nozzles N1, N2 While washing, the liquid flows upward by the suction force of the cleaning liquid suction ports 74b and 76b, is sucked into the cleaning liquid suction ports 74b and 76b, and is discharged from the cleaning liquid discharge ports 78b and 80b through the liquid passage 82.
反応容器の洗浄、 例えば B/F分離を行う場合には、 洗浄位置には反応溶液の 入つた反応容器 Tが到達し、 この反応容器 T中の反応溶液を吸弓 I廃棄し、 洗浄液 の注入、 洗浄液の吸引廃棄という手順に従って洗浄が行なわれる。 したがって、 例えば、 反応管ターレツト 14に反応管ホルダー 16が内周と外周の 2列に配列 している場合について言えば、 図 6に示したように吸引ノズル N 1と注入ノズル N 2とを配置すれば、 吸引—注入一吸引—注入—吸入という洗浄動作を行うこと ができる。 この場合には 2回の洗浄を行うことができる。  In the case of washing the reaction vessel, for example, performing B / F separation, the reaction vessel T containing the reaction solution reaches the washing position, absorbs the reaction solution in the reaction vessel T, discards the reaction solution, and injects the washing solution. Cleaning is performed according to the procedure of aspirating and discarding the cleaning liquid. Therefore, for example, in the case where the reaction tube holders 16 are arranged in the reaction tube turret 14 in two rows of the inner circumference and the outer circumference, the suction nozzle N1 and the injection nozzle N2 are arranged as shown in FIG. Then, a washing operation of suction-injection-suction-injection-inhalation can be performed. In this case, two washes can be performed.
上記した構成により、 ノズル Nl, N 2の洗浄を行う場合について説明する。 図 6に示したように、 反応管保持部 18の内周列と外周列の反応管ホルダー 16 に保持された反応容器についての B/F分離を行う際に内周列及び外周列の使用 ノズル Nl, N 2を同時に洗浄することができる。  A case where the nozzles Nl and N2 are cleaned by the above configuration will be described. As shown in FIG. 6, when the B / F separation is performed on the reaction vessels held by the reaction tube holders 16 in the inner and outer rows of the reaction tube holding unit 18, the nozzles in the inner and outer rows are used. Nl and N2 can be washed at the same time.
図 6に矢印で示したように、 反応管夕一レツト 14が時計回りに回転する場合 を例にとれば、 反応溶液の入った反応容器 T, Τが図 6の一番右端にある吸引ノ ズル Ν2, Ν 2の下方に到達すると、 吸引ノズル Ν 2, Ν 2は降下して反応容器 Τ, Τの底まで進入し (図 4)、 反応溶液を全て吸引する。 吸引を完了すると吸 引ノズル Ν 2, Ν 2は上昇し洗浄ケース 64内の吸引ノズル通路 66 b内に収納 される (図 3) 。 この時、 図 3に示すように、 該吸引ノズル N 2, N 2の下端は 洗浄液噴出口 76 aの設置位置よりも上方に位置させると良好な洗浄が行なえる 該吸弓 Iノズル N 2 , N2が吸弓 Iノズル通路 66 b内に収納されると、 該洗浄液 噴出口 76 aから洗浄液が噴出され、 この噴出された洗浄液は洗浄液吸引口 76 bからの吸引力によって重力に抗して上方に流れて吸引ノズル N 2, N2を洗浄 し、 該洗浄液吸引口 76 bから吸引され洗浄液排出口 78 b, 8 Obから排出さ れる。 As shown by the arrow in FIG. 6, for example, when the reaction tube 14 is rotated clockwise, the reaction vessels T and た containing the reaction solution are suction nozzles at the far right end in FIG. When the nozzles 下方 2 and Ν2 reach below the nozzles Ν2 and Ν2, the suction nozzles Ν2 and Ν2 descend and enter the bottoms of the reaction vessels Τ and 吸引 (Fig. 4), and suck all the reaction solution. When the suction is completed, the suction nozzles Ν2 and Ν2 rise and are stored in the suction nozzle passage 66b in the cleaning case 64 (FIG. 3). At this time, as shown in FIG. 3, if the lower ends of the suction nozzles N 2 and N 2 are positioned above the installation position of the cleaning liquid ejection port 76 a, good cleaning can be performed. When the N2 is stored in the bow suction I nozzle passage 66b, the cleaning liquid is jetted from the cleaning liquid jet port 76a, and the jetted cleaning liquid is lifted upward against the gravity by the suction force from the cleaning liquid suction port 76b. To clean the suction nozzles N2 and N2 Then, the liquid is sucked from the cleaning liquid suction port 76b and discharged from the cleaning liquid discharge ports 78b and 8 Ob.
反応溶液を吸引された空となった反応容器 Τ, Tは次いで図 6の右から 2番目 の注入ノズル Nl, N 1の下方に回動到達する。 注入ノズル N 1 , N1は降下し て空の反応容器 T, Τの中程まで進入し (注入するだけであるから底まで進入す る必要はない) 、 洗浄用液を反応容器 Τ, Τ内に注入する。 注入を完了すると注 入ノズル Nl, N1は上昇し、 洗浄ケース 64内の注入ノズル通路 66 a内に収 納される (図 3)。  The empty reaction vessels Τ and T, which have sucked the reaction solution, then rotate below the second injection nozzles Nl and N1 from the right in FIG. The injection nozzles N 1 and N 1 descend to enter the middle of an empty reaction vessel T, Τ (there is no need to enter the bottom because it is only injection), and the cleaning liquid is supplied to the reaction vessels Τ and Τ. Inject into When the injection is completed, the injection nozzles Nl and N1 rise and are stored in the injection nozzle passage 66a in the cleaning case 64 (Fig. 3).
該注入ノズル N 1 , N 1は洗浄用液を注入するだけなのであまり汚れないが、 コン夕ミネーシヨン等による汚れを防止し、 測定の精度を上げるためにやはり洗 浄する必要がある。 この場合も、 該注入ノズル Nl, N1の下端が洗浄液噴出口 74aの設置位置よりも上方に位置させると良好な洗浄が行えることは同様であ る。  The injection nozzles N 1 and N 1 do not stain much because they only inject the cleaning liquid, but they also need to be cleaned in order to prevent contamination due to contamination or the like and increase measurement accuracy. Also in this case, if the lower ends of the injection nozzles Nl and N1 are located above the installation position of the cleaning liquid ejection port 74a, it is the same that good cleaning can be performed.
該注入ノズル N 1 , N 1が注入ノズル通路 66 a内に収納されると、 該洗浄液 噴出口 74 aから洗浄液が噴出され、 この噴出された洗浄液は洗浄液吸引口 74 bからの吸引力によって重力に抗して上方に流れて注入ノズル N 1, N1を洗浄 し、 該洗浄液吸引口 74bから吸引されて洗浄液排出口 78b, 80bから排出 される。  When the injection nozzles N 1 and N 1 are housed in the injection nozzle passage 66 a, the cleaning liquid is jetted from the cleaning liquid jet port 74 a, and the jetted cleaning liquid is gravity driven by the suction force from the cleaning liquid suction port 74 b. The cleaning liquid flows upward to wash the injection nozzles N1 and N1, and is sucked from the cleaning liquid suction port 74b and discharged from the cleaning liquid discharge ports 78b and 80b.
洗浄用液を注入された反応容器 Τ, Tは次に図 6の右から 3番目の吸引ノズル N2, N2の下方に回動到達する。 吸引ノズル N2, N2は降下して反応容器 T , Tの底まで進入し (図 4)、 洗浄用液を全て吸引する。 吸引を完了すると、 前 述したと同様に、 吸引ノズル通路 66 b内に収納されて洗浄される。  The reaction vessels Τ and T into which the cleaning liquid has been injected then turn below the third suction nozzles N2 and N2 from the right in FIG. The suction nozzles N2 and N2 descend and enter the bottom of the reaction vessels T and T (Fig. 4), and suck all the cleaning liquid. When the suction is completed, it is stored in the suction nozzle passage 66b and washed as described above.
この空の反応容器 Τ, Tはさらに図 6の右から 4番目の注入ノズル N 1, N 1 の下方に回動到達して、 上述したと同様に、 洗浄用液が再び注入される。 注入完 了後、 注入ノズル N 1, N 1は同様にして注入ノズル通路 66 a内で洗浄される 洗浄用液を注入された反応容器 T, Τは、 図 6の右から 5番目、 即ち最後の吸 引ノズル Ν2, Ν2の下方に回動到達して、 上述したと同様に、 反応容器 Τ, Τ 内の洗浄用液は吸引排出される。 吸引完了後、 吸引ノズル Ν2, Ν2は同様にし て吸引ノズル通路 6 6 b内で洗浄される。 These empty reaction vessels Τ and T further pivot below the fourth injection nozzles N 1 and N 1 from the right in FIG. 6, and the washing liquid is injected again as described above. After the injection is completed, the injection nozzles N1 and N1 are similarly cleaned in the injection nozzle passage 66a. The reaction vessels T and た into which the cleaning liquid has been injected are the fifth from the right in FIG. The cleaning liquid in the reaction vessels Τ and Τ is sucked and discharged in the same manner as described above after reaching the rotation below the suction nozzles Ν2 and 回 動 2. After suction is completed, suction nozzles Ν2 and Ν2 The cleaning is performed in the suction nozzle passage 66b.
上述したように、 注入ノズル N 1及び吸引ノズル N 2は注入操作及び吸引操作 を行った後直ちに注入ノズル通路 6 6 a及び吸引ノズル通路 6 6 b内で洗浄され るので、 例え洗浄用液に特殊成分、 例えば界面活性剤などが含まれていても乾燥 して結晶体となる程の時間放置されることはないので結晶体が反応管に付着する ことは皆無となる。  As described above, the injection nozzle N1 and the suction nozzle N2 are washed in the injection nozzle passage 66a and the suction nozzle passage 66b immediately after performing the injection operation and the suction operation. Even if a special component, such as a surfactant, is contained, the crystals are not left for a period of time so as to dry and become crystals, so that the crystals do not adhere to the reaction tube at all.
図 6に示した例では、 反応容器 Tの B/F分離における洗浄は、 吸引 (反応溶 液) 一注入 (洗浄用液) 一吸引 (洗浄用液) 一注入 (洗浄用液) 一吸引 (洗浄用 液) の手順となるので、 洗浄処理は 2度行われたことになる。 この B/F分離に おける洗浄回数を増やす場合には、 注入ノズル N 1と吸引ノズル N 2の組み合わ せを増加すればよいことはいうまでもない。 産業上の利用可能性  In the example shown in Fig. 6, the washing in the B / F separation of the reaction vessel T is performed by suction (reaction solution), one injection (washing solution), one suction (washing solution), one injection (washing solution), and one suction ( Cleaning solution), the cleaning process was performed twice. When increasing the number of washings in the B / F separation, it goes without saying that the number of combinations of the injection nozzle N1 and the suction nozzle N2 may be increased. Industrial applicability
以上述べたごとく、 本発明のノズル洗浄装置によれば、 ノズル洗浄孔の開口面 積を最小にすることができ、 装置容積も小さくでき、 かつ使用する洗浄液の量を 極小にすることを可能とし、 また洗浄用液に起因する結晶体のノズル及びノズル 洗浄ケースへの付着を皆無とすることができるという効果を奏する。  As described above, according to the nozzle cleaning device of the present invention, the opening area of the nozzle cleaning hole can be minimized, the volume of the device can be reduced, and the amount of the cleaning liquid to be used can be minimized. In addition, the present invention has an effect that it is possible to eliminate the adhesion of the crystal to the nozzle and the nozzle cleaning case due to the cleaning liquid.

Claims

請求の範囲 The scope of the claims
1 . 反応容器中の液を吸引するノズル及び反応容器に液を注入するノズルの洗浄 を行う装置であり、 反応容器の設置位置の上方に位置するように設けられかつノ ズルが該反応容器中に進入可能なようにノズルを上下動自在に保持するノズル保 持手段と、 該ノズル保持手段と反応容器の設置位置の間に設けられたノズル洗浄 ケースと、 該ノズル保持手段に保持されたノズルが上下動自在に挿通できるよう に該ノズル洗浄ケース内に設けられたノズル通路と、 該ノズル通路内に位置する ノズルを洗浄する洗浄機構とを有することを特徴とするノズル洗浄装置。 1. A device that cleans the nozzle that sucks the liquid in the reaction container and the nozzle that injects the liquid into the reaction container, is provided so as to be located above the installation position of the reaction container, and the nozzle is located in the reaction container. Holding means for holding a nozzle movably up and down so as to be able to enter the nozzle, a nozzle cleaning case provided between the nozzle holding means and the installation position of the reaction vessel, and a nozzle held by the nozzle holding means A nozzle cleaning device, comprising: a nozzle passage provided in the nozzle cleaning case so that the nozzle can be inserted in a vertically movable manner; and a cleaning mechanism for cleaning a nozzle located in the nozzle passage.
2 . 前記ノズル洗浄機構が、 前記ノズル通路内に洗浄液を噴出する手段と、 噴出 された洗浄液を吸引する手段とを有することを特徴とする請求項 1記載のノズル 洗浄装置。 2. The nozzle cleaning device according to claim 1, wherein the nozzle cleaning mechanism includes a unit that jets a cleaning liquid into the nozzle passage, and a unit that sucks the jetted cleaning liquid.
3 . 前記ノズル洗浄機構が、 前記ノズル通路に臨むように洗浄液噴出口および洗 浄液吸引口を開口せしめ、 該洗浄液噴出口から洗浄液を該ノズル通路内に噴出し てノズルの洗浄を行い、 該ノズル通路内の洗浄液を洗浄液吸引口から吸引排出す るように構成されていることを特徴とする請求項 1記載のノズル洗浄装置。 3. The nozzle cleaning mechanism opens the cleaning liquid ejection port and the cleaning liquid suction port so as to face the nozzle passage, and ejects the cleaning liquid from the cleaning liquid ejection port into the nozzle passage to clean the nozzle. 2. The nozzle cleaning apparatus according to claim 1, wherein the cleaning liquid in the nozzle passage is suctioned and discharged from a cleaning liquid suction port.
4 . 前記洗浄液噴出口を前記ノズル通路の下部に設け、 前記洗浄液吸引口を前記 ノズル通路の上部に設けたことを特徴とする請求項 3記載のノズル洗浄装置。4. The nozzle cleaning device according to claim 3, wherein the cleaning liquid ejection port is provided at a lower portion of the nozzle passage, and the cleaning liquid suction port is provided at an upper portion of the nozzle passage.
5 . 前記洗浄液噴出口と洗浄液吸引口の設置距離が、 ノズルを反応容器内の液中 に進入させた場合のノズルの浸漬部分の長さよりも大であることを特徴とする請 求項 3又は 4記載のノズル洗浄装置。 Claim 5. The installation distance between the cleaning liquid jet port and the cleaning liquid suction port is larger than the length of the immersion part of the nozzle when the nozzle is inserted into the liquid in the reaction vessel. 4. The nozzle cleaning device according to 4.
6 . 前記ノズル通路の上部に、 中央部にノズルを挿通するノズル揷通孔を穿設し てなるノズルホルダ一を取付け、 かつ該ノズル揷通孔の下端部の径をノズルが密 接状態で上下動できるように形成したことを特徴とする請求項 3〜 5のいずれか 1項記載のノズル洗浄装置。  6. At the top of the nozzle passage, attach a nozzle holder with a nozzle through hole at the center to penetrate the nozzle, and adjust the diameter of the lower end of the nozzle through hole so that the nozzle is in close contact. The nozzle cleaning device according to any one of claims 3 to 5, wherein the nozzle cleaning device is formed so as to be able to move up and down.
PCT/JP1998/003165 1997-07-18 1998-07-15 Nozzle washing device WO1999004271A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/193465 1997-07-18
JP19346597A JPH1138016A (en) 1997-07-18 1997-07-18 Nozzle washing device

Publications (1)

Publication Number Publication Date
WO1999004271A1 true WO1999004271A1 (en) 1999-01-28

Family

ID=16308469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003165 WO1999004271A1 (en) 1997-07-18 1998-07-15 Nozzle washing device

Country Status (2)

Country Link
JP (1) JPH1138016A (en)
WO (1) WO1999004271A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3299823A1 (en) * 2016-09-26 2018-03-28 Stratec Biomedical AG Injector manifold
US11971426B2 (en) * 2018-03-16 2024-04-30 Hitachi High-Tech Corporation Automatic analysis device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094222B2 (en) * 2007-06-15 2012-12-12 シスメックス株式会社 Sample analysis apparatus and sample analysis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259257A (en) * 1988-04-08 1989-10-16 Toa Medical Electronics Co Ltd Immune agglutination measuring instrument
JPH06222065A (en) * 1992-12-17 1994-08-12 Smithkline Beckman Corp Device and method for cleaning fluid probe
JPH07229905A (en) * 1993-12-20 1995-08-29 Toa Medical Electronics Co Ltd Apparatus for cleaning pipette
WO1997001750A1 (en) * 1995-06-29 1997-01-16 Coulter International Corp. Apparatus for cleaning a fluid sample probe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259257A (en) * 1988-04-08 1989-10-16 Toa Medical Electronics Co Ltd Immune agglutination measuring instrument
JPH06222065A (en) * 1992-12-17 1994-08-12 Smithkline Beckman Corp Device and method for cleaning fluid probe
JPH07229905A (en) * 1993-12-20 1995-08-29 Toa Medical Electronics Co Ltd Apparatus for cleaning pipette
WO1997001750A1 (en) * 1995-06-29 1997-01-16 Coulter International Corp. Apparatus for cleaning a fluid sample probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3299823A1 (en) * 2016-09-26 2018-03-28 Stratec Biomedical AG Injector manifold
US11971426B2 (en) * 2018-03-16 2024-04-30 Hitachi High-Tech Corporation Automatic analysis device

Also Published As

Publication number Publication date
JPH1138016A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
KR100397256B1 (en) Automatic sample preparation device
EP0360487B1 (en) Method and apparatus for analysis of particles contained in a liquid sample
JP4406643B2 (en) Liquid sampling probe and cleaning fluidics system
JP5744923B2 (en) Automatic analyzer
US20200139360A1 (en) Automatic pipetting device for transferring samples and/or reagents and method for transferring liquid samples and/or reagents
JP6466846B2 (en) Nozzle cleaning method and automatic analyzer
JPH08122336A (en) Cartridge container
JP2009042067A (en) Automatic analyzer
EP0725279A1 (en) Improved probe wash device
CN103890589A (en) Automated analyzer
JP3267117B2 (en) Analyzer with dispensing device
JP4175916B2 (en) Automatic analyzer
CN109070148B (en) Probe cleaning station for analytical instruments
JPH03279863A (en) Automatic analysis apparatus
WO1999004271A1 (en) Nozzle washing device
JPH063364A (en) Liquid dispensing device for analysis
EP1335853B1 (en) Sample dispensing with liquid delivery without crossover
JP7281540B2 (en) automatic analyzer
JPH1090280A (en) Liquid dispenser and distributing device
JPH11271331A (en) Washing mechanism of sampling nozzle
JPH01254871A (en) Method for cleaning dispensing nozzle for analysis apparatus and dispensing nozzle device
JP2663661B2 (en) Liquid vacuum suction device
JPH11304821A (en) Washing device
JP3778002B2 (en) Dispensing device
JPH0259673A (en) Sampling device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase