WO1998049496A1 - An apparatus for cooling a combuster, and a method of same - Google Patents

An apparatus for cooling a combuster, and a method of same Download PDF

Info

Publication number
WO1998049496A1
WO1998049496A1 PCT/US1998/008316 US9808316W WO9849496A1 WO 1998049496 A1 WO1998049496 A1 WO 1998049496A1 US 9808316 W US9808316 W US 9808316W WO 9849496 A1 WO9849496 A1 WO 9849496A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling air
liner
platefin
combustor
cooling
Prior art date
Application number
PCT/US1998/008316
Other languages
French (fr)
Inventor
Mehran Sharifi
Graydon Lane Whidden
Wendel Zolyomi
David Marchant Parker
Original Assignee
Siemens Westinghouse Power Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Westinghouse Power Corporation filed Critical Siemens Westinghouse Power Corporation
Publication of WO1998049496A1 publication Critical patent/WO1998049496A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the present invention relates to a combustor for burning fuel in compressed air. More specifically, the present invention relates to cooling a combustor for a gas turbine .
  • the primary liner 44 encloses a primary combustion zone 36, in which a lean mixture of fuel and air- is burned.
  • the primary liner 44 is encircled by a cylindrical intermediate liner 42, which is encircled by a cylindrical outer liner 40.
  • the liners 40, 42, and 44 are concentrically arranged so as to form an annular cooling air passage 70 between the primary liner 44 and the intermediate liner 42, and the annular secondary mixing passage 68 between the intermediate liner 42 and the outer liner 40.
  • the primary liner 44 typically is cooled because it is directly exposed to hot combustion gas in the primary combustion zone 36.
  • a cooling portion 66 of a compressed air stream 8 from a compressor 2 flows through the cooling air passage 70.
  • an approximately cylindrical baffle 80 is located at the outlet of the passage 70 and extends between the inner liner 44 and the middle liner 42, as shown in Figure 4.
  • the baffle 80 is attached at its downstream end 108 to a downstream end of the middle liner 42 via welds 104.
  • the front end 106 of the baffle 80 is spring loaded to bear against an outer surface of the primary liner 44.
  • the spring section is formed by a series of saw cuts at the front end 106, which, unfortunately, causes leakage of air that is not useful for cooling.
  • FIGs 3 and 4 show the front end 106 of the baffle 80 extending upstream only about one-third the length of the primary liner 44
  • the Parker patent teaches that the baffle 80 may encircle the entire large diameter portion of the primary liner 44.
  • a number of holes 100 are distributed around the circumference of the baffle 80 so as to divide the cooling air 66 into a number of jets 102 that impinge on the outer surface of the primary liner 44.
  • cooling air 66 is supplied by the compressor 2. Diverting compressed air from the compressor 2 for cooling the combustor 4 has two drawbacks. First, using such air diminishes turbine efficiency because the cooling air is not available to support combustion. Second, using such air increases flame temperature that causes increased formation of oxides of nitrogen, which are atmospheric pollutants . Therefore, there exists a need for a combustor that minimizes the amount of cooling air needed to cool the combustor. Specifically, because the primary liner 44 is in direct contact with hot gas in the primary combustion zone 36, there exists a need to minimize the quantity of air required to cool the primary liner 44. SUMMARY OF THE INVENTION A combustor that minimizes the amount of compressed air needed for cooling is provided.
  • the combustor has two concentric primary mixing passages, an outer secondary mixing passage, a fuel nozzle, and an intermediate liner that centrally encloses a primary liner so as to form an annular cooling air passage between the liners.
  • a cooling air stream that flows through the cooling air passage removes heat from the primary liner.
  • the primary liner has numerous effusion cooling holes through which a portion of the cooling air stream passes.
  • the primary liner also has cooling fins disposed on its outer surface, over which another portion of the cooling air stream flows.
  • a baffle assembly located within the cooling air passage, directs yet another portion of the cooling air stream to impinge against the primary liner outer surface.
  • the baffle assembly comprises a conical member and a cylindrical platefin member.
  • the present invention also encompasses a method for cooling the primary liner of a combustor.
  • the method comprises the steps of passing a portion of a cooling air through the liner effusion holes, passing another portion of the cooling air across the cooling fins, and directing yet another portion of the cooling air to impinge against the primary liner.
  • Figure 1 is a schematic diagram of a gas turbine system having an exemplary combustor that employs the present invention.
  • Figure 2 is a longitudinal cross-section through the combustion section of the gas turbine system shown in Figure
  • Figure 3 is a • longitudinal cross-section through a conventional prior art combustor.
  • Figure 4 is a detailed view of a portion of the prior art combustor of Figure 3.
  • Figure 5 is a longitudinal cross section through the exemplary combustor shown in Figure 2 illustrating the present invention.
  • Figure 6 is a detailed view of the portion of the exemplary combustor of Figure 5 illustrating the present invention.
  • Figure 7 is a partial cross sectional view of the exemplary combustor illustrating the present invention.
  • FIG 1 a schematic diagram of a gas turbine system 1 of the type having a combustor 4 employing the present invention.
  • the gas turbine system 1 has a compressor 2 that is driven by a turbine 6 via a shaft 26.
  • Ambient air 12 is drawn into the compressor 2 and compressed.
  • Compressed air 8 produced by the compressor 2 is directed to a combustion system that includes one or more combustors 4, each of which include a fuel nozzle 18 that introduces into the combustor gaseous fuel 16, oil fuel 14, or both gaseous fuel 16 and oil fuel 14. Within the combustors 4, the fuel is burned in compressed air 8, thereby producing a hot compressed gas 20 for driving the turbine 6.
  • Figure 2 shows the gas turbine system 1 combustion section 30 of the type employing the present invention. The hot gas 20 exiting from the combustion section 30 s directed by a duct 5 to the turbine section 6.
  • the combustor 4 employing the present invention is shown.
  • the combustor 4 includes a fuel nozzle 18, two concentric mixing passages 90 and 92, an outer liner 40, an intermediate liner 42, and a primary liner 44.
  • An inner surface 130 of the primary liner 44 forms a primary combustion zone 36.
  • the primary liner 44 includes three portions: a truncated conical portion 124, a cylindrical portion 126, and a tapered portion 128.
  • the conical portion 124 yields to the -cylindrical portion 126, which ends in the tapered portion 128.
  • the intermediate liner 42 is substantially cylindrical and concentrically surrounds the primary liner 44.
  • a cooling air passage 70 is formed in the space between the intermediate liner 42 and the primary liner 44.
  • the liner conical portion 124 has numerous small-diameter effusion holes 144 that enable an effusion portion 66' of the cooling air stream 66 to flow from the cooling air passage 70 into the primary combustion zone 36.
  • An outer surface 132 of the cylindrical portion 126 has numerous cooling fins 135, which are axially oriented and angularly spaced equidistant apart .
  • the cooling fins 135 are formed by conventional methods, for example by casting or by machining. The cooling fins 135 are in contact with a platefm portion 66 ' ' of the cooling air stream 66.
  • the quantity, dimensions, and spacing of the effusion cooling holes 144 and the cooling fins 135 will vary according to combustor size, materials, and operating conditions, as will be understood by those skilled in the art
  • a baffle assembly 134 is contained within the cooling air passage 70.
  • An annular impingement air passage 152 is formed between the intermediate liner 42 and the baffle assembly 134
  • the baffle assembly 134 includes a cylindrical platefm member 136, a conical member 138, and an equal number of inner blocks 140 and outer blocks 142.
  • the platefin member 136 concentrically surrounds the cooling fins 135.
  • the platefm member 136 is radially set apart from the cooling fins 135 to accommodate differential thermal expansion. Radial clearance is preferably zero when the platefm member 136 and the cylindrical section 126 are at normal operating temperature.
  • the cylindrical section 126 is hotter than the platefin member 136, the cylindrical section 126 has larger thermal expansion and therefore closes the radial gap.
  • the inner blocks 140 are welded to the liner plate fin section 136 around its outer circumference
  • the outer blocks 142 are welded to an inner surface of the intermediate liner 42.
  • a contact surface 143 of each one of the outer blocks 142 receives a contact surface 141 of each one of the inner blocks 140.
  • the inner block surface 141 slides on the outer block surface 143 as the baffle assembly 134 thermally expands and contracts relative to the intermediate liner 42.
  • the contact surfaces 141, 143 are coated with a wear resistant coating, as will be understood by those skilled in the art.
  • the blocks 140, 142 may be formed from a wear resistant alloy.
  • the blocks 140, 142 are spaced approximately equidistant apart, as shown in Figure 7.
  • the arc length and spacing of the blocks 140, 142 will vary according to the combustor diameter, block height, and operating conditions such as cooling air flow rate and operating temperature, as will be understood by those skilled in the art.
  • the conical member 138 substantially surrounds the liner tapered portion 128.
  • a downstream end of the conical member 138 is attached to the intermediate liner 42.
  • the upstream end of the conical member 138 is attached to a downstream end of the platefin member 136.
  • Fillet welds 150 and 151 are preferably used for attaching the conical member 138 to the intermediate liner 42 and to the platefin member 136, respectively, although spot welds may also be used for weld 151.
  • the downstream end of the conical member 138 is isolated from the hot combustion gas to reduce weld stress in the weld 150 to a safe value.
  • the conical member 138 has numerous impingement cooling holes 146 for directing an impingement portion 66''' of the cooling air stream 66 onto the liner tapered portion 128.
  • the baffle assembly 134 is not formed by saw cuts, thus, eliminating air leakage air of earlier designs.
  • the present invention also encompasses a method of cooling the combustor 4 by removing heat from the primary liner 44 by the cooling air stream 6.
  • the cooling air stream is divided into three portions: effusion air 66', platefin air 66'', and impingement air 66'''.
  • the effusion air stream 66 ' cools the liner conical portion 124 by flowing through the effusion cooling holes 144.
  • the platefin air stream 66'' cools the liner 44, especially the cylindrical portion 126, by flowing over the liner outer surface 132 and the cooling fins 135.
  • the cooling fins 135 enhance heat transfer from the primary liner 44 to the platefin air stream 66'' by conducting heat from the liner 44 and by providing a relatively large surface area (compared with a straight cylinder) to enhance convective heat transfer to the platefin air stream 66''.
  • the impingement air stream 66 ' ' ' cools the liner tapered portion 128 by direct impingement.
  • the impingement air 66' ' ' flows outside of the platefin member 136 through the impingement air passage 152.
  • the impingement air 66 ' ' ' is directed through the conical member 138 onto the surface of the tapered section 128 by the impingement cooling holes 146.
  • all the cooling air flow 66 is used for cooling -- there is no "wasted" air due to leakage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A combustor for a combustion turbine system that minimizes the amount of compressed air needed for cooling, and a method for such cooling, is disclosed. The combustor has a primary liner that is in direct contact with hot gas within the combustion zone. A cooling air passage surrounds and removes heat from the primary liner in three ways. First, a portion of the cooling air flows through effusion cooling holes in a portion of the liner. Second, another portion of the cooling air flows across cooling fins disposed on an outer surface of the liner. Third, yet another portion of the cooling air is directed to impinge against the liner by a baffle assembly that is disposed within the cooling air passage.

Description

AN APPARATUS FOR COOLING A COMBUSTOR, AND METHOD OF SAME
FIELD OF THE INVENTION The present invention relates to a combustor for burning fuel in compressed air. More specifically, the present invention relates to cooling a combustor for a gas turbine .
BACKGROUND OF THE INVENTION Conventional combustors in combustion turbine systems use compressed air to cool components subject to high temperatures. For example, a conventional combustor that uses compressed air for cooling is disclosed in U.S. Patent number 5,394,688 to Parker, et al . (1995), which is incorporated herein by reference in its entirety. As shown in Figure 3, the conventional Parker combustor has two adjustable, counter- rotating primary mixing passages 90 and 92, a dual fuel nozzle 18, a secondary mixing passage 68, an outer liner 40, an intermediate liner 42, and a primary liner 44.
The primary liner 44 encloses a primary combustion zone 36, in which a lean mixture of fuel and air- is burned. The primary liner 44 is encircled by a cylindrical intermediate liner 42, which is encircled by a cylindrical outer liner 40. The liners 40, 42, and 44 are concentrically arranged so as to form an annular cooling air passage 70 between the primary liner 44 and the intermediate liner 42, and the annular secondary mixing passage 68 between the intermediate liner 42 and the outer liner 40.
The primary liner 44 typically is cooled because it is directly exposed to hot combustion gas in the primary combustion zone 36. To cool the primary liner 44, a cooling portion 66 of a compressed air stream 8 from a compressor 2 flows through the cooling air passage 70. To enhance cooling of the liner 44 in the conventional combustor, an approximately cylindrical baffle 80 is located at the outlet of the passage 70 and extends between the inner liner 44 and the middle liner 42, as shown in Figure 4. The baffle 80 is attached at its downstream end 108 to a downstream end of the middle liner 42 via welds 104. The front end 106 of the baffle 80 is spring loaded to bear against an outer surface of the primary liner 44. The spring section is formed by a series of saw cuts at the front end 106, which, unfortunately, causes leakage of air that is not useful for cooling.
Although Figures 3 and 4 show the front end 106 of the baffle 80 extending upstream only about one-third the length of the primary liner 44, the Parker patent teaches that the baffle 80 may encircle the entire large diameter portion of the primary liner 44. As further shown in Figure 4, a number of holes 100 are distributed around the circumference of the baffle 80 so as to divide the cooling air 66 into a number of jets 102 that impinge on the outer surface of the primary liner 44.
Conventionally, cooling air 66 is supplied by the compressor 2. Diverting compressed air from the compressor 2 for cooling the combustor 4 has two drawbacks. First, using such air diminishes turbine efficiency because the cooling air is not available to support combustion. Second, using such air increases flame temperature that causes increased formation of oxides of nitrogen, which are atmospheric pollutants . Therefore, there exists a need for a combustor that minimizes the amount of cooling air needed to cool the combustor. Specifically, because the primary liner 44 is in direct contact with hot gas in the primary combustion zone 36, there exists a need to minimize the quantity of air required to cool the primary liner 44. SUMMARY OF THE INVENTION A combustor that minimizes the amount of compressed air needed for cooling is provided. The combustor has two concentric primary mixing passages, an outer secondary mixing passage, a fuel nozzle, and an intermediate liner that centrally encloses a primary liner so as to form an annular cooling air passage between the liners. A cooling air stream that flows through the cooling air passage removes heat from the primary liner. The primary liner has numerous effusion cooling holes through which a portion of the cooling air stream passes. The primary liner also has cooling fins disposed on its outer surface, over which another portion of the cooling air stream flows. A baffle assembly, located within the cooling air passage, directs yet another portion of the cooling air stream to impinge against the primary liner outer surface. The baffle assembly comprises a conical member and a cylindrical platefin member.
The present invention also encompasses a method for cooling the primary liner of a combustor. The method comprises the steps of passing a portion of a cooling air through the liner effusion holes, passing another portion of the cooling air across the cooling fins, and directing yet another portion of the cooling air to impinge against the primary liner. BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic diagram of a gas turbine system having an exemplary combustor that employs the present invention.
Figure 2 is a longitudinal cross-section through the combustion section of the gas turbine system shown in Figure
1.
Figure 3 is a longitudinal cross-section through a conventional prior art combustor.
Figure 4 is a detailed view of a portion of the prior art combustor of Figure 3. Figure 5 is a longitudinal cross section through the exemplary combustor shown in Figure 2 illustrating the present invention.
Figure 6 is a detailed view of the portion of the exemplary combustor of Figure 5 illustrating the present invention.
Figure 7 is a partial cross sectional view of the exemplary combustor illustrating the present invention. DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the drawings, wherein like reference numerals designate corresponding structure throughout the views, there is shown in Figure 1 a schematic diagram of a gas turbine system 1 of the type having a combustor 4 employing the present invention. The gas turbine system 1 has a compressor 2 that is driven by a turbine 6 via a shaft 26. Ambient air 12 is drawn into the compressor 2 and compressed. Compressed air 8 produced by the compressor 2 is directed to a combustion system that includes one or more combustors 4, each of which include a fuel nozzle 18 that introduces into the combustor gaseous fuel 16, oil fuel 14, or both gaseous fuel 16 and oil fuel 14. Within the combustors 4, the fuel is burned in compressed air 8, thereby producing a hot compressed gas 20 for driving the turbine 6. Figure 2 shows the gas turbine system 1 combustion section 30 of the type employing the present invention. The hot gas 20 exiting from the combustion section 30 s directed by a duct 5 to the turbine section 6.
Now referring to Figure 5, the combustor 4 employing the present invention is shown. The combustor 4 includes a fuel nozzle 18, two concentric mixing passages 90 and 92, an outer liner 40, an intermediate liner 42, and a primary liner 44. An inner surface 130 of the primary liner 44 forms a primary combustion zone 36. The primary liner 44 includes three portions: a truncated conical portion 124, a cylindrical portion 126, and a tapered portion 128. The conical portion 124 yields to the -cylindrical portion 126, which ends in the tapered portion 128. The intermediate liner 42 is substantially cylindrical and concentrically surrounds the primary liner 44. A cooling air passage 70 is formed in the space between the intermediate liner 42 and the primary liner 44. In accordance with the present invention, the liner conical portion 124 has numerous small-diameter effusion holes 144 that enable an effusion portion 66' of the cooling air stream 66 to flow from the cooling air passage 70 into the primary combustion zone 36. An outer surface 132 of the cylindrical portion 126 has numerous cooling fins 135, which are axially oriented and angularly spaced equidistant apart . The cooling fins 135 are formed by conventional methods, for example by casting or by machining. The cooling fins 135 are in contact with a platefm portion 66 ' ' of the cooling air stream 66. The quantity, dimensions, and spacing of the effusion cooling holes 144 and the cooling fins 135 will vary according to combustor size, materials, and operating conditions, as will be understood by those skilled in the art
Also in accordance with the present invention, a baffle assembly 134 is contained within the cooling air passage 70. An annular impingement air passage 152 is formed between the intermediate liner 42 and the baffle assembly 134 The baffle assembly 134 includes a cylindrical platefm member 136, a conical member 138, and an equal number of inner blocks 140 and outer blocks 142. The platefin member 136 concentrically surrounds the cooling fins 135. In the preferred embodiment, the platefm member 136 is radially set apart from the cooling fins 135 to accommodate differential thermal expansion. Radial clearance is preferably zero when the platefm member 136 and the cylindrical section 126 are at normal operating temperature. Because the cylindrical section 126 is hotter than the platefin member 136, the cylindrical section 126 has larger thermal expansion and therefore closes the radial gap. Preferably, the inner blocks 140 are welded to the liner plate fin section 136 around its outer circumference The outer blocks 142 are welded to an inner surface of the intermediate liner 42. A contact surface 143 of each one of the outer blocks 142 receives a contact surface 141 of each one of the inner blocks 140. The inner block surface 141 slides on the outer block surface 143 as the baffle assembly 134 thermally expands and contracts relative to the intermediate liner 42. Preferably, the contact surfaces 141, 143 are coated with a wear resistant coating, as will be understood by those skilled in the art. Alternately, the blocks 140, 142 may be formed from a wear resistant alloy. Preferably, the blocks 140, 142 are spaced approximately equidistant apart, as shown in Figure 7. The arc length and spacing of the blocks 140, 142 will vary according to the combustor diameter, block height, and operating conditions such as cooling air flow rate and operating temperature, as will be understood by those skilled in the art.
The conical member 138 substantially surrounds the liner tapered portion 128. A downstream end of the conical member 138 is attached to the intermediate liner 42. The upstream end of the conical member 138 is attached to a downstream end of the platefin member 136. Fillet welds 150 and 151 are preferably used for attaching the conical member 138 to the intermediate liner 42 and to the platefin member 136, respectively, although spot welds may also be used for weld 151. The downstream end of the conical member 138 is isolated from the hot combustion gas to reduce weld stress in the weld 150 to a safe value. The conical member 138 has numerous impingement cooling holes 146 for directing an impingement portion 66''' of the cooling air stream 66 onto the liner tapered portion 128. The baffle assembly 134 is not formed by saw cuts, thus, eliminating air leakage air of earlier designs.
The present invention also encompasses a method of cooling the combustor 4 by removing heat from the primary liner 44 by the cooling air stream 6. According to the practice of the present invention, the cooling air stream is divided into three portions: effusion air 66', platefin air 66'', and impingement air 66'''. First, the effusion air stream 66 ' cools the liner conical portion 124 by flowing through the effusion cooling holes 144.
Second, the platefin air stream 66'' cools the liner 44, especially the cylindrical portion 126, by flowing over the liner outer surface 132 and the cooling fins 135. The cooling fins 135 enhance heat transfer from the primary liner 44 to the platefin air stream 66'' by conducting heat from the liner 44 and by providing a relatively large surface area (compared with a straight cylinder) to enhance convective heat transfer to the platefin air stream 66''.
Third, the impingement air stream 66 ' ' ' cools the liner tapered portion 128 by direct impingement. The impingement air 66' ' ' flows outside of the platefin member 136 through the impingement air passage 152. The impingement air 66 ' ' ' is directed through the conical member 138 onto the surface of the tapered section 128 by the impingement cooling holes 146. Thus, all the cooling air flow 66 is used for cooling -- there is no "wasted" air due to leakage. The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.

Claims

CLAIMS :
1. A combustor for heating compressed air in a gas turbine system, said combustor comprising: a substantially cylindrical primary liner having an inner surface forming a combustion chamber therein; a centrally disposed fuel nozzle in fuel flow communication with said combustion chamber; at least one annular primary mixing passage formed between said primary liner and said fuel nozzle for introducing fuel and compressed air into the combustion chamber, a substantially cylindrical intermediate liner concentrically encircling said primary liner so as to form an annular cooling air passage therebetween; means for introducing a cooling air stream into said cooling air passage; a substantially cylindrical outer liner concentrically enclosing said intermediate liner so as to form an annular secondary mixing passage therebetween; and, a circumferentially extending baffle assembly disposed within said cooling air passage, comprising: (i) a conical member having one end coupled to said intermediate liner and having a plurality of holes extending therethrough for directing an impingement portion of the cooling air stream to impinge against an outer surface of the primary liner; and, (ii) a substantially cylindrical platefin member having an end coupled to an opposing end of said conical member, said platefin member directing a platefin portion of the cooling air stream to flow over the primary liner outer surface.
2. The combustor of claim 1 further comprising a plurality of cooling fins formed on the primary liner outer surface and disposed within the cooling air passage so as to enhance heat transfer from the primary liner to the platefin portion of the cooling air stream.
3. The combustor of claim 2 wherein said cooling fins are approximately axially oriented and spaced substantially equidistant apart around the primary liner outer surface.
. The combustor of claim 1 wherein said intermediate liner concentrically, supportably receives said platefin member.
5. The combustor of claim 1 wherein said baffle assembly comprises at least one inner block rigidly coupled to said platefin member and at least one outer block rigidly coupled to said intermediate liner, said at least one outer block slidably supporting said at least one inner block, whereby said intermediate liner concentrically, supportably receives said platefin member.
6. The combustor of claim 5 wherein said at least one inner block comprises a plurality of inner blocks spaced approximately equidistant apart and said at least one outer block comprises a plurality of outer blocks spaced approximately equidistant apart.
7. The combustor of claim 5 wherein said at least one outer block has a contact surface slidably receiving a contact surface of said at least one inner block, each one of said at least one outer block contact surface and said at least one inner block contact surface having a wear resistant coating for reducing wear of each one of said contact surfaces .
8. The combustor of claim 1 wherein said one end of said conical member is welded to the intermediate liner, and said other end of said conical member is welded to the platefm member.
9. The combustor of claim 1 wherein said primary liner has a plurality of effusion holes extending therethrough for enabling effusion cooling air communication between the cooling air passage and the combustion chamber so as to cool said primary liner.
10. The combustor of claim 1 wherein said primary liner comprises: a conical portion having a small-diameter end rigidly coupled to the at least one mixing passage wall, and having a plurality of effusion cooling holes extending therethrough for enabling cooling air communication between the cooling air passage and the combustion chamber; a substantially cylindrical portion having an end rigidly coupled to a large diameter end of said conical portion, and having a plurality of axial cooling fins disposed on the outer surface of the primary liner within the cooling air passage for enhancing heat transfer from the primary liner to the platef portion of the cooling air stream, and, a tapered portion being coupled to an opposing end of said cylindrical portion and disposed adjacent the baffle assembly so as to enable the baffle assembly to direct the impingement portion of the cooling air stream onto said tapered end.
11. A method of cooling a combustor comprising the steps of : directing an effusion portion of a cooling air stream through a plurality of effusion cooling holes extending through a primary liner of said combustor; directing a platefin portion of said cooling air stream through a plurality of cooling fins formed on an outer surface of said primary liner; and, directing an impingement portion of said cooling air stream to impinge against at least a portion of said primary liner outer surface.
12. The method of claim 11 further comprising the steps of providing a baffle assembly having a cylindrical platefin member and a conical member having a plurality of holes extending therethrough; directing said platefin cooling air within said platefin member through said cooling fins; and, directing said impingement cooling air through said plurality of holes onto at least a portion of the outer surface of said primary liner.
13. The method of claim 11 further comprising the step of providing a primary liner having a conical section with a plurality of effusion cooling holes extending therethrough for cooling said conical section, a substantially cylindrical section with a plurality of cooling fins for enhancing heat transfer from the primary liner to said platefin portion of said cooling air stream, and a tapered section disposed adjacent the conical member so as to enable the baffle assembly to direct said impingement portion of the cooling air stream onto the outer surface of said primary liner tapered end.
14. A gas turbine system comprising a compressor section for producing compressed air and a combustor for heating said compressed air, said combustor comprising: a substantially cylindrical primary liner having an inner surface forming a combustion chamber therein; a centrally disposed fuel nozzle in fuel flow communication with said combustion chamber; a substantially cylindrical intermediate liner concentrically encircling said primary liner so as to form an annular cooling air passage therebetween; means for introducing a cooling air stream into said cooling air passage; a circumferentially extending baffle assembly disposed within said cooling air passage, comprising: (i) a conical member having one end coupled to said intermediate liner and having a plurality of holes extending therethrough for directing an impingement portion of the cooling air stream to impinge against an outer surface of the primary liner; and, (ii) a substantially cylindrical platefin member having an end coupled to an opposing end of said conical member, said platefin member directing a platefin portion of the cooling air stream to flow over the primary liner outer surface. AMENDED CLAIMS
[received by the International Bureau on 9 October 1998 (09.10.98) original claims 1-14 replaced by new claims 1-15 (5 pages)]
1. A combustor (4) for heating compressed air in a gas turbine system
(1), said combustor (4) comprising: a substantially cylindrical primary liner (44) having an inner surface (130) forming a combustion chamber (30) therein and an outer surface (132) having a plurality of cooling fins (135); a centrally disposed fuel nozzle (18) in fuel flow communication with said combustion chamber (30); at least one annular primary mixing passage (90) formed between said primary liner (44) and said fuel nozzle (18) for introducing fuel (16) and compressed air (8) into the combustion chamber (30); a substantially cylindrical intermediate liner (42) concentrically encircling said primary liner (44) so as to form an annular cooling air passage (70) therebetween; means for introducing a cooling air stream (66) into said cooling air passage (70); a substantially cylindrical outer liner (40) concentrically enclosing said intermediate liner (42) so as to form an annular secondary mixing passage (68) therebetween; and, a circumferentially extending baffle assembly (134) disposed within said cooling air passage (70), comprising: (i) a conical member (138) having one end coupled to said intermediate liner (42) and having a plurality of holes (146) extending therethrough for directing an impingement portion (66'") of the cooling air stream (66) to impinge against the outer surface (132) of the primary liner (44); and, (ii) a substantially cylindrical platefin member (136) having an end coupled to an opposing end of said conical member (138), said platefin member (136) directing a platefin portion (66") of the cooling air stream (66) to flow over the cooling fins (135) of the primary liner outer surface (132).
2. The combustor (4) of claim 1 wherein said cooling fins (135) are surrounded by said cylindrical platefin member (136) and disposed within the cooling air passage (70) so as to enhance heat transfer from the primary liner (44) to the platefin portion (66") of the cooling air stream (66).
3. The combustor (4) of claim 2 wherein said cooling fins (135) are approximately axially oriented and spaced substantially equidistant apart around the primary liner outer surface (132).
4. The combustor (4) of claim 1 wherein said intermediate liner (42) concentrically, supportably receives said platefin member (136) so that the platefin member (136) is set apart from the cooling fins (135).
5. The combustor (4) of claim 1 wherein said baffle assembly (134) comprises at least one inner block (140) rigidly coupled to said platefin member (136) and at least one outer block (142) rigidly coupled to said intermediate liner (42), said at least one outer block (142) slidably supporting said at least one inner block (140), whereby said intermediate liner (42) concentrically, supportably receives said platefin member (136).
6. The combustor (4) of claim 5 wherein said at least one inner block (140) comprises a plurality of inner blocks (140) spaced approximately equidistant apart and said at least one outer block (142) comprises a plurality of outer blocks (142) spaced approximately equidistant apart.
7. The combustor (4) of claim 5 wherein said at least one outer block
(142) has a contact surface (143) slidably receiving a contact surface (141) of said at least one inner block (140), each one of said at least one outer block (142) contact surface
(143) and said at least one inner block (140) contact surface (141) having a wear resistant coating for reducing wear of each one of said contact surfaces.
8. The combustor (4) of claim 1 wherein said one end of said conical member (138) is welded to the intermediate liner (42), and said other end of said conical member (138) is welded to the platefin member (136).
9. The combustor (4) of claim 1 wherein said primary liner (44) has a plurality of effusion holes (144) extending therethrough for enabling effusion cooling air (66') communication between the cooling air passage (70) and the combustion chamber (30) so as to cool said primary liner (44).
10. The combustor (4) of claim 1 wherein said primary liner (44) comprises: a conical portion (124) having a small-diameter end rigidly coupled to the at least one mixing passage wall, and having a plurality of effusion cooling holes (144) extending therethrough for enabling cooling air (66') communication between the cooling air passage (70) and the combustion chamber (30); a substantially cylindrical portion (126) having an end rigidly coupled to a large diameter end of said conical portion (124), and having a plurality of axial cooling fins (135) disposed on the outer surface (132) of the primary liner (44) within the cooling air passage (70) for enhancing heat transfer from the primary liner (44) to the platefin portion (66") of the cooling air stream (66); and, a tapered portion (128) being coupled to an opposing end of said cylindrical portion (126) and disposed adjacent the baffle assembly (134) so as to enable the baffle assembly (134) to direct the impingement portion (66'") of the cooling air stream (66) onto said tapered end (128).
11. A method of cooling a combustor (4) comprising the steps of: directing an effusion portion (66') of a cooling air stream (66) through a plurality of effusion cooling holes (144) extending through a primary liner (44) of said combustor (4); directing a platefin portion (66") of said cooling air stream (66) through a plurality of cooling fins (135) formed on an outer surface (132) of said primary liner (44); and, directing an impingement portion (66'") of said cooling air stream (66) to impinge against at least a portion of said primary liner outer surface (132).
12. The method of claim 11 further comprising the steps of: providing a baffle assembly (134) having a cylindrical platefin member
(136) and a conical member (138) having a plurality of holes (146) extending therethrough; directing said platefin cooling air (66") within said platefin member (136) through said cooling fins (135); and, directing said impingement cooling air (66'") through said plurality of holes (146) onto at least a portion of the outer surface (132) of said primary liner (44).
13. The method of claim 11 further comprising the step of providing a primary liner (44) having a conical section (124) with a plurality of effusion cooling holes (144) extending therethrough for cooling said conical section (124), a substantially cylindrical section (126) with a plurality of cooling fins (135) for enhancing heat transfer from the primary liner (44) to said platefin portion (66") of said cooling air stream (66), and a tapered section (128) disposed adjacent the conical member (138) so as to enable the baffle assembly (134) to direct said impingement portion (66'") of the cooling air stream (66) onto the outer surface (132) of said primary liner tapered end (128).
14. A gas turbine system (1) comprising a compressor section (2) for producing compressed air (8) and a combustor (4) for heating said compressed air (8), said combustor (4) comprising: a substantially cylindrical primary liner (44) having an inner surface (130) forming a combustion chamber (30) therein and an outer surface (132) having a plurality of cooling fins (135); a centrally disposed fuel nozzle (18) in fuel flow communication with said combustion chamber (30); a substantially cylindrical intermediate liner (42) concentrically encircling said primary liner (44) so as to form an annular cooling air passage (70) therebetween; means for introducing a cooling air stream (66) into said cooling air passage (70); a circumferentially extending baffle assembly (134) disposed within said cooling air passage (70), comprising: (i) a conical member (138) having one end coupled to said intermediate liner (42) and having a plurality of holes (146) extending therethrough for directing an impingement portion (66'") of the cooling air stream (66) to impinge against the outer surface (132) of the primary liner (44); and, (ii) a substantially cylindrical platefin member (136) having an end coupled to an opposing end of said conical member (138), said platefin member (136) directing a platefin portion (66") of the cooling air stream (66) to flow over the cooling fins (135) of the primary liner outer surface (132).
15. The combustor (4) of claim 5 wherein the intermediate liner (42) concentrically, supportably receives the platefin member (136) independently from said primary liner outer surface (132).
PCT/US1998/008316 1997-04-30 1998-04-21 An apparatus for cooling a combuster, and a method of same WO1998049496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84714297A 1997-04-30 1997-04-30
US08/847,142 1997-04-30

Publications (1)

Publication Number Publication Date
WO1998049496A1 true WO1998049496A1 (en) 1998-11-05

Family

ID=25299876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/008316 WO1998049496A1 (en) 1997-04-30 1998-04-21 An apparatus for cooling a combuster, and a method of same

Country Status (3)

Country Link
JP (1) JPH10339439A (en)
TW (1) TW403812B (en)
WO (1) WO1998049496A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1486730A1 (en) * 2003-06-11 2004-12-15 Siemens Aktiengesellschaft Heatshield Element
US8739404B2 (en) 2010-11-23 2014-06-03 General Electric Company Turbine components with cooling features and methods of manufacturing the same
WO2014055887A3 (en) * 2012-10-04 2014-08-28 United Technologies Corporation Gas turbine engine combustor liner
WO2016018279A1 (en) * 2014-07-30 2016-02-04 Siemens Aktiengesellschaft Multiple feed platefins within a hot gas path cooling system in a combustor basket in a combustion turbine engine
EP3242084A1 (en) * 2016-05-04 2017-11-08 Siemens Aktiengesellschaft A combustor assembly with impingement plates for redirecting cooling air flow in gas turbine engines
US10047958B2 (en) * 2013-10-07 2018-08-14 United Technologies Corporation Combustor wall with tapered cooling cavity
EP3505725A1 (en) * 2017-12-26 2019-07-03 Ansaldo Energia Switzerland AG Can combustor for a gas turbine and gas turbine comprising such a can combustor
CN114829842A (en) * 2019-12-10 2022-07-29 西门子能源全球有限两合公司 Combustion chamber with wall cooling
US20220275940A1 (en) * 2019-10-17 2022-09-01 Mitsubishi Heavy Industries, Ltd. Gas Turbine Combuster

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8079219B2 (en) * 2008-09-30 2011-12-20 General Electric Company Impingement cooled combustor seal
US8677753B2 (en) * 2012-05-08 2014-03-25 General Electric Company System for supplying a working fluid to a combustor
CN103672966B (en) * 2013-11-12 2015-06-24 清华大学 Thermal protection method for scramjet engine fuel injection supporting plate by utilization of transpiration cooling
US10427776B2 (en) * 2016-07-27 2019-10-01 The Boeing Company Sliding joint kits, systems containing the same, and related methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB626275A (en) * 1947-08-22 1949-07-12 Parsons & Co Ltd C A Improvements in or relating to flame tubes for gas turbine combustion chambers
EP0239020A2 (en) * 1986-03-20 1987-09-30 Hitachi, Ltd. Gas turbine combustion apparatus
US5394688A (en) 1993-10-27 1995-03-07 Westinghouse Electric Corporation Gas turbine combustor swirl vane arrangement
EP0716268A2 (en) * 1994-12-09 1996-06-12 ABB Management AG Cooled wall part
US5737922A (en) * 1995-01-30 1998-04-14 Aerojet General Corporation Convectively cooled liner for a combustor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB626275A (en) * 1947-08-22 1949-07-12 Parsons & Co Ltd C A Improvements in or relating to flame tubes for gas turbine combustion chambers
EP0239020A2 (en) * 1986-03-20 1987-09-30 Hitachi, Ltd. Gas turbine combustion apparatus
US5394688A (en) 1993-10-27 1995-03-07 Westinghouse Electric Corporation Gas turbine combustor swirl vane arrangement
EP0716268A2 (en) * 1994-12-09 1996-06-12 ABB Management AG Cooled wall part
US5737922A (en) * 1995-01-30 1998-04-14 Aerojet General Corporation Convectively cooled liner for a combustor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109187A1 (en) * 2003-06-11 2004-12-16 Siemens Aktiengesellschaft Heat shield element
EP1486730A1 (en) * 2003-06-11 2004-12-15 Siemens Aktiengesellschaft Heatshield Element
US8739404B2 (en) 2010-11-23 2014-06-03 General Electric Company Turbine components with cooling features and methods of manufacturing the same
WO2014055887A3 (en) * 2012-10-04 2014-08-28 United Technologies Corporation Gas turbine engine combustor liner
US10107497B2 (en) 2012-10-04 2018-10-23 United Technologies Corporation Gas turbine engine combustor liner
US10047958B2 (en) * 2013-10-07 2018-08-14 United Technologies Corporation Combustor wall with tapered cooling cavity
WO2016018279A1 (en) * 2014-07-30 2016-02-04 Siemens Aktiengesellschaft Multiple feed platefins within a hot gas path cooling system in a combustor basket in a combustion turbine engine
WO2017190967A1 (en) * 2016-05-04 2017-11-09 Siemens Aktiengesellschaft A combustor assembly with impingement plates for redirecting cooling air flow in gas turbine engines
EP3242084A1 (en) * 2016-05-04 2017-11-08 Siemens Aktiengesellschaft A combustor assembly with impingement plates for redirecting cooling air flow in gas turbine engines
EP3505725A1 (en) * 2017-12-26 2019-07-03 Ansaldo Energia Switzerland AG Can combustor for a gas turbine and gas turbine comprising such a can combustor
RU2761262C2 (en) * 2017-12-26 2021-12-06 Ансальдо Энергия Свитзерленд Аг Tubular combustion chamber for gas turbine and gas turbine containing such a tubular combustion chamber
US20220275940A1 (en) * 2019-10-17 2022-09-01 Mitsubishi Heavy Industries, Ltd. Gas Turbine Combuster
CN114829842A (en) * 2019-12-10 2022-07-29 西门子能源全球有限两合公司 Combustion chamber with wall cooling
CN114829842B (en) * 2019-12-10 2023-09-05 西门子能源全球有限两合公司 Combustion chamber with wall cooling

Also Published As

Publication number Publication date
JPH10339439A (en) 1998-12-22
TW403812B (en) 2000-09-01

Similar Documents

Publication Publication Date Title
EP0654639B1 (en) Adjustable swirl vanes for combustor of gas turbine
US8544277B2 (en) Turbulated aft-end liner assembly and cooling method
US4567730A (en) Shielded combustor
EP1143201B1 (en) Cooling system for gas turbine combustor
EP1253380B1 (en) Methods and apparatus for cooling gas turbine engine combustors
EP1253379B1 (en) Methods and apparatus for cooling gas turbine engine combustors
EP0801210B1 (en) Gas turbine combustor wall cooling
US8181440B2 (en) Arrangement of a semiconductor-type igniter plug in a gas turbine engine combustion chamber
US5497611A (en) Process for the cooling of an auto-ignition combustion chamber
JP4677086B2 (en) Film cooled combustor liner and method of manufacturing the same
US20090120093A1 (en) Turbulated aft-end liner assembly and cooling method
US7984615B2 (en) Combustors for use in turbine engine assemblies
EP1001222A2 (en) Multi-hole film cooled combustor liner
EP1741982A2 (en) Igniter tube and method of assembling same
WO1998049496A1 (en) An apparatus for cooling a combuster, and a method of same
EP1041344B1 (en) Venturi for use in the swirl cup package of a gas turbine combustor having water injected therein
KR100571902B1 (en) Thermally decoupled swirler
US6220015B1 (en) Gas-turbine engine combustion system
EP2230456A2 (en) Combustion liner with mixing hole stub
US20030188537A1 (en) Advanced crossfire tube cooling scheme
JP2004519652A (en) Segmented radiant gas burners and uses in gas turbines
US9057524B2 (en) Shielding wall for a fuel supply duct in a turbine engine
US11215072B2 (en) Aft frame assembly for gas turbine transition piece
GB2286662A (en) Combustion chamber with self-ignition
RU2039323C1 (en) Combustion chamber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR MX PL

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA