WO1998026170A1 - Idling revolution control device for stratified-charge combustion internal combustion engine - Google Patents

Idling revolution control device for stratified-charge combustion internal combustion engine Download PDF

Info

Publication number
WO1998026170A1
WO1998026170A1 PCT/JP1997/004517 JP9704517W WO9826170A1 WO 1998026170 A1 WO1998026170 A1 WO 1998026170A1 JP 9704517 W JP9704517 W JP 9704517W WO 9826170 A1 WO9826170 A1 WO 9826170A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
fuel
idle
internal combustion
combustion engine
Prior art date
Application number
PCT/JP1997/004517
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Mizuno
Tetsuzi Nagata
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP33226296A external-priority patent/JP2000002130A/en
Priority claimed from JP33723896A external-priority patent/JP2000002139A/en
Priority claimed from JP33723996A external-priority patent/JP2000002131A/en
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO1998026170A1 publication Critical patent/WO1998026170A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/102Switching from sequential injection to simultaneous injection

Definitions

  • the present invention relates to an internal combustion engine capable of performing stratified combustion, and more particularly to an idle speed control device for an internal combustion engine capable of performing stratified combustion.
  • a technique capable of performing stratified combustion as described above for example, a technique disclosed in Japanese Patent Application Laid-Open No. 7-166169 is known. With this technology, the cylinder head An injector is mounted, and fuel is directly injected into the combustion chamber from the injector. By controlling the injection amount and the injection timing of the fuel injected from the injector, stratified charge combustion is performed in a low / medium load region.
  • the fuel injection amount is controlled while the stratified combustion is being performed.
  • the idling speed is controlled while stratified combustion is performed.
  • either a stratified combustion or a homogeneous combustion combustion method is employed depending on the operating conditions, and at least at low / medium loads, stratified fuel injection is performed.
  • fuel injection and ignition for homogeneous combustion are controlled at high load.
  • the fuel injection amount is controlled to increase or decrease according to the cooling water temperature.
  • a certain period of time is required from when the load signal is input to when the load is actually applied to the engine, but a signal to increase the amount of intake air, that is, the idle speed control port / valve throttle valve It takes a predetermined time for the amount of intake air to actually increase after the signal for increasing the opening is output.
  • the fuel injection amount is actually increased after the signal for increasing the fuel injection amount is output, because fuel is directly injected into the combustion chamber. It doesn't take long. As a result, a problem that the engine speed is excessively increased may occur.
  • a change in the amount of fuel greatly affects combustion depending on the amount of fuel injected at the start of idle-up. For example, if the fuel injection amount immediately before the start of idle-up is large and the fuel injection amount is small in the state and the fuel amount is increased equivalently to the case, the engine speed may be too high. .
  • the present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an idling speed control apparatus for an internal combustion engine capable of performing stratified combustion, wherein the engine is operated when a load is applied to the internal combustion engine and idle-up is performed. It is an object of the present invention to provide an idling speed control device for a stratified combustion internal combustion engine capable of ensuring the stability of the speed. Disclosure of the invention
  • An idle speed control device for a stratified combustion internal combustion engine includes: an internal combustion engine capable of performing stratified combustion; operating state detection means for detecting an operating state of the internal combustion engine; and a load on the internal combustion engine.
  • An idle-up control means for performing idle-up to suppress a decrease in the rotational speed of the internal combustion engine; and an idle-speed control device for a stratified combustion internal combustion engine, comprising:
  • the control means includes: a fuel amount increasing means for increasing an amount of fuel supplied to the internal combustion engine; and a fuel increase increased by the fuel amount increasing means in accordance with the operating state detected by the operating state detecting means. Correction means for correcting the amount.
  • An idling speed control device for a stratified combustion internal combustion engine according to claim 2 is the idling speed control device for a stratified combustion internal combustion engine according to claim 1, wherein
  • the state detection means includes load input signal detection means for detecting a load input signal indicating that a load is applied to the internal combustion engine, and the correction means detects the load input signal detected by the load input signal detection means.
  • a fuel amount response characteristic correcting means for causing a time delay in response characteristic of the fuel amount increased by the fuel amount increasing means in response.
  • the idling speed control device for a stratified combustion internal combustion engine according to claim 3 is the idling speed control device for a stratified combustion internal combustion engine according to claim 2, wherein the fuel amount response characteristic correcting means is: It is characterized in that the fuel amount is gradually increased in accordance with the elapsed time from the detection of the load input signal.
  • An idling speed control device for a stratified combustion internal combustion engine according to claim 4 is the idling speed control device for a stratified combustion internal combustion engine according to claim 2, wherein the fuel amount response characteristic correction means comprises: The fuel amount is increased after a predetermined time.
  • An idle speed control device for a stratified combustion internal combustion engine according to claim 5 is the idle speed control device for a stratified combustion internal combustion engine according to claim 2, wherein the load input signal detecting means further comprises: The type of load applied to the internal combustion engine is detected, and the fuel amount increasing means varies the fuel increase amount according to the degree of the load based on the type of the load detected by the load input signal detecting means. It is characterized by doing.
  • the idle speed control device for a stratified combustion internal combustion engine according to claim 6 is the idle speed control device for a stratified combustion internal combustion engine according to claim 2, wherein the idle-up control means includes: When the combustion state is homogeneous combustion, an intake air amount increasing means for increasing an intake air amount of the internal combustion engine is further provided.
  • An idle speed control device for a stratified combustion internal combustion engine according to claim 7 is the idle speed control device for a stratified combustion internal combustion engine according to claim 2, wherein the idle speed control device is An idle-up releasing unit configured to release the idle-up when it is detected that the load on the internal combustion engine has been reduced;
  • the gap canceling means includes: a fuel amount reducing means for reducing an amount of fuel supplied to the internal combustion engine; and a fuel reduced by the fuel amount reducing means in response to the load input signal detected by the load input signal detecting means.
  • the fuel cell system is characterized in that it comprises a reduced fuel amount response characteristic correction means for causing a time delay in the amount response characteristic.
  • An idle speed control device for a stratified combustion internal combustion engine according to claim 8 is the idle speed control device for a stratified combustion internal combustion engine according to claim 1, wherein the operating state detecting means includes: A rotation speed detection means for detecting the rotation speed of the engine; and the correction means, wherein the fuel increase is performed in accordance with a detection result of the rotation speed detection means immediately before the idle-up control is performed by the idle-up control means. It is characterized in that an increase correction means for correcting the amount is provided.
  • An idling speed control device for a stratified combustion internal combustion engine according to claim 9 is the idling speed control device for a stratified combustion internal combustion engine according to claim 8, wherein the fuel increased by the fuel amount increasing means.
  • the amount is a prospective amount.
  • An idle speed control device for a stratified combustion internal combustion engine according to claim 10 is the idle speed control device for a stratified combustion internal combustion engine according to claim 8, wherein the idle speed control device immediately before the idle-up is performed.
  • the rotation speed detected by the rotation speed detection means is high, the degree of increase in the fuel amount is smaller than when the rotation speed is low.
  • An idle speed control device for a stratified combustion internal combustion engine according to claim 11 is the idle speed control device for a stratified combustion internal combustion engine according to claim 8, wherein the idle speed control device includes: Feedback control means for performing feedback control of the internal combustion engine by increasing or decreasing the fuel amount in accordance with the detection result of the rotational speed detecting means after the fuel amount is increased by the fuel amount increasing means; A feedback control increase / decrease correction means for correcting the increase / decrease amount of the fuel amount by the feedback control means in accordance with the detection result of the rotational speed detection means at the time when the fuel amount is increased / decreased by the stage. It is characterized by.
  • An idling speed control apparatus for a stratified combustion internal combustion engine according to claim 12 is the idling speed control apparatus for a stratified combustion internal combustion engine according to claim 11, wherein the feedback control means When the rotational speed detected by the rotational speed detecting means at the time of increasing or decreasing the fuel amount is high, the degree of increase or decrease of the fuel amount is smaller than when the rotational speed is low. And
  • An idle speed control device for a stratified combustion internal combustion engine according to claim 13 is the idle speed control device for a stratified combustion internal combustion engine according to claim 1, wherein the idle speed control device is: A fuel injection means for supplying fuel into a cylinder of the internal combustion engine; an operating state detecting means including fuel injection amount detecting means for detecting a fuel injection amount from the fuel injection means; Is characterized by comprising an increase correction means for correcting the fuel increase amount in accordance with the detection result of the fuel injection amount detection means immediately before the idle up control is performed by the idle up control means.
  • the idling speed control device for a stratified combustion internal combustion engine according to claim 14 is the idling speed control device for a stratified combustion internal combustion engine according to claim 13, wherein the idling speed control device is increased by the fuel amount increasing means.
  • the amount of fuel to be supplied is an estimated amount.
  • An idling speed control device for a stratified combustion internal combustion engine according to claim 15 is the idling speed control device for a stratified combustion internal combustion engine according to claim 13, wherein the idling speed control is performed immediately before the idle-up is performed.
  • the degree of increase in the fuel amount is smaller than when the fuel injection amount is small.
  • An idle speed control device for a stratified combustion internal combustion engine according to claim 13 is the idle speed control device for a stratified combustion internal combustion engine according to claim 13, wherein the idle speed control device is Feedback control means for feedback-controlling the internal combustion engine by increasing or decreasing the fuel amount in accordance with the detection result of the fuel injection amount detection means after the fuel amount is increased by the fuel amount increase means; The detection result of the fuel injection amount detecting means at the time when the fuel amount is increased or decreased by the feedback control means Accordingly, a feedback control increase / decrease correction means for correcting the increase / decrease amount of the fuel amount by the feedback control means is further provided.
  • An idling speed control device for a stratified combustion internal combustion engine according to claim 17 is the idling speed control device for a stratified combustion internal combustion engine according to claim 16, wherein the feedback control means When the fuel injection amount detected by the fuel injection amount detecting means at the time of increasing or decreasing the fuel amount is large, it is determined that the degree of increase or decrease of the fuel amount is smaller than when the fuel injection amount is small.
  • the operating state of the internal combustion engine MI capable of performing stratified combustion is detected by the operating state detecting means M2. Then, at the time of idling of the internal combustion engine M1, when the operating state detecting means M2 detects that a load is applied, the idle-up control means M3 performs idle-up. This suppresses a decrease in the rotation speed of the internal combustion engine Ml.
  • the fuel when the combustion state of the internal combustion engine Ml is stratified combustion, the fuel is directly supplied to the internal combustion engine Ml by the fuel amount increasing means M4, which is a component of the idle-up control means M3.
  • the amount of fuel used is increased.
  • the operating state detecting means M2 detects the increase in the fuel amount increased by the fuel amount increasing means M4 by the correcting means M5 which is a component of the idle-up control means M3. Required corrections are made based on operating conditions.
  • a load applied to the internal combustion engine Ml capable of performing stratified combustion is detected by the load input signal detection means M2A. Soshi When the load is detected by the load input signal detection means M 2 A during idling of the internal combustion engine M 1, idle-up is performed by the idle-up control means M 3 A. Thus, a decrease in the rotation speed of the internal combustion engine Ml is suppressed.
  • the fuel when the combustion state of the internal combustion engine Ml is stratified combustion, the fuel is directly supplied to the internal combustion engine Ml by the fuel amount increasing means M4A which is a component of the idle-up control means M3A.
  • the amount of fuel used is increased.
  • a predetermined time is required between the time when the load is detected to be applied and the time when the load is actually applied to the internal combustion engine MI.
  • the increase in the amount of fuel actually supplied to the internal combustion engine M1 after the instruction to increase the amount of fuel by the fuel amount increasing means M4A is theoretically performed in an extremely short time.
  • the fuel amount response characteristic correcting means M5A which is a component of the idle-up control means M3A, causes a time delay in the response characteristic of the fuel amount increased by the fuel amount increasing means M4A.
  • the fuel amount response characteristic correcting means M5A when the fuel amount is gradually increased by the fuel amount response characteristic correcting means M5A when the fuel amount is increased, the above operation is more effectively achieved. Furthermore, the fuel amount response characteristic correction means M5A may further delay the increase in the fuel amount. Therefore, in addition to the above-described effects, it is possible to make the increase in the fuel amount more easily compatible with the increase in the load.
  • the rate of increase in the fuel amount may be made variable in accordance with the degree of the load detected by the load input signal detection means M2. Therefore, even if the type and the degree of the load are different, the rotation speed does not suddenly increase.
  • the idle-up may be performed by increasing the intake air amount of the internal combustion engine Ml.
  • the load input signal detecting means M2 detects that the load on the internal combustion engine Ml has been reduced during idling of the internal combustion engine Ml
  • the idle-up canceling means cancels the idle-up. May be performed.
  • the fuel amount supplied to the internal combustion engine M1 is reduced by the fuel amount reduction control means, which is a component of the idle-up canceling means.
  • the reduced fuel amount response characteristic correction means which is a component of the idle-up release control means. Therefore, even when the load is released, it takes a certain amount of time to reduce the load actually applied to the internal combustion engine Ml, and it takes time to reduce the fuel amount. . Therefore, the fuel quantity alone does not decrease even if the load is not so small.
  • fuel can be supplied into the cylinder of the internal combustion engine Ml by the fuel injection means M6 to perform stratified combustion.
  • the fuel amount increasing means M4B The amount of fuel supplied from the fuel injection means M6 is increased, whereby idle-up is performed, and a decrease in the rotational speed of the internal combustion engine M1 is suppressed.
  • the rotation speed of the internal combustion engine Ml is detected by the rotation speed detection means M2B. Then, in the increase correction means M5B, the increase in the fuel amount by the fuel amount increase means M4B is corrected according to the rotation speed immediately before the idle-up is performed by the fuel amount increase means M4B.
  • the fuel amount increased by the fuel amount increasing means M 4 B may be an expected amount.
  • the expected amount will be corrected, and the increase in the amount can be optimized.
  • the increase in the fuel amount is small compared to the case, Good.
  • the higher the rotation speed immediately before performing the idle-up the higher the rotation speed when the same amount is increased. Therefore, according to the present invention, an increase in the number of rotations when the number of rotations is high is suppressed, and the above-described operation is further ensured.
  • the feedback control means controls the rotational speed feedback by increasing or decreasing the fuel amount according to the detection result of the rotational speed detecting means M 2 B. May be performed. Then, according to the number of revolutions at the time when the fuel amount is increased or decreased by the feedback control unit, the increase or decrease amount of the fuel amount by the feedback control unit is corrected by the feedback control increase / decrease correction unit. Therefore, even during the feedback control after the idle-up, an increase or decrease of the fuel amount such that the rotation is not dispersed is secured.
  • the degree of increase or decrease in the fuel amount may be smaller than when the rotational speed is low.
  • the higher the rotational speed at the time of increasing or decreasing the higher the rotational speed when the amount of increase or decrease by the same amount tends to increase. Therefore, according to the present invention, the increase and decrease of the rotation speed when the rotation speed is high is suppressed, and the effect of the present invention is further ensured.
  • the fuel amount increasing means M4C As a result, the amount of fuel supplied from the fuel injection means M6 is increased, whereby idling is performed, and a decrease in the rotational speed of the internal combustion engine M1 is suppressed.
  • the fuel injection amount from the fuel injection means M 6 is detected by the fuel injection amount detection means M 2 C. Then, in the increase correction means M5C, the increase in the fuel amount by the fuel amount increase means M4C is corrected in accordance with the fuel injection amount immediately before the idle-up is performed by the idle-up control means M3.
  • the fuel amount increased by the fuel amount increasing means M 4 C may be an expected amount.
  • the expected amount will be corrected, and the increase in the amount can be optimized.
  • the degree of increase in the fuel amount may be smaller than when the injection amount is small. .
  • the larger the fuel injection amount at the time of performing the idle-up the larger the number of revolutions tends to be when the fuel injection amount is increased. Therefore, according to the present invention, an increase in the number of revolutions when the fuel injection amount is large is suppressed, and the above-described operation is further ensured.
  • the feedback control means controls the number of revolutions based on the fuel injection amount detecting means M 2 C according to the detection result of the fuel injection amount detecting means M 2 C. May be performed. Then, in accordance with the fuel injection amount at the time when the fuel amount is increased or decreased by the feedback control means, the feedback control increase / decrease correction means corrects the increase / decrease amount of the fuel amount by the feedback control means. You. Therefore, even during the feedback control after the idle-up, the increase and decrease of the fuel amount such that the rotation does not vary is secured.
  • the degree of increase or decrease of the fuel amount is larger than when the fuel injection amount is small May be small.
  • the rotational speed when the amount of increase or decrease is increased by the same amount tends to increase. Therefore, according to the present invention, the increase and decrease of the rotational speed when the fuel injection amount is large is suppressed, and the operation of the present invention is further ensured.
  • FIG. 1 is a conceptual configuration diagram showing a basic concept of the present invention.
  • FIG. 2 is a conceptual configuration diagram showing the basic concept of correcting the fuel increase amount according to the load input according to the present invention.
  • FIG. 3 is a conceptual configuration diagram showing a basic concept of correcting the fuel increase amount according to the rotation speed according to the present invention.
  • FIG. 4 is a conceptual configuration diagram showing a basic concept of correcting the fuel increase amount according to the fuel injection amount according to the present invention.
  • FIG. 5 is a schematic configuration diagram showing an idle speed control device for a stratified combustion engine according to one embodiment.
  • FIG. 6 is an enlarged sectional view showing a cylinder portion of the engine.
  • FIG. 7 is a flowchart showing an “idle speed control routine” executed by the ECU.
  • FIG. 8 is a diagram for explaining the operation and effect of the embodiment, and is a timing chart showing behaviors of an air conditioner switch, a magnet clutch, a final injection amount, and an engine speed.
  • Figure 9 shows the flow of the “idle-up control routine” executed by the ECU. It is a chart.
  • FIG. 10 is a map showing the relationship between the engine speed and the correction coefficient immediately before idling-up.
  • FIG. 11 is a graph showing the relationship between the engine speed immediately before idling-up and the amount of change in the engine speed when the same fuel amount is increased.
  • FIG. 12 is a flowchart showing a “feedback control routine” executed by the ECU.
  • Figure 13 is a map showing the relationship between the engine speed and the correction coefficient just before the control amount is reflected.
  • FIG. 14 is a flowchart showing the “idle-up control routine” executed by the ECU.
  • Figure 15 is a map showing the relationship between the correction coefficient and the final injection amount immediately before idle-up.
  • Fig. 16 is a graph showing the relationship between the final injection amount immediately before idling-up and the amount of change in the rotational speed.
  • Fig. 17 is a timing chart showing the relationship between load, engine speed, and fuel injection amount over time.
  • A shows the case where the final injection amount immediately before idle-up is small
  • (b) Shows the behavior when the final injection amount immediately before idle-up is large, respectively.
  • FIG. 18 is a graph showing the relationship between the final injection amount immediately before idle-up and the fuel amount required for idle-up when the engine speed is increased by a predetermined speed.
  • FIG. 19 is a flowchart showing a “feedback control routine” executed by the ECU.
  • FIG. 20 is a map showing the relationship between the correction coefficient and the final injection amount immediately before the control amount is reflected.
  • FIG. 5 is a schematic configuration diagram showing an idle speed control device of a direct injection engine mounted on a vehicle in the present embodiment.
  • the engine 1 as an internal combustion engine has, for example, four cylinders 1a, and the combustion chamber structure of each of the cylinders 1a is shown in FIG.
  • the engine 1 includes a piston in a cylinder block 2, and the piston reciprocates in the cylinder block 2.
  • a cylinder head 4 is provided above the cylinder block 2, and a combustion chamber 5 is formed between the piston and the cylinder head 4.
  • four valves are arranged per cylinder 1a, and in the figure, reference numeral 6a denotes a first intake valve, 6b denotes a second intake valve, and 7a denotes a first intake port. 7b shows a second intake port, 8 shows a pair of exhaust valves, and 9 shows a pair of exhaust ports.
  • the first intake port 7a is composed of a helical intake port
  • the second intake port 7b is composed of a straight port extending almost straight.
  • An ignition plug 10 is provided at the center of the inner wall surface of the cylinder head 4.
  • a high voltage from the igniter 12 is applied to the ignition plug 10 via a distributor (not shown).
  • the ignition timing of the ignition plug 10 is determined by the output timing of the high voltage from the igniter 12.
  • a fuel injection valve 11 is disposed around the inner wall surface of the cylinder head 4 near the first intake valve 6a and the second intake valve 6b. That is, in the present embodiment, the fuel from the fuel injector 11 is directly injected into the cylinder 1a, so that not only homogeneous combustion but also so-called stratified combustion is performed.
  • the first intake port 7a and the second intake port 7b of each cylinder 1a Are connected to the surge tank 16 via a first intake path 15a and a second intake path 15b formed in each intake manifold 15, respectively.
  • a swirl control parileb 17 is arranged in each of the second intake passages 15b.
  • These swirl control valves 17 are connected to a step motor 19 as an actuator via a common shaft 18.
  • the step motor 19 is controlled based on an output signal from an electronic control unit (hereinafter simply referred to as “ECU”) 30 described later.
  • ECU electronice control unit
  • the surge nozzle 16 is connected to an air cleaner 21 via an intake duct 20.
  • a throttle valve 23 which is opened and closed by a separate step motor 22 is provided.
  • the throttle valve 23 of the present embodiment is of a so-called electronic control type. Basically, the throttle motor 23 is driven based on an output signal from the ECU 30 to provide a throttle valve. Valves 23 are controlled to open and close. By opening and closing the throttle valve 23, the amount of intake air introduced into the combustion chamber 5 through the intake duct 20 is adjusted.
  • the intake duct is constituted by the intake duct 20, the surge tank 16, the first intake path 15a, the second intake path 15b, and the like.
  • a throttle sensor 25 for detecting its opening (throttle opening TA) is provided in the vicinity of the throttle valve 23 .
  • An exhaust manifold 14 is connected to the exhaust port 9 of each cylinder. Then, the exhaust gas after combustion is discharged to an exhaust duct (not shown) through the exhaust manifold 14.
  • a known exhaust gas circulation (EGR) device 51 is provided.
  • the EGR device 51 includes an EGR passage 52 as an exhaust gas circulation passage, and an EGR valve 53 as an exhaust gas circulation valve provided in the passage 52.
  • the EGR passage 52 is provided to communicate between the intake duct 20 downstream of the throttle valve 23 and the exhaust duct.
  • the EGR valve 53 has a built-in valve seat, valve body, and step motor (all not shown).
  • the EGR mechanism is configured.
  • the opening degree of the EGR valve 53 fluctuates when the step motor intermittently displaces the valve body with respect to the valve seat.
  • the exhaust gas flows to the intake duct 20 via the EGR valve 53. That is, a part of the exhaust gas is recirculated into the intake air-fuel mixture by the EGR device 51. At this time, by adjusting the opening of the EGR valve 53, the recirculation amount of the exhaust gas is adjusted.
  • the above-described ECU 30 is formed of a digital computer, and a RAM (random access memory) 32, a ROM (read-only memory) 33, and a CPU (microprocessor) connected to each other via a bidirectional bus 31.
  • Central processing unit 34, input port 35 and output port 36.
  • An accelerator sensor 26A that generates an output voltage proportional to the amount of depression of the accelerator pedal 24 is connected to the accelerator pedal 24, and the accelerator sensor 26A detects the accelerator opening ACCP.
  • the output voltage of the accelerator sensor 26 A is input to the input port 35 via the AD converter 37.
  • the accelerator pedal 24 is provided with a fully-closed switch 26B for detecting that the depression amount of the accelerator pedal 24 is "0". That is, the fully closed switch 26B generates a signal of “1” as a fully closed signal when the depression amount of the accelerator pedal 24 is “0”, and generates a signal of “0” otherwise.
  • the output voltage of the fully closed switch 26 B is also input to the input port 35.
  • the top dead center sensor 27 generates an output pulse when the first cylinder 1a reaches the intake top dead center, for example, and this output pulse is input to the input port 35.
  • the crank angle sensor 28 generates an output pulse every time the crankshaft rotates 30 ° CA, for example, and this output pulse is input to the input port.
  • the CPU 34 calculates (reads) the crank position engine speed NE from the output pulse of the top dead center sensor 27 and the output pulse of the crank angle sensor 28. Further, the rotation angle of the shaft 18 is detected by a swirl control valve sensor 29, whereby the opening degree of the swirl control port 17 (SCV) 17 is detected. Then, the output of the scale controller 29 is input to the input port 35 via the AZD converter 37.
  • an intake pressure sensor 61 for detecting the pressure (intake pressure PIM) in the surge tank 16 is provided. Further, a water temperature sensor 62 for detecting the temperature of the cooling water of the engine 1 (cooling water temperature THW) is provided. The outputs of these sensors 61 and 62 are also input to the input port 35 via the AZD converter 37.
  • the throttle sensor 25 the accelerator sensor 26A, the fully closed switch 26B, the top dead center sensor 27, the crank angle sensor 28, the swirl control port and the valve sensor 29, the intake pressure
  • the operation state is detected by the sensor 61, the water temperature sensor 62, and the like.
  • the output port 36 is connected to each fuel injector 11, each step motor 19, 22, igniter 12, and EGR valve 53 (step motor) via the corresponding drive circuit 38. . Then, based on signals from the sensors 25 to 29, 61, and 62, the ECU 30 according to the control program stored in the ROM 33, the fuel injection valve 11, the step motor 19, 22, igniter 12 and EGR valve 53 are suitably controlled.
  • Fig. 7 shows that stratified combustion is performed when the engine 1 is idling.
  • 6 is a flowchart showing an “idle speed control routine” executed by the ECU 30 on the premise that the routine is executed, and is executed, for example, by interruption every predetermined crank angle.
  • the ECU 30 first determines in step 101 whether an idle-up request has been issued.
  • the idle-up request means that when the air conditioner switch is turned on by the driver, when power steering (C. ⁇ ste) is operated, when the shift position is switched from the N range to the D range, For example, when an electric load is applied.
  • step 101 If it is not determined in step 101 that the idle-up request has been issued, it is determined that there is no need to perform idle-up, and the subsequent processing is temporarily terminated.
  • step 102 all the fuel amount-converted correction terms (for example, air conditioner correction term DC AC, power steering correction term DPS, electric load correction term DB, torque converter correction term DE, etc.) corresponding to various loads are added. At the same time, the sum is set as a temporary idle-up correction term t PE.
  • air conditioner correction term DC AC for example, air conditioner correction term DC AC, power steering correction term DPS, electric load correction term DB, torque converter correction term DE, etc.
  • the ECU 30 performs an operation to cause a time delay in the increase in fuel with respect to the temporary idle-up correction term t PE calculated this time, and adds the result to a new value.
  • Idle-up correction term Set as PE That is, the previous idle-up correction term PEi-1 is multiplied by (n-l), and the value calculated by adding the temporary idle-up correction term t PE calculated this time to n is divided by n.
  • step 104 the new idle-up correction term PE calculated and set this time is reflected in the final injection amount QF. That is, the ECU 30 sets a value obtained by adding the idle-up correction term PE to the separately calculated basic injection amount QB ASE not including the idle-up amount as the final injection amount QF. And then The process ends once.
  • the fuel injection amount is increased by the amount of the idle-up correction term PE.
  • a value of a calculation result for causing a time delay in increasing the fuel is used.
  • the intake air amount increases as in the conventional case when there is an idle-up request when homogeneous combustion is performed. By being let go, idle up is performed.
  • (A) when the engine 1 is idling and the combustion state of the engine 1 is stratified combustion, the amount of fuel directly supplied from the fuel injection valve 11 is increased.
  • a predetermined time is required from when the load is detected to when the load is actually applied to the engine 1.
  • the amount of fuel actually supplied into the cylinder 1a after the command to increase the fuel amount by the ECU 30 is increased in a much shorter time than the delay described above.
  • the amount of fuel gradually increases as shown by the two-dot chain line in FIG.
  • the idle-up correction term PE which is the amount of increase in the fuel amount, is made variable according to the degree of load. Therefore, the type and degree of load Therefore, it is possible to surely prevent the engine speed NE from increasing even if the values are different.
  • the present embodiment is not limited to the above, and may be changed as follows.
  • the increase in the engine speed NE may be suppressed by delaying the timing of the increase in the fuel amount, that is, by causing a dead time.
  • the delay time when the timing is delayed may be made variable according to the degree of load. In this case, the above-described effects are more reliably achieved.
  • the intake air amount is adjusted by adopting an electronically controlled throttle mechanism including the throttle valve 23 and the step motor 22.
  • the intake air is controlled by the ISC mechanism consisting of an idle speed control port provided in the bypass intake passage that bypasses the throttle valve 23 provided in the intake passage and an actuator that opens and closes the valve.
  • the air volume may be adjusted.
  • the present invention is applied to the in-cylinder injection type engine 1.
  • the present invention may be embodied in a type that performs so-called general stratified combustion or weak stratified combustion.
  • a type that injects fuel toward the back side of the umbrella of the intake valves 6a and 6b of the intake ports 7a and 7b is included.
  • fuel injection valves are provided on the intake valves 6a and 6b, those that directly inject into the cylinder bore (combustion chamber 5) are also included.
  • the present invention is embodied in the case of the gasoline engine 1 as the internal combustion engine.
  • the present invention can be embodied in the case of diesel engine and the like.
  • FIG. 9 is a flowchart showing an “idle-up control routine” executed by the ECU 30 on the assumption that stratified combustion is being performed when the engine 1 is idling. This is executed by an interrupt for each crank angle.
  • the ECU 30 first determines in step 201 whether an idle-up request has been issued.
  • the idle-up request is when an external load is applied. For example, when the driver turns on the air switch, when the power steering (power steering) is operated, the shift position is shifted from the N range. When switching to the D range, other electric loads are applied.
  • step 201 If it is not determined in step 201 that the idle-up request has been issued, it is determined that there is no need to perform idle-up, and the subsequent processing is temporarily terminated.
  • step 202 idle up Read the engine speed NE immediately before performing.
  • a correction coefficient K is obtained and set based on the engine speed NE immediately before performing the idle-up.
  • a map as shown in FIG. 10 is taken into consideration.
  • step 204 a value obtained by multiplying the expected control amount t ⁇ for the external load set as described above by the correction coefficient K set this time is set as the final idle-up amount PE.
  • the ECU 30 reflects the final idle-up amount PE calculated and set this time to the final injection amount QF. That is, the ECU 30 sets a value obtained by adding the final idle-up amount PE to the separately calculated basic injection amount QB ASE as the final injection amount QF. Then, the subsequent processing ends once.
  • the fuel injection amount is increased by the final idle-up amount PE. Is performed.
  • a correction is made based on the engine speed NE immediately before the idle-up.
  • the intake air amount throttle opening in the present embodiment
  • the intake air amount is reduced in the same manner as before when the idle-up request is made. By being increased, idle-up is performed.
  • (A) when the engine 1 is idling and the combustion state of the engine 1 is stratified combustion, a load is applied to the engine 1. In this case, the amount of fuel directly supplied from the fuel injection valve 11 is increased.
  • a change in the amount of fuel greatly affects combustion depending on the engine speed NE at that time. For example, as shown in Fig. 11, when the engine speed NE immediately before idle-up is high, the engine speed is lowered, and the fuel amount is increased by the same amount, the engine speed NE Change increases, and the engine speed NE rises too high.
  • the idle-up amount is corrected according to the engine speed NE immediately before the idle-up is performed. More specifically, when the engine speed NE immediately before idling is high, the correction coefficient K is smaller than when the engine speed NE is low, and the degree of increase in the fuel amount (final idle-up amount). PE) becomes smaller. Therefore, when idling up, the engine speed NE does not increase too much.
  • FIG. 12 is based on the premise that stratified combustion is being performed at the time of idling of the engine 1, and furthermore, the “feedback control” executed by the ECU 30 after the above-described idle-up control is executed.
  • the ECU 30 first determines in step 301 whether the feedback control condition has been satisfied.
  • the feedback control condition refers to, for example, the actual engine Rotation speed NE force, that the target rotation speed has been reached once.
  • step 301 If the feedback control condition is not satisfied in step 301, it is determined that the feedback control has not yet been performed, and the subsequent processing is temporarily terminated.
  • step 302 the process proceeds to step 302 to execute the feedback control.
  • step 302 the current engine speed NE is read.
  • a correction coefficient L is obtained and set based on the engine speed NE read this time.
  • a map as shown in FIG. 13 is taken into consideration.
  • the higher the engine speed NE immediately before reflecting the control amount DI to the final injection amount QF during feedback control the higher the value of the correction coefficient L is set to a smaller value (1/31 ⁇ yS S ⁇ S ySn) (1. 0 ⁇ L 1> L 2> L 3 "> L n> 0).
  • step 304 a value obtained by multiplying the feedback integration constant tKDI by the correction coefficient L set this time is added to the previous control amount DIi-1, and the value is added to the current control amount DIi-1.
  • the feedback integration constant tKDI can take a positive value or a negative value depending on whether the current engine speed NE is smaller than the target engine speed.
  • the ECU 30 reflects the control amount DI calculated and set this time on the final injection amount QF. Then, the subsequent processing ends once.
  • the feedback control routine when the feedback control condition is satisfied, the fuel injection amount is increased or decreased by the current control amount DI.
  • a correction is made based on the engine speed NE immediately before the control amount DI is reflected.
  • the feedback control is performed by increasing or decreasing the intake air amount (throttle opening in the present embodiment) as in the past. I You.
  • the feedback control of the engine speed NE is executed by increasing or decreasing the fuel amount.
  • the amount of increase or decrease in the fuel amount is corrected according to the engine speed NE at the time when the amount of fuel is increased or decreased. Therefore, even during the feedback control after the idle-up, it is possible to secure an increase or decrease in the fuel amount such that the rotation does not vary.
  • the correction coefficient L and, consequently, the degree of increase and decrease in the fuel amount are smaller than when the engine speed NE is low.
  • the degree of increase / decrease in the engine speed when the engine speed NE is high is suppressed, and the increase / decrease in the engine speed NE during feedback control can also be suppressed.
  • the intake air amount is adjusted by employing an electronically controlled throttle mechanism including the throttle valve 23 and the step motor 22.
  • the amount of intake air is reduced by an ISC mechanism consisting of an idle speed control parileb provided in a bypass intake passage that bypasses the throttle valve 23 provided in the intake passage and an actuator for opening and closing the valve. It may be adjusted.
  • the present invention is embodied in the in-cylinder injection type engine 1; however, the present invention may be embodied in a so-called general stratified combustion or weak stratified combustion type. .
  • a type in which the fuel is injected toward the back side of the head of the intake valves 6a and 6b of the intake ports 7a and 7b is included.
  • fuel injection valves are provided on the intake valves 6a and 6b side, there are also types that directly inject into the cylinder bore (combustion chamber 5).
  • the present invention is embodied in the case of the gasoline engine 1 as the internal combustion engine.
  • the present invention can be embodied in the case of diesel engine.
  • FIG. 14 is a flowchart showing an “idle-up control routine” executed by the ECU 30 on the assumption that stratified combustion is being performed when the engine 1 is idling. Executed at every interrupt.
  • the ECU 30 first determines in step 401 whether an idle-up request has been issued.
  • the idle-up request is when an external load is applied. For example, when the driver turns on the air switch, when the power steering (power steering) is operated, the shift position is shifted from the N range. When switching to the D range, other electric loads are applied.
  • step 401 If it is not determined in step 401 that the idle-up request has been made, it is determined that there is no need to perform idle-up, and the subsequent processing is temporarily terminated. On the other hand, if there is an idle-up request, the process proceeds to step 402 to execute idle-up. In step 402, the final injection amount QF (fuel injection amount) immediately before performing idle-up is read (recognized).
  • a correction coefficient K is obtained and set based on the final injection amount QF immediately before performing the idle-up.
  • a map as shown in FIG. 15 is taken into consideration. That is, as the final injection amount QF immediately before performing the idle-up is larger (ql ⁇ q2 ⁇ q3 ⁇ ... qn), the value of the correction coefficient K is set to a smaller value (1.0 ⁇ K1 ⁇ K2> K3> ⁇ Kn> 0).
  • step 404 a value obtained by multiplying the expected control amount t PE for the external load set as described above by the correction coefficient K set this time is set as the final idle-up amount PE.
  • step 405 the ECU 30 reflects the final idle-up amount PE calculated and set this time on the final injection amount QF. That is, the ECU 30 sets a value obtained by adding the final idle-up amount P E to the separately calculated basic injection amount Q BASE as the final injection amount QF. Then, the subsequent processing ends once.
  • the fuel injection amount is increased by the final idle-up amount PE. Is performed.
  • a correction is made based on the final injection amount QF immediately before the idle-up.
  • the idle-up amount is corrected according to the final injection amount QF immediately before the idle-up is performed. More specifically, as shown in Fig. 17, when the final injection amount QF at the time when the load is applied (immediately before the idle-up is performed) is large [Fig. 17 (b)], the injection amount QF is The correction coefficient K is smaller and the degree of increase in the fuel amount (final idle-up amount PE) is smaller than in the case of small [Fig. 17 (a)]. By performing such control, the same increase in the engine speed NE can be obtained regardless of whether the final injection amount QF is large or small. Therefore, even when the final injection amount QF immediately before idling-up is large at the time of idling-up, the engine speed NE does not become too high.
  • FIG. 19 shows that the ECU 30 is executed by the ECU 30 after the above-described idle-up control is executed, on the assumption that the stratified combustion is executed when the engine 1 is idling.
  • 4 is a flowchart illustrating a “feedback control routine”, which is executed, for example, by interruption every predetermined crank angle.
  • the ECU 30 first determines in step 501 whether or not the feedback control condition has been satisfied.
  • the feedback control condition includes, for example, that the actual engine speed NE has once reached the target speed after the idle-up.
  • step 501 if the feedback control condition is not satisfied in step 501, it is determined that the feedback control has not yet been performed, and the subsequent processing is temporarily terminated.
  • Step 502 the current final injection amount (fuel injection amount) QF is read.
  • a correction coefficient / ⁇ is obtained and set based on the final injection amount QF read this time.
  • a map as shown in FIG. 20 is taken into consideration. That is, the value of the correction coefficient S is set to a smaller value as the final injection amount QF immediately before reflecting the control amount DI to the final injection amount QF in the feedback control is larger ( ⁇ 1 ⁇ 2 and ⁇ 3 ⁇ ⁇ ). (1.0 ⁇ ⁇ 1> S 2> S 3> ⁇ > ⁇ ⁇ > 0).
  • step 504 the feedback integration constant t KD I Then, the value multiplied by the correction coefficient / S set this time is added to the previous control amount D l i-1 and the value is set as the current control amount DI.
  • the feedback integration constant t KDI can take a positive value or a negative value depending on whether or not the current engine speed NE is smaller than the target engine speed.
  • step 505 ECU30 is the control amount D calculated this time.
  • the subsequent processing ends once.
  • the feedback control routine when the feedback control condition is satisfied, the fuel injection amount is increased or decreased by the current control amount DI. Further, when setting the control amount DI, a correction is made based on the final injection amount QF immediately before the control amount DI is reflected.
  • the feedback control is performed by increasing or decreasing the intake air amount (throttle opening in the present embodiment) as in the past.
  • the feedback control of the engine speed NE is executed by increasing or decreasing the fuel amount.
  • the amount of increase or decrease of the fuel amount is corrected according to the final injection amount QF at the time when the amount of fuel is increased or decreased. Therefore, even during the feedback control after the idle-up, it is possible to secure an increase or decrease in the fuel amount such that the rotation does not vary.
  • the degree of increase and decrease of the correction coefficient and, consequently, the fuel amount is smaller than when the injection amount QF is small.
  • the degree of increase or decrease of the rotation speed when the final injection amount QF is large is suppressed, and the engine rotation speed during the feed-pack control is reduced.
  • the increase / decrease of NE can also be suppressed.
  • the intake air amount is adjusted by employing an electronically controlled throttle mechanism including the throttle valve 23 and the step motor 22.
  • the idle air speed control valve provided in the bypass intake passage that bypasses the throttle valve 23 provided in the intake passage and the ISC mechanism consisting of the actuator for opening and closing the valve are used to suction air. You can also adjust the volume.
  • the present invention is embodied in the in-cylinder injection type engine 1; however, the present invention may be embodied in a so-called general stratified combustion or weak stratified combustion type. .
  • a type in which the fuel is injected toward the back side of the head of the intake valves 6a and 6b of the intake ports 7a and 7b is included.
  • fuel injection valves are provided on the intake valves 6a and 6b side, there are also types that directly inject into the cylinder bore (combustion chamber 5).
  • the present invention is embodied in the case of the gasoline engine 1 as the internal combustion engine, but may be embodied in the case of a diesel engine and the like.
  • the engine speed is increased by performing idle-up when a load is applied to the internal combustion engine. Can be prevented from rising too much Has an excellent effect of

Abstract

Arranged around an inner wall surface of a cylinder head (4) near a first intake valve (6a) and second intake valve (6b) of an engine (1) is a fuel injection valve (11), from which a fuel is jetted directly into a cylinder (1a). Provided in an intake duct (20) is a throttle valve (23) adapted to be opened and closed by a step motor (22). An electronic control unit (ECU) (30) increases an amount of fuel directly supplied from the fuel injection valve (11) when stratified-charge combustion is effected at the time of idling of the engine (1). While it takes a predetermined period of time from detection of application of a load to actual application of the load to the engine (1), an amount of fuel is gradually increased by a calculation which causes time lag in a response of an amount of fuel. Accordingly, an unproportional increase in only an amount of fuel compared with a moderate load is eliminated.

Description

明 細 成層燃焼内燃機関のアイドル回転数制御装置 技術分野  Technical Description Idling speed control system for stratified combustion internal combustion engine
本発明は、 成層燃焼を行いうる内燃機関に関し、 特に、成層燃焼を行いうる内 燃機関のアイドル回転数制御装置に関するものである。 背景技術  The present invention relates to an internal combustion engine capable of performing stratified combustion, and more particularly to an idle speed control device for an internal combustion engine capable of performing stratified combustion. Background art
従来、 一般的に使用されているエンジンにおいては、 燃料噴射弁からの燃料は 吸気ポー卜に噴射され、 燃焼室には予め燃料と空気との均質混合気が供給される。 かかるエンジンでは、 アクセル操作に連動するスロッ トル弁によって吸気通路が 開閉され、 この開閉により、 エンジンの燃焼室に供給される吸入空気量 (結果 的には燃料と空気とが均質に混合された混合気の量) が調整され、 もってェンジ ン出力が制御される。  Conventionally, in a generally used engine, fuel from a fuel injection valve is injected into an intake port, and a homogeneous mixture of fuel and air is supplied to a combustion chamber in advance. In such an engine, the intake passage is opened and closed by a throttle valve linked to the operation of the accelerator, and this opening and closing causes the amount of intake air to be supplied to the combustion chamber of the engine (the result is a homogeneous mixture of fuel and air). Is adjusted and the engine output is controlled accordingly.
し力、し、 上記のいわゆる均質燃焼による技術では、 スロットル弁の絞り動作に 伴って大きな吸気負圧が発生し、 ボンピングロスが大きくなつて効率は低くなる。 これに対し、 スロットル弁の絞りを小とし、 燃焼室に直接燃料を供給することに より、 点火プラグの近傍に可燃混合気を偏在させ、 当該部分の空燃比を高めて、 着火性を向上するようにしたいわゆる 「成層燃焼」 という技術が知られている。 かかる技術においては、 エンジンの低負荷時には、 噴射された燃料が、 点火ブラ グ周りに偏在供給されるとともに、 スロットル弁がほぼ全開に開かれて成層燃焼 が実行される。 これにより、 ポンビングロスの低減が図られ、 燃費の向上が図ら れる。  In the above-described technique based on so-called homogeneous combustion, a large intake negative pressure is generated in accordance with the throttle operation of the throttle valve, and the pumping loss increases to lower the efficiency. On the other hand, by reducing the throttle of the throttle valve and supplying fuel directly to the combustion chamber, the flammable mixture is unevenly distributed near the spark plug, and the air-fuel ratio in the relevant portion is increased to improve ignitability. So-called “stratified combustion” technology is known. In this technique, when the engine is under a low load, the injected fuel is unevenly supplied around the ignition plug, and the throttle valve is almost fully opened to perform stratified combustion. As a result, the pumping loss is reduced, and the fuel efficiency is improved.
上記の如く成層燃焼を行いうる技術として、 例えば特開平 7— 1 6 6 9 1 6号 公報に開示されたものが知られている。 この技術では、 シリンダヘッ ドにインジ ェクタを装着し、 該インジェクタから燃焼室内に直接燃料を噴射するようにして いる。 そして、 このインジェクタから噴射される燃料の噴射量及び噴射時期を制 御することで、 低 ·中負荷領域において成層燃焼を行うようにしている。 As a technique capable of performing stratified combustion as described above, for example, a technique disclosed in Japanese Patent Application Laid-Open No. 7-166169 is known. With this technology, the cylinder head An injector is mounted, and fuel is directly injected into the combustion chamber from the injector. By controlling the injection amount and the injection timing of the fuel injected from the injector, stratified charge combustion is performed in a low / medium load region.
また、 この技術では、 エンジンのアイドリング時において、 成層燃焼が行われ ている場合には、 その成層燃焼を行ったまま、 燃料噴射量が制御される。 このよ うな制御が行われることで、 成層燃焼が行われつつアイドル回転数の制御が行わ れる。  Further, in this technology, when stratified combustion is performed at the time of idling of the engine, the fuel injection amount is controlled while the stratified combustion is being performed. By performing such control, the idling speed is controlled while stratified combustion is performed.
また、 特開平 4— 3 7 0 3 4 3号公報に開示された技術では、 運転条件により 成層燃焼又は均質燃焼のいずれかの燃焼方式が採用され、 少なくとも低 ·中負荷 時には成層燃焼の燃料噴射及び点火が制御され、 高負荷時には均質燃焼の燃料噴 射及び点火が制御される。 そして、 エンジンのアイドリング時には、 冷却水温に 応じて燃料噴射量のみが増減制御される。 このような技術により、 低負荷時の成 層燃焼が良好に保たれるとともに、 冷間時の暖機の促進が図られている。  Further, in the technology disclosed in Japanese Patent Application Laid-Open No. 4-370343, either a stratified combustion or a homogeneous combustion combustion method is employed depending on the operating conditions, and at least at low / medium loads, stratified fuel injection is performed. In addition, fuel injection and ignition for homogeneous combustion are controlled at high load. When the engine is idling, only the fuel injection amount is controlled to increase or decrease according to the cooling water temperature. With this technology, stratified combustion at low load is maintained well, and warm-up during cold operation is promoted.
ところが、 上記従来公報に記載された技術においては、 次に記すような問題が 生じうる。 すなわち、 アイドリング時においては、 エアコン等の負荷がエンジン に加わった場合には、 エンジン回転数の低下を防止するため、 一般に、 アイドル アップが行われる。 ここで、 均質燃焼のみを行う一般的なエンジンの場合には、 吸入空気量を増加させることでアイドルアップが実行される。  However, in the technique described in the above-mentioned conventional publication, the following problem may occur. In other words, during idling, when a load such as an air conditioner is applied to the engine, idle-up is generally performed to prevent a decrease in the engine speed. Here, in the case of a general engine that performs only homogeneous combustion, idle-up is performed by increasing the amount of intake air.
この場合、 負荷信号が入力されてから実際にエンジンに負荷が加わるまでには、 所定の時間を要するが、 吸入空気量を増加させる信号、 つまり、 アイドルスピー ドコント口一ルバ'ルブゃスロットル弁の開度を増大させる信号が出力されてから 実際に吸入空気量が増大するのにも所定の時間がかかる。  In this case, a certain period of time is required from when the load signal is input to when the load is actually applied to the engine, but a signal to increase the amount of intake air, that is, the idle speed control port / valve throttle valve It takes a predetermined time for the amount of intake air to actually increase after the signal for increasing the opening is output.
これに対し、 上記従来技術において、 成層燃焼が行われている場合には、 燃料 噴射量を増量させることで、 アイドルアップが行われる。  On the other hand, in the above-described prior art, when stratified combustion is being performed, the idle-up is performed by increasing the fuel injection amount.
しかしながら、 燃料噴射量を増量させる信号が出力されてから実際に燃料噴射 量が増量されるのには、 燃料が燃焼室内に直接的に噴射されるため、 ほとんど時 間がかからない。 その結果、 エンジン回転数が上がり過ぎてしまうという不具合 が発生するおそれがあった。 However, the fuel injection amount is actually increased after the signal for increasing the fuel injection amount is output, because fuel is directly injected into the combustion chamber. It doesn't take long. As a result, a problem that the engine speed is excessively increased may occur.
また、 成層燃焼時には、 そのときどきのエンジン回転数に応じて、 燃料量の変 化が燃焼に大きく影響してしまう。 例えば、 エンジン回転数が高い状態において、 低い場合と同等の燃料量を増量させた場合には、 エンジン回転数が上がり過ぎて しまうおそれがあった。  In addition, during stratified combustion, changes in the amount of fuel greatly affect combustion depending on the engine speed at that time. For example, in a state where the engine speed is high, if the fuel amount is increased by the same amount as when the engine speed is low, the engine speed may be too high.
また、 成層燃焼時には、 アイドルアップ開始時の燃料噴射量に応じて、 燃料量 の変化が燃焼に大きく影響してしまう。 例えば、 アイドルアップ開始直前の燃料 噴射量が多し、状態において、 噴射量が少なし、場合と同等の燃料量を増量させた場 合には、 エンジン回転数が上がり過ぎてしまうおそれがあった。  In addition, during stratified combustion, a change in the amount of fuel greatly affects combustion depending on the amount of fuel injected at the start of idle-up. For example, if the fuel injection amount immediately before the start of idle-up is large and the fuel injection amount is small in the state and the fuel amount is increased equivalently to the case, the engine speed may be too high. .
本発明は前述した事情に鑑みてなされたものであって、 その目的は、 成層燃焼 を行いうる内燃機関のアイドル回転数制御装置において、 内燃機関に負荷が加わ りアイドルァップが行われる際の機関回転数の安定性を確保することのできる成 層燃焼内燃機関のアイドル回転数制御装置を提供することにある。 発明の開示  The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an idling speed control apparatus for an internal combustion engine capable of performing stratified combustion, wherein the engine is operated when a load is applied to the internal combustion engine and idle-up is performed. It is an object of the present invention to provide an idling speed control device for a stratified combustion internal combustion engine capable of ensuring the stability of the speed. Disclosure of the invention
本願の請求の範囲 1に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 成層燃焼を行いうる内燃機関と、 該内燃機関の運転状態を検出する運転状態検出 手段と、 該内燃機関に負荷が加えられた場合に、 該内燃機関の回転数の低下を抑 制すべくアイドルァップを行うアイドルァップ制御手段と、 を備えた成層燃焼内 燃機関のアイドル回転数制御装置であって、 該アイドルアップ制御手段は、 該内 燃機関に供給される燃料量を増加させる燃料量増加手段と、 該運転状態検出手段 により検出された該運転状態に応じて該燃料量増加手段により増加される燃料増 加量を補正する補正手段とを備えたことを特徴とする。  An idle speed control device for a stratified combustion internal combustion engine according to claim 1 of the present application includes: an internal combustion engine capable of performing stratified combustion; operating state detection means for detecting an operating state of the internal combustion engine; and a load on the internal combustion engine. , An idle-up control means for performing idle-up to suppress a decrease in the rotational speed of the internal combustion engine; and an idle-speed control device for a stratified combustion internal combustion engine, comprising: The control means includes: a fuel amount increasing means for increasing an amount of fuel supplied to the internal combustion engine; and a fuel increase increased by the fuel amount increasing means in accordance with the operating state detected by the operating state detecting means. Correction means for correcting the amount.
請求の範囲 2に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求の 範囲 1に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該運転状 態検出手段は、 該内燃機関に負荷が加わることを示す負荷入力信号を検出する負 荷入力信号検出手段を備え、 該補正手段は、 該負荷入力信号検出手段により検出 された該負荷入力信号に応答して該燃料量増加手段により増加される燃料量の応 答特性に時間遅れを生じさせる燃料量応答特性補正手段を備えていることを特徴 とする。 An idling speed control device for a stratified combustion internal combustion engine according to claim 2 is the idling speed control device for a stratified combustion internal combustion engine according to claim 1, wherein The state detection means includes load input signal detection means for detecting a load input signal indicating that a load is applied to the internal combustion engine, and the correction means detects the load input signal detected by the load input signal detection means. A fuel amount response characteristic correcting means for causing a time delay in response characteristic of the fuel amount increased by the fuel amount increasing means in response.
請求の範囲 3に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求の 範囲 2に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該燃料量 応答特性補正手段は、 該燃料量を該負荷入力信号が検出されてからの経過時間に 応じて徐々に増加させることを特徴とする。  The idling speed control device for a stratified combustion internal combustion engine according to claim 3 is the idling speed control device for a stratified combustion internal combustion engine according to claim 2, wherein the fuel amount response characteristic correcting means is: It is characterized in that the fuel amount is gradually increased in accordance with the elapsed time from the detection of the load input signal.
請求の範囲 4に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求の 範囲 2に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該燃料量 応答特性補正手段は、 該燃料量を所定時間後に増加させることを特徴とする。 請求の範囲 5に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求の 範囲 2に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該負荷入 力信号検出手段は、 さらに該内燃機関に加わる負荷の種類を検出し、 該燃料量増 加手段は、 該負荷入力信号検出手段により検出される該負荷の種類に基づく該負 荷の程度に応じて該燃料増加量を可変することを特徴とする。  An idling speed control device for a stratified combustion internal combustion engine according to claim 4 is the idling speed control device for a stratified combustion internal combustion engine according to claim 2, wherein the fuel amount response characteristic correction means comprises: The fuel amount is increased after a predetermined time. An idle speed control device for a stratified combustion internal combustion engine according to claim 5 is the idle speed control device for a stratified combustion internal combustion engine according to claim 2, wherein the load input signal detecting means further comprises: The type of load applied to the internal combustion engine is detected, and the fuel amount increasing means varies the fuel increase amount according to the degree of the load based on the type of the load detected by the load input signal detecting means. It is characterized by doing.
請求の範囲 6に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求の 範囲 2に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該アイド ルァップ制御手段は、 該内燃機関の燃焼状態が均質燃焼であるときは該内燃機関 の吸入空気量を増加させる吸入空気量増加手段をさらに備えていることを特徴と する。  The idle speed control device for a stratified combustion internal combustion engine according to claim 6 is the idle speed control device for a stratified combustion internal combustion engine according to claim 2, wherein the idle-up control means includes: When the combustion state is homogeneous combustion, an intake air amount increasing means for increasing an intake air amount of the internal combustion engine is further provided.
請求の範囲 7に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求の 範囲 2に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該アイド ル回転数制御装置は、 該内燃機関への負荷が軽減されたことが検出された場合に、 該アイドルアップを解除するアイドルアップ解除手段をさらに備え、 該アイドル ァップ解除手段は、 該内燃機関に供給される燃料量を減少させる燃料量減少手段 と、 該負荷入力信号検出手段により検出された負荷入力信号に応答して該燃料量 減少手段により減少される燃料量の応答特性に時間遅れを生じさせる減少燃料量 応答特性補正手段とを備えていることを特徴とする。 An idle speed control device for a stratified combustion internal combustion engine according to claim 7 is the idle speed control device for a stratified combustion internal combustion engine according to claim 2, wherein the idle speed control device is An idle-up releasing unit configured to release the idle-up when it is detected that the load on the internal combustion engine has been reduced; The gap canceling means includes: a fuel amount reducing means for reducing an amount of fuel supplied to the internal combustion engine; and a fuel reduced by the fuel amount reducing means in response to the load input signal detected by the load input signal detecting means. The fuel cell system is characterized in that it comprises a reduced fuel amount response characteristic correction means for causing a time delay in the amount response characteristic.
請求の範囲 8に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求の 範囲 1に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該運転状 態検出手段は、 該内燃機関の該回転数を検出する回転数検出手段を備え、 該補正 手段は、 該アイドルアップ制御手段により該アイドルアップが行われる直前での 該回転数検出手段の検出結果に応じて、 該燃料増加量を補正する増量補正手段を 備えていることを特徴とする。  An idle speed control device for a stratified combustion internal combustion engine according to claim 8 is the idle speed control device for a stratified combustion internal combustion engine according to claim 1, wherein the operating state detecting means includes: A rotation speed detection means for detecting the rotation speed of the engine; and the correction means, wherein the fuel increase is performed in accordance with a detection result of the rotation speed detection means immediately before the idle-up control is performed by the idle-up control means. It is characterized in that an increase correction means for correcting the amount is provided.
請求の範囲 9に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求の 範囲 8に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該燃料量 増加手段により増加される燃料量は見込み量であることを特徴とする。  An idling speed control device for a stratified combustion internal combustion engine according to claim 9 is the idling speed control device for a stratified combustion internal combustion engine according to claim 8, wherein the fuel increased by the fuel amount increasing means. The amount is a prospective amount.
請求の範囲 1 0に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求 の範囲 8に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該アイ ドルァップが行われる直前での該回転数検出手段により検出された回転数が高し、 場合には、 該回転数が低い場合に比較して該燃料量の増加の程度が小さいことを 特徴とする。  An idle speed control device for a stratified combustion internal combustion engine according to claim 10 is the idle speed control device for a stratified combustion internal combustion engine according to claim 8, wherein the idle speed control device immediately before the idle-up is performed. When the rotation speed detected by the rotation speed detection means is high, the degree of increase in the fuel amount is smaller than when the rotation speed is low.
請求の範囲 1 1に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求 の範囲 8に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該アイ ドル回転数制御装置は、 該燃料量増加手段により該燃料量が増量された後に、 該 回転数検出手段の検出結果に応じて該燃料量を増減させることにより該内燃機関 をフィードバック制御するフィードバック制御手段と、 該フィードバック制御手 段により該燃料量を増減する時点での該回転数検出手段の検出結果に応じて、 該 フィードバック制御手段による該燃料量の増減量を補正するフィードバック制御 時増減補正手段とをさらに備えていることを特徴とする。 請求の範囲 1 2に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求 の範囲 1 1に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該フ ィ一ドバック制御手段により該燃料量を増減する時点での該回転数検出手段によ り検出された回転数が高い場合には、 該回転数が低い場合に比較して該燃料量の 増減の程度が小さいことを特徴とする。 An idle speed control device for a stratified combustion internal combustion engine according to claim 11 is the idle speed control device for a stratified combustion internal combustion engine according to claim 8, wherein the idle speed control device includes: Feedback control means for performing feedback control of the internal combustion engine by increasing or decreasing the fuel amount in accordance with the detection result of the rotational speed detecting means after the fuel amount is increased by the fuel amount increasing means; A feedback control increase / decrease correction means for correcting the increase / decrease amount of the fuel amount by the feedback control means in accordance with the detection result of the rotational speed detection means at the time when the fuel amount is increased / decreased by the stage. It is characterized by. An idling speed control apparatus for a stratified combustion internal combustion engine according to claim 12 is the idling speed control apparatus for a stratified combustion internal combustion engine according to claim 11, wherein the feedback control means When the rotational speed detected by the rotational speed detecting means at the time of increasing or decreasing the fuel amount is high, the degree of increase or decrease of the fuel amount is smaller than when the rotational speed is low. And
請求の範囲 1 3に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求 の範囲 1に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該アイ ドル回転数制御装置は、 該内燃機関の気筒内に燃料を供給し得る燃料噴射手段を さらに備え、 該運転状態検出手段は、 該燃料噴射手段からの燃料噴射量を検出す る燃料噴射量検出手段を備え、 該補正手段は、 該アイドルアップ制御手段により 該アイドルァップが行われる直前での該燃料噴射量検出手段の検出結果に応じて、 該燃料増加量を補正する増量補正手段を備えていることを特徴とする。  An idle speed control device for a stratified combustion internal combustion engine according to claim 13 is the idle speed control device for a stratified combustion internal combustion engine according to claim 1, wherein the idle speed control device is: A fuel injection means for supplying fuel into a cylinder of the internal combustion engine; an operating state detecting means including fuel injection amount detecting means for detecting a fuel injection amount from the fuel injection means; Is characterized by comprising an increase correction means for correcting the fuel increase amount in accordance with the detection result of the fuel injection amount detection means immediately before the idle up control is performed by the idle up control means.
請求の範囲 1 4に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求 の範囲 1 3に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該燃 料量増加手段により増加される燃料量は見込み量であることを特徴とする。  The idling speed control device for a stratified combustion internal combustion engine according to claim 14 is the idling speed control device for a stratified combustion internal combustion engine according to claim 13, wherein the idling speed control device is increased by the fuel amount increasing means. The amount of fuel to be supplied is an estimated amount.
請求の範囲 1 5に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求 の範囲 1 3に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該ァ ィドルァップが行われる直前での該燃料噴射量検出手段により検出された該燃料 噴射量が多い場合には、 該燃料噴射量が少ない場合に比較して該燃料量の増加の 程度が小さいことを特徴とする。  An idling speed control device for a stratified combustion internal combustion engine according to claim 15 is the idling speed control device for a stratified combustion internal combustion engine according to claim 13, wherein the idling speed control is performed immediately before the idle-up is performed. When the fuel injection amount detected by the fuel injection amount detecting means is large, the degree of increase in the fuel amount is smaller than when the fuel injection amount is small.
請求の範囲 1 6に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求 の範囲 1 3に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該ァ ィドル回転数制御装置は、 該燃料量増加手段により該燃料量が増量された後に、 該燃料噴射量検出手段の検出結果に応じて該燃料量を増減させることにより該内 燃機関をフィードバック制御するフィードバック制御手段と、 該フィードバック 制御手段により該燃料量を増減する時点での該燃料噴射量検出手段の検出結果に 応じて、 該フィードバック制御手段による該燃料量の増減量を補正するフィード バック制御時増減補正手段とをさらに備えていることを特徴とする。 An idle speed control device for a stratified combustion internal combustion engine according to claim 13 is the idle speed control device for a stratified combustion internal combustion engine according to claim 13, wherein the idle speed control device is Feedback control means for feedback-controlling the internal combustion engine by increasing or decreasing the fuel amount in accordance with the detection result of the fuel injection amount detection means after the fuel amount is increased by the fuel amount increase means; The detection result of the fuel injection amount detecting means at the time when the fuel amount is increased or decreased by the feedback control means Accordingly, a feedback control increase / decrease correction means for correcting the increase / decrease amount of the fuel amount by the feedback control means is further provided.
請求の範囲 1 7に記載の成層燃焼内燃機関のアイドル回転数制御装置は、 請求 の範囲 1 6に記載の成層燃焼内燃機関のアイドル回転数制御装置であって、 該フ ィ一ドバック制御手段により該燃料量を増減する時点での該燃料噴射量検出手段 により検出された燃料噴射量が多い場合には、 該燃料噴射量が少ない場合に比較 して該燃料量の増減の程度が小さいことを特徴とする。  An idling speed control device for a stratified combustion internal combustion engine according to claim 17 is the idling speed control device for a stratified combustion internal combustion engine according to claim 16, wherein the feedback control means When the fuel injection amount detected by the fuel injection amount detecting means at the time of increasing or decreasing the fuel amount is large, it is determined that the degree of increase or decrease of the fuel amount is smaller than when the fuel injection amount is small. Features.
本願発明のある曲面に従えば、 図 1に示すように、 成層燃焼を行いうる内燃機 関 M lの運転状態が、 運転状態検出手段 M 2によって検出される。 そして、 内燃 機関 M lのアイドリング時において、 運転状態検出手段 M 2により負荷が加えら れることが検出された場合に、 アイドルアップ制御手段 M 3によってアイドルァ ップが行われる。 これにより、 内燃機関 M lの回転数の低下が抑制される。  According to a certain curved surface of the present invention, as shown in FIG. 1, the operating state of the internal combustion engine MI capable of performing stratified combustion is detected by the operating state detecting means M2. Then, at the time of idling of the internal combustion engine M1, when the operating state detecting means M2 detects that a load is applied, the idle-up control means M3 performs idle-up. This suppresses a decrease in the rotation speed of the internal combustion engine Ml.
さて、 本願発明では、 内燃機関 M lの燃焼状態が成層燃焼であるときには、 前 記アイドルアップ制御手段 M 3の構成要素たる燃料量増加手段 M 4によって、 内 燃機関 M lに直接的に供給される燃料量が増加させられる。 本発明では、 アイド ルアップ制御手段 M 3の構成要素たる補正手段 M 5によって、 燃料量増加手段 M 4により増加される燃料量の増加に対し、 運転状態検出手段 M 2によつて検出さ れた運転状態に基づいて、 所要の補正が加えられる。  In the present invention, when the combustion state of the internal combustion engine Ml is stratified combustion, the fuel is directly supplied to the internal combustion engine Ml by the fuel amount increasing means M4, which is a component of the idle-up control means M3. The amount of fuel used is increased. In the present invention, the operating state detecting means M2 detects the increase in the fuel amount increased by the fuel amount increasing means M4 by the correcting means M5 which is a component of the idle-up control means M3. Required corrections are made based on operating conditions.
このため、 内燃機関の各種状態変数 (例えば、 内燃機関 M lへの負荷入力信号、 内燃機関 M 1に実際に加わる負荷、 内燃機関 M 1の回転数、 および内燃機関 M 1 への燃料噴射量) の間に非線形の関係があっても、 内燃機関 M lへ供給される燃 料量の増加に対してそれぞれの非線形の関係に基づいた補正が加えられる。  Therefore, various state variables of the internal combustion engine (for example, the load input signal to the internal combustion engine M1, the load actually applied to the internal combustion engine M1, the rotation speed of the internal combustion engine M1, and the fuel injection amount to the internal combustion engine M1) Even if there is a non-linear relationship between the two, a correction based on each non-linear relationship is added to the increase in the amount of fuel supplied to the internal combustion engine Ml.
従って、 燃料増加量がさほど必要ないのに回転数のみが増大してしまうことがな くなる。 Therefore, it is possible to prevent only the rotation speed from increasing even when the fuel increase is not so required.
本願発明の他の曲面に従えば、 図 2に示すように、 成層燃焼を行いうる内燃機 関 M lに加わる負荷が、 負荷入力信号検出手段 M 2 Aによって検出される。 そし て、 内燃機関 M lのアイドリング時において、 負荷入力信号検出手段 M 2 Aによ り負荷が加えられることが検出された場合に、 アイドルアップ制御手段 M 3 Aに よってアイドルアップが行われる。 これにより、 内燃機関 M lの回転数の低下が 抑制される。 According to another curved surface of the present invention, as shown in FIG. 2, a load applied to the internal combustion engine Ml capable of performing stratified combustion is detected by the load input signal detection means M2A. Soshi When the load is detected by the load input signal detection means M 2 A during idling of the internal combustion engine M 1, idle-up is performed by the idle-up control means M 3 A. Thus, a decrease in the rotation speed of the internal combustion engine Ml is suppressed.
さて、 本願発明では、 内燃機関 M lの燃焼状態が成層燃焼であるときには、 ァ ィドルアップ制御手段 M 3 Aの構成要素たる燃料量増加手段 M 4 Aによって、 内 燃機関 M lに直接的に供給される燃料量が増加させられる。 ここで、 負荷が加え られることが検出されてから、 実際に負荷が内燃機関 M lに加わるまでの間には、 所定の時間を要する。 一方、 燃料量増加手段 M 4 Aによる燃料量の増加指令がな されてから実際に内燃機関 M 1に供給される燃料量が増加するのは、 理論上極め て短時間で行われる。 これに対し、 本発明では、 アイドルアップ制御手段 M 3 A の構成要素たる燃料量応答特性補正手段 M 5 Aによって、 燃料量増加手段 M 4 A により増加される燃料量の応答特性に時間遅れを生じさせる。  In the present invention, when the combustion state of the internal combustion engine Ml is stratified combustion, the fuel is directly supplied to the internal combustion engine Ml by the fuel amount increasing means M4A which is a component of the idle-up control means M3A. The amount of fuel used is increased. Here, a predetermined time is required between the time when the load is detected to be applied and the time when the load is actually applied to the internal combustion engine MI. On the other hand, the increase in the amount of fuel actually supplied to the internal combustion engine M1 after the instruction to increase the amount of fuel by the fuel amount increasing means M4A is theoretically performed in an extremely short time. On the other hand, in the present invention, the fuel amount response characteristic correcting means M5A, which is a component of the idle-up control means M3A, causes a time delay in the response characteristic of the fuel amount increased by the fuel amount increasing means M4A. Cause.
このため、 内燃機関 M lに実際に加わる負荷が増加するのに所定の時間がかか るのに対応して、 燃料量が増加するのにも時間がかかることとなる。 従って、 負 荷がさほど大きくないのに燃料のみが増大してしまうことがなくなる。  For this reason, it takes time for the fuel amount to increase in response to the predetermined time required for the load actually applied to the internal combustion engine Ml to increase. Therefore, it is not possible to increase only the fuel even when the load is not so large.
また、 上記作用に加えて、 燃料量応答特性補正手段 M 5 Aによって、 燃料量の 増加に際し、 燃料量を徐々に増加すれば、 上記の作用がより効果的に奏される。 さらに、 燃料量応答特性補正手段 M 5 Aによって、 さらに、 燃料量の増加の夕 ィミングが遅延されてもよい。 従って、 上記作用に加えて、 燃料量の増加を、 よ り一層負荷の増加に合わせやすいものとすることが可能となる。  Further, in addition to the above operation, when the fuel amount is gradually increased by the fuel amount response characteristic correcting means M5A when the fuel amount is increased, the above operation is more effectively achieved. Furthermore, the fuel amount response characteristic correction means M5A may further delay the increase in the fuel amount. Therefore, in addition to the above-described effects, it is possible to make the increase in the fuel amount more easily compatible with the increase in the load.
併せて、 負荷入力信号検出手段 M 2により検出される負荷の程度に応じて前記 燃料量の増加率が可変とされてもよい。 従って、 負荷の種類や程度が異なってい ても、 それによつて、 回転数が急増してしまうことがなくなる。  At the same time, the rate of increase in the fuel amount may be made variable in accordance with the degree of the load detected by the load input signal detection means M2. Therefore, even if the type and the degree of the load are different, the rotation speed does not suddenly increase.
加えて、 内燃機関 M lの燃焼状態が均質燃焼であるときには、 内燃機関 M lの 吸入空気量が増加させられることにより、 アイドルアップが行われてもよい。 また、 内燃機関 M lのアイドリング時において、 負荷入力信号検出手段 M 2に より内燃機関 M lへの負荷が軽減されたことが検出された場合に、 アイドルアツ プ解除手段により、 アイドルアップの解除が行われてもよい。 このとき、 内燃機 関 M lの燃焼状態が成層燃焼であるときには、 アイドルアップ解除手段の構成要 素たる燃料量減少制御手段によって、 内燃機関 M 1に供給される燃料量が減少さ せられる。 このとき、 アイドルアップ解除制御手段の構成要素たる減少燃料量応 答特性補正手段によって、 燃料量の減少に時間遅れを生じさせる。 従って、 負荷 が解除される場合にも、 内燃機関 M lに実際に加わる負荷が減少するのに所定の 時間がかかるのに対応して、 燃料量が減少するのにも時間がかかることとなる。 従って、 負荷がさほど小さくなつていないのに、 燃料量のみが減少してしまうこ とがなくなる。 In addition, when the combustion state of the internal combustion engine Ml is homogeneous combustion, the idle-up may be performed by increasing the intake air amount of the internal combustion engine Ml. Also, when the load input signal detecting means M2 detects that the load on the internal combustion engine Ml has been reduced during idling of the internal combustion engine Ml, the idle-up canceling means cancels the idle-up. May be performed. At this time, when the combustion state of the internal combustion engine Ml is stratified combustion, the fuel amount supplied to the internal combustion engine M1 is reduced by the fuel amount reduction control means, which is a component of the idle-up canceling means. At this time, a time delay is caused in the reduction of the fuel amount by the reduced fuel amount response characteristic correction means, which is a component of the idle-up release control means. Therefore, even when the load is released, it takes a certain amount of time to reduce the load actually applied to the internal combustion engine Ml, and it takes time to reduce the fuel amount. . Therefore, the fuel quantity alone does not decrease even if the load is not so small.
本願発明のさらに他の曲面に従えば、 図 3に示すように、 燃料噴射手段 M 6に より、 内燃機関 M lの気筒内に燃料が供給され、 成層燃焼が行われうる。 そして、 内燃機関 M lがアイドリング状態にあり、 かつ、 その燃焼状態が成層燃焼であ るときに、 内燃機関 M lに負荷が加えられた場合に、 燃料量増加手段 M 4 Bによ つて、 燃料噴射手段 M 6から供給される燃料量が増量させられ、 これによりアイ ドルァップが行われ、 内燃機関 M 1の回転数の低下が抑制される。  According to still another curved surface of the present invention, as shown in FIG. 3, fuel can be supplied into the cylinder of the internal combustion engine Ml by the fuel injection means M6 to perform stratified combustion. When the load is applied to the internal combustion engine Ml when the internal combustion engine Ml is in an idling state and the combustion state is stratified combustion, the fuel amount increasing means M4B The amount of fuel supplied from the fuel injection means M6 is increased, whereby idle-up is performed, and a decrease in the rotational speed of the internal combustion engine M1 is suppressed.
さて、 本発明では、 回転数検出手段 M 2 Bによって内燃機関 M lの回転数が検 出される。 そして、 増量補正手段 M 5 Bでは、 燃料量増加手段 M 4 Bによりアイ ドルアップが行われる直前の回転数に応じて、 燃料量増加手段 M 4 Bによる燃料 量の増量が補正される。  Now, in the present invention, the rotation speed of the internal combustion engine Ml is detected by the rotation speed detection means M2B. Then, in the increase correction means M5B, the increase in the fuel amount by the fuel amount increase means M4B is corrected according to the rotation speed immediately before the idle-up is performed by the fuel amount increase means M4B.
従って、 アイドルアップが行われるその直前の回転数に応じて、 回転がばらつ 力、ないような燃料量の増量が確保される。 そのため、 アイドルアップに際し、 回 転数が上がり過ぎてしまうことがない。  Therefore, according to the rotation speed immediately before the idle-up is performed, an increase in the fuel amount such that the rotation varies or does not occur is secured. Therefore, when idling up, the number of revolutions does not increase too much.
また、 燃料量増加手段 M 4 Bにより増量される燃料量は見込み量であってもよ い。 この見込み量に補正が加えられることとなり、 増量の適正化が図られうる。 さらに、 アイドルアップを行う直前の回転数検出手段 M 2 Bにより検出された 回転数が高し、場合には、 回転数が低 、場合に比較して燃料量の増量の程度が小さ くてもよい。 ここで、 アイドルアップを行う直前の回転数が高いほど、 同量増量 した場合の回転数が大きくなる傾向になる。 従って、 本発明により、 回転数が高 い場合における回転数の増大が抑制されることとなり、 より一層上記作用が確実 なものとなる。 Further, the fuel amount increased by the fuel amount increasing means M 4 B may be an expected amount. The expected amount will be corrected, and the increase in the amount can be optimized. Furthermore, even if the rotational speed detected by the rotational speed detecting means M 2 B immediately before performing the idle-up is high, and if the rotational speed is low, the increase in the fuel amount is small compared to the case, Good. Here, the higher the rotation speed immediately before performing the idle-up, the higher the rotation speed when the same amount is increased. Therefore, according to the present invention, an increase in the number of rotations when the number of rotations is high is suppressed, and the above-described operation is further ensured.
さらに、 燃料量増加手段 M 4 Bによる燃料量の増量が行われた後に、 フィード バック制御手段によって、 回転数検出手段 M 2 Bの検出結果に応じた燃料量の増 減による回転数のフィードバック制御が行われてもよい。 そして、 フィードバッ ク制御手段により燃料量の増減が行われる時点での回転数に応じて、 フィードバ ック制御時増減補正手段では、 フィードバック制御手段による燃料量の増減量が 補正される。 従って、 アイドルアップ後のフィードバック制御時においても、 回 転がばらっかないような燃料量の増減が確保される。  Further, after the fuel amount is increased by the fuel amount increasing means M 4 B, the feedback control means controls the rotational speed feedback by increasing or decreasing the fuel amount according to the detection result of the rotational speed detecting means M 2 B. May be performed. Then, according to the number of revolutions at the time when the fuel amount is increased or decreased by the feedback control unit, the increase or decrease amount of the fuel amount by the feedback control unit is corrected by the feedback control increase / decrease correction unit. Therefore, even during the feedback control after the idle-up, an increase or decrease of the fuel amount such that the rotation is not dispersed is secured.
加えて、 フィードバック制御手段により燃料量の増減が行われる時点での回転 数が高い場合には、 回転数が低い場合に比較して燃料量の増減の程度が小さくて もよい。 ここで、 上述したのと同様、 増減を行う時点での回転数が高いほど、 同 量だけ増減量した場合の回転数が大きくなる傾向になる。 従って、 本発明により、 回転数が高い場合における回転数の増減が抑制されることとなり、 より一層本発 明の作用が確実なものとなる。  In addition, when the rotational speed at the time when the fuel amount is increased or decreased by the feedback control means is high, the degree of increase or decrease in the fuel amount may be smaller than when the rotational speed is low. Here, as described above, the higher the rotational speed at the time of increasing or decreasing, the higher the rotational speed when the amount of increase or decrease by the same amount tends to increase. Therefore, according to the present invention, the increase and decrease of the rotation speed when the rotation speed is high is suppressed, and the effect of the present invention is further ensured.
さらにまた、 成層燃焼を行いうる内燃機関において、 アイドルアップ開始時の 内燃機関の回転数が高い場合には、 回転数が低 、場合に比較して燃料量の増量の 程度が小さい。 従って、 回転がばらつかないような燃料量の増量が確保される。 本願発明のさらに他の曲面に従えば、 図 4に示すように、 燃料噴射手段 M 6に より、 内燃機関 M lの気筒内に燃料が供給され、 成層燃焼が行われうる。 そして、 内燃機関 M lがアイドリング状態にあり、 かつ、 その燃焼状態が成層燃焼である ときに、 内燃機関 M lに負荷が加えられた場合に、 燃料量増加手段 M 4 Cによつ て、 燃料噴射手段 M 6から供給される燃料量が増量させられ、 これによりアイド ルァップが行われ、 内燃機関 M 1の回転数の低下が抑制される。 Furthermore, in an internal combustion engine capable of performing stratified combustion, when the rotation speed of the internal combustion engine at the start of idling-up is high, the rotation speed is low, and the degree of increase in the fuel amount is small compared to the case. Therefore, an increase in the fuel amount such that the rotation does not vary is secured. According to still another curved surface of the present invention, as shown in FIG. 4, fuel can be supplied into the cylinder of the internal combustion engine Ml by the fuel injection means M6 to perform stratified combustion. When the load is applied to the internal combustion engine Ml when the internal combustion engine Ml is in an idling state and its combustion state is stratified combustion, the fuel amount increasing means M4C As a result, the amount of fuel supplied from the fuel injection means M6 is increased, whereby idling is performed, and a decrease in the rotational speed of the internal combustion engine M1 is suppressed.
さて、 本発明では、 燃料噴射量検出手段 M 2 Cによって、 燃料噴射手段 M 6か らの燃料噴射量が検出される。 そして、 増量補正手段 M 5 Cでは、 アイドルアツ プ制御手段 M 3によりアイドルアップが行われる直前の燃料噴射量に応じて、 燃 料量増加手段 M 4 Cによる燃料量の増量が補正される。  Now, in the present invention, the fuel injection amount from the fuel injection means M 6 is detected by the fuel injection amount detection means M 2 C. Then, in the increase correction means M5C, the increase in the fuel amount by the fuel amount increase means M4C is corrected in accordance with the fuel injection amount immediately before the idle-up is performed by the idle-up control means M3.
従って、 アイドルアップが行われるその直前の燃料噴射量に応じて、 回転がば らっかないような燃料量の増量が確保される。 そのため、 アイドルアップに際し、 回転数が上がり過ぎてしまうことがなし、。  Accordingly, an increase in the fuel amount such that the rotation does not vary is secured according to the fuel injection amount immediately before the idle-up is performed. Therefore, when idling up, there is no possibility that the rotation speed will rise too much.
また、 燃料量増加手段 M 4 Cにより増量される燃料量は見込み量であってもよ い。 この見込み量に補正が加えられることとなり、 増量の適正化が図られうる。 さらに、 アイドルアップを行う時点での燃料噴射量検出手段 M 2 Cにより検出 された燃料噴射量が多い場合には、 噴射量が少ない場合に比較して燃料量の増量 の程度が小さくてもよい。 ここで、 アイドルアップを行う時点での燃料噴射量が 多いほど、 同量増量した場合の回転数が大きくなる傾向になる。 従って、 本発明 により、 燃料噴射量が多い場合における回転数の増大が抑制されることとなり、 より一層上記作用が確実なものとなる。  Further, the fuel amount increased by the fuel amount increasing means M 4 C may be an expected amount. The expected amount will be corrected, and the increase in the amount can be optimized. Furthermore, when the fuel injection amount detected by the fuel injection amount detecting means M 2 C at the time of performing the idle-up is large, the degree of increase in the fuel amount may be smaller than when the injection amount is small. . Here, the larger the fuel injection amount at the time of performing the idle-up, the larger the number of revolutions tends to be when the fuel injection amount is increased. Therefore, according to the present invention, an increase in the number of revolutions when the fuel injection amount is large is suppressed, and the above-described operation is further ensured.
さらに、 燃料量増加手段 M 4 Cによる燃料量の増量が行われた後に、 フィード バック制御手段によって、 燃料噴射量検出手段 M 2 Cの検出結果に応じた燃料量 の増減による回転数のフィードバック制御が行われてもよい。 そして、 フィード バック制御手段により燃料量の増減が行われる時点での燃料噴射量に応じて、 フ ィ―ドバック制御時増減補正手段では、 前記フィ一ドバック制御手段による燃料 量の増減量が補正される。 従って、 アイドルアップ後のフィードバック制御時に おいても、 回転がばらっかないような燃料量の増減が確保される。  Further, after the fuel amount is increased by the fuel amount increasing means M 4 C, the feedback control means controls the number of revolutions based on the fuel injection amount detecting means M 2 C according to the detection result of the fuel injection amount detecting means M 2 C. May be performed. Then, in accordance with the fuel injection amount at the time when the fuel amount is increased or decreased by the feedback control means, the feedback control increase / decrease correction means corrects the increase / decrease amount of the fuel amount by the feedback control means. You. Therefore, even during the feedback control after the idle-up, the increase and decrease of the fuel amount such that the rotation does not vary is secured.
加えて、 フィードバック制御手段により燃料量の増減が行われる時点での燃料 噴射量が多い場合には、 燃料噴射量が少ない場合に比較して燃料量の増減の程度 が小さくてもよい。 ここで、 上述したのと同様、 増減を行う時点での燃料噴射量 が多いほど、 同量だけ増減量した場合の回転数が大きくなる傾向になる。 従って、 本発明により、 燃料噴射量が多い場合における回転数の増減が抑制されることと なり、 より一層本発明の作用が確実なものとなる。 In addition, when the fuel injection amount is large at the time when the fuel amount is increased or decreased by the feedback control means, the degree of increase or decrease of the fuel amount is larger than when the fuel injection amount is small May be small. Here, as described above, as the fuel injection amount at the time of increasing or decreasing is increased, the rotational speed when the amount of increase or decrease is increased by the same amount tends to increase. Therefore, according to the present invention, the increase and decrease of the rotational speed when the fuel injection amount is large is suppressed, and the operation of the present invention is further ensured.
さらにまた、 成層燃焼を行いうる内燃機関において、 アイドルアップ開始時の 内燃機関の燃料噴射量が多い場合には、 燃料噴射量が少ない場合に比較して燃料 量の増量の程度が小さい。 従って、 回転がばらつかないような燃料量の増量が確 保される。 図面の簡単な説明  Furthermore, in an internal combustion engine capable of performing stratified combustion, when the fuel injection amount of the internal combustion engine at the start of idle-up is large, the degree of increase in the fuel amount is smaller than when the fuel injection amount is small. Therefore, an increase in the fuel amount such that the rotation does not vary is ensured. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本願発明の基本的な概念を示す概念構成図である。 FIG. 1 is a conceptual configuration diagram showing a basic concept of the present invention.
図 2は、 本願発明に係る、 負荷入力に応じた燃料増加量の補正の基本的な概念を 示す概念構成図である。 FIG. 2 is a conceptual configuration diagram showing the basic concept of correcting the fuel increase amount according to the load input according to the present invention.
図 3は、 本願発明に係る、 回転数に応じた燃料増加量の補正の基本的な概念を示 す概念構成図である。 FIG. 3 is a conceptual configuration diagram showing a basic concept of correcting the fuel increase amount according to the rotation speed according to the present invention.
図 4は、 本願発明に係る、 燃料噴射量に応じた燃料増加量の補正の基本的な概念 を示す概念構成図である。 FIG. 4 is a conceptual configuration diagram showing a basic concept of correcting the fuel increase amount according to the fuel injection amount according to the present invention.
図 5は、 一実施の形態における成層燃焼エンジンのアイドル回転数制御装置を示 す概略構成図である。 FIG. 5 is a schematic configuration diagram showing an idle speed control device for a stratified combustion engine according to one embodiment.
図 6は、 エンジンの気筒部分を拡大して示す断面図である。 FIG. 6 is an enlarged sectional view showing a cylinder portion of the engine.
図 7は、 E C Uにより実行される 「アイドル回転数制御ルーチン」 を示すフロー チヤ一トである。 FIG. 7 is a flowchart showing an “idle speed control routine” executed by the ECU.
図 8は、 一実施の形態の作用効果を説明する図であって、 エアコンスィッチ、 マ グネットクラツチ、 最終噴射量及びエンジン回転数の挙動を示すタイミングチヤ 一卜である。 FIG. 8 is a diagram for explaining the operation and effect of the embodiment, and is a timing chart showing behaviors of an air conditioner switch, a magnet clutch, a final injection amount, and an engine speed.
図 9は、 E C Uにより実行される 「アイドルアップ制御ルーチン」 を示すフロー チヤ一トである。 Figure 9 shows the flow of the “idle-up control routine” executed by the ECU. It is a chart.
図 1 0は、 アイドルアップ直前のエンジン回転数に対する補正係数の関係を示す マップ める。 FIG. 10 is a map showing the relationship between the engine speed and the correction coefficient immediately before idling-up.
図 1 1は、 同一の燃料量を増量した場合におけるアイドルアップ直前のェンジ ン回転数に対する回転数の変化量の関係を示すグラフである。 FIG. 11 is a graph showing the relationship between the engine speed immediately before idling-up and the amount of change in the engine speed when the same fuel amount is increased.
図 1 2は、 E C Uにより実行される 「フィードバック制御ルーチン」 を示すフロ 一チヤ一トである。 FIG. 12 is a flowchart showing a “feedback control routine” executed by the ECU.
図 1 3は、 制御量反映直前のエンジン回転数に対する補正係数の関係を示すマツ プである。 Figure 13 is a map showing the relationship between the engine speed and the correction coefficient just before the control amount is reflected.
図 1 4は、 E C Uにより実行される 「アイドルアップ制御ルーチン」 を示すフロ —チヤ一トである。 FIG. 14 is a flowchart showing the “idle-up control routine” executed by the ECU.
図 1 5は、 アイドルアップ直前の最終噴射量に対する補正係数の関係を示すマツ プである。 Figure 15 is a map showing the relationship between the correction coefficient and the final injection amount immediately before idle-up.
図 1 6は、 アイドルアップ直前の最終噴射量に対する回転数の変化量の関係を示 すグラフである。 Fig. 16 is a graph showing the relationship between the final injection amount immediately before idling-up and the amount of change in the rotational speed.
図 1 7は、 時間の経過に対する負荷、 エンジン回転数、 燃料噴射量の関係を示す タイミングチヤ一卜であって、 (a ) はアイドルアップ直前の最終噴射量が少な い場合の、 (b ) はアイドルアップ直前の最終噴射量が多い場合の挙動をそれぞ れ示すものである。 Fig. 17 is a timing chart showing the relationship between load, engine speed, and fuel injection amount over time. (A) shows the case where the final injection amount immediately before idle-up is small, (b) Shows the behavior when the final injection amount immediately before idle-up is large, respectively.
図 1 8は、 アイドルアップ直前の最終噴射量に対し、 エンジン回転数を所定回転 数だけ上昇させる場合のアイドルァップに必要な燃料量の関係を示すグラフであ る。 FIG. 18 is a graph showing the relationship between the final injection amount immediately before idle-up and the fuel amount required for idle-up when the engine speed is increased by a predetermined speed.
図 1 9は、 E C Uにより実行される 「フィードバック制御ルーチン」 を示すフロ 一チヤ一トである。 FIG. 19 is a flowchart showing a “feedback control routine” executed by the ECU.
図 2 0は、 制御量反映直前の最終噴射量に対する補正係数の関係を示すマップで ある。 発明を実施するための最良の形態 FIG. 20 is a map showing the relationship between the correction coefficient and the final injection amount immediately before the control amount is reflected. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本願発明における成層燃焼内燃機関のアイドル回転数制御装置を具体化 した一実施の形態を、 図面に基づいて詳細に説明する。  DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment that embodies an idle speed control device for a stratified combustion internal combustion engine according to the present invention will be described in detail with reference to the drawings.
図 5は本実施の形態において、 車両に搭載された筒内噴射式エンジンのアイド ル回転数制御装置を示す概略構成図である。 内燃機関としてのエンジン 1は、 例 えば 4つの気筒 1 aを具備し、 これら各気筒 1 aの燃焼室構造が図 6に示されて いる。 これらの図に示すように、 エンジン 1はシリンダブロック 2内にピストン を備えており、 当該ビストンはシリンダブ口ック 2内で往復運動する。 シリンダ プロック 2の上部にはシリンダへッド 4が設けられ、 前記ピストンとシリンダへ ッド 4との間には燃焼室 5が形成されている。 また、 本実施の形態では 1気筒 1 aあたり、 4つの弁が配置されており、 図中において、 符号 6 aとして第 1吸気 弁、 6 bとして第 2吸気弁、 7 aとして第 1吸気ポート、 7 bとして第 2吸気ポ 一卜、 8として一対の排気弁、 9として一対の排気ポートがそれぞれ示されてい る。  FIG. 5 is a schematic configuration diagram showing an idle speed control device of a direct injection engine mounted on a vehicle in the present embodiment. The engine 1 as an internal combustion engine has, for example, four cylinders 1a, and the combustion chamber structure of each of the cylinders 1a is shown in FIG. As shown in these figures, the engine 1 includes a piston in a cylinder block 2, and the piston reciprocates in the cylinder block 2. A cylinder head 4 is provided above the cylinder block 2, and a combustion chamber 5 is formed between the piston and the cylinder head 4. Further, in the present embodiment, four valves are arranged per cylinder 1a, and in the figure, reference numeral 6a denotes a first intake valve, 6b denotes a second intake valve, and 7a denotes a first intake port. 7b shows a second intake port, 8 shows a pair of exhaust valves, and 9 shows a pair of exhaust ports.
図 6に示すように、 第 1の吸気ポ一ト 7 aはヘリカル型吸気ポ一卜からなり、 第 2の吸気ポ一ト 7 bはほぼ真っ直ぐに延びるストレートポー卜からなる。 また、 シリンダへッ ド 4の内壁面の中央部には、 点火プラグ 1 0が配設されている。 こ の点火プラグ 1 0には、 図示しないディストリビュー夕を介してィグナイタ 1 2からの高電圧が印加されるようになっている。 そして、 この点火プラグ 1 0の 点火タイミングは、 ィグナイタ 1 2からの高電圧の出力タイミングにより決定さ れる。 さらに、 第 1吸気弁 6 a及び第 2吸気弁 6 b近傍のシリンダへッド 4内壁 面周辺部には燃料噴射弁 1 1が配置されている。 すなわち、 本実施の形態におい ては、 燃料噴射弁 1 1からの燃料は、 直接的に気筒 1 a内に噴射されるようにな つており、 均質燃焼のみならず、 いわゆる成層燃焼も行われるようになつている 図 5に示すように、 各気筒 1 aの第 1吸気ポート 7 a及び第 2吸気ポート 7 b は、 それぞれ各吸気マニホルド 1 5内に形成された第 1吸気路 1 5 a及び第 2吸 気路 1 5 bを介してサージタンク 1 6内に連結されている。 各第 2吸気通路 1 5 b内にはそれぞれスワールコントロールパリレブ 1 7が配置されている。 これらの スワールコントロールバルブ 1 7は共通のシャフト 1 8を介して、 ァクチユエ一 夕としてのステップモータ 1 9に連結されている。 このステップモータ 1 9は、 後述する電子制御装置 (以下単に 「E C U」 という) 3 0からの出力信号に基づ いて制御される。 As shown in FIG. 6, the first intake port 7a is composed of a helical intake port, and the second intake port 7b is composed of a straight port extending almost straight. An ignition plug 10 is provided at the center of the inner wall surface of the cylinder head 4. A high voltage from the igniter 12 is applied to the ignition plug 10 via a distributor (not shown). The ignition timing of the ignition plug 10 is determined by the output timing of the high voltage from the igniter 12. Further, a fuel injection valve 11 is disposed around the inner wall surface of the cylinder head 4 near the first intake valve 6a and the second intake valve 6b. That is, in the present embodiment, the fuel from the fuel injector 11 is directly injected into the cylinder 1a, so that not only homogeneous combustion but also so-called stratified combustion is performed. As shown in Fig. 5, the first intake port 7a and the second intake port 7b of each cylinder 1a Are connected to the surge tank 16 via a first intake path 15a and a second intake path 15b formed in each intake manifold 15, respectively. In each of the second intake passages 15b, a swirl control parileb 17 is arranged. These swirl control valves 17 are connected to a step motor 19 as an actuator via a common shaft 18. The step motor 19 is controlled based on an output signal from an electronic control unit (hereinafter simply referred to as “ECU”) 30 described later.
前記サージ夕ンク 1 6は、 吸気ダクト 2 0を介してエアクリーナ 2 1に連結さ れ、 吸気ダクト 2 0内には、 別途のステップモータ 2 2によって開閉されるスロ ットル弁 2 3が配設されている。 つまり、 本実施の形態のスロットル弁 2 3はい わゆる電子制御式のものであり、 基本的には、 ステップモータ 2 2が前記 E C U 3 0からの出力信号に基づいて駆動されることにより、 スロットル弁 2 3が開閉 制御される。 そして、 このスロットル弁 2 3の開閉により、 吸気ダクト 2 0を通 過して燃焼室 5内に導入される吸入空気量が調節されるようになつている。 本実 施の形態では、 吸気ダクト 2 0、 サージタンク 1 6並びに第 1吸気路 1 5 a及 び第 2吸気路 1 5 b等により、 吸気通路が構成されている。 また、 スロットル弁 2 3の近傍には、 その開度 (スロットル開度 T A ) を検出するためのスロットル センサ 2 5が設けられている。 なお、 前記各気筒の排気ポート 9には排気マニホ ルド 1 4が接続されている。 そして、 燃焼後の排気ガスは当該排気マニホルド 1 4を介して図示しない排気ダク卜へ排出されるようになっている。  The surge nozzle 16 is connected to an air cleaner 21 via an intake duct 20.In the intake duct 20, a throttle valve 23 which is opened and closed by a separate step motor 22 is provided. ing. That is, the throttle valve 23 of the present embodiment is of a so-called electronic control type. Basically, the throttle motor 23 is driven based on an output signal from the ECU 30 to provide a throttle valve. Valves 23 are controlled to open and close. By opening and closing the throttle valve 23, the amount of intake air introduced into the combustion chamber 5 through the intake duct 20 is adjusted. In the present embodiment, the intake duct is constituted by the intake duct 20, the surge tank 16, the first intake path 15a, the second intake path 15b, and the like. In the vicinity of the throttle valve 23, a throttle sensor 25 for detecting its opening (throttle opening TA) is provided. An exhaust manifold 14 is connected to the exhaust port 9 of each cylinder. Then, the exhaust gas after combustion is discharged to an exhaust duct (not shown) through the exhaust manifold 14.
さらに、 本実施の形態では、 公知の排気ガス循環 (E G R )装置 5 1が設けら れている。 この E G R装置 5 1は、 排気ガス循環通路としての E G R通路 5 2と、 同通路 5 2の途中に設けられた排気ガス循環弁としての E G Rバルブ 5 3とを含 んでいる。 E G R通路 5 2は、 スロットル弁 2 3の下流側の吸気ダクト 2 0と、 排気ダクトとの間を連通するよう設けられている。 また、 E G Rバルブ5 3は、 弁座、 弁体及びステップモータ (いずれも図示せず) を内蔵しており、 これらに より EGR機構が構成されている。 EGRバルブ 53の開度は、 ステップモータ が弁体を弁座に対して断続的に変位させることにより、 変動する。 そして、 EG Rバルブ 53が開くことにより、 排気ダク 卜へ排出された排気ガスの一部が EG R通路 52へと流れる。 その排気ガスは、 EGRバルブ 53を介して吸気ダク ト 20へ流れる。 すなわち、 排気ガスの一部が EG R装置 51によって吸入混合気 中に再循環する。 このとき、 EGRバルブ 53の開度が調節されることにより、 排気ガスの再循環量が調整されるのである。 Further, in the present embodiment, a known exhaust gas circulation (EGR) device 51 is provided. The EGR device 51 includes an EGR passage 52 as an exhaust gas circulation passage, and an EGR valve 53 as an exhaust gas circulation valve provided in the passage 52. The EGR passage 52 is provided to communicate between the intake duct 20 downstream of the throttle valve 23 and the exhaust duct. The EGR valve 53 has a built-in valve seat, valve body, and step motor (all not shown). The EGR mechanism is configured. The opening degree of the EGR valve 53 fluctuates when the step motor intermittently displaces the valve body with respect to the valve seat. When the EGR valve 53 opens, a part of the exhaust gas discharged to the exhaust duct flows to the EGR passage 52. The exhaust gas flows to the intake duct 20 via the EGR valve 53. That is, a part of the exhaust gas is recirculated into the intake air-fuel mixture by the EGR device 51. At this time, by adjusting the opening of the EGR valve 53, the recirculation amount of the exhaust gas is adjusted.
さて、 上述した ECU 30は、 デジタルコンピュータからなっており、 双方向 性バス 31を介して相互に接続された RAM (ランダムアクセスメモリ) 32、 ROM (リードオンリメモリ) 33、 マイクロプロセッサからなる CPU (中央 処理装置) 34、 入力ポー卜 35及び出力ポート 36を具備している。  The above-described ECU 30 is formed of a digital computer, and a RAM (random access memory) 32, a ROM (read-only memory) 33, and a CPU (microprocessor) connected to each other via a bidirectional bus 31. Central processing unit) 34, input port 35 and output port 36.
アクセルペダル 24には、 当該アクセルペダル 24の踏込み量に比例した 出 力電圧を発生するアクセルセンサ 26 Aが接続され、 該アクセルセンサ 26 Aに よりアクセル開度 AC CPが検出される。 当該アクセルセンサ 26 Aの出力電圧 は、 AD変換器 37を介して入力ポート 35に入力される。 また、 同じくァクセ ルペダル 24には、 アクセルペダル 24の踏込み量が 「0」 であることを検出す るための全閉スィッチ 26 Bが設けられている。 すなわち、 この全閉スィッチ 2 6Bは、 アクセルペダル 24の踏込み量が 「0」 である場合に全閉信号として 「1」 の信号を、 そうでない場合には 「0」 の信号を発生する。 そして、 該全閉 スィッチ 26 Bの出力電圧も入力ポート 35に入力されるようになっている。 また、 上死点センサ 27は例えば 1番気筒 1 aが吸気上死点に達したときに出 力パルスを発生し、 この出力パルスが入力ポート 35に入力される。 クランク角 センサ 28は例えばクランクシャフ卜が 30° C A回転する毎に出力パルスを発 生し、 この出力パルスが入力ポー卜に入力される。 CPU 34では上死点センサ 27の出力パルスとクランク角センサ 28の出力パルスからクランク位置ゃェン ジン回転数 NEが算出される (読み込まれる) 。 さらに、 前記シャフト 1 8の回転角度は、 スヮ一ルコントロールバルブセンサ 2 9により検出され、 これによりスワールコント口一ノレパリレブ (S C V ) 1 7の 開度が検出されるようになっている。 そして、 スヮ一ルコントローソレパリレブセン サ 2 9の出力は AZD変換器 3 7を介して入力ポート 3 5に入力される。 An accelerator sensor 26A that generates an output voltage proportional to the amount of depression of the accelerator pedal 24 is connected to the accelerator pedal 24, and the accelerator sensor 26A detects the accelerator opening ACCP. The output voltage of the accelerator sensor 26 A is input to the input port 35 via the AD converter 37. Similarly, the accelerator pedal 24 is provided with a fully-closed switch 26B for detecting that the depression amount of the accelerator pedal 24 is "0". That is, the fully closed switch 26B generates a signal of “1” as a fully closed signal when the depression amount of the accelerator pedal 24 is “0”, and generates a signal of “0” otherwise. The output voltage of the fully closed switch 26 B is also input to the input port 35. The top dead center sensor 27 generates an output pulse when the first cylinder 1a reaches the intake top dead center, for example, and this output pulse is input to the input port 35. The crank angle sensor 28 generates an output pulse every time the crankshaft rotates 30 ° CA, for example, and this output pulse is input to the input port. The CPU 34 calculates (reads) the crank position engine speed NE from the output pulse of the top dead center sensor 27 and the output pulse of the crank angle sensor 28. Further, the rotation angle of the shaft 18 is detected by a swirl control valve sensor 29, whereby the opening degree of the swirl control port 17 (SCV) 17 is detected. Then, the output of the scale controller 29 is input to the input port 35 via the AZD converter 37.
併せて、 前記スロッ トルセンサ 2 5により、 スロッ トル開度 T Aが検出される c このスロッ トルセンサ 2 5の出力は A/D変換器 3 7を介して入力ポート 3 5に 入力される。 In addition, by the slot Torusensa 2 5, c output of the slot Torusensa 2 5 throttle opening TA is detected is input to the input port 35 via an A / D converter 3 7.
加えて、 本実施の形態では、 サージタンク 1 6内の圧力 (吸気圧 P I M) を検 出する吸気圧センサ 6 1が設けられている。 さらに、 エンジン 1の冷却水の温度 (冷却水温 T HW) を検出する水温センサ 6 2が設けられている。 これら両セン サ 6 1 , 6 2の出力も AZD変換器 3 7を介して入力ポート 3 5に入力されるよ うになっている。  In addition, in the present embodiment, an intake pressure sensor 61 for detecting the pressure (intake pressure PIM) in the surge tank 16 is provided. Further, a water temperature sensor 62 for detecting the temperature of the cooling water of the engine 1 (cooling water temperature THW) is provided. The outputs of these sensors 61 and 62 are also input to the input port 35 via the AZD converter 37.
本実施の形態において、 これらスロッ トルセンサ 2 5、 アクセルセンサ 2 6 A、 全閉スィツチ 2 6 B、 上死点センサ 2 7、 クランク角センサ 2 8、 スワールコン 卜口一ルバ'ルブセンサ 2 9、 吸気圧センサ 6 1及び水温センサ 6 2等により、 運 転状態が検出される。  In the present embodiment, the throttle sensor 25, the accelerator sensor 26A, the fully closed switch 26B, the top dead center sensor 27, the crank angle sensor 28, the swirl control port and the valve sensor 29, the intake pressure The operation state is detected by the sensor 61, the water temperature sensor 62, and the like.
一方、 出力ポート 3 6は、 対応する駆動回路 3 8を介して各燃料噴射弁 1 1、 各ステップモータ 1 9, 2 2、 ィグナイタ 1 2及び E G Rバルブ 5 3 (ステップ モータ) に接続されている。 そして、 E C U 3 0は各センサ等 2 5〜2 9 , 6 1 , 6 2からの信号に基づき、 R O M 3 3内に格納された制御プログラムに従い、 燃 料噴射弁 1 1、 ステップモータ 1 9 , 2 2、 ィグナイタ 1 2及び E G Rバルブ 5 3等を好適に制御する。  On the other hand, the output port 36 is connected to each fuel injector 11, each step motor 19, 22, igniter 12, and EGR valve 53 (step motor) via the corresponding drive circuit 38. . Then, based on signals from the sensors 25 to 29, 61, and 62, the ECU 30 according to the control program stored in the ROM 33, the fuel injection valve 11, the step motor 19, 22, igniter 12 and EGR valve 53 are suitably controlled.
次に、 上記構成を備えた成層燃焼エンジンのアイ ドル回転数制御装置における 負荷入力に応じた燃料増加量の補正に関するプログラムについて、 フローチヤ一 トを参照して説明する。  Next, a program relating to the correction of the fuel increase amount according to the load input in the idle speed control device of the stratified combustion engine having the above configuration will be described with reference to a flowchart.
すなわち、 図 7は、 エンジン 1のアイドリング時において、 成層燃焼が実行さ れていることを前提として ECU 30により実行される 「アイドル回転数制御ル 一チン」 を示すフローチャートであって、 例えば、 所定クランク角毎の割り込み で実行される。 That is, Fig. 7 shows that stratified combustion is performed when the engine 1 is idling. 6 is a flowchart showing an “idle speed control routine” executed by the ECU 30 on the premise that the routine is executed, and is executed, for example, by interruption every predetermined crank angle.
処理がこのルーチンへ移行すると、 ECU 30は、 先ず、 ステップ 101にお いて、 アイドルアップ要求があつたか否かを判断する。 ここで、 アイドルアップ 要求というのは、 運転者によりエアコンスィッチがオンされた場合、 パワーステ ァリング (ハ。ヮステ) が操作された場合、 シフト位置が Nレンジから Dレンジに 切換えられた場合、 その他の電気負荷が加えられた場合等が挙げられる。  When the process proceeds to this routine, the ECU 30 first determines in step 101 whether an idle-up request has been issued. Here, the idle-up request means that when the air conditioner switch is turned on by the driver, when power steering (C. ヮ ste) is operated, when the shift position is switched from the N range to the D range, For example, when an electric load is applied.
そして、 ステップ 101においてアイドルアップ要求があつたと判断されない 場合には、 アイドルアップを行う必要がないものとして、 その後の処理を一旦終 了する。  If it is not determined in step 101 that the idle-up request has been issued, it is determined that there is no need to perform idle-up, and the subsequent processing is temporarily terminated.
これに対し、 アイドルアップ要求があった場合には、 ステップ 102へ移行す る。 ステップ 102においては、 各種負荷に対応し、 燃料量換算された補正項 (例えば、 エアコン補正項 DC A C、 パワステ補正項 DP S、 電気負荷補正項 D B、 トルコン補正項 DE等) を総て加算するとともに、 その加算した値を仮のァ ィドルァップ補正項 t P Eとして設定する。  On the other hand, if there is an idle-up request, the process proceeds to step 102. In step 102, all the fuel amount-converted correction terms (for example, air conditioner correction term DC AC, power steering correction term DPS, electric load correction term DB, torque converter correction term DE, etc.) corresponding to various loads are added. At the same time, the sum is set as a temporary idle-up correction term t PE.
さらに、 E CU 30は、 続くステップ 103において、 今回算出された仮のァ ィドルアップ補正項 t PEに対して、 燃料の増加に時間遅れを生じさせるための 演算を施し、 その結果の値を新たなアイドルアップ補正項 PEとして設定する。 すなわち、 前回のアイドルアップ補正項 PEi- 1 を (n—l)倍し、 それに今回 算出された仮のアイドルアップ補正項 t PEを加算した値を nで除算し、 その値 を新たなアイドルアップ補正項 PEとして設定する。  Further, in the following step 103, the ECU 30 performs an operation to cause a time delay in the increase in fuel with respect to the temporary idle-up correction term t PE calculated this time, and adds the result to a new value. Idle-up correction term Set as PE. That is, the previous idle-up correction term PEi-1 is multiplied by (n-l), and the value calculated by adding the temporary idle-up correction term t PE calculated this time to n is divided by n. Correction term Set as PE.
そして、 ステップ 104においては、 今回算出設定した新たなアイドルアップ 補正項 PEを最終噴射量 QFに反映させる。 つまり、 ECU 30は、 別途算出し たアイドルアップ分を含まない基本噴射量 QB AS Eに対し、 上記アイドルアツ プ補正項 PEを加算した値を最終噴射量 QFとして設定する。 そして、 その後の 処理を一旦終了する。 Then, in step 104, the new idle-up correction term PE calculated and set this time is reflected in the final injection amount QF. That is, the ECU 30 sets a value obtained by adding the idle-up correction term PE to the separately calculated basic injection amount QB ASE not including the idle-up amount as the final injection amount QF. And then The process ends once.
このように、 上記「アイドルアップ制御ルーチン」 では、 成層燃焼が行われて いる場合において、 アイドルアップ要求があった場合には、 アイドルアップ補正 項 P Eの分だけ燃料噴射量の増量が行われる。 また、 このアイドルアップ補正項 P Eの算出に際しては、 燃料の増加に時間遅れを生じさせるための演算の結果の 値が用いられる。 なお、 ここでは説明しなかったが、 均質燃焼が行われている場 合において、 アイドルアップ要求があった場合には、 従来と同様、 吸入空気量 (本実施の形態ではスロットル開度) が増大させられることで、 アイドルアップ が行われる。  As described above, in the above-mentioned “idle-up control routine”, when stratified combustion is being performed, if an idle-up request is made, the fuel injection amount is increased by the amount of the idle-up correction term PE. In calculating the idle-up correction term PE, a value of a calculation result for causing a time delay in increasing the fuel is used. Although not described here, the intake air amount (throttle opening in the present embodiment) increases as in the conventional case when there is an idle-up request when homogeneous combustion is performed. By being let go, idle up is performed.
次に、 本実施の形態の作用及び効果について説明する。  Next, the operation and effect of the present embodiment will be described.
(ィ)本実施の形態では、 エンジン 1のアイドリング時において、 そのェンジ ン 1の燃焼状態が成層燃焼であるときには、 燃料噴射弁 1 1から直接的に供給さ れる燃料量が増加させられる。 ここで、 負荷が加えられることが検出されてから、 実際に負荷がエンジン 1に加わるまでの間には、 所定の時間を要する。 例えば、 図 8に示すように、 エアコンスィッチが運転者によりオンされてから、 実際にェ アコンのマグネットスイッチがオンされるまでには、 ディレ一時間が存在する。 一方、 E C U 3 0による燃料量の増加指令がなされてから実際に気筒 1 a内に 供給される燃料量は、 上記ディレーに比べて極めて短時間で増加する。 これに対 し、 本実施の形態では、 燃料の増加に時間遅れを生じさせるための演算の結果に よって、 燃料量は同図 2点鎖線で示すように、 徐々に増加する。 このため、 ェン ジン 1に実際に加わる負荷が増加するのに所定の時間がかかるのに対応して、 燃 料量が増加するのにも時間がかかることとなる。 従って、 従来技術とは異なり、 負荷がさほど大きくないのに燃料量のみが増大してしまうことがなくなる。 その 結果、 エンジン回転数 N Eが上がり過ぎてしまうのを防止することができる。  (A) In the present embodiment, when the engine 1 is idling and the combustion state of the engine 1 is stratified combustion, the amount of fuel directly supplied from the fuel injection valve 11 is increased. Here, a predetermined time is required from when the load is detected to when the load is actually applied to the engine 1. For example, as shown in Fig. 8, there is a delay between the time the air conditioner switch is turned on by the driver and the time the magnet switch of the air conditioner is actually turned on. On the other hand, the amount of fuel actually supplied into the cylinder 1a after the command to increase the fuel amount by the ECU 30 is increased in a much shorter time than the delay described above. On the other hand, in the present embodiment, the amount of fuel gradually increases as shown by the two-dot chain line in FIG. For this reason, it takes time for the fuel amount to increase in response to the predetermined time required for the load actually applied to the engine 1 to increase. Therefore, unlike the prior art, the fuel amount alone does not increase even though the load is not so large. As a result, it is possible to prevent the engine speed NE from becoming too high.
(口) また、 本実施の形態では、 負荷の程度に応じて、 燃料量の増加量たるァ ィドルアップ補正項 P Eを可変とすることとした。 このため、 負荷の種類や程度 が異なっていても、 それによつて、 エンジン回転数 N Eが増大してしまうのを確 実に防止することができる。 (Mouth) In the present embodiment, the idle-up correction term PE, which is the amount of increase in the fuel amount, is made variable according to the degree of load. Therefore, the type and degree of load Therefore, it is possible to surely prevent the engine speed NE from increasing even if the values are different.
尚、 本実施の形態は上記に限定されるものではなく、 次のように変更してもよ い。  The present embodiment is not limited to the above, and may be changed as follows.
( 1 ) 上記実施の形態では、 アイドルアップ補正項 P Eを算出する際に燃料の 増加に時間遅れを生じさせるための演算をすることにより、 燃料の増加率に制限 を設けることとしたが、 これに加えて、 燃料量の増加のタイミングを遅らせるこ と、 即ち、 無駄時間を生じさせることによって、 エンジン回転数 N Eの増大を抑 制するようにしてもよい。 このような構成とすることにより、 燃料量の増大を、 負荷の増大に合わせやすいものとすることができ、 エンジン回転数 N Eの増大防 止という効果を得ることができる。  (1) In the above embodiment, when calculating the idling-up correction term PE, a calculation was performed to cause a time delay in the increase in fuel, thereby limiting the rate of increase in fuel. In addition, the increase in the engine speed NE may be suppressed by delaying the timing of the increase in the fuel amount, that is, by causing a dead time. With such a configuration, the increase in the amount of fuel can be easily adjusted to the increase in the load, and the effect of preventing an increase in the engine speed NE can be obtained.
また、 タイミングを遅らせる場合の遅延時間を負荷の程度に応じて可変とする ようにしてもよい。 この場合には、 上記効果がより確実に奏される。  Further, the delay time when the timing is delayed may be made variable according to the degree of load. In this case, the above-described effects are more reliably achieved.
( 2 ) 上記実施の形態では説明を省略したが、 負荷が軽減 (又は解除) された ことが検出された場合にも、 上記同様、 燃料の減少に時間遅れを生じさせるため の演算をする等して、 燃^ f量の減少率に制限を課するようにしてもよい。 この場 合には、 負荷がさほど小さくなつていないのに、 燃料量のみが急減してしまうこ とがなくなる。 その結果、 エンジン回転数 N Eの落ち込みを防止することができ る。  (2) Although the description has been omitted in the above-described embodiment, even when it is detected that the load has been reduced (or released), an operation for causing a time delay in reducing the fuel is performed as described above. Then, a restriction may be imposed on the rate of decrease in the amount of fuel. In this case, the fuel quantity alone does not suddenly decrease even though the load is not so small. As a result, it is possible to prevent the engine speed NE from dropping.
( 3 ) 上記実施の形態では、 均質燃焼時には、 スロットル弁 2 3及びステップ モータ 2 2よりなる電子制御式スロットル機構を採用することで吸入空気量を調 整することとした。 これに対し、 吸気通路に設けられたスロットル弁 2 3をバイ パスするバイパス吸気通路に設けられたアイドルスピードコント口一ノレパリレブ及 び該バルブを開閉するためのァクチユエ一夕よりなる I S C機構によって吸入空 気量を調整することとしてもよい。  (3) In the above-described embodiment, at the time of homogeneous combustion, the intake air amount is adjusted by adopting an electronically controlled throttle mechanism including the throttle valve 23 and the step motor 22. On the other hand, the intake air is controlled by the ISC mechanism consisting of an idle speed control port provided in the bypass intake passage that bypasses the throttle valve 23 provided in the intake passage and an actuator that opens and closes the valve. The air volume may be adjusted.
( 4 ) 上記実施の形態では、 筒内噴射式のエンジン 1に本発明を具体化するよ うにしたが、 いわゆる一般的な成層燃焼、 或いは弱成層燃焼を行うタイプのもの に具体化してもよい。 例えば吸気ポート 7 a, 7 bの吸気弁 6 a , 6 bの傘部の 裏側に向かって噴射するタイプのものも含まれる。 また、 吸気弁 6 a, 6 b側に 燃料噴射弁が設けられてはいるが、 直接シリンダボア (燃焼室 5 ) 内に噴射する タイプのものも含まれる。 (4) In the above embodiment, the present invention is applied to the in-cylinder injection type engine 1. However, the present invention may be embodied in a type that performs so-called general stratified combustion or weak stratified combustion. For example, a type that injects fuel toward the back side of the umbrella of the intake valves 6a and 6b of the intake ports 7a and 7b is included. In addition, although fuel injection valves are provided on the intake valves 6a and 6b, those that directly inject into the cylinder bore (combustion chamber 5) are also included.
( 5 ) さらに、 上記実施の形態では、 内燃機関としてガソリンエンジン 1の場 合に本発明を具体化したが、 その外にもディ一ゼルェンジンの場合等にも具体化 できる。  (5) Further, in the above embodiment, the present invention is embodied in the case of the gasoline engine 1 as the internal combustion engine. However, the present invention can be embodied in the case of diesel engine and the like.
次に、 上記構成を備えた成層燃焼エンジンのアイドル回転数制御装置における回 転数に応じた燃料増加量の補正に関するプログラムについて、 フローチヤ一卜を 参照して説明する。 Next, a program relating to the correction of the fuel increase amount according to the rotational speed in the idling rotational speed control device for a stratified combustion engine having the above-described configuration will be described with reference to a flowchart.
すなわち、 図 9は、 エンジン 1のアイドリング時において、 成層燃焼が実行さ れていることを前提として E C U 3 0により実行される 「アイドルアップ制御ル 一チン」 を示すフローチャートであって、 例えば、 所定クランク角毎の割り込み で実行される。  That is, FIG. 9 is a flowchart showing an “idle-up control routine” executed by the ECU 30 on the assumption that stratified combustion is being performed when the engine 1 is idling. This is executed by an interrupt for each crank angle.
処理がこのルーチンへ移行すると、 E C U 3 0は、 先ず、 ステップ 2 0 1にお いて、 アイドルアップ要求があつたか否かを判断する。 ここで、 アイドルアップ 要求というのは、 外部負荷が加わった場合をいい、 例えば、 運転者によりエアコ ンスィッチがオンされた場合、 パワーステアリング (パワステ) が操作された場 合、 シフト位置が Nレンジから Dレンジに切換えられた場合、 その他の電気負荷 が加えられた場合等が挙げられる。  When the process proceeds to this routine, the ECU 30 first determines in step 201 whether an idle-up request has been issued. Here, the idle-up request is when an external load is applied. For example, when the driver turns on the air switch, when the power steering (power steering) is operated, the shift position is shifted from the N range. When switching to the D range, other electric loads are applied.
そして、 ステップ 2 0 1においてアイドルアップ要求があつたと判断されない 場合には、 アイドルアップを行う必要がないものとして、 その後の処理を一旦終 了する。  If it is not determined in step 201 that the idle-up request has been issued, it is determined that there is no need to perform idle-up, and the subsequent processing is temporarily terminated.
これに対し、 アイドルアップ要求があった場合には、 アイドルアップを実行す るべくステップ 2 0 2へ移行する。 ステップ 2 0 2においては、 アイドルアップ を行う直前のェンジン回転数 N Eを読み込む。 On the other hand, if there is an idle-up request, the process proceeds to step 202 to execute the idle-up. In step 202, idle up Read the engine speed NE immediately before performing.
さらに、 続くステップ 203においては、 アイドルアップを行う直前のェンジ ン回転数 NEに基づき、 補正係数 Kを求め、 設定する。 ここで、 この補正係数 K の設定に際しては、 図 1 0に示すようなマップが参酌される。 すなわち、 アイド ルアップを行う直前のエンジン回転数 NEが高い程 ( 1く ひ 2く α 3く…く a n) 、 補正係数 Kの値は小さい値に設定される (1. 0≥K 1 >K2 >K3 >〜 >Κη > 0) 。  Further, in the following step 203, a correction coefficient K is obtained and set based on the engine speed NE immediately before performing the idle-up. Here, in setting the correction coefficient K, a map as shown in FIG. 10 is taken into consideration. In other words, the higher the engine speed NE immediately before the idle-up is, the higher the value of the correction coefficient K is set to a smaller value (1.0 ≥ K 1> K2). > K3> ~> Κη> 0).
そして、 ステップ 204においては、 上述したように設定される外部負荷に対 する見込み制御量 t ΡΕに対し、 今回設定された補正係数 Kを乗算した値を最終 的なアイドルアップ量 PEとして設定する。  Then, in step 204, a value obtained by multiplying the expected control amount tΡΕ for the external load set as described above by the correction coefficient K set this time is set as the final idle-up amount PE.
さらに、 ステップ 205において、 ECU 30は、 今回算出設定した最終的な アイドルアップ量 PEを最終噴射量 QFに反映させる。 つまり、 E CU 30は、 別途算出した基本噴射量 QB AS Eに対し、 上記最終的なアイドルアップ量 PE を加算した値を、 最終噴射量 QFとして設定する。 そして、 その後の処理を一 旦終了する。  Further, in step 205, the ECU 30 reflects the final idle-up amount PE calculated and set this time to the final injection amount QF. That is, the ECU 30 sets a value obtained by adding the final idle-up amount PE to the separately calculated basic injection amount QB ASE as the final injection amount QF. Then, the subsequent processing ends once.
このように、 上記「アイドルアップ制御ルーチン」 では、 成層燃焼が行われて いる場合において、 アイドルアップ要求があった場合には、 最終的なアイドルァ ップ量 PEの分だけ燃料噴射量の増量が行われる。 また、 このアイドルアップ量 PEの算出に際しては、 アイドルアップ直前のエンジン回転数 NEに基づき、 補 正が加えられる。 なお、 ここでは説明しなかったが、 均質燃焼が行われている場 合において、 アイドルアップ要求があった場合には、 従来と同様、 吸入空気量 (本実施の形態ではスロッ トル開度) が増大させられることで、 アイドルアップ が行われる。  As described above, in the above-mentioned "idle-up control routine", when stratified combustion is performed, if there is an idle-up request, the fuel injection amount is increased by the final idle-up amount PE. Is performed. When calculating the idle-up amount PE, a correction is made based on the engine speed NE immediately before the idle-up. Although not described here, when there is an idling-up request during homogeneous combustion, the intake air amount (throttle opening in the present embodiment) is reduced in the same manner as before when the idle-up request is made. By being increased, idle-up is performed.
次に、 本実施の形態の作用及び効果について説明する。  Next, the operation and effect of the present embodiment will be described.
(ィ)本実施の形態では、 エンジン 1のアイドリングであって、 かつ、 そのェ ンジン 1の燃焼状態が成層燃焼であるときには、 エンジン 1に負荷が加えられた 場合に、 燃料噴射弁 1 1から直接的に供給される燃料量が増加させられる。 ここ で、 成層燃焼時には、 そのときどきのエンジン回転数 N Eに応じて、 燃料量の変 化が燃焼に大きく影響してしまう。 例えば、 図 1 1に示すように、 アイドルアツ プ直前のェンジン回転数 N Eが高い状態におし、て、 低し、場合と同等の燃料量を増 量させた場合には、 エンジン回転数 N Eの変化量が増大し、 エンジン回転数 N E が上がり過ぎてしまう。 (A) In this embodiment, when the engine 1 is idling and the combustion state of the engine 1 is stratified combustion, a load is applied to the engine 1. In this case, the amount of fuel directly supplied from the fuel injection valve 11 is increased. Here, at the time of stratified combustion, a change in the amount of fuel greatly affects combustion depending on the engine speed NE at that time. For example, as shown in Fig. 11, when the engine speed NE immediately before idle-up is high, the engine speed is lowered, and the fuel amount is increased by the same amount, the engine speed NE Change increases, and the engine speed NE rises too high.
これに対し、 本実施の形態では、 アイドルアップが行われる直前でのエンジン 回転数 N Eに応じて、 アイドルアップ量に補正が加えられる。 より詳しくは、 ァ ィドルァップ直前のェンジン回転数 N Eが高い場合には、 該回転数 N Eが低い場 合に比べて、 補正係数 Kが小さいものとなり、 燃料量の増量の程度 (最終的なァ ィドルアップ量 P E )が小さいものとなる。 そのため、 アイドルアップに際し、 エンジン回転数 N Eが上がり過ぎてしまうことがない。  In contrast, in the present embodiment, the idle-up amount is corrected according to the engine speed NE immediately before the idle-up is performed. More specifically, when the engine speed NE immediately before idling is high, the correction coefficient K is smaller than when the engine speed NE is low, and the degree of increase in the fuel amount (final idle-up amount). PE) becomes smaller. Therefore, when idling up, the engine speed NE does not increase too much.
(口) また、 特に、 補正係数 Kの適正化を図ることで、 アイドルアップ時のェ ンジン回転数 N Eの変ィ匕量を同一にすることができる。 従って、 かかる場合には、 当初から予定した通りの回転数 N Eの増加を期待することができる。  (Mouth) In addition, by appropriately adjusting the correction coefficient K, it is possible to make the amount of change in the engine speed NE at the time of idling-up the same. Therefore, in such a case, an increase in the rotational speed NE as expected from the beginning can be expected.
次に、 アイ ドルアップが行われた後における、 エンジン回転数 N Eのフィード バック制御 (最終噴射量 Q Fを増減制御することで、 エンジン回転数 N Eを目標 とする回転数に制御すること) を説明する。  Next, feedback control of the engine speed NE after idle-up (controlling the engine speed NE to the target speed by increasing or decreasing the final injection quantity QF) is explained. I do.
すなわち、 図 1 2は、 エンジン 1のアイドリング時において、 成層燃焼が実行 されていることを前提として、 さらに、 上述したアイドルアップ制御が実行され た後において、 E C U 3 0により実行される 「フィードバック制御ルーチン」 を 示すフローチャートであって、 例えば、 所定クランク角毎の割り込みで実行され る o  That is, FIG. 12 is based on the premise that stratified combustion is being performed at the time of idling of the engine 1, and furthermore, the “feedback control” executed by the ECU 30 after the above-described idle-up control is executed. Is a flowchart showing a “routine”, for example, executed by interruption every predetermined crank angle.
処理がこのルーチンへ移行すると、 E C U 3 0は、 先ず、 ステップ 3 0 1にお いて、 フィードバック制御条件が成立したか否かを判断する。 ここで、 フィード バック制御条件というのは、 例えば、 アイドルアップ後において、 実際のェンジ ン回転数 NE力、 一旦目標回転数に達したことがあること等が挙げられる。 When the process proceeds to this routine, the ECU 30 first determines in step 301 whether the feedback control condition has been satisfied. Here, the feedback control condition refers to, for example, the actual engine Rotation speed NE force, that the target rotation speed has been reached once.
そして、 ステップ 30 1においてフィードバック制御条件が成立していない場 合には、 未だフィードバック制御を行う段階にきていないものとして、 その後 の処理を一旦終了する。  If the feedback control condition is not satisfied in step 301, it is determined that the feedback control has not yet been performed, and the subsequent processing is temporarily terminated.
これに対し、 フィードバック制御条件が成立している場合には、 以後において、 フィードバック制御を実行するべくステップ 302へ移行する。 ステップ 302 においては、 現在のエンジン回転数 NEを読み込む。  On the other hand, when the feedback control condition is satisfied, the process proceeds to step 302 to execute the feedback control. In step 302, the current engine speed NE is read.
さらに、 続くステップ 303においては、 今回読み込んだエンジン回転数 NE に基づき、 補正係数 Lを求め、 設定する。 ここで、 この補正係数 Lの設定に際し ては、 図 1 3に示すようなマップが参酌される。 すなわち、 フィードバック制御 に際し制御量 D Iを最終噴射量 Q Fに反映する直前のエンジン回転数 N Eが高い 程 (/31く yS S ^ S ySn) 補正係数 Lの値は小さい値に設定される (1. 0≥L 1 >L 2〉L 3 ">L n〉 0) 。  Further, in the following step 303, a correction coefficient L is obtained and set based on the engine speed NE read this time. Here, when setting the correction coefficient L, a map as shown in FIG. 13 is taken into consideration. In other words, the higher the engine speed NE immediately before reflecting the control amount DI to the final injection amount QF during feedback control, the higher the value of the correction coefficient L is set to a smaller value (1/31 <yS S ^ S ySn) (1. 0≥L 1> L 2> L 3 "> L n> 0).
そして、 ステップ 304においては、 フィードバック用積分定数 t KD Iに対 し、 今回設定された補正係数 Lを乗算した値を、 前回の制御量 D I i-1 に加算し、 その値を、 今回の制御量 D Iとして設定する。 なお、 フィードバック用積分定数 t KD Iは、 現在のエンジン回転数 NEが目標回転数よりも小さいか否かによ つて正の値及び負の値をとりうる。  Then, in step 304, a value obtained by multiplying the feedback integration constant tKDI by the correction coefficient L set this time is added to the previous control amount DIi-1, and the value is added to the current control amount DIi-1. Set as DI quantity. The feedback integration constant tKDI can take a positive value or a negative value depending on whether the current engine speed NE is smaller than the target engine speed.
さらに、 ステップ 305において、 E CU 30は、 今回算出設定した制御量 D Iを最終噴射量 QFに反映させる。 そして、 その後の処理を一旦終了する。 このように、 上記「フィードバック制御ルーチン」では、 フィードバック制御 条件が成立した場合には、 今回の制御量 D Iの分だけ燃料噴射量の増減が行われ る。 また、 この制御量 D Iの設定に際しては、 制御量 D Iを反映する直前のェン ジン回転数 NEに基づき、 補正が加えられる。 なお、 ここでは説明しなかったが、 均質燃焼が行われている場合においては、 従来と同様、 吸入空気量 (本実施の形 態ではスロットル開度) が増減させられることで、 フィードバック制御が行われ る。 Further, in step 305, the ECU 30 reflects the control amount DI calculated and set this time on the final injection amount QF. Then, the subsequent processing ends once. As described above, in the above “feedback control routine”, when the feedback control condition is satisfied, the fuel injection amount is increased or decreased by the current control amount DI. When setting the control amount DI, a correction is made based on the engine speed NE immediately before the control amount DI is reflected. Although not described here, when homogeneous combustion is performed, the feedback control is performed by increasing or decreasing the intake air amount (throttle opening in the present embodiment) as in the past. I You.
次に、 本実施の形態の作用及び効果について説明する。  Next, the operation and effect of the present embodiment will be described.
(ハ)本実施の形態によれば、 上述した作用効果に加えて、 アイドルアップが 行われた後に、 エンジン回転数 N Eのフィードバック制御が燃料量の増減によつ て実行される。 このとき、 燃料量の増減が行われる時点でのエンジン回転数 N E に応じて、 燃料量の増減量が補正される。 従って、 アイドルアップ後のフィード バック制御時においても回転がばらつかないような燃料量の増減を確保すること ができる。  (C) According to the present embodiment, in addition to the above-described effects, after the idle-up is performed, the feedback control of the engine speed NE is executed by increasing or decreasing the fuel amount. At this time, the amount of increase or decrease in the fuel amount is corrected according to the engine speed NE at the time when the amount of fuel is increased or decreased. Therefore, even during the feedback control after the idle-up, it is possible to secure an increase or decrease in the fuel amount such that the rotation does not vary.
より詳しくは、 制御量 D Iを反映させる時点でのエンジン回転数 N Eが高い場 合には、 該回転数 N Eが低い場合に比較して、 補正係数 L、 ひいては燃料量の増 減の程度が小さい。 ここで、 上述したのと同様、 増減を行う時点での回転数 N E が高いほど、 同量だけ増減量した場合の回転数 N Eの変化が大きくなる傾向にな る。 従って、 本実施の形態により、 エンジン回転数 N Eが高い場合における回転 数の増減の程度が抑制されることとなり、 フィ一ドバック制御時のェンジン回転 数 N Eの増減をも抑制することができる。  More specifically, when the engine speed NE at the time when the control amount DI is reflected is high, the correction coefficient L and, consequently, the degree of increase and decrease in the fuel amount are smaller than when the engine speed NE is low. . Here, as described above, as the rotational speed NE at the time of increasing or decreasing increases, the change in the rotational speed NE when the amount of increase or decrease by the same amount tends to increase. Therefore, according to the present embodiment, the degree of increase / decrease in the engine speed when the engine speed NE is high is suppressed, and the increase / decrease in the engine speed NE during feedback control can also be suppressed.
尚、 実施の形態は上記に限定されるものではなく、 次のように変更してもよい c The embodiments are not limited to the above, it may be modified as follows c
( 1 ) 上記実施の形態では説明を省略したが、 負荷が軽減 (又は解除) された 場合、 すなわち、 アイドルアップを解除する場合にも、 アイドルアップを解除す る直前のェンジン回転数 N Eに応じて燃料量の減量を補正するようにしてもよい c この場合には、 エンジン回転数 N Eの落ち込みを防止することができる。 (1) Although the description has been omitted in the above embodiment, when the load is reduced (or released), that is, when the idle-up is released, the engine speed NE immediately before the release of the idle-up is also determined. weight loss of the fuel quantity in this case may c be corrected can be prevented a drop in the engine speed NE Te.
( 2 ) 上記実施の形態では、 均質燃焼時には、 スロットル弁 2 3及びステップ モータ 2 2よりなる電子制御式スロットル機構を採用することで吸入空気量を調 整することとした。 これに対し、 吸気通路に設けられたスロットル弁 2 3をバイ パスするバイパス吸気通路に設けられたアイドルスピードコントロールパリレブ 及び該バルブを開閉するためのァクチユエ一夕よりなる I S C機構によって吸入 空気量を調整することとしてもよい。 ( 3 ) 上記実施の形態では、 筒内噴射式のエンジン 1に本発明を具体化するよ うにしたが、 いわゆる一般的な成層燃焼、 或いは弱成層燃焼を行うタイプのもの に具体化してもよい。 例えば吸気ポート 7 a , 7 bの吸気弁 6 a , 6 bの傘部の 裏側に向かって噴射するタイプのものも含まれる。 また、 吸気弁 6 a , 6 b側に 燃料噴射弁が設けられてはいるが、 直接シリンダボア (燃焼室 5 ) 内に噴射する タイプのものも含まれる。 (2) In the above embodiment, during homogeneous combustion, the intake air amount is adjusted by employing an electronically controlled throttle mechanism including the throttle valve 23 and the step motor 22. On the other hand, the amount of intake air is reduced by an ISC mechanism consisting of an idle speed control parileb provided in a bypass intake passage that bypasses the throttle valve 23 provided in the intake passage and an actuator for opening and closing the valve. It may be adjusted. (3) In the above embodiment, the present invention is embodied in the in-cylinder injection type engine 1; however, the present invention may be embodied in a so-called general stratified combustion or weak stratified combustion type. . For example, a type in which the fuel is injected toward the back side of the head of the intake valves 6a and 6b of the intake ports 7a and 7b is included. In addition, although fuel injection valves are provided on the intake valves 6a and 6b side, there are also types that directly inject into the cylinder bore (combustion chamber 5).
( 4 ) さらに、 上記実施の形態では、 内燃機関としてガソリンエンジン 1の場 合に本発明を具体化したが、 その外にもディ一ゼルェンジンの場合等にも具体化 できる。  (4) Further, in the above-described embodiment, the present invention is embodied in the case of the gasoline engine 1 as the internal combustion engine. However, the present invention can be embodied in the case of diesel engine.
次に、 上記構成を備えた成層燃焼エンジンのアイドル回転数制御装置における燃 料噴射量に応じた燃料増加量の補正に関するプログラムについて、 フローチヤ一 トを参照して説明する。 ここでは、 前述した回転数に代えて燃料噴射量が燃料増 加量の補正に用いられる。 Next, a program relating to the correction of the fuel increase amount in accordance with the fuel injection amount in the idle speed control device for a stratified combustion engine having the above-described configuration will be described with reference to a flowchart. Here, the fuel injection amount is used for correcting the fuel increase amount instead of the above-described rotation speed.
すなわち、 図 1 4は、 エンジン 1のアイドリング時において、 成層燃焼が実行 されていることを前提として E C U 3 0により実行される 「アイドルアップ制御 ルーチン」 を示すフローチャートであって、 例えば、 所定クランク角毎の割り込 みで実行される。  That is, FIG. 14 is a flowchart showing an “idle-up control routine” executed by the ECU 30 on the assumption that stratified combustion is being performed when the engine 1 is idling. Executed at every interrupt.
処理がこのルーチンへ移行すると、 E C U 3 0は、 先ず、 ステップ 4 0 1にお いて、 アイドルアップ要求があつたか否かを判断する。 ここで、 アイドルアップ 要求というのは、 外部負荷が加わった場合をいい、 例えば、 運転者によりエアコ ンスィッチがオンされた場合、 パワーステアリング (パワステ) が操作された場 合、 シフト位置が Nレンジから Dレンジに切換えられた場合、 その他の電気負荷 が加えられた場合等が挙げられる。  When the process proceeds to this routine, the ECU 30 first determines in step 401 whether an idle-up request has been issued. Here, the idle-up request is when an external load is applied. For example, when the driver turns on the air switch, when the power steering (power steering) is operated, the shift position is shifted from the N range. When switching to the D range, other electric loads are applied.
そして、 ステップ 4 0 1においてアイドルアップ要求があつたと判断されない 場合には、 アイドルアップを行う必要がないものとして、 その後の処理を一旦終 了する。 これに対し、 アイドルアップ要求があった場合には、 アイドルアップを実行す るべくステップ 402へ移行する。 ステップ 402においては、 アイドルアップ を行う直前の最終噴射量 QF (燃料噴射量) を読み込む (認識する) 。 If it is not determined in step 401 that the idle-up request has been made, it is determined that there is no need to perform idle-up, and the subsequent processing is temporarily terminated. On the other hand, if there is an idle-up request, the process proceeds to step 402 to execute idle-up. In step 402, the final injection amount QF (fuel injection amount) immediately before performing idle-up is read (recognized).
さらに、 続くステップ 403においては、 アイドルアップを行う直前の最終噴 射量 QFに基づき、 補正係数 Kを求め、 設定する。 ここで、 この補正係数 Kの設 定に際しては、 図 15に示すようなマップが参酌される。 すなわち、 アイドルァ ップを行う直前の最終噴射量 QFが多いほど (q l < q 2く q 3く…く q n)、 補正係数 Kの値は小さい値に設定される (1. 0≥K 1〉K2 >K3 >〜〉Kn >0) 。  Further, in the following step 403, a correction coefficient K is obtained and set based on the final injection amount QF immediately before performing the idle-up. Here, when setting the correction coefficient K, a map as shown in FIG. 15 is taken into consideration. That is, as the final injection amount QF immediately before performing the idle-up is larger (ql <q2 く q3 く ... qn), the value of the correction coefficient K is set to a smaller value (1.0≥K1 〉 K2> K3> ~〉 Kn> 0).
そして、 ステップ 404においては、 上述したように設定される外部負荷に対 する見込み制御量 t PEに対し、 今回設定された補正係数 Kを乗算した値を最終 的なアイドルアップ量 PEとして設定する。  In step 404, a value obtained by multiplying the expected control amount t PE for the external load set as described above by the correction coefficient K set this time is set as the final idle-up amount PE.
さらに、 ステップ 405において、 ECU30は、 今回算出設定した最終的な アイドルアップ量 PEを最終噴射量 QFに反映させる。 つまり、 ECU 30は、 別途算出した基本噴射量 Q BASEに対し、 上記最終的なアイドルァップ量 P E を加算した値を、 最終噴射量 QFとして設定する。 そして、 その後の処理を一 旦終了する。  Further, in step 405, the ECU 30 reflects the final idle-up amount PE calculated and set this time on the final injection amount QF. That is, the ECU 30 sets a value obtained by adding the final idle-up amount P E to the separately calculated basic injection amount Q BASE as the final injection amount QF. Then, the subsequent processing ends once.
このように、 上記「アイドルアップ制御ルーチン」 では、 成層燃焼が行われて いる場合において、 アイドルアップ要求があった場合には、 最終的なアイドルァ ップ量 PEの分だけ燃料噴射量の増量が行われる。 また、 このアイドルアップ量 PEの算出に際しては、 アイドルアップ直前の最終噴射量 QFに基づき、 補正が 加えられる。 なお、 ここでは説明しなかったが、 均質燃焼が行われている場合に おいて、 アイドルアップ要求があった場合には、 従来と同様、 吸入空気量 (本実 施の形態ではスロットル開度) が増大させられることで、 アイドルアップが行わ れる。  As described above, in the above-mentioned "idle-up control routine", when stratified combustion is performed, if there is an idle-up request, the fuel injection amount is increased by the final idle-up amount PE. Is performed. In calculating the idle-up amount PE, a correction is made based on the final injection amount QF immediately before the idle-up. Although not described here, if there is an idle-up request in homogeneous combustion, the intake air amount (throttle opening in the present embodiment) is the same as in the past when an idle-up request is made. Is increased, idle-up is performed.
次に、 本実施の形態の作用及び効果について説明する。 (ィ) 本実施の形態では、 エンジン 1のアイドリングであって、 かつ、 そのェ 1の燃焼状態が成層燃焼であるときには、 エンジン 1に負荷が加えられた 場合に、 燃料噴射弁 1 1から直接的に供給される燃料量が増加させられる。 ここ で、 成層燃焼時には、 そのときどきの最終噴射量 Q Fに応じて、 燃料量の変化が 燃焼に大きく影響してしまう。 例えば、 図 1 8に示すように、 アイドルアップ直 前の最終噴射量 Q Fが多い状態において、 少ない場合と同等の燃料量を増量させ た場合には、 エンジン回転数 N Eの変化量が増大し、 エンジン回転数 N Eが上が り過ぎてしまう。 逆に、 アイドルアップ直前の最終噴射量 Q Fが少ない状態では、 多い場合と同等の回転数変化を得ようとした場合には、 アイドルアップに必要な 燃料量は多いものとなる。 Next, the operation and effect of the present embodiment will be described. (A) In this embodiment, when the engine 1 is idling and the combustion state of the engine 1 is stratified combustion, when the load is applied to the engine 1, the fuel injection valve 11 directly The amount of fuel to be supplied is increased. Here, at the time of stratified combustion, a change in the amount of fuel greatly affects combustion depending on the final injection amount QF at that time. For example, as shown in Fig. 18, when the final injection amount QF immediately before idling-up is large and the fuel amount is increased by the same amount as when the final injection amount QF is small, the amount of change in the engine speed NE increases, Engine speed NE is too high. Conversely, when the final injection amount QF immediately before idling-up is small, if an attempt is made to obtain the same change in rotation speed as when it is large, the amount of fuel required for idling-up will be large.
これに対し、 本実施の形態では、 アイドルアップが行われる直前での最終噴射 量 Q Fに応じて、 アイドルアップ量に補正が加えられる。 より詳しくは、 図 1 7 に示すように、 負荷が加えられた時点 (アイドルアップが行われる直前) の最終 噴射量 Q Fが多い場合 [図 1 7 ( b ) ] には、 該噴射量 Q Fが少ない場合 [図 1 7 ( a ) ] に比べて、 補正係数 Kが小さいものとなり、 燃料量の増量の程度 (最 終的なアイドルアップ量 P E ) が小さいものとなる。 そして、 このような制御 を行うことで、 最終噴射量 Q Fが多い場合であっても少ない場合であっても、 同 等のエンジン回転数 N Eの上昇が得られる。 そのため、 アイドルアップに際し、 アイドルアップ直前の最終噴射量 Q Fが多い場合であっても、 エンジン回転数 N Eが上がり過ぎてしまうことがない。  On the other hand, in the present embodiment, the idle-up amount is corrected according to the final injection amount QF immediately before the idle-up is performed. More specifically, as shown in Fig. 17, when the final injection amount QF at the time when the load is applied (immediately before the idle-up is performed) is large [Fig. 17 (b)], the injection amount QF is The correction coefficient K is smaller and the degree of increase in the fuel amount (final idle-up amount PE) is smaller than in the case of small [Fig. 17 (a)]. By performing such control, the same increase in the engine speed NE can be obtained regardless of whether the final injection amount QF is large or small. Therefore, even when the final injection amount QF immediately before idling-up is large at the time of idling-up, the engine speed NE does not become too high.
(口) また、 このように、 補正係数 Kの適正化を図ることで、 アイドルアップ 時のエンジン回転数 N Eの変ィ匕量を同一にすることができる。 従って、 この場合 には、 当初から予定した通りの回転数 N Eの増加を期待することができる。  (Mouth) In addition, by optimizing the correction coefficient K in this way, it is possible to make the amount of change of the engine speed NE at the time of idling up the same. Therefore, in this case, an increase in the rotation speed NE as expected from the beginning can be expected.
(ハ) さらに、 図 1 6に示すように、 アイドルアップ直前の最終噴射量 Q Fが 多い場合には、 最終噴射量 Q Fが少ない場合と同等の回転数変ィ匕を得ようとした 場合には、 アイドルアップに必要な燃料量は少なくて済む。 その結果、 一層の燃 費の向上を図ることができる。 (C) Further, as shown in FIG. 16, when the final injection amount QF immediately before idling-up is large, when the final injection amount QF is small, when the same rotational speed change is attempted to be obtained, However, the amount of fuel required for idle-up is small. As a result, more fuel Costs can be improved.
次に、 アイドルアップが行われた後における、 エンジン回転数 NEのフィード バック制御 (最終噴射量 QFを増減制御することで、 エンジン回転数 NEを目標 とする回転数に制御すること) を説明する。  Next, the feedback control of the engine speed NE after the idle-up is performed (controlling the engine speed NE to the target speed by controlling the final injection amount QF to increase or decrease) will be described. .
すなわち、 図 1 9は、 エンジン 1のアイドリング時において、 成層燃焼が実行 さ れていることを前提として、 さらに、 上述したアイドルアップ制御が実行さ れた後において、 E CU 3 0により実行される 「フィードバック制御ルーチン」 を示すフローチャートであって、 例えば、 所定クランク角毎の割り込みで実行さ れる。  That is, FIG. 19 shows that the ECU 30 is executed by the ECU 30 after the above-described idle-up control is executed, on the assumption that the stratified combustion is executed when the engine 1 is idling. 4 is a flowchart illustrating a “feedback control routine”, which is executed, for example, by interruption every predetermined crank angle.
処理がこのル一チンへ移行すると、 E CU 3 0は、 先ず、 ステップ 5 0 1にお いて、 フィードバック制御条件が成立したか否かを判断する。 ここで、 フィード バック制御条件というのは、 例えば、 アイドルアップ後において、 実際のェンジ ン回転数 NEが、 一旦目標回転数に達したことがあること等が挙げられる。  When the process shifts to this routine, the ECU 30 first determines in step 501 whether or not the feedback control condition has been satisfied. Here, the feedback control condition includes, for example, that the actual engine speed NE has once reached the target speed after the idle-up.
そして、 ステップ 5 0 1においてフィードバック制御条件が成立していない場 合には、 未だフィードバック制御を行う段階にきていないものとして、 その後の 処理を一旦終了する。  Then, if the feedback control condition is not satisfied in step 501, it is determined that the feedback control has not yet been performed, and the subsequent processing is temporarily terminated.
これに対し、 フィードバック制御条件が成立している場合には、 以後において、 フィードバック制御を実行するべくステップ 5 0 2へ移行する。 ステップ 5 0 2 においては、 現在の最終噴射量 (燃料噴射量) QFを読み込む。 In contrast, when the feedback control condition is satisfied, in the subsequent, the process proceeds to Step 5 0 2 in order to execute the feedback control. In step 502, the current final injection amount (fuel injection amount) QF is read.
さらに、 続くステップ 5 0 3においては、 今回読み込んだ最終噴射量 QFに基 づき、 補正係数/ δを求め、 設定する。 ここで、 この補正係数 の設定に際しては、 図 20に示すようなマップが参酌される。 すなわち、 フィードバック制御に際し 制御量 D Iを最終噴射量 QFに反映する直前の最終噴射量 QFが多い程 (α 1 < α 2く α 3 < < α η) 、 補正係数Sの値は小さい値に設定される (1. 0≥β 1 > S 2 > S 3 >■■■> β η > 0) 。  Further, in the following step 503, a correction coefficient / δ is obtained and set based on the final injection amount QF read this time. Here, in setting the correction coefficient, a map as shown in FIG. 20 is taken into consideration. That is, the value of the correction coefficient S is set to a smaller value as the final injection amount QF immediately before reflecting the control amount DI to the final injection amount QF in the feedback control is larger (α 1 <α 2 and α 3 << αη). (1.0 ≥ β 1> S 2> S 3> ■■■> β η> 0).
そして、 ステップ 5 04においては、 フィードバック用積分定数 t KD Iに対 し今回設定された補正係数/ Sを乗算した値を、 前回の制御量 D l i- 1 に加算し、 その値を、 今回の制御量 D Iとして設定する。 なお、 フィ一ドバック用積分定数 t K D Iは、 現在のェンジン回転数 N Eが目標回転数よりも小さし、か否かによつ て正の値及び負の値をとりうる。 Then, in step 504, the feedback integration constant t KD I Then, the value multiplied by the correction coefficient / S set this time is added to the previous control amount D l i-1 and the value is set as the current control amount DI. The feedback integration constant t KDI can take a positive value or a negative value depending on whether or not the current engine speed NE is smaller than the target engine speed.
さらに、 ステップ 5 0 5において、 E C U 3 0は、 今回算出設定した制御量 D Further, in step 505, ECU30 is the control amount D calculated this time.
Iを最終噴射量 Q Fに反映させる。 そして、 その後の処理を一旦終了する。 このように、 上記「フィードバック制御ルーチン」 では、 フィードバック制御 条件が成立した場合には、 今回の制御量 D Iの分だけ燃料噴射量の増減が行われ る。 また、 この制御量 D Iの設定に際しては、 該制御量 D Iを反映する直前の最 終噴射量 Q Fに基づき、 補正が加えられる。 なお、 ここでは説明しなかったが、 均質燃焼が行われている場合においては、 従来と同様、 吸入空気量 (本実施の形 態ではスロットル開度) が増減させられることで、 フィードバック制御が行われI is reflected in the final injection amount QF. Then, the subsequent processing ends once. As described above, in the above “feedback control routine”, when the feedback control condition is satisfied, the fuel injection amount is increased or decreased by the current control amount DI. Further, when setting the control amount DI, a correction is made based on the final injection amount QF immediately before the control amount DI is reflected. Although not described here, when homogeneous combustion is performed, the feedback control is performed by increasing or decreasing the intake air amount (throttle opening in the present embodiment) as in the past. I
^ o ^ o
次に、 本実施の形態の作用及び効果について説明する。  Next, the operation and effect of the present embodiment will be described.
(ハ) 本実施の形態によれば、 上述した作用効果に加えて、 アイドルアップが 行われた後に、 エンジン回転数 N Eのフィードバック制御が燃料量の増減によつ て実行される。 このとき、 燃料量の増減が行われる時点での最終噴射量 Q Fに応 じて、 燃料量の増減量が補正される。 従って、 アイドルアップ後のフィードバッ ク制御時においても回転がばらつかないような燃料量の増減を確保することがで きる。  (C) According to the present embodiment, in addition to the above-described effects, after the idle-up is performed, the feedback control of the engine speed NE is executed by increasing or decreasing the fuel amount. At this time, the amount of increase or decrease of the fuel amount is corrected according to the final injection amount QF at the time when the amount of fuel is increased or decreased. Therefore, even during the feedback control after the idle-up, it is possible to secure an increase or decrease in the fuel amount such that the rotation does not vary.
より詳しくは、 制御量 D Iを反映させる時点での最終噴射量 Q Fが多い場合に は、 該噴射量 Q Fが少ない場合に比較して、 補正係数 、 ひいては燃料量の増減 の程度が小さい。 ここで、 上述したのと同様、 増減を行う時点での最終噴射量 Q Fが多いほど、 同量だけ増減量した場合の回転数 N Eの変ィ匕が大きくなる傾向に なる。 従って、 本実施の形態により、 最終噴射量 Q Fが多い場合における回転数 の増減の程度が抑制されることとなり、 フィードパ'ック制御時のェンジン回転数 N Eの増減をも抑制することができる。 More specifically, when the final injection amount QF at the time when the control amount DI is reflected is large, the degree of increase and decrease of the correction coefficient and, consequently, the fuel amount is smaller than when the injection amount QF is small. Here, as described above, the larger the final injection amount QF at the time of increasing or decreasing, the larger the tendency of the rotation speed NE to increase or decrease by the same amount. Therefore, according to the present embodiment, the degree of increase or decrease of the rotation speed when the final injection amount QF is large is suppressed, and the engine rotation speed during the feed-pack control is reduced. The increase / decrease of NE can also be suppressed.
尚、 実施の形態は上記に限定されるものではなく、 次のように変更してもよい。 Note that the embodiment is not limited to the above, and may be changed as follows.
( 1 ) 上記実施の形態では説明を省略したが、 負荷が軽減 (又は解除) された 場合、 すなわち、 アイドルアップを解除する場合にも、 アイドルアップを解除す る直前の最終噴射量 Q Fに応じて燃料量の減量を補正するようにしてもよい。 こ の場合には、 エンジン回転数 N Eの落ち込みを防止することができる。 (1) Although the description has been omitted in the above-described embodiment, when the load is reduced (or released), that is, even when the idle-up is released, the final injection amount QF immediately before the release of the idle-up is applied. Alternatively, the decrease in the fuel amount may be corrected. In this case, it is possible to prevent the engine speed NE from dropping.
( 2 ) 上記実施の形態では、 均質燃焼時には、 スロットル弁 2 3及びステップ モータ 2 2よりなる電子制御式スロットル機構を採用することで吸入空気量を調 整することとした。 これに対し、 吸気通路に設けられたスロットル弁 2 3をバイ パスするバイパス吸気通路に設けられたアイドルスピードコントロールパ'ルブ及 び該バルブを開閉するためのァクチユエ一夕よりなる I S C機構によって吸入空 気量を調整することとしてもよし、。  (2) In the above embodiment, during homogeneous combustion, the intake air amount is adjusted by employing an electronically controlled throttle mechanism including the throttle valve 23 and the step motor 22. On the other hand, the idle air speed control valve provided in the bypass intake passage that bypasses the throttle valve 23 provided in the intake passage and the ISC mechanism consisting of the actuator for opening and closing the valve are used to suction air. You can also adjust the volume.
( 3 ) 上記実施の形態では、 筒内噴射式のエンジン 1に本発明を具体化するよ うにしたが、 いわゆる一般的な成層燃焼、 或いは弱成層燃焼を行うタイプのもの に具体化してもよい。 例えば吸気ポート 7 a , 7 bの吸気弁 6 a, 6 bの傘部の 裏側に向かって噴射するタイプのものも含まれる。 また、 吸気弁 6 a , 6 b側に 燃料噴射弁が設けられてはいるが、 直接シリンダボア (燃焼室 5 ) 内に噴射する タイプのものも含まれる。  (3) In the above embodiment, the present invention is embodied in the in-cylinder injection type engine 1; however, the present invention may be embodied in a so-called general stratified combustion or weak stratified combustion type. . For example, a type in which the fuel is injected toward the back side of the head of the intake valves 6a and 6b of the intake ports 7a and 7b is included. In addition, although fuel injection valves are provided on the intake valves 6a and 6b side, there are also types that directly inject into the cylinder bore (combustion chamber 5).
( 4 ) さらに、 上記実施の形態では、 内燃機関としてガソリンエンジン 1の場 合に本発明を具体化したが、 その外にもディーゼルエンジンの場合等にも具体化 できる。 産業上の利用可能性  (4) Further, in the above-described embodiment, the present invention is embodied in the case of the gasoline engine 1 as the internal combustion engine, but may be embodied in the case of a diesel engine and the like. Industrial applicability
以上詳述したように、 本発明によれば、 成層燃焼を行いうる内燃機関のアイド ル回転数制御装置において、 内燃機関に負荷が加わった際にアイドルアップが行 われることによって、 機関回転数が上がり過ぎてしまうのを抑制することができ るという優れた効果を奏する, As described above in detail, according to the present invention, in the idle speed control device for an internal combustion engine capable of performing stratified combustion, the engine speed is increased by performing idle-up when a load is applied to the internal combustion engine. Can be prevented from rising too much Has an excellent effect of

Claims

請求の範囲 The scope of the claims
1 . 成層燃焼を行いうる内燃機関と、 1. an internal combustion engine capable of performing stratified combustion;
該内燃機関の運転状態を検出する運転状態検出手段と、  Operating state detecting means for detecting an operating state of the internal combustion engine;
該内燃機関に負荷が加えられた場合に、 該内燃機関の回転数の低下を抑制すベ くアイドルアップを行うアイドルアップ制御手段と、  Idle-up control means for performing idle-up when a load is applied to the internal combustion engine to suppress a decrease in the rotational speed of the internal combustion engine;
を備えた成層燃焼内燃機関のアイドル回転数制御装置であって、 An idle speed control device for a stratified combustion internal combustion engine comprising:
該アイドルアップ制御手段は、 該内燃機関に供給される燃料量を増加させる燃 料量増加手段と、  The idle-up control means includes a fuel amount increasing means for increasing a fuel amount supplied to the internal combustion engine;
該運転状態検出手段により検出された該運転状態に応じて該燃料量増加手段に より増加される燃料増加量を補正する補正手段と  Correction means for correcting the fuel increase amount increased by the fuel amount increase means in accordance with the operation state detected by the operation state detection means;
を備えたことを特徴とする成層燃焼内燃機関のアイドル回転数制御装置。 An idle speed control device for a stratified combustion internal combustion engine, comprising:
2 . 該運転状態検出手段は、 該内燃機関に負荷が加わることを示す負荷入力信号 を検出する負荷入力信号検出手段を備え、 2. The operating state detecting means includes a load input signal detecting means for detecting a load input signal indicating that a load is applied to the internal combustion engine,
該補正手段は、 該負荷入力信号検出手段により検出された該負荷入力信号に応 答して該燃料量増加手段により増加される燃料量の応答特性に時間遅れを生じさ せる燃料量応答特性補正手段を備えていることを特徴とする、 請求の範囲 1に記 載の成層燃焼内燃機関のアイドル回転数制御装置。  The correction means includes a fuel amount response characteristic correction for causing a time delay in a response characteristic of the fuel amount increased by the fuel amount increasing means in response to the load input signal detected by the load input signal detection means. 2. The idle speed control device for a stratified combustion internal combustion engine according to claim 1, characterized by comprising means.
3 . 該燃料量応答特性補正手段は、 該燃料量を該負荷入力信号が検出されてから の経過時間に応じて徐々に増加させることを特徴とする、 請求の範囲 2に記載の 成層燃焼内燃機関のアイドル回転数制御装置。 4 . 該燃料量応答特性補正手段は、 該燃料量を所定時間後に増加させることを特 徴とする、 請求の範囲 2に記載の成層燃焼内燃機関のアイドル回転数制御装置。 δ . 該負荷入力信号検出手段は、 さらに該内燃機関に加わる負荷の種類を検出し、 該燃料量増加手段は、 該負荷入力信号検出手段により検出される該負荷の種類 に基づく該負荷の程度に応じて該燃料増加量を可変することを特徴とする、 請求 の範囲 2に記載の成層燃焼内燃機関のアイドル回転数制御装置。 3. The stratified-combustion internal combustion engine according to claim 2, wherein the fuel amount response characteristic correcting means gradually increases the fuel amount in accordance with an elapsed time after the detection of the load input signal. Engine idle speed control device. 4. The idle speed control device for a stratified combustion internal combustion engine according to claim 2, wherein said fuel amount response characteristic correcting means increases the fuel amount after a predetermined time. δ. The load input signal detecting means further detects the type of load applied to the internal combustion engine, and the fuel amount increasing means determines the degree of the load based on the type of the load detected by the load input signal detecting means. 3. The idle speed control device for a stratified combustion internal combustion engine according to claim 2, wherein the amount of increase in the fuel is varied according to the following.
6 . 該アイドルアップ制御手段は、 該内燃機関の燃焼状態が均質燃焼であるとき は該内燃機関の吸入空気量を増加させる吸入空気量増加手段をさらに備えている ことを特徴とする、 請求の範囲 2に記載の成層燃焼内燃機関のアイドル回転数制 6. The idle-up control means further comprises intake air amount increasing means for increasing the intake air amount of the internal combustion engine when the combustion state of the internal combustion engine is homogeneous combustion. Idle speed control for stratified combustion internal combustion engine described in range 2
7 . 該アイドル回転数制御装置は、 該内燃機関への負荷が軽減されたことが検出 された場合に、 該アイドルアップを解除するアイドルアップ解除手段をさらに備 え、 7. The idle speed control device further includes idle-up releasing means for releasing the idle-up when it is detected that the load on the internal combustion engine has been reduced,
該アイドルアップ解除手段は、 該内燃機関に供給される燃料量を減少させる燃 料量減少手段と、  The idle-up canceling means includes a fuel amount reducing means for reducing an amount of fuel supplied to the internal combustion engine;
該負荷入力信号検出手段により検出された負荷入力信号に応答して該燃料量減 少手段により減少される燃料量の応答特性に時間遅れを生じさせる減少燃料量応 答特性補正手段とを備えていることを特徴とする、 請求の範囲 2に記載の成層燃 焼内燃機関のアイドル回転数制御装置。  Reduced fuel amount response characteristic correction means for causing a time delay in response characteristic of the fuel amount reduced by the fuel amount reduction means in response to the load input signal detected by the load input signal detection means. 3. The idle speed control device for a stratified combustion internal combustion engine according to claim 2, wherein:
8 . 該運転状態検出手段は、 該内燃機関の該回転数を検出する回転数検出手段を 備え、 8. The operating state detecting means includes a rotational speed detecting means for detecting the rotational speed of the internal combustion engine,
該補正手段は、 該アイドルアップ制御手段により該アイドルアップが行われる 直前での該回転数検出手段の検出結果に応じて、 該燃料増加量を補正する増量補 正手段を備えていることを特徴とする、 請求の範囲 1に記載の成層燃焼内燃機関 のアイ ドル回転数制御装置。 The correction means includes an increase correction means for correcting the fuel increase amount according to a detection result of the rotation speed detection means immediately before the idle-up control means performs the idle-up. The stratified combustion internal combustion engine according to claim 1 Idle speed control device.
9 . 該燃料量増加手段により増加される燃料量は見込み量であることを特徴とす る、 請求の範囲 8に記載の成層燃焼内燃機関のアイドル回転数制御装置。 9. The idling speed control apparatus for a stratified combustion internal combustion engine according to claim 8, wherein the fuel amount increased by the fuel amount increasing means is an expected amount.
1 0 . 該アイドルアップが行われる直前での該回転数検出手段により検出された 回転数が高い場合には、 該回転数が低し、場合に比較して該燃料量の増加の程度が 小さいことを特徴とする、 請求の範囲 8に記載の成層燃焼内燃機関のアイドル回 転数制御装置。 10. If the rotation speed detected by the rotation speed detection means immediately before the idle-up is performed is high, the rotation speed is low, and the degree of increase in the fuel amount is small compared to the case. 9. The idling speed control device for a stratified combustion internal combustion engine according to claim 8, characterized in that:
1 1 . 該アイドル回転数制御装置は、 該燃料量増加手段により該燃料量が増量さ れた後に、 該回転数検出手段の検出結果に応じて該燃料量を増減させることによ り該内燃機関をフィードバック制御するフィードバック制御手段と、 11. After the fuel amount is increased by the fuel amount increasing means, the idle speed control device increases or decreases the fuel amount in accordance with the detection result of the rotation speed detecting means. Feedback control means for feedback controlling the engine;
該フィ一ドバック制御手段により該燃料量を増減する時点での該回転数検出手 段の検出結果に応じて、 該フィードバック制御手段による該燃料量の増減量を補 正するフィ一ドバック制御時増減補正手段とをさらに備えていることを特徴とす る、 請求の範囲 8に記載の成層燃焼内燃機関のアイドル回転数制御装置。  The feedback control means corrects the increase or decrease of the fuel amount by the feedback control means in accordance with the detection result of the rotation speed detecting means at the time of increasing or decreasing the fuel amount by the feedback control means. 9. The idle speed control apparatus for a stratified combustion internal combustion engine according to claim 8, further comprising a correction unit.
1 2 . 該フィードバック制御手段により該燃料量を増減する時点での該回転数検 出手段により検出された回転数が高い場合には、 該回転数が低い場合に比較して 該燃料量の増減の程度が小さいことを特徴とする、 請求の範囲 1 1に記載の成層 燃焼内燃機関のアイドル回転数制御装置。 1 2. When the rotation speed detected by the rotation speed detection unit at the time when the fuel amount is increased or decreased by the feedback control unit is high, the fuel amount is increased or decreased compared to when the rotation speed is low. The idling speed control apparatus for a stratified combustion internal combustion engine according to claim 11, characterized in that the degree of rotation is small.
1 3 . 該アイドル回転数制御装置は、 該内燃機関の気筒内に燃料を供給し得る燃 料噴射手段をさらに備え、 13. The idle speed control device further comprises a fuel injection means capable of supplying fuel into a cylinder of the internal combustion engine.
該運転状態検出手段は、 該燃料噴射手段からの燃料噴射量を検出する燃料噴射量 検出手段を備え、 The operation state detecting means detects a fuel injection amount from the fuel injection means. Comprising detection means,
該補正手段は、 該アイドルアップ制御手段により該アイドルアップが行われる 直前での該燃料噴射量検出手段の検出結果に応じて、 該燃料増加量を補正する増 量補正手段を備えていることを特徴とする、 請求の範囲 1に記載の成層燃焼内燃 機関のアイドル回転数制御装置。  The correction means includes an increase correction means for correcting the fuel increase amount in accordance with a detection result of the fuel injection amount detection means immediately before the idle-up is performed by the idle-up control means. The idle speed control device for a stratified combustion internal combustion engine according to claim 1, characterized in that:
1 4 . 該燃料量増加手段により増加される燃料量は見込み量であることを特徴と する、 請求の範囲 1 3に記載の成層燃焼内燃機関のアイドル回転数制御装置。 1 5 . 該アイドルアップが行われる直前での該燃料噴射量検出手段により検出さ れた該燃料噴射量が多い場合には、 該燃料噴射量が少なし、場合に比較して該燃料 量の増加の程度が小さいことを特徴とする、 請求の範囲 1 3に記載の成層燃焼内 燃機関のアイドル回転数制御装置。 1 6 . 該アイドル回転数制御装置は、 該燃料量増加手段により該燃料量が増量さ れた後に、 該燃料噴射量検出手段の検出結果に応じて該燃料量を増減させること により該内燃機関をフィードバック制御するフィ一ドノ ック制御手段と、 該フィ一ドバック制御手段により該燃料量を増減する時点での該燃料噴射量検 出手段の検出結果に応じて、 該フィードバック制御手段による該燃料量の増減量 を補正するフィードバック制御時増減補正手段とをさらに備えていることを特徴 とする、 請求の範囲 1 3に記載の成層燃焼内燃機関のアイドル回転数制御装置。 14. The idle speed control device for a stratified combustion internal combustion engine according to claim 13, wherein the fuel amount increased by the fuel amount increasing means is an expected amount. 15. When the fuel injection amount detected by the fuel injection amount detecting means immediately before the idle-up is performed is large, the fuel injection amount is small. The idle speed control device for a stratified combustion internal combustion engine according to claim 13, wherein the degree of increase is small. 16. After the fuel amount is increased by the fuel amount increasing means, the idle speed control device increases or decreases the fuel amount in accordance with the result of detection by the fuel injection amount detecting means. Feedback control means for performing feedback control of the fuel injection amount, and feedback control means for controlling the fuel injection amount at the time when the fuel amount is increased or decreased by the feedback control means. 14. The idle speed control device for a stratified combustion internal combustion engine according to claim 13, further comprising feedback control increase / decrease correction means for correcting an increase / decrease amount of the fuel amount.
1 7 . 該フィードバック制御手段により該燃料量を増減する時点での該燃料噴射 量検出手段により検出された燃料噴射量が多い場合には、 該燃料噴射量が少ない 場合に比較して該燃料量の増減の程度が小さいことを特徴とする、 請求の範囲 1 6に記載の成層燃焼内燃機関のアイドル回転数制御装置。 17. When the fuel injection amount detected by the fuel injection amount detecting means at the time when the fuel amount is increased or decreased by the feedback control means is large, the fuel amount is smaller than when the fuel injection amount is small. 16. The idling speed control device for a stratified combustion internal combustion engine according to claim 16, wherein the degree of increase or decrease of the engine speed is small.
PCT/JP1997/004517 1996-12-12 1997-12-08 Idling revolution control device for stratified-charge combustion internal combustion engine WO1998026170A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8/332262 1996-12-12
JP33226296A JP2000002130A (en) 1996-12-12 1996-12-12 Idle speed control device for stratified charge combustion internal combustion engine
JP33723896A JP2000002139A (en) 1996-12-17 1996-12-17 Idle speed control device for stratified charge combustion internal combustion engine
JP33723996A JP2000002131A (en) 1996-12-17 1996-12-17 Idle speed control device for stratified charge combustion internal combustion engine
JP8/337239 1996-12-17
JP8/337238 1996-12-17

Publications (1)

Publication Number Publication Date
WO1998026170A1 true WO1998026170A1 (en) 1998-06-18

Family

ID=27340533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004517 WO1998026170A1 (en) 1996-12-12 1997-12-08 Idling revolution control device for stratified-charge combustion internal combustion engine

Country Status (1)

Country Link
WO (1) WO1998026170A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195426A (en) * 1986-02-21 1987-08-28 Mazda Motor Corp Fuel supply control device of engine
JPS6437788A (en) * 1987-07-31 1989-02-08 Hitachi Maxell Tape cartridge
JPH0337342A (en) * 1989-07-01 1991-02-18 Toyota Autom Loom Works Ltd Idling revolution speed controller for engine of loading vehicle
JPH03294641A (en) * 1990-04-10 1991-12-25 Japan Electron Control Syst Co Ltd Control device for internal combustion engine having automatic transmission gear
JPH0450449A (en) * 1990-06-15 1992-02-19 Mitsubishi Motors Corp Idling engine speed control method for internal combustion engine
JPH04321747A (en) * 1991-04-19 1992-11-11 Yamaha Motor Co Ltd Internal combustion engine
JPH06129292A (en) * 1992-10-14 1994-05-10 Toyota Motor Corp Engine speed control device of internal combustion engine
JPH06307272A (en) * 1993-04-27 1994-11-01 Toyota Motor Corp Rotational speed controller for internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195426A (en) * 1986-02-21 1987-08-28 Mazda Motor Corp Fuel supply control device of engine
JPS6437788A (en) * 1987-07-31 1989-02-08 Hitachi Maxell Tape cartridge
JPH0337342A (en) * 1989-07-01 1991-02-18 Toyota Autom Loom Works Ltd Idling revolution speed controller for engine of loading vehicle
JPH03294641A (en) * 1990-04-10 1991-12-25 Japan Electron Control Syst Co Ltd Control device for internal combustion engine having automatic transmission gear
JPH0450449A (en) * 1990-06-15 1992-02-19 Mitsubishi Motors Corp Idling engine speed control method for internal combustion engine
JPH04321747A (en) * 1991-04-19 1992-11-11 Yamaha Motor Co Ltd Internal combustion engine
JPH06129292A (en) * 1992-10-14 1994-05-10 Toyota Motor Corp Engine speed control device of internal combustion engine
JPH06307272A (en) * 1993-04-27 1994-11-01 Toyota Motor Corp Rotational speed controller for internal combustion engine

Similar Documents

Publication Publication Date Title
KR100241825B1 (en) Combustion control device of internal combustion engine
JP3569120B2 (en) Combustion control device for lean burn internal combustion engine
JPH10151971A (en) Negative pressure controller of internal combustion engine
JPH10151972A (en) Negative pressure controller of internal combustion engine
JPH11236836A (en) Control device for engine
JP3175601B2 (en) Air intake control system for lean burn engine
JPH10339215A (en) Egr control device of engine
JP3317228B2 (en) Combustion control device for stratified combustion internal combustion engine
JPH10176559A (en) Device for controlling amount of fuel for internal combustion engine
JPH1193731A (en) Fuel injection control device for cylinder injection internal combustion engine
JP3209112B2 (en) Idle speed control device for stratified combustion engine
WO1994008134A1 (en) Controlling device for multi-cylinder internal combustion engine
JP3307306B2 (en) Combustion system control device for internal combustion engine
JP3500021B2 (en) Idle speed control device for stratified combustion internal combustion engine
JP3362616B2 (en) Fuel injection control device for stratified combustion internal combustion engine
JP3835975B2 (en) In-cylinder injection internal combustion engine control device
JP3735138B2 (en) Intake control device
WO1998026170A1 (en) Idling revolution control device for stratified-charge combustion internal combustion engine
JP4160745B2 (en) Control method for internal combustion engine
JPH10153146A (en) Step motor type egr control device
JP3613658B2 (en) Fuel injection control device for multi-cylinder internal combustion engine
JP3183202B2 (en) Fuel injection amount control device for in-cylinder injection internal combustion engine
JP2870201B2 (en) EGR device
JP3319311B2 (en) Intake control device for stratified combustion internal combustion engine
JP3269414B2 (en) Intake air amount control device for internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase