WO1998036160A1 - Internal combustion engine valve device - Google Patents

Internal combustion engine valve device Download PDF

Info

Publication number
WO1998036160A1
WO1998036160A1 PCT/DE1998/000376 DE9800376W WO9836160A1 WO 1998036160 A1 WO1998036160 A1 WO 1998036160A1 DE 9800376 W DE9800376 W DE 9800376W WO 9836160 A1 WO9836160 A1 WO 9836160A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
magnetic field
valve device
generating element
sensor
Prior art date
Application number
PCT/DE1998/000376
Other languages
German (de)
French (fr)
Inventor
Wolfgang Clemens
Klaus Ludwig
Richard Wimmer
Achim Koch
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1998036160A1 publication Critical patent/WO1998036160A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2132Biasing means
    • F01L2009/2134Helical springs
    • F01L2009/2136Two opposed springs for intermediate resting position of the armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2167Sensing means
    • F01L2009/2169Position sensors

Definitions

  • the invention relates to a valve device of an internal combustion engine with actuating means for a stroke movement of a valve, which has a valve disk and a valve stem extending in the direction of movement of the valve.
  • a corresponding valve device is e.g. from the book by H. Grohe: “Otto and Diesel engines", 9th edition,
  • valve drives In known internal combustion engines, the actuating means for moving the individual valves, which are generally referred to as valve drives, are designed purely mechanically.
  • the stroke movement of a valve is e.g. achieved in that a valve spring holding the valve plate of the valve in a filling position on a valve seat is compressed by means of a rocker arm engaging the valve stem, the rocker arm being actuated from a camshaft by means of a bumper with a tappet (cf. the aforementioned publication ).
  • the object of the present invention is to design the valve device with the features mentioned at the outset in such a way that controlled adjustment of the valve lift is made possible without the need for a camshaft.
  • the actuating means are designed electro-mechanically and that measuring means for contactless determination of the position of the valve are provided which have an element connected to the valve stem for generating a predetermined magnetic field and at least one magnetic field sensitive sensor contain, which has an increased magnetoresistive effect layer system with a measuring layer for detecting the magnetic field, the magnetic field generating element is to be guided relative to the magnetic field-sensitive sensor such that the components of the magnetic field impinging on the measuring layer with a reference axis in the measuring layer plane have a middle Include an angle that is clearly correlated with the respective position of the magnetic field sensitive sensor relative to the magnetic field generating element.
  • the invention is based on the consideration that the linear movement of the valve stem and thus of the magnetic field generating element rigidly connected to it can be measured in a contactless manner by means of the special, known magnetoresistive layer system despite critical measuring conditions. Because it is the intake and exhaust valves of an internal combustion engine, it is very hot at the sensor location, with typical ambient temperatures of around 150 ° C. In addition, the valve stem can rotate and also tilt slightly. Furthermore, the stroke, which is typically +/- 4 mm, must be measured to an accuracy of approximately 1/100 mm in order to enable effective valve control. It was recognized that sensors with a known magnet effect showing an increased magnetoresistive effect
  • the special magnetoresistive layer system is advantageously possible using the special magnetoresistive layer system.
  • essentially only the direction of a stray field is advantageously measured with the layer system, so that the characteristic curve of the sensor is not strongly dependent on the distance between the shaft and the sensor. Only the steepness of the characteristic curve is slightly influenced here.
  • no additional flux guiding elements are required, which would have to be positioned precisely and which could cause magnetic hysteresis.
  • the signal from the sensor is analog and frequency-independent, so that the resolution of the stroke essentially depends only on an evaluating electronics.
  • the signal swing of the special sensors is typically 3% of the basic resistance and is therefore significantly higher than e.g. Hall sensors or anisotropic magnetoresistive sensors under comparable conditions. This also favors the signal / noise ratio when evaluating the sensor signal.
  • FIG. 1 illustrates a valve device according to the invention.
  • FIG. 2 shows the measurement signal of a sensor of such a valve device in a diagram.
  • FIGS. 3 to 5 show a special embodiment of actuating means of a valve device according to the invention in a representation corresponding to FIG. 1.
  • FIGS. 6 and 7 special designs of magnetic field generating elements are one such valve device indicated. Corresponding parts are each provided with the same reference numerals in the figures.
  • the valve device according to the invention has measuring means 12 for contactless determination of the position of a valve 3, with which an electrical signal dependent on the position is to be generated, which is further processed with downstream electronics .
  • at least one special magnetic field-generating element 4 and at least one special magnetic field-sensitive sensor 5 are to be provided as signal-generating means.
  • This sensor is assigned signal-evaluating electronics, not shown in the figure. It is said to have a thin-layer system which exhibits an increased magnetoresistive effect, which is often referred to as the "Giant Magneto Resistance" (GMR) effect.
  • GMR Garnier Magneto Resistance
  • R (B) is the electrical resistance in the magnetic field with an induction B and R (0) the resistance in the absence of a magnetic field.
  • Corresponding thin-layer systems have a measuring layer with which the magnetic field H caused by the magnetic field-generating element is detected. This magnetic field should look such that the magnetic field components H) c detected by the layer system of the magnetic field sensitive sensor 5 are arranged in a stationary manner with a relative displacement of the magnetic field generating element 4 Magnetic field-sensitive sensor 5 are aligned at constantly changing angles with respect to the measuring layer of the layer system.
  • a magnetic field H is therefore particularly suitable, which at least largely corresponds to a rod-shaped permanent magnet in a measuring layer plane.
  • a suitable permanent magnet is therefore expediently used as the magnetic field-generating element.
  • the magnetic field generating element is then movable relative to the magnetic field-sensitive sensor 5 so that the components H * of the magnetic field impinging on the measuring layer of the sensor with a reference direction or axis b form an average angle ⁇ in the measuring layer plane, which is clearly related to the respective position of the sensor Valve is correlated. It is assumed that the increased magnetoresistive effect (GMR) shows only a dependence on the angle of the measuring layer with respect to the magnetic field components and not on the magnetic field strength.
  • a magnetoresistive layer system is particularly advantageously provided for the valve device according to the invention, which has magnetic layers with different coercive field strengths that are magnetically decoupled from one another (cf. for example also EP 0 498 344 A).
  • the directions of magnetization of the two layers are generally oriented antiparallel without the action of an external magnetic field.
  • the magnetically harder layer often also referred to as the bias layer, or a corresponding layer subsystem, in particular, can be embodied as a so-called artificial antiferromagnet (cf. the aforementioned WO 94/15223).
  • an embodiment of such a layer system with at least one artificial antiferromagnet is assumed.
  • R p denotes the resistance of the layer system, which results when the direction of an external magnetic field is directed parallel to a predetermined reference direction.
  • This reference direction of the layer system is determined by the direction of magnetization of the magnetically harder layer or a corresponding layer subsystem and is denoted by b in FIG.
  • the resistance Rab is the resistance of the layer system, which results when the external magnetic field is aligned antiparallel to the aforementioned reference direction.
  • the layer system to be provided for a sensor 5 with an increased magnetoresistive effect can also have, in a manner known per se, a periodic repetition of the layer sequence of magnetic layers magnetically coupled or decoupled via at least one intermediate layer with the same or different coercive field strength.
  • FIG. 1 A basic structure of a corresponding valve device of an internal combustion engine can be seen in FIG. 1.
  • the internal combustion engine can be any internal combustion engine, for example an Otto or diesel engine, in which the valve device according to the invention enables access to a combustion chamber that can be controlled by the valve. Consequently, the magnetic field generating element 4 and the at least one magnetic field sensitive sensor 5 are generally at an elevated ambient temperature, for example at a temperature level of over 100 ° C.
