WO1998048059A1 - Furnace with rotating hearth and operating method - Google Patents

Furnace with rotating hearth and operating method Download PDF

Info

Publication number
WO1998048059A1
WO1998048059A1 PCT/EP1998/002250 EP9802250W WO9848059A1 WO 1998048059 A1 WO1998048059 A1 WO 1998048059A1 EP 9802250 W EP9802250 W EP 9802250W WO 9848059 A1 WO9848059 A1 WO 9848059A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotary hearth
furnace
hot gas
heating
oven
Prior art date
Application number
PCT/EP1998/002250
Other languages
German (de)
French (fr)
Inventor
Thomas Hansmann
Guido Monteyne
René Munnix
Original Assignee
Paul Wurth S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BE9700359A external-priority patent/BE1011116A3/en
Priority claimed from LU90178A external-priority patent/LU90178B1/en
Application filed by Paul Wurth S.A. filed Critical Paul Wurth S.A.
Priority to AU76443/98A priority Critical patent/AU7644398A/en
Publication of WO1998048059A1 publication Critical patent/WO1998048059A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/062Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated electrically heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/08Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated heated through chamber walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/3005Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases
    • F27B9/3011Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases arrangements for circulating gases transversally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/26Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace on or in trucks, sleds, or containers
    • F27B9/262Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace on or in trucks, sleds, or containers on or in trucks
    • F27B2009/266Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace on or in trucks, sleds, or containers on or in trucks the truck having conducts for guiding the oven atmosphere
    • F27B2009/268Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace on or in trucks, sleds, or containers on or in trucks the truck having conducts for guiding the oven atmosphere through the structure of the car and through the charge

