WO1998033671A1 - Reciprocating type viscous heater - Google Patents

Reciprocating type viscous heater Download PDF

Info

Publication number
WO1998033671A1
WO1998033671A1 PCT/JP1998/000396 JP9800396W WO9833671A1 WO 1998033671 A1 WO1998033671 A1 WO 1998033671A1 JP 9800396 W JP9800396 W JP 9800396W WO 9833671 A1 WO9833671 A1 WO 9833671A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
reciprocating
piston
viscous
cylinder
Prior art date
Application number
PCT/JP1998/000396
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiro Moroi
Takashi Ban
Tatsuyuki Hoshino
Tatsuya Hirose
Original Assignee
Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyoda Jidoshokki Seisakusho filed Critical Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
Priority to DE19880297T priority Critical patent/DE19880297T1/en
Publication of WO1998033671A1 publication Critical patent/WO1998033671A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V40/00Production or use of heat resulting from internal friction of moving fluids or from friction between fluids and moving bodies

Definitions

  • the present invention relates to a viscous heater. More specifically, a viscous heater that generates heat due to fluid friction in a viscous fluid contained in the heat generating chamber by the action of a member that moves in the heat generating chamber in the housing, and exchanges this heat with a circulating fluid flowing through the heat radiating chamber. Concerns. Background art
  • a viscous heat source that uses the driving force of the engine has attracted attention as a heat source for in-vehicle supplementary ribs.
  • Japanese Patent Laying-Open No. 2-264832 discloses a viscous heater incorporated in a vehicle heating device.
  • the front and rear housings are connected to each other in a state of being opposed to each other, and a heat generating chamber is formed inside the heat generating chamber, and a warm and cold jacket (heat discharging chamber) is formed outside the heat generating chamber.
  • a drive shaft is rotatably supported on the front housing via a bearing device, and a rotor is fixed to one end of the drive shaft so as to be integrally rotatable in the heating chamber.
  • the front and rear outer wall portions of the rotor and the inner wall portion of the heat generating chamber opposed thereto constitute labyrinth grooves which are close to each other, and a viscous fluid (for example, silicone oil) is interposed between a wall surface of the heat generating chamber and a wall surface of the rotor. ing.
  • a viscous fluid for example, silicone oil
  • the rotor rotates together with the drive shaft in the heating chamber, and the viscous fluid interposed between the inner wall of the heating chamber and the outer wall of the rotor is sheared by the rotor to generate a fluid. Generates heat based on friction.
  • the heat generated in the heat generating chamber is exchanged with the circulating water flowing in the jacket, and the heated circulating water is supplied to an external heating circuit to be used for heating the vehicle.
  • the rotor body is similar to a disk having a shaft length shorter than half a g from its axis. Shape.
  • the main shearing action surface is the uneven surface of the front and rear outer walls of the mouth, and the rotational speed (ie, the shearing speed) of the uneven surface located farther away from the axis of the main body. ) Increases.
  • the calorific value is theoretically proportional to the fourth power of the radius, and the variation in the performance due to the variation of the radius, the degree of filling of the oil, the difference in the location of the oil, etc. increases. . In other words, variations in processing accuracy greatly affect the heating capacity of viscous heaters.
  • the present invention has been made to solve the above-described problem, and an object of the present invention is to provide a viscous heater having uniform heating accuracy.
  • the present invention provides a heat generating chamber provided in a housing, and a reciprocating member disposed so as to be able to reciprocate with a viscous fluid interposed between a wall surface of the ripening chamber.
  • a driving means for driving the reciprocating member, and a radiating chamber provided adjacent to the heat generating chamber and exchanging heat generated by the reciprocating motion of the reciprocating member with a circulating fluid.
  • FIG. 1 is a sectional view showing a first embodiment of a viscous heater according to the present invention.
  • FIG. 2 is a sectional view taken along line 2-2 in FIG.
  • FIG. 3 is a schematic diagram showing a velocity distribution of a viscous fluid.
  • FIG. 4 is a sectional view showing a second embodiment of the viscous heater according to the present invention.
  • FIG. 5 is a sectional view showing a third embodiment of the viscous heater according to the present invention.
  • FIG. 6 is a partial cross-sectional view showing the swash plate in the embodiment shown in FIG.
  • FIG. 7 is a partial cross-sectional view showing the swash plate in a state where the inclination angle is the minimum.
  • FIG. 8 is a partial sectional view showing a modified viscous heater.
  • FIG. 9 is a partial cross-sectional view showing a modified biston.
  • FIG. 10 is a partial sectional view showing a piston of another modification.
  • FIG. 11 is a sectional view showing a piston according to another modification. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 the front housing 11, the front cylinder block 12, the rear cylinder block 13, and the rear plate 14 pass through the cylinder block 12, 13 from the front housing 11 to the rear plate. It is fastened with a plurality of ports 15 screwed to 14.
  • Both cylinder blocks 12 and 13 are composed of inner cylinders 12 i and 13 i and outer cylinders 12 ⁇ and 13 ⁇ , respectively.
  • the inner cylinder 12 i is connected to the front housing 11 and the inner cylinder
  • the cylinders 13i are fixed to the rear plate 14 via positioning pins 15a, respectively.
  • Each of the inner cylinders 12i and 13i is positioned and fixed via a plurality of (only one is shown) positioning pins 15a.
  • a gasket 16 for sealing is interposed between both cylinder ports 12 and 13.
  • Freon Gaskets 17 are disposed between the housing 11 and the cylinder block 12 and between the cylinder block 13 and the IL block 4, respectively.
  • a chamber 18 is formed on the opposite surface of both inner cylinders 12 i, 13 i, and shaft holes 12 a, 13 a are formed in the center of the cylinder works 12, 13.
  • a plurality of cylinder bores 12b, 13b are formed at equal intervals around the shaft holes 12a, 13a, and penetrate in parallel with each other.
  • a passage 19 is formed.
  • a drive shaft 20 as a drive shaft constituting the drive means is rotatably supported via radial bearings 21 and 22 so as to pass through the front housing 11 and cross the chamber 18.
  • a bearing having a shaft sealing function for example, a bearing with a rib seal
  • a double-headed piston 23 as a reciprocating member is inserted into the cylinder bores 12b and 13b.
  • the clearance (side clearance) between the peripheral surface of the cylindrical portion of the piston 23 and the inner surfaces of the cylinder pores 12b and 13b is set to a predetermined value of lmm or less, for example, 0.2 to 0.5 mm.
  • the length of the cylindrical portion forming each head of the piston 23 is formed to be substantially the same as the length of the cylinder pores 12b and 13b.
  • a swash plate 24 as a cam plate is rotatably supported at an intermediate portion of the drive shaft 20. Thrust bearings 25 are interposed between the boss portion 24a of the swash plate 24 and the cylinder ports 12 and 13, respectively.
  • Each piston 23 is moored to the swash plate 24 via a pair of shoes 26.
  • the rotation of the swash plate 24 accompanying the rotation of the drive shaft 20 causes the piston 23 to reciprocate in the cylinder bores 12b and 13b. It has become.
  • the cylinder pores 12b, 13b and the chamber 18 constitute a heat generating chamber.
  • Inner cylinder 12 i, 1 of front housing 1 1 and rear plate 14 Concave portions lla and 14a are formed on the surface facing 3i so that the passage 19 can communicate with the cylinder pores 12b and 13b.
  • a viscous fluid is contained in the cylinder bores 12b, 13b, the chamber 18, the passage 19, and the recesses 11a, 14a.
  • Silicone oil ⁇ mechanical oil is used as the viscous fluid.
  • FIG. 2 between the outer circumference of the inner cylinder 1 2 i, 13 i and the inner circumference of the outer cylinder 12 o, 13 o, approximately half the circumference of each cylinder bore 12 b, 13 b
  • An annular water jacket 27 is formed so as to surround the water jacket.
  • the air jacket 27 is formed as grooves 28, 29 with the chamber 18 side of each cylinder block 12, 13 open.
  • the water jacket 27 constitutes a heat radiating chamber adjacent to the heat generating chamber.
  • a water inlet port 30 for taking in circulating water as a circulating fluid from a heating circuit (not shown) provided in the vehicle to the water jacket 27 is formed on the outer peripheral portion of the cylinder block 12 on the front side.
  • a water outlet port 31 for sending out circulating water from the heater jacket 27 to the heating circuit is formed on the outer peripheral portion of the cylinder block 13 on the rear side.
  • a spiral ridge 2 is provided in the water jacket 27 so that the circulating water introduced from the water inlet port 30 flows evenly throughout the water jacket 27 and is discharged from the water outlet port 31. 8 a and 29 a are formed.
  • the ridges 28a and 29a project from the inner wall surface of the water jacket 27, that is, the outer peripheral surfaces of the inner cylinders 12i and 13i.
  • the tips of the ridges 28a and 29a are formed so that there is a gap between the ridges 28a and 29a.
  • An electromagnetic clutch 32 is provided between an end of the drive shaft 20 protruding from the front housing 11 and a support cylinder 11 b protruding from the front housing 11.
  • the electromagnetic clutch 32 is engaged with a pulley 34 rotatably supported on the support cylinder 11b via an angular bearing 33 and an outer end of the drive shaft 20.
  • a disk-shaped clutch plate 36 provided so as to be slidable on the support ring 35.
  • a plate panel 37 is provided on the back side of the clutch plate 36.
  • the plate panel 37 is fixed to the support ring 35 at a substantially central portion thereof, and its outer ends (upper and lower ends in FIG. 1) are connected to the outer peripheral portion of the clutch plate 36 by rivets or the like. .
  • the front surface of the clutch plate 36 is opposed to the end surface 34a of the pulley 34, and the end surface 34a of the pulley 34 functions as another clutch plate.
  • the pulley 34 is operatively connected to a vehicle engine (neither is shown) via a belt.
  • An annular solenoid coil 38 is supported by the front housing 11.
  • the clutch plate 36 is pressed against the end surface 34 a of the pulley 34 by the excitation and demagnetization of the solenoid coil 38, and the press contact is released, so that the pulley 34 and the drive shaft 20 are separated from each other. Connected or disconnected. By connecting the pulley 34 and the drive shaft 20, the drive shaft 20 is rotated by the vehicle engine. Next, the operation of the viscous heater configured as described above will be described. First, when the electromagnetic clutch 32 is turned on while the vehicle engine is driven, and the drive shaft 20 is rotated, the swash plate 24 in the chamber 18 is rotated, and A plurality of pistons 23 are reciprocated in the cylinder pores 12b and 13b.
  • Each piston 23 reciprocates in a state where a viscous fluid exists between its outer peripheral surface and the wall surfaces of the cylinder pores 12b and 13b. Since the gap between the piston 23 and the wall of the cylinder pores 1 2b, 13 b is very small, when the piston 23 reciprocates, a frictional force (fluid frictional force) is generated by shearing the viscous fluid. The fluid generates heat. Then, the heat is exchanged with the circulating water by the water jacket 27 provided outside the sealing pores 12b and 13b. The viscous fluid flows into the cylinder bore when moving in the direction away from the front housing 11 or rear plate 14 where the head end faces of the pistons 23 face each other, and viscous fluid when moving to the opposite side. Is discharged from the cylinder pores.
  • FIG. 1 shows a state in which the biston 23 shown in the drawing has moved from the rear side to the front side.
  • the viscous fluid in the viscous heater generates a flow in the direction of the arrow shown in the figure.
  • the illustrated piston 23 starts to move toward the lya side, and the flow of the viscous fluid is reversed.
  • the viscous fluid existing in the gap between the peripheral surface of the piston 23 and the wall surface of the cylinder bores 1 2 b and 13 b is replaced with the viscous fluid in the cylinder bore or the chamber 18 as the piston 23 reciprocates.
  • only certain viscous fluids are not brought into a shearing state.
  • the viscous fluid As the piston 23 reciprocates, the viscous fluid is discharged from the cylinder pores 12b and 13b, but the viscous fluid is discharged to the concave portions 1la and 14a without receiving a large resistance. Therefore, unlike the swash plate type compressor, a large thrust force is not applied to the thrust bearing 25. Therefore, there is no adverse effect even if a silicone oil, which is not suitable as a lubricating oil, is used as a viscous fluid. The calorific value of this viscous light depends on the fluid frictional force.
  • the velocity distribution of the viscous fluid existing between the peripheral surface of the piston 23 and the cylinder pore wall when the piston 23 moves is shown in Fig. 3, and the fluid friction force F f per one piston Is expressed by the following equation.
  • is the velocity of the viscous fluid attached to the peripheral surface of the piston 23
  • Equation (1) becomes the following equation.
  • the fluid friction force is proportional to the product of the Poivitch radius Bp, the piston diameter D, and the reciprocal of the gap s.
  • the probability that the processing accuracy or error varies from Bp, D and s to the side where the value of Q is increased or to the side where the value of Q is decreased is very small.
  • the variation in the heating capacity for each heater is smaller than that of the conventional screw heater.
  • piston 23 reciprocates with the viscous fluid interposed between the cylinder bores (heating chambers) 12b and 13b, the fluid friction heat is reduced. appear. For this reason, even if the variation in the processing accuracy is the same as that of the conventional viscous whisk, the variation in the heating capacity is reduced.
  • piston 23 is used as a reciprocating member.
  • Biston is used in various devices, and its processing accuracy is generally high. Therefore, piston 23 used for viscous heater is relatively easy to process with high processing accuracy. Can be manufactured. Disconnection of piston 2 3 Because the surface is circular, it is easier to increase machining accuracy. Further, since the drive means for reciprocating the piston 23 is constituted by the drive shaft 20 and the swash plate 24 supported so as to be integrally rotatable with the drive shaft 20, a plurality of pistons 23 are formed. It can be driven in a relatively small space. As a result, the total surface area of the peripheral surface of the biston can be increased compared to a configuration in which one biston is provided in a housing of the same size.
  • the viscous fluid subjected to the shearing action that is, the viscous fluid existing between the peripheral surface of the piston 23 and the wall surface of the cylinder bore, is caused by the reciprocating motion of the piston 23 in the cylinder pore or the chamber 18.
  • the piston 23 is a double-headed type, the force acting on the swash plate 24 is balanced between the front and rear, and the durability is improved compared to a single-sided piston that has the same surface area on the peripheral surface of the piston. I do.
  • the water jacket 27 is annular and formed long in the axial direction of the drive shaft 20, but circulating water is guided inside the water jacket 27 by spiral ridges 28a and 29a. Since the water circulates along the predetermined route, it is possible to reduce a short circuit and a stagnation of the flow path of the circulating water in the water jacket 27. For this reason, heat exchange from the viscous fluid in the cylinder pores 12b, 13b and the chamber 18 to the circulating water in the water jacket 27 can be performed efficiently. Since the ridges 28 a and 29 a are formed so as to project from the heat generating chamber side into the water jacket 27, the circulating water in the water jacket 27 and the heat generating chamber The contact area with the surrounding wall increases, and the heat exchange efficiency improves.
  • the housing includes a cylinder block 39, a bottom plate 40 disposed below the cylinder block 39, and a top housing 41 disposed above the cylinder block 39, which are fastened by ports 42.
  • the cylinder block port 39 is composed of an inner cylinder 39i and an outer cylinder 39o.
  • a 0 ring 43a is interposed between the bottom plate 40 and the cylinder block 39, and a gasket 43b is interposed between the tube housing 41 and the cylinder block 39. .
  • An O-ring 39a is interposed between the inner peripheral surface of the end of the outer cylinder 39o on the bottom plate 40 side and the outer peripheral surface of the inner cylinder 39i.
  • a piston 45 is accommodated in the cylindrical cylinder pore 44 of the inner cylinder 39i so as to be able to reciprocate with a predetermined gap from the inner peripheral surface of the inner cylinder 39i.
  • Cylinder hole 4 4 constitutes a heating chamber.
  • the tob housing 41 has a support cylinder 41 a and a hole 41 b through which a crankshaft 46 as a drive shaft can be inserted.
  • the crankshaft 46 has a support cylinder 41 a and a hole 41.
  • the top housing 4 1 (rotatably supported via radial bearings 47, 48 fitted to b.
  • crankshaft 4.6 protrudes from the support cylinder 41 a, It is operatively connected to the vehicle engine via a clutch (not shown) similar to the clutch.Rearing bearings with a live seal are used for radial pairings 47 and 48.
  • the part 4 la is formed to have an inner diameter capable of passing through the crank part of the crankshaft 46.
  • the piston 45 is formed in a cylindrical shape, and the piston shaft 49 is connected to the crankshaft 46 via a piston pin 49 and a connecting rod 50.
  • the cylinder is reciprocated vertically with the rotation of the crankshaft 46.
  • the viscous fluid contains almost half the volume of the cylinder block 39.
  • the drive means is constituted by 50.
  • a water jacket 51 is formed between the inner cylinder 39i and the outer cylinder 39o
  • the outer cylinder 39o has a water inlet port.
  • the water jacket 51 is formed as a cylindrical groove with the top housing 41 side open, and the water cylinder 51 has an inner cylinder 39 i.
  • a helical guide ridge 54 protruding from the outer peripheral surface of the crankshaft 46 is provided in this embodiment.
  • one biston 45 can provide a relatively large surface area that contributes to the fluid friction of the viscous fluid, and the structure is simplified.
  • the pistons 45 are formed in a cylindrical shape, that is, a shape in which the viscous fluid existing before and after in the moving direction of the piston can pass through the inside of the piston, the member that closes the end of the cylinder opening 39. (In this embodiment, it is not necessary to provide a housing portion for the viscous fluid in the bottom plate 40), which contributes to the miniaturization of the viscous fluid.
  • the driving means of the piston 45 is disposed above the cylinder block 39, and the viscous fluid is contained in the cylinder block 39 in a portion corresponding to the movement range of the piston 45. Need not be increased unnecessarily.
  • the piston is reciprocated by using a swash plate in the same manner as in the first embodiment.
  • the difference is that the stroke of the piston can be changed and that the piston is a single-headed piston. It is different.
  • the front housing 55 is joined and fixed to the front ends of the cylinder port 56 and the outer rear housing 57 via a gasket 58.
  • an internal rear housing 59 is joined and fixed via a gasket 60 and a valve plate 61.
  • the front housing 55, cylindrical dub 56, pulp plate 61, and inner housing 59 are fastened and fixed with Porto 15.
  • the front housing 55 and the external housing 57 are fastened and fixed by a port (not shown).
  • the crankcase 62 which is a chamber for accommodating the swash plate, is The dub mouth is surrounded by 56.
  • the drive shaft 20 is rotatably supported between the front housing 55 and the cylinder block 56 via a radial bearing 22 so as to cross the crankcase 62.
  • a shaft sealing device (oil seal) 63 is interposed between the front end side of the drive shaft 20 and the front housing 55.
  • the drive shaft 20 is connected to an external drive source (engine) (not shown) via an electromagnetic clutch.
  • the substantially disk-shaped rotating support (lug plate) 64 is supported by the drive shaft 20 so as to be integrally rotatable in the crank chamber 62.
  • the swash plate 65 is supported on the drive shaft 20 so as to be slidable and tiltable in the axial direction.
  • a pair of support arms 66 (only one side is shown) projecting from the rotation support 64 constitute a hinge mechanism.
  • On the front side of the swash plate 65 a pair of guide bins 67 also constituting a hinge mechanism is protruded, and a spherical portion 67a provided at the tip of each guide pin 67 is provided with a support arm 6a. It is slidably fitted into a guide hole 6 6a provided in 6. That is, the swash plate 65 is non-rotatably connected to the rotary support 64 via the hinge mechanism.
  • the swash plate 65 can be tilted in the axial direction of the drive shaft 20 and can rotate integrally with the drive shaft 20 by linking the support arm 66 and the guide pin 67.
  • the swash plate 65 is tilted by the slide guide relationship between the guide hole 66 a and the bulbous portion 67 a and the slide supporting action of the drive shaft 20.
  • the inclination angle (inclination angle) of the swash plate 65 is reduced.
  • the coil spring 68 as a low-angle panel is wound around the drive shaft 20 between the rotary support 64 and the swash plate 65, and the coil spring 68 changes the swash plate 65 to a low angle. Bias in the direction.
  • the ring-shaped stopper 6 9 is a swash plate 6 5
  • the minimum inclination angle of the swash plate 65 is defined by the swash plate 65 being fixed to the drive shaft 20 and the swash plate 65 abutting against the stopper 69.
  • An inclination regulating protrusion 70 is integrally formed on the front side of the swash plate 65, and the maximum inclination angle of the swash plate 65 is defined by the inclination regulating protrusion 70 abutting on the rotary support 64.
  • a plurality of cylinder bores 56 a are formed in the cylinder block 56 (only two are shown in FIG.
  • a suction valve 73 that opens and closes the suction hole 61a on the side of the cylinder bore 56a of the valve plate 61, and a discharge valve 74 that opens and closes the discharge hole 61b on the side of the champ 72 and a retainer 75 are fixed by bolts 76 and nuts 77. Then, the viscous fluid in the chamber 72 is sucked into the cylinder pore 56 a via the suction hole 61 a and the suction valve 73 by the reciprocating operation of the piston 71. The viscous fluid that has flowed into the cylinder bore 56 a is discharged to the champ 72 through the discharge hole 61 b and the discharge valve 74 by the forward movement of the piston 71.
  • the opening of the discharge valve 74 is defined by a retainer 75.
  • a thrust bearing 78 a bearing a thrust load acting on the drive shaft 20 with the reciprocation of the piston 71 is interposed between the rotary support 64 and the inner wall surface of the front housing 55.
  • a thrust bearing 78b is also provided in a housing formed at the center of the cylinder block 56. Between the outer peripheral surface of the cylinder port 56 and the outer surface of the inner housing 59 and the inner surface of the outer housing 57, a water jacket 79 as a heat radiating chamber is formed.
  • a plurality of annular ridges 59 a are formed concentrically on the outer surface of the inner housing 59.
  • a water inlet port 30 and a water outlet port 31 are formed on the outer peripheral portion of the outer housing 57.
  • the crank chamber 62 is connected to pressure adjusting means 80 as swash plate angle changing means via a pipe 81.
  • the end of the pipe 81 is connected to a hole formed in the front housing 55 through a sealing member (for example, an O-ring) 82 in an oil-tight manner.
  • a sealing member for example, an O-ring
  • the pressure adjusting means 80 is a cylinder 83, a piston 84 slidably accommodated in the cylinder 83, an electric cylinder 85 for reciprocatingly driving the biston 84, and a control for controlling the electric cylinder 85.
  • An O-ring 84a for sealing is housed in a groove formed on the outer periphery of the piston 84.
  • the electric cylinder 85 has a configuration in which a motor and a screw are combined to take out the rotational force of the motor as a linear thrust.
  • the rotor of the motor is hollow, and is disposed so that it cannot rotate and can move in the axial direction with a male screw as the output shaft 85a penetrating therethrough.
  • the rotor is provided with a female screw screwed with the male screw.
  • the control device 86 stores the relationship between the rotation speed and room temperature of the drive shaft 20 and the appropriate pressure in the crank chamber 62. Then, the controller 86 adjusts the pressure of the crank chamber 62 in accordance with the operation state such as the rotation speed of the drive shaft 20, the room temperature, and the like to control the amount of heat generation.
  • the controller 86 adjusts the pressure so that the angle formed between the swash plate 65 and the drive shaft 20 becomes large when the viscous heater is started, that is, the angle of inclination becomes small.
  • machine oil is used as the viscous fluid
  • the viscous fluid is used in the crankcase. 62, Champer 72, Cylinder bore 56A, Line 81 and Cylinder 83 are filled.
  • the viscous heater of this embodiment also generates heat by the reciprocation of the piston 71 via the swash plate 65 by the rotation of the drive shaft 20.
  • the viscous fluid is compressed by the reciprocating motion of the piston 71, and the friction is generated by the viscous fluid friction in the side clearance between the piston 71 and the cylinder pore 56a.
  • the viscous fluid is subjected to a compressive action, and the compressed viscous fluid presses and moves the discharge valve 74 to cause the discharge port 6 1b to move from the discharge hole 6 1b to the champ 7 2.
  • the biston 71 returns, the viscous fluid in the chamber 72 pushes and moves the suction valve 73 to flow into the cylinder bore 56a.
  • the theoretical calorific value Q of the viscous heater of this embodiment is expressed by the following equation.
  • the inclination angle 0 of the swash plate 65 changes through the intermediate state shown in FIG. 6 to the maximum position shown in FIG. Then, in the state shown in FIG. 5, the inclination angle 0 of the swash plate 65 becomes the maximum and the stroke of the piston 71 becomes the maximum, so that a necessary heat generation amount can be secured even at a low speed rotation.
  • the control device 86 drives the electric cylinder 85 in the direction in which the output shaft 85a protrudes to increase the pressure in the crank chamber 62 in order to suppress excessive heat generation during high-speed rotation. As a result, when the inclination angle 0 of the swash plate 65 becomes small, the intermediate state shown in FIG. 6 is obtained.
  • the swash plate angle changing means for changing the tilt angle ⁇ of the swash plate 65 is provided, by adjusting the tilt angle 0, it is possible to prevent an excessive amount of heat generation at high speed. The durability and reliability of the shaft sealing device 63 etc. are improved. Also, the required heat generation can be ensured even at low speed rotation. Furthermore, the swash plate angle changing means is configured to change the inclination angle 6> of the swash plate 65 by changing the pressure of the viscous fluid in the crank chamber 62 in which the swash plate 65 is accommodated. It's easy.
  • the controller 86 controls the operating conditions such as the rotation speed of the drive shaft 20 and room temperature.
  • the amount of heat generated is controlled by adjusting the pressure of the crank chamber 62 in accordance with the condition, so that an extra load is prevented from being applied to the drive source, and wasteful power consumption is reduced.
  • a single-headed piston 71 is used instead of the double-headed piston 23 as shown in FIG. Configuration.
  • the front cylinder block 12 of the viscous heater of the first embodiment is shortened, and the recess 11 a of the front housing 11 and the passage 19 of the cylinder block 12 are unnecessary.
  • a groove 71a is formed on the proximal end peripheral surface of the piston 71, so that a load is less likely to be applied to the proximal end surface of the piston 71 when the piston 71 moves.
  • the screw force heater is smaller than that using a double-headed piston.
  • the pistons 23 and 71 have, as shown in FIGS. Form a passage 23 a, 7 lb communicating with 8.
  • the pistons 23, 71 move, the viscous fluid passes through the passages 23a, 71b, and the inside of the cylinder bores 12b, 13b and the chamber.
  • the concave portions 11a and 14a of the rear plate 11 and the rear plate 14 become unnecessary, so that the structure is simplified and the manufacturing cost can be reduced.
  • the distal ends of the pistons 23 and 71 are formed into a cylindrical shape, and the passages 23a and 7 lb are formed.
  • the protrusions 87, 88 that can be inserted into the cylinder are formed so that there is a gap between the cylinder inner circumference and the gap between the piston outer circumference and the cylinder bore circumference. In this case, the amount of heat generated by one reciprocation of the pistons 23 and 71 increases.
  • the piston 45 is formed in a completely cylindrical shape, and the piston bin 49 is connected to the piston 45.
  • an intermediate work 89 having a projection 89a inserted into the piston 45 is provided between the potato plate 40 and the cylinder block 39.
  • a gap is formed between the peripheral surface of the projection 89a and the inner peripheral surface of the piston 45 so as to effectively generate heat generated by shearing.
  • a cylindrical water jacket 90 independent of the water jacket 51 is formed in the intermediate block 89 so that the circulating water of the heating circuit flows through the water jacket 90 through an inlet port and an outlet port (not shown). I'm sorry. In this case, the amount of heat generated by one reciprocation of the piston 45 increases, and the generated heat is efficiently exchanged with the circulating water.
  • the war evening jacket 90 may be omitted in (4).
  • the bottom plate 40 becomes unnecessary, and the structure is simplified as compared with (4).
  • a cam plate used in a wave cam type compressor disclosed in, for example, JP-A-7-97978, JP-A-7-189901, etc., is used. You may.
  • the piston may be reciprocated using a swash plate that only oscillates with rotation restricted.
  • the thrust force applied to the swash plate and the drive shaft is small unlike the compressor, so that the thrust bearing 25 may be omitted.
  • crankshaft 46 may be disposed below the piston 45. That is, it is used in the same configuration as that of Fig. 4 and placed upside down. However, it is necessary to fill the viscous fluid into the room where the crankshaft 46 is housed and into the cylinder bore 44 of the cylinder block 39. Moreover, you may use it arrange
  • the cross-sectional shape of the cylinder bores 12b, 13b, and 44 should be other than circular, for example, triangular, square, hexagonal, elliptical, etc., and the outer shapes of the pistons 23, 45, 71 should be corresponding You may.
  • the ridges 28a, 29a, 54 may be formed such that their tips abut the opposing surface, or the ridges 28a, 29a, 54 may be omitted.
  • the water jacket 27 may be formed in a simple cylindrical shape, or may be formed in a square cylindrical shape or a polygonal cylindrical shape corresponding to the shape or arrangement of the cylinder bore.
  • a normal bearing may be used in place of the bearing having the shaft sealing function, and an oil seal may be used together.
  • valve mechanisms such as the suction valve 73 and the discharge valve 74 may be omitted. Further, in the first embodiment and (1), a valve mechanism such as a suction valve and a discharge valve may be provided.
  • a belt that is wound around a pair of pulleys (mouths) housed in the housing and that reciprocates with the reciprocating rotation of the pulley may be used.
  • viscous fluid as used herein means any medium that generates heat based on fluid friction under the shearing action of a "reciprocating member", such as a highly viscous liquid or semi-fluid. However, it is not limited to silicone oil.
  • the “piston” is a member that reciprocates along a wall surface of a chamber (cylinder pore) that stores a viscous fluid, and is not limited to a so-called biston that moves in the same direction as the fluid in the room in a state where the chamber is partitioned.
  • those that allow the fluid in the chamber to pass through the inside of the reciprocating member include, for example, cylindrical members (Biston) and those in which a hole that penetrates the piston in the axial direction is formed.

Abstract

A double-end piston is contained in a cylinder bore formed so as to communicate with a chamber in which a swash plate (24) is contained, in an inner cylinder forming a cylinder block. The swash plate is integratedly rotatably supported in the middle of a driving shaft, and each piston is anchored to the swash plate through a shoe. A water jacket is formed between the inner cylinder and an outer cylinder. The piston is reciprocated inside the cylinder bore by the rotation of the swash plate following the rotation of the drive shaft, and heat generated by the fluid friction of a viscous fluid interposed between the circumferential surface of the piston and the wall surface of the cylinder bore is transferred to circulating water inside the water jacket by heat exchange.

Description

eft H 書  eft H letter
往復運動式ビスカスヒータ  Reciprocating viscous heater
技術分野 Technical field
本発明はビスカスヒータに関する。 より詳細には、 ハウジング内の発熱室内で 運動する部材の作用により発熱室内に収納された粘性流体に流体摩擦による熱を 発生させ、 この熱を放熱室を流れる循環流体に熱交換するビスカスヒータに関す るものである。 背景技術  The present invention relates to a viscous heater. More specifically, a viscous heater that generates heat due to fluid friction in a viscous fluid contained in the heat generating chamber by the action of a member that moves in the heat generating chamber in the housing, and exchanges this heat with a circulating fluid flowing through the heat radiating chamber. Concerns. Background art
車載用の補肋熱源として、 エンジンの駆動力を利用するビスカスヒー夕が注目 されている。 例えば、 特開平 2— 2 4 6 8 2 3号公報は車両用暖房装置に組み込 まれるビスカスヒータを開示する。 このビスカスヒ一夕では、 前部及び後部ハウジングが対設された状態で相互に 連結され、 その内部には発熱室と、 この発熱室の外域にウォー夕ジャケット (放 熱室) とが形成されている。 前部ハウジングには軸受装置を介して駆動軸が回動 可能に支承されており、 この駆動軸の一端には発熱室内で一体回動可能にロー夕 が固定されている。 ロータの前後外壁部及びそれらと対向する発熱室の内壁部は、 互いに近接するラビリンス溝を構成し、 この発熱室の壁面とロータの壁面との間 隙に粘性流体 (例えばシリコーンオイル) が介 されている。 エンジンの駆動力が駆動軸に伝達されると、 駆動軸と共にロータが発熱室内で 回転し、 発熱室内壁部とロータ外壁部との間に介在される粘性流体がロータによ つて剪断されて流体摩擦に基づく熱を発生する。 発熱室で発生した熱は、 前記ゥ ォ一夕ジャケット内を流れる循環水に熱交換され、 その加熱循環水は外部暖房回 路に供給されて車両の暖房に供される。 上記した従来型のビスカスヒータでは、 ロータの前後外壁部に、 ラビリンスお 構成用の凹凸を形成する必要から、 そのロータ本体は、 その軸心からの半 gより も軸長の短い円板類似の形状となる。 かかるロータでは、 主たる剪断作用面は口 一夕の前後外壁部の凹凸条部表面となり、 また、 ロ--夕本体の軸心から離れた位 置にある凹凸条部ほど周回速度 (即ち剪断速度) が大きくなる。 このため、 ヒー 夕の発熱量を多くするためには、 ロー夂径を大きく、 つまりヒ一夕本体の外径を 大きくする必要が生ずる。 また、 円盤型のビスカスヒータでは、 その発熱量は理論的に半径の 4乗に比例 するため、 半径のばらつき、 オイルの充填率の大小、 オイルの存在位置の違い等 による能力のばらつきが大きくなる。 即ち、 加工精度のばらつきがビスカスヒー 夕の暖房能力に大きく影響する。 その結果、 ばらつきを見越して暖房能力を大き め、 即ち半径を大きめに設定すると、 発熱により粘性流体が過剰加熱状態となつ て劣化し易くなるという問題が生じる。 発明の開示 A viscous heat source that uses the driving force of the engine has attracted attention as a heat source for in-vehicle supplementary ribs. For example, Japanese Patent Laying-Open No. 2-264832 discloses a viscous heater incorporated in a vehicle heating device. In this viscous light, the front and rear housings are connected to each other in a state of being opposed to each other, and a heat generating chamber is formed inside the heat generating chamber, and a warm and cold jacket (heat discharging chamber) is formed outside the heat generating chamber. I have. A drive shaft is rotatably supported on the front housing via a bearing device, and a rotor is fixed to one end of the drive shaft so as to be integrally rotatable in the heating chamber. The front and rear outer wall portions of the rotor and the inner wall portion of the heat generating chamber opposed thereto constitute labyrinth grooves which are close to each other, and a viscous fluid (for example, silicone oil) is interposed between a wall surface of the heat generating chamber and a wall surface of the rotor. ing. When the driving force of the engine is transmitted to the drive shaft, the rotor rotates together with the drive shaft in the heating chamber, and the viscous fluid interposed between the inner wall of the heating chamber and the outer wall of the rotor is sheared by the rotor to generate a fluid. Generates heat based on friction. The heat generated in the heat generating chamber is exchanged with the circulating water flowing in the jacket, and the heated circulating water is supplied to an external heating circuit to be used for heating the vehicle. In the above-mentioned conventional viscous heater, since it is necessary to form irregularities for labyrinth construction on the front and rear outer wall portions of the rotor, the rotor body is similar to a disk having a shaft length shorter than half a g from its axis. Shape. In such a rotor, the main shearing action surface is the uneven surface of the front and rear outer walls of the mouth, and the rotational speed (ie, the shearing speed) of the uneven surface located farther away from the axis of the main body. ) Increases. For this reason, in order to increase the calorific value of the heat source, it is necessary to increase the diameter of the low profile, that is, to increase the outer diameter of the main body. In addition, in a disk-type viscous heater, the calorific value is theoretically proportional to the fourth power of the radius, and the variation in the performance due to the variation of the radius, the degree of filling of the oil, the difference in the location of the oil, etc. increases. . In other words, variations in processing accuracy greatly affect the heating capacity of viscous heaters. As a result, if the heating capacity is increased in anticipation of the variation, that is, if the radius is set to a relatively large value, a problem occurs that the viscous fluid is easily overheated due to heat generation and deteriorates easily. Disclosure of the invention
本発明は上記した問題点を解消するためになされたものであり、 その目的は暖 房精度にむらがないビスカスヒータを提供することにある。 上記した目的を達成するために、 本発明はハウジングに設けられた発熱室と、 前記発熟室の壁面との間に粘性流体が介在する状態で往復移動可能に配設された 往復運動部材と、 前記往復運動部材を駆動する駆動手段と、 前記発熱室に隣接し て設けられ、 前記往復運動部材の往復運動により発生した熱を循環流体に熱交換 する放熱室とを備えることをその要旨とする。 図面の簡単な説明  The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a viscous heater having uniform heating accuracy. In order to achieve the above object, the present invention provides a heat generating chamber provided in a housing, and a reciprocating member disposed so as to be able to reciprocate with a viscous fluid interposed between a wall surface of the ripening chamber. A driving means for driving the reciprocating member, and a radiating chamber provided adjacent to the heat generating chamber and exchanging heat generated by the reciprocating motion of the reciprocating member with a circulating fluid. I do. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明におけるビスカスヒータの第 1の実施形態を示す断面図である。 図 2は図 1の 2— 2線における断面図である。 一- 図 3は粘性流体の速度分布を示す模式図である。 FIG. 1 is a sectional view showing a first embodiment of a viscous heater according to the present invention. FIG. 2 is a sectional view taken along line 2-2 in FIG. FIG. 3 is a schematic diagram showing a velocity distribution of a viscous fluid.
図 4は本発明におけるビスカスヒータの第 2の実施形態を示す断面図である。 図 5は本発明におけるビスカスヒータの第 3の実施形態を示す断面図である。 図 6は図 5に示す実施形態において傾角が中間状態にある斜板を示す部分断面 図である。  FIG. 4 is a sectional view showing a second embodiment of the viscous heater according to the present invention. FIG. 5 is a sectional view showing a third embodiment of the viscous heater according to the present invention. FIG. 6 is a partial cross-sectional view showing the swash plate in the embodiment shown in FIG.
図 7は同じく傾角が最小状態にある斜板を示す部分断面図である。  FIG. 7 is a partial cross-sectional view showing the swash plate in a state where the inclination angle is the minimum.
図 8は変更例のビスカスヒータを示す部分断面図である。  FIG. 8 is a partial sectional view showing a modified viscous heater.
図 9は変更例のビストンを示す部分断面図である。  FIG. 9 is a partial cross-sectional view showing a modified biston.
図 1 0は別の変更例のピストンを示す部分断面図である。  FIG. 10 is a partial sectional view showing a piston of another modification.
図 1 1は別の変更例のピストンを示す断面図である。 発明を実施するための最良の形態  FIG. 11 is a sectional view showing a piston according to another modification. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1の実施の形態)  (First Embodiment)
以下、 本発明を車両の暖房装置に組み込まれるビスカスヒータに具体化した第 1の実施の形態を図 1〜図 3に従って説明する。 図 1に示すように、 フロントハウジング 1 1、 フロントシリンダブロヅク 1 2、 リヤシリンダブロック 1 3及びリャプレート 1 4は、 フロントハウジング 1 1か らシリンダブロック 1 2, 1 3を貫通してリャプレート 1 4に螺着された複数本 のポルト 1 5にて締結されている。 両シリンダブロック 1 2, 1 3は、 インナ一 シリンダ 1 2 i, 1 3 i及びアウターシリンダ 1 2 ο, 1 3 οによりそれぞれ構 成され、 インナーシリンダ 1 2 iはフロントハウジング 1 1に、 インナ一シリン ダ 1 3 iはリャプレート 1 4に位置決めピン 1 5 aを介してそれそれ固定されて いる。 各ィンナーシリンダ 1 2 i, 1 3 iはそれぞれ複数 (各々 1本のみ図示) の位置決めピン 1 5 aを介して位置決め固定されている。 両シリンダブ口ヅク 1 2 , 1 3間にはシールのためのガスケット 1 6が介在されている。 また、 フロン トハウジング 1 1とシリンダブロック 1 2との間及びシリンダブロック 13と IL ャプレート 4との間にはそれそれガスケット 17が配設されている。 両インナ一シリンダ 12 i, 13 iの対向面には室 18が形成され、 シリンダ プロヅク 12, 13の中心部には軸孔 1 2 a, 13 aが形成されている。 インナ ーシリンダ 12 i, 13 iには軸孔 12 a, 13 aの周囲に等間隔で複数のシリ ンダボア 12 b, 13 bが互いに平行に貫通形成されるとともに、 室 18を外側 と連通する複数の通路 19が形成されている。 駆動手段を構成する駆動軸として の駆動シャフト 20はフロントハウジング 1 1を貫通するとともに室 18を横切 る状態でラジアルベアリング 2 1, 22を介して回転可能に支持されている。 フ ロントハウジング 1 1側に配設されたラジアルベアリング 2 1には軸封機能を有 するベアリング (例えばリツブシール付きベアリング) が使用されている。 シリンダボア 12 b, 13 b内には往復運動部材としての両頭のピストン 23 が挿入されている。 ピストン 23の円柱部周面とシリンダポア 12 b, 13 b内 面とのクリアランス (サイ ドクリアランス) は lmm以下、 例えば 0. 2〜0. 5 mmの所定の値に設定されている。 ピストン 23の各頭部を構成する円柱部の 長さは、 シリンダポア 12 b, 13 bの長さとほぼ同じに形成されている。 駆動 シャフト 20の中間部にはカムプレートとしての斜板 24がー体回転可能に支持 されている。 斜板 24のボス部 24 aとシリンダブ口ヅク 12, 13との間には スラストベアリング 25がそれぞれ介装されている。 斜板 24には各ピストン 2 3が一対のシユー 26を介して係留され、 駆動シャフト 20の回転に伴う斜板 2 4の回転により、 ピストン 23がシリンダボア 12 b, 13 b内で往復運動され るようになっている。 シリンダポア 12 b, 13 b及び室 18は発熱室を構成す る。 フロントハウジング 1 1及びリャプレート 14のインナ一シリンダ 12 i, 1 3 iとの対向面には、 通路 1 9とシリンダポア 1 2 b, 1 3 bとを連通可能とす る凹部 l l a, 1 4 aが形成されている。 シリンダボア 1 2 b, 1 3 b、 室 1 8、 通路 1 9及び凹部 1 1 a, 1 4 a内には、 粘性流体が収容されている。 粘性流体 としてはシリコーンオイルゃ機械油等が使用されている。 インナ一シリンダ 1 2 i , 1 3 iの外周とァウタ一シリンダ 1 2 o, 1 3 oの 内周との間には図 2に示すように、 各シリンダボア 1 2 b , 1 3 bのほぼ半周を 囲むように環状のウォータジャケヅト 2 7が形成されている。 ゥォ一夕ジャケッ ト 2 7は各シリンダブロック 1 2, 1 3の室 1 8側が開放された溝部 2 8, 2 9 として形成されている。 ウォータジャケッ卜 2 7は発熱室に隣接する放熱室を構 成する。 フロント側のシリンダブロック 1 2の外周部には車両内に設けられた暖 房回路 (図示略) からウォータジャケット 2 7に循環流体としての循環水を取り 入れる入水ポート 3 0が形成されている。 リャ側のシリンダブロヅク 1 3の外周 部にはゥォ一タジャケヅト 2 7から循環水を暖房回路に送り出す出水ポート 3 1 が形成されている。 入水ポート 3 0から導入された循環水がゥォ一タジャケット 2 7内全体を満遍 なく流れて出水ポート 3 1から排出されるように、 ウォータジャケット 2 7内に は螺旋状の突条 2 8 a , 2 9 aが形成されている。 突条 2 8 a, 2 9 aはウォー 夕ジャケット 2 7の内側の壁面、 即ちインナシリンダ 1 2 i , 1 3 iの外周面上 に突設されている。 突条 2 8 a , 2 9 aの先端は対向する壁面との間に隙間があ る状態に形成されている。 フロントハウジング 1 1から突出する駆動シャフト 2 0の端部と、 フロントハ ウジング 1 1に突設された支持筒部 1 1 bとの間には電磁クラッチ 3 2が設けら れている。 電磁クラッチ 3 2は、 アンギユラベアリング 3 3を介して支持筒部 1 1 b上に回転可能に支持されたプーリ 3 4と、 駆動シャフト 2 0の外端部に係止 された支持リング 3 5上にスライ ド可能に設けられた円板形状のクラッチ板 3 6 -- とを備えている。 クラヅチ板 3 6の背面側には、 板パネ 3 7が配設されている。 板パネ 3 7はその略中央部において支持リング 3 5に固定されるとともに、 その 外端部 (図 1では上下両端部) はクラッチ板 3 6の外周部に対しリベット等で連 結されている。 クラヅチ板 3 6の正面は、 プーリ 3 4の端面 3 4 aと対向してお り、 プーリ 3 4の端面 3 4 aがもう一つのクラッチ板としての役目を果たす。 プーリ 3 4はベルトを介して車両のエンジン (いずれも図示せず) に作動連結 される。 また、 フロントハウジング 1 1には環状のソレノイ ドコイル 3 8が支持 されている。 そして、 ソレノイ ドコイル 3 8の励消磁によって、 クラッチ板 3 6 がプーリ 3 4の端面 3 4 aに圧接されたり、 その圧接が解除されることで、 プ一 リ 3 4と駆動シャフト 2 0とが連結されたり、 その連結が解除される。 プーリ 3 4と駆動シャフト 2 0とが連結されることにより、 車両用エンジンにより駆動シ ャフト 2 0が回転される。 次に、 前記のように構成されたビスカスヒー夕の作用を説明する。 まず、 車両のエンジンが駆動された状態で電磁クラッチ 3 2がオンになり、 駆 動シャフト 2 0が回転されると、 室 1 8内の斜板 2 4が回転され、 シユー 2 6を 介して複数のビストン 2 3がシリンダポア 1 2 b , 1 3 b内で往復動される。 各 ピストン 2 3はその外周面とシリンダポア 1 2 b , 1 3 bの壁面との間に粘性流 体が存在する状態で往復運動する。 ピストン 2 3とシリンダポア 1 2 b , 1 3 b の壁面との隙間は非常に狭いため、 ビストン 2 3が往復運動すると粘性流体を剪 断することによる摩擦力 (流体摩擦力) が働き、 該粘性流体が発熱する。 そして、 その熱がシリングポア 1 2 b, 1 3 bの外側に設けられたウォータジャケヅ ト 2 7にて循環水と熱交換される。 ビストン 2 3の各頭部端面が対向するフロントハウジング 1 1又はリャプレー一 ト 1 4から離れる方向に移動する際は、 シリンダボア内に粘性流体が流入し、 反 対側に移動する際には粘性流体はシリンダポア内から排出される。 例えば、 図 1 は図示されているビストン 2 3がリャ側からフロント側へ移動した状態を示し、 このときビスカスヒータ内の粘性流体には図に示す矢印方向への流れが生じる。 この状態からさらに斜板 2 4が回転すると、 図示されているビストン 2 3はリャ 側に向かって移動を開始し、 粘性流体の流れは逆になる。 ピストン 2 3の周面と シリンダボア 1 2 b , 1 3 bの壁面との隙間内に存在する粘性流体は、 ピストン 2 3の往復運動に伴ってシリンダボア内あるいは室 1 8内の粘性流体と置換され、 特定の粘性流体のみが剪断作用を受ける状態とはならない。 ピストン 2 3の往復移動に伴って粘性流体がシリンダポア 1 2 b , 1 3 b内か ら排出されるが、 粘性流体は大きな抵抗を受けることなく凹部 1 l a, 1 4 aへ 排出される。 従って、 斜板式の圧縮機と異なりスラストベアリング 2 5に大きな スラスト力が加わらない。 そのため、 潤滑油としてはあまり適さないシリコーン オイルを粘性流体として使用しても悪影響がない。 このビスカスヒ一夕の発熱量は流体摩擦力に依存する。 ビストン 2 3が移動す るときのピストン 2 3の周面とシリンダポア壁面との間に存在する粘性流体の速 度分布は図 3に示すようになり、 ビストン片側 1本当たりの流体摩擦力 F fは次 式で表される。 Hereinafter, a first embodiment in which the present invention is embodied in a viscous heater incorporated in a heating device of a vehicle will be described with reference to FIGS. As shown in FIG. 1, the front housing 11, the front cylinder block 12, the rear cylinder block 13, and the rear plate 14 pass through the cylinder block 12, 13 from the front housing 11 to the rear plate. It is fastened with a plurality of ports 15 screwed to 14. Both cylinder blocks 12 and 13 are composed of inner cylinders 12 i and 13 i and outer cylinders 12 ο and 13 ο, respectively. The inner cylinder 12 i is connected to the front housing 11 and the inner cylinder The cylinders 13i are fixed to the rear plate 14 via positioning pins 15a, respectively. Each of the inner cylinders 12i and 13i is positioned and fixed via a plurality of (only one is shown) positioning pins 15a. A gasket 16 for sealing is interposed between both cylinder ports 12 and 13. Also, Freon Gaskets 17 are disposed between the housing 11 and the cylinder block 12 and between the cylinder block 13 and the IL block 4, respectively. A chamber 18 is formed on the opposite surface of both inner cylinders 12 i, 13 i, and shaft holes 12 a, 13 a are formed in the center of the cylinder works 12, 13. In the inner cylinders 12i, 13i, a plurality of cylinder bores 12b, 13b are formed at equal intervals around the shaft holes 12a, 13a, and penetrate in parallel with each other. A passage 19 is formed. A drive shaft 20 as a drive shaft constituting the drive means is rotatably supported via radial bearings 21 and 22 so as to pass through the front housing 11 and cross the chamber 18. For the radial bearing 21 disposed on the front housing 11 side, a bearing having a shaft sealing function (for example, a bearing with a rib seal) is used. A double-headed piston 23 as a reciprocating member is inserted into the cylinder bores 12b and 13b. The clearance (side clearance) between the peripheral surface of the cylindrical portion of the piston 23 and the inner surfaces of the cylinder pores 12b and 13b is set to a predetermined value of lmm or less, for example, 0.2 to 0.5 mm. The length of the cylindrical portion forming each head of the piston 23 is formed to be substantially the same as the length of the cylinder pores 12b and 13b. A swash plate 24 as a cam plate is rotatably supported at an intermediate portion of the drive shaft 20. Thrust bearings 25 are interposed between the boss portion 24a of the swash plate 24 and the cylinder ports 12 and 13, respectively. Each piston 23 is moored to the swash plate 24 via a pair of shoes 26. The rotation of the swash plate 24 accompanying the rotation of the drive shaft 20 causes the piston 23 to reciprocate in the cylinder bores 12b and 13b. It has become. The cylinder pores 12b, 13b and the chamber 18 constitute a heat generating chamber. Inner cylinder 12 i, 1 of front housing 1 1 and rear plate 14 Concave portions lla and 14a are formed on the surface facing 3i so that the passage 19 can communicate with the cylinder pores 12b and 13b. A viscous fluid is contained in the cylinder bores 12b, 13b, the chamber 18, the passage 19, and the recesses 11a, 14a. Silicone oil ゃ mechanical oil is used as the viscous fluid. As shown in FIG. 2, between the outer circumference of the inner cylinder 1 2 i, 13 i and the inner circumference of the outer cylinder 12 o, 13 o, approximately half the circumference of each cylinder bore 12 b, 13 b An annular water jacket 27 is formed so as to surround the water jacket. The air jacket 27 is formed as grooves 28, 29 with the chamber 18 side of each cylinder block 12, 13 open. The water jacket 27 constitutes a heat radiating chamber adjacent to the heat generating chamber. A water inlet port 30 for taking in circulating water as a circulating fluid from a heating circuit (not shown) provided in the vehicle to the water jacket 27 is formed on the outer peripheral portion of the cylinder block 12 on the front side. A water outlet port 31 for sending out circulating water from the heater jacket 27 to the heating circuit is formed on the outer peripheral portion of the cylinder block 13 on the rear side. A spiral ridge 2 is provided in the water jacket 27 so that the circulating water introduced from the water inlet port 30 flows evenly throughout the water jacket 27 and is discharged from the water outlet port 31. 8 a and 29 a are formed. The ridges 28a and 29a project from the inner wall surface of the water jacket 27, that is, the outer peripheral surfaces of the inner cylinders 12i and 13i. The tips of the ridges 28a and 29a are formed so that there is a gap between the ridges 28a and 29a. An electromagnetic clutch 32 is provided between an end of the drive shaft 20 protruding from the front housing 11 and a support cylinder 11 b protruding from the front housing 11. The electromagnetic clutch 32 is engaged with a pulley 34 rotatably supported on the support cylinder 11b via an angular bearing 33 and an outer end of the drive shaft 20. And a disk-shaped clutch plate 36 provided so as to be slidable on the support ring 35. On the back side of the clutch plate 36, a plate panel 37 is provided. The plate panel 37 is fixed to the support ring 35 at a substantially central portion thereof, and its outer ends (upper and lower ends in FIG. 1) are connected to the outer peripheral portion of the clutch plate 36 by rivets or the like. . The front surface of the clutch plate 36 is opposed to the end surface 34a of the pulley 34, and the end surface 34a of the pulley 34 functions as another clutch plate. The pulley 34 is operatively connected to a vehicle engine (neither is shown) via a belt. An annular solenoid coil 38 is supported by the front housing 11. The clutch plate 36 is pressed against the end surface 34 a of the pulley 34 by the excitation and demagnetization of the solenoid coil 38, and the press contact is released, so that the pulley 34 and the drive shaft 20 are separated from each other. Connected or disconnected. By connecting the pulley 34 and the drive shaft 20, the drive shaft 20 is rotated by the vehicle engine. Next, the operation of the viscous heater configured as described above will be described. First, when the electromagnetic clutch 32 is turned on while the vehicle engine is driven, and the drive shaft 20 is rotated, the swash plate 24 in the chamber 18 is rotated, and A plurality of pistons 23 are reciprocated in the cylinder pores 12b and 13b. Each piston 23 reciprocates in a state where a viscous fluid exists between its outer peripheral surface and the wall surfaces of the cylinder pores 12b and 13b. Since the gap between the piston 23 and the wall of the cylinder pores 1 2b, 13 b is very small, when the piston 23 reciprocates, a frictional force (fluid frictional force) is generated by shearing the viscous fluid. The fluid generates heat. Then, the heat is exchanged with the circulating water by the water jacket 27 provided outside the sealing pores 12b and 13b. The viscous fluid flows into the cylinder bore when moving in the direction away from the front housing 11 or rear plate 14 where the head end faces of the pistons 23 face each other, and viscous fluid when moving to the opposite side. Is discharged from the cylinder pores. For example, FIG. 1 shows a state in which the biston 23 shown in the drawing has moved from the rear side to the front side. At this time, the viscous fluid in the viscous heater generates a flow in the direction of the arrow shown in the figure. When the swash plate 24 further rotates from this state, the illustrated piston 23 starts to move toward the lya side, and the flow of the viscous fluid is reversed. The viscous fluid existing in the gap between the peripheral surface of the piston 23 and the wall surface of the cylinder bores 1 2 b and 13 b is replaced with the viscous fluid in the cylinder bore or the chamber 18 as the piston 23 reciprocates. However, only certain viscous fluids are not brought into a shearing state. As the piston 23 reciprocates, the viscous fluid is discharged from the cylinder pores 12b and 13b, but the viscous fluid is discharged to the concave portions 1la and 14a without receiving a large resistance. Therefore, unlike the swash plate type compressor, a large thrust force is not applied to the thrust bearing 25. Therefore, there is no adverse effect even if a silicone oil, which is not suitable as a lubricating oil, is used as a viscous fluid. The calorific value of this viscous light depends on the fluid frictional force. The velocity distribution of the viscous fluid existing between the peripheral surface of the piston 23 and the cylinder pore wall when the piston 23 moves is shown in Fig. 3, and the fluid friction force F f per one piston Is expressed by the following equation.
F f = - A ( d v/d ) = - j A ( vO / s ) - ( 1 ) F f =-A (d v / d) =-j A (vO / s)-(1)
但し、 は粘性流体の粘性係数、 Aはシリンダボア内に入っているピストン 2 Where is the viscosity coefficient of the viscous fluid and A is the piston in the cylinder bore.
3の周面の表面積、 νθ はピス トン 2 3の周面に付着した粘性流体の速度、 sは シリンダポアの壁面とピストン 2 3の周面との隙間である。 ピストン 23の直径を D、 シリンダポア内に入っているビストン 23の片側の 長さを Lとすると、 A = TTDLとなる。 長さ Lは斜板 24の回転とともに変化し、 駆動シャフト 20の角速度を ωとすると、 Lは の関数となる (tは時間) 。 また、 前記速度 νθ はピストン 23の移動速度 Vに等しく、 ポアピッチ半径 (駆 動シャフトの軸心とシリンダボアの軸心との最短距離) を Bp、 駆動シャフト 2 0の角速度を ωとすると、 vO =B wsin(w t ) となる。 その結果、 ( 1 ) 式 は次式となる。 3 is the surface area of the peripheral surface, νθ is the velocity of the viscous fluid attached to the peripheral surface of the piston 23, and s is the gap between the wall surface of the cylinder pore and the peripheral surface of the piston 23. If the diameter of the piston 23 is D and the length of one side of the piston 23 in the cylinder pore is L, then A = TTDL. The length L changes with the rotation of the swash plate 24. Assuming that the angular velocity of the drive shaft 20 is ω, L is a function of (t is time). The velocity νθ is equal to the moving velocity V of the piston 23. If the pore pitch radius (the shortest distance between the axis of the drive shaft and the axis of the cylinder bore) is Bp, and the angular velocity of the drive shaft 20 is ω, vO = B wsin (wt). As a result, equation (1) becomes the following equation.
F f =- z7TD L {Bpwsin(w t ) } /s - (2) F f =-z7TD L {Bpwsin (w t)} / s-(2)
即ち、 流体摩擦力 はポアビツチ半径 Bp、 ピストンの直径 D、 隙間 sの逆 数の積に比例する。 シリンダボア一本あたりのビスカスヒータの発熱量 Q1 は、 この流体摩擦力 Ffに対してなされる仕事に相当する。 (n個のシリンダポア数 にて Q = nQl ) このため、 発熱量 Qは流体摩擦力 F:Hこ比例する。 従って、 発 熱量 Qもポアピッチ半径 Bp、 ピストンの直径 D、 隙間 sの逆数の積に比例する。 ビスカスヒータを製造する際に、 加工の精度あるいは誤差が Bp、 D及び sのい ずれもが Qの値を大きくする側にばらついたり、 あるいは小さくする側にばらつ く確率は非常に小さく、 ビスカスヒータ毎の暖房能力のばらつきが従来のビス力 スヒータに比較して小さくなる。 この実施の形態のビスカスヒ一夕においては、 シリンダボア (発熱室) 12 b, 13 bの壁面との間に粘性流体が介在する状態でピストン 23 (往復運動部材) が往復運動すると、 流体摩擦熱が発生する。 このため、 従来のビスカスヒ一夕と 加工精度のばらつきが同じであっても、 暖房能力のばらつきが小さくなる。 また、 往復運動部材としてピストン 2 3が使用されており、 ビストンは種々の 機器に使用されており、 その加工精度は一般に高いので、 ビスカスヒータに使用 するピストン 2 3を高い加工精度で比較的簡単に製造できる。 ピストン 2 3の断 面が円形のため、 加工精度を高めるのがより簡単となる。 更に、 ピストン 2 3を往復運動させる駆動手段が駆動シャフ ト 2 0と、 駆動シ ャフト 2 0に一体回転可能に支持された斜板 2 4とにより構成されているため、 複数のピストン 2 3を比較的小さなスペースで駆動できる。 その結果、 同じ体格 のハウジング内に 1個のビストンを設けた構成に比較してビストンの周面の総表 面積を大きくできる。 加えて、 剪断作用を受ける粘性流体、 即ちピス トン 2 3の周面とシリンダボア の壁面との間に存在する粘性流体が、 ビストン 2 3の往復運動に伴ってシリンダ ポア内あるいは室 1 8内の粘性流体と置換される。 従って、 特定の粘性流体のみ が連続して長時間剪断作用を受ける状態とはならないため、 粘性流体の過剰発熱 による劣化を防止できる。 しかも、 ピストン 2 3が両頭型のため、 斜板 2 4に作用する力が前後でバラン スし、 ビストンの周面の表面積を同じにした片側ビストンとした場合に比較して、 耐久性が向上する。 また、 ウォー夕ジャケット 2 7が環状でかつ駆動シャフト 2 0の軸方向に長く 形成されているが、 循環水がウォータジャケット 2 7内を螺旋状の突条 2 8 a , 2 9 aに案内されて定められた順路で循環するため、 ウォーダジャケット 2 7内 で循環水の流路の短絡や滞留を低減することができる。 このため、 シリンダポア 1 2 b , 1 3 b及び室 1 8内の粘性流体からウォータジャケット 2 7の循環水へ の熱交換を効率良く行うことができる。 そして、 突条 2 8 a, 2 9 aが発熱室側からウォータジャケット 2 7内に突出 するように形成されているため、 ウォータジャケット 2 7内の循環水と発熱室の 周囲の壁面との接触面積が増大し、 熱交換効率が向上する。 また、 突条 2 8 a,一 2 9 aの先端が対向面に接触していないため、 突条 2 8 a, 2 9 aを介してゥォ 一夕ジャケット 2 7の外側へ直接熱が伝達されることがなく、 循環水への熱交換 効率が向上する。 また、 ウォータジャケット 2 7が単なる円筒状ではなく、 各シリンダポア 1 2 b , 1 3 bの周面に沿って螺旋状に形成されているため、 熱交換効率が向上する。 In other words, the fluid friction force is proportional to the product of the Poivitch radius Bp, the piston diameter D, and the reciprocal of the gap s. The calorific value Q1 of the viscous heater per cylinder bore corresponds to the work performed on the fluid friction force Ff. (Q = nQl with n number of cylinder pores) Therefore, the calorific value Q is proportional to the fluid friction force F: H. Therefore, the heat generation Q is also proportional to the product of the pore pitch radius Bp, the piston diameter D, and the reciprocal of the gap s. When manufacturing a viscous heater, the probability that the processing accuracy or error varies from Bp, D and s to the side where the value of Q is increased or to the side where the value of Q is decreased is very small. The variation in the heating capacity for each heater is smaller than that of the conventional screw heater. In the viscous fluid of this embodiment, when the piston 23 (reciprocating member) reciprocates with the viscous fluid interposed between the cylinder bores (heating chambers) 12b and 13b, the fluid friction heat is reduced. appear. For this reason, even if the variation in the processing accuracy is the same as that of the conventional viscous whisk, the variation in the heating capacity is reduced. In addition, piston 23 is used as a reciprocating member. Biston is used in various devices, and its processing accuracy is generally high. Therefore, piston 23 used for viscous heater is relatively easy to process with high processing accuracy. Can be manufactured. Disconnection of piston 2 3 Because the surface is circular, it is easier to increase machining accuracy. Further, since the drive means for reciprocating the piston 23 is constituted by the drive shaft 20 and the swash plate 24 supported so as to be integrally rotatable with the drive shaft 20, a plurality of pistons 23 are formed. It can be driven in a relatively small space. As a result, the total surface area of the peripheral surface of the biston can be increased compared to a configuration in which one biston is provided in a housing of the same size. In addition, the viscous fluid subjected to the shearing action, that is, the viscous fluid existing between the peripheral surface of the piston 23 and the wall surface of the cylinder bore, is caused by the reciprocating motion of the piston 23 in the cylinder pore or the chamber 18. Replaced with viscous fluid. Therefore, since only a specific viscous fluid is not continuously subjected to a shearing action for a long time, deterioration of the viscous fluid due to excessive heat generation can be prevented. In addition, since the piston 23 is a double-headed type, the force acting on the swash plate 24 is balanced between the front and rear, and the durability is improved compared to a single-sided piston that has the same surface area on the peripheral surface of the piston. I do. The water jacket 27 is annular and formed long in the axial direction of the drive shaft 20, but circulating water is guided inside the water jacket 27 by spiral ridges 28a and 29a. Since the water circulates along the predetermined route, it is possible to reduce a short circuit and a stagnation of the flow path of the circulating water in the water jacket 27. For this reason, heat exchange from the viscous fluid in the cylinder pores 12b, 13b and the chamber 18 to the circulating water in the water jacket 27 can be performed efficiently. Since the ridges 28 a and 29 a are formed so as to project from the heat generating chamber side into the water jacket 27, the circulating water in the water jacket 27 and the heat generating chamber The contact area with the surrounding wall increases, and the heat exchange efficiency improves. Also, since the tips of the ridges 28a and 29a do not contact the opposing surface, heat is directly transmitted to the outside of the jacket 27 through the ridges 28a and 29a. And the efficiency of heat exchange with circulating water is improved. Further, since the water jacket 27 is formed not in a simple cylindrical shape but in a spiral shape along the peripheral surface of each of the cylinder pores 12b and 13b, the heat exchange efficiency is improved.
(第 2の実施の形態) (Second embodiment)
次に第 2の実施の形態を図 4に従って説明する。 この実施の形態では往復運動 部材の駆動手段として、 斜板 2 4に代えてクランク機構が使用されるとともにピ ストンが 1個である点が前記実施の形態と大きく異なっている。 ハウジングは、 シリンダブロック 3 9と、 その下側に配置されたボトムプレー ト 4 0と、 上側に配置されたトップハウジング 4 1とがポルト 4 2により締結さ れて構成されている。 シリンダブ口ヅク 3 9は、 ィンナ一シリンダ 3 9 i及びァ ウタ一シリンダ 3 9 oにより構成されている。 ボトムプレー卜 4 0とシリンダブ ロヅク 3 9との間には 0リング 4 3 aが介装され、 ト ヅブハウジング 4 1とシリ ンダブロック 3 9との間にはガスケット 4 3 bが介装されている。 また、 ァウタ —シリンダ 3 9 oのボトムプレート 4 0側端部内周面と、 インナ一シリンダ 3 9 iの外周面との間には 0リング 3 9 aが介装されている。 ィンナ一シリンダ 3 9 iの円柱状のシリンダポア 4 4内にはピストン 4 5がインナーシリンダ 3 9 iの 内周面と所定の隙間を有する状態で往復移動可能に収容されている。 シリンダポ ァ 4 4が発熱室を構成する。 トッブハウジング 4 1には駆動軸としてのクランク軸 4 6を挿通可能な支持筒 部 4 1 a及び孔 4 1 bが形成され、 クランク軸 4 6は支持筒部 4 1 a及び孔 4 1 bに嵌合されたラジアルベアリング 4 7, 4 8を介してトップハウジング 4 1 ( 回転可能に支持されている。 クランク軸 4.6の一端は支持筒部 4 1 aから突出し、 前記実施の形態の電磁クラッチと同様なクラッチ (図示せず) を介して車両のェ ンジンと作動連結されるようになっている。 ラジアルペアリング 4 7 , 4 8には リヅブシール付きのベアリングが使用されている。 支持筒部 4 l aはクランク 軸 4 6のクランク部を挿通可能な内径に形成されている。 ビストン 4 5は円筒状に形成されるとともに、 ピストンピン 4 9及び連接棒 5 0を介してクランク軸 4 6に連結され、 クランク軸 4 6の回転に伴って上下方向 に往復移動される。 粘性流体はシリンダブロック 3 9の容積のほぽ半分の量が収 容されている。 クランク軸 4 6、 ピストンピン 4 9及び連接檸 5 0により駆動手 段が構成されている。 インナーシリンダ 3 9 iとアウターシリンダ 3 9 oとの間にはウォー夕ジャケ ット 5 1が形成されている。 アウターシリンダ 3 9 oには入水ポート 5 2及び出 水ポート 5 3が形成されている。 ウォータジャケッ卜 5 1はトップハウジング 4 1側が開放された円筒状の溝として形成され、 ウォー夕ジャケット 5 1内にはィ ンナーシリンダ 3 9 iの外周面に突設された螺旋状のガイ ド突条 5 4が配設され ている。 この実施の形態ではェンジンが駆動された状態で電磁クラッチがォン状態にな つてクランク軸 4 6が回転されると、 連接棒 5 0及びビストンビン 4 9を介して ビストン 4 5がシリンダボア 4 4の周面との間に粘性流体が存在する状態で往復 駆動される。 そして、 前記実施の形態と同様に粘性流体を剪断することによる摩 擦力 (流体摩擦力) が働き、 該粘性流体が発熱する。 そして、 その熱がウォータ ジャケッ ト 5 1にて循環水と熱交換される。 この実施の形態においては 1個のビストン 4 5で粘性流体の流体摩擦に寄与 t る比較的大きな表面積を得ることができ、 構造が簡単となる。 また、 ビストン 4 5が筒状に、 即ちビストンの移動方向の前後に存在する粘 性流体がビストンの内部を通過可能な形状に形成されているため、 シリンダブ口 ヅク 3 9の端部を塞ぐ部材 (この実施の形態ではボトムプレート 4 0 ) に粘性流 体の収容部を設ける必要がなく、 その分ビスカスヒ一夕の小型化に寄与する。 加えて、 ピストン 4 5の駆動手段がシリンダブ□ック 3 9の上方に配置され、 粘性流体がシリンダブロック 3 9内のビストン 4 5の移動範囲と対応する部分に 収容されているため、 粘性流体の量を不必要に増加しなくてもよい。 Next, a second embodiment will be described with reference to FIG. This embodiment differs greatly from the previous embodiment in that a crank mechanism is used instead of the swash plate 24 as driving means for the reciprocating member, and one piston is used. The housing includes a cylinder block 39, a bottom plate 40 disposed below the cylinder block 39, and a top housing 41 disposed above the cylinder block 39, which are fastened by ports 42. The cylinder block port 39 is composed of an inner cylinder 39i and an outer cylinder 39o. A 0 ring 43a is interposed between the bottom plate 40 and the cylinder block 39, and a gasket 43b is interposed between the tube housing 41 and the cylinder block 39. . An O-ring 39a is interposed between the inner peripheral surface of the end of the outer cylinder 39o on the bottom plate 40 side and the outer peripheral surface of the inner cylinder 39i. A piston 45 is accommodated in the cylindrical cylinder pore 44 of the inner cylinder 39i so as to be able to reciprocate with a predetermined gap from the inner peripheral surface of the inner cylinder 39i. Cylinder hole 4 4 constitutes a heating chamber. The tob housing 41 has a support cylinder 41 a and a hole 41 b through which a crankshaft 46 as a drive shaft can be inserted. The crankshaft 46 has a support cylinder 41 a and a hole 41. The top housing 4 1 (rotatably supported via radial bearings 47, 48 fitted to b. One end of the crankshaft 4.6 protrudes from the support cylinder 41 a, It is operatively connected to the vehicle engine via a clutch (not shown) similar to the clutch.Rearing bearings with a live seal are used for radial pairings 47 and 48. The part 4 la is formed to have an inner diameter capable of passing through the crank part of the crankshaft 46. The piston 45 is formed in a cylindrical shape, and the piston shaft 49 is connected to the crankshaft 46 via a piston pin 49 and a connecting rod 50. The cylinder is reciprocated vertically with the rotation of the crankshaft 46. The viscous fluid contains almost half the volume of the cylinder block 39. The crankshaft 46, the piston pin 4 9 and connection The drive means is constituted by 50. A water jacket 51 is formed between the inner cylinder 39i and the outer cylinder 39o The outer cylinder 39o has a water inlet port. The water jacket 51 is formed as a cylindrical groove with the top housing 41 side open, and the water cylinder 51 has an inner cylinder 39 i. A helical guide ridge 54 protruding from the outer peripheral surface of the crankshaft 46 is provided in this embodiment. When rotated, the biston 45 is reciprocated via the connecting rod 50 and the biston bin 49 in a state in which a viscous fluid exists between the piston rod 45 and the peripheral surface of the cylinder bore 44. Shearing viscous fluid Friction force (fluid friction force) acts due, viscous fluid generates heat. Then, the heat is circulating water heat exchanger in the water jacket 5 1. In this embodiment, one biston 45 can provide a relatively large surface area that contributes to the fluid friction of the viscous fluid, and the structure is simplified. In addition, since the pistons 45 are formed in a cylindrical shape, that is, a shape in which the viscous fluid existing before and after in the moving direction of the piston can pass through the inside of the piston, the member that closes the end of the cylinder opening 39. (In this embodiment, it is not necessary to provide a housing portion for the viscous fluid in the bottom plate 40), which contributes to the miniaturization of the viscous fluid. In addition, the driving means of the piston 45 is disposed above the cylinder block 39, and the viscous fluid is contained in the cylinder block 39 in a portion corresponding to the movement range of the piston 45. Need not be increased unnecessarily.
(第 3の実施の形態) (Third embodiment)
次に第 3の実施の形態を図 5〜図 7に従って説明する。 この実施の形態では斜 板を使用してビストンを往復移動させる点は第 1の実施の形態と同じであるが、 ビストンのストロークを変更可能な点と、 ビストンが単頭ピストンである点が大 きく異なっている。 図 5に示すように、 フロントハウジング 5 5はシリンダブ口ヅク 5 6及び外部 リャハウジング 5 7の前端にガスケット 5 8を介して接合固定されている。 シリ ンダブロック 5 6の後端には内部リャハウジング 5 9がガスケヅト 6 0及びバル ブブレー卜 6 1を介して接合固定されている。 フロントハウジング 5 5、 シリン ダブ□ヅク 5 6、 パルププレート 6 1及び内部リャハウジング 5 9はポルト 1 5 により締付け固定されている。 また、 フロントハウジング 5 5と外部リャハウジ ング 5 7は図示しないポルトにより締付け固定されている。 斜板を収容する室としてのクランク室 6 2は、 フロントハウジング 5 5とシリ ンダブ口ック 5 6とに囲まれて形成されている。 駆動シャフト 2 0は、 クランク 室 6 2を横切るようにフロントハウジング 5 5とシリンダブロック 5 6との間に ラジアルベアリング 2 2を介して回転可能に支持されている。 駆動シャフト 2 0 の前端側とフロントハウジング 5 5との間に軸封装置 (オイルシール) 6 3が介 在されている。 駆動シャフト 2 0は、 図示しない外部駆動源 (エンジン) に電磁 クラヅチを介して連結されるようになっている。 略円盤状をなす回転支持体 (ラグプレート) 6 4は、 クランク室 6 2内におい て駆動シャフト 2 0に一体回転可能に支持されている。 斜板 6 5は駆動シャフト 2 0に対して、 その軸線方向へスライド可能かつ傾動可能に支持されている。 回 転支持体 6 4にはヒンジ機構を構成する一対の支持アーム 6 6 (片側のみ図示) が突設されている。 斜板 6 5の前面側には同じくヒンジ機構を構成する一対のガ ィ ドビン 6 7が突設され、 各ガイ ドピン 6 7の先端部に設けられた球状部 6 7 a が、 各支持アーム 6 6に設けられたガイ ド孔 6 6 aにスライ ド移動可能に嵌入さ れている。 即ち、 斜板 6 5はヒンジ機構を介して回転支持体 6 4に相対回転不能 に連結されている。 そして、 斜板 6 5は、 支持アーム 6 6とガイ ドピン 6 7との連係により、 駆動 シャフト 2 0の軸線方向へ傾動可能かつ駆動シャフト 2 0と一体的に回転可能と なっている。 斜板 6 5は、 ガイ ド孔 6 6 aと球伏部 6 7 aとの間のスライ ドガイ ド関係と、 駆動シャフト 2 0のスライ ド支持作用とにより傾動される。 斜板 6 5 の回転中心部がシリンダブロヅク 5 6側に移動されると、 斜板 6 5の傾斜角度 ( 傾角) >が減少される。 傾角减少パネとしてのコイルスプリング 6 8は、 回転支持体 6 4と斜板 6 5と の間において駆動シャフト 2 0上に巻装されており、 コイルスプリング 6 8は斜 板 6 5を傾角の减少方向に付勢する。 リング状をなすストッパ 6 9は、 斜板 6 5 とシリンダブロック 5 6との間において駆動シャフト 2 0に固定され、 斜板 6 5 がストツバ 6 9に当接することで、 斜板 6 5の最小傾角が規定される。 斜板 6 5 の前面側には傾角規制突部 7 0が一体形成され、 斜板 6 5の最大傾角は傾角規制 突部 7 0が回転支持体 6 4に当接することで規定される。 シリンダブロック 5 6には複数 (図 5には 2個のみ図示) のシリンダポア 5 6 aが形成され、 同数の片頭ピストン (以下、 単にビストンとする) 7 1がシリン ダポア 5 6 a内に収容されている。 斜板 6 5はシユー 2 6を介してピストン 7 1 に係合されており、 斜板 6 5の回転運動がピストン 7 1の前後往復運動に変換さ れる。 バルブプレート 6 1と内部リャハウジング 5 9との間にはチャンパ 7 2が形成 されている。 バルブプレート 6 1には吸入孔 6 1 a及び吐出孔 6 1 bが各シリン ダポア 5 6 aと対応する位置に形成されている。 バルブプレート 6 1のシリンダ ボア 5 6 a側には吸入孔 6 1 aを開閉する吸入弁 7 3が、 チャンパ 7 2側には吐 出孔 6 1 bを開閉する吐出弁 7 4及びリテーナ 7 5が、 ボルト 7 6及びナツト 7 7により固定されている。 そして、 チャンバ 7 2内の粘性流体は、 ピストン 7 1 の復動動作により吸入孔 6 1 a及び吸入弁 7 3を介してシリンダポア 5 6 a内に 吸入される。 シリンダボア 5 6 a内に流入された粘性流体は、 ピストン 7 1の往 動動作により吐出孔 6 1 b及び吐出弁 7 4を介してチャンパ 7 2に吐出される。 なお、 吐出弁 7 4の開度はリテーナ 7 5により規定される。 ピストン 7 1の往復運動に伴って駆動シャフト 2 0に作用するスラスト荷重を 担うスラストベアリング 7 8 aが、 回転支持体 6 4とフロントハウジング 5 5の 内壁面との間に介在されている。 また、 シリンダブロック 5 6の中心部に形成さ れた収容部にもスラストベアリング 7 8 bが配設されている。 シリンダブ口ヅク 5 6の外周面及び内部リャハウジング 5 9の外面と、 外部リ ャハウジング 5 7の内面との間には放熱室としてのウォー夕ジャケヅト 7 9が形 成されている。 内部リャハウジング 5 9の外面には複数の環状突条 5 9 aが同心 円状に形成されている。 外部リャハウジング 5 7の外周部には入水ポート 3 0及 び出水ポ一ト 3 1が形成されている。 クランク室 6 2は斜板角度変更手段としての圧力調整手段 8 0に管路 (パイプ) 8 1を介して接続されている。 管路 8 1の端部はフロントハウジング 5 5に形成 された孔にシール部材 (例えば Oリング) 8 2を介して油密状態で接続された圧 力調整手段 8 0とクランク室 6 2とが連通されている。 圧力調整手段 8 0はシリ ンダ 8 3と、 シリンダ 8 3内に摺動可能に収容されたピストン 8 4と、 ビストン 8 4を往復駆動する電動シリンダ 8 5と、 電動シリンダ 8 5を制御する制御装置 8 6とから構成されている。 ピストン 8 4の外周に形成された溝にはシール用の 0リング 8 4 aが収容されている。 電動シリンダ 8 5はモ一夕とねじとを組み合 わせて、 モータの回転力を直線方向の推力として取り出す構成となっている。 例 えば、 モータの回転子が中空になっており、 その中を出力軸 8 5 aとしての雄ね じが貫通した状態で回転不能かつ軸方向に移動可能に配設されている。 回転子に は前記雄ねじと螺合する雌ねじが取り付けられている。 制御装置 8 6には駆動シ ャフト 2 0の回転速度や室温等と、 適正なクランク室 6 2内の圧力との関係が記 憶されている。 そして、 制御装置 8 6は駆動シャフト 2 0の回転速度や室温等、 運転時の状態に応じてクランク室 6 2の圧力を調整して発熱量を制御する。 制御装置 8 6はビスカスヒータの起動時に斜板 6 5と駆動シャフト 2 0とのな す角度が大きくなるように、 即ち傾角 0が小さくなるように圧力を調整するよう になっている。 この実施の形態では粘性流体として機械油が使用され、 粘性流体はクランク室 6 2、 チャンパ 7 2、 シリンダボア 5 6 a、 管路 8 1及びシリンダ 8 3内に充填-. されている。 この実施の形態のビスカスヒータも第 1の実施の形態と同様に、 駆動シャフト 2 0の回転により斜板 6 5を介してピストン 7 1が往復移動されることにより発 熱する。 ピストン 7 1の往復運動により粘性流体が圧縮されることと、 ピストン 7 1とシリンダポア 5 6 aのサイドクリアランスにおける粘性流体摩擦とにより 発熱する。 ピストン 7 1がチャンバ 7 2側に向かって移動する往動時に、 粘性流 体は圧縮作用を受け、 圧縮された粘性流体が吐出弁 7 4を押圧移動させて吐出孔 6 1 bからチャンパ 7 2へ吐出される。 また、 ビストン 7 1の復動時にチャンバ 7 2内の粘性流体は吸入弁 7 3を押圧移動させてシリンダボア 5 6 a内に流入さ れる。 この実施の形態のビスカスヒータの理論発熱量 Qは次式で表される。 Next, a third embodiment will be described with reference to FIGS. In this embodiment, the piston is reciprocated by using a swash plate in the same manner as in the first embodiment. However, the difference is that the stroke of the piston can be changed and that the piston is a single-headed piston. It is different. As shown in FIG. 5, the front housing 55 is joined and fixed to the front ends of the cylinder port 56 and the outer rear housing 57 via a gasket 58. At the rear end of the cylinder block 56, an internal rear housing 59 is joined and fixed via a gasket 60 and a valve plate 61. The front housing 55, cylindrical dub 56, pulp plate 61, and inner housing 59 are fastened and fixed with Porto 15. Further, the front housing 55 and the external housing 57 are fastened and fixed by a port (not shown). The crankcase 62, which is a chamber for accommodating the swash plate, is The dub mouth is surrounded by 56. The drive shaft 20 is rotatably supported between the front housing 55 and the cylinder block 56 via a radial bearing 22 so as to cross the crankcase 62. A shaft sealing device (oil seal) 63 is interposed between the front end side of the drive shaft 20 and the front housing 55. The drive shaft 20 is connected to an external drive source (engine) (not shown) via an electromagnetic clutch. The substantially disk-shaped rotating support (lug plate) 64 is supported by the drive shaft 20 so as to be integrally rotatable in the crank chamber 62. The swash plate 65 is supported on the drive shaft 20 so as to be slidable and tiltable in the axial direction. A pair of support arms 66 (only one side is shown) projecting from the rotation support 64 constitute a hinge mechanism. On the front side of the swash plate 65, a pair of guide bins 67 also constituting a hinge mechanism is protruded, and a spherical portion 67a provided at the tip of each guide pin 67 is provided with a support arm 6a. It is slidably fitted into a guide hole 6 6a provided in 6. That is, the swash plate 65 is non-rotatably connected to the rotary support 64 via the hinge mechanism. The swash plate 65 can be tilted in the axial direction of the drive shaft 20 and can rotate integrally with the drive shaft 20 by linking the support arm 66 and the guide pin 67. The swash plate 65 is tilted by the slide guide relationship between the guide hole 66 a and the bulbous portion 67 a and the slide supporting action of the drive shaft 20. When the rotation center of the swash plate 65 is moved toward the cylinder block 56, the inclination angle (inclination angle) of the swash plate 65 is reduced. The coil spring 68 as a low-angle panel is wound around the drive shaft 20 between the rotary support 64 and the swash plate 65, and the coil spring 68 changes the swash plate 65 to a low angle. Bias in the direction. The ring-shaped stopper 6 9 is a swash plate 6 5 The minimum inclination angle of the swash plate 65 is defined by the swash plate 65 being fixed to the drive shaft 20 and the swash plate 65 abutting against the stopper 69. An inclination regulating protrusion 70 is integrally formed on the front side of the swash plate 65, and the maximum inclination angle of the swash plate 65 is defined by the inclination regulating protrusion 70 abutting on the rotary support 64. A plurality of cylinder bores 56 a are formed in the cylinder block 56 (only two are shown in FIG. 5), and the same number of single-headed pistons (hereinafter simply referred to as bistons) 71 are housed in the cylinder pores 56 a. ing. The swash plate 65 is engaged with the piston 71 via the shoe 26, and the rotational motion of the swash plate 65 is converted into the reciprocating motion of the piston 71. A champ 72 is formed between the valve plate 61 and the internal rear housing 59. In the valve plate 61, a suction hole 61a and a discharge hole 61b are formed at positions corresponding to the respective cylinder pores 56a. A suction valve 73 that opens and closes the suction hole 61a on the side of the cylinder bore 56a of the valve plate 61, and a discharge valve 74 that opens and closes the discharge hole 61b on the side of the champ 72 and a retainer 75 Are fixed by bolts 76 and nuts 77. Then, the viscous fluid in the chamber 72 is sucked into the cylinder pore 56 a via the suction hole 61 a and the suction valve 73 by the reciprocating operation of the piston 71. The viscous fluid that has flowed into the cylinder bore 56 a is discharged to the champ 72 through the discharge hole 61 b and the discharge valve 74 by the forward movement of the piston 71. The opening of the discharge valve 74 is defined by a retainer 75. A thrust bearing 78 a bearing a thrust load acting on the drive shaft 20 with the reciprocation of the piston 71 is interposed between the rotary support 64 and the inner wall surface of the front housing 55. A thrust bearing 78b is also provided in a housing formed at the center of the cylinder block 56. Between the outer peripheral surface of the cylinder port 56 and the outer surface of the inner housing 59 and the inner surface of the outer housing 57, a water jacket 79 as a heat radiating chamber is formed. A plurality of annular ridges 59 a are formed concentrically on the outer surface of the inner housing 59. A water inlet port 30 and a water outlet port 31 are formed on the outer peripheral portion of the outer housing 57. The crank chamber 62 is connected to pressure adjusting means 80 as swash plate angle changing means via a pipe 81. The end of the pipe 81 is connected to a hole formed in the front housing 55 through a sealing member (for example, an O-ring) 82 in an oil-tight manner. Are in communication. The pressure adjusting means 80 is a cylinder 83, a piston 84 slidably accommodated in the cylinder 83, an electric cylinder 85 for reciprocatingly driving the biston 84, and a control for controlling the electric cylinder 85. Device 86. An O-ring 84a for sealing is housed in a groove formed on the outer periphery of the piston 84. The electric cylinder 85 has a configuration in which a motor and a screw are combined to take out the rotational force of the motor as a linear thrust. For example, the rotor of the motor is hollow, and is disposed so that it cannot rotate and can move in the axial direction with a male screw as the output shaft 85a penetrating therethrough. The rotor is provided with a female screw screwed with the male screw. The control device 86 stores the relationship between the rotation speed and room temperature of the drive shaft 20 and the appropriate pressure in the crank chamber 62. Then, the controller 86 adjusts the pressure of the crank chamber 62 in accordance with the operation state such as the rotation speed of the drive shaft 20, the room temperature, and the like to control the amount of heat generation. The controller 86 adjusts the pressure so that the angle formed between the swash plate 65 and the drive shaft 20 becomes large when the viscous heater is started, that is, the angle of inclination becomes small. In this embodiment, machine oil is used as the viscous fluid, and the viscous fluid is used in the crankcase. 62, Champer 72, Cylinder bore 56A, Line 81 and Cylinder 83 are filled. As in the first embodiment, the viscous heater of this embodiment also generates heat by the reciprocation of the piston 71 via the swash plate 65 by the rotation of the drive shaft 20. The viscous fluid is compressed by the reciprocating motion of the piston 71, and the friction is generated by the viscous fluid friction in the side clearance between the piston 71 and the cylinder pore 56a. During the forward movement of the piston 71 toward the chamber 72, the viscous fluid is subjected to a compressive action, and the compressed viscous fluid presses and moves the discharge valve 74 to cause the discharge port 6 1b to move from the discharge hole 6 1b to the champ 7 2. Is discharged to Further, when the biston 71 returns, the viscous fluid in the chamber 72 pushes and moves the suction valve 73 to flow into the cylinder bore 56a. The theoretical calorific value Q of the viscous heater of this embodiment is expressed by the following equation.
Q = V厶 p (加圧による発熱量) +サイ ドクリアランスにおける粘性流体摩擦 による究熱量 Q = Vum p (heat generated by pressurization) + Ultimate heat due to viscous fluid friction in side clearance
但し、 厶]?はチャンバ 7 2の圧力と吐出圧力との差圧、 Vは吐出量。 ピストン 7 1のス卜ロークは斜板 6 5の傾角 0によって変化し、 傾角 0が大き レ、ほどストロークが大きくなつて駆動シャフト 2 0の 1回転当たりの発熱量が大 きくなる。 斜板 6 5の傾角 (9はクランク室 6 2内の圧力によって変化し、 クラン ク室 6 2内の圧力が大きくなると傾角 βが小さくなり、 圧力が小さくなると傾角 ( が大きくなる。 制御装置 8 6は電動シリンダ 8 5の出力軸 8 5 aを最大突出位置に移動させた 状態でビスカスヒータを起動時させる。 その場合クランク室 6 2の圧力が最大圧 力に増大され、 図 7に示すように斜板 6 5の傾角 0が最小となる状態で駆動シャ フト 2 0が回転される。 その結果、 ピストン 7 1のストロ一クが最小となり、 起 動トルクが低減される。 その後、 駆動シャフト 2 0の低速回転時の発熱量を大き くするため、 制御装置 8 6は電動シリンダ 8 5を出力軸 8 5 aが没入する方向に 駆動させてクランク室 6 2の圧力を下げる。 その結果、 斜板 6 5の傾角 0が図 6 に示す中間状態を経て、 図 5に示す ¾大位置まで変化する。 そして、 図 5に示す 状態では斜板 6 5の傾角 0が最大になってピストン 7 1のストロークが最大とな り、 低速回転でも必要な発熱量を確保できる。 また、 制御装置 8 6は高速回転時には発熱量過多を抑えるため、 電動シリンダ 8 5を出力軸 8 5 aが突出する方向に駆動させてクランク室 6 2の圧力を上げる。 その結果、 斜板 6 5の傾角 0が小さくなつて図 6に示す中間状態となり、 ビスト ン 7 1のストロークが小さくなつて発熱量が減少する。 この実施の形態では斜板 6 5の傾角 Θを変更させる斜板角度変更手段を備えて いるため、 傾角 0を調整することにより、 高速時に発熱量が過剰になるのを防止 することができ、 軸封装置 6 3等の耐久性及び信頼性が向上する。 また、 低速回 転時にも必要な発熱量を確保することができる。 更には、 斜板角度変更手段は斜板 6 5が収容されたクランク室 6 2内の粘性流 体の圧力を変更することにより斜板 6 5の傾角 6>を変更する構成のため、 構造が 簡単となる。 また、 傾角 0が小さな状態で起動時されるため、 起動時に駆動シャフト 2 0を 駆動するのに必要なトルクが小さくなり、 電磁クラッチの接続時のショックが小 さくなり、 起動が円滑に行われる。 加えて、 粘性流体として機械油が使用されているため、 ラジアルベアリング 2 2、 シュ一 2 6、 球状部 6 7 a及びスラストペアリング 7 8 a, 7 8 b等の潤滑 が良好に行われ、 各摺動部やベアリングの耐久性が向上する。 その上、 制御装置 8 6が駆動シャフト 2 0の回転速度や室温等、 運転時の状 態 Where [mm] is the differential pressure between the chamber 72 pressure and the discharge pressure, and V is the discharge amount. The stroke of the piston 71 changes depending on the inclination angle 0 of the swash plate 65. The greater the inclination angle 0, the greater the stroke, and the greater the amount of heat generated per rotation of the drive shaft 20. The inclination angle (9 of the swash plate 65 changes depending on the pressure in the crank chamber 62, and the inclination angle β decreases as the pressure in the crank chamber 62 increases, and the inclination angle (increases as the pressure decreases. 6 starts the viscous heater with the output shaft 85a of the electric cylinder 85 moved to the maximum protruding position, in which case the pressure in the crank chamber 62 is increased to the maximum pressure, as shown in FIG. The drive shaft 20 is rotated in a state where the inclination angle 0 of the swash plate 65 is minimized, and as a result, the stroke of the piston 71 is minimized, and Dynamic torque is reduced. Then, in order to increase the amount of heat generated when the drive shaft 20 rotates at a low speed, the controller 86 drives the electric cylinder 85 in the direction in which the output shaft 85a is immersed to reduce the pressure in the crank chamber 62. . As a result, the inclination angle 0 of the swash plate 65 changes through the intermediate state shown in FIG. 6 to the maximum position shown in FIG. Then, in the state shown in FIG. 5, the inclination angle 0 of the swash plate 65 becomes the maximum and the stroke of the piston 71 becomes the maximum, so that a necessary heat generation amount can be secured even at a low speed rotation. In addition, the control device 86 drives the electric cylinder 85 in the direction in which the output shaft 85a protrudes to increase the pressure in the crank chamber 62 in order to suppress excessive heat generation during high-speed rotation. As a result, when the inclination angle 0 of the swash plate 65 becomes small, the intermediate state shown in FIG. 6 is obtained. As the stroke of the piston 71 becomes small, the calorific value decreases. In this embodiment, since the swash plate angle changing means for changing the tilt angle の of the swash plate 65 is provided, by adjusting the tilt angle 0, it is possible to prevent an excessive amount of heat generation at high speed. The durability and reliability of the shaft sealing device 63 etc. are improved. Also, the required heat generation can be ensured even at low speed rotation. Furthermore, the swash plate angle changing means is configured to change the inclination angle 6> of the swash plate 65 by changing the pressure of the viscous fluid in the crank chamber 62 in which the swash plate 65 is accommodated. It's easy. In addition, since the engine is started with a small inclination angle of 0, the torque required to drive the drive shaft 20 at the time of startup is reduced, the shock when the electromagnetic clutch is connected is reduced, and the start is performed smoothly. . In addition, since machine oil is used as a viscous fluid, lubrication of radial bearings 22 and 26, spherical parts 67a and thrust pairings 78a and 78b, etc. And the durability of each sliding part and bearing is improved. In addition, the controller 86 controls the operating conditions such as the rotation speed of the drive shaft 20 and room temperature.
に応じてクランク室 6 2の圧力を調整して発熱量を制御するため、 駆動源に余分 な負荷が加わるのが防止され、 無駄な動力消費が少なくなる。 The amount of heat generated is controlled by adjusting the pressure of the crank chamber 62 in accordance with the condition, so that an extra load is prevented from being applied to the drive source, and wasteful power consumption is reduced.
なお、 実施の形態は前記各実施の形態に限定されるものではなく、 例えば次の ように具体化することも可能である。 It should be noted that the embodiments are not limited to the above embodiments, but may be embodied as follows, for example.
( 1 ) ピストンの駆動手段として第 1の実施の形態と同様な斜板を使用する 構成において、 両頭型のピストン 2 3に代えて図 8に示すように片頭型のビスト ン 7 1を使用する構成とする。 この場合、 第 1の実施の形態のビスカスヒータの フロント側のシリンダブロヅク 1 2を短くした構造になるとともに、 フロントハ ウジング 1 1の凹部 1 1 a及びシリンダブロック 1 2の通路 1 9は不要となる。 ビストン 7 1の基端側周面には溝 7 1 aが形成され、 ピストン 7 1の移動時にピ ストン 7 1の基端側端面に負荷がかかり難くなつている。 この構成では、 ビス力 スヒータが両頭のピストンを使用するものに比較して小型となる。  (1) In a configuration in which a swash plate similar to that of the first embodiment is used as a piston driving means, a single-headed piston 71 is used instead of the double-headed piston 23 as shown in FIG. Configuration. In this case, the front cylinder block 12 of the viscous heater of the first embodiment is shortened, and the recess 11 a of the front housing 11 and the passage 19 of the cylinder block 12 are unnecessary. Become. A groove 71a is formed on the proximal end peripheral surface of the piston 71, so that a load is less likely to be applied to the proximal end surface of the piston 71 when the piston 71 moves. With this configuration, the screw force heater is smaller than that using a double-headed piston.
( 2 ) 第 1の実施の形態及び ( 1 ) の構成においてピストン 2 3 , 7 1に、 図 9 ( a ) , ( b ) に示すように、 ピストン 2 3 , 7 1の先端面と室 1 8とを連 通する通路 2 3 a, 7 l bを形成する。 この構成では、 ピストン 2 3 , 7 1の移 動時に粘性流体が通路 2 3 a, 7 1 bを経てシリンダボア 1 2 b , 1 3 b内と室(2) In the first embodiment and the configuration of (1), as shown in FIGS. 9 (a) and (b), the pistons 23 and 71 have, as shown in FIGS. Form a passage 23 a, 7 lb communicating with 8. In this configuration, when the pistons 23, 71 move, the viscous fluid passes through the passages 23a, 71b, and the inside of the cylinder bores 12b, 13b and the chamber.
1 8との間を円滑に移動する。 従って、 この構成を採用すると、 シリンダブロッ ク 1 2 , 1 3に通路 1 9を形成するのが不要になるとともにフロントハウジングMove smoothly between 1 and 8. Therefore, if this configuration is adopted, it is not necessary to form the passage 19 in the cylinder blocks 12 and 13 and the front housing
1 1及びリャプレート 1 4の凹部 1 1 a , 1 4 aも不要になり、 構造が簡単にな つて製造コストを低減できる。 (3) 図 10 (a) , (b) に示すように、 ピストン 23, 7 1の先端側を 筒状に形成するとともに通路 23a, 7 l bを形成し、 フロントハウジング 1 1 及びリャプレート 14に筒部内に挿入可能な凸部 87, 88を、 筒部内周面との 間にピストン外周面とシリンダボァ周面との隙間と同程度の隙間が存在するよう に形成する。 この場合、 ピストン 23, 71の 1往復により発生する熱量が増大 する。 Also, the concave portions 11a and 14a of the rear plate 11 and the rear plate 14 become unnecessary, so that the structure is simplified and the manufacturing cost can be reduced. (3) As shown in Figs. 10 (a) and (b), the distal ends of the pistons 23 and 71 are formed into a cylindrical shape, and the passages 23a and 7 lb are formed. The protrusions 87, 88 that can be inserted into the cylinder are formed so that there is a gap between the cylinder inner circumference and the gap between the piston outer circumference and the cylinder bore circumference. In this case, the amount of heat generated by one reciprocation of the pistons 23 and 71 increases.
(4) 第 2の実施の形態のようにクランク機構でビストン 45を往復移動さ せる構成において、 図 11に示すように、 ビストン 45を完全な円筒状に形成す るとともにピストンビン 49をビストン 45の先端から離れた位置に設ける。 そ して、 ポトムブレート 40とシリンダブロック 39との間にビストン 45内に挿 通される凸部 89 aを有する中間プロヅク 89を設ける。 凸部 89 aの周面とピ ストン 45の内周面との間には剪断発熱が有効に生じる大きさの隙間が形成され ている。 また、 中間ブロック 89にはウォー夕ジャケット 51と独立した円筒状 のウォータジャケヅト 90が形成され、 図示しない入水ポート及び出水ポートを 介して暖房回路の循環水がウォータジャケット 90内を流れるようになつている。 この場合、 ピストン 45の 1往復により発生する熱量が増大するとともに、 発生 した熱が効率よく循環水に熱交換される。 (4) In the configuration in which the piston 45 is reciprocated by the crank mechanism as in the second embodiment, as shown in FIG. 11, the piston 45 is formed in a completely cylindrical shape, and the piston bin 49 is connected to the piston 45. At a position away from the tip of the Then, an intermediate work 89 having a projection 89a inserted into the piston 45 is provided between the potato plate 40 and the cylinder block 39. A gap is formed between the peripheral surface of the projection 89a and the inner peripheral surface of the piston 45 so as to effectively generate heat generated by shearing. A cylindrical water jacket 90 independent of the water jacket 51 is formed in the intermediate block 89 so that the circulating water of the heating circuit flows through the water jacket 90 through an inlet port and an outlet port (not shown). I'm sorry. In this case, the amount of heat generated by one reciprocation of the piston 45 increases, and the generated heat is efficiently exchanged with the circulating water.
(5) (4) においてウォー夕ジャケット 90を省略してもよい。 この場合、 ボトムプレート 40は不要となり、 (4) に比較して構造が簡単になる。 (5) The war evening jacket 90 may be omitted in (4). In this case, the bottom plate 40 becomes unnecessary, and the structure is simplified as compared with (4).
(6) カムプレートとして斜板に代えて、 例えば特開平 7— 97978号公 報、 特開平 7— 189901号公報等に開示されたウエーブカム式圧縮機で使用 されるようなカムプレートを使用してもよい。 (6) Instead of a swash plate as the cam plate, a cam plate used in a wave cam type compressor disclosed in, for example, JP-A-7-97978, JP-A-7-189901, etc., is used. You may.
(7) 揺動斜板式 (ヮブル式) 圧縮機と同様に回転が規制された状態で揺動 のみ行う斜板を使用してビストンを往復運動させる構成としてもよい。 (8) ピストンを斜板を介して往復運動させる構成の場合、 圧縮機と異なつ て斜板ゃ駆動シャフトに加わるスラス卜力が小さいため、 スラストベアリング 2 5を省略してもよい。 この場合、 ラジアルベアリング 21, 22としてアンギュ ラベアリングを使用するのが好ましい。 (7) Oscillating swash plate type (Pebble type) Similar to the compressor, the piston may be reciprocated using a swash plate that only oscillates with rotation restricted. (8) In the case of a configuration in which the piston is reciprocated via the swash plate, the thrust force applied to the swash plate and the drive shaft is small unlike the compressor, so that the thrust bearing 25 may be omitted. In this case, it is preferable to use angular bearings as the radial bearings 21 and 22.
(9) 第 2の実施の形態において、 クランク軸 46がピストン 45の下方に 存在する配置としてもよい。 即ち、 図 4と同様の構成で上下反対とした状態に配 置して使用する。 但し、 粘性流体はクランク軸 46が収容されている室内とシリ ンダブロヅク 39のシリンダポア 44内とに充填する必要がある。 また、 横向き に配置して使用してもよい。 (9) In the second embodiment, the crankshaft 46 may be disposed below the piston 45. That is, it is used in the same configuration as that of Fig. 4 and placed upside down. However, it is necessary to fill the viscous fluid into the room where the crankshaft 46 is housed and into the cylinder bore 44 of the cylinder block 39. Moreover, you may use it arrange | positioning horizontally.
(10) シリンダボア 12b, 13 b, 44の断面形状を円形以外に、 例え ば、 三角形、 四角形、 六角形、 楕円形等にして、 ピストン 23, 45, 71の外 形形状をそれに対応した形状にしてもよい。 (10) The cross-sectional shape of the cylinder bores 12b, 13b, and 44 should be other than circular, for example, triangular, square, hexagonal, elliptical, etc., and the outer shapes of the pistons 23, 45, 71 should be corresponding You may.
(1 1) ゥォ一夕ジャケット 27, 51内に螺旋状の突条 28 a, 29 a, 54に代えてビストンの移動方向と並行に延びる突条を千鳥状に突設する。 この 場合、 突条の製造が容易となる。 (1 1) Instead of the spiral ridges 28a, 29a, 54, ridges extending in parallel with the moving direction of the biston are provided in the zigzag jackets 27, 51 in a staggered manner. In this case, the production of the ridge becomes easy.
(12) また、 突条 28 a, 29a, 54をその先端が対向面に当接するよ うに形成したり、 突条 28a, 29 a, 54を省略してもよい。 (12) Also, the ridges 28a, 29a, 54 may be formed such that their tips abut the opposing surface, or the ridges 28a, 29a, 54 may be omitted.
(13) ウォータジャケヅト 27を単なる円筒状としたり、 シリンダボアの 形状あるいは配置に対応させて四角筒状や多角筒状に形成してもよい。 (13) The water jacket 27 may be formed in a simple cylindrical shape, or may be formed in a square cylindrical shape or a polygonal cylindrical shape corresponding to the shape or arrangement of the cylinder bore.
(14) 電磁クラッチ 32を省略して、 駆動シャフト 20あるいはクランク 軸 4 6にプーリ 3 4を一体回転可能に支持し、 エンジンの駆動力をプーリ 3 4を一 介して直接駆動軸に伝達する構成としてもよい。 (14) Omit electromagnetic clutch 32, drive shaft 20 or crank The pulley 34 may be integrally rotatably supported on the shaft 46, and the driving force of the engine may be directly transmitted to the drive shaft via the pulley 34.
( 1 5 ) ラジアルベアリング 2 1として軸封機能を有するベアリングに代え て通常のベアリングを使用し、 オイルシールを併用してもよい。 (15) As the radial bearing 21, a normal bearing may be used in place of the bearing having the shaft sealing function, and an oil seal may be used together.
( 1 6 ) 第 3の実施の形態において吸入弁 7 3及び吐出弁 7 4等の弁機構を 省略してもよい。 また、 第 1の実施の形態及び ( 1 ) において吸入弁及び吐出弁 等の弁機構を設けてもよい。 (16) In the third embodiment, valve mechanisms such as the suction valve 73 and the discharge valve 74 may be omitted. Further, in the first embodiment and (1), a valve mechanism such as a suction valve and a discharge valve may be provided.
( 1 7 ) 往復運動部材として、 ハウジング内に収容された一対のプーリ (口 ーラ) 間に卷き掛けられてプーリの往復回動に伴って往復動されるベルトを使用 してもよい。 なお、 本明細書で言う 「粘性流体」 とは、 「往復運動部材」 の剪断作用を受け て流体摩擦に基づく熱を発生するあらゆる媒体を意味するものであり、 高粘度の 液体や半流動体に限定されず、 ましてゃシリコーンオイルに限定されるものでは ない。 また、 「ピストン」 とは、 粘性流体を収容する室 (シリンダポア) の壁面 に沿って往復移動する部材であって、 室を区画した状態で室内の流体と同方向に 移動する所謂ビストンに限らず、 室内の流体が往復運動部材の内部を通過可能な もの、 例えば円筒状の部材 (ビストン) や、 ビストンに軸方向に貫通する孔を形 成したものを含む。 (17) As the reciprocating member, a belt that is wound around a pair of pulleys (mouths) housed in the housing and that reciprocates with the reciprocating rotation of the pulley may be used. The term "viscous fluid" as used herein means any medium that generates heat based on fluid friction under the shearing action of a "reciprocating member", such as a highly viscous liquid or semi-fluid. However, it is not limited to silicone oil. The “piston” is a member that reciprocates along a wall surface of a chamber (cylinder pore) that stores a viscous fluid, and is not limited to a so-called biston that moves in the same direction as the fluid in the room in a state where the chamber is partitioned. In addition, those that allow the fluid in the chamber to pass through the inside of the reciprocating member include, for example, cylindrical members (Biston) and those in which a hole that penetrates the piston in the axial direction is formed.

Claims

請求の範囲 The scope of the claims
1 . ハウジングに設けられた発熱室と、 1. Heating chamber provided in the housing,
前記発熱室の壁面との間に粘性流体が介在する状態で往復移動可能に配設され た往復運動部材と、  A reciprocating member disposed so as to be able to reciprocate with a viscous fluid interposed between the wall of the heating chamber and
前記往復運動部材を駆動する駆動手段と、  Driving means for driving the reciprocating member,
前記発熱室に隣接して設けられ、 前記往復運動部材の往復運動により発生した 熱を循環流体に熱交換する放熱室と  A radiating chamber that is provided adjacent to the heat generating chamber and that exchanges heat generated by the reciprocating motion of the reciprocating member with a circulating fluid;
を備えた往復運動式ビスカスヒータ。 Reciprocating viscous heater equipped with.
2 . 前記駆動手段は外部駆動源の回転力を伝達する駆動軸と、 2. The drive means transmits a rotational force of an external drive source, and
該駆動軸の回転に伴ってシュ一を介して前記往復運動部材に往復運動を伝達す るカムプレー卜と  A cam plate that transmits reciprocating motion to the reciprocating member via a shoe as the drive shaft rotates.
を備えている請求項 1に記載の往復運動式ビスカスヒー夕。 2. The reciprocating viscous gear according to claim 1, comprising:
3 . 前記カムプレートは前記駆動軸上に傾動可能に支持された斜板であり、 該 斜板の傾斜角度を変更させる斜板角度変更手段を備えている請求項 2に記載の往 復運動式ビスカスヒ一夕。 3. The reciprocating motion type according to claim 2, wherein the cam plate is a swash plate supported so as to be tiltable on the drive shaft, and provided with swash plate angle changing means for changing the tilt angle of the swash plate. Overnight viscous.
4 . 前記斜板は前記駆動軸に一体回転可能に支持された回転支持体に、 ヒンジ 機構を介して相対回転不能に連結され、 前記斜板角度変更手段は前記斜板が収容 された室に連通され、 該室内の圧力を調整する圧力調整手段である請求項 3に記 載の往復運動式ビス力スヒータ。 4. The swash plate is connected to a rotation support body rotatably supported by the drive shaft so as to be relatively non-rotatable via a hinge mechanism, and the swash plate angle changing means is provided in a chamber in which the swash plate is housed. 4. The reciprocating screw force heater according to claim 3, which is a pressure adjusting means that is in communication with the chamber and adjusts the pressure in the chamber.
5 . 前記斜板角度変更手段は起動時に斜板と駆動軸とのなす角度が大きくなる ように斜板角度を調整する請求項 3又は請求項 4に記載の往復運動式ビス力スヒ 一夕。 5. The reciprocating screw screw according to claim 3, wherein the swash plate angle changing means adjusts the swash plate angle so that the angle between the swash plate and the drive shaft increases at the time of startup.
- 2 Z - -2 Z-
6 . 前記粘性流体には機械油が使用されている請求項 2〜請求項 5のいずれか 一項に記載の往復運動式ビス力スヒータ。 6. The reciprocating screw heater according to any one of claims 2 to 5, wherein a mechanical oil is used as the viscous fluid.
7 . 前記往復運動部材はピストンである請求項 1〜請求項 6のいずれか一項 に記載の往復運動式ビスカスヒータ。 7. The reciprocating viscous heater according to any one of claims 1 to 6, wherein the reciprocating member is a piston.
8 . 前記駆動手段はクランク機構により外部駆動源の回転力を往復運動部材 に伝達する請求項 1に記載の往復運動式ビスカスヒータ。 。 8. The reciprocating viscous heater according to claim 1, wherein the driving means transmits a rotational force of an external driving source to the reciprocating member by a crank mechanism. .
9 . 前記往復運動部材はビストンである請求項 8に記載の往復運動式ビス力 スヒータ。 9. The reciprocating screw force heater according to claim 8, wherein the reciprocating member is biston.
1 0 . クランク機構の下方でピストンが往復移動し、 粘性流体はピストンの移 動範囲に充填する請求項 9に記載の往復運動式ビスカスヒータ。 10. The reciprocating viscous heater according to claim 9, wherein the piston reciprocates below the crank mechanism, and the viscous fluid fills the moving range of the piston.
1 1 . 前記ビス卜ンの移動時にビストンの内部を粘性流体が移動可能な通路を 形成する請求項 7、 9及び 1 0のいずれかに記載の往復運動式ビスカスヒ一夕。 11. The reciprocating viscous filter according to any one of claims 7, 9 and 10, wherein a passage through which a viscous fluid can move inside the biston when the biston moves is formed.
PCT/JP1998/000396 1997-01-31 1998-01-30 Reciprocating type viscous heater WO1998033671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19880297T DE19880297T1 (en) 1997-01-31 1998-01-30 Piston-type viscose heater

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1886297 1997-01-31
JP9/18862 1997-01-31
JP9/151054 1997-06-09
JP9151054A JPH10272917A (en) 1997-01-31 1997-06-09 Reciprocation type viscous heater

Publications (1)

Publication Number Publication Date
WO1998033671A1 true WO1998033671A1 (en) 1998-08-06

Family

ID=26355595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000396 WO1998033671A1 (en) 1997-01-31 1998-01-30 Reciprocating type viscous heater

Country Status (3)

Country Link
JP (1) JPH10272917A (en)
DE (1) DE19880297T1 (en)
WO (1) WO1998033671A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246823A (en) * 1989-03-21 1990-10-02 Aisin Seiki Co Ltd Heating system for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246823A (en) * 1989-03-21 1990-10-02 Aisin Seiki Co Ltd Heating system for vehicle

Also Published As

Publication number Publication date
JPH10272917A (en) 1998-10-13
DE19880297T1 (en) 1999-05-12

Similar Documents

Publication Publication Date Title
KR900004604B1 (en) Refrigerant compressor with a capacity adjusting mechanism
US7014429B2 (en) High-efficiency, large angle, variable displacement hydraulic pump/motor
JP3429764B2 (en) Fluid operated machine with a piston without connecting rod
JPS5853198B2 (en) variable stroke compressor
KR19980071722A (en) Axial piston device
KR100413948B1 (en) Variable Displacement Type Axial Piston Unit
JPH0697034B2 (en) Movable swash plate compressor
KR20020073301A (en) Compressor and pulley for compressor
KR20020090108A (en) Compressor
EP1512870A1 (en) Swash plate type variable displacement compressor
EP0259760B1 (en) Variable displacement swash-plate type compressor
JPH076362B2 (en) Rotational motion / linear motion conversion device
US5934170A (en) Piston mechanism of fluid displacement apparatus
WO1998033671A1 (en) Reciprocating type viscous heater
US6523455B1 (en) Compressor having an oil collection groove
CN111656012B (en) Variable capacity swash plate type compressor
US6293761B1 (en) Variable displacement swash plate type compressor having pivot pin
KR100433392B1 (en) Swash plate type axial piston apparatus
KR930010811B1 (en) Variable displacement wobble plate type compressor
JP2017145827A (en) Variable displacement swash plate compressor
KR101193341B1 (en) Variable displacement swash plate type compressor
KR100210216B1 (en) Variable typed rotary slant typed compressor
JP3561340B2 (en) Swash plate type hydraulic actuator
JP2006152918A (en) Swash plate type variable displacement compressor
KR20210074864A (en) Swash plate compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

WWE Wipo information: entry into national phase

Ref document number: 09155300

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19880297

Country of ref document: DE

Date of ref document: 19990512

WWE Wipo information: entry into national phase

Ref document number: 19880297

Country of ref document: DE