WO1998022539A1 - Uv light absorber, a matrix containing said absorber, method for filtering out ultraviolet radiation and use of uv light absorbers - Google Patents

Uv light absorber, a matrix containing said absorber, method for filtering out ultraviolet radiation and use of uv light absorbers Download PDF

Info

Publication number
WO1998022539A1
WO1998022539A1 PCT/EP1997/006066 EP9706066W WO9822539A1 WO 1998022539 A1 WO1998022539 A1 WO 1998022539A1 EP 9706066 W EP9706066 W EP 9706066W WO 9822539 A1 WO9822539 A1 WO 9822539A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
light absorber
light
absorber according
silicon
Prior art date
Application number
PCT/EP1997/006066
Other languages
German (de)
French (fr)
Inventor
Werner Hoheisel
Reimer Holm
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to JP52312498A priority Critical patent/JP2001510496A/en
Priority to AU73014/98A priority patent/AU7301498A/en
Priority to EP97948868A priority patent/EP0946651A1/en
Publication of WO1998022539A1 publication Critical patent/WO1998022539A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/025Explicitly spheroidal or spherical shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/61Surface treated
    • A61K2800/62Coated
    • A61K2800/621Coated by inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/65Characterized by the composition of the particulate/core
    • A61K2800/651The particulate/core comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials

Definitions

  • UV light absorber a matrix containing this UV light absorber, a method for filtering out ultraviolet radiation and the use of UV light absorbers
  • the present invention relates to a new, significantly improved UV light absorber, which acts for a broad ultraviolet spectral range (UVA and UVB, ie a wavelength of about 250 nm to 400 nm), a matrix containing this UV light absorber, a method for Protection against ultraviolet radiation and the use of UV light absorbers to mitigate harmful UV radiation for plastics, for the contents of transparent containers and for sunscreens in the cosmetics sector
  • UVA and UVB broad ultraviolet spectral range
  • UV radiation even at an intensity such as that which reaches the surface of the earth from sunlight, has a damaging effect on many substances.
  • plastics such as polycarbonate, polyurethane, etc.
  • UV light absorbers are required for sunscreens in the cosmetics sector, which also have a high sun protection factor in the UVA range in order to optimally protect the skin from the UV radiation which is harmful to them. In all the applications described here, there is a high absorption capacity of the UV to be used Light absorbers in the entire UV range, that is to say a wavelength of approximately 250 nm to 400 nm with a simultaneous high transparency which is as neutral as possible, is desirable
  • a UV-light absorber such as is needed in the above examples, in exterior applications, its surface can be achieved in particular with a coating of poly by incorporating a UV light absorber in the volume of the j square end Whether ect or by a UV hchtabsorb Schl coating ⁇ materials such as polycarbonate, the shielding of the UVA Light should be almost complete, since otherwise degradation products of the polymer can accumulate in the boundary layer between the coating and the polymer, and this coating is prematurely detached and destroyed
  • UV light absorbers which have a molecular absorption band in the relevant wavelength range and do not absorb in the visible spectral range
  • a disadvantage of these compounds is their relatively low weather resistance, that is, they can evaporate, wash out and / or fade from the substrate when weathered. To achieve a high sun protection factor, relatively high concentrations of UV
  • Light absorbers are used which can trigger an allergic reaction or cause other intolerances in an increasing number of people
  • UV light absorbers are also proposed which contain inorganic solid materials in particulate form and are applied or incorporated in the form of a suspension as a layer on the material to be protected or incorporated in the same.
  • These inorganic particles can, depending on their size and choice of material, cause areas of damage Absorbing and / or scattering UV light It is preferable to absorb the scattering of light, since photons that are scattered into the material to be protected can still damage it, particularly when the particles are incorporated. Furthermore, too much scattering of the light leads to clouding of the material to be protected Materials From Absorption and Scattering of Light by Small Particles, CF Bohren, D R.
  • UV light absorbers that contain particles from the above-mentioned inorganic compounds have the disadvantage that high particle concentrations are necessary due to an absorption edge extending over large parts of the UVA range (320 nm to 400 nm) and / or a relatively small absolute absorption cross section are sufficient to absorb light in the entire UVA range.
  • fine-particle silicon is also known as a UV light absorber.
  • the particles described there have the disadvantage that their UV-absorbing properties decrease as a result of agglomeration taking place
  • UV light absorbers containing predominantly particles of silicon and / or of solid compounds in which silicon is present in a stochiometric excess, have an average diameter of less than 120 nm, these particles additionally comprising an oxide layer with a Thickness from 1 nm to 300 nm are surrounded by advantageous properties, such as high transparency in the visible spectral range at lower particle concentrations, high stability in air, high environmental and biocompatibility and complete absence of photocatalytic activities and filtering out light in UVA and UVB range with high efficiency, grouting They are suitable for incorporation in polymer materials, in coating materials, in paints, in cosmetics and similar materials. They are particularly useful when these materials are exposed to sunlight and they protect themselves or other substances underneath should be
  • the invention therefore relates to UV light absorbers which contain particles of silicon and / or solid compounds in which silicon is present in a stoichiometric excess with an average diameter of less than 120 nm. hold, these particles are additionally surrounded by an oxide layer with a thickness of 1 nm to 300 nm
  • the mean diameter is the maximum of the number distribution
  • Elemental silicon is amorphous or crystalline silicon, preferably crystalline silicon.
  • the size of the silicon particles is preferably between 1 nm and 120 nm, particularly preferably between 1 nm and 70 nm, very particularly preferably between 10 nm and 50 nm Particles with a large distribution with a maximum half-width of 40 nm on silicon particles with this average diameter are preferably produced by means of a gas phase reaction (CVR) according to the method described in US Pat. No. 5,472,477. Production according to J Phys Chem, 97, p 1224 to 1230 (1993), J Vac. Sei Technol A10, S 1048 (1992) and Int J Heat Mass Transfer 31, S 2236 (1988)
  • solid compounds includes compounds which are solid at room temperature, such as, for example, silicides, CaSi 2 and / or BaSi 2.
  • the solid compounds in which silicon is present in a stochiometric excess have a core-shell structure.
  • the average diameter of the particles is preferably less than 120 nm, particularly preferably less than 100 nm, very particularly preferably smaller Is 50 nm. These preferably have a particle size distribution with a maximum half-width of 40 nm. It is preferred that this consists of a core made of titanium nitride and a shell made of silicon, the silicon volume fraction being at least 30% per particle
  • Light absorber shell particles in the form of a solid compound consisting of silicon and such materials in the red spectral range (600 nm ⁇ ⁇ 700 nm) are more absorbent than those in the blue-green (400 nm ⁇ ⁇ 550 nm) spectral range
  • the solid compounds including those with a core-shell structure, can be prepared, for example, by thermal decomposition of a silicon-containing gas, such as, for example, silanes, organosilanes or SiCl 4 , so that a silicon-containing gas, such as, for example, silanes, organosilanes or SiCl 4 , so that a silicon-containing gas, such as, for example, silanes, organosilanes or SiCl 4 , so that a silicon-containing gas, such as, for example, silanes, organosilanes or SiCl 4 , so that a silicon-containing gas, such as, for example, silanes, organosilanes or SiCl 4 , so that a silicon-containing gas, such as, for example, silanes, organosilanes or SiCl 4 , so that a silicon-containing gas, such as, for example, silanes, organosilanes or SiCl 4 , so that a silicon-
  • Aerosol is formed (see J Phys Chem, 97, S 1224 to 1230 (1973), J Vac Sei Technol A10, S 1048 (1992).
  • the core is first produced by means of the previously described method and then the shell is applied by means of decomposition or reaction in the gas phase of appropriately composed gases, such as, for example, S 4 or S 4 together with H 2
  • Thermal decomposition can be carried out in a gas phase reactor, preferably in a CVR (Chemical Vapor Reaction) reactor, or also by laser absorption (see Int J Heat Mass Transfer, 31,
  • the particles are spherical. Particles with a size of less than 100 nm are known to tend to agglomeration in practice. As a result, the advantageous optical properties of the isolated individual particles, such as low light scattering and / or position, correspond
  • the particles of the UV light absorber according to the invention act optically like non-agglomerated individual particles. In this case, the particles are then electromagnetically decoupled. Thus, despite the agglomeration of the coated particle particles, the optical properties of isolated particles are retained.
  • Silicon particles containing UV light absorbers are preferably surrounded by an oxide layer with a thickness of 1 nm to 300 nm, particularly preferably from 10 nm to 100 nm.
  • oxide layer with a thickness of 1 nm to 300 nm, particularly preferably from 10 nm to 100 nm.
  • Another advantage of a silicon oxide layer is that the refractive index in the visible spectral range is very similar like the media to be protected against UV radiation, such as polycarbonate, polyurethane, Water / oil emulsions etc. This reduces the light-scattering effect and the matrix remains transparent.
  • This oxide layer can be done, for example, by adding oxygen to the CVR reactor after the particles have been produced
  • the UV light absorber according to the invention additionally contains particles of oxides and / or nitrides of metals which are in the red
  • Such additives are particles of titanium nit with an average diameter of 1 nm to 400 nm, preferably 10 nm to 120 nm or agglomerates of these titanium nitride particles can be considered. Their manufacture can be carried out, for example, according to US Pat. No. 5,472,477.
  • the UV light absorber contains not only silicon particles but also TiN particles with an average diameter of 10 to 120 nm -Light absorber works very effectively in the UVA range and at the same time ensures color neutrality with high transparency.
  • additives in the form of particles made of aluminum-sodium-silicates Ultramarine
  • Pigments for example available from Nubiola SA, under the name Nubix 81 pigments. They can also contain blue inorganic pigments, for example made of iron (III) hexacyanoferrate (II)
  • the UV light absorber preferably consists of a mixture of the silicon-containing particles and
  • the particle size of the mixed particles is preferably between 1 nm and 200 nm obtainable by the process described in US Pat. No. 5,472,477
  • the UV light absorber according to the invention can be uniformly dispersed in the matrix to be protected, incorporated there (matrix modification), enriched on the surface or applied to it, for example, as a varnish.
  • the invention also relates to a matrix containing 0.001 to 30 atom%.
  • At least one UV light absorber according to the invention The matrix is plastics, coatings, lacquers, paints, wood, cosmetics and / or glass.
  • the UV light absorber according to the invention is preferably present in proportions of 0.01% to 10% in the matrix to be protected.
  • the invention also relates to a method for protecting against ultraviolet radiation, according to which at least one UV light absorber according to the invention has been incorporated into the material to be protected or applied to it as a protective layer. Suitable incorporation methods are, for example, stirring or dispersing.
  • the application of the protective layer can likewise by conventional methods by means of vapor deposition or brushing on.
  • the materials to be protected are, for example, plastics, coatings, lacquers, paints or wood.
  • Plastics can be, for example, polycarbonate, polyurethane, polyester, polyimide, polyamide and / or polyacrylonitrile
  • a coating to the above-mentioned materials, but also by incorporating in or applying a coating to materials that are insensitive to UV light, such as, for example, glasses, the content of containers made from these materials s ind, are protected from harmful UV radiation.
  • the UV light absorbers according to the invention are moreover particularly useful in cosmetics in order to
  • the extinction of preferred UV light absorbers was calculated.
  • the optical density OD was calculated as a function of the particle diameter d and the light wavelength ⁇ . It is defined as follows
  • I 0 is the incident light intensity
  • I is the light intensity transmitted in 180 °
  • C ext is the extinction cross section, which is composed of the sum of the absorption cross section C scatter
  • c is the concentration of the particles in the medium
  • z is the layer thickness
  • r is the density of the particle material
  • the extinction cross section C ext for individual particles not interacting with each other was calculated using the well-known formalism of the Mie theory (see e.g. Absorption and Scanning ⁇ ng of Light by Small Particles, pp. 93 to 104 (1983)).
  • the dependence of the complex refractive indices on the wavelength can vary depending on the one used
  • Literature source differ from one another Therefore, for the example calculations presented here, various literature sources were first compared with one another and those that appeared to be the most reliable were used.
  • the following literature sources were used in detail: Absorption and Scanning ⁇ ng of Light by Small Particles, S 93 to 104, 1983, WO 93/06164, WO 95 / 09895, WO 92/21315, Phys
  • Fig. 1 gives an example of the UV protection properties of crystalline isolated
  • Silicon particles again (comparison)
  • the optical density of a UV light absorber consisting of crystalline silicon as a function of the wavelength was calculated for particle diameters of 20 nm (4), 30 nm (3), 40 nm (2) and 50 nm (1)
  • TiA remains in the UVA range, well behind the light-absorbing properties of silicon. In order to achieve the same protective effect, the concentration of T ⁇ O 2 particles must be increased many times over
  • FIG. 2 shows the cross sections Q normalized to a single particle for absorption (1) and scattering (2) as a function of the wavelength of an agglomerate from pure silicon particles, which consists of 55 primary particles (Si) with a diameter of 20 nm, which are arranged in two shells (again made of pure silicon) around a central particle (made of Si).
  • the following equations were used for the standardized cross section Q.
  • the cross sections for absorption (from Si) (3) and scattering (4) of an inventive UV light absorber of the same geometric shape are also shown in FIG. 2.
  • the Si particles calculated here have a diameter of 20 nm and a shell with a thickness of 25 nm. It can clearly be seen that the light scattering is far more dominant than the absorption in the case of the uncoated particles than in the case of the coated particles.
  • the UV light absorber according to the invention thus results in a significantly reduced clouding of the matrix
  • the invention therefore also relates to the use of the UV light absorbers according to the invention for UV light protection in plastics, paints, varnishes,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Cosmetics (AREA)

Abstract

The present invention relates to a novel, substantially improved UV radiation absorber, which can be used in a wide ultraviolet spectral region (UVA and UVB, that is, a wavelength of approximately 250 nm to 400 nm), a matrix containing said UV light absorber, a method for protection against UV radiation and the use of UV light absorbers to reduce UV radiation harming synthetic materials, contents in transparent containers and sun protective agents in the field of cosmetics.

Description

UV-Lichtabsorber, eine Matrix, enthaltend diesen UV-Lichtabsorber, ein Verfahren zum Herausfiltern ultravioletter Strahlung und die Verwendung von UV-LichtabsorbernUV light absorber, a matrix containing this UV light absorber, a method for filtering out ultraviolet radiation and the use of UV light absorbers
Die vorliegende Erfindung betrifft einen neuen, wesentlich verbesserten UV-Licht- absorber, der für einen breiten ultravioletten Spektralbereich (UVA und UVB, d h einer Wellenlänge von etwa 250 nm bis 400 nm) wirkt, eine Matrix, enthaltend diesen UV-Lichtabsorber ein Verfahren zum Schutz vor der ultravioletter Strahlung und die Verwendung von UV-Lichtabsorbern zur Abschwachung schädlicher UV-Strahlung für Kunststoffe, für Inhalte von transparenten Behaltern und für Sonnenschutzmittel im KosmetikbereichThe present invention relates to a new, significantly improved UV light absorber, which acts for a broad ultraviolet spectral range (UVA and UVB, ie a wavelength of about 250 nm to 400 nm), a matrix containing this UV light absorber, a method for Protection against ultraviolet radiation and the use of UV light absorbers to mitigate harmful UV radiation for plastics, for the contents of transparent containers and for sunscreens in the cosmetics sector
Bekannt ist, daß UV-Strahlung schon in einer Intensität, wie sie vom Sonnenlicht auf die Erdoberflache gelangt, für viele Substanzen schädigend wirkt Bei Kunst- Stoffen wie z B Polycarbonat, Polyurethan usw werden durch UV-BestrahlungIt is known that UV radiation, even at an intensity such as that which reaches the surface of the earth from sunlight, has a damaging effect on many substances. In the case of plastics such as polycarbonate, polyurethane, etc., UV radiation is used
Radikale gebildet, die das Material zersetzen Dies äußert sich in einer zunehmenden Vergilbung und Versprodung des Materials Dieser Prozeß nimmt zwar mit zunehmender Wellenlange stark ab, kann aber aufgrund der gleichzeitig zunehmenden spektralen Strahldichte des Sonnenlichtes an der Erdoberfläche bis heran zu einer Wellenlange von etwa 400 nm nicht vernachlässigt werden Aber auch andere Materialien, wie z B Holz, Farben, Beschichtungen können empfindlich auf UV-Strahlung sein und müssen entsprechend geschützt werden Viele Lebensmittel müssen bei Lagerung im Sonnenlicht in solchen Behaltern aufbewahrt werden, die keine UV-Strahlung ins Innere durchlassen Nicht zuletzt werden UV-Lichtabsorber für Sonnenschutzmittel im Kosmetikbereich benotigt, die auch im UVA-Bereich einen hohen Lichtschutzfaktor aufweisen, um die Haut optimal vor der für sie schädlichen UV-Strahlung zu schützen In allen hier beschriebenen Anwendungen ist ein hohes Absorptionsvermögen des einzusetzenden UV-Lichtabsorbers im gesamten UV-Bereich, d h einer Wellenlange von etwa 250 nm bis 400 nm bei gleichzeitiger hoher, möglichst farbneutraler Transparenz wünschenswertRadicals formed, which decompose the material.This manifests itself in an increasing yellowing and brittleness of the material.This process decreases sharply with increasing wavelength, but due to the simultaneously increasing spectral density of sunlight on the earth's surface, it can reach a wavelength of around 400 nm not to be neglected But other materials such as wood, paints and coatings can also be sensitive to UV radiation and must be protected accordingly. When stored in sunlight, many foods must be stored in containers that do not allow UV radiation to pass through Finally, UV light absorbers are required for sunscreens in the cosmetics sector, which also have a high sun protection factor in the UVA range in order to optimally protect the skin from the UV radiation which is harmful to them. In all the applications described here, there is a high absorption capacity of the UV to be used Light absorbers in the entire UV range, that is to say a wavelength of approximately 250 nm to 400 nm with a simultaneous high transparency which is as neutral as possible, is desirable
Ein UV-Lichtabsorber, wie er in den obigen Beispielen bei Außenanwendungen benotigt wird, kann durch Einbringen eines UV-Lichtabsorbers in das Volumen des zu schutzenden Objektes oder durch eine UV-hchtabsorbierende Beschichtung seiner Oberflache erreicht werden Insbesondere bei einer Beschichtung von Poly¬ mermaterialien, wie z B Polycarbonat, muß die Abschirmung auch des UVA- Lichtes annähernd vollständig sein, da sich ansonsten Abbauprodukte des Polymers in der Grenzschicht zwischen Beschichtung und Polymer anreichern können und diese Beschichtung somit vorzeitig abgelost und zerstört wirdA UV-light absorber, such as is needed in the above examples, in exterior applications, its surface can be achieved in particular with a coating of poly by incorporating a UV light absorber in the volume of the j square end Whether ect or by a UV hchtabsorbierende coating ¬ materials such as polycarbonate, the shielding of the UVA Light should be almost complete, since otherwise degradation products of the polymer can accumulate in the boundary layer between the coating and the polymer, and this coating is prematurely detached and destroyed
Als UV-Lichtabsorber werden bisher meistens organische Verbindungen verwen- det, die in dem relevanten Wellenlangenbereich eine molekulare Absorptionsbande aufweisen und nicht im sichtbaren Spektralbereich absorbierenUp to now, organic compounds have mostly been used as UV light absorbers, which have a molecular absorption band in the relevant wavelength range and do not absorb in the visible spectral range
Nachteilig bei diesen Verbindungen ist ihre relativ geringe Witterungsbestandig- keit, d h sie können bei Bewitterung aus dem Substrat ausdampfen, auswaschen und/oder ausbleichen Als Sonnenschutzmittel im Kosmetikbereich müssen zum Erreichen eines hohen Sonnenschutzfaktors relativ hohe Konzentrationen des UV-A disadvantage of these compounds is their relatively low weather resistance, that is, they can evaporate, wash out and / or fade from the substrate when weathered. To achieve a high sun protection factor, relatively high concentrations of UV
Lichtabsorbers verwendet werden, die bei einer zunehmenden Anzahl von Menschen allergische Reaktionen auslosen oder andere Unverträglichkeiten bewirken könnenLight absorbers are used which can trigger an allergic reaction or cause other intolerances in an increasing number of people
Als UV-Lichtabsorber werden jedoch auch solche vorgeschlagen, die anorganische Festkorpermaterialien in partikulärer Form enthalten und in Form einer Suspension als Schicht auf das zu schutzende Material aufgebracht oder in dasselbe eingearbeitet werden Diese anorganischen Partikel können je nach deren Große und Wahl des Materials Bereiche des schädlichen UV-Lichtes absorbieren und/oder streuen Dabei ist die Absorption der Streuung von Licht vorzuziehen, da insbesondere bei einer Einarbeitung der Partikel in das zu schutzende Material gestreute Photonen dieses weiterhin schadigen können Weiter fuhrt ein zu großer Streuanteil des Lichts zu einer Trübung des zu schutzenden Materials Aus Absorption and Scattering of Light by Small Particles, C F Bohren, D R. Huffman, S 93 bis 104 und 130 bis 141, 1983 ist bekannt, daß mit abnehmender Große der Partikel deren Absoptionsvermogen von Licht hoher ist als deren Fähigkeit, Licht zu streuen Für einen transparenten UV-Lichtabsorber sind also nur sehr kleine Partikel geeignet Um auch Farblosigkeit des UV-Lichtabsorbers zu gewährleisten, muß das Material der Partikel eine Absorptionskante im Wellenlangenbereich zwischen etwa 300 nm und 400 nm besitzen Nach WO 93/ 06164 eignen sich für eine solche Wirkung Materialien mit einer Bandlucke zwischen 2,8 eV und 4,1 eV, was einem Wellenlangenbereich zwischen 303 nm und 445 nm entspricht. Für diesen Anwendungszweck werden aus dieser Materialklasse u.a bereits TiO2, ZnO, CeO2, SiC eingesetzt, siehe z.B WO 93/06164, WO 95/09895 und WO 92/21315 UV-Lichtabsorber, die Partikel aus den oben genannten anorganischen Verbindungen enthalten, haben jedoch den Nachteil, daß aufgrund einer sich über weite Teile des UVA-Bereichs (320 nm bis 400 nm) erstreckenden Absorptionskante und/oder eines relativ kleinen absoluten Absorptionswirkungsquerschnittes hohe Partikelkonzentrationen notwendig sind, um Licht in dem gesamten UVA-Bereich genügend zu absorbieren Die dadurch notwendigen hohen Partikelkonzentrationen haben dann aber eine größere Trübung zur Folge und bergen die Gefahr einer geringeren mechanischen Belastbarkeit der Polymermatπx TiO2 als bisher bekanntestes UV-lichtabsorbierendes Partikel ist zudem photokataly tisch aktiv, so daß diese umhüllt werden müssen, um das zu schutzende Medium nicht durch solcheHowever, UV light absorbers are also proposed which contain inorganic solid materials in particulate form and are applied or incorporated in the form of a suspension as a layer on the material to be protected or incorporated in the same. These inorganic particles can, depending on their size and choice of material, cause areas of damage Absorbing and / or scattering UV light It is preferable to absorb the scattering of light, since photons that are scattered into the material to be protected can still damage it, particularly when the particles are incorporated. Furthermore, too much scattering of the light leads to clouding of the material to be protected Materials From Absorption and Scattering of Light by Small Particles, CF Bohren, D R. Huffman, S 93 to 104 and 130 to 141, 1983 it is known that with decreasing size of the particles their absorption capacity of light is higher than their ability to transmit light sprinkle For a transparent UV light absorber So only very small particles are suitable To ensure that the UV light absorber is also colorless, the material of the particles must have an absorption edge in the wavelength range between approximately 300 nm and 400 nm. According to WO 93/06164, materials with a band gap between 2 are suitable for such an effect , 8 eV and 4.1 eV, which corresponds to a wavelength range between 303 nm and 445 nm. From this class of materials, TiO 2 , ZnO, CeO 2 , SiC are already used for this purpose, see, for example, WO 93/06164, WO 95/09895 and WO 92/21315 However, UV light absorbers that contain particles from the above-mentioned inorganic compounds have the disadvantage that high particle concentrations are necessary due to an absorption edge extending over large parts of the UVA range (320 nm to 400 nm) and / or a relatively small absolute absorption cross section are sufficient to absorb light in the entire UVA range. However, the high particle concentrations required as a result result in greater turbidity and harbor the risk of a lower mechanical strength of the polymer matrix TiO 2 than the best known UV light-absorbing particle to date is also photocatalytically active , so that these must be encased in order not to be protected by the medium to be protected
Radikalbildung zu schadigen, die von dem Partikel selbst initiiert wirdDamaging radical formation that is initiated by the particle itself
Aus WO 96/16114 ist jedoch auch feinteiliges Silicium als UV-Lichtabsorber bekannt Die dort beschriebenen Teilchen haben den Nachteil, daß deren UV-absor- bierende Eigenschaften durch eine stattfindende Agglomeration nachlassenFrom WO 96/16114, however, fine-particle silicon is also known as a UV light absorber. The particles described there have the disadvantage that their UV-absorbing properties decrease as a result of agglomeration taking place
Aufgabe der vorliegenden Erfindung war daher die Bereitstellung von UV-Lichtabsorbern, die die im Stand der Technik bekannten Nachteile nicht aufweisenThe object of the present invention was therefore to provide UV light absorbers which do not have the disadvantages known in the prior art
Es wurde gefunden, daß UV-Lichtabsorber, enthaltend überwiegend Partikel aus Silicium und/oder aus festen Verbindungen, in denen Silicium im stochiometri- schen Überschuß vorliegt, mit einem mittleren Durchmesser von kleiner als 120 nm, wobei diese Partikel zusatzlich von einer Oxidschicht mit einer Dicke von 1 nm bis 300 nm umgeben sind, über vorteilhafte Eigenschaften, wie hohe Transparenz im sichtbaren Spektralbereich bei niedrigeren Partikelkonzentrationen, hohe Stabilität an Luft, hohe Umwelt- und Biovertraglichkeit und vollständige Abwesenheit von photokataly tischen Aktivitäten sowie das Herausfiltern von Licht im UVA- und UVB-Bereich mit hoher Effizienz, verfugen Sie sind zur Einarbeitung in Polymermaterialien, in Beschichtungsmaterialien, in Farben, in Kosmetica und ahnlichen Materialien geeignet Sie sind besonders nützlich, wenn diese Materialien dem Sonnenlicht ausgesetzt sind und sie sich selbst oder andere, darunter liegende Stoffe geschützt werden sollenIt has been found that UV light absorbers, containing predominantly particles of silicon and / or of solid compounds in which silicon is present in a stochiometric excess, have an average diameter of less than 120 nm, these particles additionally comprising an oxide layer with a Thickness from 1 nm to 300 nm are surrounded by advantageous properties, such as high transparency in the visible spectral range at lower particle concentrations, high stability in air, high environmental and biocompatibility and complete absence of photocatalytic activities and filtering out light in UVA and UVB range with high efficiency, grouting They are suitable for incorporation in polymer materials, in coating materials, in paints, in cosmetics and similar materials. They are particularly useful when these materials are exposed to sunlight and they protect themselves or other substances underneath should be
Gegenstand der Erfindung sind daher UV-Lichtabsorber, die Partikel aus Silicium und/oder aus festen Verbindungen, in denen Silicium im stochiometrischen Überschuß vorliegt, mit einem mittleren Durchmesser von kleiner als 120 nm, ent- halten, wobei diese Partikel zusatzlich von einer Oxidschicht mit einer Dicke von 1 nm bis 300 nm umgeben sindThe invention therefore relates to UV light absorbers which contain particles of silicon and / or solid compounds in which silicon is present in a stoichiometric excess with an average diameter of less than 120 nm. hold, these particles are additionally surrounded by an oxide layer with a thickness of 1 nm to 300 nm
Unter mittlerem Durchmesser ist das Maximum der Anzahlverteilung zu verstehenThe mean diameter is the maximum of the number distribution
Bei elementarem Silicium handelt es sich um amorphes oder kristallines Silicium, bevorzugt um kristallines Silicium Die Große der Siliciumpartikel liegt vorzugsweise zwischen 1 nm und 120 nm, besonders bevorzugt zwischen 1 nm und 70 nm, ganz besonders bevorzugt zwischen 10 nm und 50 nm Vorzugsweise weisen diese Partikel eine Großenverteilung mit einer maximalen Halbwertsbreite von 40 nm auf Siliciumpartikel mit diesem mittleren Durchmesser werden vorzugs- weise mittels Gasphasenreaktion (CVR) nach dem im US-A 5 472 477 beschriebenen Verfahren hergestellt Ebenfalls möglich ist die Herstellung gemäß J Phys Chem , 97, S 1224 bis 1230 (1993), J Vac. Sei Technol A10, S 1048 (1992) sowie Int J Heat Mass Transfer 31, S 2236 (1988)Elemental silicon is amorphous or crystalline silicon, preferably crystalline silicon. The size of the silicon particles is preferably between 1 nm and 120 nm, particularly preferably between 1 nm and 70 nm, very particularly preferably between 10 nm and 50 nm Particles with a large distribution with a maximum half-width of 40 nm on silicon particles with this average diameter are preferably produced by means of a gas phase reaction (CVR) according to the method described in US Pat. No. 5,472,477. Production according to J Phys Chem, 97, p 1224 to 1230 (1993), J Vac. Sei Technol A10, S 1048 (1992) and Int J Heat Mass Transfer 31, S 2236 (1988)
Unter den Begriff feste Verbindungen fallen bei Raumtemperatur feste Ver- bindungen, wie z B Silicide, CaSi2 und/oder BaSi2 Unter den Begriff Verbindungen in denen Silicium in stochiometrischem Überschuß vorliegt, fallen vorzugsweise Verbindungen der Formel SiλZj.x mit 0,5 < x ≤l, bevorzugt x >0,7 und Z = C, N, O, Ge, Ca, Ba und Sr Die Anwesenheit anderer Materialien verschiebt die energetische Lage der Absorptionskante in gewissen Grenzen und modifiziert die Form der Kante Als feste Verbindungen sind hierbei SiλC,.x oderThe term solid compounds includes compounds which are solid at room temperature, such as, for example, silicides, CaSi 2 and / or BaSi 2. The term compounds in which silicon is present in a stochiometric excess preferably includes compounds of the formula Si λ Z jx with 0.5 <x ≤l, preferably x> 0.7 and Z = C, N, O, Ge, Ca, Ba and Sr The presence of other materials shifts the energetic position of the absorption edge within certain limits and modifies the shape of the edge here Si λ C, .x or
SiχGe,_λ bevorzugtSi χ Ge, _ λ preferred
In einer bevorzugten Ausfuhrungsform der Erfindung weisen die festen Verbindungen, in denen Silicium im stochiometri sehen Überschuß vorliegt, eine Kern- Hullen-Struktur auf Der mittlere Durchmesser der Partikel ist vorzugsweise kleiner als 120 nm, besonders bevorzugt kleiner als 100 nm, ganz besonders bevorzugt kleiner 50 nm ist. Diese weisen vorzugsweise eine Teilchengroßenver- teilung mit einer maximalen Halbwertsbreite von 40 nm auf. Bevorzugt ist dabei, daß dieser aus einem Kern aus Titannitrid und einer Hülle aus Silicium besteht, wobei der Silicium-Volumenanteil mindestens 30 % je Partikel istIn a preferred embodiment of the invention, the solid compounds in which silicon is present in a stochiometric excess have a core-shell structure. The average diameter of the particles is preferably less than 120 nm, particularly preferably less than 100 nm, very particularly preferably smaller Is 50 nm. These preferably have a particle size distribution with a maximum half-width of 40 nm. It is preferred that this consists of a core made of titanium nitride and a shell made of silicon, the silicon volume fraction being at least 30% per particle
In einer weiteren bevorzugten Ausfuhrungsform der Erfindung enthalt der UV-In a further preferred embodiment of the invention, the UV
Lichtabsorber Hullenpartikel in Form einer festen Verbindung, bestehend aus Silicium und solchen Materialien, die im roten Spektralbereich (600 nm < λ < 700 nm) starker absorbierend sind als die im blau-grunen (400 nm < λ < 550 nm) SpektralbereichLight absorber shell particles in the form of a solid compound consisting of silicon and such materials in the red spectral range (600 nm <λ <700 nm) are more absorbent than those in the blue-green (400 nm <λ <550 nm) spectral range
Die Herstellung der festen Verbindungen, inklusive derer mit Kern-Hullen-Struktur kann z B durch eine thermische Zersetzung eines Sihcium-enthaltenden Gases wie z B Silanen, Organosilanen oder SιCl4, durchgeführt werden, so daß einThe solid compounds, including those with a core-shell structure, can be prepared, for example, by thermal decomposition of a silicon-containing gas, such as, for example, silanes, organosilanes or SiCl 4 , so that a
Aerosol entsteht (siehe J Phys Chem , 97, S 1224 bis 1230 (1973), J Vac Sei Technol A10, S 1048 (1992) Durch Beimischungen weiterer Gase, die beispielsweise Germanium oder Kohlenstoff enthalten, resultieren entsprechend stochio- metπsch zusammengesetzte Verbindungen Im Fall von festen Verbindungen mit einer Kern-Hullen-Struktur wird zunächst der Kern mittels der zuvor beschriebenen Verfahren hergestellt und anschließend mittels Zersetzung oder Reaktion in der Gasphase entsprechend zusammengesetzter Gase, wie z B SιH4 oder SιCl4 zusammen mit H2, die Hülle aufgebracht Die thermische Zersetzung kann in einem Gasphasenreaktor, bevorzugt in einem CVR (Chemical Vapor Reaktion)- Reaktor, oder auch durch Laserabsorption (siehe Int J Heat Mass Transfer, 31,Aerosol is formed (see J Phys Chem, 97, S 1224 to 1230 (1973), J Vac Sei Technol A10, S 1048 (1992). The admixture of further gases, which contain, for example, germanium or carbon, results in correspondingly stochiometric compounds in the case of solid compounds with a core-shell structure, the core is first produced by means of the previously described method and then the shell is applied by means of decomposition or reaction in the gas phase of appropriately composed gases, such as, for example, S 4 or S 4 together with H 2 Thermal decomposition can be carried out in a gas phase reactor, preferably in a CVR (Chemical Vapor Reaction) reactor, or also by laser absorption (see Int J Heat Mass Transfer, 31,
S 2239 (1988) stattfinden Die thermische Zersetzung von Gasen eignet sich besonders zur Herstellung kristalliner Partikel Ebenfalls möglich ist die Herstellung über ein PECVD (Plasma Enhanced Chemical Vapor Deposιtιon)-Verfahren (siehe J Vac Sei Technol , A10, S 1048 (1992)) Im letzten Verfahren entstehen amorphe Partikel, die durch eine thermische Nachbehandlung kπstalhnisiert werden können (siehe Nanostructured Materials, Vol 6, S 493 bis 496 (1995))S 2239 (1988) take place The thermal decomposition of gases is particularly suitable for the production of crystalline particles. It is also possible to use a PECVD (Plasma Enhanced Chemical Vapor Deposition) process (see J Vac Sei Technol, A10, S 1048 (1992)) In the last process, amorphous particles are formed, which can be stabilized by a thermal aftertreatment (see Nanostructured Materials, Vol 6, S 493 to 496 (1995))
In einer bevorzugten Ausfuhrungsform sind die Partikel kugelförmig Teilchen mit einer Große von unter 100 nm neigen bekannterweise in der Praxis zu einer verstärkten Agglomeration Dadurch entsprechen die vorteilhaften optischen Eigen- schaffen der isolierten Einzelteilchen wie geringe Lichtstreuung und/oder Lage derIn a preferred embodiment, the particles are spherical. Particles with a size of less than 100 nm are known to tend to agglomeration in practice. As a result, the advantageous optical properties of the isolated individual particles, such as low light scattering and / or position, correspond
Absorptionsbanden nicht den vorausberechneten Werten Es wurde nun gefunden, daß die erfindungsgemaßen Teilchen des UV-Lichtabsorbers optisch wie nicht agglomerierte Einzelteilchen wirken Die Teilchen sind in diesem Fall dann elektromagnetisch entkoppelt Dadurch behalt man also trotz Agglomeration der um- hüllten Pπmarteilchen die optischen Eigenschaften von isolierten Teilchen Die imAbsorption bands not calculated in advance. It has now been found that the particles of the UV light absorber according to the invention act optically like non-agglomerated individual particles. In this case, the particles are then electromagnetically decoupled. Thus, despite the agglomeration of the coated particle particles, the optical properties of isolated particles are retained The in
UV-Lichabsorber enthaltenen Sihciumteilchen sind vorzugsweise von einer Oxid- schicht mit einer Dicke von 1 nm bis 300 nm, besonders bevorzugt von 10 nm bis 100 nm, umgeben Vorteilhaft bei einer Silicium-Oxidschicht ist weiterhin, daß der Brechungsindex im sichtbaren Spektralbereich sehr ähnliche Werte hat wie die vor der UV-Strahlung zu schutzenden Medien, wie z B Polycarbonat, Polyurethan, Wasser/Ol-Emulsionen etc Dadurch verringert sich die lichtstreuende Wirkung und die Matrix bleibt transparent Diese Oxidschicht kann z B durch Zudosierung von Sauerstoff in den CVR-Reaktor nach der Herstellung der Partikel erfolgenSilicon particles containing UV light absorbers are preferably surrounded by an oxide layer with a thickness of 1 nm to 300 nm, particularly preferably from 10 nm to 100 nm. Another advantage of a silicon oxide layer is that the refractive index in the visible spectral range is very similar like the media to be protected against UV radiation, such as polycarbonate, polyurethane, Water / oil emulsions etc. This reduces the light-scattering effect and the matrix remains transparent. This oxide layer can be done, for example, by adding oxygen to the CVR reactor after the particles have been produced
In einer bevorzugten Ausfuhrungsform enthalt der erfmdungsgemaße UV-Lichtab- sorber zusätzlich Partikel aus Oxiden und/oder Nitriden von Metallen, die im rotenIn a preferred embodiment, the UV light absorber according to the invention additionally contains particles of oxides and / or nitrides of metals which are in the red
Spektralb ereich von 600 nm < λ < 700 nm starker absorbieren als im blau-grunen Spektralbereich von 400 nm < λ < 550 nm Als solche Zusätze kommen Partikel aus Titannitπd mit einem mittleren Durchmesser von 1 nm bis 400 nm, bevorzugt 10 nm bis 120 nm oder Agglomerate aus diesen Titannitπd-Pπmarpartikeln in Betracht Deren Herstellung kann z B gemäß US-A 5 472 477 erfolgen In einer bevorzugten Ausfuhrungsform enthalt der UV-Lichtabsorber neben Silicium- Partikeln auch TiN-Partikel mit einem mittleren Durchmesser von 10 bis 120 nm Dieser UV-Lichtabsorber wirkt sehr effektiv im UVA-Bereich und gewährleistet gleichzeitig eine Farbneutralitat bei hoher Transparenz Ebenfalls bevorzugt sind Zusätze in Form von Partikeln aus Aluminium-Natrium-Silikaten (UltramarineAbsorb spectral range of 600 nm <λ <700 nm more strongly than in the blue-green spectral range of 400 nm <λ <550 nm. Such additives are particles of titanium nit with an average diameter of 1 nm to 400 nm, preferably 10 nm to 120 nm or agglomerates of these titanium nitride particles can be considered. Their manufacture can be carried out, for example, according to US Pat. No. 5,472,477. In a preferred embodiment, the UV light absorber contains not only silicon particles but also TiN particles with an average diameter of 10 to 120 nm -Light absorber works very effectively in the UVA range and at the same time ensures color neutrality with high transparency. Also preferred are additives in the form of particles made of aluminum-sodium-silicates (Ultramarine
Pigmente), z B erhaltlich bei der Firma Nubiola S A , unter der Bezeichnung Nubix81 Pigmente Weiterhin können sie als Zusätze blaue anorg Farbpigmente z B aus Eisen(III)hexacyanoferrat(II) enthaltenPigments), for example available from Nubiola SA, under the name Nubix 81 pigments. They can also contain blue inorganic pigments, for example made of iron (III) hexacyanoferrate (II)
In einer weiteren Ausfuhrungsform der Erfindung besteht der UV-Lichtabsorber vorzugsweise aus einer Mischung aus den Silizium enthaltenden Partikeln und ausIn a further embodiment of the invention, the UV light absorber preferably consists of a mixture of the silicon-containing particles and
Partikeln der folgenden Gruppe Siliciumcarbid und/oder Oxiden der Metalle Titan, Cer, Wolfram, Zink, Zinn sowie Eisen Durch solche Mischungen laßt sich die Absorptionskante insbesondere deren Steilheit manipulieren Die Partikelgroße der zugemischten Partikel liegt vorzugsweise zwischen 1 nm und 200 nm Auch diese sind u a nach dem in US-A 5 472 477 beschriebenen Verfahren erhältlichParticles from the following group of silicon carbide and / or oxides of the metals titanium, cerium, tungsten, zinc, tin and iron. Such mixtures allow the absorption edge, in particular the steepness thereof, to be manipulated. The particle size of the mixed particles is preferably between 1 nm and 200 nm obtainable by the process described in US Pat. No. 5,472,477
Der erfmdungsgemaße UV-Lichtabsorber kann in der zu schutzenden Matrix gleichmaßig dispergiert vorliegen, dort eingearbeitet sein (Matπxmodifikation), an der Oberflache angereichert oder auf diese z B als Lack aufgetragen sein Gegenstand der Erfindung ist zudem eine Matrix, enthaltend 0,001 bis 30 Atom-% mindestens eines erfindungsgemaßen UV-Lichtabsorbers Bei der Matrix handelt es sich um Kunststoffe, Beschichtungen, Lacke, Farben, Holz, Kosmetika und/oder Glas In der zu schutzenden Matrix liegt der erfmdungsgemaße UV-Lichtabsorber bevorzugt in Anteilen von 0,01 % bis 10 % vor Alle %- Angaben beziehen sich dabei auf Atomprozent Gegenstand der Erfindung ist zudem ein Verfahren zum Schutz vor ultravioletter Strahlung, wonach in das zu schutzende Material mindestens ein erfindungsge- maßer UV-Lichtabsorber eingearbeitet oder auf dieses als Schutzschicht aufgetragen wurde Geeignete Einarbeitungsverfahren sind z B Einruhren oder Eindis- pergieren Das Auftragen der Schutzschicht kann ebenfalls nach gangigen Verfahren mittels Aufdampfen oder Aufstreichen erfolgen Bei den zu schutzenden Materialien (Matrix) handelt es sich z B um Kunststoffe, Beschichtungen, Lacke, Farben oder Holz Kunststoffe können beispielsweise sein Polycarbonat, Polyurethan, Polyester, Polyimid, Polyamid und/oder Polyacrylnitπl Weiter kann durch die Einarbeitung in oder durch das Aufbringen einer Beschichtung auf die oben genannten Materiahen, aber auch durch die Einarbeitung in oder das Aufbringen einer Beschichtung auf für UV-Licht unempfindliche Materialien wie z B Glaser, der Inhalt von Behaltern, die aus diesen Mateπlahen hergestellt sind, von einer schädlichen UV-Strahlung geschützt werden Die erfindungsgemaßen UV-Lichtabsorber sind darüber hinaus besonders nützlich in Kosmetika, um dieThe UV light absorber according to the invention can be uniformly dispersed in the matrix to be protected, incorporated there (matrix modification), enriched on the surface or applied to it, for example, as a varnish. The invention also relates to a matrix containing 0.001 to 30 atom%. At least one UV light absorber according to the invention The matrix is plastics, coatings, lacquers, paints, wood, cosmetics and / or glass. The UV light absorber according to the invention is preferably present in proportions of 0.01% to 10% in the matrix to be protected. before All% figures refer to atomic percent The invention also relates to a method for protecting against ultraviolet radiation, according to which at least one UV light absorber according to the invention has been incorporated into the material to be protected or applied to it as a protective layer. Suitable incorporation methods are, for example, stirring or dispersing. The application of the protective layer can likewise by conventional methods by means of vapor deposition or brushing on. The materials to be protected (matrix) are, for example, plastics, coatings, lacquers, paints or wood. Plastics can be, for example, polycarbonate, polyurethane, polyester, polyimide, polyamide and / or polyacrylonitrile By incorporating in or by applying a coating to the above-mentioned materials, but also by incorporating in or applying a coating to materials that are insensitive to UV light, such as, for example, glasses, the content of containers made from these materials s ind, are protected from harmful UV radiation. The UV light absorbers according to the invention are moreover particularly useful in cosmetics in order to
Haut vor der schädlichen Wirkung des UV-Anteils in der Sonnenstrahlung zu schützenProtect skin from the harmful effects of the UV component in solar radiation
Um die vorteilhafte Wirkung der Erfindung zu demonstrieren, wurde die Extinktion bevorzugter UV-Lichtabsorber berechnet Dazu wurde die Optische Dichte OD als Funktion des Teilchendurchmessers d und der Lichtwellenlange λ berechnet Sie ist wie folgt definiertIn order to demonstrate the advantageous effect of the invention, the extinction of preferred UV light absorbers was calculated. To this end, the optical density OD was calculated as a function of the particle diameter d and the light wavelength λ. It is defined as follows
Figure imgf000009_0001
Figure imgf000009_0001
Dabei ist I0 die einfallende Lichtintensitat, I ist die in 180° transmittierte Licht- mtensitat, Cext ist der Extinktionswirkungsquerschnitt, der sich aus der Summe des Absorptionsquerschnittes Cstreu zusammensetzt, c ist die Konzentration der Partikel im Medium, z ist die Schichtdicke und r ist die Dichte des Partikelmaterials DerI 0 is the incident light intensity, I is the light intensity transmitted in 180 °, C ext is the extinction cross section, which is composed of the sum of the absorption cross section C scatter , c is the concentration of the particles in the medium, z is the layer thickness and r is the density of the particle material Der
Extinktionswirkungsquerschnitts Cext für untereinander nicht wechselwirkende Einzelteilchen wurde mit Hilfe des bekannten Formalismus der Mie-Theoπe berechnet (siehe z B Absorption and Scatteπng of Light by Small Particles, S 93 bis 104 (1983)) Zur Berechnung von Cext als Funktion der Wellenlange von Teilchen mit einem geringen Abstand untereinander, d h mit Berücksichtigung einer Teilchen-Teilchen-Wechselwirkung, wurde eine verallgemeinerte Mie- Theoπe verwendet (siehe z B Applied Optics 32, 6173 (1993)) Die in diese Berechnungen eingehenden mateπalabhangigen Parameter sind der komplexe Brechungsindex des betrachteten Materials und der Brechungsindex des umgebenden Mediums Für das umgebende Medium wurde exemplarisch ein für Kunststoffe und Glaser typischer Wert von nmed = 1,55 verwendet Die Abhängigkeit der komplexen Brechungsindices von der Wellenlange können je nach verwendeterThe extinction cross section C ext for individual particles not interacting with each other was calculated using the well-known formalism of the Mie theory (see e.g. Absorption and Scanningπng of Light by Small Particles, pp. 93 to 104 (1983)). To calculate C ext as a function of the wavelength of Particles with a small distance between them, ie taking into account a particle-particle interaction, a generalized Mie Theoπe was used (see eg Applied Optics 32, 6173 (1993)) Die in this Calculations for material-dependent parameters are the complex refractive index of the material under consideration and the refractive index of the surrounding medium. A typical value for plastics and glasses of n med = 1.55 was used for the surrounding medium. The dependence of the complex refractive indices on the wavelength can vary depending on the one used
Literaturquelle voneinander abweichen Deshalb wurden für die hier vorgestellten Beispielrechnungen zunächst verschiedene Literaturquellen miteinander verglichen und die am zuverlässigsten erscheinenden verwendet Im einzelnen wurden folgende Literaturquellen benutzt Absorption and Scatteπng of Light by Small Particles, S 93 bis 104, 1983, WO 93/06164, WO 95/09895, WO 92/21315, PhysLiterature source differ from one another Therefore, for the example calculations presented here, various literature sources were first compared with one another and those that appeared to be the most reliable were used. The following literature sources were used in detail: Absorption and Scanningπng of Light by Small Particles, S 93 to 104, 1983, WO 93/06164, WO 95 / 09895, WO 92/21315, Phys
Rev B 27, 985 (1983), für Sι0 8Ge0 2 E Schmidt, Phys Stat Sol , 27 57 (1968) für TιO2 (Rutil) in "Handbook of Optical Constants of Sohds I" von E D Palik Academic Press, 1985, S 795, und für TiN Surface Science 251, 200 (1991) Die Schichtdicke z betragt für alle durchgeführten Berechnungen z = 1 mmRev B 27, 985 (1983), for Sι 0 8 Ge 0 2 E Schmidt, Phys Stat Sol, 27 57 (1968) for TιO 2 (Rutil) in "Handbook of Optical Constants of Sohds I" by ED Palik Academic Press, 1985, S 795, and for TiN Surface Science 251, 200 (1991) The layer thickness z is z = 1 mm for all calculations carried out
Fig 1 gibt ein Beispiel für die UV-Schutzeigenschaften von kristallinen isoliertenFig. 1 gives an example of the UV protection properties of crystalline isolated
Sihciumteilchen wieder (Vergleich) Es wurde die Optische Dichte eines UV- Lichtabsorbers, bestehend aus kristallinem Silicium als Funktion der Wellenlange für Teilchendurchmesser von 20 nm (4), 30 nm (3), 40 nm (2) und 50 nm (1) berechnet Die Partikelkonzentration betrug c = 0,25 g/L Man erkennt, daß grundsätzlich alle Partikel mit einer Große von weniger als 50 nm UV-Licht abschirmen Insbesondere bei Partikelgroßen von 30 nm bis 50 nm wird selbst beigeringen Konzentrationen neben dem Licht des UVB Bereichs auch das des UVA-Bereichs sehr effektiv absorbiert, so daß darunterliegendes Material wirksam geschützt wird So hegt beispielsweise die Transmission von 40 nm großen Partikeln bei einer Wellenlange von λ = 400 nm bei 70 % und bei λ = 350 nm bei 1,5 % Durch Erhöhung der Konzentration lassen sich leicht sehr hohe Licht- schutzfaktoren auch für Partikel mit einem kleineren mittleren Durchmesser erreichen, um geringfügige Streuanteile weiter zu verringern Zum Vergleich wurde auch das Extinktionsspektrum von Rutιl-TιO2-Partιkeln mit einem Durchmesser von 20 nm in der gleichen Konzentration berechnet Insbesondere imSilicon particles again (comparison) The optical density of a UV light absorber consisting of crystalline silicon as a function of the wavelength was calculated for particle diameters of 20 nm (4), 30 nm (3), 40 nm (2) and 50 nm (1) The particle concentration was c = 0.25 g / L. It can be seen that, in principle, all particles with a size of less than 50 nm shield UV light. In particular with particle sizes from 30 nm to 50 nm, even low concentrations will also be in addition to the light of the UVB range that of the UVA range is absorbed very effectively, so that the underlying material is effectively protected. For example, the transmission of 40 nm particles at a wavelength of λ = 400 nm at 70% and at λ = 350 nm at 1.5% by increasing Concentration makes it very easy to achieve very high light protection factors, even for particles with a smaller mean diameter, in order to further reduce minor scatter components e also calculated the extinction spectrum of rutιl-TιO 2 particles with a diameter of 20 nm in the same concentration
UVA-Bereich bleibt TiO, deutlich hinter den lichtabsorbierenden Eigenschaften des Sihciums zurück Um die gleiche Schutzwirkung zu erzielen, muß die Konzentration an TιO2-Partιkeln um ein Vielfaches erhöht werdenTiA remains in the UVA range, well behind the light-absorbing properties of silicon. In order to achieve the same protective effect, the concentration of TιO 2 particles must be increased many times over
Fig 2 zeigt die auf ein Einzelteilchen normierten Wirkungsquerschnitte Q für Absorption (1) und Streuung (2) als Funktion der Wellenlange eines Agglomerats aus reinen Silisiumteilchen, das aus 55 Pπmarteilchen (Si) mit einem Durchmesser von 20 nm besteht, die in zwei Schalen (wiederum aus reinem Silicium) um ein Zentralteilchen (aus Si) angeordnet sind Für den normierten Wirkungsquerschnitt Q wurden folgende Gleichungen zugrunde gelegtFIG. 2 shows the cross sections Q normalized to a single particle for absorption (1) and scattering (2) as a function of the wavelength of an agglomerate from pure silicon particles, which consists of 55 primary particles (Si) with a diameter of 20 nm, which are arranged in two shells (again made of pure silicon) around a central particle (made of Si). The following equations were used for the standardized cross section Q.
im Falle der Absorption ((1) und (3))in the case of absorption ((1) and (3))
Q = Cabs π d2 Q = C abs π d 2
4 im Falle der S treuung ((2) und (4))4 in the case of childcare ((2) and (4))
Q = °Streu π d2 Q = ° scatter π d 2
44
der Maß gäbe, daß Ceχt = = cabs + Cstreu und Cext gemäß Absorption and Scatteπng of Light by Small Particles, S 93-104 (1983) und Applied Optics 32the measure would be that C eχt = = c abs + C scatter and C ext according to Absorption and Scanningπng of Light by Small Particles, S 93-104 (1983) and Applied Optics 32
6173 (1993) berechnet wurde Die Wirkungsquerschnitte für Absorption (aus Si) (3) und Streuung (4) eines erfindungsgemaßen UV-Lichtabsorbers der gleichen geometrischen Form sind ebenfalls in Fig 2 wiedergegeben Die hier berechneten Si-Teilchen haben einen Durchmesser von 20 nm und eine Hülle mit einer Dicke von 25 nm Man sieht deutlich, daß die Lichtstreuung gegenüber der Absorption bei den unbeschichteten Teilchen wesentlich dominanter ist als bei den beschichteten Teilchen Der erfmdungsgemaße UV-Lichtabsorber bewirkt also eine deutlich verringerte Trübung der Matrix6173 (1993) The cross sections for absorption (from Si) (3) and scattering (4) of an inventive UV light absorber of the same geometric shape are also shown in FIG. 2. The Si particles calculated here have a diameter of 20 nm and a shell with a thickness of 25 nm. It can clearly be seen that the light scattering is far more dominant than the absorption in the case of the uncoated particles than in the case of the coated particles. The UV light absorber according to the invention thus results in a significantly reduced clouding of the matrix
Gegenstand der Erfindung ist daher zudem die Verwendung der erfmdungsge- maßen UV-Lichtabsorber zum UV-Lichtschutz in Kunststoffen, Farben, Lacken,The invention therefore also relates to the use of the UV light absorbers according to the invention for UV light protection in plastics, paints, varnishes,
Glas oder Beschichtungen, als Selbstschutz oder zum Schutz eines darunterliegenden oder noch dann befindlichen UV-lichtempfindlichen Materials, in Holzschutzmitteln und/oder in KosmetikaGlass or coatings, as self-protection or for protecting an underlying or still UV-sensitive material, in wood preservatives and / or in cosmetics
Die Einarbeitung oder das Aufbringen auf das zu schutzende Material kann nach gangigen Methoden erfolgen (siehe WO 95/09 895, WO 92/21 315 und EP-Incorporation or application to the material to be protected can be carried out using conventional methods (see WO 95/09 895, WO 92/21 315 and EP
A 628 303) A 628 303)

Claims

Patentansprücheclaims
1 UV-Lichtabsorber, dadurch gekennzeichnet, daß diese überwiegend Partikel aus Silicium und/oder aus festen Verbindungen, in denen Silicium im stochiometπschen Überschuß vorliegt, mit einem mittleren Durchmesser von kleiner als 120 nm, enthalten, wobei diese Partikel zusatzlich von einer1 UV light absorber, characterized in that these predominantly contain particles of silicon and / or solid compounds, in which silicon is present in a stochiometric excess, with an average diameter of less than 120 nm, these particles additionally having a
Oxidschicht mit einer Dicke von 1 nm bis 300 nm umgeben sindOxide layer with a thickness of 1 nm to 300 nm are surrounded
2 UV-Lichtabsorber nach Anspruch 1, dadurch gekennzeichnet, daß die festen Verbindungen, in denen Silicium im stochiometπ sehen Überschuß vorliegt, Verbindungen der Formel SιλZ, χ mit 0,5 < x ≤\ und Z = C, N, O, Ge, Ca, Ba und/oder Sr sind2 UV light absorber according to claim 1, characterized in that the solid compounds in which silicon in the stochiometπ see excess is present, compounds of the formula Sι λ Z, χ with 0.5 <x ≤ \ and Z = C, N, O, Are Ge, Ca, Ba and / or Sr
3 UV-Lichtabsorber nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Partikel kugelförmig sind3 UV light absorber according to one of claims 1 or 2, characterized in that the particles are spherical
4 UV-Lichtabsorber nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die festen Verbindungen, in denen Silicium im stochiometπschen Überschuß vorliegt, eine Kern-Hullen-Struktur aufweisen4 UV light absorber according to one or more of claims 1 to 3, characterized in that the solid compounds in which silicon is present in a stochiometric excess have a core-shell structure
5 UV-Lichtabsorber nach Anspruch 4, dadurch gekennzeichnet, daß dieser aus einem Kern aus Titannitrid und einer Hülle aus Silicium besteht, wobei der Silicium- Volumenanteil mindestens 30 % je Partikel ist5 UV light absorber according to claim 4, characterized in that it consists of a core of titanium nitride and a shell of silicon, the silicon volume fraction being at least 30% per particle
6 UV-Lichtabsorber nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß diese Partikel eine Großenverteilung mit einer maximalen Halbwertsbreite von 40 nm aufweisen6 UV light absorber according to one or more of claims 1 to 5, characterized in that these particles have a size distribution with a maximum half width of 40 nm
7 UV-Lichtabsorber nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß diese zusatzlich Partikel aus Oxiden und/oder Nitriden von Metallen enthalt, die im roten Spektralbereich von7 UV light absorber according to one or more of claims 1 to 6, characterized in that it additionally contains particles of oxides and / or nitrides of metals which in the red spectral range of
600 nm < λ < 700 nm starker absorbieren als im blau-grunen Spektralbereich von 400 nm < λ < 550 nmAbsorb 600 nm <λ <700 nm more than in the blue-green spectral range of 400 nm <λ <550 nm
8 UV-Lichtabsorber nach Anspruch 7, dadurch gekennzeichnet, daß die zusätzlichen Partikel aus Titanmtπd, mit einem mittleren Partikeldurchmesser von 1 nm bis 400 nm bestehen oder Agglomerate aus diesen Titannitπd- Primarpartikeln sind8 UV light absorber according to claim 7, characterized in that the additional particles made of Titanmtπd, with an average particle diameter exist from 1 nm to 400 nm or are agglomerates of these titanium nitride primary particles
9 UV-Lichtabsorber nach Anspruch 7, dadurch gekennzeichnet, daß die zusatzlichen Partikel Aluminium-Natrium-Silikate sind9 UV light absorber according to claim 7, characterized in that the additional particles are aluminum-sodium silicates
5 10 UV-Lichtabsorber nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß dieser zusatzlich Oxide von Eisen, Titan, Cer, Wolfram, Zinn und/oder Zink enthalt5 10 UV light absorber according to one or more of claims 1 to 9, characterized in that it additionally contains oxides of iron, titanium, cerium, tungsten, tin and / or zinc
1 1 Matrix aus Kunststoffen, Beschichtungen, Lacken, Farben, Holz, Kosmetika und/oder Glas, enthaltend 0,001 bis 30 Atom-% mindestens eines der UV-1 1 matrix of plastics, coatings, paints, paints, wood, cosmetics and / or glass, containing 0.001 to 30 atom% of at least one of the UV
) Lichtabsorber nach einem oder mehreren der Ansprüche 1 bis 10) Light absorber according to one or more of claims 1 to 10
12 Verfahren zum Schutz vor ultravioletter Strahlung, dadurch gekennzeichnet, daß in das zu schutzende Material mindestens ein UV-Lichtabsorber nach einem oder mehreren der Ansprüche 1 bis 11 eingearbeitet oder auf dieses als Schutzschicht aufgetragen wird12 A method of protecting against ultraviolet radiation, characterized in that at least one UV light absorber according to one or more of claims 1 to 11 is incorporated into the material to be protected or applied to it as a protective layer
5 13 Verwendung von UV-Lichtabsorbern nach einem oder mehreren der Ansprüche 1 bis 1 1 zum UV-Lichtschutz in Kunststoffen, Farben, Lacken, Glas oder Beschichtungen, als Selbstschutz oder zum Schutz des sich darunter befindlichen UV-lichtempfindlichen Materials in Holzschutzmitteln und/oder in Kosmetika. 5 13 Use of UV light absorbers according to one or more of claims 1 to 1 1 for UV light protection in plastics, paints, varnishes, glass or coatings, as self-protection or to protect the UV light-sensitive material underneath in wood preservatives and / or in cosmetics.
PCT/EP1997/006066 1996-11-15 1997-11-03 Uv light absorber, a matrix containing said absorber, method for filtering out ultraviolet radiation and use of uv light absorbers WO1998022539A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP52312498A JP2001510496A (en) 1996-11-15 1997-11-03 UV light absorbers, matrices comprising UV light absorbers, methods of blocking UV radiation, and uses of UV light absorbers
AU73014/98A AU7301498A (en) 1996-11-15 1997-11-03 UV light absorber, a matrix containing said absorber, method for filtering out ultraviolet radiation and use of UV light absorbers
EP97948868A EP0946651A1 (en) 1996-11-15 1997-11-03 Uv light absorber, a matrix containing said absorber, method for filtering out ultraviolet radiation and use of uv light absorbers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19647294 1996-11-15
DE19647294.6 1996-11-15

Publications (1)

Publication Number Publication Date
WO1998022539A1 true WO1998022539A1 (en) 1998-05-28

Family

ID=7811785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/006066 WO1998022539A1 (en) 1996-11-15 1997-11-03 Uv light absorber, a matrix containing said absorber, method for filtering out ultraviolet radiation and use of uv light absorbers

Country Status (4)

Country Link
EP (1) EP0946651A1 (en)
JP (1) JP2001510496A (en)
AU (1) AU7301498A (en)
WO (1) WO1998022539A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867483A1 (en) * 2004-03-12 2005-09-16 Invensil Treatment of metallurgical silicon powder by granulometry for obtaining a coloring metallic pigment comprises preparing metallurgical silicon powder, oxidizing the powder in oxidizing medium and adjusting the temperature and time
US7387830B2 (en) 2002-05-29 2008-06-17 Eckart Gmbh & Co. Kg. Coating agent, method and coated substrate surface
WO2012095786A2 (en) 2011-01-11 2012-07-19 L'oreal Anti-uv cosmetic composition
WO2012104161A1 (en) 2011-02-04 2012-08-09 L'oreal Oil-in-water emulsion comprising a mixture of spherical and non-spherical screening particles of composite material
WO2012104160A2 (en) 2011-02-04 2012-08-09 L'oreal Oil-in-water emulsion containing screening particles of composite material, non-spherical non-screening particles and at least one polar oil
WO2012104163A1 (en) 2011-02-04 2012-08-09 L'oreal Cosmetic composition in the form of a water-in-oil emulsion free of silicone emulsifier, containing non-spherical particles of composite material
WO2012110303A2 (en) 2011-02-18 2012-08-23 L'oreal Aqueous cosmetic composition containing composite material particles and gamma-oryzanol
WO2012110302A2 (en) 2011-02-18 2012-08-23 L'oreal Composition containing screening composites and particles of inorganic screening agents, which are hydrophobic-modified with an oil or wax of natural origin
WO2014009097A1 (en) 2012-07-13 2014-01-16 L'oreal Cosmetic composition containing screening composite particles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077453A2 (en) * 2003-02-25 2004-09-10 Xmx Corporation Encapsulated nanoparticles for the absorption of electromagnetic energy
DE112004000328T5 (en) * 2003-02-25 2006-06-22 Manfred R. Lincoln Kuehnle Encapsulated nanoparticles for the absorption of electromagnetic energy in the ultraviolet range
WO2018147684A1 (en) * 2017-02-10 2018-08-16 주식회사 쇼나노 Ultraviolet-barrier material composition comprising carbon group non-oxide nanoparticles and method for producing same
KR102099428B1 (en) * 2017-02-10 2020-04-09 주식회사 쇼나노 A composition for intercepting ultraviolet comprising carbon group non-oxide nanoparticles and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393857A1 (en) * 1989-04-20 1990-10-24 Tioxide Group Limited Coated titanium dioxide particles, process for producing them and their use
GB2242420A (en) * 1990-03-26 1991-10-02 Tioxide Group Plc Silica coated titanium dioxide
DE4214719A1 (en) * 1992-05-04 1993-11-11 Starck H C Gmbh Co Kg Metallic and/or ceramic powders - produced by gas phase reaction (CVR) of metallic cpds. plus other named reactants in tubular reactor have narrow, predetermined size range and high purity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393857A1 (en) * 1989-04-20 1990-10-24 Tioxide Group Limited Coated titanium dioxide particles, process for producing them and their use
GB2242420A (en) * 1990-03-26 1991-10-02 Tioxide Group Plc Silica coated titanium dioxide
DE4214719A1 (en) * 1992-05-04 1993-11-11 Starck H C Gmbh Co Kg Metallic and/or ceramic powders - produced by gas phase reaction (CVR) of metallic cpds. plus other named reactants in tubular reactor have narrow, predetermined size range and high purity

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387830B2 (en) 2002-05-29 2008-06-17 Eckart Gmbh & Co. Kg. Coating agent, method and coated substrate surface
FR2867483A1 (en) * 2004-03-12 2005-09-16 Invensil Treatment of metallurgical silicon powder by granulometry for obtaining a coloring metallic pigment comprises preparing metallurgical silicon powder, oxidizing the powder in oxidizing medium and adjusting the temperature and time
WO2005097915A2 (en) * 2004-03-12 2005-10-20 Invensil Interference pigments based on silicon or the alloys thereof
WO2005097915A3 (en) * 2004-03-12 2006-04-06 Invensil Interference pigments based on silicon or the alloys thereof
WO2012095786A2 (en) 2011-01-11 2012-07-19 L'oreal Anti-uv cosmetic composition
WO2012104161A1 (en) 2011-02-04 2012-08-09 L'oreal Oil-in-water emulsion comprising a mixture of spherical and non-spherical screening particles of composite material
WO2012104160A2 (en) 2011-02-04 2012-08-09 L'oreal Oil-in-water emulsion containing screening particles of composite material, non-spherical non-screening particles and at least one polar oil
WO2012104163A1 (en) 2011-02-04 2012-08-09 L'oreal Cosmetic composition in the form of a water-in-oil emulsion free of silicone emulsifier, containing non-spherical particles of composite material
WO2012110303A2 (en) 2011-02-18 2012-08-23 L'oreal Aqueous cosmetic composition containing composite material particles and gamma-oryzanol
WO2012110302A2 (en) 2011-02-18 2012-08-23 L'oreal Composition containing screening composites and particles of inorganic screening agents, which are hydrophobic-modified with an oil or wax of natural origin
WO2014009097A1 (en) 2012-07-13 2014-01-16 L'oreal Cosmetic composition containing screening composite particles

Also Published As

Publication number Publication date
EP0946651A1 (en) 1999-10-06
JP2001510496A (en) 2001-07-31
AU7301498A (en) 1998-06-10

Similar Documents

Publication Publication Date Title
DE69723347T2 (en) Coated SiO2 particles
EP0948572B1 (en) Multi-coated interference pigments
WO1998022539A1 (en) Uv light absorber, a matrix containing said absorber, method for filtering out ultraviolet radiation and use of uv light absorbers
US9283155B1 (en) Nanodiamond UV protectant formulations
EP0045851B1 (en) Process for preparing micaceous pigments coated with metal oxides, and their use
EP3053967B1 (en) Metallic gloss pigments based on aluminium flakes with a thickness of 1-30 nm
DE69733811T2 (en) PARTICULAR COMPOSITE MATERIAL FOR PROTECTION AGAINST UV RADIATION AND METHOD FOR THE PRODUCTION THEREOF
DE69918220T2 (en) Ultraviolet light absorbers
EP2598578B1 (en) Pvd-metallic effect pigments with diffractive structure and metal nanoparticles, process for preparing them and use thereof
EP3230384B1 (en) Non-metallic pigments having metal properties
WO2007045452A2 (en) Color effect pigment with a layer made of discrete metal particles, method for the production thereof and its use
DE10128489A1 (en) Multilayer high-coverage interference pigments with color change over a wide angular range comprises colorless dielectric layers on a metal
DE112004000337T5 (en) Encapsulated nanoparticles for the absorption of electromagnetic energy
EP1197472A1 (en) Iron oxide- and silicon dioxide- titanium dioxide mixture
EP2135916A2 (en) Light-converting material and a composition for the production thereof
DE112004000328T5 (en) Encapsulated nanoparticles for the absorption of electromagnetic energy in the ultraviolet range
Nurhasanah et al. Optical properties of Zn-doped CeO2 nanoparticles as a function of Zn content
Kamarajan et al. Green synthesis of ZnO nanoparticles and their photocatalyst degradation and antibacterial activity
EP1832624A1 (en) Stabilization of organic polymers against free radicals
Samuel et al. Synthesis, structural, photoluminescence, ultraviolet blocking and antibacterial performances of Ba-doped ZnO nanostructures
EP3025699A1 (en) Use of silicon-containing particles for protecting technical materials against UV radiation
JPH08510440A (en) Colloidal zinc oxide
EP2917286A1 (en) Pigment with photocatalytic activity, method for the production thereof and coating agent
GB2488367A (en) Ultra-violet absorbing material
JP2576824B2 (en) Ultraviolet ray blocking agent, resin composition containing the same and cosmetics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997948868

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 523124

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09297873

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997948868

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997948868

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642