Definitions

  • the present invention relates to a rotary hearth or turntable furnace and a method for its operation.
  • a rotary hearth or turntable furnace is used, for example, in the production of direct reduced iron (DRI), the so-called sponge iron.
  • DRI direct reduced iron
  • Sponge iron is produced in a direct reduction process by reducing iron oxide with solid or gaseous reducing agents.
  • the solid reducing agent used is, for example, carbon, which reacts with oxygen at higher temperatures and forms the reducing gas CO.
  • Such a process can be carried out, for example, in a rotary hearth furnace, i.e. in a furnace with a rotating ring-shaped stove top, which is covered on the top with refractory material and which is surrounded by a housing.
  • Burners are attached to the top of the housing, which penetrate the housing and heat the interior of the housing to the required reaction temperature of over 1200 ° C.
  • the hot flue gases from the burners are passed through the furnace in a countercurrent process and led out of the furnace through a chimney.
  • the iron oxide together with the reducing agent is applied to the rotary hearth at a first point of the rotary hearth furnace and passes through the rotation of the rotary hearth into the interior of the housing, where, due to the high temperatures, it reacts with the reducing agent to turn around after one turn of the rotary hearth to have directly reduced iron.
  • the form in which the iron is present depends on the type of process used.
  • the iron oxide is pressed together with the reducing agent into pellets before charging into the rotary hearth furnace, which pellets are then subsequently charged onto the rotary hearth of the furnace.
  • the iron oxide within the individual pellets reacts with the carbon monoxide released by the carbon and is reduced to iron within the pellets.
  • the sponge iron lies thus after the reduction in pellet form, the pellets also containing the residues of the reducing agent (ash) and any impurities such as sulfur.
  • a further process step is consequently necessary in which the directly reduced iron is separated from the ashes and the impurities.
  • fine grain iron oxide and fine grain reducing agent e.g. Charcoal
  • fine grain iron oxide and fine grain reducing agent e.g. Charcoal
  • carbon monoxide is released in the carbon layer or layers, which penetrates through the fine-grained iron oxide layers and reduces them to iron.
  • the reduced iron is consequently present in the pure form after the reduction process in one or more layers lying one above the other, the individual iron layers being separated from one another by layers of reducing agent residues and these ash layers being in loose form.
  • the iron oxide and the reducing agent must first be heated to the required reaction temperature of about 1200 ° C after charging on the fireproof casing of the rotary hearth before the actual reduction reaction can begin. This takes place in the area of the furnace adjacent to the charging zone of the rotary kiln by heat transfer from the hot exhaust gases of the burners to the charged materials.
  • the warm-up phase takes a considerable amount of time until an essentially homogeneous temperature distribution is achieved within the charged material layers.
  • the longer the warm-up phase lasts the lower the throughput of the rotary kiln, since the speed of rotation of the rotary hearth must be reduced accordingly. It is therefore clear that the Warm-up phase must be shortened as possible in view of a high throughput of the rotary kiln.
  • the object of the present invention is therefore to propose a rotary hearth furnace and a method for its operation, with the aid of which the charged material can be heated to a desired temperature as quickly as possible.
  • This object is achieved according to the invention by a method for heating materials in a furnace with a rotary hearth, in which at least one layer of material is charged onto the rotary hearth and hot gas is applied from above and in which the material layer is additionally heated from below by the rotary hearth.
  • the heat transfer to the material layer can be significantly increased, so that it heats up more quickly than with one-sided heating.
  • the heating of the material layer is significantly more homogeneous than in the known methods, since a high temperature gradient, which builds up in the material layer from above when heated alone, is reduced.
  • the warm-up phase i.e. the time between charging the cold material and reaching an essentially homogeneous temperature distribution above the starting temperature of the subsequent process is significantly reduced compared to the conventional methods.
  • the subsequent process starts faster, which increases the throughput of the furnace and thus its productivity.
  • the material layer can be heated from below, for example, by electrical heat generation in the rotary hearth or by passing a heat transfer medium through the rotary hearth.
  • the heat generation or the passage of the heat transfer medium preferably takes place in the heat-resistant casing of the rotary hearth, ie in the uppermost layer of the rotary hearth, which is in direct contact with the material layer. Cooling of the top layer of the rotary hearth after charging the cold material Layer can hereby be prevented and consequently a constant heat transfer to the material layer can be guaranteed.
  • the heat transfer medium can comprise a hot liquid or a hot gas.
  • process gases i.e. Gases that arise in the actual process in the rotary hearth furnace
  • discharged hot gases can serve as heat carriers.
  • the hot gases are led through the rotary hearth and give off some of their latent heat here. On the one hand, this improves the thermal efficiency of the rotary hearth furnace and, on the other hand, the cooling of the gases associated with the heat dissipation facilitates their subsequent cleaning.
  • the hot gases are preferably sucked into the furnace at several locations distributed around the circumference. As a result, the amount of the hot gases which are conducted in countercurrent through the rotary hearth furnace and, consequently, their flow rate are reduced. As a result, better heat transfer from the hot gases to the material layer is achieved. When heating fine-grained materials, the lower flow rate of the hot gases also reduces the risk that charged fine-grained material is entrained by the gas flow and a charged layer profile is thereby destroyed.
  • the reduced amount of gas in the counterflow enables the furnace housing to be designed in a more compact and therefore more cost-effective manner.
  • the hot gas is preferably drawn in in the upper region of the furnace, ie in the upper region of the furnace housing.
  • the temperature the hot gases are greatest in this area on the other hand this avoids that a gas layer required for the actual reaction, which forms in the lower area of the furnace above the material layer, is sucked off and the reduction is thereby disturbed.
  • this is, for example, a layer of the reducing gas CO, which is formed from the carbon and accumulates above the material layers. This layer of CO gas serves as a protective layer that prevents the sponge iron from re-oxidizing.
  • the hot gas drawn in still contains combustible constituents is advantageously afterburned when the process gas is passed through the rotary hearth. This can be initiated in a simple manner by supplying an oxygen carrier.
  • the furnace is divided into different zones adjacent in the circumferential direction and a heating power supplied to the rotary hearth is regulated individually in each zone of the furnace.
  • a very large heating power can be set, particularly in the charging zone, so that the heating of the cold material layer to the process temperature takes place as quickly as possible.
  • the present invention also relates to a furnace with a rotary hearth, the rotary hearth being surrounded on its upper side by a housing, and means being provided in the housing in order to apply a heating gas to a layer of material charged onto the rotary hearth from above.
  • the oven has at least one heating element which is arranged in the rotary hearth.
  • the rotary hearth of the furnace is preferably divided into different zones, with a separate heating element being arranged in each zone. This enables individual control of the heating output for the different zones of the rotary hearth.
  • the advantage of this individual regulation is that a certain zone of the rotary hearth is heated differently depending on its position in the fixed furnace. For example, the zone of the rotary hearth that currently extends through the charging zone of the The furnace rotates, is heated particularly strongly, so that the newly charged material layer reaches the required starting temperature for the subsequent reaction as quickly as possible.
  • the heating element can comprise, for example, an electric heating element, which is advantageously mounted in the heat-resistant casing of the rotary hearth.
  • the heating element has a line system which is arranged in the rotary hearth and can be acted upon by a heat transfer medium.
  • the line system can have a single pipe that extends radially essentially over the entire width of the rotary hearth or a plurality of pipes that extend either radially or adjacent to one another in the respective zone and which are connected to one another alternately at their opposite ends are.
  • Hot gas from the furnace is preferably used as the heat carrier.
  • the furnace preferably comprises a device for sucking in hot gas in the furnace and for introducing the hot gas into the line system, this device advantageously forming a suction opening in the upper region of the stove.
  • FIG. 1 shows a schematic overall view of a rotary hearth furnace for producing sponge iron
  • Fig.2 a section of a plan view of a rotary hearth of a first
  • FIG. 3 shows a section along the line AA of Figure 2; 4 shows a section along the line BB of FIG. 2; 5 shows a section along the line CC of Figure 2; 6 shows a section along the line CC of another variant of the rotary hearth; 7: a view according to FIG. 2 of a second embodiment of an oven; 8: a section along the line AA of FIG. 7; 9 shows a section along the line BB of FIG. 7; 10 to 12: alternative gas ducts in an oven according to FIGS. 7 to 9; Fig. 13: an alternative course of the pipe system
  • Fig. 14 an embodiment with an electric heating element
  • a rotary hearth furnace 10 for producing sponge iron is shown schematically in FIG.
  • the furnace comprises an annular rotary hearth 12 which is rotatably mounted on a foundation and which is surrounded on its upper side by a housing 14 (the housing is shown partly in section for a better understanding).
  • the reduction of iron oxide to directly reduced iron takes place in a controlled atmosphere at high temperatures of approximately 1200-1400 ° C.
  • fine-grained iron oxide and fine-grained coal dust are charged in separate, superimposed layers onto a refractory lining of the rotary hearth 12 by means of a charging device 18. It is possible to charge only one layer with iron oxide and one layer with coal, or several layers of the individual materials can be stacked alternately. Alternatively, the iron oxide and the reducing agent can also be pressed together into pellets and charged as such onto the rotary hearth 12.
  • the iron oxide and the coal dust reach the reaction area 20 of the rotary kiln through the rotation of the rotary hearth 12.
  • burners are placed in the housing 22 are ⁇ which heat the furnace interior to the required reaction temperature of about 1200-1400 ° C.
  • the hot exhaust gases from the burners 22 are passed through the furnace in a countercurrent process and discharged through a chimney 24.
  • the carbon dust releases carbon monoxide, which reduces the iron oxide to iron.
  • the finished sponge iron is either in pure form in one or more superimposed layers or together with the residues of the reducing agent in pellet form. This sponge iron then reaches the decharging area 26 of the rotary kiln, in which the sponge iron is removed from the furnace by means of a decharging device 28.
  • This type of furnace is a so-called turntable furnace, in which the housing 14 is only two-sided in section (see FIG. 3 or 4) and delimits the annular furnace interior 30 upwards and radially outwards.
  • the interior 30 is delimited downwards and radially outwards by the rotary hearth 12.
  • it is designed as a horizontally lying, annular disk which is rotatably mounted on the foundation (not shown) and which has an annular, upwardly extending extension 32 on its inner edge.
  • each line system 36 comprises two radially extending pipes 38, 40, which extend essentially over the entire charging width of the rotary hearth 12 and which are connected to one another at their radially outer end by a channel 42.
  • the pipeline 38 opens into a feed channel 44 for the hot gas, while the pipeline 40 opens into a discharge channel 46 for the heating gas, which is embodied in the lower region of the rotary hearth 12.
  • Both the feed channel 44 and the discharge channel 46 extend in the circumferential direction over a certain angular range of the rotary hearth 12. All Pipe systems 36 in this angular range are supplied with hot gas via the common feed channel 44, which is then discharged via the common discharge channel 46.
  • the rotary hearth 12 is consequently divided into different zones which can be acted upon independently of one another by hot gas by means of a plurality of feed channels or discharge channels arranged next to one another in the circumferential direction.
  • the feed channel 44 is supplied with hot gas via one or more intake pipes 48 distributed over the length of the feed channel 44, which are arranged in the neck 32 and form an opening 50 in the upper region of the interior 30 of the furnace.
  • intake pipes 48 distributed over the length of the feed channel 44, which are arranged in the neck 32 and form an opening 50 in the upper region of the interior 30 of the furnace.
  • hot gas is drawn in through the intake pipes 48 in the upper region of the furnace and passed into the feed channel 44.
  • the distribution of the hot gas to the various line systems 36 opening into the feed channel 44 then takes place in the feed channel 44.
  • the hot gases are drawn in and passed through the line systems 36 advantageously by means of a negative pressure generated in the respective discharge duct 46.
  • the discharge duct 46 is connected to an annular suction duct 52 in the non-rotatable substructure of the furnace.
  • the transition between the discharge duct 46 in the rotary hearth 12 and the suction duct 52 is preferably implemented by means of water cups.
  • a pump 54 connected to the suction channel 52 provides the necessary negative pressure and promotes the sucked-in gases for exhaust gas cleaning.
  • the suction channel 52 is preferably divided into various subchannels in the circumferential direction of the furnace, each subchannel being connected to its own pump system.
  • the pump powers for the different subchannels can be regulated differently depending on the furnace area become. In this way, it is possible to individually control the heating power of the zone of the rotary hearth 12 located in that particular furnace area by means of the amount of hot gas drawn off in a certain furnace area.
  • the amount of hot gas drawn off can alternatively be regulated by different cross sections of the suction channel 52 in the different furnace areas.
  • the suction channel 52 can be designed continuously and can be subjected to a uniform negative pressure.
  • the feed channel 44 has a gas inlet 56 through which an oxygen carrier, e.g. Fresh air, sucked in or can be blown under pressure into the feed channel 44.
  • an oxygen carrier e.g. Fresh air
  • the combustible constituents of the hot gases are ignited by the supplied oxygen, the temperature of the hot gases led through the line system 36 is increased and the heat transfer to the charged material layers is improved.
  • FIGS. 5 and 6 show, in a section along the line CC of FIG. 2, different possibilities for arranging the line systems 36 in the rotary hearth 12.
  • the pipes 38, 40 are firmly installed in the upper layer 58 of the heat-resistant material of the rotary hearth 12.
  • the heat-resistant material is, for example, a refractory concrete that is applied to a base of the rotary hearth 12.
  • the pipes 38, 40 and the connecting channels 42 are placed on the substructure before the refractory concrete is applied and then poured into the concrete. It should be noted that if non-heat-resistant pipelines are used, these can be burned out after the concrete has hardened, so that only the cavities that define the piping system 36 remain in the concrete layer.
  • the heat-resistant cladding of the rotary hearth 12 comprises a layer 60 of heat-conducting material, which is applied to an underlying layer of refractory concrete.
  • the pipes 38, 40 are placed on the layer of refractory concrete and simply covered with the material. This design of the rotary hearth 12 facilitates later replacement of defective pipes.
  • FIGS. 7 to 9 A second embodiment of an oven according to the invention is described with reference to FIGS. 7 to 9.
  • This type of furnace is a so-called rotary hearth furnace, in which the housing 14 is formed on three sides in section (see FIG. 8 or 9) and delimits the annular furnace interior 30 upwards and radially inwards and outwards.
  • the interior 30 is delimited at the bottom by the rotary hearth 12 and sealed from the surroundings by means of water cups 34.
  • the line systems 36 'each comprise a pipeline 38' which extends radially outwards from the inner edge of the rotary hearth 12 and is returned radially inwards in an arc.
  • Each pipe 38 ' is connected to its own suction pipe 48, which is arranged in the neck 32 of the rotary hearth 12 and forms an opening 50 in the upper region of this neck 32. It should be noted that the approach 32 does not have to take over the function of the furnace limitation in this embodiment. It only serves to accommodate the intake pipes 48 for the various pipes 38 '.
  • the radially inward end of the pipeline 38 ' is led downwards out of the rotary hearth 12 and, analogously to the discharge duct 46 of FIGS. 3 and 4, is connected to a system for generating a negative pressure.
  • FIGS. 10 to 12 show alternative hot gas guides in a rotary hearth furnace, the rotary hearth 12 of which does not have an extension 32 which extends upwards.
  • the simplest variant of such a gas guide is shown in FIG. 10.
  • Each pipe system 36 comprises a pipe 38 ", which extends radially over the entire width of the rotary hearth 12 and opens on both sides into the radial boundary surfaces of the rotary cooker 12. In between, the pipe 38" is connected to a suction nozzle 64 which leads downward out of the rotary hearth 12. As described above, a vacuum is applied to the pipeline 38 "via the suction connection 64, so that the hot gases are sucked in via the radial annular gaps 62 between the rotary hearth 12 and the respective radial housing wall.
  • the furnace therefore has a suction pipe 48 'which is arranged, for example, in the radially inner furnace wall 66 and forms an opening 50' in the upper region of the interior 30 of the furnace at the other end, the suction pipe 48 'opens into a feed channel 68 which is connected to the pipeline 38'".
  • the connection to the feed channel 68 is made on the one hand and to a discharge channel 70 on the other hand, the sealing between the rotating ends and the non-rotatable channels 68 and 70 takes place in a known manner.
  • FIG. 12 An alternative embodiment of the gas transfer between the non-rotatable gas supply and discharge is shown in FIG. 12.
  • the rotary hearth 12 has on its radial boundary surfaces in each case an annular extension 72 or 74 which engages in a corresponding annular channel 76 or 78 in the adjacent furnace wall.
  • the pipeline 38 "" opens on both sides of the charging surface in the radial boundary surface of the respective annular extension 72 or 74.
  • the hot gases are then supplied via the ring channel 76, into which the suction pipes 48 'open, while the suction takes place via the ring channel 78.
  • the configurations described above represent only a few examples of possible gas flows into the furnace. It will be clear to the person skilled in the art that the configurations described above can also be combined with one another.
  • line systems can be provided which extend in serpentine lines essentially in the circumferential direction. Such an embodiment is shown for example in FIG. 13.
  • the heating device comprises electrical heating elements 80 which e.g. extend in the radial direction over the rotary hearth 12.
  • the advantage of such an electrical heating device lies in the more precise regulation of the heating power supplied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Tunnel Furnaces (AREA)

Abstract

The invention relates to a method for heating materials in a furnace (10) having a rotating hearth (12). At least one layer of material is charged onto the rotating hearth (12) and subjected to a hot gas from above. This material layer is furthermore heated from beneath, through the rotating hearth (12). To this end, heating gases are preferably suctioned in the furnace and conducted through channels (38, 40) in the rotating hearth. This method is particularly suitable for direct reduction of iron ore. The invention also relates to a furnace with rotating hearth for carrying out this method.

Description

Ofen mit drehbarem Herd und Verfahren zu seinem Betrieb Oven with a rotating cooker and method for its operation
Die vorliegende Erfindung betrifft einen Drehherd- bzw. Drehtellerofen sowie ein Verfahren zu seinem Betrieb. Ein solcher Ofen mit ringförmigem Drehherd wird zum Beispiel bei der Herstellung von direktreduziertem Eisen (DRI), dem sogenannten Eisenschwamm, eingesetzt. Die Herstellung von Eisenschwamm geschieht in einem Direktreduktionsverfah- ren durch Reduktion von Eisenoxyd mit festen oder gasförmigen Reduktionsmitteln. Als festes Reduktionsmittel dient dabei zum Beispiel Kohlenstoff, der bei höheren Temperaturen mit Sauerstoff reagiert und das Reduktionsgas CO bildet. Ein solches Verfahren kann zum Beispiel in einem Drehherdofen durchgeführt werden, d.h. in einem Ofen mit einem drehbaren ringförmigen Ofenherd, der auf der Oberseite mit feuerfestem Material überdeckt ist und der von einem Gehäuse umgeben ist. An der Oberseite des Gehäuses sind Brenner angebracht, die das Gehäuse durchdringen und das Innere der Gehäuse auf die erforderliche Reaktionstemperatur von über 1200°C aufhei- zen. Die heißen Abgase der Brenner werden dabei im Gegenstromverfahren durch den Ofen geleitet und durch einen Kamin aus dem Ofen herausgeführt.The present invention relates to a rotary hearth or turntable furnace and a method for its operation. Such an oven with a ring-shaped rotary hearth is used, for example, in the production of direct reduced iron (DRI), the so-called sponge iron. Sponge iron is produced in a direct reduction process by reducing iron oxide with solid or gaseous reducing agents. The solid reducing agent used is, for example, carbon, which reacts with oxygen at higher temperatures and forms the reducing gas CO. Such a process can be carried out, for example, in a rotary hearth furnace, i.e. in a furnace with a rotating ring-shaped stove top, which is covered on the top with refractory material and which is surrounded by a housing. Burners are attached to the top of the housing, which penetrate the housing and heat the interior of the housing to the required reaction temperature of over 1200 ° C. The hot flue gases from the burners are passed through the furnace in a countercurrent process and led out of the furnace through a chimney.
Das Eisenoxyd wird zusammen mit dem Reduktionsmittel an einer ersten Stelle des Drehherdofens auf den Drehherd aufgebracht und gelangt durch die Rotation des Drehherds in das Innere des Gehäuses, wo es aufgrund der hohen Temperaturen mit dem Reduktionsmittel reagiert, um nach ca. einer Umdrehung des Drehherds als direkt reduziertes Eisen vorzuliegen. Die Form unter der das Eisen vorliegt hängt dabei von der Art des verwendeten Verfahrens ab.The iron oxide together with the reducing agent is applied to the rotary hearth at a first point of the rotary hearth furnace and passes through the rotation of the rotary hearth into the interior of the housing, where, due to the high temperatures, it reacts with the reducing agent to turn around after one turn of the rotary hearth to have directly reduced iron. The form in which the iron is present depends on the type of process used.
Bei dem traditioneilen Verfahren wird das Eisenoxyd vor dem Chargieren in den Drehherdofen zusammen mit dem Reduktionsmittel zu Pellets verpreßt, die dann anschließend auf den Drehherd des Ofens chargiert werden. Im Inneren des Ofens reagiert in einer kontrollierten Atmosphäre das Eisenoxyd innerhalb der einzelnen Pellets mit dem von dem Kohlenstoff freigesetzten Kohlenmon- oxid und wird innerhalb der Pellets zu Eisen reduziert. Der Eisenschwamm liegt somit nach der Reduktion in Pelletform vor, wobei die Pellets außerdem die Rückstände des Reduktionsmittels (Asche) sowie etwaige Verunreinigungen wie z.B. Schwefel enthalten. Nach dem Reduktionsvorgang wird folglich ein weiterer Verfahrensschritt notwendig, in dem das direkt reduzierte Eisen von der Asche und den Verunreinigungen getrennt wird.In the traditional process, the iron oxide is pressed together with the reducing agent into pellets before charging into the rotary hearth furnace, which pellets are then subsequently charged onto the rotary hearth of the furnace. Inside the furnace, in a controlled atmosphere, the iron oxide within the individual pellets reacts with the carbon monoxide released by the carbon and is reduced to iron within the pellets. The sponge iron lies thus after the reduction in pellet form, the pellets also containing the residues of the reducing agent (ash) and any impurities such as sulfur. After the reduction process, a further process step is consequently necessary in which the directly reduced iron is separated from the ashes and the impurities.
In einem alternativen Verfahren wird feinkörniges Eisenoxyd und feinkörniges Reduziermittel, z.B. Kohle, in getrennten Schichten auf den Drehherd des Ofens chargiert. Dabei besteht die Möglichkeit jeweils nur eine Schicht mit Eisenoxyd und eine Schicht mit Reduktionsmittel zu chargieren oder es können jeweils mehrere Schichten der einzelnen Materialien abwechselnd übereinan- dergeschichtet werden. Beim Durchlaufen durch den Ofen wird in der oder den Kohlenschichten Kohlenmonoxid freigesetzt, das durch die feinkörnigen Eisenoxydschichten dringt und diese zu Eisen reduziert. Das reduzierte Eisen liegt folglich nach dem Reduktionsvorgang in reiner Form in einer oder mehre- ren übereinanderliegenden Schichten vor, wobei die einzelnen Eisenschichten durch Schichten von Reduktionsmittelrückständen voneinander getrennt sind und diese Ascheschichten in loser Form vorliegen.In an alternative process, fine grain iron oxide and fine grain reducing agent, e.g. Charcoal, charged in separate layers on the hearth of the furnace. It is possible to charge only one layer with iron oxide and one layer with reducing agent, or several layers of the individual materials can be stacked alternately. When passing through the furnace, carbon monoxide is released in the carbon layer or layers, which penetrates through the fine-grained iron oxide layers and reduces them to iron. The reduced iron is consequently present in the pure form after the reduction process in one or more layers lying one above the other, the individual iron layers being separated from one another by layers of reducing agent residues and these ash layers being in loose form.
Unabhängig von dem verwendeten Verfahren, müssen das Eisenoxyd und das Reduktionsmittel nach dem Chargieren auf die feuerfeste Verkleidung des Drehherdes zunächst auf die erforderliche Reaktionstemperatur von etwa 1200°C erwärmt werden, bevor die eigentliche Reduktionsreaktion beginnen kann. Dies geschieht in dem in Drehrichtung an die Chargierzone des Drehofens angrenzenden Bereich des Ofens durch Wärmeübergang von den heißen Abgasen der Brenner auf die chargierten Materialien. In Anbetracht der relativ geringen thermischen Leitfähigkeit der chargierten Materialien, insbesondere beim Chargieren von feinkörnigem Chargiergut, nimmt die Aufwärmphase bis zum Erreichen einer im wesentlichen homogenen Temperaturverteilung innerhalb der chargierten Materialschichten eine beträchtliche Zeit in Anspruch. Je länger aber die Aufwärmphase dauert, desto geringer ist der Durchsatz des Drehofens, da die Drehgeschwindigkeit des Drehherds entsprechend reduziert werden muß. Es ist somit klar, daß die Aufwärmphase im Hinblick auf einen hohen Durchsatz des Drehofens möglichst verkürzt werden muß.Regardless of the process used, the iron oxide and the reducing agent must first be heated to the required reaction temperature of about 1200 ° C after charging on the fireproof casing of the rotary hearth before the actual reduction reaction can begin. This takes place in the area of the furnace adjacent to the charging zone of the rotary kiln by heat transfer from the hot exhaust gases of the burners to the charged materials. In view of the relatively low thermal conductivity of the charged materials, especially when charging fine-grained batches, the warm-up phase takes a considerable amount of time until an essentially homogeneous temperature distribution is achieved within the charged material layers. However, the longer the warm-up phase lasts, the lower the throughput of the rotary kiln, since the speed of rotation of the rotary hearth must be reduced accordingly. It is therefore clear that the Warm-up phase must be shortened as possible in view of a high throughput of the rotary kiln.
Aufgabe der vorliegenden Erfindung ist es folglich, einen Drehherdofen und ein Verfahren zu seinem Betrieb vorzuschlagen, mit deren Hilfe das chargierte Material möglichst schnell auf eine gewünschte Temperatur erwärmt werden kann.The object of the present invention is therefore to propose a rotary hearth furnace and a method for its operation, with the aid of which the charged material can be heated to a desired temperature as quickly as possible.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zum Erwärmen von Materialien in einem Ofen mit Drehherd, bei dem mindestens eine Materialschicht auf den Drehherd chargiert wird und von oben mit einem Heißgas beaufschlagt wird und bei dem die Materialschicht zusätzlich von unten durch den Drehherd geheizt wird.This object is achieved according to the invention by a method for heating materials in a furnace with a rotary hearth, in which at least one layer of material is charged onto the rotary hearth and hot gas is applied from above and in which the material layer is additionally heated from below by the rotary hearth.
Durch die beidseitige Beheizung der chargierten Materialschicht kann der Wärmeübertrag auf die Materialschicht deutlich erhöht werden, so daß ihre Erwärmung schneller erfolgt als bei einseitiger Beheizung. Darüber hinaus verläuft die Erwärmung der Materialschicht deutlich homogener als bei den bekannten Verfahren, da ein hoher Temperaturgradient, der sich bei alleiniger Beheizung von oben in der Materialschicht aufbaut, abgebaut wird.By heating the charged material layer on both sides, the heat transfer to the material layer can be significantly increased, so that it heats up more quickly than with one-sided heating. In addition, the heating of the material layer is significantly more homogeneous than in the known methods, since a high temperature gradient, which builds up in the material layer from above when heated alone, is reduced.
Es folgt, daß die Aufwärmphase, d.h. die Zeit zwischen dem Chargieren des kalten Materials und dem Erreichen einer im wesentlichen homogenen Tempe- raturverteilung oberhalb der Starttemperatur des nachfolgenden Prozesses, gegenüber den herkömmlichen Verfahren deutlich verkürzt ist. Der nachfolgende Prozeß startet schneller wodurch sich der Durchsatz des Ofens und damit seine Produktivität erhöht.It follows that the warm-up phase, i.e. the time between charging the cold material and reaching an essentially homogeneous temperature distribution above the starting temperature of the subsequent process is significantly reduced compared to the conventional methods. The subsequent process starts faster, which increases the throughput of the furnace and thus its productivity.
Das Heizen der Materialschicht von unten kann beispielsweise durch elektri- sehe Wärmeerzeugung in dem Drehherd oder durch Durchleiten eines Wärmeträgers durch den Drehherd erfolgen. Die Wärmeerzeugung bzw. das Durchleiten des Wärmeträgers geschieht dabei vorzugsweise in der hitzebeständigen Verkleidung des Drehherds, d.h. in der obersten Schicht des Drehherds, die mit der Materialschicht unmittelbar in Kontakt steht. Ein Auskühlen der oberen Schicht des Drehherds nach dem Chargieren der kalten Material- Schicht kann hierdurch verhindert und folglich ein stetiger Wärmeübertrag an die Materialschicht gewährleistet werden.The material layer can be heated from below, for example, by electrical heat generation in the rotary hearth or by passing a heat transfer medium through the rotary hearth. The heat generation or the passage of the heat transfer medium preferably takes place in the heat-resistant casing of the rotary hearth, ie in the uppermost layer of the rotary hearth, which is in direct contact with the material layer. Cooling of the top layer of the rotary hearth after charging the cold material Layer can hereby be prevented and consequently a constant heat transfer to the material layer can be guaranteed.
Der Wärmeträger kann eine heiße Flüssigkeit oder ein Heißgas umfassen.The heat transfer medium can comprise a hot liquid or a hot gas.
Bei den herkömmlichen Verfahren zum Betreiben eines Drehofens werden die heißen Abgase der in dem Gehäuse des Ofens angeordneten Brenner zusammen mit eventuellen Prozeßgasen, d.h. Gasen die bei dem eigentlichen Prozeß in dem Drehherdofen entstehen, im Gegenstrom durch den Drehherdofen geführt und im Bereich der Chargierzone durch einen Kamin abgeführt. Beim Abführen dieser Heißgase weisen diese noch eine hohe Temperatur auf und enthalten daher noch eine große Wärmemenge. Um diese überschüssige Wärmemenge zu nutzen, können die abgeführten Heißgase als Wärmeträger dienen.In the conventional methods of operating a rotary kiln, the hot exhaust gases from the burners arranged in the housing of the kiln, together with any process gases, i.e. Gases that arise in the actual process in the rotary hearth furnace, countercurrently passed through the rotary hearth furnace and discharged through a chimney in the area of the charging zone. When these hot gases are removed, they are still at a high temperature and therefore still contain a large amount of heat. In order to use this excess amount of heat, the discharged hot gases can serve as heat carriers.
Die Heißgase werden durch den Drehherd geführt und geben hier einen Teil ihrer latenten Wärme ab. Hierdurch verbessert sich zum einen der thermische Wirkungsgrad des Drehherdofens und zum anderen erleichtert die mit der Wärmeabgabe einhergehende Abkühlung der Gase ihre spätere Reinigung.The hot gases are led through the rotary hearth and give off some of their latent heat here. On the one hand, this improves the thermal efficiency of the rotary hearth furnace and, on the other hand, the cooling of the gases associated with the heat dissipation facilitates their subsequent cleaning.
Die Heißgase werden vorzugsweise an mehreren in Umfangshchtung verteilten Stellen im Ofen angesaugt. Hierdurch verringert sich die Menge der im Gegenstrom durch den Drehherdofen geführten Heißgase und infolgedessen deren Strömungsgeschwindigkeit. Hierdurch wird ein besserer Wärmeübertrag von den Heißgasen auf die Materialschicht erreicht. Beim Erwärmen von feinkörnigen Materialien verringert die geringere Strömungsgeschwindigkeit der Heißgase überdies die Gefahr, daß chargiertes feinkörniges Material von der Gasströmung mitgerissen und dadurch ein chargiertes Schichtenprofil zerstört wird.The hot gases are preferably sucked into the furnace at several locations distributed around the circumference. As a result, the amount of the hot gases which are conducted in countercurrent through the rotary hearth furnace and, consequently, their flow rate are reduced. As a result, better heat transfer from the hot gases to the material layer is achieved. When heating fine-grained materials, the lower flow rate of the hot gases also reduces the risk that charged fine-grained material is entrained by the gas flow and a charged layer profile is thereby destroyed.
Ist keine Verringerung der Strömungsgeschwindigkeit erwünscht, so ermöglicht die verringerte Gasmenge des Gegenstroms eine kompaktere und dadurch kostengünstigere Ausgestaltung des Ofengehäuses.If no reduction in the flow rate is desired, the reduced amount of gas in the counterflow enables the furnace housing to be designed in a more compact and therefore more cost-effective manner.
Das Ansaugen des Heißgases erfolgt vorzugsweise im oberen Bereich des Ofens, d.h. im oberen Bereich des Ofengehäuses. Einerseits ist die Temperatur der Heißgase in diesem Bereich am größten, andererseits wird hierdurch vermieden, daß eine für die eigentliche Reaktion benötigte Gasschicht, die sich im unteren Bereich der Ofens über der Materialschicht bildet, abgesogen und dadurch die Reduktion gestört wird. Bei der Direktreduktion von Eisenoxyd ist dies beispielsweise eine Schicht aus dem Reduktionsgas CO, das sich aus dem Kohlenstoff bildet und sich oberhalb der Materialschichten ansammelt. Diese Schicht aus CO-Gas dient als Schutzschicht, die eine Rückoxydation des erzeugten Eisenschwammes verhindert.The hot gas is preferably drawn in in the upper region of the furnace, ie in the upper region of the furnace housing. On the one hand is the temperature the hot gases are greatest in this area, on the other hand this avoids that a gas layer required for the actual reaction, which forms in the lower area of the furnace above the material layer, is sucked off and the reduction is thereby disturbed. In the direct reduction of iron oxide, this is, for example, a layer of the reducing gas CO, which is formed from the carbon and accumulates above the material layers. This layer of CO gas serves as a protective layer that prevents the sponge iron from re-oxidizing.
Enthält das angesaugte Heißgas noch brennbare Bestandteile, so erfolgt beim Durchleiten des Prozeßgases durch den Drehherd vorteilhaft eine Nachverbrennung des Heißgases. Diese kann in einfacher Weise durch Zuführen eines Sauerstoffträgers eingeleitet werden.If the hot gas drawn in still contains combustible constituents, the hot gas is advantageously afterburned when the process gas is passed through the rotary hearth. This can be initiated in a simple manner by supplying an oxygen carrier.
In einer vorteilhaften Ausgestaltung ist der Ofen in verschiedene in Umfangs- richtung benachbarte Zonen unterteilt und eine dem Drehherd zugeführte Heizleistung wird in jeder Zone des Ofens individuell geregelt. Auf diese Weise kann insbesondere in der Chargierzone eine sehr große Heizleistung eingestellt werden, so daß die Erwärmung der kalten Materialschicht auf Prozeßtemperatur möglichst schnell vonstatten geht.In an advantageous embodiment, the furnace is divided into different zones adjacent in the circumferential direction and a heating power supplied to the rotary hearth is regulated individually in each zone of the furnace. In this way, a very large heating power can be set, particularly in the charging zone, so that the heating of the cold material layer to the process temperature takes place as quickly as possible.
Die vorliegende Erfindung betrifft ebenfalls einen Ofen mit Drehherd, wobei der Drehherd an seiner Oberseite von einem Gehäuse umgeben ist, und wobei Mittel in dem Gehäuse vorgesehen sind, um eine auf den Drehherd chargierte Materialschicht von oben mit einem Heizgas zu beaufschlagen. Erfindungsgemäß weist der Ofen mindestens ein Heizelement auf, das in dem Drehherd angeordnet ist. Der Drehherd des Ofens ist bevorzugt in verschiedene Zonen unterteilt, wobei in jeder Zone ein gesondertes Heizelement angeordnet ist. Hierdurch wird eine individuelle Regelung der Heizleistung für die verschiedenen Zonen des Drehherdes ermöglicht. Der Vorteil dieser individuellen Regelung besteht darin, daß eine bestimmte Zone des Drehherds abhängig von ihrer Stellung in dem feststehenden Ofen unterschiedlich beheizt wird. So kann beispielsweise immer diejenige Zone des Drehherds, die sich gerade durch die Chargierzone des Ofens dreht, besonders stark beheizt werden, so daß die neu chargierte Materialschicht möglichst schnell die erforderliche Starttemperatur für die anschließende Reaktion erreicht.The present invention also relates to a furnace with a rotary hearth, the rotary hearth being surrounded on its upper side by a housing, and means being provided in the housing in order to apply a heating gas to a layer of material charged onto the rotary hearth from above. According to the invention, the oven has at least one heating element which is arranged in the rotary hearth. The rotary hearth of the furnace is preferably divided into different zones, with a separate heating element being arranged in each zone. This enables individual control of the heating output for the different zones of the rotary hearth. The advantage of this individual regulation is that a certain zone of the rotary hearth is heated differently depending on its position in the fixed furnace. For example, the zone of the rotary hearth that currently extends through the charging zone of the The furnace rotates, is heated particularly strongly, so that the newly charged material layer reaches the required starting temperature for the subsequent reaction as quickly as possible.
Das Heizelement kann beispielsweise ein elektrisches Heizelement umfassen, das vorteilhaft in die hitzebeständige Verkleidung des Drehherds montiert ist.The heating element can comprise, for example, an electric heating element, which is advantageously mounted in the heat-resistant casing of the rotary hearth.
In einer vorteilhaften Ausgestaltung weist das Heizelement ein in dem Drehherd angeordnetes Leitungssystem auf, das mit einem Wärmeträger beaufschlagbar ist. Das Leitungssystem kann dabei ein einzelne Rohre aufweisen, die sich radial im wesentlichen über die gesamte Breite des Drehherds erstrecken oder mehrere Rohre, die sich in der jeweiligen Zone entweder radial oder in Um- fangsrichtung benachbart zueinander erstrecken und die abwechselnd an ihren gegenüberliegenden Enden miteinander verbunden sind.In an advantageous embodiment, the heating element has a line system which is arranged in the rotary hearth and can be acted upon by a heat transfer medium. The line system can have a single pipe that extends radially essentially over the entire width of the rotary hearth or a plurality of pipes that extend either radially or adjacent to one another in the respective zone and which are connected to one another alternately at their opposite ends are.
Als Wärmeträger wird bevorzugt Heißgas aus dem Ofen verwendet. Aus diesem Grund umfaßt der Ofen bevorzugt eine Vorrichtung zum Ansaugen von Heißgas im Ofen und zum Einleiten des Heißgases in das Leitungssystem, wobei diese Vorrichtung vorteilhaft eine Ansaugöffnung im oberen Bereich des Ofens ausbildet.Hot gas from the furnace is preferably used as the heat carrier. For this reason, the furnace preferably comprises a device for sucking in hot gas in the furnace and for introducing the hot gas into the line system, this device advantageously forming a suction opening in the upper region of the stove.
Im folgenden wird nun einige besonders vorteilhafte Ausgestaltung der Erfindung anhand der beiliegenden Figuren beschrieben. Es zeigen: Fig.1 : eine schematische Gesamtansicht eines Drehherdofens zur Herstellung von Eisenschwamm; Fig.2: einen Ausschnitt aus einer Draufsicht auf einen Drehherd einer erstenSome particularly advantageous embodiments of the invention will now be described below with reference to the accompanying figures. 1 shows a schematic overall view of a rotary hearth furnace for producing sponge iron; Fig.2: a section of a plan view of a rotary hearth of a first
Ausgestaltung eines erfindungsgemäßen Ofens; Fig.3: einen Schnitt entlang der Linie A-A der Figur 2; Fig.4: einen Schnitt entlang der Linie B-B der Figur 2; Fig.5: einen Schnitt entlang der Linie C-C der Figur 2; Fig.6: einen Schnitt entlang der Linie C-C einer anderen Variante des Drehherds; Fig.7: eine Ansicht gemäß der Figur 2 einer zweiten Ausgestaltung des eines Ofens; Fig.8: einen Schnitt entlang der Linie A-A der Figur 7; Fig.9: einen Schnitt entlang der Linie B-B der Figur 7; Fig.10 - Fig.12: alternative Gasführungen in einem Ofen gemäß den Figuren 7 bis 9; Fig.13: einen alternativen Verlauf des LeitungssystemsDesign of an oven according to the invention; 3 shows a section along the line AA of Figure 2; 4 shows a section along the line BB of FIG. 2; 5 shows a section along the line CC of Figure 2; 6 shows a section along the line CC of another variant of the rotary hearth; 7: a view according to FIG. 2 of a second embodiment of an oven; 8: a section along the line AA of FIG. 7; 9 shows a section along the line BB of FIG. 7; 10 to 12: alternative gas ducts in an oven according to FIGS. 7 to 9; Fig. 13: an alternative course of the pipe system
Fig.14: eine Ausgestaltung mit einem elektrischen HeizelementFig. 14: an embodiment with an electric heating element
In der Figur 1 ist schematisch ein Drehherdofen 10 zur Herstellung von Eisenschwamm dargestellt. Der Ofen umfaßt einen ringförmigen Drehherd 12, der drehbar auf einem Fundament gelagert ist und der auf seiner Oberseite von einem Gehäuse 14 umgeben ist (zum besseren Verständnis ist das Gehäuse teilweise geschnitten dargestellt). Innerhalb des Gehäuses 14 findet in einer kontrollierten Atmosphäre bei hohen Temperaturen von ca. 1200-1400°C die Reduktion von Eisenoxid zu direkt reduziertem Eisen statt. Dazu wird in einem ersten Bereich 16 des Drehherdofens mittels einer Chargiervorrichtung 18 feinkörniges Eisenoxid und feinkörniger Kohlenstaub in getrennten, übereinan- derliegenden Schichten auf eine feuerfeste Ausmauerung des Drehherdes 12 chargiert. Dabei besteht die Möglichkeit jeweils nur eine Schicht mit Eisenoxid und eine Schicht mit Kohle zu chargieren oder es können jeweils mehrere Schichten der einzelnen Materialien abwechselnd übereinandergeschichtet werden. Alternativ können das Eisenoxyd und das Reduktionsmittel auch zusammen zu Pellets verpreßt und als solche auf den Drehherd 12 chargiert werden.A rotary hearth furnace 10 for producing sponge iron is shown schematically in FIG. The furnace comprises an annular rotary hearth 12 which is rotatably mounted on a foundation and which is surrounded on its upper side by a housing 14 (the housing is shown partly in section for a better understanding). Within the housing 14, the reduction of iron oxide to directly reduced iron takes place in a controlled atmosphere at high temperatures of approximately 1200-1400 ° C. For this purpose, in a first area 16 of the rotary hearth furnace, fine-grained iron oxide and fine-grained coal dust are charged in separate, superimposed layers onto a refractory lining of the rotary hearth 12 by means of a charging device 18. It is possible to charge only one layer with iron oxide and one layer with coal, or several layers of the individual materials can be stacked alternately. Alternatively, the iron oxide and the reducing agent can also be pressed together into pellets and charged as such onto the rotary hearth 12.
Nach dem Chargieren gelangen das Eisenoxid und der Kohlenstaub durch die Rotation des Drehherdes 12 in den Reaktionsbereich 20 des Drehofens. In diesem Bereich 20 des Drehofens sind in dem Gehäuse 14 Brenner 22 ange¬ bracht, die das Ofeninnere auf die erforderliche Reaktionstemperatur von ca. 1200-1400°C erwärmen. Die heißen Abgase der Brenner 22 werden dabei im Gegenstromverfahren durch den Ofen geleitet und durch einen Kamin 24 abgeleitet. In der in dem Ofen 10 herrschenden inerten Atmosphäre setzt der Kohlenstaub Kohlenmonoxid frei, das das Eisenoxid zu Eisen reduziert. Nachdem die Reduktion in dem Reduktionsbereich 20 des Ofens abgeschlossen ist, liegt der fertige Eisenschwamm entweder in reiner Form in einer oder mehreren übereinanderiiegenden Schichten oder zusammen mit den Rückständen des Reduktionsmittels in Pelletform vor. Dieser Eisenschwamm gelangt anschließend in den Dechargierbereich 26 des Drehofens, in dem der Eisenschwamm mittels einer Dechargiervorrichtung 28 aus dem Ofen abgeführt wird.After charging, the iron oxide and the coal dust reach the reaction area 20 of the rotary kiln through the rotation of the rotary hearth 12. In this region 20 of the rotary kiln 14 burners are placed in the housing 22 are ¬ which heat the furnace interior to the required reaction temperature of about 1200-1400 ° C. The hot exhaust gases from the burners 22 are passed through the furnace in a countercurrent process and discharged through a chimney 24. In the inert atmosphere prevailing in the furnace 10, the carbon dust releases carbon monoxide, which reduces the iron oxide to iron. After the reduction in the reduction area 20 of the furnace is completed, the finished sponge iron is either in pure form in one or more superimposed layers or together with the residues of the reducing agent in pellet form. This sponge iron then reaches the decharging area 26 of the rotary kiln, in which the sponge iron is removed from the furnace by means of a decharging device 28.
Anhand der Figuren 2 bis 5 wird nun eine erste Ausgestaltung eines erfindungsgemäßen Ofens beschrieben. Bei diesem Ofentyp handelt es sich um einen sogenannten Drehtellerofen, bei dem das Gehäuse 14 im Schnitt (siehe Fig. 3 oder 4) lediglich zweiseitig ausgebildet ist und den ringförmigen Ofeninnenraum 30 nach oben und radial nach außen begrenzt. Nach unten und radial nach außen ist der Innenraum 30 durch den Drehherd 12 begrenzt. Dazu ist dieser als waagerecht liegende ringförmige Scheibe ausgebildet, die drehbar auf dem Fundament (nicht dargestellt) gelagert ist, und die an ihrem inneren Rand einen ringförmigen, sich nach oben erstreckenden Ansatz 32 aufweist. Da sich der Drehherd 12 mit dem Ansatz 32 gegenüber dem drehfest gelagerten Gehäuse 14 dreht, ist der Innenraum 30 des Ofens beispielsweise durch Wassertassen 34 gegen die Umgebung abgedichtet. In dem oberen Bereich weist der Drehherd 12 mehrere in Umfangsrichtung verteilte Leitungssysteme 36 auf, die zur Beheizung der hitzebeständigen Verkleidung des Drehherds 12 mit einem Heißgas beaufschlagbar ist. In der dargestellten Ausgestaltung umfaßt jedes Leitungssystem 36 zwei radial verlaufende Rohrleitungen 38, 40, die sich im wesentlichen über die gesamte Chargierbreite des Drehherds 12 erstrecken und die an ihrem radial äußeren Ende durch einen Kanal 42 miteinander verbunden sind. Auf der radial innenliegenden Seite mündet die Rohrleitung 38 in einen Zuführkanal 44 für das Heißgas während die Rohrleitung 40 in einen im unteren Bereich des Drehherds 12 ausgeführten Abführkanal 46 für das Heizgas einmündet. Sowohl der Zuführkanal 44 als auch der Abführkanal 46 erstrecken sich in Umfangsrichtung über einen gewissen Winkelbereich des Drehherds 12. Alle Leitungssysteme 36 in diesem Winkelbereich werden über den gemeinsamen Zuführkanal 44 mit Heißgas beaufschlagt, das anschließend über den gemeinsamen Abführkanal 46 abgeführt wird. Durch mehrere in Umfangsrichtung nebeneinander angeordnete Zuführkanäle bzw. Abführkanäle wird der Dreh- herd 12 folglich in verschiedene Zonen unterteilt, die unabhängig voneinander mit Heißgas beaufschlagbar sind.A first embodiment of an oven according to the invention will now be described with reference to FIGS. 2 to 5. This type of furnace is a so-called turntable furnace, in which the housing 14 is only two-sided in section (see FIG. 3 or 4) and delimits the annular furnace interior 30 upwards and radially outwards. The interior 30 is delimited downwards and radially outwards by the rotary hearth 12. For this purpose, it is designed as a horizontally lying, annular disk which is rotatably mounted on the foundation (not shown) and which has an annular, upwardly extending extension 32 on its inner edge. Since the rotary hearth 12 rotates with the attachment 32 relative to the housing 14 which is mounted in a manner fixed against relative rotation, the interior 30 of the oven is sealed off from the surroundings, for example by water cups 34. In the upper region, the rotary hearth 12 has a plurality of line systems 36 distributed in the circumferential direction, which can be acted upon by a hot gas for heating the heat-resistant cladding of the rotary hearth 12. In the illustrated embodiment, each line system 36 comprises two radially extending pipes 38, 40, which extend essentially over the entire charging width of the rotary hearth 12 and which are connected to one another at their radially outer end by a channel 42. On the radially inner side, the pipeline 38 opens into a feed channel 44 for the hot gas, while the pipeline 40 opens into a discharge channel 46 for the heating gas, which is embodied in the lower region of the rotary hearth 12. Both the feed channel 44 and the discharge channel 46 extend in the circumferential direction over a certain angular range of the rotary hearth 12. All Pipe systems 36 in this angular range are supplied with hot gas via the common feed channel 44, which is then discharged via the common discharge channel 46. The rotary hearth 12 is consequently divided into different zones which can be acted upon independently of one another by hot gas by means of a plurality of feed channels or discharge channels arranged next to one another in the circumferential direction.
Der Zuführkanal 44 wird über einen oder mehrere über die Länge des Zuführkanals 44 verteilte Ansaugrohre 48 mit Heißgas versorgt, die in dem Ansatz 32 angeordnet sind und eine Mündung 50 in dem oberen Bereich des Innenraums 30 des Ofens ausbilden. Durch diese Ansaugrohre 48 wird im Betrieb Heißgas in dem oberen Bereich des Ofens angesaugt und in den Zuführkanal 44 geleitet. In dem Zuführkanal 44 erfolgt dann die Aufteilung des Heißgases auf die verschiedenen in den Zuführkanal 44 einmündenden Leitungssysteme 36.The feed channel 44 is supplied with hot gas via one or more intake pipes 48 distributed over the length of the feed channel 44, which are arranged in the neck 32 and form an opening 50 in the upper region of the interior 30 of the furnace. During operation, hot gas is drawn in through the intake pipes 48 in the upper region of the furnace and passed into the feed channel 44. The distribution of the hot gas to the various line systems 36 opening into the feed channel 44 then takes place in the feed channel 44.
Die Ansaugung der Heißgase und das Durchleiten durch die Leitungssysteme 36 erfolgt vorteilhaft durch einen in dem jeweiligen Abführkanal 46 erzeugten Unterdruck. Der Abführkanal 46 steht dazu mit einem ringförmigen Absaugkanal 52 in dem drehfesten Unterbau des Ofens in Verbindung. Der Übergang zwischen dem Abführkanal 46 in dem Drehherd 12 und dem Absaugkanal 52 wird dabei vorzugsweise mittels Wassertassen realisiert. Eine an dem Absaug- kanal 52 angeschlossene Pumpe 54 sorgt für den nötigen Unterdruck und fördert die angesaugten Gase einer Abgasreinigung zu.The hot gases are drawn in and passed through the line systems 36 advantageously by means of a negative pressure generated in the respective discharge duct 46. The discharge duct 46 is connected to an annular suction duct 52 in the non-rotatable substructure of the furnace. The transition between the discharge duct 46 in the rotary hearth 12 and the suction duct 52 is preferably implemented by means of water cups. A pump 54 connected to the suction channel 52 provides the necessary negative pressure and promotes the sucked-in gases for exhaust gas cleaning.
Es ist anzumerken, daß die Heißgase nach dem Durchführen durch die Leitungssysteme 36 des Drehherds 12 einen großen Teil ihrer Energie abgegeben haben und demgemäß eine deutliche Abkühlung erfahren haben. Es wird dadurch möglich, die Gase ohne aufwendige und teure Spezialpumpen abzupumpen. Überdies wird die Abgasreinigung wesentlich erleichtert.It should be noted that after passing through the line systems 36 of the rotary hearth 12, the hot gases have given off a large part of their energy and have accordingly experienced a significant cooling. This makes it possible to pump out the gases without complex and expensive special pumps. Exhaust gas cleaning is also made considerably easier.
Der Absaugkanal 52 ist vorzugsweise in Umfangsrichtung des Ofens in verschiedene Teilkanäle unterteilt, wobei jeder Teilkanal an ein eigenes Pumpensystem angeschlossen ist. Durch unterschiedliches Regeln der Pumpleistungen für die verschiedenen Teilkanäle, kann die über die Leitungssysteme 36 angesaugte Heißgasmenge je nach Ofenbereich unterschiedlich geregelt werden. Auf diese Weise ist es möglich, über die in einem bestimmten Ofenbereich abgesaugte Heißgasmenge, die Heizleistung der sich jeweils in diesem Ofenbereich befindenden Zone des Drehherds 12 individuell zu regeln.The suction channel 52 is preferably divided into various subchannels in the circumferential direction of the furnace, each subchannel being connected to its own pump system. By regulating the pump powers for the different subchannels differently, the amount of hot gas drawn in via the line systems 36 can be regulated differently depending on the furnace area become. In this way, it is possible to individually control the heating power of the zone of the rotary hearth 12 located in that particular furnace area by means of the amount of hot gas drawn off in a certain furnace area.
Es ist anzumerken, daß die abgesaugte Heißgasmenge alternativ durch unterschiedliche Querschnitte des Absaugkanals 52 in den verschiedenen Ofenbereiche geregelt werden kann. In diesem Fall kann der Absaugkanal 52 durchgehend ausgestaltet und mit einem einheitlichen Unterdruck beaufschlagt sein.It should be noted that the amount of hot gas drawn off can alternatively be regulated by different cross sections of the suction channel 52 in the different furnace areas. In this case, the suction channel 52 can be designed continuously and can be subjected to a uniform negative pressure.
Enthalten die in dem Ofen angesaugten Heißgase brennbare Bestandteile, so wird vorteilhaft beim Durchführen der Gase durch das Leitungssystem 36 eine Nachverbrennung der Heißgase eingeleitet. Dazu weist der Zuführkanal 44 einen Gaseinlaß 56 auf, durch den ein Sauerstoffträger, z.B. Frischluft, angesaugt oder unter Druck in den Zuführkanal 44 eingeblasen werden kann. Durch den zugeführten Sauerstoff entzünden sich die brennbaren Bestandteile der Heißgase, die Temperatur der durch das Leitungssystem 36 geführten Heißgase wird erhöht und der Wärmeübertrag auf die chargierten Materialschichten verbessert.If the hot gases drawn into the furnace contain combustible constituents, then after-combustion of the hot gases is advantageously initiated when the gases are passed through the line system 36. For this purpose, the feed channel 44 has a gas inlet 56 through which an oxygen carrier, e.g. Fresh air, sucked in or can be blown under pressure into the feed channel 44. The combustible constituents of the hot gases are ignited by the supplied oxygen, the temperature of the hot gases led through the line system 36 is increased and the heat transfer to the charged material layers is improved.
Die Figuren 5 und 6 zeigen in einem Schnitt entlang der Linie C-C der Figur 2, verschiedene Möglichkeiten, die Leitungssysteme 36 in dem Drehherd 12 anzuordnen. In einer ersten Ausgestaltung (Figur 5), werden die Rohrleitungen 38, 40 fest in die obere Schicht 58 des hitzebeständigen Materials des Drehherds 12 eingebaut. Bei den hitzebeständigen Material handelt es sich beispielsweise um einen feuerfesten Beton, der auf einen Unterbau des Drehherds 12 aufgebracht wird. Die Rohrleitungen 38, 40 sowie die Verbindungska- näle 42 werden vor dem Aufbringen des feuerfesten Betons auf den Unterbau aufgelegt und anschließend in den Beton eingegossen. Es ist anzumerken, daß bei Verwendung von nicht hitzebeständigen Rohrleitungen, diese nach dem Aushärten des Betons ausgebrannt werden können, so daß lediglich die Hohlräume in der Betonschicht verbleiben, die das Leitungssystem 36 definie- ren. In einer zweiten Ausgestaltung (Figur 6) umfaßt die hitzebeständige Verkleidung des Drehherds 12 eine Schicht 60 aus wärmeleitendem Material, die auf eine darunterliegende Schicht aus feuerfestem Beton aufgetragen wird. In diesem Fall werden die Rohrleitungen 38, 40 auf die Schicht aus feuerfestem Beton aufgelegt und einfach mit dem Material überdeckt. Diese Ausgestaltung des Drehherds 12 erleichtert ein späteres Austauschen von defekten Rohrleitungen.FIGS. 5 and 6 show, in a section along the line CC of FIG. 2, different possibilities for arranging the line systems 36 in the rotary hearth 12. In a first embodiment (FIG. 5), the pipes 38, 40 are firmly installed in the upper layer 58 of the heat-resistant material of the rotary hearth 12. The heat-resistant material is, for example, a refractory concrete that is applied to a base of the rotary hearth 12. The pipes 38, 40 and the connecting channels 42 are placed on the substructure before the refractory concrete is applied and then poured into the concrete. It should be noted that if non-heat-resistant pipelines are used, these can be burned out after the concrete has hardened, so that only the cavities that define the piping system 36 remain in the concrete layer. In a second embodiment (FIG. 6), the heat-resistant cladding of the rotary hearth 12 comprises a layer 60 of heat-conducting material, which is applied to an underlying layer of refractory concrete. In this case, the pipes 38, 40 are placed on the layer of refractory concrete and simply covered with the material. This design of the rotary hearth 12 facilitates later replacement of defective pipes.
Anhand der Figuren 7 bis 9 wird eine zweite Ausgestaltung eines erfindungsgemäßen Ofens beschrieben. Bei diesem Ofentyp handelt es sich um einen sogenannten Drehherdofen, bei dem das Gehäuse 14 im Schnitt (siehe Fig. 8 oder 9) dreiseitig ausgebildet ist und den ringförmigen Ofeninnenraum 30 nach oben und radial nach innen und außen begrenzt. Nach unten ist der Innenraum 30 durch den Drehherd 12 begrenzt und mittels Wassertassen 34 gegen die Umgebung abgedichtet. Die Leitungssysteme 36' umfassen jeweils eine Rohrleitung 38', die sich von dem inneren Rand des Drehherds 12 radial nach außen erstreckt und in einem Bogen radial nach innen zurückgeführt ist. Jede Rohrleitung 38' ist mit einem eigenen Ansaugrohr 48 verbunden, der in dem Ansatz 32 des Drehherds 12 angeordnet sind und eine Mündung 50 in dem oberen Bereich dieses Ansatzes 32 ausbildet. Es ist anzumerken, daß der Ansatz 32 bei dieser Ausführung nicht die Funktion des Ofenbegrenzung übernehmen muß. Er dient hier lediglich der Unterbringung der Ansaugrohre 48 für die verschiedenen Rohrleitungen 38'.A second embodiment of an oven according to the invention is described with reference to FIGS. 7 to 9. This type of furnace is a so-called rotary hearth furnace, in which the housing 14 is formed on three sides in section (see FIG. 8 or 9) and delimits the annular furnace interior 30 upwards and radially inwards and outwards. The interior 30 is delimited at the bottom by the rotary hearth 12 and sealed from the surroundings by means of water cups 34. The line systems 36 'each comprise a pipeline 38' which extends radially outwards from the inner edge of the rotary hearth 12 and is returned radially inwards in an arc. Each pipe 38 'is connected to its own suction pipe 48, which is arranged in the neck 32 of the rotary hearth 12 and forms an opening 50 in the upper region of this neck 32. It should be noted that the approach 32 does not have to take over the function of the furnace limitation in this embodiment. It only serves to accommodate the intake pipes 48 for the various pipes 38 '.
Das radial nach innen zurückgeführte Ende der Rohrleitung 38' ist nach unten aus den Drehherd 12 herausgeführt und wird, analog zu dem Abführkanal 46 der Figuren 3 und 4, mit einem System zur Erzeugung eines Unterdrucks verbunden.The radially inward end of the pipeline 38 'is led downwards out of the rotary hearth 12 and, analogously to the discharge duct 46 of FIGS. 3 and 4, is connected to a system for generating a negative pressure.
In den Figuren 10 bis 12 sind alternative Heißgasführungen in einem Drehherdofen dargestellt, dessen Drehherd 12 keinen sich nach oben erstreckenden Ansatz 32 aufweist. Die einfachste Variante einer solchen Gasführung ist in Figur 10 dargestellt. Jedes Leitungssystem 36 umfaßt eine sich radial über die gesamte Breite des Drehherds 12 erstreckende Rohrleitung 38", die beiderseits in die radialen Begrenzungsflächen des Drehherds 12 mündet. Dazwischen ist die Rohrleitung 38" mit einem nach unten aus dem Drehherd 12 herausgeführten Absaugstutzen 64 verbunden. Über den Absaugstutzen 64 wird, wie oben beschrieben, ein Unterdruck an die Rohrleitung 38" angelegt, so daß die Heißgase über die radialen Ringspalte 62 zwischen dem Drehherd 12 und der jeweiligen radialen Gehäusewand angesaugt werden. Wie oben beschrieben, werden die Heißgase bevorzugt im oberen Bereich des Ofens angesaugt. In einer weiteren Variante (Figur 11 ) weist der Ofen daher ein Ansaugrohr 48' auf, der beispielsweise in der radial innenliegenden Ofenwand 66 angeordnet ist und eine Mündung 50' im oberen Bereich des Innenraumes 30 des Ofens ausbildet. An seinem anderen Ende mündet das Ansaug- röhr 48' in einem Zuführkanal 68, der mit der Rohrleitung 38'" in Verbindung steht.FIGS. 10 to 12 show alternative hot gas guides in a rotary hearth furnace, the rotary hearth 12 of which does not have an extension 32 which extends upwards. The simplest variant of such a gas guide is shown in FIG. 10. Each pipe system 36 comprises a pipe 38 ", which extends radially over the entire width of the rotary hearth 12 and opens on both sides into the radial boundary surfaces of the rotary cooker 12. In between, the pipe 38" is connected to a suction nozzle 64 which leads downward out of the rotary hearth 12. As described above, a vacuum is applied to the pipeline 38 "via the suction connection 64, so that the hot gases are sucked in via the radial annular gaps 62 between the rotary hearth 12 and the respective radial housing wall. As described above, the hot gases are preferably in the upper one In a further variant (FIG. 11), the furnace therefore has a suction pipe 48 'which is arranged, for example, in the radially inner furnace wall 66 and forms an opening 50' in the upper region of the interior 30 of the furnace at the other end, the suction pipe 48 'opens into a feed channel 68 which is connected to the pipeline 38'".
Die Rohrleitung 38'" erstreckt sich radial im wesentlichen über die gesamte Breite der Chargierfläche des Drehherds 12 und ist an ihren Enden nach unten aus dem Drehherd 12 herausgeführt. Unterhalb des Drehherds 12 erfolgt dann der Anschluß an den Zuführkanal 68 einerseits und an einen Abführkanal 70 andererseits, wobei die Abdichtung zwischen den drehenden Enden und den drehfesten Kanälen 68 und 70 in bekannter Weise erfolgt.The pipeline 38 '"extends radially essentially over the entire width of the charging surface of the rotary hearth 12 and is guided at its ends downwards out of the rotary hearth 12. Below the rotary hearth 12, the connection to the feed channel 68 is made on the one hand and to a discharge channel 70 on the other hand, the sealing between the rotating ends and the non-rotatable channels 68 and 70 takes place in a known manner.
Eine alternative Ausgestaltung des Gasübertritts zwischen der drehfesten Gaszu- bzw. abfuhr ist in Fig. 12 dargestellt. Der Drehherd 12 weist an seinen radialen Begrenzungsflächen jeweils einen ringförmigen Ansatz 72 bzw. 74 auf, der in einen entsprechenden Ringkanal 76 bzw. 78 in der angrenzenden Ofenwand eingreift. Die Rohrleitung 38"" mündet beiderseits der Chargierfläche in der radialen Begrenzungsfläche des jeweiligen ringförmigen Ansatzes 72 bzw. 74. Die Zufuhr der Heißgase erfolgt dann über den Ringkanal 76, in den die Ansaugrohre 48' einmünden, während die Absaugung über den Ringkanal 78 erfolgt. Es versteht sich von selbst, daß die oben beschriebenen Ausgestaltungen lediglich einige wenige Beispiele für mögliche Gasführungen in den Ofen darstellen. Dem Fachmann wird klar werden, daß die oben beschriebenen Ausgestaltungen ebenfalls untereinander kombinierbar sind. Weiterhin ist klar, daß alternativ zu den beschriebenen im wesentlichen radialen Gasführungen, Leitungssysteme vorgesehen werden können, die sich in Schlangenlinien im wesentlichen in Umlaufrichtung erstrecken. Eine solche Ausgestaltung ist beispielsweise in Figur 13 dargestellt.An alternative embodiment of the gas transfer between the non-rotatable gas supply and discharge is shown in FIG. 12. The rotary hearth 12 has on its radial boundary surfaces in each case an annular extension 72 or 74 which engages in a corresponding annular channel 76 or 78 in the adjacent furnace wall. The pipeline 38 "" opens on both sides of the charging surface in the radial boundary surface of the respective annular extension 72 or 74. The hot gases are then supplied via the ring channel 76, into which the suction pipes 48 'open, while the suction takes place via the ring channel 78. It goes without saying that the configurations described above represent only a few examples of possible gas flows into the furnace. It will be clear to the person skilled in the art that the configurations described above can also be combined with one another. Furthermore, it is clear that, as an alternative to the essentially radial gas ducts described, line systems can be provided which extend in serpentine lines essentially in the circumferential direction. Such an embodiment is shown for example in FIG. 13.
Eine weitere Variante zur Heizung des Drehherds 12 ist in Figur 14 gezeigt. Bei dieser Ausgestaltung umfaßt die Heizvorrichtung elektrische Heizelemente 80, die sich z.B. in radialer Richtung über den Drehherd 12 erstrecken. Der Vorteil einer derartigen elektrischen Heizvorrichtung liegt in der genaueren Regelung der zugeführten Heizleistung. Another variant for heating the rotary hearth 12 is shown in FIG. 14. In this embodiment, the heating device comprises electrical heating elements 80 which e.g. extend in the radial direction over the rotary hearth 12. The advantage of such an electrical heating device lies in the more precise regulation of the heating power supplied.

Claims

Patentansprüche claims
1. Verfahren zum Erwärmen von Materialien in einem Ofen mit Drehherd, wobei mindestens eine Materialschicht auf den Drehherd chargiert wird und von oben mit einem Heißgas beaufschlagt wird, dadurch gekennzeichnet daß die Materialschicht zusätzlich von unten durch den Drehherd geheizt wird.1. A method for heating materials in an oven with a rotary hearth, wherein at least one layer of material is charged onto the rotary hearth and a hot gas is applied from above, characterized in that the material layer is additionally heated from below through the rotary hearth.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das Heizen der Materialschicht von unten durch elektrische Wärmeerzeugung erfolgt.2. The method according to claim 1, characterized in that the heating of the material layer is carried out from below by electrical heat generation.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das Heizen der Materialschicht von unten durch Durchleiten eines Wärmeträgers durch den Drehherd erfolgt.3. The method according to claim 1, characterized in that the heating of the material layer is carried out from below by passing a heat transfer medium through the rotary hearth.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Wärmeträger Heißgas umfaßt.4. The method according to claim 3, characterized in that the heat transfer medium comprises hot gas.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Heißgas im Ofen angesaugt wird. 5. The method according to claim 4, characterized in that the hot gas is sucked into the furnace.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Ansaugen des Heißgases im oberen Bereich des Ofens erfolgt.6. The method according to claim 5, characterized in that the suction of the hot gas takes place in the upper region of the furnace.
7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß beim Durchleiten des Prozeßgases durch den Drehherd eine Nachverbrennung des Heißgases erfolgt. 7. The method according to any one of claims 4 to 6, characterized in that when the process gas is passed through the rotary hearth, the hot gas is afterburned.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Ofen in verschiedene in Umfangsrichtung benachbarte Zonen unterteilt ist, dadurch gekennzeichnet, daß eine dem Drehherd zugeführte Heizleistung in jeder Zone des Ofens individuell geregelt wird.8. The method according to any one of the preceding claims, wherein the furnace is divided into different adjacent zones in the circumferential direction, characterized in that a heating power supplied to the rotary hearth is individually controlled in each zone of the furnace.
9. Ofen mit Drehherd, wobei der Drehherd seiner Oberseite von einem Gehäuse umgeben ist, und wobei Mittel in dem Gehäuse vorgesehen sind, um eine auf den Drehherd chargierte Materialschicht von oben mit einem Heizgas zu beaufschlagen, gekennzeichnet durch mindestens ein Heizelement, das in dem Drehherd angeordnet ist. 9. furnace with rotary hearth, the rotary hearth of its upper side being surrounded by a housing, and wherein means are provided in the housing in order to apply a layer of material to the rotary hearth from above with a heating gas, characterized by at least one heating element which in the Rotary hearth is arranged.
10. Ofen nach Anspruch 9, dadurch gekennzeichnet, daß der Drehherd in verschiedene Zonen unterteilt ist, und daß in jeder Zone ein Heizelement angeordnet ist.10. Oven according to claim 9, characterized in that the rotary hearth is divided into different zones and that a heating element is arranged in each zone.
11. Ofen nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß das Heizelement ein elektrisches Heizelement umfaßt.11. Oven according to one of claims 9 or 10, characterized in that the heating element comprises an electric heating element.
12. Ofen nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß das Heizelement ein in dem Drehherd angeordnetes Leitungssystem aufweist, das mit einem Wärmeträger beaufschlagbar ist.12. Oven according to one of claims 9 or 10, characterized in that the heating element has a line system arranged in the rotary hearth, which can be acted upon with a heat transfer medium.
13. Ofen nach Anspruch 12, dadurch gekennzeichnet, daß der Wärmeträger ein Heißgas umfaßt.13. Oven according to claim 12, characterized in that the heat transfer medium comprises a hot gas.
14. Ofen nach Anspruch 13, gekennzeichnet durch eine Vorrichtung zum Ansaugen von Heißgas im Ofen und zum Einleiten des Heißgases in das Leitungssystem.14. Oven according to claim 13, characterized by a device for drawing in hot gas in the oven and for introducing the hot gas into the line system.
15. Ofen nach Anspruch 14, dadurch gekennzeichnet, daß die Vorrichtung zum Ansaugen des Heißgases eine Ansaugöffnung im oberen Bereich des15. Oven according to claim 14, characterized in that the device for sucking in the hot gas has a suction opening in the upper region of the
Ofens ausbildet.Oven.
16. Verwendung eines Ofens nach einem der Ansprüche 8 bis 15 zur Direktreduktion von Eisenoxyd. 16. Use of a furnace according to one of claims 8 to 15 for the direct reduction of iron oxide.
PCT/EP1998/002250 1997-04-18 1998-04-17 Furnace with rotating hearth and operating method WO1998048059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU76443/98A AU7644398A (en) 1997-04-18 1998-04-17 Furnace with rotating hearth and operating method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BE9700359A BE1011116A3 (en) 1997-04-18 1997-04-18 Heating method implemented in an annular kiln with a mobile hearth and devices for applying same
BE9700359 1997-04-18
LU90178 1997-11-26
LU90178A LU90178B1 (en) 1997-11-26 1997-11-26 Furnace with a rotating hearth for e.g. sponge iron production - with at least one heating element installed in the hearth

Publications (1)

Publication Number Publication Date
WO1998048059A1 true WO1998048059A1 (en) 1998-10-29

Family

ID=25663093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/002250 WO1998048059A1 (en) 1997-04-18 1998-04-17 Furnace with rotating hearth and operating method

Country Status (2)

Country Link
AU (1) AU7644398A (en)
WO (1) WO1998048059A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963449B (en) * 2009-07-22 2012-06-06 江苏省冶金设计院有限公司 Double-layer ring-shaped rotary hearth furnace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR561834A (en) * 1921-04-14 1923-10-29 Continuous oven for gas firing of ceramic products
US1958448A (en) * 1931-10-07 1934-05-15 Harry M Robertson Kiln
GB424273A (en) * 1933-08-15 1935-02-15 Kloeckner Werke Ag Process and apparatus for the production of spongy iron
CH216256A (en) * 1938-08-08 1941-08-15 Keramische Ind Bedarfs Komm Ge Kiln trolleys for tunnel kilns with electrical heating.
GB644765A (en) * 1948-10-04 1950-10-18 Internat Furnace Equipment Com Improvements relating to tunnel kilns
GB886524A (en) * 1958-08-06 1962-01-10 Aton Planungs & Baugesellschaft Fuer Die Keramische Industrie Mbh Improvements relating to tunnel kilns
DE3421895A1 (en) * 1984-04-11 1985-12-19 Andreas Ing.(grad.) 7904 Erbach Häßler Fuel assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR561834A (en) * 1921-04-14 1923-10-29 Continuous oven for gas firing of ceramic products
US1958448A (en) * 1931-10-07 1934-05-15 Harry M Robertson Kiln
GB424273A (en) * 1933-08-15 1935-02-15 Kloeckner Werke Ag Process and apparatus for the production of spongy iron
CH216256A (en) * 1938-08-08 1941-08-15 Keramische Ind Bedarfs Komm Ge Kiln trolleys for tunnel kilns with electrical heating.
GB644765A (en) * 1948-10-04 1950-10-18 Internat Furnace Equipment Com Improvements relating to tunnel kilns
GB886524A (en) * 1958-08-06 1962-01-10 Aton Planungs & Baugesellschaft Fuer Die Keramische Industrie Mbh Improvements relating to tunnel kilns
DE3421895A1 (en) * 1984-04-11 1985-12-19 Andreas Ing.(grad.) 7904 Erbach Häßler Fuel assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963449B (en) * 2009-07-22 2012-06-06 江苏省冶金设计院有限公司 Double-layer ring-shaped rotary hearth furnace

Also Published As

Publication number Publication date
AU7644398A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
CN106430191B (en) Absorbent charcoal activation furnace and method for prodn. of activated carbon
DE2952065C2 (en) Process for dry cooling of coke and coke cooling device for carrying out the process
DE2325468B2 (en) PROCESS FOR SINTERING RAW CEMENT FLOUR OR SIMILAR SUBSTANCES
CN106276889B (en) The body of heater of absorbent charcoal activation furnace
DE2746330A1 (en) METHOD AND DEVICE FOR BURNING SINTER MATERIAL
DE2614952C2 (en) Method and device for the continuous burning of carbon blanks
DE2129662C3 (en) Process for the simultaneous production of coke and metallized oxides
EP2166284B1 (en) Rotary drum furnace and method of operating
EP2257752A2 (en) Industrial furnace and method for operating an industrial furnace
EP1114193A1 (en) Method for heat-treating recyclings containing oil and iron oxide
DE2501457A1 (en) TURNING SYSTEM
EP1038038B1 (en) Method for producing directly reduced iron in a multiple hearth furnace
EP2344825B1 (en) Method and shaft furnace for firing material pieces
WO1998048059A1 (en) Furnace with rotating hearth and operating method
EP1015644B1 (en) Method and apparatus for the direct reduction of a material containing iron oxide in a particulate form
DE1433339A1 (en) Process for hard burning pellets
DE1225673B (en) Process for the dry reduction of iron ore
EP3935332B1 (en) Method and shaft furnace for burning carbon-containing material in a shaft furnace
DE1451148B1 (en) Device for direct heat exchange in countercurrent between a pourable material and gases
DE2111785C3 (en) Heat treatment furnace
DE68913001T2 (en) METHOD FOR PRODUCING A POWDER CONTAINING REDUCED CHROME ORE.
DE102006062689B4 (en) Shaft furnace for the direct reduction of iron oxide
DE2310853B2 (en) PREHEATER FOR A ROTARY FURNACE
CH618107A5 (en) Method for the electroinductive heating of material layers having a high resistivity
DE3538151A1 (en) Process and apparatus for the manufacture of artificial carbon articles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998544983

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA