WO1999003579A1 - NOx REDUCTION CATALYST - Google Patents

NOx REDUCTION CATALYST Download PDF

Info

Publication number
WO1999003579A1
WO1999003579A1 PCT/US1998/014420 US9814420W WO9903579A1 WO 1999003579 A1 WO1999003579 A1 WO 1999003579A1 US 9814420 W US9814420 W US 9814420W WO 9903579 A1 WO9903579 A1 WO 9903579A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
catalyst
metal halide
reacted
group
Prior art date
Application number
PCT/US1998/014420
Other languages
French (fr)
Inventor
Wolfgang M. H. Sachtler
Original Assignee
Northwestern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern University filed Critical Northwestern University
Publication of WO1999003579A1 publication Critical patent/WO1999003579A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/504ZSM 5 zeolites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to a method for reduction of nitrogen oxides contained in a gaseous stream such as a lean burn internal combustion engine exhaust.
  • the method employs a durable and stable catalyst comprising a metal/zeolite catalyst which is prepared by the sublimation of a volatile metal compound over the zeolite.
  • Atmospheric pollution is a societal problem which is receiving much attention.
  • the major source of such pollution is the extensive use of fossil fuels, although industrial and chemical processes, such as the manufacture of nitric acid, also contribute.
  • the principal pollutants are nitrogen oxides, carbon monoxide and, perhaps to a lesser extent, hydrocarbons, sulfur oxides and other objectionable gases and vapors.
  • nitrogen oxides which are relatively stable at ambient conditions, it is generally recognized that two of these, nitric oxide (NO) and nitrogen dioxide (NO 2 ), are the principal contributors to smog and other undesirable environmental effects when they are discharged into the atmosphere.
  • NO nitric oxide
  • NO 2 nitrogen dioxide
  • NO x nitric oxide, nitrogen dioxide, other nitrogen oxides and mixtures thereof.
  • An object of the subject invention is a method of purifying NO x containing exhaust gases and a zeolite compound for use in such a method.
  • a further object of the subject invention is a method of preparing a catalyst for purifying NO x from exhaust gases including the sublimation of a volatile metal halide onto a zeolite.
  • a further object of the subject invention is a highly active and stable catalyst having a promoter incorporated therein.
  • a volatile metal halide is sublimed over a zeolite, which is then exposed to water, dried and calcined.
  • a promoter is then incorporated into the zeolite structure by adding the zeolite to a solution of a rare earth salt, filtering and drying.
  • Contacting exhaust gas with NO x over the catalyst results in reduction of the NO x to N 2 .
  • the catalyst may be regenerated by heating in an oxygen atmosphere.
  • FIG. 1 is a graph showing the effect of reaction temperature on the selective catalytic reduction of NO x over Fe/ZSM-5 in the absence of H 2 O.
  • FIG. 2 is a graph showing the effect of reaction temperature on the selective catalytic reduction of NO x over Fe/ZSM-5 in the presence of H 2 O.
  • FIG. 3 is a graph showing the effect of reaction temperature on the selective catalytic reduction of NO x over La-doped Fe/ZSM-5 in the absence of H 2 O.
  • FIG. 4 is a graph showing the effect of reaction temperature on the selective catalytic reduction of NO x over La-doped Fe/ZSM-5 in the presence of H 2 O.
  • FIG. 5 is a graph showing the reduction of NO x with i-C 4 H 10 over an Fe- zeolite.
  • FIG. 6 is a graph showing the stability and in situ regeneratability of La-doped iron zeolite of the subject invention.
  • the present invention relates to a process for catalytically removing NO x from oxygen-rich combustion products.
  • the process utilizes a novel catalyst, namely, metal- exchanged crystalline zeolites, to yield a process which is capable of removing NO x from oxygen-containing combustion products.
  • the catalyst of the present invention contains metals such as iron, as ions or oxo-ions inside the cavities of a zeolite such as ZSM-5.
  • the preparation condition is, however, totally different from that previously taught: a gas flow containing the vapor of a volatile metal halide such as FeCl 3 is carried over the zeolite; the volatile iron compound reacts chemically with the acid sites inside the zeolite preferably in a sublimation process, which is subsequently exposed to water.
  • a gas flow containing the vapor of a volatile metal halide such as FeCl 3
  • the volatile iron compound reacts chemically with the acid sites inside the zeolite preferably in a sublimation process, which is subsequently exposed to water.
  • the overall chemistry is given by the equation:
  • Rare earth ions preferably lanthanum or cerium, may also be added to the zeolite by conventional techniques such as ion exchange.
  • a catalyst useful in this invention comprises an intermediate pore size zeolite (e. g. , preferably less than about 7 Angstroms pore size, but may be from about 4 to about 15 Angstroms) having a silica to alumina ratio of at least about 10 to at least about 100 and a Constraint Index of about 0.4 to about 12, with the zeolite having been contacted by an iron compound or iron complex in the vapor phase to incorporate iron into the pores of the crystal.
  • the Constraint Index qualifies it as having an intermediate port size.
  • Examples of such zeolites include ZSM-5; ZSM-11; ZSM- 21; ZSM-23; ZSM-35; ZSM-38; ZSM-48; ZSM-57 and ZSM-58.
  • zeolites are known in the art and are sometimes referred to as being of the ZSM-5 type; this term is used herein to designate zeolites useful in this invention.
  • Other zeolites such as mordenite, ferrierite, beta and faujasite can also be used.
  • the zeolites of the present invention are preferably used in the acid form, i.e. , the hydrogen form or other univalent or multivalent cationic form to the extent that such zeolites are capable of being exchanged with the metals discussed herein.
  • Other zeolite forms useful in the subject invention include Na, NH 4 , Ca, Ce and Mg.
  • Suitable crystalline zeolites include those materials which are stable under the described reaction conditions and which have a pore size sufficient to effect the subject reaction. While catalysts having a
  • Si/Al ratio less than 5.0 prior to treatment appear to demonstrate only limited activity, such catalysts may be activated by subjecting the catalyst to dealumination according to methods well known in the art.
  • Lanthanum and other rare earth elements such as La, Ce, Gd, Nd, Sm, Ho, Yb, Lu; in addition to Th and U, may be incorporated into the zeolite by known ion- exchange methods.
  • durability tests of 100 h showed a decrease in activity by a few percent.
  • the promoted catalyst it was possible to regenerate it by simply blowing an oxygen containing gas over it at 500 °C; the original activity was completely restored.
  • the zeolite catalyst of the subject invention may have the composition of
  • M 1 is Fe, Ga, In, Sn or Pd and 0.1 ⁇ x/c ⁇ 5
  • M 2 is a rare earth element and 0 ⁇ y/x ⁇ 1.5
  • b (V M 1 * x + V M 2 * y + a)/2, where V ⁇ and V M 2 are the charge valence of M 1 and M 2 , respectively.
  • the x/c ratio is preferably maintained between 0.5 and 4.0.
  • Fe/ZSM-5 catalysts were prepared by chemical vapor deposition, i.e. , by subliming FeCl 3 into the cavities of ZSM-5.
  • Other volatile halides such as GaCl 3 , InCl 3 , SnCl 4 , PdCl 2 , FeBr 3 and FeCl 2 may also be used.
  • a zeolite such as ZSM-5, mordenite, ferrierite, beta or faujasite is exposed to a flowing or stationary inert gas such as N 2 , Ar or He, which gas carries the vapor of such a metal halide.
  • a flowing or stationary inert gas such as N 2 , Ar or He
  • the metal halide may be introduced to the zeolite under vacuum.
  • the zeolite is heated to between 150°C and 600°C, preferably 280°-360°C during deposition; washing in water or exposure to water vapor follows and then calcination at an elevated temperature in air or an inert gas.
  • the subliming can also be carried out under vacuum in the absence of carrier gas.
  • vapor deposition is accomplished by loading the zeolite into one side of a U-shaped reactor and the volatile metal halide into the other side. The materials are maintained separate by a porous frit.
  • An inert gas flow at about 280°-360°C carries the metal vapor to the heated zeolite site where the proton is exchanged for, in the case of FeCl 3 , the Fe ion.
  • the metal exchanged zeolite is washed with water, dried, then calcined at 200°C-800°C, preferably 600°C under O 2 , N 2 , Ar or He for 1-4 hours, preferably 2 hours. Simple mixing of the solid constituents and heating may also be conducted to exchange the metals.
  • Preparation of catalysts of even higher activity, selectivity or stability for the selective reduction of nitrogen oxides in lean burn engine emissions may be prepared by adding a catalyst promoter to the product obtained above.
  • Typical promoters are ions or oxo-ions or oxides of elements in the group traditionally called rare earths: elements such as La, Ce, Nd, Sm, Gd, Ho, Yb and Lu; or actinide elements such as Th and U.
  • the calcined product from above or its non-calcined precursor is introduced in an aqueous solution of a suitable salt of the promoter ion.
  • the slurry obtained in this way is stirred for several hours at ordinary or elevated temperature, followed by filtering, washing with water and drying.
  • promoter precursors are the nitrates, oxalates or acetates of lanthanum or cerium.
  • Fe/ZSM-5 catalysts were prepared by chemical vapor deposition, i.e. , by subliming FeCl 3 into the cavities of H/ZSM-5.
  • lOg of the parent zeolite was added to 2L 0.03M NH 4 -NO 3 solution.
  • the slurry was stirred at room temperature for 48 h, vacuum filtered, washed with IL doubly deionized water and air dried. This process was repeated three times to ensure complete exchange. The sample was then crushed to > 60 mesh.
  • the obtained NH 4 /ZSM-5 sample was calcined and held at 500 °C for 4 h in order to decompose the NH 4 cation into protons.
  • FeCl 3 + H + ⁇ FeCl 2 + + HC1 lOOmL 1M NaOH solution was used to absorb HC1 from the outlet gas. After a certain time all the acid sites are consumed and the zeolite bed became uniformly yellow in color.
  • La-promoted Fe/ZSM-5 catalyst 2.0g calcined Fe/ZSM-5 from Example 1 was added to 200mL 0.05M La(NO 3 ) 3 solution. The slurry was stirred at room temperature overnight, vacuum filtered, washed with 200mL doubly deionized water and air dried.
  • Typical inlet composition was NO 0.2%; i-C 4 H 10 0.2%; O 2 3%; H 2 O 10% (when added); He was used as a diluent.
  • the catalyst was preconditioned at each temperature for 30 min. before the products analysis was commenced.
  • the products were analyzed by a HP 5890GC with Alltech 13X molecular sieve and Porpark Q columns. NO conversion was determined from N 2 formation.
  • i-C 4 H 10 conversion was determined from CO 2 and CO formation.
  • the effectiveness factor is defined as the ratio of the number of NO molecules and i-C 4 H 10 molecules consumed.
  • Fe/ZSM-5 in the absence of H 2 O is shown in FIG. 1.
  • the conversion of NO to N 2 increased with increasing temperature. It reached its maximum of about 70% at a temperature of 350-
  • Fe/ZSM-5 as shown in FIG. 2, is similar to that observed with dry feed gas.
  • the temperature corresponding to maximum NO to N 2 conversion (about 70%) shifted to 375 °C.
  • FIG. 3 shows the activity of La-doped Fe/ZSM-5. It can be seen that the addition of La promotes the activity. In the absence of H 2 O, the maximum conversion of NO to N 2 increased to 84% at 375 °C.
  • FIGs. 5 and 6 show the result of durability tests over Fe/ZSM-5 and La-doped Fe/ZSM-5, respectively. After a 100 h run, the activity decreased about 10% with both catalysts. However, when the spent La-doped Fe/ZSM-5 was treated in an O 2 /He (10%) flow at 500°C, its original activity was completely restored. Apparently, the slight deactivation was caused by some carbonaceous deposit which can easily be burnt off.
  • Example 1 The procedure of Example 1 is utilized with the zeolite Na/ZSM-5 without further processing. FeCl 3 is flowed over the zeolite and then contacted with water as in Example 1. Passing NO over the prepared catalytic zeolite results in results similar to Figs. 1 and 2.
  • Example 1 The procedure of Example 1 is utilized with the NH 4 /ZSM-5 prepared as in Example 1 without further processing. FeCl 3 is flowed over the zeolite and contacted with water as in Example 1. Passing NO over the prepared catalytic zeolite results in results similar to Figs. 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

A volatile metal halide is sublimed over a zeolite, which is then exposed to water, dried and calcined. A promoter may then be incorporated into the zeolite structure by adding the zeolite to a solution of a rare earth salt resulting in a metal exchanged zeolite such as La-Fe/ZSM-5. Contacting exhaust gas with NOx over the catalyst results in reduction of the NOx to N2. The spent catalyst may be regenerated by heating in an oxygen atmosphere.

Description

NOx REDUCTION CATALYST
Field of the Invention
This invention relates to a method for reduction of nitrogen oxides contained in a gaseous stream such as a lean burn internal combustion engine exhaust. The method employs a durable and stable catalyst comprising a metal/zeolite catalyst which is prepared by the sublimation of a volatile metal compound over the zeolite.
Background of the Invention
Atmospheric pollution is a societal problem which is receiving much attention.
The major source of such pollution is the extensive use of fossil fuels, although industrial and chemical processes, such as the manufacture of nitric acid, also contribute. The principal pollutants are nitrogen oxides, carbon monoxide and, perhaps to a lesser extent, hydrocarbons, sulfur oxides and other objectionable gases and vapors.
Although several nitrogen oxides are known which are relatively stable at ambient conditions, it is generally recognized that two of these, nitric oxide (NO) and nitrogen dioxide (NO2), are the principal contributors to smog and other undesirable environmental effects when they are discharged into the atmosphere.
Formation of man-made nitrogen oxides from the elements occurs in the high temperature zones of combustion processes. The internal combustion engine and coal-, oil- and gas-fired furnaces, boilers and incinerators all contribute to NOx emissions. Although the concentrations of NOx in the exhaust gases produced by combustion usually are low, the aggregate amounts discharged in industrial and/or highly populated areas is adequate to cause problems. For purposes of the present invention, the nomenclature NOx will be used herein to represent nitric oxide, nitrogen dioxide, other nitrogen oxides and mixtures thereof.
The reduction of obnoxious nitrogen oxides to environmentally benign nitrogen in the emissions from lean burn engines cannot be achieved with the type of catalysts that are now used in most passenger cars in the United States, because such catalysts do not function under oxidizing conditions; whereas, lean burn emissions always contain substantial amounts of free oxygen. It is widely assumed that cars of the future should use lean burn engines because of their superior fuel economy. For treating the emissions from such engines, a different class of catalysts has been considered; they contain copper or other metal ions in zeolite cavities. They are active under oxidizing conditions; however, their activity is drastically suppressed by water vapor which is, of course, an inevitable ingredient of all internal combustion engine emission gases. Recently, a type of catalyst has been prepared by a narrowly specified ion exchange procedure in an aqueous slurry of iron oxalate and the zeolite ZSM-5. These catalysts are claimed to operate in gases that contain both free oxygen and a substantial content of water vapor. However, they appear to require a higher operating temperature than is desirable or necessary for treating emissions from lean burn or diesel engines.
Summary of the Invention An object of the subject invention is a method of purifying NOx containing exhaust gases and a zeolite compound for use in such a method.
A further object of the subject invention is a method of preparing a catalyst for purifying NOx from exhaust gases including the sublimation of a volatile metal halide onto a zeolite. A further object of the subject invention is a highly active and stable catalyst having a promoter incorporated therein.
These and other objects are attained by the process of the subject invention, wherein a volatile metal halide is sublimed over a zeolite, which is then exposed to water, dried and calcined. A promoter is then incorporated into the zeolite structure by adding the zeolite to a solution of a rare earth salt, filtering and drying. Contacting exhaust gas with NOx over the catalyst results in reduction of the NOx to N2. The catalyst may be regenerated by heating in an oxygen atmosphere.
Brief Description of the Drawings
FIG. 1 is a graph showing the effect of reaction temperature on the selective catalytic reduction of NOx over Fe/ZSM-5 in the absence of H2O.
FIG. 2 is a graph showing the effect of reaction temperature on the selective catalytic reduction of NOx over Fe/ZSM-5 in the presence of H2O.
FIG. 3 is a graph showing the effect of reaction temperature on the selective catalytic reduction of NOx over La-doped Fe/ZSM-5 in the absence of H2O. FIG. 4 is a graph showing the effect of reaction temperature on the selective catalytic reduction of NOx over La-doped Fe/ZSM-5 in the presence of H2O.
FIG. 5 is a graph showing the reduction of NOx with i-C4H10 over an Fe- zeolite.
FIG. 6 is a graph showing the stability and in situ regeneratability of La-doped iron zeolite of the subject invention.
Detailed Description of the Invention
The present invention relates to a process for catalytically removing NOx from oxygen-rich combustion products. The process utilizes a novel catalyst, namely, metal- exchanged crystalline zeolites, to yield a process which is capable of removing NOx from oxygen-containing combustion products.
The catalyst of the present invention contains metals such as iron, as ions or oxo-ions inside the cavities of a zeolite such as ZSM-5. The preparation condition is, however, totally different from that previously taught: a gas flow containing the vapor of a volatile metal halide such as FeCl3 is carried over the zeolite; the volatile iron compound reacts chemically with the acid sites inside the zeolite preferably in a sublimation process, which is subsequently exposed to water. In the case of FeCl3 and zeolite in its H-form, the overall chemistry is given by the equation:
FeCl3 + H+ + H2O → (FeO)+ + 3HC1 where the positive charges of H+ or (FeO)+ are compensated by negative charges of the zeolite framework. As the sum total of positive charges has to be equal to the sum total of negative changes, the latter number being given for the zeolite matrix by the number of aluminum centered tetrahedra, the subject invention, in one embodiment, will have an iron loading optimally characterized by the ratio Fe/Al = 1/1, though good results are observed at ratios of 0.8/1, where Al stands for the number of aluminum centered tetrahedra. This iron loading is markedly higher than that achieved by conventional ion exchange which is limited by Fe/Al = Vi for Fe2+ ions and Fe/Al = Va for Fe3+ ions. A high Fe loading, as achieved by the subject invention, is considered essential for the superior performance of the materials described here. This is not limited to the element iron, but with other elements, M, the same loading M/Al = 1 is achieved by the described sublimation technique. Slight modifications of it have resulted in ratios even exceeding unity. High iron loadings can, of course, also be achieved by simple impregnation, but that procedure results in catalysts of inferior performance for NOx reduction. Rare earth ions, preferably lanthanum or cerium, may also be added to the zeolite by conventional techniques such as ion exchange.
These catalysts have been tested for the reduction of nitrogen oxides with i- butane under conditions simulating vehicular emission: Gas Hourly Space Velocity (GHSV)
42,000 h 1, NO:0.2%, i-C4H10:0.2%; O2:3%, H2O:10%, make up:He. By varying the temperature it was found that a maximum conversion of nitrogen oxides to nitrogen near 90% occurred at a temperature near 350°C. It was also found that in the presence of water vapor, the activity of the catalyst at low temperature is even higher. The effectiveness factor, expressed by a ratio of the number of NO molecules and isobutane molecules consumed, was above 1.5 at low temperature, but near unity at the temperature of maximum NO conversion.
In general, since the reaction is exothermic, but low concentrations of NOx are present, adequate temperature control is readily achieved with a simple stationary fixed-bed of catalyst. However, other contacting means are contemplated, such as contacting with a fixed fluid bed, a transport bed and a monolithic catalyst structure such as a honeycomb.
A catalyst useful in this invention will now be described in detail. It comprises an intermediate pore size zeolite (e. g. , preferably less than about 7 Angstroms pore size, but may be from about 4 to about 15 Angstroms) having a silica to alumina ratio of at least about 10 to at least about 100 and a Constraint Index of about 0.4 to about 12, with the zeolite having been contacted by an iron compound or iron complex in the vapor phase to incorporate iron into the pores of the crystal. The Constraint Index qualifies it as having an intermediate port size. Examples of such zeolites include ZSM-5; ZSM-11; ZSM- 21; ZSM-23; ZSM-35; ZSM-38; ZSM-48; ZSM-57 and ZSM-58. These zeolites are known in the art and are sometimes referred to as being of the ZSM-5 type; this term is used herein to designate zeolites useful in this invention. Other zeolites, such as mordenite, ferrierite, beta and faujasite can also be used. The zeolites of the present invention are preferably used in the acid form, i.e. , the hydrogen form or other univalent or multivalent cationic form to the extent that such zeolites are capable of being exchanged with the metals discussed herein. Other zeolite forms useful in the subject invention include Na, NH4, Ca, Ce and Mg. Suitable crystalline zeolites include those materials which are stable under the described reaction conditions and which have a pore size sufficient to effect the subject reaction. While catalysts having a
Si/Al ratio less than 5.0 prior to treatment appear to demonstrate only limited activity, such catalysts may be activated by subjecting the catalyst to dealumination according to methods well known in the art.
Lanthanum and other rare earth elements, such as La, Ce, Gd, Nd, Sm, Ho, Yb, Lu; in addition to Th and U, may be incorporated into the zeolite by known ion- exchange methods. With the unpromoted and the promoted catalyst, durability tests of 100 h showed a decrease in activity by a few percent. In the case of the promoted catalyst, it was possible to regenerate it by simply blowing an oxygen containing gas over it at 500 °C; the original activity was completely restored. Thus, the zeolite catalyst of the subject invention may have the composition of
(M1 xM2 yNaa)Ob(Al2O3)c(SiO2)d where M1 is Fe, Ga, In, Sn or Pd and 0.1 < x/c ≤ 5; M2 is a rare earth element and 0 < y/x < 1.5; 0 < a/c < 2; 10 < d/c < 100; b=(VM 1 * x + VM 2 * y + a)/2, where V^ and VM 2 are the charge valence of M1 and M2, respectively. Within this composition, it is preferable to maintain the y/x ratio between 0.02 and 0.2. Further, the x/c ratio is preferably maintained between 0.5 and 4.0. In the above formulation it is desirable to have a ratio of M1 + M2/A1 of at least 0.8 and preferably 1.0 or even slightly higher. (I) Preparation of catalysts Fe/ZSM-5 catalysts were prepared by chemical vapor deposition, i.e. , by subliming FeCl3 into the cavities of ZSM-5. Other volatile halides such as GaCl3, InCl3, SnCl4, PdCl2, FeBr3 and FeCl2 may also be used. Thus, a zeolite such as ZSM-5, mordenite, ferrierite, beta or faujasite is exposed to a flowing or stationary inert gas such as N2, Ar or He, which gas carries the vapor of such a metal halide. Alternatively, the metal halide may be introduced to the zeolite under vacuum. The zeolite is heated to between 150°C and 600°C, preferably 280°-360°C during deposition; washing in water or exposure to water vapor follows and then calcination at an elevated temperature in air or an inert gas. The subliming can also be carried out under vacuum in the absence of carrier gas.
In general, vapor deposition is accomplished by loading the zeolite into one side of a U-shaped reactor and the volatile metal halide into the other side. The materials are maintained separate by a porous frit. An inert gas flow at about 280°-360°C carries the metal vapor to the heated zeolite site where the proton is exchanged for, in the case of FeCl3, the Fe ion. The metal exchanged zeolite is washed with water, dried, then calcined at 200°C-800°C, preferably 600°C under O2, N2, Ar or He for 1-4 hours, preferably 2 hours. Simple mixing of the solid constituents and heating may also be conducted to exchange the metals. Preparation of catalysts of even higher activity, selectivity or stability for the selective reduction of nitrogen oxides in lean burn engine emissions, may be prepared by adding a catalyst promoter to the product obtained above. Typical promoters are ions or oxo-ions or oxides of elements in the group traditionally called rare earths: elements such as La, Ce, Nd, Sm, Gd, Ho, Yb and Lu; or actinide elements such as Th and U. For this purpose the calcined product from above or its non-calcined precursor, is introduced in an aqueous solution of a suitable salt of the promoter ion. The slurry obtained in this way is stirred for several hours at ordinary or elevated temperature, followed by filtering, washing with water and drying. Examples of promoter precursors are the nitrates, oxalates or acetates of lanthanum or cerium.
EXAMPLE 1
Fe/ZSM-5 catalysts were prepared by chemical vapor deposition, i.e. , by subliming FeCl3 into the cavities of H/ZSM-5. This acid zeolite was prepared from Na/ZSM-5 obtained from UOP (lot#13923-60, Si/Al= 14, Na/Al=0.67). lOg of the parent zeolite was added to 2L 0.03M NH4-NO3 solution. The slurry was stirred at room temperature for 48 h, vacuum filtered, washed with IL doubly deionized water and air dried. This process was repeated three times to ensure complete exchange. The sample was then crushed to > 60 mesh. To create a H/ZSM-5 sample, the obtained NH4/ZSM-5 sample was calcined and held at 500 °C for 4 h in order to decompose the NH4 cation into protons.
5.0g of the calcined H/ZSM-5 was loaded into one side of a U-shaped reactor. l.Og FeCl3 was loaded into another side of the same reactor. The zeolite and FeCl3 were separated by a porous frit. Chemical vapor deposition was done under Ar flow (lOOmL/min) while the temperature of the reactor was kept at 320°C. The gas flow carried the vapor of FeCl3 into the cavities of zeolites. FeCl3 reacts chemically with the acid sites inside the zeolites according to the equation:
FeCl3 + H+ → FeCl2 + + HC1 lOOmL 1M NaOH solution was used to absorb HC1 from the outlet gas. After a certain time all the acid sites are consumed and the zeolite bed became uniformly yellow in color. The ratio of iron introduced to aluminum in the zeolite and to chlorine absorbed by NaOH solution is: Fe/Al/Cl = 1/1/1. The remaining chlorine was washed out with doubly deionized H2O. After drying in air, the sample (Fe/ZSM-5) was calcined in a flow of O2 at 600°C for 2 h.
EXAMPLE 2
To prepare a La-promoted Fe/ZSM-5 catalyst, 2.0g calcined Fe/ZSM-5 from Example 1 was added to 200mL 0.05M La(NO3)3 solution. The slurry was stirred at room temperature overnight, vacuum filtered, washed with 200mL doubly deionized water and air dried.
EXAMPLES 3-9
Following the procedure of Example 1 , various zeolites were prepared with the sublimation method. The results are shown in Table 1. TABLE 1
Example Si/Al Ratio Unit Cell Composition Fe/Al Ratio
3 10 (Fe2O3)4.36(Al2O3)4 36(SiO2)87 27
4 14.2 (Fe2O3)3.16(Al2O3)3.16(SiO2)89.68
5 23.6 (Fe2O3)1.95(Al2O3)1.95(SiO2)92.10
6 27.5 (Fe2O3)1.68(Al2O3)1 68(SiO2)92 63
7 37.6 (Fe2O3)1.24(Al2O3)1.24(SiO2)93 51
8 50 (Fe2O3)o.94(Al2O3)0.94(SiO2)94 11
9 14.2 (Fe2O3)5.37(Al2O3)3.16(SiO2)89.68 1.7
EXAMPLES 10-16
Following the procedure of Example 2, La is incorporated into the zeolites prepared in Examples 3-9. The results are shown in Table 2.
TABLE 2
Example Si/Al Ratio Unit Cell Composition Fe/A: Ratio
10 10 (La2O3)0.o6(Fe2O3)4.3o(Al2O3)4.36(SiO2)87.27
11 14.2 (La2O3)0.o6(Fe2O3)3.1o(Al2O3)3.16(SiO2)89.68
12 23.6 (La2O3)0.o5(Fe2O3)1.90(Al2O3)1.95(SiO2)92.10
13 27.5 (La2O3)o.04(Fe2O3)1.64(Al2O3),.68(SiO2)92.63
14 37.6 (La2O3)0.04(Fe2O3)1.20(Al2O3)1.24(SiO2)93 51
15 50 (La2O3)0 04(Fe2O3)0 90(A12O3)0 94(SιO )94 n
16 14.2 (La2O3)o.2(Fe2O3)5.17(Al2O3)3.16(SiO2)89.68 1.7
Selective catalytic reduction of NO with i-C4H,0 was tested in the continuous flow mode. A quartz reactor with a porous frit was charged with 0.200g of catalyst. The sample was calcined in situ in a flow of O2/He (10%) at 600°C for 4 h. A stainless steel manifold allowed the addition of several different gases which could be mixed prior to contact with the catalyst. Gas flow rates were regulated by mass flow controllers so that the total flow rate was 280mL/min, based on a bulk density of 0.5g/mL for these zeolite samples, the calculated gas hourly space velocity (GHSV) was 42,000h"1. Typical inlet composition was NO 0.2%; i-C4H100.2%; O2 3%; H2O 10% (when added); He was used as a diluent. The catalyst was preconditioned at each temperature for 30 min. before the products analysis was commenced. The products were analyzed by a HP 5890GC with Alltech 13X molecular sieve and Porpark Q columns. NO conversion was determined from N2 formation. i-C4H10 conversion was determined from CO2 and CO formation. The effectiveness factor is defined as the ratio of the number of NO molecules and i-C4H10 molecules consumed.
The activity for the selective catalytic reduction of NO with i-C4H10 over
Fe/ZSM-5 in the absence of H2O is shown in FIG. 1. The conversion of NO to N2 increased with increasing temperature. It reached its maximum of about 70% at a temperature of 350-
375 °C. Upon increasing the temperature further, the conversion of NO to N2 decreased because the hydrocarbon was used up.
When 10% H2O was added to the feed stream, the catalytic activity of
Fe/ZSM-5, as shown in FIG. 2, is similar to that observed with dry feed gas. The temperature corresponding to maximum NO to N2 conversion (about 70%) shifted to 375 °C.
However, the presence of H2O suppressed the undesired reaction, the selectivity for the desired reaction is consequently improved.
FIG. 3 shows the activity of La-doped Fe/ZSM-5. It can be seen that the addition of La promotes the activity. In the absence of H2O, the maximum conversion of NO to N2 increased to 84% at 375 °C.
When 10% H2O was added to the feed stream the catalytic activity of the La- doped Fe/ZSM-5 at low temperature is even higher than with the dry feed, as shown in FIG. 4. About 90% conversion of NO to N2 was reached at 350°C.
FIGs. 5 and 6 show the result of durability tests over Fe/ZSM-5 and La-doped Fe/ZSM-5, respectively. After a 100 h run, the activity decreased about 10% with both catalysts. However, when the spent La-doped Fe/ZSM-5 was treated in an O2/He (10%) flow at 500°C, its original activity was completely restored. Apparently, the slight deactivation was caused by some carbonaceous deposit which can easily be burnt off.
Regeneration of the catalyst of the subject invention to its original activity is possible by heating in the presence of oxygen at atmospheric or elevated pressure and at 200°C to 800°C, preferably 500°C to 600° C. EXAMPLE 17
The procedure of Example 1 is utilized with the zeolite Na/ZSM-5 without further processing. FeCl3 is flowed over the zeolite and then contacted with water as in Example 1. Passing NO over the prepared catalytic zeolite results in results similar to Figs. 1 and 2.
EXAMPLE 18
The procedure of Example 1 is utilized with the NH4/ZSM-5 prepared as in Example 1 without further processing. FeCl3 is flowed over the zeolite and contacted with water as in Example 1. Passing NO over the prepared catalytic zeolite results in results similar to Figs. 1 and 2.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments and equivalents falling within the scope of the appended claims.
Various features of the invention are set forth in the following claims.

Claims

WHAT IS CLAIMED:
1. A process for the preparation of a catalyst for the removal of NOx gases from a gas stream, comprising the steps of: flowing a metal halide in gas form across a zeolite compound whereby the metal halide reacts with the zeolite; exposing the reacted zeolite to water; and heating the water exposed, reacted zeolite, thereby resulting in a catalyst for the removal of NOx gases.
2. The process of claim 1 wherein the metal halide may be selected from the group consisting of FeCl3 GaCl3, InCl3, SnCl4, PdCl2, FeBr3, and FeCl2.
3. The process of claim 1 wherein the zeolite is selected from the group consisting of mordenite, ferrierite, beta and faujasite.
4. The process of claim 1 wherein the metal halide is borne by a carrier gas selected form the group consisting of N2, Ar, and He.
5. The process of claim 1 wherein the metal halide is flowed across the zeolite compound under vacuum.
6. The process of claim 1 wherein the step of heating the water exposed, reacted zeolite includes heating at 200┬░C to 800┬░C under a atmosphere selected from the group consisting of O2, N2, Ar, and He.
7. The process of claim 1 wherein the step of heating the water exposed, reacted zeolite includes heating at 600 ┬░C in a flow of O2 for about 2 hours.
8. The process of claim 1 further including the step of incorporating an ion selected from the group of La, Ce, Gd, Nd, Sm, Ho, Yb, Th, and U into the zeolite structure.
9. A zeolite catalyst of the structure (M M2 y Naa) Ob (Al2 O3)c (SiO2)d where
M1 is Fe, Ga, In, Sn or Pd;
0.1 < x/c < 5;
M2 is La, Ce, Gd, Nd, Sm, Ho, Yb, La, Th, U, or not present;
0 < y/x < 1.5;
0 < a/c < 2;
10 < d/c < 100; b = (VM* x + VM 2 y + a)/2
(VM X and VM 2 are valences of M1 and M2, respectively.
10. The zeolite catalyst of claim 9 wherein
0.02 < y/x 0.2
11. The zeolite catalyst of claim 9 wherein
0.5 Γëñ x/c < 4.0
12. The zeolite catalyst of claim 9 where the ratio of M1 + M2/A1 is at least about 0.8.
13. The zeolite catalyst of claim 9 where the ratio of M1 + M2/A1 is about 1.0.
14. A process for the preparation of a zeolite catalyst for the catalytic removal of NOx from a gas stream, comprising the steps of: a) subliming a metal halide across a zeolite compound, thereby forming a reacted zeolite; b) exposing the reacted zeolite to water; c) calcining the water exposed and reacted zeolite.
15. The process of claim 14 wherein the metal halide may be selected from the group consisting of FeCl3 GaCl3, InCl3, SnCl4, PdCl2, FeBr3, and FeCl2.
16. The process of claim 14 wherein zeolite is selected form the group consisting of mordenite, ferrierite, beta and faujasite.
17. The process of claim 14 wherein the metal halide is borne by a carrier gas selected form the group consisting of N2, Ar, and He.
18. The process of claim 14 wherein the metal halide is flowed across the zeolite compound under vacuum.
19. The process of claim 14 wherein the step of heating the water exposed, reacted zeolite includes heating at 200 ┬░C to 800 ┬░C under a atmosphere selected from the group consisting of O2, N2, Ar, and He.
20. The process of claim 14 wherein the step of heating the water exposed, reacted zeolite includes heating at 600 ┬░C in a flow of O2 for about 2 hours.
21. The process of claim 14 further including the step of incorporating an ion selected from the group of La, Ce, Gd, Nd, Sm, Ho, Yb, Th, and U into the zeolite structure.
22. A process for the preparation of a catalyst for the removal of NOx gases from a gas stream, comprising the steps of: flowing a metal halide in gas form across a zeolite compound whereby the metal halide reacts with the zeolite; exposing the reacted zeolite to water; and heating the water exposed, reacted zeolite, thereby resulting in a catalyst for the removal of NOx gases; a zeolite catalyst of the structure (M M2 y Naa) Ob (Al2 O3)c (SiO2)d where
M1 is Fe, Ga, In, Sn or Pd;
0.1 < x/c < 5;
M2 is La, Ce, Gd, Nd, Sm, Ho, Yb, La, Th, U, or not present; 0 < y/x < 1.5;
0 < a/c < 2;
10 < d/c < 100; b = ( x + VM 2 y + a)/2
(VM J and VM 2 are valences of M1 and M2, respectively.
PCT/US1998/014420 1997-07-14 1998-07-13 NOx REDUCTION CATALYST WO1999003579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5238497P 1997-07-14 1997-07-14
US60/052,384 1997-07-14

Publications (1)

Publication Number Publication Date
WO1999003579A1 true WO1999003579A1 (en) 1999-01-28

Family

ID=21977274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/014420 WO1999003579A1 (en) 1997-07-14 1998-07-13 NOx REDUCTION CATALYST

Country Status (1)

Country Link
WO (1) WO1999003579A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1316359A1 (en) * 2001-12-03 2003-06-04 Rhodia Electronics and Catalysis Process for the reduction of nitrogen oxide emissions using a ferrierite
WO2003045547A2 (en) * 2001-11-26 2003-06-05 Atofina Research Composition based on a ferrierite and its use in a gas treatment method for reducing nitrogen oxide emissions
KR100389120B1 (en) * 2000-09-08 2003-06-25 한국과학기술원 Catalyst for Automotive Lean-burn Engine and Process for Preparing the Same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644220A (en) * 1969-11-13 1972-02-22 Exxon Research Engineering Co Metal halide containing zeolites and method for their preparation
WO1988001254A1 (en) * 1986-08-22 1988-02-25 Research Corporation Limited Modification of zeolites
EP0555889A1 (en) * 1989-08-31 1993-08-18 Tosoh Corporation Process for reducing nitrogen oxides from exhaust gas
US5271913A (en) * 1989-12-28 1993-12-21 Mitsubishi Jukogyo Kabushiki Kaisha Denitration catalyst for high-temperature exhaust gas
US5451387A (en) * 1994-07-07 1995-09-19 Mobil Oil Corporation Selective catalytic reduction of nitrogen oxides using an iron impregnated zeolite catalyst
US5520895A (en) * 1994-07-07 1996-05-28 Mobil Oil Corporation Method for the reduction of nitrogen oxides using iron impregnated zeolites

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644220A (en) * 1969-11-13 1972-02-22 Exxon Research Engineering Co Metal halide containing zeolites and method for their preparation
WO1988001254A1 (en) * 1986-08-22 1988-02-25 Research Corporation Limited Modification of zeolites
EP0555889A1 (en) * 1989-08-31 1993-08-18 Tosoh Corporation Process for reducing nitrogen oxides from exhaust gas
US5271913A (en) * 1989-12-28 1993-12-21 Mitsubishi Jukogyo Kabushiki Kaisha Denitration catalyst for high-temperature exhaust gas
US5451387A (en) * 1994-07-07 1995-09-19 Mobil Oil Corporation Selective catalytic reduction of nitrogen oxides using an iron impregnated zeolite catalyst
US5520895A (en) * 1994-07-07 1996-05-28 Mobil Oil Corporation Method for the reduction of nitrogen oxides using iron impregnated zeolites

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389120B1 (en) * 2000-09-08 2003-06-25 한국과학기술원 Catalyst for Automotive Lean-burn Engine and Process for Preparing the Same
WO2003045547A2 (en) * 2001-11-26 2003-06-05 Atofina Research Composition based on a ferrierite and its use in a gas treatment method for reducing nitrogen oxide emissions
WO2003045547A3 (en) * 2001-11-26 2004-01-22 Atofina Res Composition based on a ferrierite and its use in a gas treatment method for reducing nitrogen oxide emissions
EP1316359A1 (en) * 2001-12-03 2003-06-04 Rhodia Electronics and Catalysis Process for the reduction of nitrogen oxide emissions using a ferrierite

Similar Documents

Publication Publication Date Title
US7691769B2 (en) Catalyst for reduction of nitrogen oxides
CA2575338C (en) Catalyst and method for reduction of nitrogen oxides
KR101909303B1 (en) Apparatus for treating exhaust gas of lean burn internal combustion engine comprising oxidation catalyst and method for recovering the oxidation activity of an oxidation catalyst
EP0284181B1 (en) Catalyst and process for abatement of nox in exhaust gases
EP0526896B1 (en) Catalyst for purifying exhaust gas
KR100785645B1 (en) A device and method for the reduction of NOX and N2O content
US5935529A (en) Exhaust gas cleaner and method for cleaning exhaust gas
EP1875954A1 (en) Catalyst for catalytically reducing nitrogen oxide, catalyst structure, and method of catalytically reducing nitrogen oxide
US6143681A (en) NOx reduction catalyst
US4962075A (en) Zeolitic copper catalyst
WO2005023421A1 (en) Catalyst and method for contact decomposition of nitrogen oxide
JP2006314989A (en) Catalyst for catalytically reducing nitrogen oxide and catalyst structure
EP0652040B1 (en) Process and catalyst for reducing NOx in combustion exhaust gases
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
WO1999003579A1 (en) NOx REDUCTION CATALYST
Sachtler et al. NO x reduction catalyst
JPH06170166A (en) Removal of nitrogen oxide
KR0146879B1 (en) Mordenite containing zeolite catalyst for nox removal
JP4105302B2 (en) Method for producing exhaust gas purifying catalyst
JP3745988B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JPH078754A (en) Exhaust gas purification
JPH06277522A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
JPH06126187A (en) Removing method for nitrogen oxide
JPH04219143A (en) Exhaust gas purification catalyst
JPH06170167A (en) Removal of nitrogen oxide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA MX

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase