WO1998025532A1 - Ablationsgerät für intrakardiale herzbehandlungen - Google Patents

Ablationsgerät für intrakardiale herzbehandlungen Download PDF

Info

Publication number
WO1998025532A1
WO1998025532A1 PCT/EP1997/006525 EP9706525W WO9825532A1 WO 1998025532 A1 WO1998025532 A1 WO 1998025532A1 EP 9706525 W EP9706525 W EP 9706525W WO 9825532 A1 WO9825532 A1 WO 9825532A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensor
sensors
catheter
ablation device
Prior art date
Application number
PCT/EP1997/006525
Other languages
English (en)
French (fr)
Inventor
Wolfgang Geistert
Markus Bothur
Original Assignee
Sulzer Osypka Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Osypka Gmbh filed Critical Sulzer Osypka Gmbh
Priority to US09/319,300 priority Critical patent/US6287303B1/en
Priority to EP97951261A priority patent/EP0952790A1/de
Priority to JP52613998A priority patent/JP2001505470A/ja
Publication of WO1998025532A1 publication Critical patent/WO1998025532A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B18/1233Generators therefor with circuits for assuring patient safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • A61B2017/00482Coupling with a code
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00694Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body
    • A61B2017/00703Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body correcting for movement of heart, e.g. ECG-triggered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00357Endocardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00654Sensing and controlling the application of energy with feedback, i.e. closed loop control with individual control of each of a plurality of energy emitting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00678Sensing and controlling the application of energy using a threshold value upper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/0069Sensing and controlling the application of energy using fuzzy logic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00797Temperature measured by multiple temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/048Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in gaseous form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1467Probes or electrodes therefor using more than two electrodes on a single probe

Definitions

  • the invention relates to an ablation device for intracardiac cardiac treatments with a high-frequency energy source (abbreviated to HF source) ge ass preamble of claim 1 and methods for operating the device.
  • a high-frequency energy source ablation device for intracardiac cardiac treatments with a high-frequency energy source (abbreviated to HF source) ge ass preamble of claim 1 and methods for operating the device.
  • Ablation catheter localized and then specifically interrupted.
  • the tissue lesion made for the interruption is carried out with the aid of high-frequency alternating currents from an HF energy source.
  • the power output of the HF source is adjusted with a temperature control in such a way that the cells are killed but the cell structure (the tissue) is not destroyed and that no coagulation occurs at the energy-emitting pole.
  • Ablation devices consist of a device part that contains the RF source and at least one to the RF source connected catheter together with one or more energy-emitting poles.
  • catheters for example those which differ in the temperature sensors of the poles. These sensors can be thermistors or thermocouples.
  • the temperature sensor eats a medium temperature and thus local overheating can occur on the pole.
  • the temperature conditions on the pole can be better recorded with several temperature sensors.
  • the pole can be composed of several separate segments, all of which are connected to the same RF source and each contain a separate temperature sensor.
  • the ablation can also be carried out with two separate catheters, which are connected to the same HF source and act on the same tissue site.
  • the poles of the two catheters represent two segments of a common pole or two opposite poles.
  • Catheters are also known which do not have a temperature sensor.
  • catheters which differ in terms of different sensor types (if sensors are present) and / or which differ in terms of the number of sensors, which can also be zero.
  • ablation devices eg Cordis-Webster / Stockert "EP-Shuttle"
  • EP-Shuttle the catheter type must be set manually. This manual setting is a special operating action that can lead to an operating error due to a mix-up of catheters.
  • US-A 5 383 874 describes catheters with encodings which make the catheter type recognizable for the device. However, these catheters can only be used with devices that can decode this coding. Conversely, only catheters that contain this coding can be used with these devices.
  • the object of the invention is to provide an ablation device that allows a free choice from a wide range of catheter types, whereby operating errors should be largely avoidable in cases that are possible in practice. This object is achieved by the device defined in claim 1.
  • the ablation device for intracardiac heart treatments has an HF source, the output of which is regulated in a power or in a temperature-controlled mode.
  • Ablation catheters can be used with the device, each comprising at least one energy-emitting pole, the or each pole having at least one temperature sensor for measuring one
  • Tissue temperature may contain.
  • the temperature sensors of the poles are either thermistors or thermocouples. Sensor detection and corresponding means are provided, on the basis of which the regulation for the power output can be automatically adjusted such that the performance regulation corresponds to the current catheter type. There is no need to use a catheter with a special coding and there are no special manual operations are required to set the catheter type.
  • the ablation device has a sensor detection and corresponding means, on the basis of which the measured values of the current sensors are automatically used in the regulation for the power output.
  • the sensor recognition automatically and reliably switches over to the connected catheter type.
  • thermocouple measuring circuits for the thermistor or thermocouple are designed as follows for automatic detection: 1.
  • the thermistor measuring circuit can distinguish between the states “open”, “short circuit” and “valid sensor”.
  • the thermocouple measuring circuit can distinguish between the states “open” and “not open” and advantageously “sensible temperature value”. (The "short circuit” state cannot be recognized by the thermocouple measuring circuit, since a thermocouple that has the same temperature as an associated reference junction appears as a short circuit.)
  • a detection algorithm for sensor detection works as follows: 1. If the "active" state is detected by the currently active measuring circuit, the thermistor measuring circuit is always switched on. 2. If the thermistor measuring circuit detects a "valid sensor”, the result of the automatic detection is “thermistor”. 3. If the thermistor measuring circuit detects a short circuit, the result of the automatic detection is "thermocouple”. (The thermistor measuring circuit can then be deactivated and the thermocouple measuring circuit activated.) The sensor type detection is described in more detail below:
  • the ablation device contains two measuring circuits for determining the temperature prevailing at the thermistor or thermocouple. These measuring circuits can be activated individually. They can also be used for automatic detection by determining resistances between the sensor connections. "Measured states" of the sensors can be assigned to the measured resistances:
  • the thermistor measuring circuit can distinguish between the states “open”, “short circuit” and “valid sensor", "open” is recognized when a certain resistance value is exceeded, i.e. if a temperature derived from the measurement is fallen below accordingly.
  • "Short circuit” is detected when a certain resistance value is undershot, i.e. if a temperature derived from the measurement is exceeded accordingly, "valid sensor” is recognized if the measured resistance lies between the limit values above which "open” or “short circuit” is detected, i.e. if a temperature derived from the measurement is within a predefined range of validity.
  • thermocouple measuring circuit can distinguish between the states “open” and “not open” and advantageously “sensible temperature value".
  • the "short circuit” state cannot be recognized directly by the thermocouple measuring circuit, since a thermocouple that has the same temperature as an associated reference junction appears as a short circuit.
  • the state "open” can be recognized by a suitably designed circuit, for example, in that "pull-up” or “pull-down” resistors set the measuring circuit to a predetermined value "pull", which is not accepted by the circuit when the thermocouple is connected.
  • the "sensible temperature value" state is recognized when a temperature derived from the measurement lies within a predetermined validity range.
  • the detection algorithm works as follows:
  • the thermistor measuring circuit is always switched on.
  • Thermistor detection circuit remains activated and temperature-controlled ablation is possible.
  • thermocouple detection The thermistor measuring circuit is then deactivated and the thermocouple measuring circuit is activated.
  • thermocouple measuring circuit detects a state other than "open"
  • thermocouple reference points In addition to the sensor type detection, means are advantageously provided with which a test or several tests can be carried out, which are aimed at whether Connected sensors provide meaningful temperature values: The temperature values should be in the areas to be expected. If catheters with thermocouples are used, tests can also be used to determine whether the thermocouple reference points also provide useful temperature values.
  • One or more than one temperature sensor can be provided for the observation of the thermal influence on the tissue that arises during ablation. However, it is also possible that there is no sensor or that a sensor is defective.
  • a start phase can be monitored on the basis of the information from the sensor detection.
  • Such monitoring is intended to prevent the ablation device from accidentally starting in a power-controlled mode instead of the temperature-controlled mode in the event that no sensors are registered. It is an "intelligent start" of the device according to the invention. This is achieved by the following algorithm, which is assigned to the monitoring mentioned.
  • RF delivery is now started with the temperature sensor connected, this can be done without any further operator action, ie RF delivery is started in temperature-controlled mode.
  • a catheter without a temperature sensor has now been connected, or if the temperature measuring circuit is opened due to a defective sensor or loose contact, there is a question as to whether the HF delivery should really take place in the power-controlled mode. If the answer is no, the process is terminated (ie the RF delivery is not started) and the monitoring remains active. However, if this is affirmed, the monitoring is deactivated. The RF delivery is now started immediately in the power-controlled mode, or it can be started by pressing another button.
  • This start blocking includes the following points:
  • Monitoring remains active. However, if this is affirmed, the monitoring is deactivated.
  • the RF delivery is now started immediately in the power-controlled mode, or it can be started by pressing another button.
  • the monitoring is advantageously activated after the device is switched on, so that a catheter with a temperature sensor is always required at the beginning.
  • Sensor detections are used to determine the number of connected sensors and to set the control or the mode of operation of the ablation device accordingly.
  • Measuring circuits for thermistors and / or thermocouples assign.
  • a measuring circuit can be assigned to a group of possible sensor connections, which measuring circuit can be connected sequentially to the connections of a group via a multiplexer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Surgical Instruments (AREA)

Abstract

Das Ablationsgerät für intrakardiale Herzbehandlungen weist eine HF-Quelle auf, deren Leistungsabgabe geregelt in einem leistungs- oder in einem temperaturgeregelten Modus erfolgt. Mit dem Gerät können Ablationskatheter verwendet werden, die jeweils mindestens einen energieabgebenden Pol umfassen, wobei der oder jeder Pol mindestens einen Temperatursensor zur Messung einer Gewebetemperatur enthalten kann. Die Temperatursensoren der Pole sind entweder Thermistoren oder Thermoelemente. Es sind eine Sensor-Erkennung und entsprechende Mittel vorgesehen, aufgrund derer die Regelung für die Leistungsabgabe automatisch derart einstellbar ist, dass die Durchführung der Leistungsregelung dem aktuellen Kathetertyp entspricht. Dabei muss kein Katheter mit einer speziellen Kodierung verwendet werden und es sind keine besonderen manuellen Bedienhandlungen zur Einstellung des Kathetertyps notwendig.

Description

Ablationsgerät für intrakardiale Herzbehandlungen
Die Erfindung betrifft ein Ablationsgerät für intrakardiale Herzbehandlungen mit einer Hochfrequenz- Energiequelle (kurz HF-Quelle) ge ass Oberbegriff von Anspruch 1 sowie Verfahren zum Betreiben des Geräts.
Bei der Ablation werden im Herz mittels eines flexiblen Katheters Gewebeschichten denaturiert, um Störungen des Erregungsleitsyste s zu beseitigen. Solche Störungen äussern sich in Herzarhythmien (z. B. Tachykardie) . Die störenden Erregungsleitungen werden mit dem
Ablationskatheter lokalisiert und anschliessend gezielt unterbrochen. Die für die Unterbrechung vorgenommene Gewebeläsion wird mit Hilfe hochfrequenter Wechselströme einer HF-Energiequelle durchgeführt. Die Leistungsabgabe der HF-Quelle wird mit einer Temperaturregelung so eingestellt, dass die Zellen abgetötet werden, aber der Zellverband (das Gewebe) nicht zerstört wird und dass an dem energieabgebenden Pol keine Koagulation auftritt.
Ablationsgerate setzen sich aus einem Geräteteil, das die HF-Quelle enthält, und mindestens einem an die HF-Quelle angeschlossenen Katheter mit einem oder mehreren energieabgebenden Polen zusammen.
Es werden verschiedene Kathetertypen verwendet, beispielsweise solche, die sich durch die Temperatursensoren der Pole unterscheiden. Diese Sensoren können Thermistoren oder Thermoelemente sein.
Aufgrund von Inhomogenitäten der Wärmeableitung kann auf dem Pol eine Temperaturverteilung mit unterschiedlichen Temperaturen entstehen. Der Temperatursensor isst eine mittlere Temperatur und somit können sich auf dem Pol lokale Überhitzungen einstellen. Mit mehreren Temperatursensoren können die Temperaturverhältnisse auf dem Pol besser erfasst werden.
Der Pol kann aus mehreren getrennten Segmenten zusammengesetzt sein, die alle an die gleiche HF-Quelle angeschlossen sind und die jeweils einen separaten Temperatursensor enthalten. Die Ablation kann auch mit zwei getrennten aber an der gleichen HF-Quelle angeschlossenen Kathetern, die auf die gleiche Gewebestelle einwirken, durchgeführt werden. In diesem Fall stellen die Pole der beiden Katheter zwei Segmente eines gemeinsamen Pols oder auch zwei Gegenpole dar.
Es sind auch Katheter bekannt, die keinen Temperatursensor haben.
Es gibt also eine Vielfalt von Kathetern, die sich hinsichtlich verschiedener Sensortypen unterscheiden (bei Vorliegen von Sensoren) und/oder die sich hinsichtlich der Anzahl Sensoren, die auch Null sein kann, unterscheiden. Bei bekannten Ablationsgeräten (z.B. Cordis- Webster/Stockert "EP-Shuttle") uss der Kathetertyp manuell eingestellt werden. Diese manuelle Einstellung ist eine besonders vorzunehmende Bedienhandlung, die zu einem Bedienungsfehler aufgrund einer Verwechslung von Kathetern führen kann.
Die US-A 5 383 874 beschreibt Katheter mit Kodierungen, die den Kathetertyp für das Gerät erkennbar macht. Diese Katheter können jedoch nur mit solchen Geräten verwendet werden, die diese Kodierung entschlüsseln können. Umgekehrt können mit diesen Geräten nur Katheter verwendet werden, die diese Kodierung enthalten.
Aufgabe der Erfindung ist es, ein Ablationsgerät zu schaffen, das eine freie Wahl aus einem weiten Angebot von Kathetertypen erlaubt, wobei Bedienungsfehler bei in der Praxis möglichen Fällen weitgehend vermeidbar sein sollen. Diese Aufgabe wird durch das in Anspruch 1 definierte Geräte gelöst.
Das Ablationsgerät für intrakardiale Herzbehandlungen weist eine HF-Quelle auf, deren Leistungsabgabe geregelt in einem leistungs- oder in einem temperaturgeregelten Modus erfolgt. Mit dem Gerät können Ablationskatheter verwendet werden, die jeweils mindestens einen energieabgebenden Pol umfassen, wobei der oder jeder Pol mindestens einen Temperatursensor zur Messung einer
Gewebetemperatur enthalten kann. Die Temperatursensoren der Pole sind entweder Thermistoren oder Thermoelemente. Es sind eine Sensor-Erkennung und entsprechende Mittel vorgesehen, aufgrund derer die Regelung für die Leistungsabgabe automatisch derart einstellbar ist, dass die Durchführung der Leistungsregelung dem aktuellen Kathetertyp entspricht. Dabei muss kein Katheter mit einer speziellen Kodierung verwendet werden und es sind keine besonderen manuellen Bedienhandlungen zur Einstellung des Kathetertyps notwendig.
Die abhängigen Ansprüche stellen vorteilhafte Ausführungsformen dar.
Das Ablationsgerät weist eine Sensor-Erkennung auf sowie entsprechende Mittel, aufgrund derer bei der Regelung für die Leistungsabgabe automatisch die Messwerte der aktuellen Sensoren verwendet werden. Durch die Sensor- Erkennung wird eine Umschaltung auf den angeschlossenen Kathetertyp automatisch und zuverlässig vorgenommen.
Für die automatische Erkennung sind Messschaltungen für den Thermistor bzw. das Thermoelement folgendermassen gestaltet: 1. Die Thermistor-Messschaltung kann die Zustände "offen", "Kurzschluss" und "gültiger Sensor" unterscheiden. 2. Die Thermoelement-Messschaltung kann die Zustände "offen" und "nicht offen" sowie mit Vorteil "sinnvoller Temperaturwert" unterscheiden. (Der Zustand "Kurzschluss" kann von der Thermoelement-Messschaltung nicht erkannt werden, da ein Thermoelement, das die gleiche Temperatur wie eine zugehörige Vergleichsstelle hat, als Kurzschluss erscheint.)
Ein Erkennungsalgorithmus der Sensor-Erkennung arbeitet wie folgt: 1. Wird durch die gerade aktive Messschaltung der Zustand "offen" erkannt, wird immer die Thermistor- Messschaltung eingeschaltet. 2. Erkennt die Thermistor- Messschaltung einen "gültigen Sensor" , so lautet das Ergebnis der automatische Erkennung "Thermistor" . 3. Erkennt die Thermistor-Messschaltung einen Kurzschluss, lautet das Ergebnis der automatische Erkennung "Thermoelement". (Die Thermistor-Messschaltung kann darauf deaktiviert und die Thermoelement-Messschaltung aktiviert werden.) Die Sensoryp-Erkennung wird nachfolgend noch etwas ausführlicher beschrieben:
Das Ablationsgerät enthält zwei Messschaltungen zur Bestimmung der am Thermistor bzw. Thermoelement herrschenden Temperatur. Diese Messschaltungen sind einzeln aktivierbar. Mit ihnen lässt sich auch die automatische Erkennung durchführen, indem Widerstände zwischen Anschlussverbindungen der Sensoren bestimmt werden. Den gemessenen Widerständen lassen sich "Zustände" der Sensoren zuorden:
a) Die Thermistor-Messschaltung kann die Zustände "offen", "Kurzschluss" und "gültiger Sensor" unterscheiden, "offen" wird erkannt, wenn ein bestimmter Widerstandswert überschritten wird, d.h. wenn eine aus der Messung abgeleitete Temperatur entsprechend unterschritten wird. "Kurzschluss" wird erkannt, wenn ein bestimmter Widerstandswert unterschritten wird, d.h. wenn eine aus der Messung abgeleitete Temperatur entsprechend überschritten wird, "gültiger Sensor" wird erkannt, wenn der gemessene Widerstand zwischen den Grenzwerten, ab denen "offen" bzw. "Kurzschluss" erkannt wird, liegt, d.h. wenn eine aus der Messung abgeleitete Temperatur in einem vordefinierten Gültigkeitsbereich liegt.
b) Die Thermoelement-Messschaltung kann die Zustände "offen" und "nicht offen" sowie mit Vorteil "sinnvoller Temperaturwert" unterscheiden. Der Zustand "Kurzschluss" kann von der Thermoelement-Messschaltung nicht direkt erkannt werden, da ein Thermoelement, das die gleiche Temperatur wie eine zugehörige Vergleichsstelle hat, als Kurzschluss erscheint. Der Zustand "offen" kann durch eine geeignet gestaltete Schaltung beispielsweise dadurch erkannt werden, dass "pull-up" bzw. "pull-down"- Widerstände die Messschaltung auf einen vorgegebenen Wert "ziehen", der im Betrieb mit angeschlossenem Thermoelement von der Schaltung nicht angenommen wird.
Der Zustand "sinnvoller Temperaturwert" wird erkannt, wenn eine aus der Messung abgeleitete Temperatur in einem vorgegebenen Gültigkeitsbereich liegt. Dabei arbeitet der Erkennungsalgorithmus wie folgt:
1. Wird durch die gerade aktive Messschaltung der Zustand "offen" erkannt, wird immer die Thermistor-Messschaltung eingeschaltet.
2. Erkennt die Thermistor-Messschaltung den Zustand "offen", so lautet das Ergebnis der automatische Erkennung "offen". Es ist folglich nur Leistungsregelung statt Temperaturregelung möglich.
3. Erkennt die Thermistor-Messschaltung einen "gültigen Sensor" , so lautet das Ergebnis der automatische
Erkennung "Thermistor". Es bleibt somit die Thermistor- Messschaltung aktiviert und eine temperaturgeregelte Ablation ist möglich.
4. Erkennt die Thermistor-Messschaltung einen Kurzschluss, lautet das Ergebnis der automatischen
Erkennung "Thermoelement". Die Thermistor-Messschaltung wird darauf deaktiviert und die Thermoelement- Messschaltung aktiviert.
5. Erkennt die Thermoelement-Messschaltung einen anderen Zustand als "offen", so ist die temperaturgeregelte
Ablation möglich.
Zusätzlich zur Sensortyp-Erkennung sind mit Vorteil Mittel vorgesehen, mit denen ein Test oder mehrere Tests durchführbar sind, welche darauf gerichtet sind, ob angeschlossene Sensoren sinnvolle Temperaturwerte liefern: Die Temperaturwerte sollen in zu erwartenden Bereichen liegen. Bei Verwendung von Kathetern mit Thermoelementen kann mit Tests gegebenenfalls noch festgestellt werden, ob auch Vergleichsstellen der Thermoelemente sinnvolle Temperaturwerte liefern.
Vorteilhaft sind zusätzliche Mittel, mit denen die Messschaltung für die Temperaturmessung kalibrierbar und testbar sind.
Für die Beobachtung des bei der Ablation entstehenden thermischen Einflusses auf das Gewebe kann ein oder mehr als ein Temperatursensor vorgesehen sein. Es ist aber auch möglich, dass kein Sensor vorliegt oder ein Sensor defekt ist.
In der automatischen Sensor-Erkennung sind daher Mittel vorteilhaft, mit denen die Zahl der angeschlossenen Sensoren automatisch ermittelbar ist und mit denen sich das Ablationsgerät entsprechend einstellen lässt.
Weiterhin sind Mittel vorteilhaft, mit denen aufgrund der Informationen aus der Sensor-Erkennung eine Überwachung einer Startphase durchführbar ist. Durch eine solche Überwachung soll verhindert werden, dass das Ablationsgerät im Falle, dass keine Sensoren registriert werden, unabsichtlich in einem leistungsgeregelten Modus statt in dem temperaturgeregelten startet. Es handelt sich dabei um einen "intelligenten Start" des erfindungsgemässen Geräts. Dies leistet folgender Algorithmus, welcher der genannten Überwachung zugeordnet ist.
Sobald ein Katheter mit Temperatursensor angeschlossen wird und dies erkannt wird, aktiviert sich automatisch die Überwachung. Wird jetzt eine HF-Abgabe bei angeschlossenem Temperatursensor gestartet, so geht dies ohne weitere Bedienhandlung vonstatten, d. h. es wird eine HF-Abgabe im temperaturgeregelten Modus gestartet. Wurde jedoch mittlerweile ein Katheter ohne Temperatursensor angeschlossen oder ist der Temperaturmesskreis durch einen defekten Sensor oder Wackelkontakt geöffnet, so erfolgt eine Nachfrage, ob die HF-Abgabe wirklich im leistungsgeregelten Modus erfolgen soll. Wird dies verneint, wird der Vorgang abgebrochen (d. h. die HF-Abgabe nicht gestartet) , und die Überwachung bleibt aktiv. Wird dies jedoch bejaht, wird die Überwachung deaktiviert. Die HF-Abgabe wird jetzt sofort im leistungsgeregelten Modus gestartet, oder sie kann mittels eines weiteren Tastendrucks gestartet werden. Von nun an können so lange weitere HF-Abgaben im leistungsgeregelten Modus gestartet werden, ohne dass der Start jedesmal bestätigt werden muss, bis wieder ein Katheter mit Temperatursensor angeschlossen wird. Mit Vorteil ist die Überwachung nach Einschalten des Geräts aktiviert, so dass zu Beginn immer ein Katheter mit Temperatursensor gefordert wird.
Zum Algorithmus betreffend den "intelligenten Start" werden nachfolgend noch einige ergänzende Erläuterungen gemacht.
Wenn die Messschaltungen den Zustand "offen" melden, verhindert der im folgenden beschriebene Algorithmus einen versehentlichen Start im leistungsgeregelten Modus bei gleichzeitiger Minimierung der Bedienhandlung. Diese Start-Blockierung umfasst folgende Punkte:
1. Sobald ein Katheter mit Temperatursensor angeschlossen wird und dies erkannt wird, aktiviert sich automatisch die Überwachung. Wird jetzt eine HF-Abgabe bei angeschlossenem Temperatursensor gestartet, so geht dies ohne weitere Bedienhandlung vonstatten, d. h. es wird eine HF-Abgabe im temperaturgeregelten Modus gestartet.
2. Wurde jedoch mittlerweile ein Katheter ohne Temperatursensor angeschlossen oder ist der
Temperatur esεkreis durch einen defekten Sensor oder Wackelkontakt geöffnet, so erfolgt eine Nachfrage, ob die HF-Abgabe wirklich im leistungsgeregelten Modus erfolgen soll. Wird dies verneint, wird der Vorgang abgebrochen (d. h. die HF-Abgabe nicht gestartet) , und die
Überwachung bleibt aktiv. Wird dies jedoch bejaht, wird die Überwachung deaktiviert. Die HF-Abgabe wird jetzt sofort im leistungsgeregelten Modus gestartet, oder sie kann mittels eines weiteren Tastendrucks gestartet werden.
3. Von nun an können so lange weitere HF-Abgaben im leistungsgeregelten Modus gestartet werden, ohne dass der Start jedesmal bestätigt werden muss, bis wieder ein Katheter mit Temperatursensor angeschlossen wird.
Mit Vorteil ist die Überwachung nach Einschalten des Geräts aktiviert, so dass zu Beginn immer ein Katheter mit Temperatursensor gefordert wird.
Es sind auch Katheter mit mehreren Sensoren und unter Umständen mit mehreren Ablationspolen bekannt. In diesem Fall kann die Sensorerkennung oder können mehrere
Sensorerkennungen dazu benutzt werden, die Anzahl der ansgeschlossenen Sensoren festzustellen und die Regelung bzw. die Arbeitsweise des Ablationsgerätes entsprechend einzustellen.
Dazu lassen sich den möglichen Sensoranschlüssen
Messschaltungen für Thermistoren und/oder Thermoelemente zuordnen. Um die Anzahl der Messschaltungen zu reduzieren, kann jeweils einer Gruppe von möglichen Sensoranschlüssen eine Messschaltung zugeordnet werden, welche über einen Multiplexer sequentiell mit den Anschlüssen einer Gruppe verbindbar ist.
Zum Einstellen der Arbeitsweisen sind verschiedene Algorithmen denkbar: Beispielsweise könnten beim Anschluss eines Ablationskatheters mit einem Pol automatisch die Werte aller erkannten Temperatursensoren dem Regler zugeführt werden. Werden Ablationskatheter mit mehreren Ablationspolen angeschlossen, kann eine Logikschaltung automatisch jedem Pol bestimmte Sensoren zuordnen.

Claims

Patentansprüche
1. Ablationsgerät für intrakardiale Herzbehandlungen mit einer HF-Quelle, deren Leistungsabgabe geregelt in einem leistungs- oder in einem temperaturgeregelten Modus erfolgt, und mit mindestens einem anschliessbaren Ablationskatheter, der mindestens einen energieabgebenden Pol umfasst, wobei der oder jeder Pol mindestens einen Temperatursensor enthalten kann und die Temperatursensoren entweder Thermistoren oder Thermoelemente sind, dadurch gekennzeichnet, dass eine Sensor-Erkennung und entsprechende Mittel vorgesehen sind, aufgrund derer die Regelung für die Leistungsabgabe automatisch so einstellbar ist, dass die Durchführung der Leistungsregelung einem aktuellen Kathetertyp entspricht, ohne dass der angeschlossene Katheter eine Kodierung aufweisen muss und ohne dass besondere manuelle Bedienhandlungen zur Einstellung des Kathetertyps notwendig sind.
2. Ablationsgerät nach Anspruch 1, dadurch gekennzeichnet, dass die Sensor-Erkennung eine
Sensortyp-Erkennung umfasst, durch die feststellbar ist, ob die Temperatursensoren der Pole Thermistoren oder Thermoelemente sind.
3. Ablationsgerät nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass zusätzlich Mittel vorgesehen sind, mit denen mindestens ein Test durchführbar ist, der darauf gerichtet ist, ob angeschlossene Sensoren sinnvolle Temperaturwerte liefern, nämlich solche, die in zu erwartenden Bereichen liegen, und/oder ob hinsichtlich Kathetern mit
Thermoelementen Vergleichsstellen der Thermoelemente sinnvolle Temperaturwerte liefern.
4. Ablationsgerät nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, dass zusätzlich Mittel vorgesehen sind, mit denen Messschaltungen für die Temperaturmessung kalibrierbar und testbar sind.
5. Ablationsgerät nach einem der Ansprüche 1 bis 4 , dadurch gekennzeichnet, dass die Sensor-Erkennung Mittel umfasst, durch welche die Anzahl der angeschlossenen Sensoren feststellbar ist.
6. Ablationsgerät nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Mittel vorgesehen sind, mit denen eine Überwachung einer Startphase durchführbar ist, wobei die Überwachung zur Verhinderung eines unabsichtlichen Starts in einem leistungsgeregelten Modus dienen soll.
7. Ablationsgerät nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Mittel zur Feststellung der Anzahl angeschlossener Sensoren und mehrere Messschaltungen vorgesehen sind, wobei die
Messschaltungen an Anschlüsse direkt oder indirekt über einen oder mehrere Multiplexer geschaltet sind, an welchen Anschlüssen ein Thermosensor zu erwarten ist, und ferner Mittel vorliegen, welche die Arbeitsweise des Geräts auf das Vorhandensein von Sensoren und deren Anzahl einstellen.
8. Verfahren zum Betreiben eines Ablationsgerätes gemass einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass mit zwei aktivierbaren Sensor-Messschaltungen, die einem Thermistor bzw. einem Thermoelement zugeordnet sind, Angaben über das Vorhandensein von Sensoren eines angeschlossenen Katheters sowie bei einem Vorhandensein über Zustände der Sensoren geliefert werden und dass mit einem Erkennungsalgorithmus aufgrund der festgestellten Zustände entschieden wird, ob eine Sensor-Messschaltungen zu aktivieren ist und wenn ja, welche, und dass entsprechend dem leistungs- oder dem temperaturgeregelten Modus eingeschaltet wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass bezüglich der Sensorerkennung mit der Thermistor-Messschaltung Zustände "offen", "Kurzschluss" und "gültiger Sensor" unterschieden werden und mit der Thermoelement-Messschaltung Zustände "offen" und "nicht offen", dass bei
Feststellung des Zustands "offen" die Thermistor- Messschaltung aktiviert wird und dass bei bereits aktivierter Thermistor-Messschaltung sowie Feststellung des Zustands "Kurzschluss" die Thermoelement-Messschaltung aktiviert wird.
10. Verfahren nach Anspruch 8 oder 9 und mit einer
Überwachung der Startphase, dadurch gekennzeichnet, dass von mindestens einer Messschaltung Angaben über das Vorhandensein von Sensoren eines angeschlossenen Katheters geliefert werden, dass von einem
Erkennungsalgorithmus entschieden wird, ob im leistungs- oder temperaturgeregelten Modus zu arbeiten ist, und dass im leistungsgeregelten Modus die Start-Blockierung erst nach positiver Beantwortung einer Rückfrage deaktiviert wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Überwachung der Startphase automatisch aktiviert wird, wenn das Ablationsgerät eingeschaltet wird oder wenn beim Anschliessen eines Katheters dieser als Katheter mit Temperatursensor erkannt wird.
12. Verfahren nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass die Sensoren bei deren
Vorhandensein durch eine Logikschaltung automatisch Regelkreisen oder einem Regelkreis für die Temperaturregelung zugeordnet werden.
PCT/EP1997/006525 1996-12-12 1997-11-21 Ablationsgerät für intrakardiale herzbehandlungen WO1998025532A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/319,300 US6287303B1 (en) 1996-12-12 1997-11-21 Ablation instrument for intracardiac treatments
EP97951261A EP0952790A1 (de) 1996-12-12 1997-11-21 Ablationsgerät für intrakardiale herzbehandlungen
JP52613998A JP2001505470A (ja) 1996-12-12 1997-11-21 心内における心臓処置のための切断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP96810866A EP0847729A1 (de) 1996-12-12 1996-12-12 Ablationsgerät für intrakardiale Herzbehandlungen
EP96810866.2 1996-12-12

Publications (1)

Publication Number Publication Date
WO1998025532A1 true WO1998025532A1 (de) 1998-06-18

Family

ID=8225770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/006525 WO1998025532A1 (de) 1996-12-12 1997-11-21 Ablationsgerät für intrakardiale herzbehandlungen

Country Status (4)

Country Link
US (1) US6287303B1 (de)
EP (2) EP0847729A1 (de)
JP (1) JP2001505470A (de)
WO (1) WO1998025532A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405757B2 (en) 2014-02-25 2019-09-10 Icu Medical, Inc. Patient monitoring system with gatekeeper signal
US11270792B2 (en) 2015-10-19 2022-03-08 Icu Medical, Inc. Hemodynamic monitoring system with detachable display unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790206B2 (en) 2002-01-31 2004-09-14 Scimed Life Systems, Inc. Compensation for power variation along patient cables
US9364277B2 (en) 2012-12-13 2016-06-14 Cook Medical Technologies Llc RF energy controller and method for electrosurgical medical devices
US9204921B2 (en) 2012-12-13 2015-12-08 Cook Medical Technologies Llc RF energy controller and method for electrosurgical medical devices
CN109923432A (zh) * 2016-11-08 2019-06-21 皇家飞利浦有限公司 利用关于跟踪可靠性的反馈跟踪介入仪器的系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016859A1 (en) * 1990-04-27 1991-11-14 Boston Scientific Corporation Temperature controlled rf coagulation
WO1993020770A2 (en) * 1992-04-10 1993-10-28 Cardiorhythm Radiofrequency system for ablation of cardiac tissue
WO1994010922A1 (en) * 1992-11-13 1994-05-26 Ep Technologies, Inc. Cardial ablation systems using temperature monitoring
US5383874A (en) 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
WO1996000528A1 (en) * 1994-06-27 1996-01-11 Ep Technologies, Inc. Non-linear control systems and methods for heating and ablating body tissue
US5542916A (en) * 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3838840C2 (de) * 1988-11-17 1997-02-20 Leibinger Gmbh Hochfrequenzkoagulationsvorrichtung für chirurgische Zwecke
US5366443A (en) * 1992-01-07 1994-11-22 Thapliyal And Eggers Partners Method and apparatus for advancing catheters through occluded body lumens
ATE320282T1 (de) * 1993-10-14 2006-04-15 Boston Scient Ltd Elektroden zur erzeugung bestimmter muster von pathologisch verändertem gewebe
WO1995010978A1 (en) * 1993-10-19 1995-04-27 Ep Technologies, Inc. Segmented electrode assemblies for ablation of tissue

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016859A1 (en) * 1990-04-27 1991-11-14 Boston Scientific Corporation Temperature controlled rf coagulation
US5383874A (en) 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
WO1993020770A2 (en) * 1992-04-10 1993-10-28 Cardiorhythm Radiofrequency system for ablation of cardiac tissue
US5542916A (en) * 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system
WO1994010922A1 (en) * 1992-11-13 1994-05-26 Ep Technologies, Inc. Cardial ablation systems using temperature monitoring
WO1996000528A1 (en) * 1994-06-27 1996-01-11 Ep Technologies, Inc. Non-linear control systems and methods for heating and ablating body tissue

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405757B2 (en) 2014-02-25 2019-09-10 Icu Medical, Inc. Patient monitoring system with gatekeeper signal
US11270792B2 (en) 2015-10-19 2022-03-08 Icu Medical, Inc. Hemodynamic monitoring system with detachable display unit

Also Published As

Publication number Publication date
US6287303B1 (en) 2001-09-11
JP2001505470A (ja) 2001-04-24
EP0952790A1 (de) 1999-11-03
EP0847729A1 (de) 1998-06-17

Similar Documents

Publication Publication Date Title
DE69233091T2 (de) Ablationselektrode mit isoliertem temperaturmesselement
DE60312035T2 (de) Elektrochirurgischer generator zur kreuz-kontrolle der ausgangsleistung
EP1511534B1 (de) Vorrichtung zum elektrochirurgischen veröden von körpergewebe
DE60026191T2 (de) Automatische Aktivierung des bipolaren Ausgangssignals eines elektrochirurgischen Generators
EP1858428B1 (de) Hf-chirurgieeinrichtung
EP0971636B1 (de) Vorrichtung zur erfassung des katheter-gewebekontaktes sowie von wechselwirkungen mit dem gewebe bei der katheterablation
EP0285962B1 (de) Überwachungsschaltung für ein HF-Chirurgiegerät
DE60116790T2 (de) Kontrollsystem und -verfahren für die energiezufuhr zu luftwegewänden oder anderen medien
DE19717411A1 (de) Verfahren und Vorrichtung zur Überwachung der thermischen Belastung des Gewebes eines Patienten
EP1816969B1 (de) Hf-chirurgiegerät
DE3838840C2 (de) Hochfrequenzkoagulationsvorrichtung für chirurgische Zwecke
EP0390937B1 (de) Einrichtung zur Überwachung der Applikation von Neutralelektroden bei der Hochfrequenzchirurgie
EP2367493B1 (de) Elektrochirurgisches gerät mit einer temperaturmesseinrichtung zur bestimmung einer temperatur und/oder einer temperaturänderung an einer neutralelektrode
EP0950377B1 (de) Ablationsanordnung
DE3502193A1 (de) Elektrochirurgische vorrichtung
DE19757720A1 (de) Verfahren zum Betrieb einer Hochfrequenz-Ablationsvorrichtung und Vorrichtung für die Hochfrequenz-Gewebe-Ablation
DE69820995T2 (de) Verfahren zur prüfung einer ausgabeschaltung vor einem defibrillationsimpuls
EP2537479A1 (de) Steuerung eines medizinischen Geräts in Abhängigkeit von der Neutralektrodenimpedanz
WO1998025532A1 (de) Ablationsgerät für intrakardiale herzbehandlungen
EP2337516B1 (de) Elektrochirurgischer hf-generator
EP1112720B1 (de) Vorrichtung für die Behandlung von biologischem Gewebe mittels Hochfrequenzstrom
EP2480150A1 (de) Versorgungseinrichtung zum betreiben mindestens eines medizinischen instruments, verfahren zur erzeugung eines steuerprogramms
DE102016225700B3 (de) Herunterfahren eines supraleitenden Magneten eines Magnetresonanzgerätes
EP2362756B1 (de) Vorrichtung zur devitalisierung von biologischem gewebe
EP2520241B1 (de) Einrichtung zur Gewebefusion oder Koagulation durch gewebewiderstandsabhängig spannungsgeregelte elektrische Einwirkung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 526139

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997951261

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09319300

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997951261

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997951261

Country of ref document: EP