WO1998032715A1 - Procede d'elimination d'inhibiteurs de polymerisation de melanges de monomeres a l'aide d'une alumine optimisee - Google Patents

Procede d'elimination d'inhibiteurs de polymerisation de melanges de monomeres a l'aide d'une alumine optimisee Download PDF

Info

Publication number
WO1998032715A1
WO1998032715A1 PCT/FR1998/000051 FR9800051W WO9832715A1 WO 1998032715 A1 WO1998032715 A1 WO 1998032715A1 FR 9800051 W FR9800051 W FR 9800051W WO 9832715 A1 WO9832715 A1 WO 9832715A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
inhibitor
alkaline
inhibitors
ethylenically unsaturated
Prior art date
Application number
PCT/FR1998/000051
Other languages
English (en)
Inventor
Christophe Nedez
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to US09/341,959 priority Critical patent/US6288299B1/en
Priority to EP98902066A priority patent/EP0973706A1/fr
Priority to JP10531660A priority patent/JP2000510477A/ja
Priority to BR9806980-2A priority patent/BR9806980A/pt
Priority to AU58705/98A priority patent/AU5870598A/en
Publication of WO1998032715A1 publication Critical patent/WO1998032715A1/fr
Priority to NO993557A priority patent/NO993557L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers

Definitions

  • the present invention relates to a new process for eliminating polymerization inhibitors from mixtures of monomers, in particular ethylenically unsaturated monomers.
  • ethylenic monomers In the polymerization industry for a large number of ethylenic monomers, an important problem relates to the storage and / or transport of these monomers. Indeed, one can observe an uncontrolled spontaneous polymerization of these monomers over time from free radicals.
  • polymerization inhibitors can be chosen from: picric acid, nitroaromatics, quinone derivatives (hydroquinone, benzoquinone), naphthols, amines (p-phenylenediamine, phenothiazine), phosphites, p-methoxyphenol, p- tertiobutylcatechol, ...
  • the temperature can be raised considerably to cause thermolysis of the inhibitor, but the monomer must have high thermal stability,
  • the charge of monomers and inhibitor can be distilled, but the monomer must have good thermal stability, in addition such an operation is difficult to carry out on an industrial scale and the boiling point of the inhibitor is, in many cases, higher than that of the monomer, - the inhibitor can be eliminated by adding a dilute solution, for example sodium hydroxide, the charge of monomers then being washed with water in order to remove all traces of caustic compounds, however, the treatment of liquid effluents also poses industrial problems, - Finally, the inhibitor can be adsorbed using a compound such as alumina, silica gel, activated carbon, calcium oxide, aluminum silicate, talc, sulfates of calcium, magnesium sulphates, copper sulphates, magnesium silicate clays, a resin ... Adsorption is one of the most advantageous methods, because it does not have any of the disadvantages mentioned above. Among the adsorbents used, activated alumina is preferred.
  • the object of the present invention is to provide a new alumina for the adsorption of polymerization inhibitors of ethylenically unsaturated monomers having improved adsorption capacities compared to the aluminas of the prior art.
  • the invention relates to a method for absorbing inhibitors of polymerization of ethylenically unsaturated monomers, in which these inhibitors are brought into contact with an alumina, said alumina having a pore volume of diameter greater than 100 ⁇ . at least 0.20 ml / g, preferably at least 0.25 ml / g, even more preferably at least 0.30 ml / g, and a specific surface of at least 30 m / g, of preferably at least 60 m 2 / g, even more preferably at least 80 nf7g.
  • the volume of pores with a diameter greater than 100 ⁇ represents the cumulative volume created by all pores larger than a diameter of 100 ⁇ . These volumes are measured by the mercury penetration technique, in which Kelvin's law is applied.
  • the specific surface indicated is an area measured by the BET method.
  • the term surface measured by the BET method means the specific surface determined by nitrogen adsorption in accordance with standard ASTM D 3663-78 established on the basis of the BRUNAUER - EMMETT - TELLER method described in the periodical "The Journal of the American Society ", 6J2, 309 (1938). The combination of these two characteristics ensures high adsorption of the inhibitors of polymerization by alumina compared to the aluminas used in the prior art.
  • Alumina can, for example, be in the form of beads, extrudates or monoliths.
  • the processes for the preparation of aluminas having the characteristics of pore volume and specific surface necessary for the implementation of the process according to the invention are known to those skilled in the art. With regard to the specific surface, this can in particular be controlled by the calcination (or activation) temperature of the aluminas following their shaping.
  • the alumina used is in the form of beads, these beads can be obtained by shaping by rotating technology or by coagulation in drops (called oil-drop).
  • Shaping by rotary technology is an agglomeration of alumina produced by contacting and rotating the alumina on itself.
  • the porosity can be created by different means such as the choice of the particle size of the alumina powder or the agglomeration of several alumina powders of different particle sizes.
  • Another method consists in mixing with the alumina powder, before or during the agglomeration step, a compound, called pore-forming agent, disappearing completely by heating and thus creating a porosity in the beads.
  • pore-forming compounds used there may be mentioned, by way of example, wood flour, charcoal, sulfur, tars, plastics or plastic emulsions such as polyvinyl chloride, polyvinyl alcohols, mothballs or the like.
  • the amount of pore-forming compounds added is determined by the desired pore volume.
  • the alumina powder used as starting material can be obtained by conventional methods such as the precipitation or gel method, and the method by rapid dehydration of an alumina hydroxide such as Bayer hydrate (hydrargillite).
  • the latter alumina is obtained in particular by rapid dehydration of hydrargillite using a stream of hot gases, the inlet temperature of the gases into the apparatus generally varying from approximately 400 to 1,200 ° C., the contact time of the alumina with the hot gases generally being between a fraction of a second and 4-5 seconds; such a process for the preparation of alumina powder has been particularly described in patent FR-A-1 108 011.
  • the latter alumina is the preferred one of the invention. Control of the pore volumes of given diameter can also be carried out during this agglomeration step by an adequate adjustment of the rate of introduction of the alumina powder and possibly of water, of the rotation speed of the device or by the introduction of a shaping primer.
  • the beads obtained can be subjected to various operations intended to improve their mechanical resistance such as ripening by maintaining in an atmosphere at a controlled humidity rate, followed by calcination and then impregnation of the beads by a solution of one or more acids and a hydrothermal treatment in a confined atmosphere. Finally, the beads are dried and calcined so as to be activated.
  • Shaping by coagulation in drops consists in introducing drops of an aqueous solution based on an aluminum compound into a liquid immiscible with water (petroleum, kerosene, ...) in such a way that the drops form substantially spherical particles, these particles are coagulated simultaneously and / or after the spheroidal shaping by a gelling agent. The beads are then collected then dried and calcined.
  • This type of bead can for example be prepared, according to the process described in patent EP-A-097 539, by coagulation in drops of an aqueous suspension or dispersion of alumina or a solution of a salt basic aluminum in the form of an emulsion consisting of an organic phase, an aqueous phase and a surfactant or an emulsifier.
  • Said organic phase can in particular be a hydrocarbon, the surfactant or emulsifier is for example Galoryl EM 10®.
  • These beads can also be prepared according to the process described in patent EP-A-015 801 by mixing at a pH below 7.5 an ultrafine boehmite sol and spheroidal alumina particles, then coagulation in drop of this mixing as indicated previously, and finally drying and calcination.
  • the alumina can also be in the form of alumina extrudates. These are generally obtained by mixing and then extruding an alumina-based material, and finally calcining.
  • the starting material can be of very varied nature: it can result from the partial and rapid dehydration of hydrargillite, according to the teaching of the application FR-A-1.108.011, or from the precipitation of alumina boehmite, pseudo -boehmite, bayerite or a mixture of these aluminas.
  • the alumina can be mixed with additives, in particular porogens as defined above.
  • extrudates can have all kinds of shapes: full or hollow cylinders, multilobes, ...
  • essentially an alumina is used which is in the form of beads resulting from shaping by rotary technology.
  • aluminas with a particle size of between 0.8 and 10 mm, preferably between 1 and 5 mm, are used.
  • the particle size corresponds in the case of shaping by coagulation in drops to the diameter of the beads and in the case of extrudates to the diameter of their cross section.
  • the method according to the invention uses as an adsorbent an alumina comprising at least one compound of an element chosen from alkalis, rare earths and alkaline earths.
  • This compound can be an oxide, a hydroxide, a salt or a mixture thereof.
  • hydroxides the sulfates, nitrates, halides, acetates, formates, carbonates and the salts of carboxylic acids.
  • the elements chosen from sodium, potassium, lithium, lanthanum and cerium are preferably used.
  • the level of alkaline, alkaline-earth or rare earth element is generally at least 5 mmol per 100 g of alumina, preferably at most 400 mmol, even more preferably between 10 and 400 mmol.
  • the alkaline element is sodium and its content is between 15 and 300 mmol per 100 g of alumina.
  • the deposition of the compound of the doping element on or in alumina can be carried out by any method known to those skilled in the art. It can be carried out, for example, by impregnation of the alumina already prepared with the alkaline elements, of rare earths or alkaline-earth or precursors of these elements, or by mixing of the alkaline elements, of rare earths or alkaline-earth or precursors with alumina during the shaping of these materials. These elements can also be introduced into alumina by coprecipitation of alumina and alkaline, rare earth or alkaline-earth elements or their precursors.
  • the alumina used in the process according to the invention is prepared by:
  • the impregnation is carried out in a known manner by bringing the alumina into contact with a solution, a sol or a gel comprising at least one alkaline, rare earth or alkaline-earth element in the form of oxide or salt or one of their precursors.
  • the operation is generally carried out by soaking the alumina in a determined volume of solution of at least one precursor of an alkaline element, of rare earths or alkaline earths.
  • solution of a precursor of one of these elements is meant a solution of a salt or compound of the element, or at least one, of the alkaline, rare earth or alkaline-earth elements, these salts and compounds which may be thermally decomposable into oxides.
  • the salt concentration of the solution is chosen according to the quantity of element to be deposited on the alumina.
  • these elements are deposited by dry impregnation, that is to say that the impregnation is carried out with just the volume of solution necessary for said impregnation, without excess.
  • the heat treatment is carried out at a temperature determined as a function either of the temperature of use of the alumina or of the specific surface desired. It may also be possible to carry out a heat treatment to obtain at least partial thermal degradation of the compound, for example in the form of oxide. However, this degradation is not compulsory, and by way of example, it is not necessary in particular when using compounds such as chlorides, nitrates or hydroxides.
  • the heat treatment can, for example, be carried out at a temperature between 150 and 1000 ° C, preferably between 300 and 800 ° C.
  • the adsorption process according to the invention is suitable when the polymerization inhibitor is chosen, for example, from: picric acid, nitroaromatics, quinone derivatives (hydroquinone, benzoquinone), naphthols, amines (p - phenylenediamine, phenothiazine), phosphites, p-methoxyphenol, p-tertiobutylcatechol. Particularly good results are obtained for the adsorption of p-tertiobutylcatechol.
  • the alumina When it comes to purifying an ethylenically unsaturated monomer stabilized by a polymerization inhibitor, the alumina is brought into contact with said mixture of ethylenically unsaturated monomer and inhibitor, for example at room temperature.
  • the charge of monomers can be based on any type of ethylenically unsaturated monomer such as in particular: styrene, butadiene, isoprene, vinyl chloride, vinylidene chloride, tetrafluoroethylene, trifluorochloroethylene, chloroprene, allyl alcohol, vinyl ether, vinyl ester (acetate vinyl), acrylates and alkyl methacrylates (methacrylate, butylacrylate, ethylacrylate, 2-ethylhexylacrylate, methylmethacrylate, ethylmethacrylate, 2-ethylhexylmethacrylate, ...), acrolein, acrylonit
  • the mixture of ethylenically unsaturated monomer and inhibitor comprises 2 to 2000 ppm by weight per volume of inhibitor, preferably 5 to 1500 ppm.
  • the alumina samples tested are pretreated under a stream of nitrogen air at 300 ° C for 2 hours in order to remove any trace of moisture following their storage and in order to be able to compare their effectiveness under identical conditions.
  • alumina (dry extract) thus pretreated is introduced into 200 ml of a cyclohexane solution containing 500 ppm (w / v) of p-tertiobutylcatechol (TBC).
  • TBC p-tertiobutylcatechol
  • the temperature is maintained at 25 ° C.
  • the level of TBC present in the solution is analyzed over time by UV-visible. We deduce the adsorption rate of TBC.
  • Alumina * Alumina 1: Activated Alumina 1, 5/3 marketed by Procatalyse
  • Alumina 2 Activated Alumina 2/5 grade A marketed by Procatalyse Alumina 4: Spherite 512 marketed by Procatalyse Alumina 8: Spherite 569 marketed by Procatalyse
  • the alumina samples tested are pretreated under a stream of nitrogen air to
  • alumina (dry extract) thus pretreated is introduced into 200 ml of a styrene solution containing 500 ppm (w / v) of p-tertiobutylcatechol (TBC).
  • TBC p-tertiobutylcatechol
  • the alumina 6 of Example 1 is treated with a potassium compound.
  • the impregnation is carried out dry using a solution of potassium carbonate.
  • the impregnated alumina is then dried overnight at 130 ° C, then calcined at 470 ° C for 1 h 30.
  • the alumina samples tested are pretreated under a stream of nitrogen air at 300 ° C for 2 hours in order to remove any trace of moisture after their storage and in order to be able to compare their effectiveness under identical conditions.
  • alumina (dry extract) thus pretreated is introduced into 200 ml of a cyclohexane solution containing 500 ppm (w / v) of p-tertiobutylcatechol (TBC).
  • TBC p-tertiobutylcatechol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)

Abstract

L'invention concerne un procédé d'adsorption d'inhibiteurs de polymérisation des monomères éthyléniquement insaturés, dans lequel on met en contact ces inhibiteurs avec une alumine, ladite alumine présentant un volume de pores de diamètre supérieur à 100 Å d'au moins 0,20 ml/g, de préférence d'au moins 0,25 ml/g, encore plus préférentiellement d'au moins 0,30 ml/g, et une surface spécifique d'au moins 30 m2/g, de préférence d'au moins 60 m2/g, encore plus préférentiellement d'au moins 80 m2/g.

Description

PROCEDE D'ELIMINATION D'INHIBITEURS DE POLYMERISATION DE MELANGES DE MONOMERES A L'AIDE D'UNE ALUMINE OPTIMISEE
La présente invention a trait à un nouveau procédé pour éliminer les inhibiteurs de polymérisation des mélanges de monomères, notamment des monomères éthyléniquement insaturés.
Dans l'industrie de la polymérisation d'un grand nombre de monomères éthyléniques, un problème important a trait au stockage et/ou au transport de ces monomères. En effet, on peut observer une polymérisation spontanée non contrôlée de ces monomères au cours du temps à partir de radicaux libres. Ces monomères éthyléniques instables sont notamment ceux présentant une deuxième insaturation telle qu'une fonction COOH, C=O, C≡N, C=C, C≈S, C=N ; il peut s'agir par exemple des monomères suivants : styrène, butadiène, isoprène, esters (méth)acryliques, acrylonitrile, acroléine, chloroprène, acétate de vinyle,...
Pour éviter cette dégradation des monomères, il est connu de les stabiliser au moyen de substances inhibitrices qui empêchent la polymérisation de se produire.
Ces substances, plus généralement connues sous le terme "d'inhibiteurs de polymérisation" peuvent être choisies parmi : l'acide picrique, les nitroaromatiques, les dérivés de la quinone (hydroquinone, benzoquinone), des naphtols, des aminés (p- phénylènediamine, phénothiazine), des phosphites, le p-méthoxyphénol, le p- tertiobutylcatéchol, ...
Lorsque l'on souhaite utiliser les monomères inhibés pour les polymériser ou les engager dans des réactions chimiques, il est souvent nécessaire d'éliminer les inhibiteurs de polymérisation. Plusieurs moyens sont utilisés à cet effet :
- il est possible d'ajouter dans le réacteur une quantité importante d'initiateur pour combattre l'effet de l'inhibiteur, cependant, cette technique ne convient pas dans tous les cas,
- on peut élever fortement la température pour entraîner la thermolyse de l'inhibiteur, mais le monomère doit présenter une haute stabilité thermique,
- on peut distiller la charge de monomères et d'inhibiteur, mais le monomère doit présenter une bonne stabilité thermique, en outre une telle opération est difficilement réalisable à l'échelle industrielle et le point d'ébullition de l'inhibiteur est, dans bien des cas, supérieur à celui du monomère, - on peut éliminer l'inhibiteur en ajoutant une solution diluée, par exemple de soude, la charge de monomères étant ensuite lavée à l'eau afin d'éliminer toute trace de composés caustiques, toutefois, le traitement des effluents liquides pose également des problèmes industriels, - enfin, on peut adsorber l'inhibiteur à l'aide d'un composé tel que l'alumine, le gel de silice, le charbon activé, l'oxyde de calcium, le silicate d'aluminium, le talc, les sulfates de calcium, les sulfates de magnésium, les sulfates de cuivre, des argiles de silicate de magnésium, une résine ... L'adsorption est l'une des méthodes les plus avantageuses, car elle ne présente aucun des inconvénients précédemment cités. Parmi les adsorbants utilisés, l'alumine activée est préférée.
Le but de la présente invention est de proposer une nouvelle alumine pour l'adsorption des inhibiteurs de polymérisation des monomères éthyléniquement insaturés présentant des capacités d'adsorption améliorées par rapport aux alumines de l'art antérieur.
Dans ce but, l'invention concerne un procédé d'absorption d'inhibiteurs de polymérisation des monomères éthyléniquement insaturés, dans lequel on met en contact ces inhibiteurs avec une alumine, ladite alumine présentant un volume de pores de diamètre supérieur à 100 Â d'au moins 0,20 ml/g, de préférence d'au moins 0,25 ml/g, encore plus préférentiellement d'au moins 0,30 ml/g, et une surface spécifique d'au moins 30 m /g, de préférence d'au moins 60 m2/g, encore plus préférentiellement d'au moins 80 nf7g.
Le volume des pores de diamètre supérieur à 100 Â représente le volume cumulé créé par tous les pores de taille supérieure à un diamètre de 100 Â. Ces volumes sont mesurés par la technique de la pénétration du mercure, dans laquelle on applique la loi de Kelvin. La surface spécifique indiquée est une surface mesurée par la méthode BET. On entend par surface mesurée par la méthode BET, la surface spécifique déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER - EMMETT - TELLER décrite dans le périodique "The Journal of the American Society", 6J2, 309 (1938). Le cumul de ces deux caractéristiques assure une adsorption élevée des inhibiteurs de polymérisation par l'alumine par rapport aux alumines utilisées dans l'art antérieur.
L'alumine peut, par exemple, se présenter sous la forme de billes, d'extrudés ou de monolithes. Les procédés de préparation des alumines présentant les caractéristiques de volume poreux et de surface spécifique nécessaires à la mise en oeuvre du procédé selon l'invention sont connus de l'homme du métier. En ce qui concerne la surface spécifique, celle-ci peut notamment être contrôlée par la température de calcination (ou activation) des alumines suite à leur mise en forme.
Pour le volume poreux, son contrôle tient essentiellement au choix de l'alumine de départ utilisée pour la mise forme et aux conditions opératoires de mise en forme de l'alumine. L'homme du métier connaît ces conditions. Quelques exemples sont donnés ci-dessous.
Si l'alumine utilisée se présente sous forme de billes, ces billes peuvent être issues d'une mise en forme par technologie tournante ou par coagulation en gouttes (dite oil-drop).
La mise en forme par technologie tournante est une agglomération de l'alumine réalisée par mise en contact et rotation de l'alumine sur elle-même. Comme appareil utilisé à cet effet, on peut citer le drageoir tournant, le tambour tournant. Ce type de procédé permet d'obtenir des billes de dimensions et de répartitions de pores contrôlées, ces dimensions et ces répartitions étant, en général, créées pendant l'étape d'agglomération.
La porosité peut être créée par différentes moyens comme le choix de la granulométrie de la poudre d'alumine ou l'agglomération de plusieurs poudres d'alumine de différentes granulométries. Une autre méthode consiste à mélanger à la poudre d'alumine, avant ou pendant l'étape d'agglomération, un composé, appelé porogène, disparaissant totalement par chauffage et créant ainsi une porosité dans les billes.
Comme composés porogènes utilisés, on peut citer, à titre d'exemple, la farine de bois, le charbon de bois, le soufre, des goudrons, des matières plastiques ou émulsions de matières plastiques telles que le polychlorure de vinyle, des alcools polyvinyliques, la naphtaline ou analogues. La quantité de composés porogènes ajoutés est déterminée par le volume poreux désiré.
La poudre d'alumine utilisée comme matière de départ peut être obtenue par des procédés classiques tels que le procédé par précipitation ou gel, et le procédé par déshydratation rapide d'un hydroxyde d'alumine tel que l'hydrate de Bayer (hydrargillite).
Cette dernière alumine est notamment obtenue par déshydratation rapide d'hydrargillite à l'aide d'un courant de gaz chauds, la température d'entrée des gaz dans l'appareillage variant généralement de 400 à 1200 °C environ, le temps de contact de l'alumine avec les gaz chauds étant généralement compris entre une fraction de seconde et 4-5 secondes ; un tel procédé de préparation de poudre d'alumine a particulièrement été décrit dans le brevet FR-A-1 108 011. Cette dernière alumine est celle préférée de l'invention. Le contrôle des volumes des pores de diamètre donné peut également être réalisé au cours de cette étape d'agglomération par un réglage adéquat du débit d'introduction de la poudre d'alumine et éventuellement d'eau, de la vitesse de rotation de l'appareil ou par l'introduction d'une amorce de mise en forme. Suite à cette agglomération, les billes obtenues peuvent être soumises à différentes opérations destinées à améliorer leur résistance mécanique telles qu'un mûrissement par maintien dans une atmosphère à taux d'humidité contrôlée, suivi d'une calcination puis d'une imprégnation des billes par une solution d'un ou plusieurs acides et un traitement hydrothermal en atmosphère confinée. Enfin, les billes sont séchées et calcinées de manière à être activées.
La mise en forme par coagulation en gouttes consiste à introduire des gouttes d'une solution aqueuse à base d'un composé de l'aluminium dans un liquide non miscible à l'eau (pétrole, kérosène, ...) de telle façon que les gouttes forment des particules sensiblement sphériques, ces particules sont coagulées simultanément et/ou postérieurement à la mise en forme sphéroîdale par un agent gélifiant. Les billes sont ensuite récupérées puis séchées et calcinées.
Ce type de billes peut par exemple être préparé, selon le procédé décrit dans le brevet EP-A-097 539, par coagulation en gouttes d'une suspension ou d'une dispersion aqueuse d'alumine ou d'une solution d'un sel basique d'aluminium se présentant sous forme d'une émuision constituée d'une phase organique, d'une phase aqueuse et d'un agent de surface ou d'un émulsionnant. Ladite phase organique peut en particulier être un hydrocarbure, l'agent surfactant ou émulsionnant est par exemple du Galoryl EM 10 ®.
Ces billes peuvent également être préparées selon le procédé décrit dans le brevet EP-A-015 801 par mélange à un pH inférieur à 7,5 d'un sol de boehmite ultrafine et de particules sphéroîdales d'alumine, puis coagulation en goutte de ce mélange comme indiqué précédemment, et enfin séchage et calcination.
L'alumine peut également se présenter sous forme d'extrudés d'alumine. Ceux-ci sont généralement obtenus par malaxage puis extrusion d'une matière à base d'alumine, et enfin calcination. La matière de départ peut être de nature très variée : elle peut être issue de la déshydratation partielle et rapide d'hydrargillite, selon l'enseignement de la demande FR-A-1.108.011 , ou de la précipitation d'alumine boehmite, pseudo-boehmite, bayerite ou d'un mélange de ces alumines. Au cours du malaxage, l'alumine peut être mélangée à des additifs, notamment des porogènes tels que définis ci-dessus.
Ces extrudés peuvent présenter toutes sortes de formes : cylindres pleins ou creux, multilobes, ... Dans le procédé selon l'invention, on utilise essentiellement une alumine se présentant sous forme de billes issues d'une mise en forme par technologie tournante.
En général, on met en oeuvre des alumines de granulométrie comprise entre 0,8 et 10 mm, de préférence entre 1 et 5 mm. La granulométrie correspond dans le cas d'une mise en forme par coagulation en gouttes au diamètre des billes et dans le cas d'extrudés au diamètre de leur section transversale.
De manière préférentielle, le procédé selon l'invention met en oeuvre comme adsorbant une alumine comprenant au moins un composé d'un élément choisi parmi les alcalins, les terres rares et les alcalino-terreux.
Ce composé peut être un oxyde, un hydroxyde, un sel ou un mélange de ceux-ci. On peut citer, à titre d'exemple, en plus des hydroxydes, les sulfates, nitrates, halogénures, acétates, formiates, carbonates et les sels d'acides carboxyliques.
On utilise de préférence les éléments choisis parmi le sodium, le potassium, le lithium, le lanthane et le cérium.
Le taux d'élément alcalin, alcalino-terreux ou de terre rare est en général d'au moins 5 mmoles pour 100 g d'alumine, de préférence d'au plus 400 mmoles, encore plus préférentiellement entre 10 et 400 mmoles.
Selon une variante préférée, l'élément alcalin est le sodium et sa teneur est comprise entre 15 et 300 mmoles pour 100 g d'alumine.
Le dépôt du composé de l'élément dopant sur ou dans l'alumine peut être réalisé par toute méthode connue de l'homme du métier. Il peut être réalisé, par exemple, par imprégnation de l'alumine déjà préparée avec les éléments alcalins, de terres rares ou alcalino-terreux ou des précurseurs de ces éléments, ou par mélange des éléments alcalins, de terres rares ou alcalino-terreux ou des précurseurs avec l'alumine au cours de la mise en forme de ces matières. Ces éléments peuvent également être introduits dans l'alumine par coprécipitation de l'alumine et des éléments alcalins, de terres rares ou alcalino-terreux ou de leurs précurseurs.
De préférence, l'alumine, mise en oeuvre dans le procédé selon l'invention, est préparée par :
- imprégnation de l'alumine par une solution d'un composé d'un élément ou d'un mélange de composés, - séchage de ladite alumine imprégnée,
- traitement thermique de ladite alumine. L'imprégnation se fait de manière connue par mise en contact de l'alumine avec une solution, un sol ou un gel comprenant au moins un élément alcalin, de terres rares ou alcalino-terreux sous forme d'oxyde ou de sel ou d'un de leurs précurseurs.
L'opération est réalisée en général par trempage de l'alumine dans un volume déterminé de solution d'au moins un précurseur d'un élément alcalin, de terres rares ou alcalino-terreux. Par solution d'un précurseur d'un de ces éléments, on entend une solution d'un sel ou composé de l'élément, ou d'au moins un, des éléments alcalins, de terres rares ou alcalino-terreux, ces sels et composés pouvant être thermiquement décomposables en oxydes. La concentration en sel de la solution est choisie en fonction de la quantité d'élément à déposer sur l'alumine.
Selon un mode préféré, ces éléments sont déposés par imprégnation à sec, c'est- à-dire que l'imprégnation est faite avec juste le volume de solution nécessaire à ladite imprégnation, sans excès. Le traitement thermique est réalisé à une température déterminée en fonction soit de la température d'utilisation de l'alumine, soit de la surface spécifique désirée. Il peut être également possible de réaliser un traitement thermique pour obtenir une dégradation thermique au moins partielle du composé, par exemple sous forme d'oxyde. Toutefois cette dégradation n'est pas obligatoire, et à titre d'exemple, elle n'est pas nécessaire notamment quand on utilise des composés tels que des chlorures, nitrates ou hydroxydes.
Le traitement thermique peut, par exemple, être réalisé à une température située entre 150 et 1000°C, de préférence entre 300 et 800°C.
Le procédé d'adsorption selon l'invention convient lorsque l'inhibiteur de polymérisation est choisi, par exemple, parmi : l'acide picrique, les nitroaromatiques, les dérivés de la quinone (hydroquinone, benzoquinone), des naphtols, des aminés (p- phénylènediamine, phénothiazine), des phosphites, le p-méthoxyphénol, le p- tertiobutylcatéchol. On obtient des résultats particulièrement bons pour l'adsorption du p-tertiobutylcatéchol.
Lorsqu'il s'agit de purifier un monomère éthyléniquement insaturé stabilisé par un inhibiteur de polymérisation, on met en contact l'alumine avec ledit mélange de monomère éthyléniquement insaturé et d'inhibiteur, par exemple à température ambiante. La charge de monomères peut être à base de tout type de monomère éthyléniquement insaturé tel que notamment : styrène, butadiène, isoprène, chlorure de vinyle, chlorure de vinylidène, tétrafluoroéthylène, trifluorochloroéthylène, chloroprène, alcool allylique, éther vinylique, ester vinylique (acétate de vinyle), acrylates et méthacrylates d'alkyle (méthacrylate, butylacrylate, éthylacrylate, 2-éthylhexylacrylate, méthylméthacrylate, éthylméthacrylate, 2-éthylhexylméthacrylate, ...), acroléine, acrylonitrile, acrylamide, aminé vinylique, ... ou leurs mélanges.
En général, le mélange de monomère éthyléniquement insaturé et d'inhibiteur comprend 2 à 2000 ppm en poids par volume d'inhibiteur, de préférence 5 à 1500 ppm.
Les exemples suivants illustrent l'invention sans toutefois en limiter la portée.
EXEMPLES
Exemple 1
Les échantillons d'alumine testés sont prétraités sous courant d'air d'azote à 300°C durant 2 heures afin d'éliminer toute trace d'humidité suite à leur stockage et afin de pouvoir comparer leur efficacité dans des conditions identiques.
On introduit 1 g d'alumine (extrait sec) ainsi prétraité dans 200 ml d'une solution de cyclohexane contenant 500 ppm (en poids/volume) de p-tertiobutylcatéchol (TBC). La température est maintenue à 25°C. On analyse, au cours du temps, le taux de TBC présent dans la solution par UV-visible. On en déduit le taux d'adsorption du TBC.
Les caractéristiques des alumines utilisées sont réunies dans le tableau 1.
Tableau 1
Figure imgf000009_0001
Alumines* :Alumine 1 : Alumine Activée 1 ,5/3 commercialisée par Procatalyse
Alumine 2 : Alumine Activée 2/5 grade A commercialisée par Procatalyse Alumine 4 : Sphéralite 512 commercialisée par Procatalyse Alumine 8 : Sphéralite 569 commercialisée par Procatalyse
Exemple 2
Les échantillons d'alumine testés sont prétraités sous courant d'air d'azote à
300°C durant 2 heures afin d'éliminer toute trace d'humidité suite à leur stockage et afin de pouvoir comparer leur efficacité dans des conditions identiques.
On introduit 1 g d'alumine (extrait sec) ainsi prétraité dans 200 ml d'une solution de styrène contenant 500 ppm (en poids/volume) de p-tertiobutylcatéchol (TBC). La température est maintenue à 25°C. On analyse au bout de 21 heures le taux de TBC présent dans la solution par UV-visible.
On en déduit le taux d'adsorption du TBC.
Les caractéristiques des alumines utilisées sont réunies dans le tableau 2.
Tableau 2
Figure imgf000010_0001
Exemple 3
On traite l'alumine 6 de l'exemple 1 par un composé du potassium.
L'imprégnation est réalisée à sec à l'aide d'une solution de carbonate de potassium. L'alumine imprégnée est ensuite séchée pendant une nuit à 130°C, puis calcinée à 470°C pendant 1 h30. Les échantillons d'alumine testés sont prétraités sous courant d'air d'azote à 300°C durant 2 heures afin d'éliminer toute trace d'humidité suite à leur stockage et afin de pouvoir comparer leur efficacité dans des conditions identiques.
On introduit 1 g d'alumine (extrait sec) ainsi prétraité dans 200 ml d'une solution de cyclohexane contenant 500 ppm (en poids/volume) de p-tertiobutylcatéchol (TBC). La température est maintenue à 25°C. On analyse, au bout de 160 heures, le taux de TBC présent dans la solution par UV-visible.
On en déduit le taux d'adsorption du TBC.
Les caractéristiques de l'alumines sont réunies dans le tableau 3.
Tableau 3
Figure imgf000011_0001

Claims

REVENDICATIONS
1. Procédé d'absorption d'inhibiteurs de polymérisation des monomères éthyléniquement insaturés, dans lequel on met en contact ces inhibiteurs avec une alumine, caractérisé en ce que ladite alumine présente un volume de pores de diamètre supérieur à 100 Â d'au moins 0,20 ml/g, de préférence d'au moins 0,25 ml/g, encore plus préférentiellement d'au moins 0,30 ml/g, et une surface spécifique d'au moins 30 m /g, de préférence d'au moins 60 m2/g, encore plus préférentiellement d'au moins 80 m2/g.
2. Procédé selon la revendication 1 , caractérisé en ce que l'alumine se présente sous forme de billes issues d'une mise en forme par technologie tournante.
3. Procédé selon la revendication 2, caractérisé en ce que les billes présentent une granulométrie comprise entre 0,8 et 10 mm, de préférence entre 1 et 5 mm.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'alumine comprend au moins un composé d'un élément choisi parmi les alcalins, alcalino-terreux ou les terres rares.
5. Procédé selon la revendication précédente, caractérisé en ce que l'alumine comprend au moins un composé d'un des éléments suivants : sodium, potassium, lithium, lanthane et cérium.
6. Procédé selon la revendication 4 ou 5, caractérisé en ce que l'alumine comprend au moins 5 mmoles, de préférence au plus 400 mmoles d'au moins un élément alcalin, alcalino-terreux ou de terre rare pour 100 g d'alumine.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'inhibiteur est l'acide picrique, un nitroaromatique, un dérivé de la quinone (hydroquinone, benzoquinone), un naphtol, une aminé, un phosphite, le p-méthoxyphénol ou le p- tertiobutylcatéchol.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on met en contact l'alumine avec un mélange de monomère éthyléniquement insaturé et d'inhibiteur.
9. Procédé selon la revendication précédente, caractérisé en ce que le mélange de monomère éthyléniquement insaturé et d'inhibiteur comprend 2 à 2000 ppm en poids par volume d'inhibiteur, de préférence 5 à 1500 ppm.
PCT/FR1998/000051 1997-01-22 1998-01-13 Procede d'elimination d'inhibiteurs de polymerisation de melanges de monomeres a l'aide d'une alumine optimisee WO1998032715A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/341,959 US6288299B1 (en) 1997-01-22 1998-01-13 Method for eliminating inhibitors of polymerization of monomer mixtures using an optimized alumina
EP98902066A EP0973706A1 (fr) 1997-01-22 1998-01-13 Procede d'elimination d'inhibiteurs de polymerisation de melanges de monomeres a l'aide d'une alumine optimisee
JP10531660A JP2000510477A (ja) 1997-01-22 1998-01-13 最適化されたアルミナによって単量体混合物から重合禁止剤を除去する方法
BR9806980-2A BR9806980A (pt) 1997-01-22 1998-01-13 Processo de adsorção de inibidores de polimerização dos monÈmeros etilenicamente insaturados.
AU58705/98A AU5870598A (en) 1997-01-22 1998-01-13 Method for eliminating inhibitors of polymerisation of monomer mixtures using anoptimised alumina
NO993557A NO993557L (no) 1997-01-22 1999-07-20 FremgangsmÕte for fjerning av polymerisasjonsinhibitorer fra monomerblandinger ved anvendelse av en optimalisert alumina

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/00623 1997-01-22
FR9700623A FR2758552B1 (fr) 1997-01-22 1997-01-22 Procede d'elimination d'inhibiteurs de polymerisation de melanges de monomeres a l'aide d'une alumine optimisee

Publications (1)

Publication Number Publication Date
WO1998032715A1 true WO1998032715A1 (fr) 1998-07-30

Family

ID=9502846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000051 WO1998032715A1 (fr) 1997-01-22 1998-01-13 Procede d'elimination d'inhibiteurs de polymerisation de melanges de monomeres a l'aide d'une alumine optimisee

Country Status (11)

Country Link
US (1) US6288299B1 (fr)
EP (1) EP0973706A1 (fr)
JP (1) JP2000510477A (fr)
KR (1) KR20000070330A (fr)
CN (1) CN1248236A (fr)
AU (1) AU5870598A (fr)
BR (1) BR9806980A (fr)
FR (1) FR2758552B1 (fr)
NO (1) NO993557L (fr)
TW (1) TW394780B (fr)
WO (1) WO1998032715A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826150B2 (ja) * 2004-06-22 2011-11-30 東レ株式会社 シリコーンモノマーの製造方法
JP5684924B2 (ja) * 2011-11-28 2015-03-18 旭化成ケミカルズ株式会社 1,3−ブタジエンの精製方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1361512A (fr) * 1963-04-11 1964-05-22 Electrochimie Soc Procédé de purification de produits éthyléniques facilement polymerisables
US3240830A (en) * 1962-05-04 1966-03-15 Phillips Petroleum Co Separation of inhibitor and water from monomeric materials
US4547619A (en) * 1984-12-24 1985-10-15 Shell Oil Company Process for removal of phenolic inhibitors from polymerizable conjugated olefin
JPS6357538A (ja) * 1986-08-28 1988-03-12 Mitsui Toatsu Chem Inc 芳香族ビニル単量体の精製方法
GB2248627A (en) * 1990-09-17 1992-04-15 Enichem Polimeri Process for purifying a vinylaromatic monomer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3240830A (en) * 1962-05-04 1966-03-15 Phillips Petroleum Co Separation of inhibitor and water from monomeric materials
FR1361512A (fr) * 1963-04-11 1964-05-22 Electrochimie Soc Procédé de purification de produits éthyléniques facilement polymerisables
US4547619A (en) * 1984-12-24 1985-10-15 Shell Oil Company Process for removal of phenolic inhibitors from polymerizable conjugated olefin
JPS6357538A (ja) * 1986-08-28 1988-03-12 Mitsui Toatsu Chem Inc 芳香族ビニル単量体の精製方法
GB2248627A (en) * 1990-09-17 1992-04-15 Enichem Polimeri Process for purifying a vinylaromatic monomer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8816, Derwent World Patents Index; Class A41, AN 88-108795, XP002040332 *

Also Published As

Publication number Publication date
BR9806980A (pt) 2000-03-14
US6288299B1 (en) 2001-09-11
NO993557L (no) 1999-09-20
JP2000510477A (ja) 2000-08-15
FR2758552A1 (fr) 1998-07-24
AU5870598A (en) 1998-08-18
EP0973706A1 (fr) 2000-01-26
KR20000070330A (ko) 2000-11-25
CN1248236A (zh) 2000-03-22
FR2758552B1 (fr) 1999-04-16
TW394780B (en) 2000-06-21
NO993557D0 (no) 1999-07-20

Similar Documents

Publication Publication Date Title
FR2690855A1 (fr) Adsorbants pour l'élimination de HCl et procédé pour leur production et leur utilisation.
EP0015801B1 (fr) Procédé de fabrication de billes d'alumine à double porosité
EP0055164A1 (fr) Procédé de préparation d'agglomérés d'alumine
CA2320824C (fr) Procede d'elimination de composes halogenes contenus dans un gaz ou un liquide
CA1340845C (fr) Procede de fabrication d'agglomeres d'alumine et agglomeres obtenus
JP4173740B2 (ja) 有機流出物に存在する有機酸素含有分子の除去のためのアルミナ凝集物の使用方法
EP0379394A1 (fr) Utilisation d'un adsorbant pour la purification de polyoléfines
WO1998032717A1 (fr) Procede d'elimination d'inhibiteurs de polymerisation de melanges de monomeres a l'aide d'une alumine de forme optimisee
CA2298973C (fr) Procede d'elimination de composes organophosphores contenus dans un gaz ou liquide
WO1998032715A1 (fr) Procede d'elimination d'inhibiteurs de polymerisation de melanges de monomeres a l'aide d'une alumine optimisee
CA2264982C (fr) Procede d'elimination de composes halogenes contenus dans un gaz ou un liquide avec une composition a base d'au moins un element metallique
EP1385787A1 (fr) Agglomeres d'alumine, leur procede de preparation, et leurs utilisations comme support de catalyseur ou adsorbant
WO1998032716A1 (fr) Procede d'elimination d'inhibiteurs de polymerisation de melanges de monomeres a l'aide d'une alumine dopee
JP2023141734A (ja) 塩素化合物吸着剤
WO2002081063A1 (fr) Procede d'elimination des halogenures metalliques presents dans un effluent organique ou non organique, liquide ou gazeux

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98802731.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998902066

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997006561

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1998 531660

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/006771

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09341959

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1998902066

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997006561

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998902066

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019997006561

Country of ref document: KR