WO1998022194A1 - Procede d'evaporation partielle d'un produit liquide et application de ce procede a la fabrication d'une poudre - Google Patents

Procede d'evaporation partielle d'un produit liquide et application de ce procede a la fabrication d'une poudre Download PDF

Info

Publication number
WO1998022194A1
WO1998022194A1 PCT/FR1997/002061 FR9702061W WO9822194A1 WO 1998022194 A1 WO1998022194 A1 WO 1998022194A1 FR 9702061 W FR9702061 W FR 9702061W WO 9822194 A1 WO9822194 A1 WO 9822194A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid product
gas
evaporation
condensable
superheated
Prior art date
Application number
PCT/FR1997/002061
Other languages
English (en)
Inventor
Jerry Van Loon
Bernard Remond
Original Assignee
Niro Kestner
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niro Kestner filed Critical Niro Kestner
Priority to AU52252/98A priority Critical patent/AU5225298A/en
Publication of WO1998022194A1 publication Critical patent/WO1998022194A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • B01D1/18Evaporating by spraying to obtain dry solids

Definitions

  • the present invention relates to a process for partial evaporation of the most volatile component of a liquid product consisting of at least two components of different volatility; it also relates to a process for manufacturing a powder using this partial evaporation process.
  • the object of the present invention is to remedy the above drawbacks of the prior techniques. To do this, it proposes a process for partial evaporation of the most volatile component of a liquid product made up of at least two components of different volatility, comprising an operation consisting in bringing and maintaining said liquid product in direct contact with a gas. condensable, characterized in that the latter is at a temperature sufficient to obtain on the one hand, a gaseous phase comprising the vapor of evaporation of said most volatile component and on the other hand, a liquid product enriched in it (or them) less volatile component (s).
  • the contact time between the hot gas and the liquid product is relatively short, especially if the liquid product is brought into contact with the condensable gas, in the sprayed state, that is to say in the form of a dispersion of fine droplets, the risks of degradation of said product are greatly limited.
  • the process according to the invention makes it possible to reach higher concentrations of the liquid product than those reached with the prior techniques, without however affecting the qualities and properties of this product, in particular when the latter is sensitive to heat. .
  • thermosensitive it is preferred that said evaporation operation is carried out under reduced pressure.
  • the liquid product can be brought into contact with the condensable gas, in different forms such as for example in sprayed form as already indicated above, or in the form of a curtain of liquid or fine jets of liquid.
  • the condensable gas will advantageously consist of the superheated vapor of the most volatile component of the liquid product; by operating in this way, there is no introduction into the evaporation system of foreign product to the components of the liquid product. It is thus advantageously possible to take part of the gas phase, to subject it to an overheating treatment, then to recycle it in the process as superheated condensable gas, it being specified that the remaining gas phase can, if one wish to be used as a source of calories for any purpose.
  • the above-mentioned overheating treatment may include an operation for compressing the gas phase and / or an operation for supplying calories to this gas phase.
  • this overheating treatment of part of the gas phase may include compression (mechanical compression and / or thermocompression) of another part of the gas phase and the indirect heat exchange between the gas resulting from this compression and said part of the gas phase to be overheated, said compression being sufficient to achieve the desired overheating.
  • the liquid product to be treated comprises a liquid component in which is dissolved or suspended at least one solid component, in which case the most volatile component is said liquid component and the condensable gas is the superheated vapor of said liquid component.
  • the liquid product to be treated may for example be whey or whole or partially or fully skimmed milk, in which case the most volatile component is water and the superheated condensable gas is superheated water vapor.
  • a powder is usually produced from a liquid product with a dry matter content by subjecting this liquid product to a prior concentration in an evaporator with a heat exchange surface, before subject it to spray drying using hot air.
  • the prior concentration should not exceed a determined threshold; there will then be an obligation to evaporate more in the spray dryer, which is economically unsatisfactory since it is well established that the energy consumption of a spray dryer is more than double that of, for example, a vapor evaporator. falling stream, to produce the same evaporation.
  • the present invention also relates to a process for the manufacture of powder, such as milk powder, from a liquid product with a dry matter content such as milk, comprising an operation of concentrating said liquid product to obtaining a concentrated liquid product, followed by a spray drying operation of this concentrated liquid product by bringing the latter into contact in the sprayed state, with a non-condensable hot gas such as hot air, this process being characterized in that said concentration operation comprises the partial evaporation of said liquid product in accordance with the partial evaporation process set out above.
  • part of the gaseous phase produced by partial evaporation may, for the sake of energy saving, be advantageously subjected to an indirect heat exchange with a non-condensable gas, the resulting heated gas then being brought into operation. works after final heating as a condensable hot gas in the spray drying operation.
  • the concentration operation may further comprise a preconcentration of the liquid product by indirect heat exchange between a source of calories and this liquid product, this preconcentration being carried out before said partial evaporation.
  • Such preconcentration will be carried out to such a degree that it will have no harmful effect on the final powder and so that no deposit of dry matter occurs on the exchange surface.
  • This installation comprises, in a manner known per se, an spray dryer 1 comprising an enclosure delimited by a vertical cylindrical side wall 2, a horizontal upper wall 3 and a bottom 4 in the form of an inverted cone.
  • the top of this cone is provided with an outlet 5 for powder;
  • the side wall 2 is provided at its lower part with an outlet 6 for gas;
  • the upper wall 3 is provided with an inlet 7 of hot non-condensable gas and an inlet 8 of liquid product opening into the upper part of the dryer 1 and ending with a means 9 for spraying liquid, such as a spray nozzle.
  • This installation further comprises, still in a manner known per se, means for prior concentration of the liquid product from which it is desired to manufacture the powder.
  • these prior concentration means comprise an evaporation device 10 comprising an enclosure delimited by a vertical cylindrical side wall 11, a horizontal upper wall 12 and a bottom 13 in the shape of an inverted cone.
  • the end of the outlet 14 is connected to the inlet 8 by a circulation pump 18a.
  • the gas outlet 15 is connected to a circulation means 19 such as a fan.
  • the discharge of this fan is connected to any means capable of transferring calories to the gas coming from the circulation means 19 before being sent to the evaporation device 10 via the inlet 16.
  • It may for example be an enclosure through which said gas from the circulation means 19 and in which is disposed an electric heating resistor. It may also be an enclosure comprising a coil, one of the ends of which is connected to the outlet of the means 19 and the other end of which is connected to the inlet 16, an enclosure which is furthermore equipped with a burner of gas. It may also be, as shown in the single figure, an enclosure 20 provided with a gas inlet 21 in communication with the discharge of the circulation means 19 and an outlet 22 in communication with the inlet 16. This enclosure 20 is crossed by a coil 23 comprising an inlet 24 for heat transfer fluid and an outlet 25 for this same heat transfer fluid.
  • a preconcentration device This can for example be constituted by an evaporator with a heat exchange surface such as a falling-flow or forced circulation evaporator.
  • the single figure shows a falling-stream evaporator 26 which comprises a bundle of tubes (not shown) arranged in a heating body 27 provided with an inlet 28 for heating steam and an outlet 29 with condensates.
  • This tube bundle ensures communication between the upper chamber 30 for supplying the liquid product to be preconcentrated and a lower chamber 31 for receiving the preconcentrated liquid product.
  • the latter is provided at its base with an outlet 32 for liquid product.
  • preconcentrated connected to the suction of a recovery pump 33 whose delivery is connected by a conduit 34 to the inlet 17;
  • the upper chamber 30 is for its part provided with an inlet 35 for liquid product to be pre-concentrated.
  • the chamber 31 is further provided with a steam outlet 36 in communication with a vapor-liquid separator 37.
  • the evaporator 26 shown in the single figure is a single-effect evaporator, but that in the context of this invention this evaporator could have multiple effects.
  • a liquid product is introduced via the inlet 35 which it is desired to transform into powder. It can be any liquid with a dry matter content such as for example whey or even milk (whole or totally or partially skimmed).
  • This liquid product for example milk, flows from top to bottom in the bundle of tubes of the evaporator 26 where it undergoes evaporation under the effect of the heating vapor supplied by the inlet 28. It results therefrom preconcentrated milk, it being specified that the conditions of evaporation are chosen to avoid any deterioration of the milk.
  • This preconcentrated milk is extracted from the chamber 31 through the outlet 32 and the pump 33, before being sprayed at the top of the evaporation device 10, in the form of fine droplets, using the spraying means 18.
  • the preconcentrated milk undergoes possible reheating and additional evaporation. This results in a concentrated liquid product which is extracted at the base of the device 10 through the outlet 14 and the pump 18a. This also results in a gaseous phase consisting of the heating water vapor supplied by the inlet 16 and the water vapor generated by the evaporation of the milk.
  • Part of this gas phase is extracted from the device 10 by the outlet 15 and the circulation means 19 and then brought into the enclosure 20 where it is overheated (under the effect of the calories which are transferred to it from the heat transfer fluid circulating in the coil 23) before being returned via the outlet 22 and the inlet 16 in the device 10.
  • the pressure prevailing within this latter device can be adjusted at will, for example as a function of the thermal sensitivity of the liquid product. to focus; thus in the case of milk (relatively thermosensitive product), it is desirable to operate under reduced pressure.
  • the concentrated liquid product from the pump 18 is then sent to the spraying means 9 using which it is sprayed in the form of fine droplets before undergoing a final evaporation in the dryer 1 under the effect of the non-condensable hot gas.
  • the non-condensable hot gas for example hot air
  • the hot air brought into the dryer by the inlet 16
  • the conditions of this evaporation being chosen to obtain a powder which collects in the bottom of the dryer 1 before being extracted therefrom by the outlet 5.
  • the hot air charged with the water vapor generated by evaporation it is extracted from the dryer by outlet 6.
  • the water vapor extracted by the outlet 15 and not subjected to the superheating operation in the enclosure 20 is used to preheat cold air in a first exchanger indirect heat 38 provided on the one hand with an inlet 39 for cold air and an outlet 40 for preheated air, and on the other hand with an inlet 41 for water vapor in communication with the outlet 15 and a condensate outlet 42.
  • the air thus preheated is then brought to its final temperature (sufficient to achieve the desired evaporation in the dryer 1) in a second heat exchanger 43.
  • the heat transfer fluid intended to supply the inlet 24 of the enclosure 20 can, if desired, be constituted by a steam obtained by subjecting part of the steam extracted by the outlet 15 and not put used in enclosure 20, mechanical compression and / or thermocompression (in a compressor 44) to bring it to an energy level sufficient to overheat the vapor passing through enclosure 20.
  • the present invention will be further illustrated by the Reference Example and
  • Example 1 shows a saving of live steam of 186 kg / h compared to the process of the above Reference Example not providing for a superheated steam dryer; to which is added the recovery of the calories available in the 327 kg / h of water vapor from the superheated and non-recycled steam dryer. It will also be added that the electrical power necessary for the implementation of the method of the example is negligible, since this power is only that consumed on the one hand by the fan 19 intended for the extraction and recycling of a part of the steam from the superheated steam dryer and secondly by the pump 18a which makes it possible to supply concentrated milk to the dryer by hot air atomization.
  • the installation object of this example is identical to that of example 1.
  • the conditions implemented in the installation object of this example 2 and the results obtained are as follows: - milk with 9% dry matter: 24,325 kg / h, or 21.6% more than compared to the installation of the reference example
  • the evaporation in the spray dryer by hot air is 1,700 kg / h, this corresponding substantially to the evaporation of the spray dryer in the reference example.
  • the increase in powder production is 405 kg / h, or 21.6%.
  • the investment in the spray dryer is small since it does not change its evaporative capacity. An appreciable increase in the production of milk powder is therefore obtained at a lower cost, since only the pre-evaporation installation will have to be modified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dairy Products (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

L'invention a pour objet un procédé d'évaporation partielle du composant le plus volatil d'un produit liquide constitué d'au moins deux composants de volatilité différente comprenant une opération d'évaporation consistant à amener et maintenir ledit produit liquide en contact direct avec un gaz condensable, caractérisé en ce que ce dernier est à une température suffisante pour obtenir d'une part, une phase gazeuse comprenant la vapeur d'évaporation dudit composant le plus volatil et d'autre part, un produit liquide enrichi en le (ou les) composant(s) moins volatil(s). Elle concerne également l'application de ce procédé à la fabrication d'une poudre à partir d'un produit liquide à teneur en matière sèche.

Description

Procédé d'évaporation partielle d'un produit liquide et application de ce procédé à la fabrication d'une poudre
La présente invention a pour objet un procédé d'évaporation partielle du composant le plus volatil d'un produit liquide constitué d'au moins deux composants de volatilité différente ; elle a également pour objet un procédé de fabrication d'une poudre mettant en oeuvre ce procédé d'évaporation partielle.
Pour procéder à l'evaporation partielle susmentionnée, il est habituel de traiter ledit produit liquide dans un évaporateur dans lequel l'evaporation est pratiquée en transférant des calories audit produit liquide par échange thermique indirect entre ce dernier et une source de calories.
Un tel échange thermique indirect fait appel à des surfaces d'échange qui présentent l'inconvénient de limiter les applications et performances de ce type d'évaporateur. Ainsi, le degré d'évaporation, et donc le degré de concentration, est limité quand le produit liquide à traiter contient des substances sensibles à la chaleur et/ou susceptibles de précipiter (ou cristalliser) sur la surface d'échange. De plus, l'échange thermique est d'autant plus difficile que la viscosité du produit traité augmente, de sorte qu'à partir d'un certain seuil d'évaporation, il devient nécessaire, si l'on veut poursuivre la concentration, de mettre en oeuvre une source de calories très chaude, ce qui non seulement est économiquement peu satisfaisant, mais encore est de nature à altérer la qualité et les propriétés du produit.
Le but de la présente invention est de remédier aux inconvénients ci-dessus des techniques antérieures. Pour ce faire, elle propose un procédé d'évaporation partielle du composant le plus volatil d'un produit liquide constitué d'au moins deux composants de volatilité différente, comprenant une opération consistant à amener et maintenir ledit produit liquide en contact direct avec un gaz condensable, caractérisé en ce que ce dernier est à une température suffisante pour obtenir d'un part, une phase gazeuse comprenant la vapeur d'évaporation dudit composant le plus volatil et d'autre part, un produit liquide enrichi en le (ou les) composant(s) moins volatil(s).
En raison de l'absence de surface d'échange thermique, tous les inconvénients liés à l'utilisation d'une telle surface sont supprimés dans le procédé proposé.
Par ailleurs, dans la mesure où le temps de contact entre le gaz chaud et le produit liquide est relativement court, surtout si le produit liquide est amené en contact avec le gaz condensable, à l'état pulvérisé, c'est-à-dire sous forme d'une dispersion de fines gouttelettes, les risques de dégradation dudit produit sont fortement limités.
D'autre part, les problèmes d'échange thermique sont très fortement réduits en raison de la faible taille desdites gouttelettes. Ainsi, le procédé selon l'invention permet d'atteindre des concentrations du produit liquide plus élevées que celles atteintes avec les techniques antérieures, sans pour autant affecter les qualités et propriétés de ce produit, en particulier quand celui-ci est sensible à la chaleur.
Lorsque ledit produit liquide est thermosensible, on préfère que ladite opération d'évaporation soit effectuée sous pression réduite.
Le produit liquide peut être amené au contact avec le gaz condensable, sous différentes formes telles que par exemple sous forme pulvérisée comme déjà indiqué ci-dessus, ou encore sous forme d'un rideau de liquide ou de fins jets de liquide.
On notera que le gaz condensable sera avantageusement constitué par la vapeur surchauffée du composant le plus volatil du produit liquide ; en opérant de cette manière, il n'y a pas introduction dans le système d'évaporation de produit étranger aux composants du produit liquide. Il est de la sorte avantageusement possible de prélever une partie de la phase gazeuse, de la soumettre à un traitement de surchauffe, puis de la recycler dans le procédé en tant que gaz condensable surchauffé, étant précisé que la phase gazeuse restante peut, si on le souhaite, être utilisée comme source de calories pour un usage quelconque.
On ajoutera que le traitement de surchauffe susmentionné pourra comprendre une opération de compression de la phase gazeuse et/ou une opération d'apport de calories à cette phase gazeuse. En particulier, ce traitement de surchauffe d'une partie de la phase gazeuse pourra comprendre la compression (compression mécanique et/ou thermocompression) d'une autre partie de la phase gazeuse et l'échange thermique indirect entre le gaz résultant de cette compression et ladite partie de la phase gazeuse à surchauffer, ladite compression étant suffisante pour réaliser la surchauffe souhaitée.
Selon un mode de réalisation du procédé selon l'invention, le produit liquide à traiter comprend un composant liquide dans lequel est dissous ou en suspension au moins un composant solide, auquel cas le composant le plus volatil est ledit composant liquide et le gaz condensable est la vapeur surchauffée dudit composant liquide. Ainsi, le produit liquide à traiter pourra par exemple être du lactosérum ou du lait entier ou partiellement ou totalement écrémé, auquel cas le composant le plus volatil est l'eau et le gaz condensable surchauffé est la vapeur d'eau surchauffée.
Le procédé qui vient d'être décrit peut avoir les applications les plus diverses. L'une de ces applications concerne la fabrication de poudre.
On rappellera à ce sujet que, conformément à la technique antérieure, une poudre est habituellement fabriquée à partir d'un produit liquide à teneur en matière sèche en soumettant ce produit liquide à une concentration préalable dans un évaporateur à surface d'échange thermique, avant de le soumettre à un séchage par atomisation au moyen d'air chaud.
Du fait de la mise en oeuvre d'une surface d'échange, il existe le risque de dépôt de matière sèche sur cette surface, surtout dans le cas d'un produit liquide contenant une substance susceptible de précipiter ou de cristalliser au cours de l'evaporation
En outre, si la concentration préalable est trop poussée, le produit est susceptible de se dégrader, ce qui affecte défavorablement la qualité et les propriétés de la poudre finale. De ce fait, la concentration préalable ne devra pas dépasser un seuil déterminé ; il y aura alors obligation d'évaporer plus dans le sécheur par atomisation, ce qui est économiquement peu satisfaisant puisqu'il est bien établi que la consommation énergétique d'un sécheur par atomisation est plus du double de celle par exemple d'un évaporateur à flot tombant, pour produire la même évaporation.
L'application du procédé d'évaporation partielle susmentionnée à la fabrication d'une poudre permet de supprimer tous les inconvénients ci-dessus.
Ainsi, la présente invention a également pour objet un procédé de fabrication de poudre, telle que de la poudre de lait, à partir d'un produit liquide à teneur en matière sèche tel que du lait, comprenant une opération de concentration dudit produit liquide pour obtenir un produit liquide concentré, suivie d'une opération de séchage par atomisation de ce produit liquide concentré par mise en contact de ce dernier à l'état pulvérisé, avec un gaz chaud non condensable tel que de l'air chaud, ce procédé étant caractérisé en ce que ladite opération de concentration comprend l'evaporation partielle dudit produit liquide conformément au procédé d'évaporation partielle exposé ci-dessus.
Il est de la sorte possible d'obtenir par évaporation partielle un produit liquide concentré d'une concentration supérieure à celle, pouvant être obtenue par une évaporation classique par échange thermique indirect, sans que cela ait pour autant une influence négative sur la qualité et les propriétés de la poudre finale telles que par exemple sa qualité organoleptique et sa solubilité.
On ajoutera qu'une partie de la phase gazeuse produite par l'evaporation partielle pourra, dans un souci d'économie d'énergie, être avantageusement soumise à un échange thermique indirect avec un gaz non condensable, le gaz réchauffé résultant étant alors mis en oeuvre après un chauffage final en tant que gaz chaud condensable dans l'opération de séchage par atomisation.
On précisera encore que l'opération de concentration pourra en outre comprendre une préconcentration du produit liquide par échange thermique indirect entre une source de calories et ce produit liquide, cette préconcentration étant effectuée avant ladite évaporation partielle. Une telle préconcentration sera réalisée à un degré tel qu'il n'aura aucun effet néfaste sur la poudre finale et de manière qu'il ne se produise aucun dépôt de matière sèche sur la surface d'échange. Un mode de réalisation préféré de la présente invention sera décrit ci-après à titre d'exemple non limitatif en référence au dessin annexé dont la figure unique est une représentation schématique d'une installation pour la mise en oeuvre du procédé de fabrication de poudre selon l'invention.
Cette installation comprend de manière connue en soi un sécheur par atomisation 1 comportant une enceinte délimitée par une paroi latérale cylindrique verticale 2, une paroi supérieure horizontale 3 et un fond 4 en forme de cône renversé. Le sommet de ce cône est pourvu d'une sortie 5 de poudre ; la paroi latérale 2 est pourvue à sa partie inférieure d'une sortie 6 de gaz ; et la paroi supérieure 3 est pourvue d'une arrivée 7 de gaz non condensable chaud et d'une arrivée 8 de produit liquide débouchant dans la partie haute du sécheur 1 et se terminant par un moyen de pulvérisation 9 de liquide, tel qu'une buse de pulvérisation.
Cette installation comprend en outre, toujours de manière connue en soi, des moyens de concentration préalable du produit liquide à partir duquel on souhaite fabriquer la poudre. Conformément à la présente invention, ces moyens de concentration préalable comprennent un dispositif d'évaporation 10 comportant une enceinte délimitée par une paroi latérale cylindrique verticale 11, une paroi supérieure horizontale 12 et un fond 13 en forme de cône renversé.
Le sommet de ce cône est pourvu d'une sortie 14 de liquide concentré ; la paroi latérale 11 est pourvue à sa partie inférieure d'une sortie 15 de gaz ; et la paroi supérieure 12 est pourvue d'une arrivée 16 de gaz condensable chaud et d'une arrivée
17 de liquide débouchant dans la partie haute du dispositif 10 et se terminant par un moyen de pulvérisation 18 de liquide, tel qu'une buse de pulvérisation.
Il est à noter que l'extrémité de la sortie 14 est reliée à l'arrivée 8 par une pompe de circulation 18a. Par ailleurs, la sortie 15 de gaz est reliée à un moyen de mise en circulation 19 tel qu'un ventilateur. Le refoulement de ce ventilateur est raccordé à tout moyen apte à transférer des calories au gaz issu du moyen de mise en circulation 19 avant d'être envoyé dans le dispositif d'évaporation 10 par l'arrivée 16.
Il pourra par exemple s'agir d'une enceinte traversée par ledit gaz issu du moyen de mise en circulation 19 et dans laquelle est disposée une résistance électrique chauffante. Il pourra encore s'agir d'une enceinte comportant un serpentin dont l'une des extrémités est raccordée au refoulement des moyens 19 et l'autre extrémité est raccordée à l'arrivée 16, enceinte qui est en outre équipée d'un brûleur de gaz. Il pourra s'agir également, comme le montre la figure unique, d'une enceinte 20 pourvue d'une arrivée de gaz 21 en communication avec le refoulement des moyens de mise en circulation 19 et d'une sortie 22 en communication avec l'arrivée 16. Cette enceinte 20 est traversée par un serpentin 23 comportant une arrivée 24 de fluide caloporteur et d'une sortie 25 pour ce même fluide caloporteur.
L'installation ainsi décrite est complétée par un dispositif de préconcentration. Celui-ci peut par exemple être constitué par un évaporateur à surface d'échange thermique tel qu'un évaporateur à flot tombant ou à circulation forcée.
La figure unique représente un évaporateur à flot tombant 26 qui comprend un faisceau de tubes (non représenté) disposé dans un corps de chauffe 27 pourvu d'une arrivée 28 de vapeur de chauffe et d'une sortie 29 de condensats. Ce faisceau de tube assure la communication entre la chambre supérieure 30 d'alimentation en produit liquide à préconcentrer et une chambre inférieure 31 de réception du produit liquide préconcentré. Cette dernière est pourvue à sa base d'une sortie 32 de produit liquide préconcentré reliée à l'aspiration d'une pompe de reprise 33 dont le refoulement est relié par un conduit 34 à l'arrivée 17 ; la chambre supérieure 30 est pour sa part pourvue d'une arrivée 35 de produit liquide à préconcentrer. La chambre 31 est en outre pourvue d'une sortie 36 de vapeur en communication avec un séparateur vapeur-liquide 37. On précisera que l'évaporateur 26 représenté sur la figure unique est un évaporateur simple effet, mais que dans le cadre de la présente invention cet évaporateur pourrait être à multiple effet.
L'installation ainsi décrite fonctionne de la manière suivante.
On introduit par l'arrivée 35 un produit liquide que l'on souhaite transformer en poudre. Il peut s'agir de tout liquide à teneur en matière sèche tel que par exemple du lactosérum ou encore du lait (entier ou totalement ou partiellement écrémé). Ce produit liquide, par exemple du lait, s'écoule de haut en bas dans le faisceau de tubes de l'évaporateur 26 où il subit une évaporation sous l'effet de la vapeur de chauffe amenée par l'arrivée 28. II en résulte un lait préconcentré, étant précisé que les conditions d'évaporation sont choisies pour éviter toute altération du lait. Ce lait préconcentré est extrait de la chambre 31 par la sortie 32 et la pompe 33, avant d'être pulvérisé au sommet du dispositif d'évaporation 10, sous forme de fines gouttelettes, à l'aide du moyen de pulvérisation 18. Sous l'effet du gaz condensable pénétrant dans le dispositif 10 par l'arrivée 16, gaz qui dans l'exemple présentement décrit n'est autre que de la vapeur d'eau surchauffée, le lait préconcentré subit un réchauffage éventuel et une évaporation supplémentaire. Il en résulte un produit liquide concentré qui est extrait à la base du dispositif 10 par la sortie 14 et la pompe 18a. Il en résulte en outre une phase gazeuse constituée par la vapeur d'eau de chauffage amenée par l'arrivée 16 et la vapeur d'eau générée par l'evaporation du lait. Une partie de cette phase gazeuse est extraite du dispositif 10 par la sortie 15 et le moyen de mise en circulation 19 et amenée ensuite dans l'enceinte 20 où elle est surchauffée (sous l'effet des calories qui lui sont transférées depuis le fluide caloporteur circulant dans le serpentin 23) avant d'être renvoyée via la sortie 22 et l'arrivée 16 dans le dispositif 10.
On notera que la pression régnant au sein de ce dernier dispositif pourra être réglée à volonté par exemple en fonction de la sensibilité thermique du produit liquide à concentrer ; ainsi dans le cas du lait (produit relativement thermosensible), il est souhaitable d'opérer sous pression réduite.
Le produit liquide concentré issu de la pompe 18 est ensuite envoyé dans le moyen de pulvérisation 9 à l'aide duquel il est pulvérisé sous forme de fines gouttelettes avant de subir une dernière évaporation dans le sécheur 1 sous l'effet du gaz chaud non condensable (par exemple de l'air chaud) amené dans le sécheur par l'arrivée 16, les conditions de cette évaporation étant choisies pour obtenir une poudre qui se rassemble dans le fond du sécheur 1 avant d'en être extraite par la sortie 5. Quant à l'air chaud chargé de la vapeur d'eau générée par l'evaporation, elle est extraite du sécheur par la sortie 6.
Dans un souci d'économie d'énergie, on préfère que la vapeur d'eau extraite par la sortie 15 et non soumise à l'opération de surchauffe dans l'enceinte 20 soit utilisée pour préchauffer de l'air froid dans un premier échangeur de chaleur indirect 38 pourvu d'une part d'une arrivée 39 d'air froid et d'une sortie 40 d'air préchauffé, et d'autre part d'une arrivée 41 de vapeur d'eau en communication avec la sortie 15 et d'une sortie 42 de condensats. L'air ainsi préchauffé est ensuite amené à sa température finale (suffisante pour réaliser l'evaporation souhaitée dans le sécheur 1) dans un deuxième échangeur de chaleur 43.
Enfin, il est à noter que le fluide caloporteur destiné à alimenter l'arrivée 24 de l'enceinte 20 peut, si on le souhaite, être constitué par une vapeur obtenue en soumettant une partie de la vapeur extraite par la sortie 15 et non mise en oeuvre dans l'enceinte 20, à une compression mécanique et/ou une thermocompression (dans un compresseur 44) pour l'amener à un niveau énergétique suffisant pour surchauffer la vapeur traversant l'enceinte 20. La présente invention sera en outre illustrée par l'Exemple de référence et les
Exemples suivants : Exemple de référence :
Celui-ci a pour but d'illustrer la technique antérieure.
Du lait à 9 % de matière sèche (20 000 kg/h) est concentré dans un évaporateur à 4 effets bi-therm d'une consommation spécifique Cs= 0,15 kg de vapeur par kg d'eau évaporée. En consommant 2 460 kg/h de vapeur vive dans cet évaporateur, on crée une évaporation de 16 400 kg d'eau par heure, pour obtenir un lait concentré à 50 % de matière sèche (3 600 kg/h). Ce concentré est ensuite traité dans un sécheur par atomisation (sécheur 2 temps ; Cs = 2,1 kg de vapeur par kg d'eau évaporée) ; pour des raisons de facilité de comparaison, on considérera que le chauffage de l'air de ce sécheur est réalisé au moyen de vapeur vive (3 622 kg/h). A la sortie de ce sécheur, on obtient 1 875 kg de poudre de lait par heure (à 96 % de matière sèche) pour une consommation totale de vapeur (évaporateur + sécheur) de 6 082 kg/h. Exemple 1 :
Cet exemple illustre le procédé selon l'invention, dans lequel pour des raisons de simplicité, la vapeur d'eau surchauffée a été produite par utilisation de vapeur vive dans le circuit 24 → 23 → 25. Par ailleurs, la concentration spécifique Cs du sécheur par atomisation a été légèrement augmentée (Cs = 2,2 kg de vapeur par kg d'eau évaporée) par rapport à l'Exemple de référence ci-dessus et ce, pour tenir compte de la concentration plus élevée à l'entrée du sécheur. Ainsi, les conditions et résultats sont comme suit : - lait à 9 % de matière sèche : 20 000 kg/h
- consommation en vapeur vive de l'évaporateur : 2 460 kg/h
- concentré obtenu à la sortie de l'évaporateur : 3 600 kg/h à 50 % de matière sèche
- consommation de vapeur vive dans le sécheur à vapeur surchauffée : 360 kg/h
- concentré obtenu à la sortie du sécheur à vapeur surchauffée : 3 273 kg/h à 55 % de matière sèche
- vapeur d'eau issue du sécheur à vapeur surchauffée et non recyclée : 327 kg/h
- consommation de vapeur vive pour chauffer l'air du sécheur par atomisation : 3 076 kg/h
- poudre à la sortie du sécheur par atomisation : 1 875 kg/h à 96 % de matière sèche - consommation totale de vapeur vive : 2 460 kg/ h + 360 kg/ h + 3 076 kg/h =
5 896 kg/h
Il ressort de ce qui précède que le procédé selon l'Exemple 1 fait apparaître une économie de vapeur vive de 186 kg/h par rapport au procédé de l'Exemple de référence ci-dessus ne prévoyant pas de sécheur à vapeur surchauffée ; à quoi s'ajoute la récupération des calories disponibles dans les 327 kg/h de vapeur d'eau issue du sécheur à vapeur surchauffée et non recyclée. On ajoutera également que la puissance électrique nécessaire à la mise en oeuvre du procédé de l'exemple est négligeable, puisque cette puissance n'est que celle consommée d'une part par le ventilateur 19 destiné à l'extraction et au recyclage d'une partie de la vapeur issue du sécheur à vapeur surchauffée et d'autre part par la pompe 18a qui permet d'alimenter en lait concentré le sécheur par atomisation à air chaud.
Exemple 2 :
L'installation objet de cet exemple est identique à celle de l'exemple 1. Cependant, les conditions mises en oeuvre dans l'installation objet de cet exemple 2 et les résultats obtenus sont comme suit : - lait à 9 % de matière sèche : 24 325 kg/h, soit 21,6 % de plus que par rapport à l'installation de l'exemple de référence
- consommation en vapeur vive de l'évaporateur : 2 992 kg/h
- concentré obtenu à la sortie de l'évaporateur : 4 378 kg/h à 50 % de matière sèche
- consommation de vapeur vive dans le sécheur à vapeur surchauffée : 438 kg/h - concentré obtenu à la sortie du sécheur à vapeur surchauffée : 3 980 kg/h à 55 % de matière sèche
- vapeur d'eau issue du sécheur à vapeur surchauffée et non recyclée : 398 kg/h
- consommation de vapeur vive pour chauffer l'air du sécheur par atomisation : 3 740 kg/h - poudre à la sortie du sécheur par atomisation : 2 280 kg/h à 96 % de matière sèche.
Dans cette installation, l'evaporation dans le sécheur par atomisation par air chaud est de 1 700 kg/h, ceci correspondant sensiblement à l'evaporation • du sécheur par atomisation de l'exemple de référence. Dans ces conditions, l'augmentation de production de poudre est de 405 kg/h, soit de 21,6 %. Or, l'investissement au niveau du sécheur par atomisation est peu importante puisque l'on ne change pas sa capacité évaporatoire. On obtient donc une augmentation appréciable de la production de la poudre de lait à moindre frais, puisque seule l'installation de pré-évaporation devra être modifiée.

Claims

REVENDICATIONS
1. Procédé d'évaporation partielle du composant le plus volatil d'un produit liquide constitué d'au moins deux composants de volatilité différente comprenant une opération d'évaporation consistant à amener et maintenir ledit produit liquide en contact direct avec un gaz condensable, caractérisé en ce que ce dernier est à une température suffisante pour obtenir d'un part, une phase gazeuse comprenant la vapeur d'évaporation dudit composant le plus volatil et d'autre part, un produit liquide enrichi en le (ou les) composant(s) moins volatil(s).
2. Procédé selon la revendication 1, dans lequel ledit produit liquide est thermosensible, caractérisé en ce que ladite opération d'évaporation est effectuée sous pression réduite.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que ledit gaz condensable est constitué par la vapeur surchauffée dudit composant le plus volatil.
4. Procédé selon la revendication 1, 2 ou 3, dans lequel le produit liquide comprend un composant liquide dans lequel est dissous ou en suspension au moins un composant solide, caractérisé en ce que le composant le plus volatil est ledit composant liquide et le gaz condensable est la vapeur surchauffée dudit composant liquide.
5. Procédé selon la revendication 3 ou 4, dans lequel le produit liquide est du lactosérum ou du lait entier ou partiellement ou totalement écrémé, caractérisé en ce que le composant le plus volatil est l'eau et le gaz condensable surchauffé est la vapeur d'eau surchauffée.
6. Procédé selon l'une des revendications 3 à 5, caractérisé en ce qu'il comprend en outre les opérations consistant à surchauffer une partie de ladite phase gazeuse et à recycler le gaz surchauffé ainsi obtenu en tant que gaz condensable surchauffé.
7. Procédé selon la revendication 6, caractérisé en ce que les opérations consistant à surchauffer une partie de ladite phase gazeuse comprennent une opération de compression de la phase gazeuse et/ou une opération d'apport de calories à cette phase gazeuse.
8. Procédé selon la revendication 6, caractérisé en ce que les opérations consistant à surchauffer une partie de la phase gazeuse comprennent la compression d'une autre partie de la phase gazeuse et l'échange thermique indirect entre le gaz résultant de cette compression et ladite partie de la phase gazeuse à surchauffer, ladite compression étant suffisante pour réaliser la surchauffe souhaitée.
9. Procédé de fabrication de poudre telle que de la poudre de lait, à partir d'un produit liquide à teneur en matière sèche tel que du lait, comprenant une opération de concentration dudit produit liquide pour obtenir un produit liquide concentré, suivie d'une opération de séchage par atomisation de ce produit liquide concentré par mise en contact de ce dernier à l'état pulvérisé, avec un gaz chaud non condensable tel que de l'air chaud, caractérisé en ce que l'opération de concentration comprend l'evaporation partielle dudit produit liquide conformément au procédé selon l'une quelconque des revendications précédentes.
10. Procédé selon la revendication 9, caractérisé en ce qu'une partie de la phase gazeuse obtenue par ladite évaporation partielle est soumise à un échange thermique indirect avec un gaz non condensable, le gaz réchauffé résultant étant mis en oeuvre, après un chauffage final, en tant que gaz chaud non condensable dans l'opération de séchage par atomisation.
11. Procédé selon la revendication 9 ou 10, caractérisé en ce que l'opération de concentration comprend en outre une pré-concentration effectuée avant ladite évaporation partielle, cette pré-concentration comprenant une évaporation par échange thermique indirect entre une source de calories et le produit liquide.
PCT/FR1997/002061 1996-11-18 1997-11-17 Procede d'evaporation partielle d'un produit liquide et application de ce procede a la fabrication d'une poudre WO1998022194A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU52252/98A AU5225298A (en) 1996-11-18 1997-11-17 Method for partially evaporating a liquid product and application thereof for making a powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9614018A FR2751557B1 (fr) 1996-11-18 1996-11-18 Procede d'evaporation partielle d'un produit liquide et application de ce procede a la fabrication d'une poudre
FR96/14018 1996-11-18

Publications (1)

Publication Number Publication Date
WO1998022194A1 true WO1998022194A1 (fr) 1998-05-28

Family

ID=9497706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/002061 WO1998022194A1 (fr) 1996-11-18 1997-11-17 Procede d'evaporation partielle d'un produit liquide et application de ce procede a la fabrication d'une poudre

Country Status (3)

Country Link
AU (1) AU5225298A (fr)
FR (1) FR2751557B1 (fr)
WO (1) WO1998022194A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376010A (en) * 1981-04-14 1983-03-08 Noranda Mines Limited Spray drying with a plasma of superheated steam
WO1992005849A1 (fr) * 1990-09-28 1992-04-16 Henkel Kommanditgesellschaft Auf Aktien Procede de sechage de matieres de valeur et de melanges de matieres de valeur par pulverisation avec utilisation de vapeur d'eau surchauffee
WO1993016165A1 (fr) * 1992-02-12 1993-08-19 Henkel Kommanditgesellschaft Auf Aktien Concentres pulverulents ou granules, sans poussiere, de tensioactifs anioniques a solubilite amelioree
DE4319828A1 (de) * 1993-06-16 1994-12-22 Henkel Kgaa Modifiziertes Trocknungsverfahren unter Mitverwendung von Heißdampf im Trocknungsmedium und seine Anwendung
DE4321361A1 (de) * 1993-06-26 1995-01-05 Henkel Kgaa Trocknung von wasserhaltigen Wertstoffen oder Wertstoffgemischen mit überhitztem Wasserdampf

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376010A (en) * 1981-04-14 1983-03-08 Noranda Mines Limited Spray drying with a plasma of superheated steam
WO1992005849A1 (fr) * 1990-09-28 1992-04-16 Henkel Kommanditgesellschaft Auf Aktien Procede de sechage de matieres de valeur et de melanges de matieres de valeur par pulverisation avec utilisation de vapeur d'eau surchauffee
WO1993016165A1 (fr) * 1992-02-12 1993-08-19 Henkel Kommanditgesellschaft Auf Aktien Concentres pulverulents ou granules, sans poussiere, de tensioactifs anioniques a solubilite amelioree
DE4319828A1 (de) * 1993-06-16 1994-12-22 Henkel Kgaa Modifiziertes Trocknungsverfahren unter Mitverwendung von Heißdampf im Trocknungsmedium und seine Anwendung
DE4321361A1 (de) * 1993-06-26 1995-01-05 Henkel Kgaa Trocknung von wasserhaltigen Wertstoffen oder Wertstoffgemischen mit überhitztem Wasserdampf

Also Published As

Publication number Publication date
FR2751557A1 (fr) 1998-01-30
AU5225298A (en) 1998-06-10
FR2751557B1 (fr) 1998-10-09

Similar Documents

Publication Publication Date Title
EP3177884B1 (fr) Procédé et installation de séchage thermique de produits pâteux
CH631350A5 (fr) Procede d'extraction d'une substance organique a partir d'une matiere vegetale au moyen de dioxyde de carbone liquide.
EP2808438B1 (fr) Appareil de repassage à la vapeur comprenant un fer à repasser
FR2492074A1 (fr) Installation pour rechauffer et secher des pieces sous vide par condensation de vapeur et separation d'un second liquide a point d'ebullition plus eleve
EP2808439B1 (fr) Appareil de repassage à la vapeur
WO2019020605A1 (fr) Unite de dessalement d'eau par compression mecanique de vapeur
LU81573A1 (fr) Procede pour prechauffer l'air en circulation dans une installation constituee par un evaporateur couple a une unite de sechage
WO1998022194A1 (fr) Procede d'evaporation partielle d'un produit liquide et application de ce procede a la fabrication d'une poudre
EP0251936A1 (fr) Procédé et dispositif pour le séchage de matières végétales avec de la vapeur haute pression
FR2460696A1 (fr) Installation de concentration par evaporation et de sechage par air chaud d'un produit liquide et utilisation de cette installation notamment pour le traitement du lait
EP0097097B1 (fr) Procédé pour le transfert de chaleur par échange direct entre fluides gazeux et liquide et échangeur mettant en oeuvre ce procédé
EP2407329A1 (fr) Système de refroidissement à absorption
FR3032127A1 (fr) Systeme de concentration d'une solution par cycle a humidification-deshumidification et procede associe
FR2786708A1 (fr) Appareil de traitement continu et rapide de liquides, comportant des moyens d'echange de matiere entre des vapeurs volatiles ou des gaz et leur liquide generateur
BE446252A (fr)
BE902120A (fr) Procede et installation de chauffage d'air de sechage essentiellement par recuperation de l'enthalpie contenue dans l'air humide sortant de l'appareil de sechage.
FR2476817A2 (fr) Procede de sechage d'un solide en particules par soufflage d'air chauffe dans un echangeur thermique, et sechoir mettant en oeuvre le procede
BE350513A (fr)
BE633912A (fr)
EP2423631B1 (fr) Réacteur thermochimique amélioré
EP0499006A1 (fr) Procédé de concentration déshydratation de liquide alimentaire ou autre, son dispositif et le produit obtenu
FR2936164A1 (fr) Procede et installation pour le traitement d'un flux d'air comprime
FR2563324A1 (fr) Procede et dispositif pour le chauffage d'un bain de liquide, et application au chauffage de serres de culture
FR2687213A1 (fr) Procede et dispositif pour recuperer les purges d'une installation de chauffage haute pression.
BE348656A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA