WO1998021800A1 - Joint raine pour gaine d'epissure de cable - Google Patents

Joint raine pour gaine d'epissure de cable Download PDF

Info

Publication number
WO1998021800A1
WO1998021800A1 PCT/US1997/003398 US9703398W WO9821800A1 WO 1998021800 A1 WO1998021800 A1 WO 1998021800A1 US 9703398 W US9703398 W US 9703398W WO 9821800 A1 WO9821800 A1 WO 9821800A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector means
flange
cable splice
flanges
splice closure
Prior art date
Application number
PCT/US1997/003398
Other languages
English (en)
Inventor
William G. Allen
Thomas S. Croft
Original Assignee
Minnesota Mining And Manufacturing Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining And Manufacturing Company filed Critical Minnesota Mining And Manufacturing Company
Priority to AU19868/97A priority Critical patent/AU1986897A/en
Publication of WO1998021800A1 publication Critical patent/WO1998021800A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions
    • H02G15/10Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes
    • H02G15/113Boxes split longitudinally in main cable direction

Definitions

  • This invention relates generally to a cable splice closure body and more particularly to an elongated closure body joined by a bonded groove arrangement which also provides mechanical support to form a lengthwise seam seal.
  • thermoplastic polymers such as polyethylene
  • fusion bonding Two specific methods of fusion bonding: (i) direct heating, and
  • thermoset and thermoplastic materials may also be used to activate thermoset and thermoplastic materials
  • thermoplastic adhesives as well as thermoplastic (heat-shrink) tubing.
  • Induction heating is sometimes referred to as electromagnetic bonding (EMB).
  • EMB electromagnetic bonding
  • direct heating also known as resistance heating
  • heat is applied to the thermoplastic article to be bonded by directly attaching heating elements to the article. Current flowing through the elements heats them. The current is supplied by a power source directly connected to the elements, but the heating is not always efficient.
  • One advantage of such a system is that it does not involve emission of radiation, but there are disadvantages such as non-uniform heating of the material.
  • CMB composite bonding material
  • thermoplastic carrier which is compatible (miscible) with the thermoplastic bodies to be welded.
  • H field induces heating in the magnetic material. Heating may be caused by one of two effects: hysteresis loss, or resistive loss from induced eddy currents.
  • the E field does not interact with the magnetic particles. Direct and induction heating techniques may be combined.
  • the prior an related to splice cable closures or terminations is replete with systems for sealingly enclosing cable splices.
  • One of these systems comprises an enclosure having a single tongue and groove arrangement.
  • Another system comprises an enclosure having multiple tongue and groove enclosures.
  • Still another system comprises a splice case enclosure providing sealed protection for splices such as in telephone cables situated in adverse environmental conditions.
  • the case includes a shell defining a cavity for enclosure of a splice.
  • the shell is longitudinally split and includes openings at the ends thereof along the longitudinal split for receiving incoming cable.
  • Thermally responsive sealant extends along the longitudinal split and a heating element is provided for causing the sealant to effectively seal the enclosed splice.
  • a multiple cable adapter of thermally responsive sealant is sized to fit within a cable opening in the splice case and includes a plurality of longitudinally extending channels for accommodation of multiple incoming cables. Sheets of material exhibiting high thermal conductivity extend from the adapter such that the heat of the heating elements may be conveyed to the body of the adapter.
  • electromagnetic, or resistive wire heating to melt material for the purpose of providing a horizontal bond line seal, has been to confine the melted material in place with sufficient pressure to form the desired lengthwise seal upon cooling.
  • a cable splice closure utilizing abutting flanges which are fusion bonded together by an elongated seam seal in a groove along the length of the flanges.
  • a cable splice closure comprises an elongated tubular member having first and second portions.
  • the first and second portions have opposed ends and parallel sides. The sides extend between the ends and are spaced apart by an arcuate section. Each side has an adjacent flange extending along the length thereof.
  • the flanges of the first portion are provided for matched abutment with the flanges of the second portion. At least one groove extends along each flange.
  • a principal advantage of the present invention is that a cable splice closure is joined by a fusion bonded groove connection and simultaneously by a mechanically connected arrangement.
  • the cable closure may be in the form of a one piece closure with a separating seam or may be two pieces which are mirror images of each other.
  • the fusion bonding is accomplished by electromagnetic or resistive wire means while the mechanical connection provides support to form a lengthwise seam seal. This can also be used to assist in bonding end seals to the closure.
  • FIG. 1 is an isometric view illustrating an embodiment of a separated cable splice closure according to the present invention.
  • Fig. la is an isometric view illustrating an embodiment of a one-piece body having a lengthwise seam and a pair of mating flanges.
  • Fig. 2 is an enlarged partial isometric view illustrating an embodiment of a separated end portion of the cable splice closure according to the present invention.
  • Fig. 3 is an enlarged partial isometric view illustrating an embodiment of a connected end portion of the cable splice closure including an end seal according to the present invention.
  • Fig. 4 is an enlarged partial isometric view illustrating an embodiment of a separated portion of the flanges according to the present invention.
  • Fig. 4A is an enlarged partial isometric view illustrating the embodiment of Fig. 4 showing the flange portions connected according to the present invention.
  • Fig. 5 is an enlarged partial isometric view illustrating another embodiment of a separated portion of the flanges according to the present invention.
  • Fig. 5A is an enlarged partial isometric view illustrating the embodiment of Fig. 5 showing the flange portions connected according to the present invention.
  • Fig. 6 is an enlarged partial isometric view illustrating an embodiment of a sealing resistive wire according to the present invention.
  • Fig. 7 is an enlarged partial cross-sectional view illustrating a further embodiment according to the present invention.
  • Fig. 8 is an enlarged partial cross-sectional view illustrating bonded flanges according to the Fig. 7 embodiment. Description of the Preferred Embodiment
  • a cable splice end closure is generally designated 10 and comprises a closure body 12 (shown separated) which is an elongated tubular member having a first portion 14 and a second portion 16.
  • First portion 14 includes a pair of opposed ends 14a, 14b and a pair of elongated parallel sides 14c, 14d which extend between the ends 14a, 14b.
  • Sides 14c, 14d are spaced apart by an arcuate section 18.
  • Side 14c has an elongated closure surface in the form of a flange 20.
  • Side 14d has a closure surface in the form of a flange 22.
  • the flanges 20, 22 extend along the length of their respective sides 14c, 14d.
  • Second portion 16 includes a pair of opposed ends 16a, 16b and a pair of elongated parallel sides 16c, 16d which extend between the ends 16a, 16b.
  • Sides 16c, 16d are spaced apart by an arcuate section 24.
  • Side 16c has an elongated closure surface in the form of a flange 26.
  • Side 16d has a closure surface in the form of a flange 28.
  • the flanges 26, 28 extend along the length of their respective sides 16c, 16d. It can be appreciated from Fig. 1 that flanges 20, 26 and flanges 22, 28, respectively, are provided to interconnect for matched abutment to form mating closure surfaces.
  • Fig. 1 flanges 20, 26 and flanges 22, 28, respectively, are provided to interconnect for matched abutment to form mating closure surfaces.
  • FIG. 1A illustrates that an alternate construction includes a body 12a which is a one piece body including a single lengthwise seam 13 separating adjacent mating flanges 20a, 22a which each include a laterally spaced apart tongue c and groove d.
  • a pair of spaced apart, parallel friction connectors extend along the length of each flange for connection with the connectors of each matched flange.
  • flange 20 includes a first elongated friction connector in the form of a tongue 20a extending from a surface 20c. Tongue 20a is parallel to and spaced from a second elongated friction connector in the form of a groove 20b recessed in surface 22c.
  • Mating flange 26 includes a first elongated friction connector in the form of a tongue 26a extending from a surface 26c. Tongue 26a is parallel to and spaced from a second elongated friction connector in the form of a groove 26b recessed in surface 26c.
  • Flange 22 includes a first elongated friction connector in the form of a tongue 22a extending from a surface 22c. Tongue 22a is parallel to and spaced from a second elongated friction connector in the form of a groove 22b recessed in surface 22c.
  • Mating flange 28 includes a first elongated friction connector in the form of a tongue
  • Tongue 28a is parallel to and spaced from a second elongated friction connector in the form of a groove 28b recessed in surface 28c.
  • the flanges are provided to have a single projecting tongue (male member) and a single recessed groove (female member), best illustrated in Figs. 4 and 4A, wherein flanges 22, 28 are partially illustrated including their respective tongue and grooves 22a, 22b and 28a, 28b.
  • one of the mechanically engaged tongue and groove engagements can also be bonded together in a sealing engagement.
  • a wire 30 can be extended in an opening through the length of tongue 26a and another wire 32 can be extended through the length of tongue 22a. Electrical stimulation of wires 30, 32 can cause tongues 26a, 22a, respectively, to be fusion bonded in their respective grooves
  • the wires 30, 32 can be a resistance wire forming a closed circuit in which alternating current (AC) or direct current (DC) is applied for power.
  • AC alternating current
  • DC direct current
  • ends 114a, 116a are illustrated. End 114a includes flanges
  • flange 120, 122 and end 116a includes flanges 126, 128.
  • flange 120, 122 and end 116a includes flanges 126, 128.
  • Tongue 120 includes tongue 120a extending from surface 120c. Tongue 120a is parallel to and spaced from a groove 120b which is formed by groove walls 120d, 120e also extending from surface 120c.
  • the mating flange 126 includes tongue 126a extending from surface 126c. Tongue 126a is parallel to and spaced from a groove 126b which is formed by groove walls 126d, 126e also extending from surface 126c.
  • flange 122 Fig. 2, includes tongue 122a extending from surface 122c. Tongue 122a is parallel to and spaced from groove 122b which is formed by groove walls 122d, 122e also extending from surface 122c.
  • the mating flange 128 includes tongue 128a extending from surface 128c.
  • Tongue 128a is parallel to and spaced from groove 128b which is formed by groove walls 128d, 128e also extending from surface 128c. It can be seen from the Fig. 2 embodiment, as is best shown in Figs. 5 and 5 A, wherein flanges 122, 128 are partially illustrated, for example, that when tongues 122a and 128a become mechanically engaged with grooves 128b and 122b, respectively, surfaces 122c and 128c are spaced from each other. Although not shown, the same occurs with flanges 120 and 126. Similarly, in Fig. 2, a wire 130 can be extended through the length of tongue 126a and another wire 132 can be extended in an opening through the length of tongue 122a.
  • wires 130, 132 can cause tongues 126a, 122a, respectively, to be fusion bonded to their respective grooves 120b, 128b.
  • the wires 130, 132 can be a resistance wire forming a closed circuit in which AC or DC is applied for power as mentioned above.
  • End 214a includes flanges 220, 222 and end 216a includes flanges 226, 228.
  • flange 220 includes tongue 220a extending from surface 220c. Tongue 220a is parallel to and spaced from groove 220b.
  • the mating flange 226 includes tongue 226a extending from surface 226c. Tongue 226a is parallel to and spaced from groove 226b.
  • flange 222 includes tongue 222a extending from surface 222c. Tongue 222a is parallel to and spaced from groove 222b.
  • the mating flange 228 includes tongue 228a extending from surface 228c.
  • Tongue 228a is parallel to and spaced from groove 228b.
  • a wire 230 as described above extends through an opening which passes through the length of tongue 220a
  • a wire 232 extends through an opening which passes through the length of tongue 228a.
  • the wires 230, 232 can be a resistance wire using an AC or DC power source as previously described.
  • a groove 220d engaged with a mating tongue 226d, which is along a mating inside edge of flange 226.
  • a similar tongue 222d and mating groove are provided on inside edges of flanges 222, 228.
  • An end seal 60 illustrated in phantom outline, including a plurality of cables 62, 64, 66 extending therethrough, is fusion bonded to ends 214a, 216a, and also to the opposite ends, not shown, to sealingly encapsulate cable splices in the closure body 212. Sealing of the end seal around a peripheral surface
  • wire and sealant configurations may be added to the peripheral surface 60a of seal 60 to provide a fusion bonded seal with ends 214a, 216a.
  • wire and sealant configurations may be added to peripheral surfaces 62a, 64a, 66a of cables 62, 64, 66, respectively, to provide a fusion bonded seal with ports 60b of end seal 60.
  • additional wires can be placed in the above-mentioned tongues 226d and 222d to further seal closure body 212 to seal 60.
  • Material selection for the closure of present invention requires good bonding capabilities to provide proper sealing as well as providing resistance to contamination, moisture and pressure. Bonding of joints to be sealed involves bonding of the selected material to itself, to end seals, cables and to sealants which may be used. Since sealing is accomplished by heating, the selected material must also be suitably responsive to fusion bonding. As such, polyolefin or polyolefin elastomers are suitable and of that group, the flexible ethylene alphaolefin copolymer sold under the name ENGAGE by the Dow Chemical Company of Midland, Michigan, is preferred. Material selection for the sealant of the present invention requires an affinity to produce satisfactory fusion bonding. Thus, where a sealant is used in the present invention there are several alternatives.
  • a suitable bond may be in some instances accomplished by resistance heating of abutting surfaces by the placement of a resistive wire at or near the abutting surfaces. Electrical stimulation of the wire will heat surrounding material sufficiently to bond all heated abutting surfaces, and with pressure applied through the curing process, suitable welds can be produced.
  • the resistive wire can be in the typical round wire form and can be coated with a suitable sealant material such as polyethylene. Electrical stimulation of the wire will heat the surrounding sealant material and the abutting surfaces to be sealed. All abutting surfaces can be sealed in this manner enhanced by the additional or surplus sealant material which will assist in providing suitable seals with pressure applied through the curing process.
  • a susceptor containing material can be added to the sealant which absorbs RF energy and transfers it into heat energy.
  • the wire is preferably copper and functions as an antenna.
  • the heat produced causes the susceptor containing material including a polyethylene or polyolefin elastomer binder and the abutting surfaces to be sealed.
  • sealing is enhanced by the additional or surplus material which will assist in providing suitable seals with pressure applied through the curing process. While it is not necessary to discuss every possible iteration of combining sealant material, susceptor material and wire types, it is clear that sealing is enhanced in view of the foregoing.
  • a further embodiment illustrates a fine diameter polymer rod 70, Fig. 6, spiral wound with a resistive wire 72.
  • This configuration can be inserted in the openings through the entire length of the tongues in place of wires 30, 32, Fig. 1, to provide the fusion bonding previously described. Also, this configuration can be coated with a polymer material to encase the rod 70 and the spiral wound wire 72.
  • a still further embodiment utilizes the spiral wound wire concept by utilizing an enlarged diameter rod 70, Fig. 7, spiral wound with resistive wire 72 and placed in opposed grooves 74 in mating flanges 76.
  • This configuration replaces the tongue and groove concept described above. Bonding is accomplished by energizing the resistive wire 72 using an AC or DC power source, as previously discussed, to fuse the rod 70 in the grooves 74. Pressure, applied by clamps 78, Fig. 8, will urge wire 72 into the mating flanges 76. Material 73 from rod 70 and flanges 76 will flow and create a seal between the enclosure body halves (not shown) attached to the flanges 76. Uniquely, the spiral wound resistive wire 72 becomes embedded into the flanges 76 providing additional mechanical strength to the bond.
  • wires are placed in openings provided in a tongue of two mating flanges on one side of the closure body halves and in a tongue of two mating flanges on the opposite side of the closure body halves.
  • the double tongue and groove connections are mechanically engaged on opposite sides of the closure body.
  • Heat applied to the wires bonds one of the tongue and groove connections and a parallel, spaced apart tongue and groove connection provides mechanical support and pressure until the bond cures to form a seam seal along both sides of the length of the closure body.
  • a rod having a spiral wound resistive wire thereon is placed along a groove formed in mating flanges of closure body halves. Clamps are used to urge the flanges together. Heat applied to the wire causes the rod, and groove adjacent the rod, to flow and create a seal between the flanges. The resistive wire becomes imbedded into the flanges providing mechanical strength to the bond.
  • the principal advantage of the present invention is that it provides a double tongue and groove connection on each side of the cable splice closure body, whereby one interlocked tongue and groove serves as a mechanical engagement providing support and pressure until electromagnetic or resistive wire melting of the other interlocked tongue in the corresponding groove cools to form a lengthwise seal.
  • the space between the parallel tongue and groove connections is sufficient to isolate the unheated tongue and groove connection and limit the bonding to the heat applied tongue and groove, i.e. , where the wire extends through the tongue.
  • One projecting tongue can contain a resistive wire encased in a suitable thermoplastic or heat fusible material having a useful softening or melting temperature, such as low density polyethylene or an ethylene/alpha-olefin copolymer.
  • the resistive wire could be of stainless steel or nickel/chromium or any other suitable material with a round, oval or rectangular cross section.
  • the projecting tongue could include a cooper wire encased in a coating of suitable material, as described above, containing susceptor composite flakes.
  • susceptor composite flakes refers to radio frequency power absorbing materials comprising plurality of multilayered flakes made of thin film crystalline ferromagnetic metal layers, such as a NiFe alloy, stacked alternately with thin film dielectric layers, such as SiO.
  • the coating refers to dispersing about 1 to about 10 percent susceptor composite flakes in a suitable binder, such as polyethylene.
  • the use of the susceptor composite flakes provides a method of bonding two objects together using radio frequency power at a frequency of about 5 to about 6000 MHz in the form of an oscillating magnetic field which intersects the susceptor composite flakes so that heat is generated which melts the coating and fuses, bonding the objects together.
  • the two double tongue and groove parts should be snapped together in an interlocked fashion and sealing accomplished, for example, by energizing the resistive wire in the tongue with direct or alternating current necessary to soften or melt the tongue to cause it to flow into the grooved gripping slots.
  • the other interlocked tongue and groove would then serve as a mechanical device providing support and pressure until the first interlocked melted tongue cooled to form a horizontal or lengthwise seam seal into the grooved slot.
  • the susceptor coated wire in the projecting tongue could be activated by an oscillating magnetic field from a radio frequency power source to soften or melt the tongue to cause it to flow and create a seal into the grooved slot after cooling.
  • a bead of low energy surface adhesive could be placed in each grooved slot and the projecting tongue from the other corresponding part interlocked in place. The interlocked assembly would provide mechanical support and pressure until the adhesive cured to form rigid horizontal or lengthwise seam seals.
  • the term low energy surface adhesive refers to an adhesive based on standard acrylic monomers with organo borane/amine complexes, and may include a polyurethane, an epoxy or a polyaziridine. The above-described adhesive provides bond strengths similar to fusion bonding.
  • the closure body portion could be prepared from any semirigid or flexible material, such as polyethylene, polypropylene, an ethylene/alphaolefin copolymer or any other suitable material.
  • Another alternative provides for a polymer rod including a spiral wound resistive wire, to create a fusion bond between mating flanges of the splice closure body halves, and the wire becomes imbedded in the flanges to provide mechanical strength to the bond.
  • Utility of the invention allows the cable splice closure to form an air tight, pressure and moisture seal to external elements.
  • Basic features of the closure provide total seal integrity between the two main portions which comprise the closure body, end seal body portions and the cables extending therethrough. Furthermore, the use of a fusion bonded sealant provides for facilitated installation.

Landscapes

  • Cable Accessories (AREA)

Abstract

L'invention concerne une gaine d'épissure (10) de câble, qui comporte un élément tubulaire allongé (12) ayant une première et une seconde partie (14, 16) présentant chacune des extrémités opposées (14a, 14b, 16a, 16b) et des côtés parallèles (14c, 14d, 16c, 16d). Les côtés s'étendent entre les extrémités et sont espacés les uns des autres par une partie arquée (18, 24). Chaque côté comporte un rebord s'étendant sur toute sa longueur. Lesdits rebords (20, 22) de la première partie (14) sont conçus pour coïncider avec les rebords (26, 28) de la seconde partie (16) et venir buter contre celles-ci. Au moins une rainure s'étend le long de chaque rebord. Un élément s'étend le long de la rainure pour lier les rebords l'un à l'autre. L'élément réagit à une stimulation électrique ou électromagnétique pour générer de la chaleur dans l'élément de liaison.
PCT/US1997/003398 1996-11-13 1997-03-05 Joint raine pour gaine d'epissure de cable WO1998021800A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU19868/97A AU1986897A (en) 1996-11-13 1997-03-05 Grooved seam seal for cable splice closure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74831696A 1996-11-13 1996-11-13
US08/748,316 1996-11-13

Publications (1)

Publication Number Publication Date
WO1998021800A1 true WO1998021800A1 (fr) 1998-05-22

Family

ID=25008950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/003398 WO1998021800A1 (fr) 1996-11-13 1997-03-05 Joint raine pour gaine d'epissure de cable

Country Status (2)

Country Link
AU (1) AU1986897A (fr)
WO (1) WO1998021800A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011050660U1 (de) * 2011-07-07 2012-10-17 Weidmüller Interface GmbH & Co. KG Schutzgehäuse für einen elektrischen Steckverbinder
CN103711905A (zh) * 2012-10-02 2014-04-09 通用汽车环球科技运作有限责任公司 密封组件和使其解除密封的方法
US10566757B2 (en) 2016-12-09 2020-02-18 Lear Corporation Method of heat shrinking a protective sleeve onto an electrical connection

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2136768A1 (de) * 1971-07-22 1973-02-01 Siemens Ag Kabelgarnitur aus polyaethylen
DE2136739A1 (de) * 1971-07-22 1973-02-01 Siemens Ag Kabelgarnitur mit einem aus thermoplastischem kunststoff bestehenden gehaeuse
DE7538079U (de) * 1975-11-29 1977-05-18 Koettgen Kg, 5070 Bergisch Gladbach Kabel mit vorgefertigter Kabelmuffe
FR2335078A1 (fr) * 1975-12-08 1977-07-08 Raychem Corp Boitiers pour entourer des substrats, en particulier des epissures de cable
FR2570557A1 (fr) * 1984-09-14 1986-03-21 Morel Atel Electromec Manchon en matiere plastique pour proteger l'epissure de cables electriques ou telephoniques, et procede pour realiser l'etancheite d'un tel manchon
WO1990006010A1 (fr) * 1988-11-19 1990-05-31 Bowthorpe-Hellermann Limited Fermetures etanches d'epissures
DE3920953A1 (de) * 1989-06-27 1991-01-10 Stewing Kunststoff Kabelmuffe zum verbinden und abzweigen von kabeln, insbes. fernmeldekabeln unterschiedlicher durchmesser
EP0488895A1 (fr) * 1990-11-29 1992-06-03 Societe Industrielle De Liaisons Electriques (Silec) Dispositif de protection d'un raccordement de câbles
WO1993010960A1 (fr) * 1991-11-27 1993-06-10 Minnesota Mining And Manufacturing Company Procede et article pour la liaison par micro-ondes de fermetures d'epissures
WO1996031091A1 (fr) * 1995-03-29 1996-10-03 Minnesota Mining And Manufacturing Company Composite absorbant l'energie electromagnetique

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2136768A1 (de) * 1971-07-22 1973-02-01 Siemens Ag Kabelgarnitur aus polyaethylen
DE2136739A1 (de) * 1971-07-22 1973-02-01 Siemens Ag Kabelgarnitur mit einem aus thermoplastischem kunststoff bestehenden gehaeuse
DE7538079U (de) * 1975-11-29 1977-05-18 Koettgen Kg, 5070 Bergisch Gladbach Kabel mit vorgefertigter Kabelmuffe
FR2335078A1 (fr) * 1975-12-08 1977-07-08 Raychem Corp Boitiers pour entourer des substrats, en particulier des epissures de cable
FR2570557A1 (fr) * 1984-09-14 1986-03-21 Morel Atel Electromec Manchon en matiere plastique pour proteger l'epissure de cables electriques ou telephoniques, et procede pour realiser l'etancheite d'un tel manchon
WO1990006010A1 (fr) * 1988-11-19 1990-05-31 Bowthorpe-Hellermann Limited Fermetures etanches d'epissures
DE3920953A1 (de) * 1989-06-27 1991-01-10 Stewing Kunststoff Kabelmuffe zum verbinden und abzweigen von kabeln, insbes. fernmeldekabeln unterschiedlicher durchmesser
EP0488895A1 (fr) * 1990-11-29 1992-06-03 Societe Industrielle De Liaisons Electriques (Silec) Dispositif de protection d'un raccordement de câbles
WO1993010960A1 (fr) * 1991-11-27 1993-06-10 Minnesota Mining And Manufacturing Company Procede et article pour la liaison par micro-ondes de fermetures d'epissures
WO1996031091A1 (fr) * 1995-03-29 1996-10-03 Minnesota Mining And Manufacturing Company Composite absorbant l'energie electromagnetique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011050660U1 (de) * 2011-07-07 2012-10-17 Weidmüller Interface GmbH & Co. KG Schutzgehäuse für einen elektrischen Steckverbinder
CN103711905A (zh) * 2012-10-02 2014-04-09 通用汽车环球科技运作有限责任公司 密封组件和使其解除密封的方法
US10566757B2 (en) 2016-12-09 2020-02-18 Lear Corporation Method of heat shrinking a protective sleeve onto an electrical connection

Also Published As

Publication number Publication date
AU1986897A (en) 1998-06-03

Similar Documents

Publication Publication Date Title
EP0615487B1 (fr) Procede et article pour la liaison par micro-ondes de fermetures d'epissures
AU701520B2 (en) Induction heating system for fusion bonding
CA2536877C (fr) Procede de raccordement d'un conduit multicouche
US4252849A (en) Heat shrinkable covers
EP0008912B1 (fr) Revêtements en matière thermorétractable
US5792989A (en) Wrap type cable closure end seal
EP1276583B1 (fr) Appareil permettant l'application par fusion d'une piece de gainage sur un tuyau enrobe de plastique
CA1209655A (fr) Epissure de cable a manchon retractile et gaine de protection
AU2001234836A1 (en) Apparatus for forming field joints on plastic coated pipe
WO1998021800A1 (fr) Joint raine pour gaine d'epissure de cable
WO1998021802A1 (fr) Obturation en spirale helicoidale avec joints scelles
EP0396713B1 (fr) Fermetures etanches d'epissures
WO1998021796A1 (fr) Systemes et procedes pour obturation etanche avec noyau de support
JP2622421B2 (ja) 導電性ポリマーを使用して物品を接合する方法と器具
WO1998021799A1 (fr) Joint d'obturateur de cables pour obturation de type pince
WO1998021023A1 (fr) Ensemble cable et procede de chauffage par induction
WO1998021797A1 (fr) Elements d'insertion pour liaison d'obturations etanches
US11858220B2 (en) Coupling polymeric components to one another utilizing electromagnetic energy
WO1998021801A1 (fr) Gaine d'epissure en materiau composite pour cables electriques
MXPA99004147A (es) Sello del extremo de cierre de cable tipo envolvente
WO1998021798A1 (fr) Systemes et procedes pour obturation etanche par adhesion
CA1039037A (fr) Connexion ou terminaison de cable electronique a gaine de plastique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA