WO1998042042A1 - Antenne pour satellite a defilement - Google Patents

Antenne pour satellite a defilement Download PDF

Info

Publication number
WO1998042042A1
WO1998042042A1 PCT/FR1998/000535 FR9800535W WO9842042A1 WO 1998042042 A1 WO1998042042 A1 WO 1998042042A1 FR 9800535 W FR9800535 W FR 9800535W WO 9842042 A1 WO9842042 A1 WO 9842042A1
Authority
WO
WIPO (PCT)
Prior art keywords
elementary
antenna
satellite
antennas
radiating elements
Prior art date
Application number
PCT/FR1998/000535
Other languages
English (en)
Inventor
Hubert Diez
Original Assignee
Centre National D'etudes Spatiales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National D'etudes Spatiales filed Critical Centre National D'etudes Spatiales
Priority to JP54020198A priority Critical patent/JP2001516536A/ja
Priority to DE69817373T priority patent/DE69817373T2/de
Priority to EP98917183A priority patent/EP1010214B1/fr
Priority to AT98917183T priority patent/ATE247871T1/de
Priority to US09/381,537 priority patent/US6252562B1/en
Priority to CA002284872A priority patent/CA2284872A1/fr
Publication of WO1998042042A1 publication Critical patent/WO1998042042A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/067Two dimensional planar arrays using endfire radiating aerial units transverse to the plane of the array

Definitions

  • the present invention relates to antennas for traveling satellites.
  • the antennas used by the scrolling satellites are either omnidirectional type antennas (SPOT, ERS, etc.) or pointable directional type antennas (LANDSAT, etc.).
  • the beam is Gaussian and the scanning is carried out using a pointing mechanism, the antenna behaving as a centered parabolic reflector of conventional design.
  • An object of the invention is to provide an antenna for a scrolling satellite which does not require any pointing mechanism, which has a gain greater than the omnidirectional antennas and which is compact and of low cost.
  • the invention provides an antenna for the retransmission on the ground of images collected by instruments for taking a view of a scrolling satellite, characterized in that it comprises a plurality of elementary radiation antennas of the type having a plurality of strands distributed regularly in a helix around the same generator of revolution as well as means of equi-amplitude supply of the different strands, in that these different elementary antennas are aligned and in that the plane in which these different elementary antennas are distributed is intended, when the satellite is in orbit, to be perpendicular to the direction of the speed vector of the satellite and in that it comprises means of phase shifting of the supply of these different elementary antennas which are capable of producing electronic offset of the elongated beam generated by said elementary antennas.
  • the beam The emission emission is a beam of elliptical type ("fan beans" according to English terminology) which extends in a direction parallel to that of the speed vector of the satellite.
  • the depointing of this beam on a given longitude makes it possible to reach, during all the time of passage of a satellite, a station being at this longitude, and this without needing to modify this depointing as the satellite advanced. It is understood that such an antenna structure does not require complicated electronics and allows high transmission rates.
  • the number of elementary radiating elements is equal to or greater than five; the elementary radiating elements are offset with respect to one another with a pitch chosen so as to avoid the lobes of networks;
  • the pitch between two elementary antennas is around 19 mm;
  • phase shift means are coded on 3 to 8-bits; the phase shifting means are of the ferrite type.
  • FIG. 1 is a schematic representation illustrating an antenna according to an embodiment of the invention
  • FIG. 2 is a graph on which the diagram of an elementary radiating element of the antenna of FIG. 1 has been plotted
  • FIGS. 3 to 6 illustrate different diagrams of covers obtained with the antenna of FIG. 1.
  • the antenna illustrated in FIG. 1 comprises a plurality of elementary radiating elements referenced by 1. These elementary radiating elements 1 each comprise a plurality of helical strands distributed regularly around the same generator of revolution.
  • the generator is for example conical or cylindrical. These strands are equally supplied.
  • these strands are four in number and define four identical helices, offset by ⁇ / 2 relative to each other. These four strands are advantageously supplied with phase quadrature.
  • the angular radiation diagram of such an elementary radiating element is of the type illustrated in FIG. 2.
  • This diagram corresponds to the diagram obtained for an axial height of radiating element of 0.050 m, a basic radius of 0.018 m, as well as an emission frequency of 8000 MHz. It relates to a measuring sphere 10 m in diameter.
  • the elementary radiating elements with several helical strands have, as will be seen below, the advantage of having more gains at 50 ° than at 0 ° and therefore making it possible to compensate for the loss of deflection.
  • the elementary radiating elements 1 are distributed in line in a plane perpendicular to the direction of the speed vector.
  • the pitch between said radiating elements 1 is for example 19 mm for a transmission frequency of 8000 MHz, which makes it possible to have no network lobes.
  • the network pitch d is such that d ⁇ / (l + sin ⁇ ) where ⁇ is the wavelength of the radiation, and ⁇ the maximum depointing desired.
  • the radiating elements 1 are supplied via phase shifters 2 of the ferrite type and couplers 3, by a power distributor 6 (in this case 1: 5), which is for example of the waveguide type.
  • phase shifters 2 are controlled by a unit 4, which is the on-board computer of the satellite, to which they are connected by control electronics 5.
  • phase-shifters of the ferrite type has the advantage of making it possible to always keep the same offset.
  • the consumption of the control electronics is then limited.
  • the phase shifts imposed on the different radiating elements 1 make it possible to achieve the desired depointing, and this up to +. 62 °.
  • the choice for radiating elements 1 of a propeller structure makes it possible to have a gain at 50 ° greater by 2 dB than the gain presented at 0 ° (excluding compensation for space attenuation difference difference -62 ° lift satellite with respect to the zenith) and therefore to naturally compensate for the loss of deflection.
  • the optimal number of elementary radiant elements will vary from five to twelve depending on the needs of the mission.
  • the phase shifters 2 have, for example, quantization steps of 22.5 ° and are coded on 4 bits.
  • FIG. 3 illustrates the coverage obtained with the antenna which has just been described, in the case of a zero phase shift between the different radiating elements 1. There is then no depointing and the maximum directivity of the antenna is 11.55 dB.
  • the diagram is then deviated by + 18 °.
  • the directivity is 11.52 dB.
  • the depointing is then 32 °, the directivity of 11.49 dB.
  • the distortion obtained is 48 °, the maximum directivity of 11.45 dB.
  • the directivity obtained at 65 ° is greater than 9 dB, i.e. a gain greater than 7.5 dB if we consider losses of 0.5 dB on the distributors, 0.5 dB for the phase shifters, 0, 25 dB at the connector level and 0.25 dB at the power supply level.
  • the antenna with deflection which has just been described allows high transmission rates on the ground and allows retransmissions of High resolution images.
  • the beam switching is preferably carried out before passage, so as to avoid the problems of phase jump on the generated coverage.
  • the antenna diagram does not compensate for the attenuation of space, it is possible to envisage changes in transmission speed in order to best use the gains of the antenna in the areas close to the transition to the zenith.
  • the depointing antenna which has just been described has the advantage of being of low cost and above all of compactness.
  • the size of the radiating part is 90mm in length, 5mm in width and 50mm in height.
  • the antenna comprises several online antennas of the type which has just been described and switching means making it possible to switch from one online antenna to another according to the movements of the satellite, and in particular of its roll movements.
  • the antenna includes motorization means which make it possible to modify the orientation of the line (s) of elementary radiating elements in order to compensate for the potential movements of the satellite, in particular its roll movements.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Relay Systems (AREA)
  • Details Of Aerials (AREA)

Abstract

Antenne pour la retransmission au sol d'images collectées par des instruments de prise de vue d'un satellite à défilement, caractérisée en ce qu'elle comporte une pluralité d'antennes élémentaires de rayonnement (1) du type présentant une pluralité de brins répartis régulièrement en hélice autour d'une même génératrice de révolution ainsi que des moyens d'alimentation équi-amplitude des différents brins, en ce que ces différentes antennes élémentaires sont alignées et en ce que le plan dans lequel ces différentes antennes élémentaires sont réparties est destiné, lorsque le satellite est en orbite, à être perpendiculaire à la direction du vecteur vitesse du satellite et en ce qu'elle comporte également des moyens (2) de déphasage de l'alimentation de ces différentes antennes élémentaires qui sont aptes à réaliser un dépointage électronique du faisceau allongé généré par lesdites antennes élémentaires.

Description

ANTENNE POUR SATELLITE A DEFILEMENT
La présente invention est relative aux antennes pour satellites à défilement. A ce jour, les antennes utilisées par les satellites à défilement sont soit des antennes de type omnidirectionnel (SPOT, ERS, etc) soit de type directif pointable (LANDSAT, etc) .
Dans ce dernier cas, le faisceau est gaussien et le balayage est réalisé à l'aide d'un mécanisme de pointage, l'antenne se comportant quant à elle comme un réflecteur parabolique centré de conception classique.
Un but de l'invention est de proposer une antenne pour satellite à défilement qui ne nécessite aucun mécanisme de pointage, qui présente un gain supérieur aux antennes omnidirectionnelles et qui est peu encombrante et d'un faible coût.
A cet effet, l'invention propose une antenne pour la retransmission au sol d'images collectées par des instruments de prise de vue d'un satellite à défilement, caractérisée en ce qu'elle comporte une pluralité d'antennes élémentaires de rayonnement du type présentant une pluralité de brins répartis régulièrement en hélice autour d'une même génératrice de révolution ainsi que des moyens d'alimentation équi-amplitude des différents brins, en ce que ces différentes antennes élémentaires sont alignées et en ce que le plan dans lequel ces différentes antennes élémentaires sont réparties est destiné, lorsque le satellite est en orbite, à être perpendiculaire à la direction du vecteur vitesse du satellite et en ce qu'elle comporte des moyens de déphasage de l'alimentation de ces différentes antennes élémentaires qui sont aptes à réaliser un dêpointage électronique du faisceau allongé généré par lesdites antennes élémentaires.
On notera qu'avec une telle répartition d'antennes élémentaires à diagramme formé, le faisceau d'émission réalisé est un faisceau de type elliptique ("fan beans" selon la terminologie anglo-saxonne) qui s'étend dans une direction parallèle à celle du vecteur vitesse du satellite. Le dépointage de ce faisceau sur une longitude donnée permet d'atteindre, pendant tout le temps de passage d'un satellite, une station se trouvant à cette longitude, et ce sans avoir besoin de modifier ce dépointage au fur et à mesure que le satellite avance. On comprend qu'une telle structure d'antenne ne nécessite pas une électronique compliquée et permet des hauts débits de transmission.
Cette antenne est avantageusement complétée par les différentes caractéristiques suivantes prises seules ou selon toutes leurs combinaisons possibles :
- le nombre d'éléments rayonnants élémentaires est égal ou supérieur à cinq ; les éléments rayonnants élémentaires sont décalés les uns par rapport aux autres avec un pas choisi de façon à éviter les lobes de réseaux ;
- pour une fréquence d'émission à 8000 MHz, le pas entre deux antennes élémentaires est de l'ordre de 19 mm ;
- les moyens de déphasage sont codés sur 3 à 8- bits ; les moyens de déphasage sont du type à ferrite .
D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui suit. Cette description est purement illustrative et non limitative. Elle doit être lue en regard des dessins annexés sur lesquels :
- la figure 1 est une représentation schématique illustrant une antenne conforme à un mode de réalisation de l'invention ; la figure 2 est un graphe sur lequel on a porté le diagramme d'un élément rayonnant élémentaire de l'antenne de la figure 1 ; les figures 3 à 6 illustrent différents diagrammes de couvertures obtenus avec 1 ' antenne de la figure 1.
L'antenne illustrée sur la figure 1 comporte une pluralité d'éléments rayonnants élémentaires référencés par 1. Ces éléments rayonnants élémentaires 1 comportent chacun une pluralité de brins hélicoïdaux répartis régulièrement autour d'une même génératrice de révolution. La génératrice est par exemple conique ou cylindrique. Ces brins sont alimentés de façon équi- amplitude.
Par exemple, ces brins sont au nombre de quatre et définissent quatre hélices identiques, décalées de π/2 les unes par rapport aux autres. Ces quatre brins sont avantageusement alimentés en quadrature de phase. Le diagramme angulaire de rayonnement d'un tel élément rayonnant élémentaire est du type de celui illustré sur la figure 2.
Ce diagramme correspond au diagramme obtenu pour une hauteur axiale d'élément rayonnant de 0,050 m, un rayon de base de 0,018 m, ainsi qu'une fréquence d'émission de 8000 MHz. Il est rapporté à une sphère de mesure de 10 m de diamètre.
On notera que les éléments rayonnants élémentaires à plusieurs brins en hélice présentent, comme on le verra plus loin, l'avantage de présenter plus de gains à 50° qu'à 0° et donc de permettre de compenser les pertes de dépointage.
Les éléments rayonnants élémentaires 1 sont répartis en ligne dans un plan perpendiculaire à la direction du vecteur vitesse.
Ils sont disposés de façon que leurs axes soient parallèles, dans un même plan et espacés régulièrement. Le pas entre lesdits éléments rayonnants 1 est par exemple de 19 mm pour une fréquence d'émission de 8000 MHz, ce qui permet de ne pas avoir de lobes de réseau.
De façon plus générale, le pas d du réseau est tel que d<λ/(l+sinθ) où λ est la longueur d'onde du rayonnement, et θ le dépointage maximal souhaité.
Les éléments rayonnants 1 sont alimentés via des déphaseurs 2 de type à ferrite et des coupleurs 3, par un répartiteur de puissance 6 (en l'occurrence 1:5) , qui est par exemple de type guide d'onde.
Les déphaseurs 2 sont commandés par une unité 4, qui est le calculateur de bord du satellite, à laquelle ils sont reliés par une électronique de commande 5.
L'utilisation des déphaseurs de type à ferrite présente l'avantage de permettre de conserver toujours le même dépointage. La consommation de l'électronique de commande est alors limitée. Les déphasages imposés aux différents éléments rayonnants 1 permettent de réaliser les dépointages souhaités, et ce jusqu'à +. 62°.
Le choix pour les éléments rayonnants 1 d'une structure à hélice permet de disposer d'un gain à 50° supérieur de 2 dB au gain présenté à 0° (hors terme de compensation de différence d'atténuation d'espace -62° lever satellite par rapport au zénith) et donc de compenser naturellement les pertes de dépointage.
Le nombre optimal d'élément rayonnant élémentaire variera de cinq à douze en fonction des besoins de la mission.
Les déphaseurs 2 présentent par exemple des pas de quantification de 22,5° et sont codés sur 4 bits.
Les faisceaux générés par une telle antenne sont elliptiques (grand axe des ellipses parallèle à la trace du satellite) . On a illustré sur la figure 3 la couverture obtenue avec l'antenne qui vient d'être décrite, dans le cas d'un déphasage nul entre les différents éléments rayonnants 1. II n'y a alors pas de dépointage et la directivité maximale de l'antenne est de 11,55 dB .
Sur la figure 4, on a représenté la couverture obtenue dans le cas de déphasages respectivement d'un élément rayonnant d'extrémité 1 à l'autre de 90°, 45°, 0°, - 45° et -90°.
Le diagramme est alors dépointé de + 18°. La directivité est 11,52 dB .
Sur la figure 5, on a illustré la couverture obtenue dans le cas d'un déphasage respectivement de 180°, 90°, 0°, - 90°, -180°.
Le dépointage est alors de 32°, la directivité de 11,49 dB.
Sur la figure 6, enfin, on a représenté la couverture obtenue respectivement pour des déphasages de 270°, 135°, 0°, - 135° et -270°.
Le dépointage obtenu est de 48°, la directivité maximale de 11,45 dB .
Sur ces différentes figures 3 à 6, les cercles représentés en traits pointillés correspondent aux cercles de visibilité respectivement à ± 60° et ± 65°.
On note que, d'un diagramme à l'autre, la directivité maximale n'évolue que très peu (11,54 dB à ll,45dB) .
La directivité obtenue à 65° est supérieure à 9- dB, soit un gain supérieur à 7,5 dB si l'on considère des pertes de 0,5 dB sur les répartiteurs, de 0,5 dB pour les déphaseurs, de 0,25 dB au niveau de la connectique et de 0,25 dB au niveau de l'alimentation.
L'antenne à dépointage qui vient d'être décrite permet des débits de retransmission au sol importants et permet des retransmissions d'images Haute résolution. La commutation du faisceau s'effectue préfèrentiellement avant passage, de façon à éviter les problèmes de saut de phase sur la couverture générée.
Dans le cas où le diagramme antenne ne compense pas l'atténuation d'espace, on peut envisager des changements de vitesse de transmission pour utiliser au mieux les gains de l'antenne dans les zones proches du passage au zénith.
L'antenne à dépointage qui vient d'être décrite présente l'avantage d'être d'un faible coût et surtout d'un faible encombrement. L'encombrement de la partie rayonnante est de 90mm en longueur, de 5 mm en largeur et de 50 mm en hauteur.
Avantageusement encore, l'antenne comporte plusieurs antennes en ligne du type qui vient d'être décrit et des moyens de commutation permettant de basculer d'une antenne en ligne à une autre en fonction des mouvements du satellite, et notamment de ses mouvements de roulis. En variante, l'antenne comporte des moyens de motorisation qui permettent de modifier l'orientation de la (ou des) ligne (s) d'éléments rayonnants élémentaires pour compenser les mouvements potentiels du satellite, notamment ses mouvements de roulis.

Claims

REVENDICATIONS
1. Antenne pour la retransmission au sol d'images collectées par des instruments de prise de vue d'un satellite à défilement, caractérisée en ce qu'elle comporte une pluralité d'antennes élémentaires de rayonnement (1) du type présentant une pluralité de brins répartis régulièrement en hélice autour d'une même génératrice de révolution ainsi que des moyens d'alimentation équi-amplitude des différents brins, en ce que ces différentes antennes élémentaires sont alignées et en ce que le plan dans lequel ces différentes antennes élémentaires sont réparties est destiné, lorsque le satellite est en orbite, à être perpendiculaire à la direction du vecteur vitesse du satellite et en ce qu'elle comporte également des moyens (2) de déphasage de l'alimentation de ces différentes antennes élémentaires qui sont aptes à réaliser un dépointage électronique du faisceau allongé généré par lesdites antennes élémentaires.
2. Antenne selon la revendication 1, caractérisée en ce que le nombre d'éléments rayonnants élémentaires (1) est égal ou supérieur à cinq.
3. Antenne selon l'une des revendications précédentes, caractérisée en ce que les éléments rayonnants élémentaires (1) sont décalés les uns par rapport aux autres avec un pas choisi de façon à éviter les lobes de réseaux.
4. Antenne selon la revendication 3, caractérisée en ce que, pour une fréquence d'émission de
8000 MHz, le pas entre deux éléments rayonnants élémentaires est de l'ordre de 19 mm.
5. Antenne selon l'une des revendications précédentes, caractérisée en ce que les moyens de déphasage sont codés sur trois à huit bits.
6. Antenne selon l'une des revendications précédentes, caractérisée en ce que les moyens de déphasage (2) sont du type à ferrite.
7. Antenne caractérisée en ce qu'elle comporte plusieurs antennes en ligne selon l'une des revendications précédentes et des moyens de commutation permettant de basculer d'une antenne en ligne à une autre en fonction des mouvements du satellite, et notamment de ses mouvements de roulis .
8. Antenne selon l'une des revendications 1 à 6, caractérisée en ce qu'elle comporte des moyens de motorisation qui permettent de modifier l'orientation de la (ou des) ligne (s) d'éléments rayonnants élémentaires pour compenser les mouvements potentiels du satellite, notamment ses mouvements de roulis.
PCT/FR1998/000535 1997-03-17 1998-03-17 Antenne pour satellite a defilement WO1998042042A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP54020198A JP2001516536A (ja) 1997-03-17 1998-03-17 軌道周回衛星用アンテナ
DE69817373T DE69817373T2 (de) 1997-03-17 1998-03-17 Antenne für satelliten mit niedriger umlaufbahn
EP98917183A EP1010214B1 (fr) 1997-03-17 1998-03-17 Antenne pour satellite a defilement
AT98917183T ATE247871T1 (de) 1997-03-17 1998-03-17 Antenne für satelliten mit niedriger umlaufbahn
US09/381,537 US6252562B1 (en) 1997-03-17 1998-03-17 Antenna for orbiting satellite
CA002284872A CA2284872A1 (fr) 1997-03-17 1998-03-17 Antenne pour satellite a defilement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/03250 1997-03-17
FR9703250A FR2760900B1 (fr) 1997-03-17 1997-03-17 Antenne pour satellite a defilement

Publications (1)

Publication Number Publication Date
WO1998042042A1 true WO1998042042A1 (fr) 1998-09-24

Family

ID=9504893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000535 WO1998042042A1 (fr) 1997-03-17 1998-03-17 Antenne pour satellite a defilement

Country Status (8)

Country Link
US (1) US6252562B1 (fr)
EP (1) EP1010214B1 (fr)
JP (1) JP2001516536A (fr)
AT (1) ATE247871T1 (fr)
CA (1) CA2284872A1 (fr)
DE (1) DE69817373T2 (fr)
FR (1) FR2760900B1 (fr)
WO (1) WO1998042042A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE516105C2 (sv) * 1999-06-11 2001-11-19 Allgon Ab En metod för att styra strålningsmönstret hos en antenn, ett antennsystem och en radiokommunikationsanordning
FR2810456B1 (fr) * 2000-06-20 2005-02-11 Mitsubishi Electric Inf Tech Dispositif d'antenne reconfigurable pour station de telecommunication
FR2839207B1 (fr) * 2002-04-29 2004-07-16 Chelton Antennas Antenne accordable passive a large bande
US6806845B2 (en) * 2003-01-14 2004-10-19 Honeywell Federal Manufacturing & Technologies, Llc Time-delayed directional beam phased array antenna
US6784458B1 (en) * 2003-04-14 2004-08-31 Harvatek Corp. Random partitionable dot matrix LED display
US7015871B2 (en) 2003-12-18 2006-03-21 Kathrein-Werke Kg Mobile radio antenna arrangement for a base station
FR2976749B1 (fr) * 2011-06-16 2013-06-28 Astrium Sas Dispositif et procede d'optimisation de la couverture au sol d'un systeme spatial hybride.
US10199711B2 (en) 2015-05-13 2019-02-05 The Arizona Board Of Regents On Behalf Of The University Of Arizona Deployable reflector antenna
US10978808B2 (en) * 2015-07-16 2021-04-13 Arizona Board Of Regents On Behalf Of The University Of Arizona Phased array line feed for reflector antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041842A (en) * 1990-04-18 1991-08-20 Blaese Herbert R Helical base station antenna with support
US5345248A (en) * 1992-07-22 1994-09-06 Space Systems/Loral, Inc. Staggered helical array antenna

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989011A (en) * 1987-10-23 1991-01-29 Hughes Aircraft Company Dual mode phased array antenna system
US5258771A (en) * 1990-05-14 1993-11-02 General Electric Co. Interleaved helix arrays
US5587719A (en) * 1994-02-04 1996-12-24 Orbital Sciences Corporation Axially arrayed helical antenna
US5986619A (en) * 1996-05-07 1999-11-16 Leo One Ip, L.L.C. Multi-band concentric helical antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041842A (en) * 1990-04-18 1991-08-20 Blaese Herbert R Helical base station antenna with support
US5345248A (en) * 1992-07-22 1994-09-06 Space Systems/Loral, Inc. Staggered helical array antenna

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GLÖCKLER: "PHASED ARRAY FOR MILLIMETER WAVE FREQUENCIES", INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES., vol. 11, no. 2, February 1990 (1990-02-01), NEW YORK US, pages 101 - 110, XP000150643 *
IMBRIALE ET AL.: "AN S-BAND PHASED ARRAY FOR MULTIPLE ACCESS COMMUNICATIONS", NTC 77 CONFERENCE RECORD , VOLUME 2 , 1977, vol. 2, 1977, pages 19:3-1 - 19:3-7, XP002048969 *

Also Published As

Publication number Publication date
US6252562B1 (en) 2001-06-26
FR2760900A1 (fr) 1998-09-18
DE69817373T2 (de) 2004-06-09
ATE247871T1 (de) 2003-09-15
EP1010214A1 (fr) 2000-06-21
CA2284872A1 (fr) 1998-09-24
DE69817373D1 (de) 2003-09-25
FR2760900B1 (fr) 1999-05-28
JP2001516536A (ja) 2001-09-25
EP1010214B1 (fr) 2003-08-20

Similar Documents

Publication Publication Date Title
EP0520851B1 (fr) Antenne mixte pour réception de signaux émis simultanément par satellite et par stations terrestres, notamment pour la réception de signaux de radiodiffusion sonore numérique
FR2810163A1 (fr) Perfectionnement aux antennes-sources d&#39;emission/reception d&#39;ondes electromagnetiques
EP2532050B1 (fr) Antenne plane directive embarquée, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
EP0805512B1 (fr) Antenne imprimée compacte pour rayonnement à faible élévation
EP2532046B1 (fr) Antenne plane à balayage pour application mobile terrestre, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
CA2004870C (fr) Dispositif rayonnant multifrequence
FR2598036A1 (fr) Antenne plaque a doubles polarisations croisees
WO2007010164A2 (fr) Antenne a conformation du lobe de rayonnement reglable
EP0427654A1 (fr) Antenne en hélice, quadrifilaire, résonnante bicouche
FR2672436A1 (fr) Dispositif de controle electronique du diagramme de rayonnement d&#39;une antenne a un ou plusieurs faisceaux de direction et/ou de largeur variable.
EP1325537A1 (fr) Perfectionnement aux sources d&#39;emission / reception d&#39;ondes electromagnetiques pour antenne a multireflecteurs
WO1998042042A1 (fr) Antenne pour satellite a defilement
FR2993716A1 (fr) Antenne d&#39;emission et de reception multifaisceaux a plusieurs sources par faisceau, systeme d&#39;antennes et systeme de telecommunication par satellite comportant une telle antenne
CA2029378A1 (fr) Antenne a polarisation circulaire, notamment pour reseau d&#39;antennes
FR2965412A1 (fr) Systeme antennaire a deux grilles de spots a mailles complementaires imbriquees
FR2700067A1 (fr) Antenne plaquée à double polarisation et dispositif d&#39;émission/réception correspondant.
EP1533866B1 (fr) Architecture d&#39;antenne adaptative multifaisceaux à formation de faisceaux par le calcul
FR2676311A1 (fr) Antenne a polarisation circulaire.
EP0463263A1 (fr) Antenne omnidirective en polarisation circulaire transversale à maximum de gain sous l&#39;horizon
EP2637254B1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aéroporté et système de télécommunication par satellite comportant au moins une telle antenne
WO2000079649A1 (fr) Dispositif d&#39;emission et/ou de reception de signaux
FR2629644A1 (fr) Antenne boucle large bande a alimentation dissymetrique, notamment antenne pour emission, et antenne reseau formee d&#39;une pluralite de telles antennes
EP3675278B1 (fr) Antenne multifaisceaux à pointage réglable
FR2760133A1 (fr) Antenne resonnante pour l&#39;emission ou la reception d&#39;ondes polarisees
FR3047859A1 (fr) Antenne reseau d&#39;emission d&#39;ondes electromagnetiques porteuses d&#39;un moment angulaire orbital et procede d&#39;emission associe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2284872

Country of ref document: CA

Ref country code: CA

Ref document number: 2284872

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 540201

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09381537

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998917183

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998917183

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998917183

Country of ref document: EP