  • Figure 1 are also designated a valve plate and a valve stem of the valve 3 movable along an axis A with 3a and 3b, a valve seat ring with 6, a valve stem guide with 7 and electromechanical actuating means for moving the valve 8.
  • these actuating means which are also referred to as valve actuators, have a valve spring 8a which is supported on one side on an engine block part 9, in which an inlet or outlet channel 10 for a gas mixture or for an exhaust gas.
  • the valve spring 8a is supported on a valve spring plate 8b.
  • the actuating means 8 are also provided with a lifting magnet 8c enclosing the valve stem 3b. In the excited state, the lifting magnet then attracts a, for example, plate-shaped lifting element 8d rigidly connected to the valve stem.
  • This lifting element therefore consists of a ferromagnetic material, while the valve stem is non-magnetic, at least in the area of the lifting magnet 8c.
  • the valve 3 can thus be actuated electromechanically.
  • the GMR sensor 5 is used for contactless detection and control of the valve position during the stroke movement h of the valve illustrated by a double arrow.
  • the magnetic field generating element 4 is preferably attached or in the form of a permanent magnet to a section 3b 'of this stem outside the magnetic field region of the lifting magnet 8c
  • the permanent magnet is arranged such that the magnetization of this magnet, illustrated by a north pole Np and a south pole Sp, points in the direction of the axis A or the stroke movement h of the valve.
  • the permanent magnet should have an at least largely cylindrical or hollow cylindrical shape, so that rotation of the valve has practically no influence on the stray field generated by the magnet. From this stray field, a component striking the measuring layer of the GMR sensor 5 is shown in the figure. nente illustrated by an arrowed line marked H *.
  • this stray field component H * strikes the measuring layer of the GMR sensor 5 at different angles oc.
  • the angle ⁇ is defined by the direction of the magnetic field component H * with respect to a reference axis b in the measuring layer plane. According to the selected exemplary embodiment, this reference axis is perpendicular to axis A. Because of the known cos ⁇ dependency on GMR sensors (cf., for example, WO 94/17426), the structure shown shows an at least largely linear change in resistance of the sensor depending from the deflection of the permanent magnet from a predetermined zero position.
  • a characteristic curve of the sensor in an arrangement according to FIG. 1 is shown in a diagram in FIG.
  • This characteristic curve shows the dependency of a sensor signal S plotted in the ordinate direction (in arbitrary units) on the valve lift or the stroke movement h.
  • the deflection in the ordinate direction resulting from the stroke movement is plotted on the abscissa from a reference position (in arbitrary units).
  • This takes advantage of the fact that a GMR sensor is essentially sensitive to the direction of the external magnetic field relative to an intrinsic reference axis, but not to the field strength of the external field (as long as the field strength is in a certain range).
  • This dependency is shown in a cosine curve of the sensor resistance as a function of the angle of the external field to the reference axis.
  • the characteristic curve of the sensor also changes, as shown in FIG. 2.
  • This characteristic curve is linear. This linear range depends on the length of the magnet and the distance between the sensor and the axis of the valve stem.
  • the sensor should preferably be arranged so that it is in the middle position of the valve (in the half-open position State) is located essentially at the level of the center M of the magnet. Such a case is the basis of the characteristic curve of FIG. 2.
  • the sensor can also be mounted so that the plane of its magnetic field sensitive measuring layer has a normal which runs parallel to the axis A.
  • several corresponding sensors can also be provided, which can also be oriented differently with respect to the axis A.
  • two sensors arranged diametrically on such an imaginary lateral surface can be provided.
  • a bridge circuit can advantageously be applied with several sensors. In this way, temperature compensation of the measurement signal can be achieved using additional electronic circuit means, since the sensor properties have an at least largely linear temperature profile.
  • valve spring 8a is a spring which is subjected to pressure and which is further compressed to open the valve 3 by means of the solenoid 8c.
  • tension springs can also be provided, which are pulled further apart by means of a lifting magnet.
  • a lifting magnet and a lifting element of the valve device according to the invention are understood to mean any type of means by means of which the spring length can be changed in order to open or close the valve.
  • a valve spring can also be completely dispensed with in the actuating means 8 of the valve device according to the invention and its function can be performed by a further lifting magnet with a lifting element. It is then also possible to open and close the valve by performing its stroke movement h by means of a single stroke magnet with a corresponding stroke element.
  • FIGS. 3 to 5 show a special embodiment of actuating means 15 for opening and closing a valve 3 with the valve open (FIG. 3) or with the valve half open, in an equilibrium position (FIG. 4) or with the valve closed, as a longitudinal section - light.
  • the actuating means here have two lifting magnets 16 and 17, the lower magnet 16 facing the valve plate 3a serving to open the valve and the upper magnet 17 serving to close the valve.
  • an annular disk-shaped lifting element 8d connected to a valve stem 3b is expediently held in an equilibrium position in the absence of or equal excitation of the magnets 16 and 17, in which case the Valve 3 is in the half-open state (see FIG. 4).
  • Measuring means (12), not shown, are controlled with the special magnetoresistive layer system of their at least one sensor.
  • a hydraulic centering element 20 which surrounds the valve stem 3b and which serves for exact guidance of the valve during the lifting movement.
  • the measuring means 12 according to FIG. 1 can also be arranged elsewhere on the valve stem, particularly from the point of view of a compact structure and a limited expansion of the valve stem.
  • An embodiment is indicated as a longitudinal section in FIG. 6, in which a hollow cylindrical permanent magnet serving as a magnetic field generating element 22 is arranged around a valve disk 19a of a valve spring 19, which is, for example, the upper valve spring shown in FIGS. 3 to 5 19 can act.
  • the permanent magnet 22 in turn advantageously has a magnetization pointing in the axial direction and rotationally symmetrical with respect to the valve axis A.
  • FIG. 6 also shows a holder 23 with a magnetic field-sensitive sensor 5, the reference direction b of which runs perpendicular to the direction of magnetization of the element generating the magnetic field.
  • FIGS. 1 and 6 it was assumed that the magnet used as the magnetic field generating element 4 or 22 is axially magnetized. However, such an alignment of the magnetization is not absolutely necessary.
  • a magnetic field generating element with radial magnetization can also be provided. It is again important that the reference axis b of the magnetic field-sensitive sensor is at least largely perpendicular to the direction of magnetization.
  • a corresponding exemplary embodiment is indicated in FIG. 7.
  • the measuring means 25 shown there of a valve device according to the invention The only difference from the embodiment 21 according to FIG. 6 is that the magnetic field generating element 26 is magnetized in the radial direction in the form of a hollow cylindrical permanent magnet.
  • the magnetization is rotationally symmetrical with respect to the valve axis A.
  • the associated magnetic field-sensitive sensor 27 then has a reference direction or axis b which is at least approximately in the axial direction, that is to say perpendicular to the magnetization direction of the element 26.
  • the senor 27 can then be integrated particularly well into a housing required for the measuring and actuating means.
  • embodiments of magnetic field generating elements can also be provided in which rotationally symmetrical magnetization is not provided. Then e.g. in an embodiment of the measuring means 25 according to FIG. 7, the hollow cylindrical permanent magnet 26 is replaced by a bar magnet with a radial bar axis, one magnetic pole of which is the sensor
  • magnetic field-sensitive sensor should be arranged in the area of magnetic interference fields, which are generated, for example, by a lifting magnet of the actuating means, in the valve devices according to the invention, in particular from the point of view of a compact design, magnetic shielding means can of course also be provided to reduce the interference field.
  • valve devices according to the invention shown in FIGS. 1, 6 and 7 each have a permanent magnet as the magnetic field generating element 4 or 22 or 26.
  • the magnetic fields generated by these magnets can also be produced by electromagnets.

Abstract

The invention relates to a valve device (2) comprising electromagnetic actuation means (8) for lifting (h) a valve (3). Also provided are measuring means (12) having a magnetic field-producing element (4) connected to a valve stem (3b') and a magnetic field-sensitive sensor (5). The sensor has a layer system with a magneto-resistive effect (GMR).

Description

Beschreibungdescription
Ventileinrichtung eines VerbrennungsmotorsValve device of an internal combustion engine
Die Erfindung bezieht sich auf eine Ventileinrichtung eines Verbrennungsmotors mit Betätigungsmitteln zu einer Hubbewegung eines Ventils, das einen Ventilteller und einen sich in Bewegungsrichtung des Ventils erstreckenden Ventilschaft aufweist. Eine entsprechende Ventileinrichtung geht z.B. aus dem Buch von H. Grohe : „Otto- und Dieselmotoren " , 9. Auflage,The invention relates to a valve device of an internal combustion engine with actuating means for a stroke movement of a valve, which has a valve disk and a valve stem extending in the direction of movement of the valve. A corresponding valve device is e.g. from the book by H. Grohe: "Otto and Diesel engines", 9th edition,
1990, Vogel -Buchverlag Würzburg (DE) , Seiten 124 bis 131 hervor.1990, Vogel-Buchverlag Würzburg (DE), pages 124 to 131.
In bekannten Verbrennungsmotoren sind die im allgemeinen als Ventiltrieb bezeichneten Betätigungsmittel zur Bewegung der einzelnen Ventile rein mechanisch ausgelegt. Dabei wird die Hubbewegung eines Ventils z.B. dadurch erreicht, daß eine den Ventilteller des Ventils in einer Sόllposition an einem Ventilsitz haltende Ventilfeder mittels eines an dem Ventil- schaft angreifenden Kipphebels zusammengedrückt wird, wobei der Kipphebel über eine Stoßstange mit einem Stößel von einer Nockenwelle aus betätigt wird (vgl. die vorgenannte Veröffentlichung) .In known internal combustion engines, the actuating means for moving the individual valves, which are generally referred to as valve drives, are designed purely mechanically. The stroke movement of a valve is e.g. achieved in that a valve spring holding the valve plate of the valve in a filling position on a valve seat is compressed by means of a rocker arm engaging the valve stem, the rocker arm being actuated from a camshaft by means of a bumper with a tappet (cf. the aforementioned publication ).
Aufgabe der vorliegenden Erfindung ist es, die Ventileinrichtung mit den eingangs genannten Merkmalen dahingehend auszugestalten, daß eine gesteuerte Einstellung des Ventilhubs ermöglicht ist, ohne daß es einer Nockenwelle bedarf.The object of the present invention is to design the valve device with the features mentioned at the outset in such a way that controlled adjustment of the valve lift is made possible without the need for a camshaft.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Betätigungsmittel elektro-mechanisch gestaltet sind und daß Meßmittel zur kontaktlosen Bestimmung der Stellposition des Ventils vorgesehen sind, welche ein mit dem Ventilschaft verbundenes Element zur Erzeugung eines vorbestimmten Magnetfel- des sowie mindestens einen magnetfeldempfindlichen Sensor enthalten, der ein einen erhöhten magnetoresistiven Effekt zeigendes Schichtensystem mit einer Meßschicht zur Erfassung des Magnetfeldes aufweist, wobei das magnetfeiderzeugende Element relativ zu dem magnetfeldempfindlichen Sensor derart zu führen ist, daß die auf die Meßschicht auftreffenden Komponenten des Magnetfeldes mit einer Bezugsachse in der Meßschichtebene einen mittleren Winkel einschließen, der eindeutig mit der jeweiligen Position des magnetfeldempfindlichen Sensors relativ zu dem magnetfelderzeugenden Element korre- liert ist.This object is achieved in that the actuating means are designed electro-mechanically and that measuring means for contactless determination of the position of the valve are provided which have an element connected to the valve stem for generating a predetermined magnetic field and at least one magnetic field sensitive sensor contain, which has an increased magnetoresistive effect layer system with a measuring layer for detecting the magnetic field, the magnetic field generating element is to be guided relative to the magnetic field-sensitive sensor such that the components of the magnetic field impinging on the measuring layer with a reference axis in the measuring layer plane have a middle Include an angle that is clearly correlated with the respective position of the magnetic field sensitive sensor relative to the magnetic field generating element.
Die Erfindung geht dabei von der Überlegung aus, daß die Linearbewegung des Ventilschaftes und damit des mit ihm starr verbundenen magnetfelderzeugenden Elementes mittels des be- sonderen, an sich bekannten magnetoresistiven Schichtensystems trotz kritischer Meßbedingungen kontaktlos zu messen ist. Da es sich nämlich um die Ein-/ und Auslaßventile eines Verbrennungsmotors handelt, ist es am Ort des Sensors sehr heiß, wobei typische Umgebungstemperaturen von etwa 150°C herrschen. Darüber hinaus kann der Ventilschaft sich drehen und außerdem auch leicht kippen. Ferner muß der Hub, der typischerweise +/- 4 mm beträgt, auf etwa 1/100 mm genau gemessen werden, um eine effektive Ventilsteuerung zu ermöglichen. Es wurde erkannt, daß sich Sensoren mit einem an sich bekann- ten, einen erhöhten magnetoresistiven Effekt zeigendenThe invention is based on the consideration that the linear movement of the valve stem and thus of the magnetic field generating element rigidly connected to it can be measured in a contactless manner by means of the special, known magnetoresistive layer system despite critical measuring conditions. Because it is the intake and exhaust valves of an internal combustion engine, it is very hot at the sensor location, with typical ambient temperatures of around 150 ° C. In addition, the valve stem can rotate and also tilt slightly. Furthermore, the stroke, which is typically +/- 4 mm, must be measured to an accuracy of approximately 1/100 mm in order to enable effective valve control. It was recognized that sensors with a known magnet effect showing an increased magnetoresistive effect
Schichtensystem unter den genannten erschwerten Bedingungen einsetzen lassen. Der magnetoresistive Effekt derartiger Schichtensysteme ist isotrop.Have the layer system used under the difficult conditions mentioned. The magnetoresistive effect of such layer systems is isotropic.
Mit einem solchen magnetoresistiven Schichtensystem, das insbesondere auch eine sich periodisch wiederholende Schichtenfolge aufweisen kann, ist außerdem vorteilhaft eine solche Steuerung der elektromagnetischen Betätigungsmittel der erfindungsgemäßen Ventileinrichtung zu realisieren, daß ein hartes Anschlagen des Ventils in seiner Auf- und/oder Zuposi- tion vermieden wird. Außerdem läßt sich die Steuerung so vornehmen, daß dabei der Verbrauch an elektrischer Energie insbesondere der Betätigungsmittel auf ein verhältnismäßig geringes Maß begrenzt bleibt .With such a magnetoresistive layer system, which in particular can also have a periodically repeating layer sequence, it is also advantageous to control the electromagnetic actuating means of the valve device according to the invention such that the valve strikes hard in its opening and / or closing position. tion is avoided. In addition, the control can be carried out in such a way that the consumption of electrical energy, in particular of the actuating means, remains limited to a relatively low level.
Ferner ist unter Verwendung des besonderen magnetoresistiven Schichtensystems vorteilhaft eine Temperaturkompensation möglich. Außerdem wird vorteilhaft mit dem SchichtenSystem im wesentlichen nur die Richtung eines Streufeldes gemessen, so daß die Kennlinie des Sensors nicht stark von dem Abstand des Schaftes zum Sensor abhängig ist. Es wird hier nur die Steilheit der Kennlinie leicht beeinflußt. Darüber hinaus sind keine zusätzlichen flußführenden Elemente nötig, die genau positioniert werden müßten und die magnetische Hysteresen verursachen könnten. Das Signal des Sensors ist analog und frequenzunabhängig, so daß die Auflösung des Hubweges im wesentlichen nur von einer auswertenden Elektronik abhängt. Der Signalhub der besonderen Sensoren beträgt typischerweise 3 % des Grundwiderstandes und ist somit deutlich höher als z.B. von Hallsensoren oder anisotropen magnetoresistiven Sensoren unter vergleichbaren Bedingungen. Dies begünstigt auch das Signal/Rauschverhältnis bei der Auswertung des Sensorsignals.Furthermore, temperature compensation is advantageously possible using the special magnetoresistive layer system. In addition, essentially only the direction of a stray field is advantageously measured with the layer system, so that the characteristic curve of the sensor is not strongly dependent on the distance between the shaft and the sensor. Only the steepness of the characteristic curve is slightly influenced here. In addition, no additional flux guiding elements are required, which would have to be positioned precisely and which could cause magnetic hysteresis. The signal from the sensor is analog and frequency-independent, so that the resolution of the stroke essentially depends only on an evaluating electronics. The signal swing of the special sensors is typically 3% of the basic resistance and is therefore significantly higher than e.g. Hall sensors or anisotropic magnetoresistive sensors under comparable conditions. This also favors the signal / noise ratio when evaluating the sensor signal.
Vorteilhafte Ausgestaltungen der erfindungsgemäßen Ventilein- richtung gehen aus den abhängigen Ansprüchen hervor.Advantageous refinements of the valve device according to the invention emerge from the dependent claims.
Zur weiteren Erläuterung der Erfindung wird nachfolgend auf die schematische Zeichnung Bezug genommen, in deren Figur 1 eine Ventileinrichtung nach der Erfindung veranschaulicht ist. Figur 2 zeigt in einem Diagramm das Meßsignal eines Sensors einer solchen Ventileinrichtung. Aus den Figuren 3 bis 5 geht eine besondere Ausführungsform von Betätigungsmitteln einer erfindungsgemäßen Ventileinrichtung in Figur 1 entsprechender Darstellung hervor. In den Figuren 6 und 7 sind spe- zielle Gestaltungen von magnetfeiderzeugenden Elementen einer solchen Ventileinrichtung angedeutet. Dabei sind in den Figuren sich entsprechende Teile jeweils mit denselben Bezugszeichen versehen.To further explain the invention, reference is made below to the schematic drawing, in which FIG. 1 illustrates a valve device according to the invention. FIG. 2 shows the measurement signal of a sensor of such a valve device in a diagram. FIGS. 3 to 5 show a special embodiment of actuating means of a valve device according to the invention in a representation corresponding to FIG. 1. In FIGS. 6 and 7, special designs of magnetic field generating elements are one such valve device indicated. Corresponding parts are each provided with the same reference numerals in the figures.
Die erfindungsgemäße, in Figur 1 allgemein mit 2 bezeichnete und im Längsschnitt dargestellte Ventileinrichtung weist Meßmittel 12 zur kontaktlosen Bestimmung der Stellposition eines Ventils 3 auf, mit denen ein von der Stellposition abhängiges elektrisches Signal zu erzeugen ist, welches mit einer nach- geschalteten Elektronik weiterverarbeitet wird. Erfindungsgemäß sollen als signalerzeugende Mittel jeweils mindestens ein besonderes magnetfeiderzeugendes Element -4 und mindestens ein besonderer magnetfeldempfindlicher Sensor 5 vorgesehen sein. Diesem Sensor ist eine in der Figur nicht dargestellte signalauswertende Elektronik zugeordnet. Er soll ein Dünnschichtensystem aufweisen, das einen erhöhten magnetoresistiven Effekt, der vielfach als „Giant Magneto Resistance" (GMR) -Effekt bezeichnet wird, zeigt. Entsprechende Dünnschichtensysteme sind an sich bekannt (vgl. z.B. WO 94/17426, WO 94/15223, EP 0 483 373 A oder die DE-A-Schriften 42 32 244 oder 42 43 357) . Ihr magnetoresistiver Effekt Mr soll mindestens 3 % betragen. Im allgemeinen wird der agnetoresistive Effekt Mr bekannter GMR-Dünnschichtensysteme wie folgt definiert: Mr = ΔR/R (0) = [R(0)- R(B)]/R(0).The valve device according to the invention, generally designated by 2 in FIG. 1 and shown in longitudinal section, has measuring means 12 for contactless determination of the position of a valve 3, with which an electrical signal dependent on the position is to be generated, which is further processed with downstream electronics . According to the invention, at least one special magnetic field-generating element 4 and at least one special magnetic field-sensitive sensor 5 are to be provided as signal-generating means. This sensor is assigned signal-evaluating electronics, not shown in the figure. It is said to have a thin-layer system which exhibits an increased magnetoresistive effect, which is often referred to as the "Giant Magneto Resistance" (GMR) effect. Corresponding thin-layer systems are known per se (cf., for example, WO 94/17426, WO 94/15223, EP 0 483 373 A or DE-A documents 42 32 244 or 42 43 357. Their magnetoresistive effect M r should be at least 3%. In general, the agnetoresistive effect M r of known GMR thin-layer systems is defined as follows: M r = ΔR / R (0) = [R (0) - R (B)] / R (0).
Hierbei sind R(B) der elektrische Widerstand im Magnetfeld mit einer Induktion B und R(0) der Widerstand bei fehlendem Magnetfeld. Entsprechende Dünnschichtensysteme weisen eine Meßschicht auf, mit der das von dem magnetfelderzeugenden Element hervorgerufene Magnetfeld H erfaßt wird. Dieses Magnetfeld soll so aussehen, daß die von dem Schichtensystem des magnetfeldempfindlichen Sensors 5 erfaßten Magnetfeldkomponenten H)c bei einer relativen Verschiebung des magnetfelderzeugenden Elementes 4 bezüglich des ortsfest angeordneten magnetfeldempfindlichen Sensors 5 unter sich stetig ändernden Winkeln bezüglich der Meßschicht des Schichtensystems ausgerichtet sind. Besonders geeignet ist deshalb ein Magnetfeld H, das in einer Meßschichtebene zumindest weitgehend dem ei- nes stabförmigen Permanentmagneten entspricht . Deshalb wird zweckmäßigerweise ein entsprechender Permanentmagnet als magnetfelderzeugendes Element verwendet. Das magnetfeiderzeugende Element ist dann relativ zu dem magnetfeldempfindlichen Sensor 5 so beweglich, daß die auf die Meßschicht des Sensors auftreffenden Komponenten H* des Magnetfeldes mit einer Bezugsrichtung oder -achse b in der Meßschichtebene einen mittleren Winkel α einschließen, der eindeutig mit der jeweiligen Position des Ventils korreliert ist. Dabei wird von der Tatsache ausgegangen, daß der erhöhte magnetoresistive Effekt (GMR) im wesentlichen nur eine Abhängigkeit von dem Winkel der Meßschicht bezüglich der Magnetfeldkomponenten und nicht von der Magnetfeldstärke zeigt.Here R (B) is the electrical resistance in the magnetic field with an induction B and R (0) the resistance in the absence of a magnetic field. Corresponding thin-layer systems have a measuring layer with which the magnetic field H caused by the magnetic field-generating element is detected. This magnetic field should look such that the magnetic field components H) c detected by the layer system of the magnetic field sensitive sensor 5 are arranged in a stationary manner with a relative displacement of the magnetic field generating element 4 Magnetic field-sensitive sensor 5 are aligned at constantly changing angles with respect to the measuring layer of the layer system. A magnetic field H is therefore particularly suitable, which at least largely corresponds to a rod-shaped permanent magnet in a measuring layer plane. A suitable permanent magnet is therefore expediently used as the magnetic field-generating element. The magnetic field generating element is then movable relative to the magnetic field-sensitive sensor 5 so that the components H * of the magnetic field impinging on the measuring layer of the sensor with a reference direction or axis b form an average angle α in the measuring layer plane, which is clearly related to the respective position of the sensor Valve is correlated. It is assumed that the increased magnetoresistive effect (GMR) shows only a dependence on the angle of the measuring layer with respect to the magnetic field components and not on the magnetic field strength.
Besonders vorteilhaft wird für die erfindungsgemäße Venti- leinrichtung ein magnetoresistives Schichtensystem vorgesehen, das magnetisehe Schichten mit unterschiedlicher Koerzi- tivfeidstärke aufweist, die gegenseitig magnetisch entkoppelt sind (vgl. z.B. auch EP 0 498 344 A) . Die Magnetisierungs- richtungen der beiden Schichten sind dabei ohne Einwirkung eines äußeren Magnetfeldes im allgemeinen antiparallel ausgerichtet . Bei einem solchen Schichtensystem kann die magnetisch härtere, vielfach auch als Biasschicht bezeichnete Schicht oder ein entsprechendes Schichtensubsystem ins- beosndere als sogenannter künstlicher Antiferromagnet (vgl. die genannte WO 94/15223) ausgeführt sein. Für die nachfolgend beschriebenen Ventileinrichtungen nach der Erfindung sei eine Ausführungsform eines solchen Schichtensystems mit mindestens einem künstlichen Antiferromagneten zugrundegelegt. Für entsprechende Schichtensysteme wird der magnetoresistive Effekt auch folgendermaßen definiert:
Figure imgf000008_0001
Dabei ist mit Rp der Widerstand des Schichtensystems bezeichnet, der sich ergibt, wenn die Richtung eines externen Magnetfeldes parallel zu einer vorbestimmten Bezugsrichtung ge- richtet ist. Diese Bezugsrichtung des Schichtensystems ist dabei durch die Magnetisierungsrichtung der magnetisch härteren Schicht bzw. eines entsprechenden Schichtensubsystems festgelegt und in der Figur 1 mit b bezeichnet. Bei dem Widerstand Rab handelt es sich um den Widerstand des Schichten- Systems, der sich bei einer Ausrichtung des externen Magnetfeldes antiparallel zu der vorgenannten Bezugsrichtung ergibt.
A magnetoresistive layer system is particularly advantageously provided for the valve device according to the invention, which has magnetic layers with different coercive field strengths that are magnetically decoupled from one another (cf. for example also EP 0 498 344 A). The directions of magnetization of the two layers are generally oriented antiparallel without the action of an external magnetic field. In such a layer system, the magnetically harder layer, often also referred to as the bias layer, or a corresponding layer subsystem, in particular, can be embodied as a so-called artificial antiferromagnet (cf. the aforementioned WO 94/15223). For the valve devices according to the invention described below, an embodiment of such a layer system with at least one artificial antiferromagnet is assumed. For corresponding layer systems, the magnetoresistive effect is also defined as follows:
Figure imgf000008_0001
R p denotes the resistance of the layer system, which results when the direction of an external magnetic field is directed parallel to a predetermined reference direction. This reference direction of the layer system is determined by the direction of magnetization of the magnetically harder layer or a corresponding layer subsystem and is denoted by b in FIG. The resistance Rab is the resistance of the layer system, which results when the external magnetic field is aligned antiparallel to the aforementioned reference direction.
Selbstverständlich kann auch das für einen Sensor 5 vorzuse- hende Schichtensystem mit einem erhöhten magnetoresistiven Effekt in an sich bekannter Weise eine periodische Wiederholung der Schichtenfolge von magnetisch über mindestens eine Zwischenschicht gekoppelten oder entkoppelten magnetischen Schichten mit gleicher oder verschiedener Koerzitivfeldstärke aufweisen.Of course, the layer system to be provided for a sensor 5 with an increased magnetoresistive effect can also have, in a manner known per se, a periodic repetition of the layer sequence of magnetic layers magnetically coupled or decoupled via at least one intermediate layer with the same or different coercive field strength.
Ein prinzipieller Aufbau einer entsprechenden Ventileinrichtung eines Verbrennungsmotors ist aus Figur 1 ersichtlich. Bei dem Verbrennungsmotor kann es sich um eine beliebige Brennkraftmaschine, z.B. um einen Otto- oder Dieselmotor handeln, bei der die erfindungsgemäße Ventileinrichtung einen mit dem Ventil steuerbaren Zugang zu einem Verbrennungsraum ermöglicht . Folglich liegen das magnetfelderzeugende Element 4 und der mindestens eine magnetfeldempfindliche Sensor 5 im allgemeinen auf erhöhter Umgebungstemperatur, beispielsweise auf einem Temperaturniveau von über 100°C. In Figur 1 sind ferner bezeichnet ein Ventilteller und ein Ventilschaft des längs einer Achse A beweglichen Ventils 3 mit 3a bzw. 3b, ein Ventilsitzring mit 6, eine Ventilschaftführung mit 7 sowie elektromechanische Betätigungsmittel zur Bewegung des Ventils mit 8. Diese auch als Ventilaktuator bezeichneten Betätigungsmittel weisen gemäß dem gezeigten Ausführungsbeispiel eine Ventilfeder 8a auf, die sich auf ihrer einen Seite an einem Motorblockteil 9 abstützt, in welchem ein von dem Ven- til absperrbarer Ein- oder Auslaßkanal 10 für ein Gasgemisch bzw. für ein Abgas verläuft. Auf der gegenüberliegenden Seite stützt sich die Ventilfeder 8a an einem Ventilfederteller 8b ab. Zum Zusammendrücken der Ventilfeder 8a und damit zum öffnen des Ventils sind ferner die Betätiguηgs ittel 8 mit einem den Ventilschaft 3b umschließenden Hubmagneten 8c versehen. Im erregten Zustand zieht dann der Hubmagnet ein mit dem Ventilschaft starr verbundenes, beispielsweise tellerförmiges Hubelement 8d an. Dieses Hubelement besteht deshalb aus einem ferromagnetischen Material, während der Ventilschaft zumin- dest im Bereich des Hubmagneten 8c nicht-magnetisch ist. Das Ventil 3 ist somit elektro-mechanisch zu betätigen.A basic structure of a corresponding valve device of an internal combustion engine can be seen in FIG. 1. The internal combustion engine can be any internal combustion engine, for example an Otto or diesel engine, in which the valve device according to the invention enables access to a combustion chamber that can be controlled by the valve. Consequently, the magnetic field generating element 4 and the at least one magnetic field sensitive sensor 5 are generally at an elevated ambient temperature, for example at a temperature level of over 100 ° C. In Figure 1 are also designated a valve plate and a valve stem of the valve 3 movable along an axis A with 3a and 3b, a valve seat ring with 6, a valve stem guide with 7 and electromechanical actuating means for moving the valve 8. According to the exemplary embodiment shown, these actuating means, which are also referred to as valve actuators, have a valve spring 8a which is supported on one side on an engine block part 9, in which an inlet or outlet channel 10 for a gas mixture or for an exhaust gas. On the opposite side, the valve spring 8a is supported on a valve spring plate 8b. To compress the valve spring 8a and thus to open the valve, the actuating means 8 are also provided with a lifting magnet 8c enclosing the valve stem 3b. In the excited state, the lifting magnet then attracts a, for example, plate-shaped lifting element 8d rigidly connected to the valve stem. This lifting element therefore consists of a ferromagnetic material, while the valve stem is non-magnetic, at least in the area of the lifting magnet 8c. The valve 3 can thus be actuated electromechanically.
Wie ferner aus Figur 1 hervorgeht, wird der GMR-Sensor 5 zu einer kontaktlosen Erfassung und Steuerung der Ventilposition bei der durch einen Doppelpfeil veranschaulichten Hubbewegung h des Ventils eingesetz . Hierzu ist auf der dem Ventilteller 3a abgewandten Seite des Ventilschaftes 3b an einem Teilstück 3b' dieses Schaftes außerhalb des Magnetfeldbereichs des Hubmagneten 8c das magnetfeiderzeugende Element 4 vorzugsweise in Form eines Permanentmagneten befestigt oder in diesesAs can further be seen from FIG. 1, the GMR sensor 5 is used for contactless detection and control of the valve position during the stroke movement h of the valve illustrated by a double arrow. For this purpose, on the side of the valve stem 3b facing away from the valve plate 3a, the magnetic field generating element 4 is preferably attached or in the form of a permanent magnet to a section 3b 'of this stem outside the magnetic field region of the lifting magnet 8c
Teilstück integriert. Bei dem dargestellten Ausführungsbei- spiel ist der Permanentmagnet so angeordnet, daß die durch einen Nordpol Np und einen Südpol Sp veranschaulichte Magnetisierung dieses Magneten in Richtung der Achse A bzw. der Hubbewegung h des Ventils weist. Insbesondere sollte der Permanentmagnet eine zumindest weitgehend zylindrische oder hohlzylindrische Form haben, damit eine Verdrehung des Ventils praktisch keinen Einfluß auf das von dem Magneten erzeugte Streufeld hat . Von diesem Streufeld ist in der Figur eine auf die Meßschicht des GMR-Sensors 5 auftreffende Kompo- nente mittels einer mit H* bezeichneten gepfeilten Linie veranschaulicht.Part integrated. In the exemplary embodiment shown, the permanent magnet is arranged such that the magnetization of this magnet, illustrated by a north pole Np and a south pole Sp, points in the direction of the axis A or the stroke movement h of the valve. In particular, the permanent magnet should have an at least largely cylindrical or hollow cylindrical shape, so that rotation of the valve has practically no influence on the stray field generated by the magnet. From this stray field, a component striking the measuring layer of the GMR sensor 5 is shown in the figure. nente illustrated by an arrowed line marked H *.
Bei der Hubbewegung h des Permanentmagneten trifft dann diese Streufeldkomponente H* unter unterschiedlichen Winkeln oc auf die Meßschicht des GMR-Sensors 5 auf. Der Winkel α ist dabei definiert durch die Richtung der Magnetfeldkomponente H* bezüglich einer Bezugsachse b in der Meßschichtebene. Diese Bezugsachse steht gemäß dem gewählten Ausführungsbeispiel senk- recht auf der Achse A. Wegen der bekannten cosα-Abhängigkeit von GMR-Sensoren (vgl. z.B. WO 94/17426) ergibt sich dann bei dem gezeigten Aufbau eine zumindest weitgehend lineare Widerstandsänderung des Sensors in Abhängigkeit von der Auslenkung des Permanentmagneten aus einer vorgegebenen Nullage.During the stroke movement h of the permanent magnet, this stray field component H * strikes the measuring layer of the GMR sensor 5 at different angles oc. The angle α is defined by the direction of the magnetic field component H * with respect to a reference axis b in the measuring layer plane. According to the selected exemplary embodiment, this reference axis is perpendicular to axis A. Because of the known cosα dependency on GMR sensors (cf., for example, WO 94/17426), the structure shown shows an at least largely linear change in resistance of the sensor depending from the deflection of the permanent magnet from a predetermined zero position.
In Figur 2 ist in einem Diagramm eine Kennlinie des Sensors bei einer Anordnung gemäß Figur 1 wiedergegeben. Diese Kennlinie zeigt die Abhängigkeit eines in Ordinatenrichtung aufgetragenen Sensorsignals S (in willkürlichen Einheiten) von dem Ventilhub bzw. der Hubbewegung h. Dabei ist auf der Abszisse die bei der Hubbewegung sich ergebende Auslenkung in Ordinatenrichtung aufgetragenen aus einer Bezugslage (in willkürlichen Einheiten) angegeben. Hierbei ist ausgenutzt, daß ein GMR-Sensor im wesentlichen empfindlich auf die Rich- tung des externen Magnetfeldes relativ zu einer intrinsischen Bezugsachse ist, nicht aber auf die Feldstärke des externen Feldes (solange sich die Feldstärke in einem bestimmten Bereich befindet) . Diese Abhängigkeit zeigt sich in einem cosi- nusförmigen Verlauf des Sensorwiderstandes als Funktion des Winkels des externen Feldes zur Bezugsachse. Bei der Auf- und Abbewegung des Ventils mit dem Permanentmagneten dreht sich die Richtung des Streufeldes des Magneten an der Sensorposition; somit ändert sich auch die Kennlinie des Sensors, wie in Figur 2 dargestellt ist. Ober einen bestimmten Bereich der Hubbewegung ist diese Kennlinie linear. Dieser lineare Bereich hängt ab von der Länge des Magneten sowie vom Abstand des Sensors zur Achse des Ventilschaftes., Um eine möglichst symmetrische Kennlinie zu erhalten, sollte der Sensor vor- zugsweise so angeordnet sein, daß er sich bei einer Mittellage des Ventils (im halbgeöffneten Zustand) im wesentlichen auf der Höhe der Mitte M des Magneten befindet . Ein solcher Fall ist der Kennlinie der Figur 2 zugrundegelegt .A characteristic curve of the sensor in an arrangement according to FIG. 1 is shown in a diagram in FIG. This characteristic curve shows the dependency of a sensor signal S plotted in the ordinate direction (in arbitrary units) on the valve lift or the stroke movement h. The deflection in the ordinate direction resulting from the stroke movement is plotted on the abscissa from a reference position (in arbitrary units). This takes advantage of the fact that a GMR sensor is essentially sensitive to the direction of the external magnetic field relative to an intrinsic reference axis, but not to the field strength of the external field (as long as the field strength is in a certain range). This dependency is shown in a cosine curve of the sensor resistance as a function of the angle of the external field to the reference axis. When the valve with the permanent magnet moves up and down, the direction of the stray field of the magnet rotates at the sensor position; thus the characteristic curve of the sensor also changes, as shown in FIG. 2. Over a certain range of This characteristic curve is linear. This linear range depends on the length of the magnet and the distance between the sensor and the axis of the valve stem. In order to obtain the most symmetrical possible characteristic, the sensor should preferably be arranged so that it is in the middle position of the valve (in the half-open position State) is located essentially at the level of the center M of the magnet. Such a case is the basis of the characteristic curve of FIG. 2.
Abweichend von der in Figur 1 dargestellten Anordnungsmöglichkeit von Permanentmagnet (magnetfeiderzeugendem Element) 4 und Sensor 5, wonach die magnetfeldempfindliche Meßschicht des Sensors in einer Ebene liegt, deren Normale senkrecht bezüglich der Achse A des Magneten verläuft, kann der Sensor auch so montiert werden, daß die Ebene seiner magnetfeldempfindlichen Meßschicht eine Normale besitzt, die parallel zur Achse A verläuft. Darüber hinaus können auch mehrere entsprechende Sensoren vorgesehen sein, die auch bezüglich der Achse A verschieden ausgerichtet sein können. So ist z.B. eine An- Ordnung mehrerer Sensoren auf einer gedachten, konzentrisch die Achse A umschließenden Mantelfläche eines fiktiven Zylinders möglich. Insbesondere lassen sich zwei diametral auf einer derartigen gedachten Mantelfläche angeordnete Sensoren vorsehen. Außerdem kann mit mehreren Sensoren vorteilhaft ei- ne Brückenschaltung aufgebracht sein. Damit läßt sich unter Einsatz weiterer elektronischer Schaltungsmittel eine Temperaturkompensation des Meßsignals erreichen, da die Sensoreigenschaften einen zumindest weitgehend linearen Temperaturverlauf haben.Deviating from the arrangement option shown in Figure 1 of permanent magnet (magnetic field generating element) 4 and sensor 5, according to which the magnetic field-sensitive measuring layer of the sensor lies in a plane whose normal is perpendicular to the axis A of the magnet, the sensor can also be mounted so that the plane of its magnetic field sensitive measuring layer has a normal which runs parallel to the axis A. In addition, several corresponding sensors can also be provided, which can also be oriented differently with respect to the axis A. For example, it is possible to arrange several sensors on an imaginary surface of a fictitious cylinder concentrically surrounding axis A. In particular, two sensors arranged diametrically on such an imaginary lateral surface can be provided. In addition, a bridge circuit can advantageously be applied with several sensors. In this way, temperature compensation of the measurement signal can be achieved using additional electronic circuit means, since the sensor properties have an at least largely linear temperature profile.
Bei den Ausführungsformen mit Bezugsrichtung b und Sensorebene des Sensors 5 vorzugsweise senkrecht zur Ventilachse A können gegebenenfalls auch leichte Abweichungen von der 90°- Ausrichtung, d.h. leichte Verkippungen, toleriert werden. Gemäß dem in Figur 1 dargestellten Ausführungsbeispiel wurde davon ausgegangen, daß es sich bei der Ventilfeder 8a um eine auf Druck beanspruchte Feder handelt, die zum öffnen des Ventils 3 mittels des Hubmagneten 8c weiter zusammenzudrücken ist . Selbstverständlich sind auch andere Betätigungsmittel zum Öffnen und Schließen des Ventils ebenso geeignet. So können z.B. auch Zugfedern vorgesehen werden, die mittels eines Hubmagneten weiter auseinandergezogen werden. D.h., unter einem Hubmagnet und einem Hubelement der erfindungsgemäßen Ven- tileinrichtung wird jede Art von Mitteln verstanden, mit deren Hilfe die Federlänge zu ändern ist, um das Ventil zu öffnen oder zu schließen. Gegebenenfalls kann bei den Betätigungsmitteln 8 der erfindungsgemäßen Ventileinrichtung auch auf eine Ventilfeder völlig verzichtet sein und deren Funk- tion durch einen weiteren Hubmagneten mit Hubelement ausgeübt werden. Es ist dann auch möglich, zum öffnen und Schließen des Ventils dessen Hubbewegung h mittels eines einzigen Hubmagneten mit entsprechendem Hubelement zu vollziehen.In the embodiments with reference direction b and sensor plane of the sensor 5, preferably perpendicular to the valve axis A, slight deviations from the 90 ° orientation, ie slight tilting, may also be tolerated. According to the exemplary embodiment shown in FIG. 1, it was assumed that the valve spring 8a is a spring which is subjected to pressure and which is further compressed to open the valve 3 by means of the solenoid 8c. Of course, other actuating means for opening and closing the valve are also suitable. For example, tension springs can also be provided, which are pulled further apart by means of a lifting magnet. In other words, a lifting magnet and a lifting element of the valve device according to the invention are understood to mean any type of means by means of which the spring length can be changed in order to open or close the valve. If necessary, a valve spring can also be completely dispensed with in the actuating means 8 of the valve device according to the invention and its function can be performed by a further lifting magnet with a lifting element. It is then also possible to open and close the valve by performing its stroke movement h by means of a single stroke magnet with a corresponding stroke element.
In den Figuren 3 bis 5 ist eine besondere Ausführungsform von Betätigungsmitteln 15 zum Öffnen und Schließen eines Ventils 3 bei offenem Ventil (Figur 3) bzw. bei halboffenem, in einer Gleichgewichtsposition befindlichem Ventil (Figur 4) bzw. bei geschlossenem Ventil jeweils als Längsschnitt veranschau- licht. Die Betätigungsmittel weisen hier zwei Hubmagnete 16 und 17 auf, wobei der untere, dem Ventilteller 3a zugewandte Magnet 16 zum öffnen des Ventils und der obere Magnet 17 zum Schließen des Ventils dienen. Mittels zweier Ventilfedern 18 und 19 unterhalb des unteren Magneten 16 bzw. oberhalb des oberen Magneten 17 wird ein mit einem Ventilschaft 3b verbundenes, ringscheibenförmiges Hubelement 8d bei fehlender oder gleich starker Erregung der Magnete 16 und 17 zweckmäßigerweise in einer Gleichgewichtsposition gehalten, wobei sich dann das Ventil 3 im halbgeöffneten Zustand befindet (vgl. Figur 4) . Die Erregung der Magnete wird über in der Figur nicht dargestellte Meßmittel (12) mit dem besonderen magnetoresistiven Schichtensystem ihres mindestens einen Sensors gesteuert. In der Figur ist ferner ein den Ventilschaft 3b umschließendes hydraulisches Zentrierelement 20 angeordnet, das zu einer exakten Führung des Ventils bei der Hubbewegung dient .FIGS. 3 to 5 show a special embodiment of actuating means 15 for opening and closing a valve 3 with the valve open (FIG. 3) or with the valve half open, in an equilibrium position (FIG. 4) or with the valve closed, as a longitudinal section - light. The actuating means here have two lifting magnets 16 and 17, the lower magnet 16 facing the valve plate 3a serving to open the valve and the upper magnet 17 serving to close the valve. By means of two valve springs 18 and 19 below the lower magnet 16 and above the upper magnet 17, an annular disk-shaped lifting element 8d connected to a valve stem 3b is expediently held in an equilibrium position in the absence of or equal excitation of the magnets 16 and 17, in which case the Valve 3 is in the half-open state (see FIG. 4). The excitation of the magnets is over in the figure Measuring means (12), not shown, are controlled with the special magnetoresistive layer system of their at least one sensor. In the figure there is also a hydraulic centering element 20 which surrounds the valve stem 3b and which serves for exact guidance of the valve during the lifting movement.
Selbstverständlich können die Meßmittel 12 gemäß Figur 1 insbesondere unter dem Gesichtspunkt eines kompakten Aufbaus und einer begrenzten Ausdehnung des Ventilschaftes auch an anderer Stelle des Ventilschaftes angeordnet werden. In Figur 6 ist als Längsschnitt eine Ausführungsform angedeutet, bei der ein als magnetfeiderzeugendes Element 22 dienender hohlzylin- drischer Permanentmagnet um einen Ventilteller 19a einer Ven- tilfeder 19 angeordnet ist, bei der es sich beispielsweise um die in den Figuren 3 bis 5 gezeigte obere Ventilfeder 19 handeln kann. Der Permanentmagnet 22 weist wiederum vorteilhaft eine in axiale Richtung weisende, bezüglich der Ventilachse A rotationssymmetrische Magnetisierung auf. Die Figur 6 zeigt ferner eine Halterung 23 mit einem magnetfeldempfindlichen Sensor 5, dessen Bezugsriehtung b senkrecht zur Magnetisie- rungsrichtung des magnetfelderzeugenden Elementes verläuft .Of course, the measuring means 12 according to FIG. 1 can also be arranged elsewhere on the valve stem, particularly from the point of view of a compact structure and a limited expansion of the valve stem. An embodiment is indicated as a longitudinal section in FIG. 6, in which a hollow cylindrical permanent magnet serving as a magnetic field generating element 22 is arranged around a valve disk 19a of a valve spring 19, which is, for example, the upper valve spring shown in FIGS. 3 to 5 19 can act. The permanent magnet 22 in turn advantageously has a magnetization pointing in the axial direction and rotationally symmetrical with respect to the valve axis A. FIG. 6 also shows a holder 23 with a magnetic field-sensitive sensor 5, the reference direction b of which runs perpendicular to the direction of magnetization of the element generating the magnetic field.
Bei den den Figuren 1 und 6 zugrundegelegten Ausführungsfor- men von erfindungsgemäßen Ventileinrichtungen wurde davon ausgegangen, daß der verwendete Magnet als magnetfelderzeugendes Element 4 bzw. 22 axial magnetisiert ist. Eine derartige Ausrichtung der Magnetisierung ist jedoch nicht unbedingt erforderlich. So kann auch ein magnetfeiderzeugendes Element mit radialer Magnetisierung vorgesehen werden. Wichtig ist dabei wiederum, daß immer die Bezugsachse b des magnetfeldempfindlichen Sensors zumindest weitgehend senkrecht zur Magnetisierungsrichtung verläuft. Ein entsprechendes Ausführungsbeispiel ist in Figur 7 angedeutet. Die dort gezeig- ten Meßmittel 25 einer erfindungsgemäßen Ventileinrichtung unterscheiden sich von der Ausführungsform 21 nach Figur 6 im wesentlichen nur darin, daß das magnetfeiderzeugende Element 26 in Form eines hohlzylindrischen Permanentmagneten in radialer Richtung magnetisiert ist. Auch in diesem Fall ist die Magnetisierung rotationssymmetrisch bezüglich der Ventilachse A. Der zugeordnete magnetfeldempfindliche Sensor 27 weist dann eine Bezugsrichtung bzw. -achse b, die zumindest annä- herηd in axialer Richtung liegt, also senkrecht auf der Magnetisierungsrichtung des Elementes 26 steht. Eine derartige Ausführungsform der Meßmittel 25 hat insbesondere folgende Vorteile:In the embodiments of valve devices according to the invention on which FIGS. 1 and 6 are based, it was assumed that the magnet used as the magnetic field generating element 4 or 22 is axially magnetized. However, such an alignment of the magnetization is not absolutely necessary. A magnetic field generating element with radial magnetization can also be provided. It is again important that the reference axis b of the magnetic field-sensitive sensor is at least largely perpendicular to the direction of magnetization. A corresponding exemplary embodiment is indicated in FIG. 7. The measuring means 25 shown there of a valve device according to the invention The only difference from the embodiment 21 according to FIG. 6 is that the magnetic field generating element 26 is magnetized in the radial direction in the form of a hollow cylindrical permanent magnet. In this case too, the magnetization is rotationally symmetrical with respect to the valve axis A. The associated magnetic field-sensitive sensor 27 then has a reference direction or axis b which is at least approximately in the axial direction, that is to say perpendicular to the magnetization direction of the element 26. Such an embodiment of the measuring means 25 has the following advantages in particular:
Während sich für einen axial magnetisierten Permanentmagneten wie z.B. gemäß Figur 1 eine besonders homogene Feldstärkeverteilung ergibt, weist dieser Magnet jedoch eine verhältnismä- ßig große axiale Länge auf, die im allgemeinen größer als die Hubbewegung h ist. Der Materialbedarf für einen derartigen Magneten ist dementsprechend groß. Demgegenüber können Permanentmagnete mit radialer Magnetisierung wie z.B. der MagnetWhile for an axially magnetized permanent magnet such as e.g. 1 results in a particularly homogeneous field strength distribution, however, this magnet has a relatively large axial length, which is generally greater than the stroke movement h. The material requirement for such a magnet is accordingly large. In contrast, permanent magnets with radial magnetization such as the magnet
26 nach Figur 7 in axialer Richtung deutlich kürzer als die Hubbewegung h ausgeführt sein. Es ergibt sich so eine entsprechende Materialersparnis. Außerdem läßt sich dann- der Sensor 27 besonders gut in ein für die Meß- und Betätigungsmittel erforderliches Gehäuse integrieren.26 according to FIG. 7 in the axial direction be significantly shorter than the stroke movement h. This results in a corresponding saving in material. In addition, the sensor 27 can then be integrated particularly well into a housing required for the measuring and actuating means.
Falls bei einer erfindungsgemäßen Ventileinrichtung eine Verdrehung der Ventilachse A unterbunden werden kann, lassen sich auch Ausführungsformen von magnetfeiderzeugenden Elementen vorsehen, bei denen eine rotationssymmetrische Magnetisierung nicht gegeben ist. So kann dann z.B. bei einer Aus- führungsform der Meßmittel 25 nach Figur 7 der hohlzylindri- sche Permanentmagnet 26 durch einen Stabmagneten mit radialer Stabachse ersetzt werden, dessen einer Magnetpol dem SensorIf a rotation of the valve axis A can be prevented in a valve device according to the invention, embodiments of magnetic field generating elements can also be provided in which rotationally symmetrical magnetization is not provided. Then e.g. in an embodiment of the measuring means 25 according to FIG. 7, the hollow cylindrical permanent magnet 26 is replaced by a bar magnet with a radial bar axis, one magnetic pole of which is the sensor
27 zugewandt ist. Sollte bei erfindungsgemäßen Ventileinrichtungen insbesondere unter dem Gesichtspunkt einer kompakten Bauweise der magnetfeldempfindliche Sensor im Bereich von magnetischen Störfeldern, die z.B. von einem Hubmagneten der Betätigungsmittel erzeugt werden, anzuordnen sein, so können zur Störfeldverminderung selbstverständlich auch magnetische Abschirmmittel vorgesehen werden.27 is facing. If the magnetic field-sensitive sensor should be arranged in the area of magnetic interference fields, which are generated, for example, by a lifting magnet of the actuating means, in the valve devices according to the invention, in particular from the point of view of a compact design, magnetic shielding means can of course also be provided to reduce the interference field.
Die den in den Figuren 1, 6 und 7 dargestellten Ventilein- richtungen nach der Erfindung weisen jeweils als magnetfelderzeugendes Element 4 bzw. 22 bzw. 26 einen Permanentmagneten auf. Die von diesen Magneten erzeugten Magnetfelder können aber ebenso gut auch von Elektromagneten hervorgerufen werden. The valve devices according to the invention shown in FIGS. 1, 6 and 7 each have a permanent magnet as the magnetic field generating element 4 or 22 or 26. However, the magnetic fields generated by these magnets can also be produced by electromagnets.

Claims

Patentansprüche claims
1. Ventileinrichtung eines Verbrennungsmotors mit Betätigungsmitteln zu einer Hubbewegung eines Ventils, das einen Ventilteller und einen sich in Bewegungsrichtung des Ventils erstreckenden Ventilschaft aufweist, d a d u r c h g e k e n n z e i c h n e t , daß die Betätigungsmittel (8, 15) elektromechanisch ausgestaltet sind und daß Meßmittel (12, 21, 25) zu einer kontaktlosen Bestimmung der Stellposition des Ventils (3) vorgesehen sind, welche ein mit dem Ventilschaft (3b') verbundenes Element (4, 22, 26) zur Erzeugung eines vorbestimmten Magnetfeldes (H) sowie mindestens einen magnetfeldempfindlichen Sensor (5, 27) enthalten, der ein einen erhöhten magnetoresistiven Effekt zeigendes Schichtensy- stem mit einer Meßschicht zur Erfassung des Magnetfeldes (H) aufweist, wobei das magnetfeiderzeugende Element (4, 22, 26) relativ zu dem magnetfeldempfindlichen Sensor (5, 27) derart zu führen ist, daß die auf die Meßschicht auftreffenden Komponenten (Hk) des Magnetfeldes mit einer Bezugsachse (b) in der Meßschichtebene einen mittleren Winkel (α) einschließen, der eindeutig mit der jeweiligen Position des magnetfeldempfindlichen Sensors (5, 27) relativ zu dem magnetfeiderzeugenden Element (4, 22, 26) korreliert ist.1. Valve device of an internal combustion engine with actuating means for a stroke movement of a valve, which has a valve disk and a valve stem extending in the direction of movement of the valve, characterized in that the actuating means (8, 15) are designed electromechanically and that measuring means (12, 21, 25) For a contactless determination of the position of the valve (3), there are an element (4, 22, 26) connected to the valve stem (3b ') for generating a predetermined magnetic field (H) and at least one magnetic field sensitive sensor (5, 27) contain a layer system showing an increased magnetoresistive effect with a measuring layer for detecting the magnetic field (H), the magnetic field generating element (4, 22, 26) being guided relative to the magnetic field sensitive sensor (5, 27) in this way, that the components (H k ) of the magnetic field impinging on the measuring layer with a reference axis (b) in of the measuring layer plane include an average angle (α) which is clearly correlated with the respective position of the magnetic field sensitive sensor (5, 27) relative to the magnetic field generating element (4, 22, 26).
2. Ventileinrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c hn e t , daß das magnetfeiderzeugende Element (4, 22) vorzugsweise durch einen Permanentmagneten gebildet ist.2. Valve device according to claim 1, d a d u r c h g e k e n n z e i c hn e t that the magnetic field generating element (4, 22) is preferably formed by a permanent magnet.
3. Ventileinrichtung nach Anspruch 2, g e k e n n z e i c h n e t durch einen Permanentmagneten als magnetfelderzeugendem Element (4, 22), dessen Magnetisierung zumindest annähernd in Richtung der Achse (A) des Ventilschaftes (3b, 3b') verläuft. 3. Valve device according to claim 2, characterized by a permanent magnet as a magnetic field-generating element (4, 22), the magnetization of which extends at least approximately in the direction of the axis (A) of the valve stem (3b, 3b ').
4. Ventileinrichtung nach Anspruch 2, g e k e n n z e i c h n e t durch einen Permanentmagneten als magnetfelderzeugendem Element (26) , dessen Magnetisierung zumindest annähernd senkrecht zur Achse (A) des Ventilschaftes (3b, 3b') gerichtet ist.4. Valve device according to claim 2, g e k e n n z e i c h n e t by a permanent magnet as a magnetic field generating element (26), the magnetization of which is directed at least approximately perpendicular to the axis (A) of the valve stem (3b, 3b ').
5. Ventileinrichtung nach einem der Ansprüche 2 bis 4, g e k e n n z e i c h n e t durch einen Permanentmagneten als magnetfelderzeugendem Element (4, 22, 26) mit einer zu- mindest weitgehend zylinderförmigen oder hohlzylinderförmigen Gestalt.5. Valve device according to one of claims 2 to 4, g e k e n e z e i c h n e t by a permanent magnet as a magnetic field-generating element (4, 22, 26) with an at least largely cylindrical or hollow cylindrical shape.
6. Ventileinrichtung nach einem der Ansprüche 1 bis 5, g e k e n n z e i c h n e t durch eine Anordnung des minde- stens einen magnetfeldempfindlichen Sensors (5, 27) derart, daß die Normale auf der Ebene seiner Meßschicht zumindest annähernd senkrecht zu einer magnetischen Achse (A) des magnetfelderzeugenden Elementes (4, 22, 26) ausgerichtet ist.6. Valve device according to one of claims 1 to 5, characterized by an arrangement of the at least one magnetic field sensitive sensor (5, 27) such that the normal on the level of its measuring layer is at least approximately perpendicular to a magnetic axis (A) of the magnetic field generating element (4, 22, 26) is aligned.
7. Ventileinrichtung nach einem der Ansprüche 1 bis 5, g e k e n n z e i c h n e t durch eine Anordnung des mindestens einen magnetfeldempfindlichen Sensors derart, daß die Normale auf der Ebene seiner Meßschicht zumindest annähernd parallel zu einer magnetischen Achse (A) des magnetfelderzeu- genden Elementes ausgerichtet ist.7. Valve device according to one of claims 1 to 5, g e k e n n z e i c h n e t by an arrangement of the at least one magnetic field sensitive sensor such that the normal is aligned at least approximately parallel to a magnetic axis (A) of the magnetic field generating element on the level of its measuring layer.
8. Ventileinrichtung nach einem der Ansprüche 1 bis 7, g e k e n n z e i c h n e t durch eine Anordnung des mindestens einen magnetfeldempfindlichen Sensors (5) derart, daß er sich bei einer Mittellage des Ventils (3) zwischen geöffnetem und geschlossenem Zustand zumindest annähernd auf der Höhe der magnetischen Mitte (M) des magnetfeiderzeugenden Elementes (4, 22) befindet. 8. Valve device according to one of claims 1 to 7, characterized by an arrangement of the at least one magnetic field-sensitive sensor (5) such that it is at a central position of the valve (3) between the open and closed state at least approximately at the level of the magnetic center ( M) of the magnetic field generating element (4, 22).
9. Ventileinrichtung nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß die Betätigungsmittel (8) eine Ventilfeder (8a) enthalten, deren axiale Länge mittels eines auf ein ferromagnetisches Hubele- ment (8d) des Ventilschaftes (3b) magnetisch einwirkenden Hubmagneten (8c) zu ändern ist.9. Valve device according to one of claims 1 to 8, characterized in that the actuating means (8) contain a valve spring (8a), the axial length of which by means of a magnet acting on a ferromagnetic lifting element (8d) of the valve stem (3b) lifting magnet (8c ) is to be changed.
10. Ventileinrichtung nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß die Betä- tigungsmittel (15) zwei Hubmagnete (16, 17) mit zugeordneten Ventilfedern (18 bzw. 19) enthalten, mittels derer sich das Ventil (3) bei fehlender oder gleicher Erregung der Magnete (16, 17) in einem halboffenen Zustand befindet.10. Valve device according to one of claims 1 to 8, characterized in that the actuating means (15) contain two lifting magnets (16, 17) with associated valve springs (18 and 19), by means of which the valve (3) in the absence or same excitation of the magnets (16, 17) is in a semi-open state.
11. Ventileinrichtung nach einem der Ansprüche 1 bis 10, g e k e n n z e i c h n e t durch mehrere Sensoren.11. Valve device according to one of claims 1 to 10, g e k e n n z e i c h n e t by a plurality of sensors.
12. Ventileinrichtung nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , daß mehrere Sensoren zu einer Brückenschaltung zusammengeschaltet sind.12. Valve device according to claim 11, d a d u r c h g e k e n n z e i c h n e t that several sensors are interconnected to form a bridge circuit.
13. Ventileinrichtung nach einem der Ansprüche 1 bis 12, g e k e n n z e i c h n e t durch mindestens einen Sensor (5, 27) mit einem Schichtensystem, das magnetische Schichten mit unterschiedlicher Koerzitivfeidstärke aufweist. 13. Valve device according to one of claims 1 to 12, g e k e n n z e i c h n e t by at least one sensor (5, 27) with a layer system which has magnetic layers with different coercive field strength.
PCT/DE1998/000376 1997-02-17 1998-02-11 Internal combustion engine valve device WO1998036160A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19706106.0 1997-02-17
DE19706106A DE19706106A1 (en) 1997-02-17 1997-02-17 Valve device of an internal combustion engine

Publications (1)

Publication Number Publication Date
WO1998036160A1 true WO1998036160A1 (en) 1998-08-20

Family

ID=7820540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/000376 WO1998036160A1 (en) 1997-02-17 1998-02-11 Internal combustion engine valve device

Country Status (2)

Country Link
DE (1) DE19706106A1 (en)
WO (1) WO1998036160A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19913868C1 (en) * 1999-03-26 2000-07-20 Siemens Ag Position sensor for detecting momentary position of body e.g. in gas exchange valve or fuel injection valve
DE19913870A1 (en) * 1999-03-26 2000-10-19 Siemens Ag Positioning sensor used for operating electromagnetic control of valves has a capacitor coupled to a lifting movement
DE19913869A1 (en) * 1999-03-26 2000-10-19 Siemens Ag Position sensor for controlling electromagnetically-operated valves; lifts object to be moved with instant lift by judging change in inductance arising from lifting movement

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852230B4 (en) * 1998-11-12 2008-01-03 Bayerische Motoren Werke Ag Method for determining the position of an armature oscillating between two magnetic coils
DE19909109A1 (en) * 1999-03-03 2000-09-07 Fev Motorentech Gmbh Method for detecting armature movement on an electromagnetic actuator
WO2000057036A1 (en) * 1999-03-23 2000-09-28 Daimlerchrysler Ag Device with an electromagnetic actuator
DE19914590C1 (en) * 1999-03-31 2000-09-07 Daimler Chrysler Ag Actuator for electromagnetic valve controller has magnetic field generator in form of injection moulded part mounted on one of its oscillating components
FR2792765B1 (en) * 1999-04-23 2001-07-27 Sagem ELECTROMAGNETIC LINEAR ACTUATOR WITH POSITION SENSOR
DE19922423A1 (en) 1999-05-14 2000-11-30 Siemens Ag Electromechanical actuator
DE19922427A1 (en) 1999-05-14 2000-11-30 Siemens Ag Electromagnetic multiple actuator
DE19924995A1 (en) * 1999-05-31 2000-12-14 Siemens Ag Motor vehicle gear mechanism adjustment element translation position detection arrangement
DE19926413C2 (en) 1999-06-10 2002-12-05 Bayerische Motoren Werke Ag Electromagnetic actuator for actuating an internal combustion engine lift valve
DE19944698C2 (en) * 1999-09-18 2003-03-06 Daimler Chrysler Ag reciprocating internal combustion engine
DE10016636A1 (en) 2000-04-04 2001-10-18 Siemens Ag Positioner, in particular for a valve which can be actuated by a drive
DE10023654A1 (en) * 2000-05-13 2001-11-22 Daimler Chrysler Ag Armature position detector e.g. for measuring speed of drive actuator of gas shuttle valve of internal combustion engine, has permanent magnet whose surface facing magnetic field detector is concave
DE20008931U1 (en) 2000-05-19 2001-06-28 Siemens Ag Positioner, in particular for a valve actuated by a drive, with an intrinsically safe structure
DE10051048A1 (en) * 2000-10-14 2002-04-18 Wabco Gmbh & Co Ohg Measurement for mechatronic arrangement involves performing measurements for sensor while electromagnetically operated device not carrying current or current change below threshold
DE10056572A1 (en) 2000-11-15 2002-05-23 Bayerische Motoren Werke Ag Internal combustion engine has cylinder head hollow volume in least partly accommodating armature on cylinder head side and at least partly bounded by electromagnet on actuator side
US7219691B2 (en) * 2003-02-07 2007-05-22 Fisher Controls International Llc Control valve positioner mounting system
DE102006051603A1 (en) * 2006-11-02 2008-05-15 Dr.Ing.H.C. F. Porsche Ag Method and device for valve lift detection
DE102018217352A1 (en) 2018-10-10 2020-04-16 Conti Temic Microelectronic Gmbh Actuator device and method for compensating a magnetic stray field in an actuator device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483373A1 (en) 1990-05-21 1992-05-06 Ube Industries, Ltd. Magnetoresistance effect element
EP0498344A1 (en) 1991-02-04 1992-08-12 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect element
DE4232244A1 (en) 1992-09-25 1994-03-31 Siemens Ag Magnetoresistance sensor using multi-layer system - has intermediate layer between measuring layer and bias layer with perpendicular magnetisation
DE4243357A1 (en) 1992-12-21 1994-06-23 Siemens Ag Magnetoresistance sensor with shortened measuring layers
WO1994015223A1 (en) 1992-12-21 1994-07-07 Siemens Aktiengesellschaft Magneto-resistive sensor with a synthetic anti-ferromagnet, and a method of producing the sensor
WO1994017426A1 (en) 1993-01-22 1994-08-04 Siemens Aktiengesellschaft Device for detecting the angular position of an object
US5570015A (en) * 1992-02-05 1996-10-29 Mitsubishi Denki Kabushiki Kaisha Linear positional displacement detector for detecting linear displacement of a permanent magnet as a change in direction of magnetic sensor unit
DE19518056A1 (en) * 1995-05-17 1996-11-21 Fev Motorentech Gmbh & Co Kg Armature movement control appts of electromagnetic switching arrangements e.g. for IC engine gas-exchange valves

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438059C2 (en) * 1993-11-05 2002-06-06 Volkswagen Ag Device for the measurement of valve lifting movements
US5596956A (en) * 1994-12-16 1997-01-28 Honda Giken Kogyo Kabushiki Kaisha Electromagnetically driven valve control system for internal combustion engines

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483373A1 (en) 1990-05-21 1992-05-06 Ube Industries, Ltd. Magnetoresistance effect element
EP0498344A1 (en) 1991-02-04 1992-08-12 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect element
US5570015A (en) * 1992-02-05 1996-10-29 Mitsubishi Denki Kabushiki Kaisha Linear positional displacement detector for detecting linear displacement of a permanent magnet as a change in direction of magnetic sensor unit
DE4232244A1 (en) 1992-09-25 1994-03-31 Siemens Ag Magnetoresistance sensor using multi-layer system - has intermediate layer between measuring layer and bias layer with perpendicular magnetisation
DE4243357A1 (en) 1992-12-21 1994-06-23 Siemens Ag Magnetoresistance sensor with shortened measuring layers
WO1994015223A1 (en) 1992-12-21 1994-07-07 Siemens Aktiengesellschaft Magneto-resistive sensor with a synthetic anti-ferromagnet, and a method of producing the sensor
WO1994017426A1 (en) 1993-01-22 1994-08-04 Siemens Aktiengesellschaft Device for detecting the angular position of an object
DE19518056A1 (en) * 1995-05-17 1996-11-21 Fev Motorentech Gmbh & Co Kg Armature movement control appts of electromagnetic switching arrangements e.g. for IC engine gas-exchange valves

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"ELECTROMAGNETIC EUGINE VALVE ACTUATOR WITH LOW SEATING VELOCITY", RESEARCH DISCLOSURE, no. 352, 1 August 1993 (1993-08-01), pages 518, XP000395246 *
H. GROHE: "OTTO- UND DIESELMOTOREN", vol. 9, 1990, VOGEL-BUCHVERLAG, WURZBURG DE, pages: 124 - 131

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19913868C1 (en) * 1999-03-26 2000-07-20 Siemens Ag Position sensor for detecting momentary position of body e.g. in gas exchange valve or fuel injection valve
DE19913870A1 (en) * 1999-03-26 2000-10-19 Siemens Ag Positioning sensor used for operating electromagnetic control of valves has a capacitor coupled to a lifting movement
DE19913869A1 (en) * 1999-03-26 2000-10-19 Siemens Ag Position sensor for controlling electromagnetically-operated valves; lifts object to be moved with instant lift by judging change in inductance arising from lifting movement

Also Published As

Publication number Publication date
DE19706106A1 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
WO1998036160A1 (en) Internal combustion engine valve device
DE60128021T2 (en) Position measuring device in an electromagnetic lift valve and method for fixing the same
EP1082586B1 (en) Method for determining the position and the speed of motion between of a control element which can be moved back and forth between two switching positions
DE60028026T2 (en) LINEAR ELECTROMAGNETIC ACTOR WITH A POSITION SENSOR
DE19739840C2 (en) Method for controlling an electromagnetically actuated actuating device, in particular a valve for internal combustion engines
DE19518056B4 (en) Device for controlling the armature movement of an electromagnetic switching device and method for driving
DE19649400C5 (en) Magnetic field sensing
DE10059337A1 (en) Stroke detection device for e.g. valve in motor vehicle engine, has magnetic sensor that detects the magnetic flux produced by a magnet, and outputs a sensor output corresponding to the stroke of a mechanical element
EP1792142B1 (en) Device and method for detecting the position and the velocity of a test object
WO1998038656A1 (en) Motion recognition process, in particular for regulating the impact speed of an armature on an electromagnetic actuator, and actuator for carrying out the process
EP1819566A1 (en) Electromagnetically controllable adjusting device and method for the production thereof and/or rectification
EP1179121A1 (en) Electromagnetic multiple actuator
EP1046047A1 (en) Magnetoresistive sensor element with selective magnetization direction of the bias layer
DE10157120A1 (en) Sensor for measuring the movement of an armature in an actuator for a gas exchange valve of a reciprocating engine in which sound waves within the sensor body are damped out to reduce interference voltages and increase accuracy
EP1179120B1 (en) Electro-mechanical servo-drive
DE19935428C1 (en) Actuator for electromagnetic valve control has two electromagnets, oscillating armature plate, two-part screen divided by thin axial gap in which magnetic field sensor is arranged
EP0979388A1 (en) Measuring device for contactless detection of a rotational angle
DE19842819B4 (en) Solenoid valve as an intake / exhaust valve of an internal combustion engine
DE10023654A1 (en) Armature position detector e.g. for measuring speed of drive actuator of gas shuttle valve of internal combustion engine, has permanent magnet whose surface facing magnetic field detector is concave
DE19955573A1 (en) Position measurement device for absolute or relative angle or path displacements, especially for determining throttle valve position in a combustion engine, is largely dependent only on magnetic field direction, not height or homogeneity
EP1446560B1 (en) Sensor arrangement for recording the movement of an armature with suppression of interfering voltages
DE19909109A1 (en) Method for detecting armature movement on an electromagnetic actuator
DE10054308A1 (en) Actuator for electromagnetic valve control has an arrangement for determination of actuator position without risk of displacement of the signal generator or demagnetization of a permanent magnet
EP0899755A1 (en) Sensor arrangement for detecting the position of a moving electromagnetic plunger
EP3884506A1 (en) Permanent-magnetic transmitter for a sensor device, sensor device and operating device for operating a vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998535228

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase