WO1999004159A1 - Fuel injection nozzle - Google Patents

Fuel injection nozzle Download PDF

Info

Publication number
WO1999004159A1
WO1999004159A1 PCT/JP1998/003206 JP9803206W WO9904159A1 WO 1999004159 A1 WO1999004159 A1 WO 1999004159A1 JP 9803206 W JP9803206 W JP 9803206W WO 9904159 A1 WO9904159 A1 WO 9904159A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection hole
fuel
injection
nozzle
hole
Prior art date
Application number
PCT/JP1998/003206
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Iwasaki
Toshiyuki Hasegawa
Kouji Matsui
Takashi Kobayashi
Original Assignee
Zexel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corporation filed Critical Zexel Corporation
Publication of WO1999004159A1 publication Critical patent/WO1999004159A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/29Fuel-injection apparatus having rotating means

Definitions

  • the present invention relates to a fuel injection nozzle, and more particularly to a fuel injection nozzle capable of improving a spray shape in a diesel engine or a direct injection type gasoline engine.
  • the fuel injection nozzle is a single component, and its injection characteristics and spray characteristics affect engine performance and exhaust gas properties. It is well known that
  • diesel engines have been improved by using hole nozzles as fuel injection nozzles to increase the injection pressure to a high pressure of 10 OMPa or more. Further improvements in performance and exhaust gas performance are desired.
  • fuel is injected into a combustion chamber under high pressure and high temperature to ignite and burn, so it is necessary for the fuel to reach a predetermined part of the combustion chamber, and the injected fuel is short. It is desirable to mix with air and burn it quickly during the time.
  • the present invention has been made in view of the above-described problems, and has as its object to provide a fuel injection nozzle capable of mixing injected fuel with air more efficiently.
  • the present invention provides a fuel injection nozzle capable of providing a spray for inducing a swirl flow in fuel in an injection hole to increase the spread of spray and promote the mixing of fuel and air.
  • the task is to provide
  • the present invention also provides a fuel injection nozzle that can improve the combustion performance of an engine by promoting the mixing of fuel and air in a short time, particularly in a diesel engine or a direct injection gasoline engine.
  • the task is to provide.
  • Another object of the present invention is to provide a fuel injection nozzle capable of spraying in an appropriate shape according to the load and the number of revolutions of the engine.
  • Another object of the present invention is to provide a fuel injection nozzle capable of adding swirl to spray.
  • Another object of the present invention is to provide a fuel injection nozzle capable of controlling the direction of dispersion of spray.
  • the dispersion direction of the spray can be biased in a predetermined direction or not, and further, the bias direction can be controlled. It is an object to provide a fuel injection nozzle.
  • the present invention provides a method for inducing a swirling flow inside an injection hole itself, that is, to be able to give swirl to fuel in the injection hole, and as a structure for this purpose, an injection hole of the injection hole.
  • the first aspect of the invention focuses on making the cross-sectional shape of the inlet or the outlet of the injection hole knitted from the axis of the injection hole.
  • a nozzle body having an injection hole formed therein and a seat surface, and a needle valve slidably provided in the nozzle body and capable of injecting fuel from the injection hole by lifting from the sheet surface.
  • a fuel injection nozzle having a cross-sectional area of the injection hole inlet portion of the injection hole and a cross-sectional area of the injection hole main portion.
  • the fuel injection nozzle is characterized in that the cross section is smaller than the product and the opening cross section of the injection hole inlet is deviated from the opening cross section of the main injection hole.
  • a nozzle body having an injection hole inlet portion, an injection hole main portion and an injection hole outlet portion, a seat surface, and a slidably provided nozzle inside the nozzle body.
  • a fuel injection nozzle having a needle valve capable of injecting fuel from the injection hole by lifting from the sheet surface, wherein a cross-sectional area of the injection hole inlet portion of the injection hole is determined by the injection hole.
  • the fuel flowing into the injection hole inlet can be introduced from a direction deviated from the axis of the injection hole main portion. This is a characteristic fuel injection nozzle.
  • a part of the periphery of the injection hole entrance portion and a part of the periphery of the injection hole main portion can overlap.
  • An injection fuel passage intersecting the injection hole is provided inside the injection hole, and an intersection of the injection fuel passage and the injection hole has an injection hole having a cross-sectional area smaller than a cross-sectional area of the injection hole main portion.
  • An inlet can be formed.
  • the injection hole and the introduction fuel passage intersecting with the injection hole can cross each other at a substantially right angle.
  • An injection hole variable mechanism that can change the cross-sectional area of the injection hole entrance portion can be provided.
  • a counterbore deviated from the main portion of the injection hole can be provided at the injection hole exit portion.
  • the counterbore can be biased toward the central axis of the injection hole inlet with respect to the central axis of the injection hole main portion.
  • a third invention provides a nozzle body having an injection hole inlet portion, an injection hole main portion, and an injection hole outlet portion, a nozzle body having a seat surface, and a slidably provided inside the nozzle body.
  • the cross-sectional area of the injection hole inlet portion is made smaller than the cross-sectional area of the injection hole main portion, or the flow path that can generate swirl is formed into a shape in which a streamline is bent Because of the shape, the fuel that is to be injected into the combustion chamber from the injection hole by the lift of the needle valve will flow spirally along the axis of the injection hole through the injection hole.
  • the fuel is injected as a spray expanded to a predetermined range.
  • sprays that are more widespread than conventional fuel injection nozzles can easily take air in the combustion chamber into the interior, that is, improve the mixing ratio with air, and expect good combustion. Can be.
  • a variable injection hole mechanism can be adopted, and an appropriate injection amount can be obtained by making the cross-sectional area of the injection hole variable.
  • the above-described spray can be obtained, which can further contribute to improving the performance of the engine.
  • swirl is generated by biasing the injection hole inlet portion and the injection hole main portion inside the injection hole, so that the spray shape of the injected fuel has a predetermined spread. It can promote the mixing of fuel air and contribute to good combustion.
  • FIG. 1 is a schematic diagram of a fuel injection device 1 having a fuel injection nozzle 3 according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view of the main part of the nozzle body 8, the injection hole variable mechanism 10 and the swirl mechanism 11 of the fuel injection nozzle 3.
  • FIG. 3 is a cross-sectional view of the injection hole variable mechanism 10 and the swirl mechanism 11 when the rotary valve 17 is rotatable.
  • FIG. 4 is a sectional view of the same when the needle valve 9 is lifted.
  • FIG. 5 is a sectional view taken along line VV of FIG.
  • FIG. 6 is a cross-sectional view of the same orifice 17 valve and the view from the axial direction of the corresponding injection hole 13 in parallel with the opening degree of each injection hole 13 in the same manner.
  • FIG. 7 is an explanatory diagram visualizing the spray shape at the beginning of the injection according to the opening degree of each of the injection holes 13 shown in FIG.
  • FIG. 8 is a graph showing the relationship between the cam angle and the injection angle.
  • FIG. 9 is a graph showing the relationship between the cam angle and the penetration at the injection tip.
  • FIG. 10 is a sectional view taken along line XX of FIG.
  • FIG. 11 is a view taken in the direction of the arrow XI in FIG.
  • FIG. 12 is an enlarged sectional view of a main part of a fuel injection nozzle 30 according to a second embodiment of the present invention.
  • FIG. 13 is a cross-sectional view taken along the line XII I-XII I in FIG.
  • FIG. 14 is a view in the XIV direction of FIG.
  • FIG. 15 is a horizontal sectional view of the nozzle hole 13 in the state of FIGS. 10 and 11, a side sectional view of the nozzle hole 13, and an axial view of the nozzle hole 13.
  • FIG. 4 is an explanatory diagram showing the figure in parallel.
  • FIG. 16 is a horizontal sectional view of the injection hole 13, a side sectional view of the injection hole 13, and an arrow view of the injection hole 13 in the state of FIGS. 12 to 14.
  • FIG. 4 is an explanatory diagram showing the figure in parallel.
  • FIG. 17 shows an example of an oblong counterbore 33 in the same manner. Similar to FIGS. 15 and 16, a horizontal sectional view, a lav sectional view, and an arrow view are shown in parallel.
  • FIG. 18 shows an example of a circular counterbore 34 in the same manner as FIG. 15 and FIG. 16, showing a horizontal sectional view, a lav sectional view, and an arrow view in parallel.
  • FIG. 18 shows an example of a circular counterbore 34 in the same manner as FIG. 15 and FIG. 16, showing a horizontal sectional view, a lav sectional view, and an arrow view in parallel.
  • FIG. 19 shows an example of a triangular counterbore 35 in the same manner as FIG. 15 and FIG. 16, with a horizontal sectional view, a side sectional view and an arrow FIG.
  • FIG. 20 shows an example of a conical counterbore 36 in the same manner as FIG. 15 and FIG. 16, showing a horizontal sectional view, a side sectional view, and an arrow view in parallel.
  • FIG. 20 shows an example of a conical counterbore 36 in the same manner as FIG. 15 and FIG. 16, showing a horizontal sectional view, a side sectional view, and an arrow view in parallel.
  • FIG. 21 is a cross-sectional view of the tip of a fuel injection nozzle 40 of a conventional general hole nozzle type.
  • FIG. 22 is a sectional view taken along the line XXII-XXII of FIG.
  • FIG. 23 is a view as seen in the direction of the arrow XXII in FIG.
  • FIG. 24 is a horizontal sectional view of the injection hole 13 of the fuel injection nozzle 50 according to the third embodiment of the present invention.
  • FIG. 25 is an axial view of the injection hole 13 as viewed from the direction of the arrow.
  • FIG. 26 is an axial view of the injection hole 13 of the fuel injection nozzle 52 according to the fourth embodiment of the present invention.
  • FIG. 27 is a horizontal sectional view of the injection hole 13 of the fuel injection nozzle 60 according to the fifth embodiment of the present invention.
  • FIG. 28 is an axial view of the injection hole 13 as viewed from the direction of the arrow.
  • FIG. 29 is an enlarged sectional view of a main part of a fuel injection nozzle 70 according to a sixth embodiment of the present invention.
  • FIG. 30 is a sectional view taken along the line XXX-XXX in FIG.
  • FIG. 31 is a view in the direction of the XXXX direction of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic diagram of a fuel injection device 1.
  • the fuel injection device 1 includes a fuel injection pump 2, a fuel injection nozzle 3 according to the present invention, an injection amount sensor 14, and control means ⁇ . Have.
  • the fuel injection pump 2 pressurizes the fuel from a fuel tank (not shown) and supplies the fuel to a fuel introduction section 6 of a fuel injection nozzle 3.
  • the fuel injection nozzle 3 includes a nozzle housing 7 having a fuel introduction section 6, a nozzle body 8 attached to the nozzle housing 7, a needle valve 9 that slides back into the nozzle body 8, and a variable injection hole mechanism. 10 and a swirl mechanism 11.
  • the fuel injection nozzle 3 is a hole nozzle type, has a hole 12 at the tip of the nozzle body 8, and has an injection hole 13 formed in the hole 12.
  • the control means 5 drives the actuator 14 of the injection hole variable mechanism 10 in response to the fuel pressure detection signal from the injection amount sensor 14, and controls the injection hole variable mechanism 10 of the fuel injection nozzle 3. I do.
  • FIG. 2 is an enlarged perspective view of a main part of the nozzle body 8, the injection hole variable mechanism 10 and the swirl mechanism 11 of the fuel injection nozzle 3.
  • the injection hole variable mechanism 10 includes the above-mentioned actuator unit. 14, the mouthpiece shaft 15 attached to the factory unit 14, the connecting part 16 attached to the mouthpiece shaft 15, and the mouthpiece attached to the connecting part 16 And one valve 17.
  • the orifice shaft 15 is inserted into the inside of the needle valve 9 from the top of the nozzle housing 7 to the lower part.
  • the connecting portion 16 connects the mouthpiece shaft 15 and the mouthpiece valve 17 movably (with play) in the axial direction of the rotary shaft 15.
  • the rotary valve 17 is located at the lower part of the needle valve 9 and has a substantially conical shape capable of engaging with the inside of the hole portion 12, and has a sheet arc portion 1 capable of closing the injection hole 13. 8 and a variable groove portion 19 (introducing fuel passage) between the sheet circular arc portion 18 and communicating with the injection hole 13 (in the example shown, each has a length of 5 mm).
  • Fig. 3 is a sectional view of the nozzle hole variable mechanism 10 and the scroll mechanism 11 when the rotary valve 17 is rotatable
  • Fig. 4 is a sectional view of the same when the 21-dual valve 9 is lifted.
  • the seat portion 20 of the dollar valve 9 is seated on the seat surface 21 of the upstream lavatory from the nozzle hole 13 of the nozzle body 8 so that the fuel passage 2 from the fuel introduction portion 6 is formed. 2 and injection hole 13 are shut off.
  • the opening degree of the injection hole 13 can be changed by the relative position between the variable groove portion 19 and the injection hole 13.
  • the swirl mechanism 11 can be realized by the above-described injection hole variable mechanism 10 in the fuel injection nozzle 3 according to the first embodiment.
  • FIG. 5 is a cross-sectional view taken along the line V--V in FIG. 3, and shows the relative position of the variable groove portion 19 of the valve 17 with respect to the injection hole 13 in the nozzle body 8 (hole portion 12).
  • the variable By making the variable, the fuel can flow spirally inside the injection hole 13, and the shape of the spray from the injection hole 13 can be made appropriate.
  • the injection hole 13 includes an injection hole main portion 23, an injection hole inlet portion 24 upstream of the injection hole main portion 23, an injection hole outlet portion 25 downstream of the injection hole main portion 23,
  • the cross-sectional area of the opening cross section of the injection hole inlet 24 is variable on the injection hole inlet 24 side. That is, at the intersection 26 between the injection hole 13 and the variable groove portion 19 (introduction fuel passage), the cross-sectional area of the injection hole inlet portion 24 can be made variable.
  • FIG. 6 is an explanatory diagram in which the cross section of the rotary valve 17 and the view from the axial direction of the corresponding injection hole 13 are arranged in parallel with the opening degree of the injection hole 13 in parallel. If the variable groove 19 and the injection hole inlet 24 of the injection hole 13 completely match each other, the opening degree of the injection hole inlet 24 (intersection 26) is 10 0% From this 100% opening degree, the ⁇ -valve 17 is slightly rotated by the actuator 14 via the mouth-shaft 15 and the connecting part 16. In this case, the arc 13 of the rotary valve 17 slightly overlaps the injection hole inlet 24 of the injection hole 13, that is, the injection hole inlet 24 is slightly closed. The opening degree of the inlet 24 is 75%.
  • the opening of the injection hole inlet 24 can be reduced, for example. It can be 25%.
  • the timing of the rotation of the valve 17 by the actuator 14 is such that fuel is supplied to the dollar valve 9 in response to the intake or exhaust process of an engine (not shown).
  • the timing can be such that the injection pressure is not applied.
  • FIG. 7 shows the initial stage of injection according to the opening of each injection hole 13 shown in Fig. 6.
  • FIG. 4 is an explanatory view showing a visualized spray shape.
  • fuel from a fuel passage 22 is directly supplied from a variable groove 19 to an injection hole inlet portion 24 of an injection hole 13. It enters and is injected straight into the combustion chamber 27 of the engine from the injection hole outlet 25 without drawing a spiral inside the injection hole 13 (the injection hole main portion 23).
  • the spray shape is linear as shown in the figure, and the penetration is the largest.
  • the fuel from the variable groove 19 (introduction fuel passage) to the injection hole inlet 24 of the injection hole 13 via the intersection 26 with the lift of the dollar valve 9 is Since it enters the injection hole main part 23 while wrapping around the sheet arc portion 18 of the valve 17, the direction of the wraparound direction (the injection hole) (13) is at a right angle from the direction of the variable groove 19), so that it enters at a predetermined pressure. Therefore, the direction of the resultant force of this wraparound force and the force in the direction of staying in the variable groove 19 Will be acted upon.
  • the inside of the injection hole main portion 23 of the injection hole 13 is a flow path limited to, for example, a circular cross section, and the fuel that has been acted on in the direction of the resultant force turns inside the injection hole main portion 23. As described above, that is, in a manner of drawing a spiral, the fuel reaches the injection hole outlet 25 and is injected into the combustion chamber 27.
  • the penetration is lower than when the opening degree is 100%, it is injected in the expanded state with a slight swirl, and each is injected. It can be seen that the swelling shape is slightly swelled, and that there are branches and leaves.
  • the fuel that has entered the nozzle hole main part 23 with the nozzle hole inlet part 24 being half open is swirled off the axis of the nozzle hole main part 23 and swirled. Since the fuel is injected from the outlet 25, the spray shape is as shown in the figure.
  • FIG. 8 is a graph showing the relationship between the cam angle and the injection angle. It can be seen that the injection angle is larger when the opening degree is 50% than when the opening degree is 100%.
  • FIG. 9 is a graph showing the relationship between the cam angle and the penetration of the injection tip portion.
  • the opening angle of 50% is larger than that of 100%. It can be seen that the net reduction has become smaller.
  • FIG. 10 is a cross-sectional view taken along the line X-X of FIG. 4, and FIG. 11 is a view taken in the direction of the arrow XI of FIG. 4, wherein the injection hole 13 has its axis centered.
  • the injection hole inlet 24 is opened at a predetermined opening degree (for example, 50%) by being biased to only one side, that is, the injection hole 13 is shielded only on one side, The fuel peels off only in the shielded direction, and the formed spray has the characteristic that it becomes non-axisymmetric with respect to the injection direction as shown in Fig. 10 or the injection direction changes during injection. . There is a problem that this property is not preferable for the engine.
  • FIG. 12 is an enlarged sectional view of a main part of a fuel injection nozzle 30 according to a second embodiment of the present invention for solving such a problem
  • FIG. -XIII sectional view, Fig. 14 is a view in the direction of arrow IV in Fig. 12; in the swirl mechanism 31 of the fuel injection nozzle 30, the injection hole exit of the injection hole 13 A circular counterbore portion 32 was formed in the portion 25.
  • FIGS. 10 and 11 are shown in FIG. FIGS. 12 to 14 show the states shown in FIGS. 12 to 14.
  • FIG. 15 is a horizontal sectional view of the injection hole 13, a cross-sectional view of the injection hole 13, and a view in the axial direction of the injection hole 13 in the state of FIGS. 10 and 11.
  • 16 is a horizontal sectional view of the injection hole 13 in the state shown in FIGS. 12 to 14 and a side cross section of the injection hole 13.
  • FIG. 4 is an explanatory view showing the figure and a view taken in the direction of the axis of the injection hole 13 in parallel.
  • the counterbore portion 32 is positioned with respect to the center line 23 C of the injection hole main portion 23. Injection hole 24 This is leaked to the sword center axis 24 C side.
  • the injection hole inlet 24 of the injection hole 13 is shielded.
  • the injection hole outlet 25 of the injection hole 13 is enlarged on the right side in FIG. 14 while facing the left side in FIG. So that the flow path from the injection hole inlet 24 to the injection hole outlet 25 is not axisymmetric in the axial direction, that is, if the spray has the shape shown in FIG. In order to avoid this, an average spray shape can be formed.
  • the fuel injection nozzle 30 having such a configuration is deflected by the variable groove portion 19 of the rotary valve 17 to enter the injection hole 13 (the injection hole main portion 23) from the injection hole inlet portion 24 and turn.
  • the fuel that has flowed will expand in the direction of the counterbore 32 only at the counterbore S2 of the injection hole outlet 25, and as shown in FIG. And a symmetrical spray shape.
  • the counterbore portion 32 is located on the side of the central axis line 24 C of the injection hole inlet portion 24 with respect to the central axis line 23 C of the injection hole main portion 23. If this is connected to the opposite side, the degree of non-axisymmetricity can be further increased. Therefore, depending on the direction of the offset of the counterbore part 32, it is possible to eliminate the bias of the spray (non-axisymmetric), to further increase the spread of the spray, or to set different directions such as horizontal and vertical. It is possible to bias the spray to a certain point.
  • FIGS. 17 to 20 show various examples of counterbore portions formed at the nozzle hole outlet 25 of the nozzle hole 13 in parallel with FIGS. 15 and 16.
  • the counterbore portion 33 is not a circular shape but an oblong shape, and the By forming 33, the effect of correcting the deflection direction by the ffi counterbore 33 can be made more effective.
  • the counterbore portion 34 is formed in a circular shape larger than the nozzle hole outlet portion 25 of the nozzle hole 13 to promote the spraying action, and The mixing efficiency with air can be improved.
  • the spot facing portion 35 has a triangular shape, and the spray shape can be a three-dimensional pyramid shape.
  • the counterbore section 36 censored from the nozzle hole outlet section 25 has a conical shape, and the same as the counterbore section 32 in the example shown in FIG. 16. Further, by making the shape perpendicular to the forming direction of the injection hole inlet portion 24, the spray is made axially symmetric and can be further expanded.
  • the swirl mechanism 11 can be configured by using the variable injection hole mechanism 10, but the general swirl mechanism without the variable injection hole mechanism 10 can be used.
  • the swirl mechanism 11 can be configured with a simple nozzle configuration.
  • Fig. 21 is a sectional view of the tip of a conventional general hole nozzle type fuel injection nozzle 40
  • Fig. 22 is a sectional view taken along line XXI-XXI in Fig. 21.
  • FIG. 23 is a view taken in the direction of the arrow XXIII of FIG. 21, and only the fuel passage 22 and the injection hole 13 are communicated with the lift of the needle valve 9.
  • Hole 1 3 As shown in Fig. 22, the fuel injected from the fuel has a linear spray shape and does not have much spread.
  • FIG. 24 is a horizontal sectional view of the injection hole 13 of the fuel injection nozzle 50 according to the third embodiment of the present invention.
  • FIG. 25 is a view of the same in the axial direction of the injection hole 13.
  • the swirl mechanism 51 has an injection hole inlet 24 having a cross-sectional area smaller than the cross-sectional area of the injection hole main part 23, and the injection hole inlet 2
  • the opening cross section (center axis 24 C) of 4 is deviated from the opening cross section (center axis 23 C) of the injection hole main part 23.
  • the degree of generation of the swirling flow in the injection hole 13 can be adjusted by arbitrarily selecting the formation position of the injection hole inlet portion 24.
  • FIG. 26 is an axial view of an injection hole 13 of a fuel injection nozzle 52 according to a fourth embodiment of the present invention.
  • the swirl mechanism 53 an injection hole inlet portion is shown.
  • the peripheral part of 24 does not coincide with the peripheral part of the nozzle hole main part 23, and the degree of generation of swirling flow is smaller than in the case of Fig. 25, but machining work can be performed more easily .
  • FIG. 27 is a horizontal sectional view of the injection hole 13 of the fuel injection nozzle 60 according to the fifth embodiment of the present invention
  • FIG. 28 is a view in the direction of the axis of the injection hole 13.
  • the swirl mechanism 61 has an injection hole inlet 24 having a cross-sectional area smaller than the cross-sectional area of the injection hole main part 23, and the injection hole inlet 2
  • the opening cross section (center axis 24 C) of 4 is deviated from the opening cross section (center axis 23 C) of the injection hole main part 23.
  • the injection hole inlet portion 24 has a predetermined depth on the downstream side, and a part thereof faces the injection hole main portion 23.
  • a swirl flow is generated in the injection hole 13 with a simple configuration, and swirl is applied to the spray to expand the injected fuel.
  • the mixing ratio with air can be increased.
  • the rotational direction of the swirling flow can be selected depending on whether the injection hole inlet 24 is located at the right or left part toward the downstream side of the fuel injection direction. Is also adjustable.
  • the swirl mechanism can be provided not only at the injection hole inlet 24 but also at the injection hole outlet 25.
  • FIG. 23 is an enlarged sectional view of a main part of a fuel injection nozzle 70 according to a sixth embodiment of the present invention
  • FIG. 30 is a sectional view taken along line XXX-XXX in FIG.
  • FIG. 29 is a view taken in the direction of the arrow XXXI in FIG. 29.
  • the swirl mechanism 71 is a circular seat eccentric to the injection hole outlet portion 25 of the injection hole 13. By forming the boring portion 72, a swirling flow can be generated in the injection hole 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A fuel injection nozzle, particularly of a Diesel engine and an inter-cylinder type gasoline engine, for providing a swirl that induces a swirl flow of a fuel inside a nozzle hole (13) to increase spread of atomization, promoting mixing of the fuel with air within a short time to improve combustion performance of the engine, and capable of controlling an atomization distribution direction. Characterized in that a swirl flow is induced inside a nozzle hole (13) itself having a nozzle hole inlet (24), a nozzle hole main portion (23) and a nozzle hole outlet (25), the sectional shape of the nozzle hole inlet (24) or the nozzle hole outlet (25) of the nozzle hole (13) is deviated from the axis of the nozzle hole (13), the sectional area of the nozzle hole inlet (24) of the nozzle hole (13) is set to be smaller than the sectional area of the nozzle hole main portion (23) and an open sectional area of the nozzle hole inlet (24) is deviated from an open section of the nozzle hole main portion (23).

Description

明 細 誊 燃料噴射ノズル 技術分野  細 Details of fuel injection nozzle
本発明は燃料噴射ノズルにかかるもので、 と くにディーゼルエンジンや筒内 直接噴射式のガソ リンエンジンにおいて噴霧形状を改善可能な燃料噴射ノズルに 関するものである。 背景技術  The present invention relates to a fuel injection nozzle, and more particularly to a fuel injection nozzle capable of improving a spray shape in a diesel engine or a direct injection type gasoline engine. Background art
従来のディ一ゼルエンジンや筒内直接噴射式のガソ リンエンジンにおいて燃 料噴射ノズルは、 単一の構成部品となっており、 その噴射特性や噴霧特性がェン ジン性能や排気ガス性状を左右することがよく知られている。  In conventional diesel engines and in-cylinder direct injection type gasoline engines, the fuel injection nozzle is a single component, and its injection characteristics and spray characteristics affect engine performance and exhaust gas properties. It is well known that
現在、 たとえばディ ーゼルエンジンでは、 燃料噴射ノズルとしてホールノズ ルを用いて、 噴射圧力を 1 0 O M P a以上の高圧に向上させるなどの改良が加え られているが、 それでも、 中速および低速領域でのエンジン性能や排気ガス性能 のさ らなる改善が望まれている。  At present, for example, diesel engines have been improved by using hole nozzles as fuel injection nozzles to increase the injection pressure to a high pressure of 10 OMPa or more. Further improvements in performance and exhaust gas performance are desired.
とくにディ一ゼルエンジンにおいては、 高圧高温下の燃焼室に燃料を噴射し て発火 · 燃焼させるため、 燃焼室内の所定部分にまで燃料が到達することが必要 であるとともに、 噴射された燃料が短時間の間に速やかに空気と混合して燃焼す ることが望まれる。  In particular, in diesel engines, fuel is injected into a combustion chamber under high pressure and high temperature to ignite and burn, so it is necessary for the fuel to reach a predetermined part of the combustion chamber, and the injected fuel is short. It is desirable to mix with air and burn it quickly during the time.
すなわち、 噴射された燃料の噴霧形状によって、 短時間にどれだけ多くの空 氘を取り込み、 あるいは空気と混合可能であるかが、 燃焼特性に大き く影響する ことになる。 発明の開示 本発明は以上のような諸問題にかんがみなされたもので、 噴射した燃料がよ り効率的に空気と混合可能であるようにした燃料噴射ノズルを提供することを課 題とする。 In other words, depending on the spray shape of the injected fuel, how much air can be taken in or mixed with air in a short time will have a great effect on the combustion characteristics. Disclosure of the invention The present invention has been made in view of the above-described problems, and has as its object to provide a fuel injection nozzle capable of mixing injected fuel with air more efficiently.
また本発明は、 噴孔内で燃料に旋回流を誘起させるようなスヮ一ルを与え、 噴霧の広がりを大き く して、 燃料と空気との混合を促進することができる燃料噴 射ノズルを提供することを課題とする。  Further, the present invention provides a fuel injection nozzle capable of providing a spray for inducing a swirl flow in fuel in an injection hole to increase the spread of spray and promote the mixing of fuel and air. The task is to provide
また本発明は、 と くにチ'ィ一ゼルエンジンや筒内噴射式のガソリンエンジン などにおいて、 短時間に燃料と空気との混合を促進して、 エンジンの燃焼性能を 向上可能な燃料噴射ノズルを提供することを課題とする。  The present invention also provides a fuel injection nozzle that can improve the combustion performance of an engine by promoting the mixing of fuel and air in a short time, particularly in a diesel engine or a direct injection gasoline engine. The task is to provide.
また本発明は、 エンジンの負荷や回転数に応じて適正な形状の噴霧を可能と する燃料噴射ノズルを提供することを課題とする。  Another object of the present invention is to provide a fuel injection nozzle capable of spraying in an appropriate shape according to the load and the number of revolutions of the engine.
また本発明は、 噴霧にスワールを加えることができる燃料噴射ノズルを提供 することを課題とする。  Another object of the present invention is to provide a fuel injection nozzle capable of adding swirl to spray.
また本発明は、 噴霧の分散方向を制御可能な燃料噴射ノズルを提供すること を課題とする。  Another object of the present invention is to provide a fuel injection nozzle capable of controlling the direction of dispersion of spray.
また本発明は、 エンジンの種類あるいは燃焼室などに応じて、 噴霧の分散方 向を所定方向に偏らせること、 あるいは偏らせないこと、 さ らにはその偏り方向 などを制御することが可能な燃料噴射ノズルを提供することを課題とする。  Further, according to the present invention, depending on the type of engine or the combustion chamber, etc., the dispersion direction of the spray can be biased in a predetermined direction or not, and further, the bias direction can be controlled. It is an object to provide a fuel injection nozzle.
すなわち本発明は、 噴孔内部自体において旋回流を誘起させること、 すなわ ち噴孔内において燃料にスワールを与えることができるようにすること、 および このための構造と して噴孔の噴孔入口部あるいは噴孔出口部の断面形状を噴孔の 軸線から編ったものにすることに着目したもので、 第一の発明は、 噴孔入口部、 噴孔主部および噴孔出口部を有する噴孔と、 シート面とを形成したノズルボディ と、 このノズルボディ内に摺動可能に設けるとともに、 上記シー ト面からリフ ト することにより上記噴孔から燃料を噴射可能とするニー ドル弁と、 を有する燃料 噴射ノズルであつて、 上記噴孔の上記噴孔入口部の断面積を上記噴孔主部の断面 積より小さ くするとともに、 上記噴孔入口部の開口断面は、 これを上記噴孔主部 の開口断面に対して偏らせたことを特徴とする燃料噴射ノズルである。 That is, the present invention provides a method for inducing a swirling flow inside an injection hole itself, that is, to be able to give swirl to fuel in the injection hole, and as a structure for this purpose, an injection hole of the injection hole. The first aspect of the invention focuses on making the cross-sectional shape of the inlet or the outlet of the injection hole knitted from the axis of the injection hole. A nozzle body having an injection hole formed therein and a seat surface, and a needle valve slidably provided in the nozzle body and capable of injecting fuel from the injection hole by lifting from the sheet surface. A fuel injection nozzle having a cross-sectional area of the injection hole inlet portion of the injection hole and a cross-sectional area of the injection hole main portion. The fuel injection nozzle is characterized in that the cross section is smaller than the product and the opening cross section of the injection hole inlet is deviated from the opening cross section of the main injection hole.
第二の発明は、 噴孔入口部、 噴孔主部および噴孔出口部を有する噴孔と、 シ — ト面とを形成したノズルボディ と、 このノズルボディ内に摺動可能に設けると ともに、 上記シー ト面から リフ トすることにより上記噴孔から燃料を噴射可能と するニードル弁と、 を有する燃料噴射ノズルであって、 上記噴孔の上記噴孔入口 部の断面積を上記噴孔主部の断面積より小さ くするとともに、 上記噴孔入口部に 流入する燃料は、 これを上記噴孔主部の軸線に対して偏位した方向から流入させ ることができるようにしたことを特徴とする燃料噴射ノズルである。  According to a second aspect of the present invention, there is provided a nozzle body having an injection hole inlet portion, an injection hole main portion and an injection hole outlet portion, a seat surface, and a slidably provided nozzle inside the nozzle body. A fuel injection nozzle having a needle valve capable of injecting fuel from the injection hole by lifting from the sheet surface, wherein a cross-sectional area of the injection hole inlet portion of the injection hole is determined by the injection hole. In addition to making the cross-sectional area smaller than the main portion, the fuel flowing into the injection hole inlet can be introduced from a direction deviated from the axis of the injection hole main portion. This is a characteristic fuel injection nozzle.
上記噴孔の軸線方向から見て、 上記噴孔入口部の周緣部の一部と、 上記噴孔 主部の周緣部の一部とを重複させることができる。  When viewed from the axial direction of the injection hole, a part of the periphery of the injection hole entrance portion and a part of the periphery of the injection hole main portion can overlap.
上記噴孔の内側に、 この噴孔と交差する導入用燃料通路を設け、 この導入用 燃料通路と上記噴孔との交差部は、 上記噴孔主部の断面積より小さな断面積の噴 孔入口部を形成することができる。  An injection fuel passage intersecting the injection hole is provided inside the injection hole, and an intersection of the injection fuel passage and the injection hole has an injection hole having a cross-sectional area smaller than a cross-sectional area of the injection hole main portion. An inlet can be formed.
上記噴孔、 およびこの噴孔と交差する上記導入用燃料通路は、 これを互いに ほぼ直角に交差させることができる。  The injection hole and the introduction fuel passage intersecting with the injection hole can cross each other at a substantially right angle.
上記噴孔入口部の断面積を可変とする噴孔可変機構を設けることができる。 上記噴孔出口部に、 上記噴孔主部に対した偏った座ぐり を設けることができ る。  An injection hole variable mechanism that can change the cross-sectional area of the injection hole entrance portion can be provided. A counterbore deviated from the main portion of the injection hole can be provided at the injection hole exit portion.
上記座ぐりは、 上記噴孔主部の中心軸線に対して上記噴孔入口部の中心軸線 側にこれを偏らせることができる。  The counterbore can be biased toward the central axis of the injection hole inlet with respect to the central axis of the injection hole main portion.
また第三の発明は、 噴孔入口部、 噴孔主部および噴孔出口部を有する噴孔と 、 シート面とを形成したノズルボディ と、 このノズルボディ内に摺動可能に設け るとともに、 上記シー ト面からリフ トすることにより上記噴孔から燃料を噴射可 能とする二一 ドル弁と、 を有する燃料噴射ノズルであって、 上記噴孔の上記噴孔 入口部から上記噴孔主部に流入する燃料が、 この噴孔の軸線に対してラセン状に 旋回しながら流れるようにしたスワール機構をこの噴孔に形成したことを特徴と する燃料噴射ノズルである。 Further, a third invention provides a nozzle body having an injection hole inlet portion, an injection hole main portion, and an injection hole outlet portion, a nozzle body having a seat surface, and a slidably provided inside the nozzle body. A fuel injection nozzle having a needle valve capable of injecting fuel from the injection hole by lifting from the sheet surface, wherein the fuel injection nozzle comprises: The fuel that flows into the part is spiraled with respect to the axis of The fuel injection nozzle is characterized by forming a swirl mechanism in the injection hole to flow while turning.
本発明による燃料噴射ノズルにおいては、 噴孔入口部の断面積を噴孔主部の 断面積より小さ く し、 あるいは流線が曲がるような形状として、 スワールを発生 させることができるような流路形状としたので、 ニー ドル弁のリフ トにより、 噴 孔から燃焼室内に噴射しょう とする燃料は、 噴孔内をその軸線に沿ってラセン状 に流れてゆく ことになるので、 噴孔出口部から噴射されたときには、 所定の範囲 に拡大した噴霧と して噴射されることになる。  In the fuel injection nozzle according to the present invention, the cross-sectional area of the injection hole inlet portion is made smaller than the cross-sectional area of the injection hole main portion, or the flow path that can generate swirl is formed into a shape in which a streamline is bent Because of the shape, the fuel that is to be injected into the combustion chamber from the injection hole by the lift of the needle valve will flow spirally along the axis of the injection hole through the injection hole. When the fuel is injected from the nozzle, the fuel is injected as a spray expanded to a predetermined range.
したがって、 従来の燃料噴射ノズルに比較してより拡開した噴霧は、 それだ け燃焼室内の空気をその内部に取り込み易く、 つま り空気との混合率が向上し、 良好な燃焼を期待することができる。  Therefore, sprays that are more widespread than conventional fuel injection nozzles can easily take air in the combustion chamber into the interior, that is, improve the mixing ratio with air, and expect good combustion. Can be.
さ らに、 エンジンの負荷や回転数に応じて、 このスワールの程度を可変とす ることにより、 それぞれの運転状態に応じた適正な噴霧形状ないしぺネ ト レ一シ ョ ンを提供することができる。  Furthermore, by changing the degree of the swirl according to the load and the number of revolutions of the engine, it is possible to provide an appropriate spray shape or penetration according to each operating condition. Can be.
すなわち、 スワールの程度を制御するためのスワール機構の一例と しては、 噴孔可変機構を採用することができ、 噴孔の断面積を可変とすることによる適正 な噴射量を得ることができるとともに、 上述のよう な噴霧を得ることができるの で、 さ らにェンジンの性能向上に寄与することができる。  That is, as an example of the swirl mechanism for controlling the degree of swirl, a variable injection hole mechanism can be adopted, and an appropriate injection amount can be obtained by making the cross-sectional area of the injection hole variable. At the same time, the above-described spray can be obtained, which can further contribute to improving the performance of the engine.
以上のよう に本発明によれば、 噴孔の内部において噴孔入口部と噴孔主部と を偏らせてスワールを発生させるようにしたので、 噴射された燃料の噴霧形状に 所定の広がり を持たせることが可能となり、 燃料の空気の混合を促進し、 良好な 燃焼に寄与することができる。 図面の簡単な説明  As described above, according to the present invention, swirl is generated by biasing the injection hole inlet portion and the injection hole main portion inside the injection hole, so that the spray shape of the injected fuel has a predetermined spread. It can promote the mixing of fuel air and contribute to good combustion. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施の形態による燃料噴射ノズル 3を有する燃料 噴射装置 1の概略図である。 第 2図は、 同、 燃料噴射ノズル 3のノズルボディ 8、 噴孔可変機構 1 0およ びスワール機構 1 1部分の要部拡大斜視図である。 FIG. 1 is a schematic diagram of a fuel injection device 1 having a fuel injection nozzle 3 according to a first embodiment of the present invention. FIG. 2 is an enlarged perspective view of the main part of the nozzle body 8, the injection hole variable mechanism 10 and the swirl mechanism 11 of the fuel injection nozzle 3.
第 3図は、 同、 ロータ リ一バルブ 1 7回転可能時の噴孔可変機構 1 0および スワール機構 1 1部分の断面図である。  FIG. 3 is a cross-sectional view of the injection hole variable mechanism 10 and the swirl mechanism 11 when the rotary valve 17 is rotatable.
第 4図は、 同、 ニー ドル弁 9のリフ ト時の断面図である。  FIG. 4 is a sectional view of the same when the needle valve 9 is lifted.
第 5図は、 第 3図の V— V線断面図である。  FIG. 5 is a sectional view taken along line VV of FIG.
第 6図は、 同、 口一タ リ一バルブ 1 7部分の横断面および対応する噴孔 1 3 の軸線方向からの矢視図を噴孔 1 3のそれぞれの開口度順に並列させて図示した 説明図である。  FIG. 6 is a cross-sectional view of the same orifice 17 valve and the view from the axial direction of the corresponding injection hole 13 in parallel with the opening degree of each injection hole 13 in the same manner. FIG.
第 7図は、 同、 第 6図に示した噴孔 1 3のそれぞれの開口度に応じた噴射初 期の噴霧形状を可視化して示す説明図である。  FIG. 7 is an explanatory diagram visualizing the spray shape at the beginning of the injection according to the opening degree of each of the injection holes 13 shown in FIG.
第 8図は、 同、 カム角度に対する噴射角の関係を示すグラフである。  FIG. 8 is a graph showing the relationship between the cam angle and the injection angle.
第 9図は、 同、 カム角度に対する噴射先端部のぺネ ト レ一シヨ ンの関係を示 すグラフである。  FIG. 9 is a graph showing the relationship between the cam angle and the penetration at the injection tip.
第 1 0図は、 第 4図の X— X線断面図である。  FIG. 10 is a sectional view taken along line XX of FIG.
第 1 1図は、 第 4図の X I方向矢視図である。  FIG. 11 is a view taken in the direction of the arrow XI in FIG.
第 1 2図は、 本発明の第 2の実施の形態による燃料噴射ノズル 3 0の要部拡 大断面図である。  FIG. 12 is an enlarged sectional view of a main part of a fuel injection nozzle 30 according to a second embodiment of the present invention.
第 1 3図は、 第 1 2図の X I I I - X I I I線断面図である。  FIG. 13 is a cross-sectional view taken along the line XII I-XII I in FIG.
第 1 4図は、 第 1 2図の X I V方向矢視図である。  FIG. 14 is a view in the XIV direction of FIG.
第 1 5図は、 第 1 0図および第 1 1図の状態において噴孔 1 3部分の水平断 面図と、 噴孔 1 3の側断面図と、 噴孔 1 3の軸線方向の矢視図とを並列させて示 した説明図である。  FIG. 15 is a horizontal sectional view of the nozzle hole 13 in the state of FIGS. 10 and 11, a side sectional view of the nozzle hole 13, and an axial view of the nozzle hole 13. FIG. 4 is an explanatory diagram showing the figure in parallel.
第 1 6図は、 第 1 2図ないし第 1 4図の状態において噴孔 1 3部分の水平断 面図と、 噴孔 1 3の側断面図と、 噴孔 1 3の軸線方向の矢視図とを並列させて示 した説明図である。 第 1 7図は、 同、 長榷円形状の座ぐり部 33の例を示す、 第 15図および第 1 6図と同様の、 水平断面図と、 厠断面図と、 矢視図とを並列させて示した説明 図である。 FIG. 16 is a horizontal sectional view of the injection hole 13, a side sectional view of the injection hole 13, and an arrow view of the injection hole 13 in the state of FIGS. 12 to 14. FIG. 4 is an explanatory diagram showing the figure in parallel. FIG. 17 shows an example of an oblong counterbore 33 in the same manner. Similar to FIGS. 15 and 16, a horizontal sectional view, a lav sectional view, and an arrow view are shown in parallel. FIG.
第 18図は、 同、 円形状の座ぐり部 34の例を示す、 第 15図および第 1 6 図と同様の、 水平断面図と、 厠断面図と、 矢視図とを並列させて示した説明図で ある。  FIG. 18 shows an example of a circular counterbore 34 in the same manner as FIG. 15 and FIG. 16, showing a horizontal sectional view, a lav sectional view, and an arrow view in parallel. FIG.
第 19図は、 同、 三角形状の座ぐり部 35の例を示す、 第 15図、 および第 1 6図と同様の、 水平断面図と、 側断面図と、 矢視図とを並列させて示した説明 図である。  FIG. 19 shows an example of a triangular counterbore 35 in the same manner as FIG. 15 and FIG. 16, with a horizontal sectional view, a side sectional view and an arrow FIG.
第 20図は、 同、 円錐状の座ぐり部 36の例を示す、 第 15図および第 1 6 図と同様の、 水平断面図と、 側断面図と、 矢視図とを並列させて示した説明図で ある。  FIG. 20 shows an example of a conical counterbore 36 in the same manner as FIG. 15 and FIG. 16, showing a horizontal sectional view, a side sectional view, and an arrow view in parallel. FIG.
第 21図は、 従来からの一般的なホールノズルタィプの燃料噴射ノズル 40 の先端部の断面図である。  FIG. 21 is a cross-sectional view of the tip of a fuel injection nozzle 40 of a conventional general hole nozzle type.
第 22図は、 第 21図の XX I I— XX I I線断面図である。  FIG. 22 is a sectional view taken along the line XXII-XXII of FIG.
第 23図は、 第 21図の XX I I I方向矢視図である。  FIG. 23 is a view as seen in the direction of the arrow XXII in FIG.
第 24図は、 本発明の第 3の実施の形態による燃料噴射ノズル 50における 噴孔 1 3部分の水平断面図である。  FIG. 24 is a horizontal sectional view of the injection hole 13 of the fuel injection nozzle 50 according to the third embodiment of the present invention.
第 25図は、 同、 噴孔 1 3の軸線方向の矢視図である。  FIG. 25 is an axial view of the injection hole 13 as viewed from the direction of the arrow.
第 26図は、 本発明の第 4の実施の形態による燃料噴射ノズル 52における 噴孔 1 3の軸線方向の矢視図である。  FIG. 26 is an axial view of the injection hole 13 of the fuel injection nozzle 52 according to the fourth embodiment of the present invention.
第 27図は、 本発明の第 5の実施の形態による燃料噴射ノズル 60における 噴孔 1 3部分の水平断面図である。  FIG. 27 is a horizontal sectional view of the injection hole 13 of the fuel injection nozzle 60 according to the fifth embodiment of the present invention.
第 28図は、 同、 噴孔 1 3の軸線方向の矢視図である。  FIG. 28 is an axial view of the injection hole 13 as viewed from the direction of the arrow.
第 29図は、 本発明の第 6の実施の形態による燃料噴射ノズル 70の要部拡 大断面図である。 第 3 0図は、 第 2 9図の X X X— X X X線断面図である。 FIG. 29 is an enlarged sectional view of a main part of a fuel injection nozzle 70 according to a sixth embodiment of the present invention. FIG. 30 is a sectional view taken along the line XXX-XXX in FIG.
第 3 1図は、 第 2 9図の X X X I方向矢視図である。 発明を実施するための最良の形態  FIG. 31 is a view in the direction of the XXXX direction of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
つぎに本発明の第 1の実施の形態による燃料噴射ノズルを第 1図ないし第 9 図にもとづき説明する。  Next, a fuel injection nozzle according to a first embodiment of the present invention will be described with reference to FIGS.
第 1図は、 燃料噴射装置 1の概略図であって、 燃料噴射装置 1は、 燃料噴射 ポンプ 2と、 本発明による燃料噴射ノズル 3と、 噴射量センサ一 4と、 制御手段 δと、 を有する。  FIG. 1 is a schematic diagram of a fuel injection device 1. The fuel injection device 1 includes a fuel injection pump 2, a fuel injection nozzle 3 according to the present invention, an injection amount sensor 14, and control means δ. Have.
燃料噴射ポンプ 2は、 燃料タンク (図示せず) からの燃料を高圧化して燃料 噴射ノズル 3の燃料導入部 6に供給する。  The fuel injection pump 2 pressurizes the fuel from a fuel tank (not shown) and supplies the fuel to a fuel introduction section 6 of a fuel injection nozzle 3.
燃料噴射ノズル 3は、 燃料導入部 6を形成したノズルハウジング 7と、 ノズ ルハウジング 7に取り付けたノズルボディ 8と、 ノズルボディ 8内に注復摺動す るニードル弁 9と、 噴孔可変機構 1 0と、 スワール機構 1 1 と、 を有する。  The fuel injection nozzle 3 includes a nozzle housing 7 having a fuel introduction section 6, a nozzle body 8 attached to the nozzle housing 7, a needle valve 9 that slides back into the nozzle body 8, and a variable injection hole mechanism. 10 and a swirl mechanism 11.
燃料噴射ノズル 3は、 ホールノズルタイプであって、 そのノズルボディ 8の 先端部にホール部 1 2を有し、 このホール部 1 2に噴孔 1 3を形成してある。  The fuel injection nozzle 3 is a hole nozzle type, has a hole 12 at the tip of the nozzle body 8, and has an injection hole 13 formed in the hole 12.
制御手段 5は、 噴射量センサ一 4からの燃料圧力の検出信号に応じて噴孔可 変機構 1 0のァクチユエータ一 1 4 を駆動し、 燃料噴射ノズル 3における噴孔可 変機構 1 0を制御する。  The control means 5 drives the actuator 14 of the injection hole variable mechanism 10 in response to the fuel pressure detection signal from the injection amount sensor 14, and controls the injection hole variable mechanism 10 of the fuel injection nozzle 3. I do.
第 2図は、 燃料噴射ノズル 3のノズルボディ 8、 噴孔可変機構 1 0およびス ワール機構 1 1部分の要部拡大斜視図であり、 噴孔可変機構 1 0は、 上記ァクチ ユエ一タ一 1 4と、 ァクチユエ一ター 1 4に取り付けた口一タ リ一シャフ ト 1 5 と、 口一タ リーシャフ ト 1 5に取り付けた連結部 1 6と、 連結部 1 6に取り付け た口一タ リ一バルブ 1 7と、 を有する。  FIG. 2 is an enlarged perspective view of a main part of the nozzle body 8, the injection hole variable mechanism 10 and the swirl mechanism 11 of the fuel injection nozzle 3. The injection hole variable mechanism 10 includes the above-mentioned actuator unit. 14, the mouthpiece shaft 15 attached to the factory unit 14, the connecting part 16 attached to the mouthpiece shaft 15, and the mouthpiece attached to the connecting part 16 And one valve 17.
口一タ リ一シャフ ト 1 5はノズルハウジング 7の頂部からニー ドル弁 9の内 部に揷入されてその下部に至る。 連結部 1 6は、 口一タ リ一シャフ ト 1 5と口一タ リ一バルブ 1 7 と を ロータ リーシャフ ト 1 5の軸方向に可動可能に (遊びを持って) 連結している。 The orifice shaft 15 is inserted into the inside of the needle valve 9 from the top of the nozzle housing 7 to the lower part. The connecting portion 16 connects the mouthpiece shaft 15 and the mouthpiece valve 17 movably (with play) in the axial direction of the rotary shaft 15.
ロータ リ一バルブ 1 7は、 二一 ドル弁 9の下部に位置してホール部 1 2の内 部に係合可能なほぼ円錐状を呈し、 噴孔 1 3を閉鎖可能なシー ト円弧部 1 8と、 シ一 ト円弧部 1 8の間であって噴孔 1 3に連通可能な可変用溝部 1 9 (導入用燃 料通路) とを (図示の例ではそれぞれ 5偭づつ) 有する。  The rotary valve 17 is located at the lower part of the needle valve 9 and has a substantially conical shape capable of engaging with the inside of the hole portion 12, and has a sheet arc portion 1 capable of closing the injection hole 13. 8 and a variable groove portion 19 (introducing fuel passage) between the sheet circular arc portion 18 and communicating with the injection hole 13 (in the example shown, each has a length of 5 mm).
第 3図は、 ロータリーバルブ 1 7回転可能時の噴孔可変機構 1 0およびスヮ —ル機構 1 1部分の断面図、 第 4図は、 同、 二一 ドル弁 9のリフ ト時の断面図で あって、 二一 ドル弁 9のシー ト部 2 0がノズルボディ 8の噴孔 1 3より上流厠の シー ト面 2 1にシー トすることにより、 燃料導入部 6からの燃料通路 2 2と噴孔 1 3とを遮断している。  Fig. 3 is a sectional view of the nozzle hole variable mechanism 10 and the scroll mechanism 11 when the rotary valve 17 is rotatable, and Fig. 4 is a sectional view of the same when the 21-dual valve 9 is lifted. In the figure, the seat portion 20 of the dollar valve 9 is seated on the seat surface 21 of the upstream lavatory from the nozzle hole 13 of the nozzle body 8 so that the fuel passage 2 from the fuel introduction portion 6 is formed. 2 and injection hole 13 are shut off.
また、 ロータ リ一バルブ 1 7のシー ト円弧部 1 8が噴孔 1 3に対向位置すれ ば噴孔 1 3を閉鎖し、 可変用溝部 1 9が噴孔 1 3に臨めば二一 ドル弁 9のリフ ト により燃料通路 2 2と噴孔 1 3とが可変用溝部 1 9を介して連通可能となる。  In addition, if the sheet circular arc portion 18 of the rotary valve 17 is opposed to the injection hole 13, the injection hole 13 is closed, and if the variable groove portion 19 faces the injection hole 13, a dollar valve is provided. The lift 9 allows the fuel passage 22 and the injection hole 13 to communicate with each other through the variable groove 19.
もちろん、 可変用溝部 1 9 と噴孔 1 3との相対位置により、 噴孔 1 3の開口 度を可変可能である。  Of course, the opening degree of the injection hole 13 can be changed by the relative position between the variable groove portion 19 and the injection hole 13.
スワール機構 1 1は、 この第 1 の実施の形態による燃料噴射ノズル 3におい ては、 上述の噴孔可変機構 1 0によ り実現可能である。  The swirl mechanism 11 can be realized by the above-described injection hole variable mechanism 10 in the fuel injection nozzle 3 according to the first embodiment.
第 5図は、 第 3図の V— V線断面図であり、 ノズルボディ 8 (ホール部 1 2 ) における噴孔 1 3に対する口一タ リ一バルブ 1 7の可変用溝部 1 9の相対位置 を可変とすることにより、 噴孔 1 3の内部において燃料をラセン状に流して、 噴 孔 1 3からの噴霧の形状を適正なものとすることができる。  FIG. 5 is a cross-sectional view taken along the line V--V in FIG. 3, and shows the relative position of the variable groove portion 19 of the valve 17 with respect to the injection hole 13 in the nozzle body 8 (hole portion 12). By making the variable, the fuel can flow spirally inside the injection hole 13, and the shape of the spray from the injection hole 13 can be made appropriate.
噴孔 1 3は、 噴孔主部 2 3と、 噴孔主部 2 3の上流側の噴孔入口部 2 4と、 噴孔主部 2 3の下流側の噴孔出口部 2 5と、 を有し、 この燃料噴射ノズル 3にお いては噴孔入口部 2 4側において噴孔入口部 2 4の開口断面部分の断面積を可変 としている。 すなわち、 噴孔 1 3と可変用溝部 1 9 (導入用燃料通路) との交差部 2 6に おいて噴孔入口部 2 4の断面積を可変とすることができる。 The injection hole 13 includes an injection hole main portion 23, an injection hole inlet portion 24 upstream of the injection hole main portion 23, an injection hole outlet portion 25 downstream of the injection hole main portion 23, In the fuel injection nozzle 3, the cross-sectional area of the opening cross section of the injection hole inlet 24 is variable on the injection hole inlet 24 side. That is, at the intersection 26 between the injection hole 13 and the variable groove portion 19 (introduction fuel passage), the cross-sectional area of the injection hole inlet portion 24 can be made variable.
第 6図は、 ロータ リ一バルブ 1 7部分の横断面および対応する噴孔 1 3の軸 線方向からの矢視図を噴孔 1 3のそれぞれの開口度順に並列させて図示した説明 図であって、 可変用溝部 1 9および噴孔 1 3の噴孔入口部 2 4が互いに完全に一 致している場合には、 噴孔入口部 2 4 (交差部 2 6 ) の開口度は 1 0 0 %である この開口度 1 0 0 %の状態から、 □—タ リ一バルブ 1 7をァクチユエ一ター 1 4により 口一タ リ一シャフ ト 1 5および連結部 1 6を介してわずかに回転させ れば、 ロータ リーバルブ 1 7のシ一 ト円弧部 1 3が噴孔 1 3の噴孔入口部 2 4に わずかにかかり、 すなわち、 噴孔入口部 2 4がわずかに閉鎖され、 たとえば噴孔 入口部 2 4の開口度は 7 5 %である。  FIG. 6 is an explanatory diagram in which the cross section of the rotary valve 17 and the view from the axial direction of the corresponding injection hole 13 are arranged in parallel with the opening degree of the injection hole 13 in parallel. If the variable groove 19 and the injection hole inlet 24 of the injection hole 13 completely match each other, the opening degree of the injection hole inlet 24 (intersection 26) is 10 0% From this 100% opening degree, the □ -valve 17 is slightly rotated by the actuator 14 via the mouth-shaft 15 and the connecting part 16. In this case, the arc 13 of the rotary valve 17 slightly overlaps the injection hole inlet 24 of the injection hole 13, that is, the injection hole inlet 24 is slightly closed. The opening degree of the inlet 24 is 75%.
口一タ リ一バルブ 1 7をさ らに回転してシー ト円弧部 1 8が噴孔入口部 2 4 の半分を閉鎖すれば、 噴孔入口部 2 4の開口度は 5 0 %となる。  If the mouth valve 17 is further rotated and the sheet arc 18 closes half of the injection hole inlet 24, the opening of the injection hole inlet 24 becomes 50%. .
さ らに口一タ リ一バルブ 1 7を回転してシー ト円弧部 1 8が噴孔入口部 2 4 の大部分を閉鎖するようにすれば、 噴孔入口部 2 4の開口度をたとえば 2 5 %と することができる。  Further, if the valve 17 is rotated so that the sheet arc 18 closes most of the injection hole inlet 24, the opening of the injection hole inlet 24 can be reduced, for example. It can be 25%.
なお、 第 6図の各開口度の場合に示すように、 噴孔 1 3の軸線方向から見て 、 噴孔入口部 2 4の周緣部の一部と、 噴孔主部 2 3の周縁部の一部とを重複させ ることによって、 噴孔 1 3の最も円周部側から噴孔主部 2 3への進入を可能とし 、 噴孔フ、口部 2 4から噴孔主部 2 3に進入する燃料の旋回流をより効果的に発生 させることができる。  As shown in the case of each opening degree in FIG. 6, when viewed from the axial direction of the injection hole 13, a part of the periphery of the injection hole inlet portion 24 and the peripheral portion of the injection hole main portion 23 By overlapping a part of the nozzle hole, it is possible to enter the nozzle hole main part 23 from the most circumferential side of the nozzle hole 13, and the nozzle hole f, the mouth part 24 to the nozzle hole main part 23 The swirling flow of the fuel entering the air can be generated more effectively.
また、 ァクチユエ一ター 1 4による口一タ リ一バルブ 1 7の回転駆動のタイ ミ ングとしては、 エンジン (図示せず) の吸気工程あるいは排気工程に対応して 、 二一 ドル弁 9 に燃料噴射圧力がかからないタイ ミ ングとすることができる。  The timing of the rotation of the valve 17 by the actuator 14 is such that fuel is supplied to the dollar valve 9 in response to the intake or exhaust process of an engine (not shown). The timing can be such that the injection pressure is not applied.
第 7図は、 第 6図に示した噴孔 1 3のそれぞれの開口度に応じた噴射初期の 噴霧形状を可視化して示す説明図であって、 開口度 1 0 0 %では、 燃料通路 2 2 からの燃料は可変用溝都 1 9からそのまま噴孔 1 3の噴孔入口部 2 4部分に進入 し、 噴孔 1 3内部 (噴孔主部 2 3 ) においてラセンを描く ことなく、 ス ト レー ト に噴孔出口部 2 5からエンジンの燃焼室 2 7に噴射される。 Fig. 7 shows the initial stage of injection according to the opening of each injection hole 13 shown in Fig. 6. FIG. 4 is an explanatory view showing a visualized spray shape. At an opening degree of 100%, fuel from a fuel passage 22 is directly supplied from a variable groove 19 to an injection hole inlet portion 24 of an injection hole 13. It enters and is injected straight into the combustion chamber 27 of the engine from the injection hole outlet 25 without drawing a spiral inside the injection hole 13 (the injection hole main portion 23).
したがって、 噴霧形状と しては図示のような直線的なものであるとともに、 ぺネ ト レ一シヨ ンは最大である。  Therefore, the spray shape is linear as shown in the figure, and the penetration is the largest.
開口度 7 5 %においては、 スワール機構 1 1の作用がわずかに働く。  At an opening of 75%, the function of the swirl mechanism 11 slightly works.
すなわち、 二一 ドル弁 9のリフ トにともなって可変用溝部 1 9 (導入用燃料 通路) から交差部 2 6を介して噴孔 1 3の噴孔入口部 2 4に至った燃料は、 口一 タ リ一バルブ 1 7のシー ト円弧部 1 8部分を回り込むようにして噴孔主部 2 3に 進入することになるため、 しかも、 この回り込みの方向と一致はしていない方向 (噴孔 1 3とはほぼ直角な可変用溝部 1 9の方向) から所定の圧力で進入するこ とになるため、 この回り込みの力と、 可変用溝部 1 9に泊った方向の力との合力 の方向に作用力を受けることになる。  That is, the fuel from the variable groove 19 (introduction fuel passage) to the injection hole inlet 24 of the injection hole 13 via the intersection 26 with the lift of the dollar valve 9 is Since it enters the injection hole main part 23 while wrapping around the sheet arc portion 18 of the valve 17, the direction of the wraparound direction (the injection hole) (13) is at a right angle from the direction of the variable groove 19), so that it enters at a predetermined pressure. Therefore, the direction of the resultant force of this wraparound force and the force in the direction of staying in the variable groove 19 Will be acted upon.
しかも、 噴孔 1 3の噴孔主部 2 3内は、 たとえば断面円形に限定された流路 であり、 上記合力の方向に作用力を受けた燃料は噴孔主部 2 3内を旋回するよう に、 つまり ラセンを描く よ う にして噴孔出口部 2 5に至り、 燃焼室 2 7内に噴射 される。  In addition, the inside of the injection hole main portion 23 of the injection hole 13 is a flow path limited to, for example, a circular cross section, and the fuel that has been acted on in the direction of the resultant force turns inside the injection hole main portion 23. As described above, that is, in a manner of drawing a spiral, the fuel reaches the injection hole outlet 25 and is injected into the combustion chamber 27.
したがって、 図示のように、 開口度 1 〇 0 %のときよりはぺネ ト レ一シヨ ン は低下しているが、 わずかにスワールがかかった状態で拡開状態で噴射され、 そ れぞれの噴射形状にわずかに膨らみ、 ないし枝葉状のものがでていることがわか る。  Therefore, as shown in the figure, although the penetration is lower than when the opening degree is 100%, it is injected in the expanded state with a slight swirl, and each is injected. It can be seen that the swelling shape is slightly swelled, and that there are branches and leaves.
こう した噴霧拡開の傾向は、 開口度 5 0 %になると明確に見て取ることがで きる。  This tendency of spray spreading can be clearly seen at an opening of 50%.
すなわち、 噴孔入口部 2 4が半分開放された状態で噴孔主部 2 3内に進入し た燃料は、 大き く噴孔主部 2 3の軸線からそれてスワールされ、 旋回しつつ噴孔 出口部 2 5から噴射されるため、 図示のような噴霧形状となる。 In other words, the fuel that has entered the nozzle hole main part 23 with the nozzle hole inlet part 24 being half open is swirled off the axis of the nozzle hole main part 23 and swirled. Since the fuel is injected from the outlet 25, the spray shape is as shown in the figure.
さらに、 開口度 2 5 %では、 こう した傾向がさ らに助長され、 噴孔 1 3内に おいて旋回流を誘起させ、 噴霧形状としてスワールがかかって大き く広がった形 状を得ることができ、 噴射された燃料は燃焼室 2 7内での空気との混合状態は良 好である。 したがって、 良好かつク リーンな燃焼を実現可能である。  Further, at an aperture of 25%, such a tendency is further promoted, and a swirling flow is induced in the injection hole 13 to obtain a swirling spray and a large spread shape. The injected fuel is well mixed with the air in the combustion chamber 27. Therefore, good and clean combustion can be realized.
なお、 各開口度の状態において噴霧の形状は、 図示のように噴孔 1 3を中心 とした点対称に維持されている。  Note that the shape of the spray is maintained symmetrical with respect to the injection hole 13 at each opening degree as shown in the figure.
第 8図は、 カム角度に対する噴射角の関係を示すグラフであり、 開口度 5 0 %のときの方が開口度 1 0 0 %のときより噴射角が大き くなっていることがわか る。  FIG. 8 is a graph showing the relationship between the cam angle and the injection angle. It can be seen that the injection angle is larger when the opening degree is 50% than when the opening degree is 100%.
また第 9図は、 カム角度に対する噴射先端部のぺネ ト レ一シヨ ンの関係を示 すグラフであって、 開口度 5 0 %のときの方が開口度 1 0 0 %のときよりぺネ ト レーシヨ ンが小さくなつていることがわかる。  FIG. 9 is a graph showing the relationship between the cam angle and the penetration of the injection tip portion. The opening angle of 50% is larger than that of 100%. It can be seen that the net reduction has become smaller.
つぎに第 1 0図は、 第 4図の X - X線断面図、 第 1 1図は、 第 4図の X I方 向矢視図であって、 噴孔 1 3がその軸線を中心にして片方にのみ偏らせて噴孔入 口部 2 4を所定の開口度 (たとえば 5 0 % ) で開口するようにしているため、 す なわち、 噴孔 1 3をその片方のみを遮蔽するため、 遮蔽された方向にのみ燃料が 剥離し、 形成された噴霧が噴射方向に対して第 1 0図に示すように非軸対称とな つたり、 噴射中に噴射方向が変化したりする特性がある。 この特性はエンジンに とつて好ましいものではないという問題がある。  Next, FIG. 10 is a cross-sectional view taken along the line X-X of FIG. 4, and FIG. 11 is a view taken in the direction of the arrow XI of FIG. 4, wherein the injection hole 13 has its axis centered. Since the injection hole inlet 24 is opened at a predetermined opening degree (for example, 50%) by being biased to only one side, that is, the injection hole 13 is shielded only on one side, The fuel peels off only in the shielded direction, and the formed spray has the characteristic that it becomes non-axisymmetric with respect to the injection direction as shown in Fig. 10 or the injection direction changes during injection. . There is a problem that this property is not preferable for the engine.
第 1 2図は、 こう した問題を解消するための本発明の第 2の実施の形態によ る燃料噴射ノズル 3 0の要部拡大断面図、 第 1 3図は、 第 1 2図の X I I I - X I I I線断面図、 第 1 4図は、 第 1 2図の; I V方向矢視図であって、 この燃料 噴射ノ ズル 3 0のスワール機構 3 1においては、 噴孔 1 3の噴孔出口部 2 5に円 形状の座ぐり部 3 2を形成した。  FIG. 12 is an enlarged sectional view of a main part of a fuel injection nozzle 30 according to a second embodiment of the present invention for solving such a problem, and FIG. -XIII sectional view, Fig. 14 is a view in the direction of arrow IV in Fig. 12; in the swirl mechanism 31 of the fuel injection nozzle 30, the injection hole exit of the injection hole 13 A circular counterbore portion 32 was formed in the portion 25.
また、 比較し易いように、 第 1 0図および第 1 1図の状態を第 1 5図に、 さ らに第 1 2図ないし第 1 4図の状態を第 1 6図に示した。 Also, for ease of comparison, the states of FIGS. 10 and 11 are shown in FIG. FIGS. 12 to 14 show the states shown in FIGS. 12 to 14.
第 1 5図は、 第 1 0図および第 1 1図の状態において噴孔 1 3部分の水平断 面図と、 噴孔 1 3の厠断面図と、 噴孔 1 3の軸線方向の矢視図とを並列させて示 した説明図、 第 1 6図は、 同様に、 第 1 2図ないし第 1 4図の状態において噴孔 1 3部分の水平断面図と、 噴孔 1 3の側断面図と、 噴孔 1 3の軸線方向の矢視図 とを並列させて示した説明図である。  FIG. 15 is a horizontal sectional view of the injection hole 13, a cross-sectional view of the injection hole 13, and a view in the axial direction of the injection hole 13 in the state of FIGS. 10 and 11. 16 is a horizontal sectional view of the injection hole 13 in the state shown in FIGS. 12 to 14 and a side cross section of the injection hole 13. FIG. 4 is an explanatory view showing the figure and a view taken in the direction of the axis of the injection hole 13 in parallel.
図示のように (と く に第 1 6図に示すよう に) 、 燃料噴射ノズル 3 0におい ては、 座ぐり部 3 2は、 噴孔主部 2 3の中心铀線 2 3 Cに対して噴孔入口部 2 4 刀中心軸線 2 4 C側にこれを漏らせてある。  As shown in the figure (especially as shown in FIG. 16), in the fuel injection nozzle 30, the counterbore portion 32 is positioned with respect to the center line 23 C of the injection hole main portion 23. Injection hole 24 This is leaked to the sword center axis 24 C side.
すなわち、 噴孔 1 3の噴孔入口部 2 4が遮蔽される、 たとえば第 1 4図中の 左側に対向して第 1 4図中右側に噴孔 1 3の噴孔出口部 2 5を拡大するようにし て、 噴孔入口部 2 4から噴孔出口部 2 5までにわたって、 その軸線方向において 流路が非軸対称にならないように、 つま り第 1 0図に示した形状の噴霧とならな いように、 平均化した噴霧形状を形成可能としている。  That is, the injection hole inlet 24 of the injection hole 13 is shielded. For example, the injection hole outlet 25 of the injection hole 13 is enlarged on the right side in FIG. 14 while facing the left side in FIG. So that the flow path from the injection hole inlet 24 to the injection hole outlet 25 is not axisymmetric in the axial direction, that is, if the spray has the shape shown in FIG. In order to avoid this, an average spray shape can be formed.
こう した構成の燃料噴射ノズル 3 0において、 ロータ リーバルブ 1 7の可変 用溝部 1 9による偏向を受けて噴孔入口部 2 4から噴孔 1 3 (噴孔主部 2 3 ) 内 に進入し旋回流となった燃料は、 噴孔出口部 2 5の座ぐり部 S 2の部分において 座ぐり部 3 2のみの方向に拡開することになり、 第 1 3図に示すように噴射方向 に対して対称な噴霧形状とすることができる。  The fuel injection nozzle 30 having such a configuration is deflected by the variable groove portion 19 of the rotary valve 17 to enter the injection hole 13 (the injection hole main portion 23) from the injection hole inlet portion 24 and turn. The fuel that has flowed will expand in the direction of the counterbore 32 only at the counterbore S2 of the injection hole outlet 25, and as shown in FIG. And a symmetrical spray shape.
すなわち、 燃料の流れを一様に刹離させ、 噴霧を均等に分散させることがで きるため、 軸対称な噴霧を形成することができる。  That is, since the flow of the fuel can be uniformly separated and the spray can be evenly dispersed, an axisymmetric spray can be formed.
もちろんエンジンの種類ないし燃焼室 2 7の形状などに応じて、 逆に、 噴霧 をさ らに不均一に分散させたい場合にも同様にして行う ことができる。  Of course, depending on the type of engine, the shape of the combustion chamber 27, and the like, conversely, when it is desired to further disperse the spray evenly, the same can be performed.
たとえば、 第 1 6図に示した状態とは逆に、 座ぐり部 3 2を、 噴孔主部 2 3 の中心軸線 2 3 Cに対して噴孔入口部 2 4の中心軸線 2 4 C側とは反対側にこれ を儡らせれば、 さ らに非軸対称の程度を大き くすることができる。 したがって、 座ぐり部 3 2の偏りの方向によって、 噴霧の偏り (非軸対称) をなくすこと、 噴霧の儒り をさ らに大き くすること、 あるいは、 たとえば水平方 向および垂直方向など異なる方向に噴霧を偏らせること、 などが可能である。 For example, contrary to the state shown in FIG. 16, the counterbore portion 32 is located on the side of the central axis line 24 C of the injection hole inlet portion 24 with respect to the central axis line 23 C of the injection hole main portion 23. If this is connected to the opposite side, the degree of non-axisymmetricity can be further increased. Therefore, depending on the direction of the offset of the counterbore part 32, it is possible to eliminate the bias of the spray (non-axisymmetric), to further increase the spread of the spray, or to set different directions such as horizontal and vertical. It is possible to bias the spray to a certain point.
なお第 1 7図ないし第 2 0図は、 噴孔 1 3の噴孔出口部 2 5に形成する座ぐ り部の各種の例を、 第 1 5図および第 1 6図と同様に並列して示す説明図である 第 1 7図に示した例では、 座ぐり部 3 3を円形状ではなく、 長楕円形状とし 、 噴孔入口部 2 4による偏向方向に対抗した方向にのみ座ぐり部 3 3を形成し、 ffiぐり部 3 3による偏向方向の修正作用をより有効にすることができる。  FIGS. 17 to 20 show various examples of counterbore portions formed at the nozzle hole outlet 25 of the nozzle hole 13 in parallel with FIGS. 15 and 16. In the example shown in FIG. 17 which is an explanatory diagram shown in FIG. 17, the counterbore portion 33 is not a circular shape but an oblong shape, and the By forming 33, the effect of correcting the deflection direction by the ffi counterbore 33 can be made more effective.
第 1 3図に示した例では、 座ぐり部 3 4を噴孔 1 3の噴孔出口部 2 5より大 きな円形状に形成することにより、 噴霧の拡散作用を助長し、 さ らに空気との混 合効率を向上可能としてある。  In the example shown in FIG. 13, the counterbore portion 34 is formed in a circular shape larger than the nozzle hole outlet portion 25 of the nozzle hole 13 to promote the spraying action, and The mixing efficiency with air can be improved.
第 1 9図に示した例では、 座ぐり部 3 5を三角形状と し、 噴霧形状を立体的 な角錐形状とすることを可能としてある。  In the example shown in FIG. 19, the spot facing portion 35 has a triangular shape, and the spray shape can be a three-dimensional pyramid shape.
第 2 0図に示した例では、 噴孔出口部 2 5から拡閲する座ぐり部 3 6を円錐 状とするとともに、 第 1 6図に示した例の座ぐり部 3 2の場合と同様に、 噴孔入 口部 2 4の形成方向に镉つた形状とすることにより、 噴霧を軸対称とし、 かつさ らに大き く拡開可能としてある。  In the example shown in FIG. 20, the counterbore section 36 censored from the nozzle hole outlet section 25 has a conical shape, and the same as the counterbore section 32 in the example shown in FIG. 16. Further, by making the shape perpendicular to the forming direction of the injection hole inlet portion 24, the spray is made axially symmetric and can be further expanded.
以上のように、 本発明の第 1および第 2の実施の形態においては噴孔可変機 構 1 0を用いてスワール機構 1 1 を構成することができるが、 噴孔可変機構 1 0 なしの一般的なノズル構成であつても、 スワール機構 1 1 を構成することができ る。  As described above, in the first and second embodiments of the present invention, the swirl mechanism 11 can be configured by using the variable injection hole mechanism 10, but the general swirl mechanism without the variable injection hole mechanism 10 can be used. The swirl mechanism 11 can be configured with a simple nozzle configuration.
たとえば第 2 1図は、 従来からの一般的なホールノズルタイプの燃料噴射ノ ズル 4 0の先端部の断面図、 第 2 2図は、 第 2 1図の X X I エ ー X Xェ I線断面 図、 第 2 3図は、 第 2 1図の X X I I I方向矢視図であって、 ニー ドル弁 9のリ フ トにともなって燃料通路 2 2と噴孔 1 3とが連通されるだけであり、 噴孔 1 3 から噴射される燃料は第 2 2図に示すように、 直線的な噴霧形状となり、 広がり をあま り有していない。 For example, Fig. 21 is a sectional view of the tip of a conventional general hole nozzle type fuel injection nozzle 40, and Fig. 22 is a sectional view taken along line XXI-XXI in Fig. 21. FIG. 23 is a view taken in the direction of the arrow XXIII of FIG. 21, and only the fuel passage 22 and the injection hole 13 are communicated with the lift of the needle valve 9. Hole 1 3 As shown in Fig. 22, the fuel injected from the fuel has a linear spray shape and does not have much spread.
第 2 4図は、 本発明の第 3の実施の形態による燃料噴射ノズル 5 0における 噴孔 1 3部分の水平断面図、 第 2 5図は、 同、 噴孔 1 3の軸線方向の矢視図であ り、 この燃料噴射ノズル 5 0において、 そのスワール機構 5 1は、 噴孔主部 2 3 の断面積より小さい断面積を有する噴孔入口部 2 4を有するとともに、 噴孔入口 部 2 4の開口断面 (中心軸線 2 4 C ) を噴孔主部 2 3の開口断面 (中心軸線 2 3 C ) に対して偏らせてある。  FIG. 24 is a horizontal sectional view of the injection hole 13 of the fuel injection nozzle 50 according to the third embodiment of the present invention. FIG. 25 is a view of the same in the axial direction of the injection hole 13. In this fuel injection nozzle 50, the swirl mechanism 51 has an injection hole inlet 24 having a cross-sectional area smaller than the cross-sectional area of the injection hole main part 23, and the injection hole inlet 2 The opening cross section (center axis 24 C) of 4 is deviated from the opening cross section (center axis 23 C) of the injection hole main part 23.
さ らに第 6 ¾の各開口度の場合に示したと同様に、 噴孔 1 3の軸線方向から 見て、 噴孔入口部 2 4の周緣部の一部を噴孔主部 2 3の周緣部の一部に重複 (内 接) させることによって、 噴孔 1 3の最も円周部側から噴孔主部 2 3への進入を 可能とし、 噴孔入口部 2 4から噴孔主部 2 3に進入する燃料の旋回流をより効果 的に発生させるようにしてある。  Further, similarly to the case of each opening degree shown in FIG. 6, when viewed from the axial direction of the injection hole 13, a part of the circumference of the injection hole inlet portion 24 is formed around the injection hole main portion 23. By overlapping (inscribed) with a part of the nozzle hole, it is possible to enter the nozzle hole main part 23 from the most circumferential side of the nozzle hole 13, and from the nozzle hole inlet part 24 to the nozzle hole main part 2 The swirling flow of the fuel entering 3 is generated more effectively.
もちろん、 噴孔入口部 2 4の形成位置を任意に選択することにより噴孔 1 3 内における旋回流の発生程度を調整することができる。  Of course, the degree of generation of the swirling flow in the injection hole 13 can be adjusted by arbitrarily selecting the formation position of the injection hole inlet portion 24.
たとえば第 2 6図は、 本発明の第 4の実施の形態による燃料噴射ノズル 5 2 における噴孔 1 3の軸線方向の矢視図であって、 そのスワール機構 5 3において は、 噴孔入口部 2 4の周緣部は噴孔主部 2 3の周縁部とは一致しておらず、 旋回 流の発生程度は第 2 5図の場合よりは小さいが、 加工作業をより簡単に行う こと ができる。  For example, FIG. 26 is an axial view of an injection hole 13 of a fuel injection nozzle 52 according to a fourth embodiment of the present invention. In the swirl mechanism 53, an injection hole inlet portion is shown. The peripheral part of 24 does not coincide with the peripheral part of the nozzle hole main part 23, and the degree of generation of swirling flow is smaller than in the case of Fig. 25, but machining work can be performed more easily .
第 2 7図は、 本発明の第 5の実施の形態による燃料噴射ノズル 6 0における 噴孔 1 3部分の水平断面図、 第 2 8図は、 同、 噴孔 1 3の軸線方向の矢視図であ り、 この燃料噴射ノズル 6 0において、 そのスワール機構 6 1は、 噴孔主部 2 3 の断面積より小さい断面積を有する噴孔入口部 2 4を有するとともに、 噴孔入口 部 2 4の開口断面 (中心軸線 2 4 C ) を噴孔主部 2 3の開口断面 (中心軸線 2 3 C ) に対して偏らせてある。 ただし、 噴孔入口部 2 4は下流側に所定の深さを有し、 その一部が噴孔主部 2 3に臨んでいることになる。 FIG. 27 is a horizontal sectional view of the injection hole 13 of the fuel injection nozzle 60 according to the fifth embodiment of the present invention, and FIG. 28 is a view in the direction of the axis of the injection hole 13. In this fuel injection nozzle 60, the swirl mechanism 61 has an injection hole inlet 24 having a cross-sectional area smaller than the cross-sectional area of the injection hole main part 23, and the injection hole inlet 2 The opening cross section (center axis 24 C) of 4 is deviated from the opening cross section (center axis 23 C) of the injection hole main part 23. However, the injection hole inlet portion 24 has a predetermined depth on the downstream side, and a part thereof faces the injection hole main portion 23.
こう した構成の燃料噴射ノズル 6 0およびそのスワール機構 6 iにおいても 、 単純な構成で噴孔 1 3内に旋回流を発生させ、 噴霧にスワールをかけることに より、 噴射燃料を拡開させて、 空気との混合率を上げることができる。  Also in the fuel injection nozzle 60 and the swirl mechanism 6i having such a configuration, a swirl flow is generated in the injection hole 13 with a simple configuration, and swirl is applied to the spray to expand the injected fuel. The mixing ratio with air can be increased.
また、 燃料の噴射方向下流側に向かって左右いずれかの部位に噴孔入り口部 2 4を位置させるかによつて、 旋回流の回転方向を選択可能であるため、 噴霧の 左右対称あるいは非対称形状も調整可能である。  In addition, the rotational direction of the swirling flow can be selected depending on whether the injection hole inlet 24 is located at the right or left part toward the downstream side of the fuel injection direction. Is also adjustable.
本発明においては、 ス フール機構は、 噴孔入口部 2 4だけではなく、 噴孔出 口部 2 5にもこれを設けることができる。  In the present invention, the swirl mechanism can be provided not only at the injection hole inlet 24 but also at the injection hole outlet 25.
たとえば第 2 3図は、 本発明の第 6の実施の形態による燃料噴射ノズル 7 0 の要部拡大断面図, 第 3 0図は、 第 2 9図の X X X - X X X線断面図、 第 3 1図 は、 第 2 9図の X X X I方向矢視図であって、 この燃料噴射ノズル 7 0において 、 そのスワール機構 7 1は、 噴孔 1 3の噴孔出口部 2 5に偏心した円形状の座ぐ り部 7 2を形成することにより、 噴孔 1 3内において旋回流を発生可能としてあ る。  For example, FIG. 23 is an enlarged sectional view of a main part of a fuel injection nozzle 70 according to a sixth embodiment of the present invention, FIG. 30 is a sectional view taken along line XXX-XXX in FIG. FIG. 29 is a view taken in the direction of the arrow XXXI in FIG. 29. In the fuel injection nozzle 70, the swirl mechanism 71 is a circular seat eccentric to the injection hole outlet portion 25 of the injection hole 13. By forming the boring portion 72, a swirling flow can be generated in the injection hole 13.
こう した構成の燃料噴射ノズル 7 0およびそのスフ一ル機構 7 1 においても 、 単純な構成で噴孔 1 3内に旋回流を発生させ、 噴霧にスワールをかけることに より、 噴射燃料を拡開させて、 空気との混合率を上げることができる。  Also in the fuel injection nozzle 70 and the swirl mechanism 71 of such a configuration, a swirl flow is generated in the injection hole 13 with a simple configuration, and swirling is applied to the spray to spread the injected fuel. By doing so, the mixing ratio with air can be increased.

Claims

請 求 の 範 囲 The scope of the claims
1 噴孔入口部、 噴孔主部および噴孔出口部を有する噴孔と、 シー ト面と を形成したノズルボチイ と、 (1) a nozzle hole having an injection hole inlet portion, an injection hole main portion and an injection hole outlet portion, and a nozzle hole forming a sheet surface;
このノズルボディ内に摺動可能に設けるとともに、 前記シ一 ト面から リフ ト することにより前記噴孔から燃料を噴射可能とするニー ドル弁と、 を有する燃料 噴射ノズルであつて、  A needle valve slidably provided in the nozzle body and liftable from the seat surface to enable fuel to be injected from the injection hole; and
前記噴孔の前記噴孔入口部の断面積を前記噴孔主部の断面積より小さ くする とともに、  A cross-sectional area of the injection hole entrance portion of the injection hole is made smaller than a cross-sectional area of the injection hole main portion,
前記噴孔入口部の開口断面は、 これを前記噴孔主部の開口断面に対して婦ら せたことを特徴とする燃料噴射ノズル。  The fuel injection nozzle according to claim 1, wherein an opening cross section of the injection hole inlet portion is displaced from an opening cross section of the injection hole main portion.
2 噴孔入口部、 噴孔主部および噴孔出口部を有する噴孔と、 シー ト面と を形成したノズルボ ィ と、  (2) a nozzle hole having an injection hole inlet portion, an injection hole main portion and an injection hole outlet portion, and a nozzle hole forming a sheet surface;
このノズルボディ内に摺動可能に設けるとともに、 前記シ一ト面から リフ ト することにより前記噴孔から燃料を噴射可能とする二一 ドル弁と、 を有する燃料 噴射ノズルであつて、  A fuel injection nozzle having a needle valve slidably provided in the nozzle body and capable of injecting fuel from the injection hole by lifting from the sheet surface; and
前記噴孔の前記噴孔入口部の断面積を前記噴孔主部の断面積よ り小さ くする とともに、  Reducing the cross-sectional area of the injection hole inlet portion of the injection hole smaller than the cross-sectional area of the injection hole main portion;
前記噴孔入口部に流入する燃料は、 これを前記噴孔主部の軸線に対して偏位 した方向から流入させることができるようにしたことを特徴とする燃料噴射ノズ ル。  A fuel injection nozzle characterized in that the fuel flowing into the injection hole inlet can flow from a direction deviated from the axis of the injection hole main part.
3 前記噴孔の軸線方向から見て、 前記噴孔入口部の周緣部の一部と、 前 記噴孔主部の周緣部の一部とを重複させたことを特徴とする請求項 1あるいは 2 記載の燃料噴射ノズル。 4 前記噴孔の内側に、 この噴孔と交差する導入用燃料通路を設け、 この導入用燃料通路と前記噴孔との交差部は、 前記噴孔主部の断面積より小 さな断面積の噴孔入口部を形成することを特徴とする請求項 1ないし 3のいずれ かに記載の燃料噴射ノズル。 3 A part of the periphery of the injection hole inlet portion and a part of the periphery of the injection hole main portion, viewed from the axial direction of the injection hole, are overlapped with each other. 2. The fuel injection nozzle according to 2. 4 An injection fuel passage intersecting with the injection hole is provided inside the injection hole, and an intersection between the injection fuel passage and the injection hole has a cross-sectional area smaller than a cross-sectional area of the injection hole main portion. The fuel injection nozzle according to any one of claims 1 to 3, wherein an injection hole inlet portion is formed.
5 前記噴孔、 およびこの噴孔と交差する前記導入用燃料通路は、 これを 互いにほぼ直角に交差させたことを特徴とする請求項 4記載の燃料噴射ノズル。  5. The fuel injection nozzle according to claim 4, wherein the injection hole and the introduction fuel passage intersecting with the injection hole cross each other substantially at right angles.
6 前記噴孔入口部の断面積を可変とする噴孔可変機構を設けたことを特 徴とする請求項 1 ないし 5のいずれかに記載の燃料噴射ノズル。  6. The fuel injection nozzle according to claim 1, further comprising an injection hole variable mechanism that changes a cross-sectional area of the injection hole inlet portion.
7 前記噴孔可変機構は、  7 The injection hole variable mechanism,
ァクチユエ一ターと、  With actor
このァクチユエータ一に取り付けたロータ リ一シ ャフ トと、  A rotary shaft attached to the actuator,
この口一タ リ一シャフ トに、 その軸方向には可動に、 かつ回転方向には操作 力を伝達可能に取り付けたロータ リ一バルブと、 を有するとともに、  A rotary valve attached to the port shaft so as to be movable in the axial direction and to transmit the operating force in the rotational direction;
このロータ リ一ノくルブには、  In this rotary knob,
e f記噴孔を閉鎖可能なシ一 ト円弧部と、  a sheet arc portion that can close the injection hole
このシー ト円弧部の間であって前記噴孔に連通可能な導入用燃料通路と、 を 形成してあることを特徴とする請求項 6記載の燃料噴射ノ ズル。  7. The fuel injection nozzle according to claim 6, wherein a fuel passage for introduction is formed between the sheet arc portions and communicates with the injection hole.
8 前 己噴孔出口部に、 前記噴孔主部に対した偏った座ぐりを設けたこと を特徴とする請求項 1ないし 7のいずれかに記載の燃料噴射ノズル。  8. The fuel injection nozzle according to claim 1, wherein a counterbore deviated from the main portion of the injection hole is provided at an outlet portion of the injection hole.
9 前記座ぐりは、 前記噴孔主部の中心軸線に対して前記噴孔入口部の中 心軸線側にこれを偏らせたことを特徴とする請求項 8記載の燃料噴射ノズル。  9. The fuel injection nozzle according to claim 8, wherein the counterbore is biased toward a center axis of the injection hole inlet with respect to a center axis of the injection hole main portion.
1 0 噴孔入口部、 噴孔主部および噴孔出口部を有する噴孔と、 シー ト面と を形成したノズルボディ と、  A nozzle body having an injection hole inlet, an injection hole main portion, and an injection hole outlet, and a sheet surface;
このノズルボディ内に摺動可能に設けるとともに、 前記シ一 ト面から リフ ト することにより前記噴孔から燃料を噴射可能とする二一 ドル弁と、 を有する燃料 噴射ノズルであつて、 前記噴孔の前記噴孔入口部から前記噴孔主部に流入する燃料が、 この噴孔の 軸線に対してラセン状に旋回しながら流れるよ うにしたスワール機構をこの噴孔 に形成したことを特徴とする燃料噴射ノズル。 A fuel injection nozzle having a needle valve slidably provided in the nozzle body and capable of injecting fuel from the injection hole by lifting from the seat surface; and A swirl mechanism is formed in the injection hole such that the fuel flowing from the injection hole inlet portion of the injection hole into the injection hole main portion flows while rotating spirally with respect to the axis of the injection hole. Characteristic fuel injection nozzle.
丄 1 前記スワール機構は、 訪記噴孔入口部にこれを設けたことを特徴とす る請求項 1 0記載の燃料噴射ノズル。  10. The fuel injection nozzle according to claim 10, wherein the swirl mechanism is provided at a visiting injection hole inlet portion.
1 2 前記スワール機構は、 前記噴孔出口部にこれを設けたことを特徴とす る請求項 1 0記載の燃料噴射ノズル。  12. The fuel injection nozzle according to claim 10, wherein the swirl mechanism is provided at the injection hole outlet.
PCT/JP1998/003206 1997-07-18 1998-07-16 Fuel injection nozzle WO1999004159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/209733 1997-07-18
JP20973397A JPH1137016A (en) 1997-07-18 1997-07-18 Fuel injection nozzle

Publications (1)

Publication Number Publication Date
WO1999004159A1 true WO1999004159A1 (en) 1999-01-28

Family

ID=16577745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003206 WO1999004159A1 (en) 1997-07-18 1998-07-16 Fuel injection nozzle

Country Status (2)

Country Link
JP (1) JPH1137016A (en)
WO (1) WO1999004159A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559906A3 (en) * 2004-01-28 2007-02-14 Robert Bosch Gmbh Fuel injection valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254365U (en) * 1988-10-12 1990-04-19
JPH0417769A (en) * 1990-05-09 1992-01-22 Hino Motors Ltd Fuel injection nozzle
JPH04103872A (en) * 1990-08-21 1992-04-06 Nissan Motor Co Ltd Fuel injection nozzle of diesel engine
JPH08105369A (en) * 1994-10-05 1996-04-23 Hino Motors Ltd Injection nozzle of diesel engine
WO1996041948A1 (en) * 1995-06-09 1996-12-27 Zexel Corporation Fuel injection nozzle having a variable nozzle hole area

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254365U (en) * 1988-10-12 1990-04-19
JPH0417769A (en) * 1990-05-09 1992-01-22 Hino Motors Ltd Fuel injection nozzle
JPH04103872A (en) * 1990-08-21 1992-04-06 Nissan Motor Co Ltd Fuel injection nozzle of diesel engine
JPH08105369A (en) * 1994-10-05 1996-04-23 Hino Motors Ltd Injection nozzle of diesel engine
WO1996041948A1 (en) * 1995-06-09 1996-12-27 Zexel Corporation Fuel injection nozzle having a variable nozzle hole area

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559906A3 (en) * 2004-01-28 2007-02-14 Robert Bosch Gmbh Fuel injection valve

Also Published As

Publication number Publication date
JPH1137016A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
KR100380298B1 (en) Mixture forming apparatus of internal combustion engine and internal combustion engine
JP2011516787A (en) Fuel injection device
WO1999004159A1 (en) Fuel injection nozzle
KR20030071645A (en) Method and engine providing mixing of at least one gaseous fluid such as air and of a fuel in the combustion chamber of a direct-injection internal-combustion engine
JP4085877B2 (en) Fuel injection valve for internal combustion engine
JP3797019B2 (en) Fuel injection valve for direct-injection spark ignition internal combustion engine
JP4085713B2 (en) Fuel injection valve for direct injection internal combustion engine
US6918549B2 (en) Fuel injector tip for control of fuel delivery
WO1998020246A1 (en) Internal combustion engine
JP3726901B2 (en) Internal combustion engine control device and swirl generator
JP3611471B2 (en) In-cylinder internal combustion engine
JP2705339B2 (en) Fuel injection nozzle
JP3991713B2 (en) Fuel injection valve
DE19647301A1 (en) Mixture-preparation system for Otto-cycle engine
JP4103291B2 (en) Fuel injection nozzle
US20110036326A1 (en) Throttle assembly
JP3928851B2 (en) Fuel injection nozzle
JPH0756243B2 (en) Collision type fuel injection valve
EP1576282A1 (en) Fuel injection nozzle
JP4062049B2 (en) In-cylinder direct injection internal combustion engine
RU2087737C1 (en) Forced fuel injection system
JPH1122470A (en) Fuel injection device of lean burn engine
JPH0442525Y2 (en)
JP2002221125A (en) Variable swirl type fuel direct-injection injector
JPH11200994A (en) Variable nozzle hole type fuel injection nozzle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase