WO1998021217A1 - Process for the preparation of glucose from vegetable fibrous materials - Google Patents

Process for the preparation of glucose from vegetable fibrous materials Download PDF

Info

Publication number
WO1998021217A1
WO1998021217A1 PCT/JP1996/003319 JP9603319W WO9821217A1 WO 1998021217 A1 WO1998021217 A1 WO 1998021217A1 JP 9603319 W JP9603319 W JP 9603319W WO 9821217 A1 WO9821217 A1 WO 9821217A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
fiber material
plant fiber
glucose
solvent
Prior art date
Application number
PCT/JP1996/003319
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Hata
Original Assignee
Tsurunaga, Takehisa
Suzuki, Yasutaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurunaga, Takehisa, Suzuki, Yasutaka filed Critical Tsurunaga, Takehisa
Priority to PCT/JP1996/003319 priority Critical patent/WO1998021217A1/en
Priority to AU75074/96A priority patent/AU7507496A/en
Publication of WO1998021217A1 publication Critical patent/WO1998021217A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/02Monosaccharides

Definitions

  • the present invention relates to a method for producing glucose from a plant fiber material by dissolving a plant fiber material such as cellulose in a solvent.
  • Plant fiber materials contain cellulose as a polysaccharide, and glucose, the basic constituent unit of cellulose, is expected to be used as a food or energy source. Therefore, if glucose can be produced efficiently by efficiently decomposing not only cereals but also plant fiber materials, it will lead to effective use of waste such as waste paper.
  • a hydrolysis method using an acid or an enzyme is known as a hydrolysis method using an acid or an enzyme. Examples of the acid hydrolysis method (hereinafter referred to as “acid method”) include various extraction methods using dilute sulfuric acid or concentrated sulfuric acid, and methods using hydrogen chloride in concentrated hydrochloric acid or in a gaseous state.
  • enzymatic hydrolysis method As an enzymatic hydrolysis method (hereinafter referred to as “enzymatic method”), there is a method in which wood fragments are pretreated with wood flour and then enzymatically reacted with cellulase.
  • enzymatic method Although various measures are taken for the reaction conditions, etc., the contact with the reaction solvent becomes insufficient because the cell mouth, which is the substrate to be hydrolyzed, is in a non-dissolved state. There is a disadvantage that the hydrolysis requires a long time.
  • Cellulose is a natural macromolecule in which glucose is bound to a / 3-1,4-glycosidic bond.
  • Cellulose fibers are water-insoluble, although glucose, which is a structural unit of cellulose, is inherently hydrophilic. This is thought to be due to the fact that the cellulose molecules associate and crystallize due to strong hydrogen bonds.
  • the yield of crystalline cellulose (Abicel, manufactured by Asahi Kasei Corporation) obtained by hydrolyzing the amorphous region of cellulose fibers with dilute sulfuric acid is 90%.
  • This crystalline cellulose is treated with, for example, 3N hydrochloric acid at room temperature. Even after one week, no significant change occurs even if the mixture is vigorously stirred. In addition, when this is boiled, partial hydrolysis is observed, but at the same time decomposition of produced glucose is observed. Thus, the crystalline region has high resistance to hydrolysis.
  • a polymer having an alcohol residue for example, polyvinyl alcohol
  • cellulose swells with alkali, it does not dissolve under mild conditions.
  • hydrazine and N-methylmorpholine oxide dissolve cellulose, but such solutions are not suitable for hydrolysis.
  • cellulose is difficult to dissolve in alkali due to its crystallinity.
  • hydrolysis by alcohol does not only require a long time, but also causes side reactions such as a peeling reaction to occur, thereby reducing the production of glucose. Decrease rate.
  • a method of dissolving with an organic solvent has been proposed, a method suitable for obtaining dalcose by subsequent hydrolysis has not been found.
  • the present invention has been made to solve the above-described problems, and has found that a plant-based fiber material including cellulose fibers can be easily dissolved by an aqueous solution of oxoacid of phosphorus, and the dissolved liquid is used to hydrolyze cellulose and the like.
  • the present invention provides a method for producing glucose with a high yield by hydrolyzing a plant fiber material with high efficiency and under relatively mild conditions. is there
  • a method for producing glucose according to the present invention is characterized in that a plant fiber material is dissolved in a solvent containing oxoacid of phosphorus.
  • the solvent contains at least one aqueous solution selected from the group consisting of phosphoric acid, phosphonic acid, phosphinic acid and metaphosphoric acid, and has a concentration of 70% by weight or more.
  • the dissolved solution is neutralized with an inorganic acid catalyst or an alkaline solution and then contacted with an enzyme to hydrolyze polysaccharides such as cellulose contained in the plant fiber material, It produces glucose.
  • the hydrolysis reaction catalyst is an inorganic acid catalyst comprising hydrogen halide or concentrated sulfuric acid, and hydrogen halide power is particularly preferred.
  • a metal halide salt can be added during or after dissolving the plant fiber material in a solvent to generate hydrogen halide as an acid catalyst. .
  • oxo acid of phosphorus examples include phosphoric acid, phosphonic acid, phosphinic acid and metaphosphoric acid, and a mixed solvent composed of any combination of these may be used.
  • These oxo acids of phosphorus act not as acids as so-called proton donors but as solvents such as cellulose. This is evident from the fact that phosphoric acid and the like are different from sulfuric acid and the like, and the same glucose as cellulose has a low solubility and low solubility in starch with ⁇ -1,4-darcoside linkage. That is, a plant fiber material such as cellulose can be dissolved in an oxoacid-based solvent of phosphorus without being substantially decomposed.
  • the concentration of the oxo acid of phosphorus used in the present invention is desirably 0% by weight or more, and particularly preferably in the range of 70 to 85% by weight. Also, the amount of these used is not particularly limited, but it is usually preferable to use 5 to 15% by weight of the plant fiber material to be dissolved.
  • the dissolution can be carried out at room temperature, but may be carried out by heating to a temperature of up to 60 ° C., preferably in the range of 30 to 60 ° C.
  • a dissolution method an ordinary method such as a stirring and mixing method is used, and is not particularly limited.
  • the lysate obtained as described above is neutralized with an inorganic acid catalyst (excluding phosphorus oxo acid) or an alkaline solution and then brought into contact with an enzyme to hydrolyze the plant fiber material. Let it break down.
  • an inorganic acid catalyst excluding phosphorus oxo acid
  • an enzyme to hydrolyze the plant fiber material. Let it break down.
  • the inorganic acid catalyst to be used those having a small amount of water are preferable in order to prevent the formation of a white precipitate due to addition, contact and the like.
  • Hydrogen halide or sulfuric acid is suitably used, and a mixture thereof may be used, but hydrogen halide is particularly preferably used. Note that an aqueous hydrochloric acid solution that easily produces a white precipitate is not preferable.
  • Hydrogen halide can be used as a gas state, and examples thereof include hydrogen chloride gas, hydrogen bromide gas, and hydrogen fluoride gas.
  • a particularly preferred inorganic acid catalyst is hydrogen chloride gas. The amount of inorganic acid catalyst used is based on the amount of vegetable fiber material used.
  • an enzyme may be used for the hydrolysis.
  • the same hydrolysis effect as when using an inorganic acid catalyst can be obtained by an enzymatic reaction using cellulose.
  • the hydrolysis is carried out while adding an enzyme solution after neutralizing the solution of the plant fiber material with a catalyst solution of an inorganic acid or a solution of the inorganic acid with an alkali solution.
  • the reaction temperature is not particularly limited, but it is preferable to carry out the reaction under relatively mild temperature conditions of 40 to 80 ° C.
  • gaseous hydrogen halide add hydrogen halide by blowing gas into the solution.
  • the hydrolysis reaction depends on the amount of the plant fiber material to be used, but usually can be completed in 30 minutes to 3 hours.
  • a metal halide to the solution during or after dissolving the plant fiber material in the solvent, and to generate hydrogen halide as an acid catalyst simultaneously with the dissolution.
  • hydrolysis can be performed in the same manner as when an acid catalyst is added. Since the metal halide is dissolved in the solution to generate the corresponding hydrohalic acid, there is an advantage that an easy-to-handle metal salt can be used instead of directly using a difficult-to-handle hydrogen halide gas.
  • metal salts include halogens such as sodium, lithium, magnesium, and aluminum. Compounds.
  • lithium chloride, magnesium chloride, aluminum chloride, and the like are used to generate hydrogen chloride
  • lithium bromide and the like are used to generate hydrogen bromide to generate hydrogen fluoride.
  • lithium fluoride or the like is used.
  • metal halide salts may be added during or after dissolution of the plant fiber material with the oxo acid-based solvent of phosphorus.
  • the reaction mixture is filtered using an ion exchange resin or an ion exchange membrane, and the filtrate is concentrated to obtain glucose crystals.
  • a reverse osmosis method an ultrafiltration method, an electrodialysis method, or the like can be used.
  • paper, wood, etc. not to mention cellulose itself, can be used, preferably in the form of finely pulverized powder.
  • a plant fiber material containing cellulose fibers is efficiently hydrolyzed under relatively mild reaction conditions in which no force, no secondary decomposition occurs, and good darcos is obtained. It can be produced with a high yield.
  • Example 1 According to the procedure of Example 1, 3 g of waste paper powder was dissolved in 30 g of an 85% phosphoric acid aqueous solution. Thereafter, a hydrolysis reaction and post-treatment were carried out according to the same procedure as in Example 1 except that 3 ml of concentrated sulfuric acid was added to this solution instead of lithium chloride, to obtain 2.4 g of glucose.
  • Distilled water (1 Om1) was added to waste paper powder (10 g), and distilled water was sufficiently absorbed in the waste paper powder. Then, 30 g of an 85% phosphoric acid aqueous solution was added and kneaded sufficiently. This kneaded material was heated to 50 to 60 ° C., and kneading was continued to obtain a paste. After the paste was cooled to room temperature, the mixture was sufficiently stirred while blowing hydrogen chloride gas. This was placed in a closed container, heated to 80 ° C, and stirring was continued in that state while degassing. After completion of the hydrolysis reaction was confirmed in the same manner as in Example 3, post-treatment was performed to obtain crude glucose 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The use of oxo acids of phosphorus as the solvent enables the dissolution of difficulty soluble vegetable fibrous materials. Glucose can be prepared in a high yield by dissolving a vegetable fibrous material in a solvent comprising an oxo acid of phosphorus, neutralizing the obtained solution with an inorganic acid catalyst or an alkaline solution, and bringing the resulting solution into contact with an enzyme to thereby efficiently hydrolyze the polysaccharides contained in the vegetable fibrous material under such mild conditions as not to cause any seconday decomposition. The solvent to be used in the dissolution of vegetable fibrous materials is preferably one comprising an aqueous solution of at least one member selected from the group consisting of phosphoric acid, phosphonic acid, phosphinic acid and metaphosphoric acid, with the concentration being 70 % by weight or above.

Description

明細書 植物系繊維材料からグルコースを製造する方法 技術分野  Description Method for producing glucose from plant fiber material
本発明は、 セルロースなどの植物系繊維材料を溶媒に溶解して植物系繊維材料 からグルコースを製造する方法に関する。  The present invention relates to a method for producing glucose from a plant fiber material by dissolving a plant fiber material such as cellulose in a solvent.
背景技術  Background art
植物系繊維材料は多糖類としてセルロースを含有しており、 このセルロースの 基本構成単位であるグルコースは食料源やエネルギー源としての利用が期待され ている。 そこで、 穀類だけでなく植物系繊維材料を効率的に分解してグルコース を効率的に製造することができれば、 古紙などの廃棄物の有効利用にもつながる。 従来、 セルロースを分解する方法としては、 酸や酵素による加水分解方法が知 られている。 酸による加水分解方法 (以下、 「酸法」 と記す) としては、 希硫酸 や濃硫酸を用いた各種抽出法、 塩化水素を濃塩酸又はガス状態で使用する方法等 がある。 酵素による加水分解方法 (以下、 「酵素法」 と記す) としては、 木材断 片ゃ木材粉を前処理した後に、 セルラ一ゼによつて酵素反応させる方法がある。 これら酸法及び酵素法は、 反応条件等に種々の工夫が施されているものの、 加水 分解を受ける基質であるセル口一スが非溶解状態にあるため反応溶媒との接触が 不十分となり、 加水分解に長時間を要する欠点がある。  Plant fiber materials contain cellulose as a polysaccharide, and glucose, the basic constituent unit of cellulose, is expected to be used as a food or energy source. Therefore, if glucose can be produced efficiently by efficiently decomposing not only cereals but also plant fiber materials, it will lead to effective use of waste such as waste paper. Conventionally, as a method for decomposing cellulose, a hydrolysis method using an acid or an enzyme is known. Examples of the acid hydrolysis method (hereinafter referred to as “acid method”) include various extraction methods using dilute sulfuric acid or concentrated sulfuric acid, and methods using hydrogen chloride in concentrated hydrochloric acid or in a gaseous state. As an enzymatic hydrolysis method (hereinafter referred to as “enzymatic method”), there is a method in which wood fragments are pretreated with wood flour and then enzymatically reacted with cellulase. In the acid method and the enzymatic method, although various measures are taken for the reaction conditions, etc., the contact with the reaction solvent becomes insufficient because the cell mouth, which is the substrate to be hydrolyzed, is in a non-dissolved state. There is a disadvantage that the hydrolysis requires a long time.
また、 セルロースの加水分解が容易でないのは、 その結晶性にも起因するもの と考えられる。 セルロースは、 グルコースが /3— 1, 4ーグリコシド結合した天 然高分子である。 セルロースの構成単位であるグルコースは本来親水性であるに もかかわらず、 セルロース繊維は水不溶性である。 これは、 セルロース分子同士 が強い水素結合により会合し、 結晶化しているためであると考えられる。  In addition, it is considered that the difficulty of hydrolysis of cellulose is due to its crystallinity. Cellulose is a natural macromolecule in which glucose is bound to a / 3-1,4-glycosidic bond. Cellulose fibers are water-insoluble, although glucose, which is a structural unit of cellulose, is inherently hydrophilic. This is thought to be due to the fact that the cellulose molecules associate and crystallize due to strong hydrogen bonds.
ちなみに、 希硫酸によりセルロース繊維の非晶質領域を加水分解して得られる 結晶性セルロース (旭化成社製、 商品名:アビセル) は、 その収率が 9 0 %であ るといわれている。 このことは、 セルロース繊維中で結晶領域が 9 0 %に近い値 で存在することを示している。 この結晶性セルロースは、 例えば 3 N塩酸で室温 で強く攪拌しても、 1週間経過後も大きな変化は生じない。 また、 これを沸騰さ せると部分加水分解が認められるが、 同時に生成グルコースの分解も認められる このように、 結晶領域は加水分解に対する抵抗性が大きい。 Incidentally, it is said that the yield of crystalline cellulose (Abicel, manufactured by Asahi Kasei Corporation) obtained by hydrolyzing the amorphous region of cellulose fibers with dilute sulfuric acid is 90%. This indicates that the crystalline region exists in the cellulose fiber at a value close to 90%. This crystalline cellulose is treated with, for example, 3N hydrochloric acid at room temperature. Even after one week, no significant change occurs even if the mixture is vigorously stirred. In addition, when this is boiled, partial hydrolysis is observed, but at the same time decomposition of produced glucose is observed. Thus, the crystalline region has high resistance to hydrolysis.
そこで、 まず、 セルロース繊維を溶媒に溶解することが可能であれば、 後の加 水分解が効率よく進行すると考えられる。 セルロースの溶解法については種々の 方法が提案されているが、 これら既知の方法は主に繊維製品やフィルム製品を製 造するために開発されたもので、 セルロースをその誘導体ゃ錯体に変換してこれ を溶解させるものであるため、 加水分解によってグルコースを得るには適してい ない。  Therefore, first, if it is possible to dissolve the cellulose fiber in the solvent, it is considered that the subsequent hydrolysis will proceed efficiently. Various methods for dissolving cellulose have been proposed, but these known methods were developed mainly for producing fiber products and film products. Since it dissolves this, it is not suitable for obtaining glucose by hydrolysis.
また、 一般にアルコール残基を有する高分子、 例えばポリビニルアルコールは アルカリゲン化することによつて溶解性が增大すること力知られている。 しかし ながら、 セルロースはアルカリによって膨潤するものの、 穏和な条件では溶解す るまでには至らない。 さらに、 ヒ ドラジンや N—メチルモルホリンォキシドによ つてセルロースが溶解されるとの報告もあるが、 このような溶液は加水分解に供 するには適さない。  In addition, it is generally known that a polymer having an alcohol residue, for example, polyvinyl alcohol, increases solubility by alkaligenization. However, although cellulose swells with alkali, it does not dissolve under mild conditions. Furthermore, it has been reported that hydrazine and N-methylmorpholine oxide dissolve cellulose, but such solutions are not suitable for hydrolysis.
このように、 セルロースはその結晶性によりアルカリにも溶解しにく く、 特に アル力リによる加水分解には長時間を要するだけでなく、 ピーリング反応等の副 反応が生起し、 グルコース生成の収率を低下させる。 また、 有機溶媒によって溶 解する方法も提案されているものの、 その後の加水分解によってダルコースを得 るのに適した方法は見出されていない。  As described above, cellulose is difficult to dissolve in alkali due to its crystallinity. In particular, hydrolysis by alcohol does not only require a long time, but also causes side reactions such as a peeling reaction to occur, thereby reducing the production of glucose. Decrease rate. Although a method of dissolving with an organic solvent has been proposed, a method suitable for obtaining dalcose by subsequent hydrolysis has not been found.
本発明は、 上記課題を解決するためになされたものであり、 リンのォキソ酸の 水溶液によってセルロース繊維を含む植物系繊維材料を容易に溶解できることを 見出すとともに、 この溶解液がセルロースなどの加水分解に適したものであるこ とを見出し、 これにより植物系繊維材料を高効率で、 かつ、 比較的穏和な条件で 加水分解してグルコースを良好な収率をもつて製造する方法を提供するものであ る  The present invention has been made to solve the above-described problems, and has found that a plant-based fiber material including cellulose fibers can be easily dissolved by an aqueous solution of oxoacid of phosphorus, and the dissolved liquid is used to hydrolyze cellulose and the like. The present invention provides a method for producing glucose with a high yield by hydrolyzing a plant fiber material with high efficiency and under relatively mild conditions. is there
発明の開示  Disclosure of the invention
上記課題を解決すべく本発明に係るグルコースの製造方法は、 植物系繊維材料 をリンのォキソ酸を含む溶媒に溶解することを特徴とするものである。 本発明の好ましい態様において、 溶媒は、 リン酸、 ホスホン酸、 ホスフィン酸 及びメタリン酸からなる群から選ばれる少なくとも 1種の水溶液を含み、 その濃 度が 7 0重量%以上のものである。 In order to solve the above problems, a method for producing glucose according to the present invention is characterized in that a plant fiber material is dissolved in a solvent containing oxoacid of phosphorus. In a preferred embodiment of the present invention, the solvent contains at least one aqueous solution selected from the group consisting of phosphoric acid, phosphonic acid, phosphinic acid and metaphosphoric acid, and has a concentration of 70% by weight or more.
また、 本発明の他の好ましい態様においては、 溶解溶液を無機酸触媒又はアル 力リ溶液で中和後に酵素と接触させてこの植物系繊維材料に含まれるセルロース などの多糖類を加水分解させ、 グルコースを生成させるものである。  In another preferred embodiment of the present invention, the dissolved solution is neutralized with an inorganic acid catalyst or an alkaline solution and then contacted with an enzyme to hydrolyze polysaccharides such as cellulose contained in the plant fiber material, It produces glucose.
本発明の更に他の好ましい態様において、 加水分解の反応触媒は、 ハロゲン化 水素又は濃硫酸からなる無機酸触媒であり、 ハロゲン化水素力特に好ましい。 また、 本発明の更に他の好ましい態様において、 植物系繊維材料を溶媒中に溶 解する間又は溶解後に、 ハロゲン化金属塩を添加し、 酸触媒であるハロゲン化水 素を生成させることができる。  In still another preferred embodiment of the present invention, the hydrolysis reaction catalyst is an inorganic acid catalyst comprising hydrogen halide or concentrated sulfuric acid, and hydrogen halide power is particularly preferred. In still another preferred embodiment of the present invention, a metal halide salt can be added during or after dissolving the plant fiber material in a solvent to generate hydrogen halide as an acid catalyst. .
以下に、 まず植物系繊維材料の溶解方法について述べる。 溶媒であるリンのォ キソ酸としては、 リン酸、 ホスホン酸、 ホスフィ ン酸若しくはメタリン酸が挙げ られ、 これらの任意の組み合わせからなる混合溶媒を用いてもよい。 これらリン のォキソ酸は、 いわゆるプロトン供与体としての酸として作用するというよりも、 セルロース等の溶媒として作用するものである。 このことは、 リン酸等が硫酸等 と異なり、 セルロースと同じグルコースが α— 1, 4—ダルコシド結合した澱粉 に対して、 その溶解力が弱く溶解度が低いことからも明らかである。 すなわち、 セルロース等の植物系繊維材料は、 実質的に分解を受けることなく リンのォキソ 酸系溶媒に溶解可能である。  First, a method for dissolving the plant fiber material will be described below. Examples of the oxo acid of phosphorus as a solvent include phosphoric acid, phosphonic acid, phosphinic acid and metaphosphoric acid, and a mixed solvent composed of any combination of these may be used. These oxo acids of phosphorus act not as acids as so-called proton donors but as solvents such as cellulose. This is evident from the fact that phosphoric acid and the like are different from sulfuric acid and the like, and the same glucose as cellulose has a low solubility and low solubility in starch with α-1,4-darcoside linkage. That is, a plant fiber material such as cellulose can be dissolved in an oxoacid-based solvent of phosphorus without being substantially decomposed.
本発明で用いるリンのォキソ酸の濃度としては、 Ί 0重量%以上であることが 望ましく、 特に 7 0〜 8 5重量%の範囲が好ましい。 また、 これらの使用量も特 に制限はないが、 通常、 溶解すべき植物系繊維材料の 5〜1 5重量%の割合で用 いるのが好ましい。  The concentration of the oxo acid of phosphorus used in the present invention is desirably 0% by weight or more, and particularly preferably in the range of 70 to 85% by weight. Also, the amount of these used is not particularly limited, but it is usually preferable to use 5 to 15% by weight of the plant fiber material to be dissolved.
また、 溶解は室温でも行うことが可能であるが、 6 0 °Cまでの温度に加熱して 行ってもよく、 3 0〜6 0 °Cの範囲力好ましい。 溶解方法としては攪拌混合法な ど通常の方法が用いられ、 特に限定されるものではない。  The dissolution can be carried out at room temperature, but may be carried out by heating to a temperature of up to 60 ° C., preferably in the range of 30 to 60 ° C. As a dissolution method, an ordinary method such as a stirring and mixing method is used, and is not particularly limited.
なお、 このようにして溶解した植物系繊維材料の加水分解を高効率で行うため に、 植物系繊維材料をリンのォキソ酸溶媒中へ均一に溶解させるのが好ましい。 このような均一溶解は、 溶液の粘度変化が見られなくなり、 不溶物質の残存がな いことを目視して確認することができる。 In order to perform the hydrolysis of the plant fiber material thus dissolved with high efficiency, it is preferable to uniformly dissolve the plant fiber material in the oxo acid solvent of phosphorus. Such uniform dissolution can be confirmed by visual observation that no change in the viscosity of the solution is observed and no insoluble substance remains.
次ぎの段階では、 上記のようにして得られた溶解液を無機酸触媒 (リ ンのォキ ソ酸を除く) や、 アルカリ溶液で中和後に酵素と接触させて、 植物系繊維材料を 加水分解させる。 用いる無機酸触媒としては、 添加、 接触等による白色沈殿の生 成を起こさないようにするため水分量の少ないものが好ましい。 ハロゲン化水素 や硫酸が好適に用いられこれらの混合物を用いてもよいが、 ハロゲン化水素を用 いるのが特に好ましい。 なお、 白色沈殿が生成し易い塩酸水溶液は好ましくない。 ハロゲン化水素はガス状態として用いることができ、 塩化水素ガス、 臭化水素ガ ス、 フッ化水素ガスを挙げることができる。 特に好ましい無機酸触媒は、 塩化水 素ガスである。 また、 無機酸触媒の使用量は、 植物系繊維材料の使用量に対して In the next step, the lysate obtained as described above is neutralized with an inorganic acid catalyst (excluding phosphorus oxo acid) or an alkaline solution and then brought into contact with an enzyme to hydrolyze the plant fiber material. Let it break down. As the inorganic acid catalyst to be used, those having a small amount of water are preferable in order to prevent the formation of a white precipitate due to addition, contact and the like. Hydrogen halide or sulfuric acid is suitably used, and a mixture thereof may be used, but hydrogen halide is particularly preferably used. Note that an aqueous hydrochloric acid solution that easily produces a white precipitate is not preferable. Hydrogen halide can be used as a gas state, and examples thereof include hydrogen chloride gas, hydrogen bromide gas, and hydrogen fluoride gas. A particularly preferred inorganic acid catalyst is hydrogen chloride gas. The amount of inorganic acid catalyst used is based on the amount of vegetable fiber material used.
5〜2 0重量%の割合で用いるのが好ましい。 It is preferably used in a proportion of 5 to 20% by weight.
また、 加水分解は酵素を用いてもよい。 例えばセルロースの分解ではセルラー ゼによる酵素反応によって、 無機酸触媒を用いるのと同様の加水分解効果が得ら れる。  Further, an enzyme may be used for the hydrolysis. For example, in the decomposition of cellulose, the same hydrolysis effect as when using an inorganic acid catalyst can be obtained by an enzymatic reaction using cellulose.
加水分解は、 植物系繊維材料の溶解液に無機酸の触媒溶液や、 この溶解液をァ ルカリ溶液で中和後に酵素溶液を添加し攪拌しながら行う。 反応温度は、 特に限 定されるものではないが、 4 0〜 8 0 °Cという比較的穏やかな温度条件で行うこ とが好ましい。 なお、 ガス状態のハロゲン化水素を用いる場合には、 溶解液中に ガスを吹き込むようにしてハロゲン化水素を加える。 加水分解反応は、 用いる植 物系繊維材料の使用量に関係するが、 通常、 3 0分〜 3時間で終了することがで さる。  The hydrolysis is carried out while adding an enzyme solution after neutralizing the solution of the plant fiber material with a catalyst solution of an inorganic acid or a solution of the inorganic acid with an alkali solution. The reaction temperature is not particularly limited, but it is preferable to carry out the reaction under relatively mild temperature conditions of 40 to 80 ° C. When using gaseous hydrogen halide, add hydrogen halide by blowing gas into the solution. The hydrolysis reaction depends on the amount of the plant fiber material to be used, but usually can be completed in 30 minutes to 3 hours.
また、 本発明においては、 植物系繊維材料を溶媒中に溶解する間又は溶解後に、 ハロゲン化金属塩を溶液中に添加し、 酸触媒であるハロゲン化水素を溶解と同時 に生成させることも可能であり、 これにより酸触媒を添加するのと同様に加水分 解を行うことができる。 ハロゲン化金属塩が溶液に溶解して対応するハロゲン化 水素酸が生成するものであり、 取扱い難いハロゲン化水素ガスを直接用いるので はなく、 扱い易い金属塩を用いることができる利点が有る。 なお、 このような金 属塩としては、 ナトリウム、 リチウム、 マグネシウム、 アルミニウム等のハロゲ ン化物を挙げることができる。 例えば、 塩化水素を発生させるものとしては、 塩 ィ匕リチウム、 塩化マグネシウム、 塩化アルミニウム等が用いられ、 臭化水素を発 生させるものとしては臭化リチウム等が用いられ、 フッ化水素を発生させるもの としてはフッ化リチウム等が用いられる。 これらハロゲン化金属塩は、 リンのォ キソ酸系溶媒による植物系繊維材料の溶解中又は溶解後に添加すればよい。 In the present invention, it is also possible to add a metal halide to the solution during or after dissolving the plant fiber material in the solvent, and to generate hydrogen halide as an acid catalyst simultaneously with the dissolution. Thus, hydrolysis can be performed in the same manner as when an acid catalyst is added. Since the metal halide is dissolved in the solution to generate the corresponding hydrohalic acid, there is an advantage that an easy-to-handle metal salt can be used instead of directly using a difficult-to-handle hydrogen halide gas. Note that such metal salts include halogens such as sodium, lithium, magnesium, and aluminum. Compounds. For example, lithium chloride, magnesium chloride, aluminum chloride, and the like are used to generate hydrogen chloride, and lithium bromide and the like are used to generate hydrogen bromide to generate hydrogen fluoride. For example, lithium fluoride or the like is used. These metal halide salts may be added during or after dissolution of the plant fiber material with the oxo acid-based solvent of phosphorus.
最後に、 加水分解反応終了後に、 反応混合物をイオン交換樹脂やイオン交換膜 を用いてろ別し、 ろ液を濃縮することによってグルコース結晶を得ることができ る。 なお、 ろ過方法としては、 逆浸透法、 限外ろ過法、 電気透析法などを用いる こともできる。  Finally, after the completion of the hydrolysis reaction, the reaction mixture is filtered using an ion exchange resin or an ion exchange membrane, and the filtrate is concentrated to obtain glucose crystals. In addition, as a filtration method, a reverse osmosis method, an ultrafiltration method, an electrodialysis method, or the like can be used.
本発明において用いられる植物系繊維材料としては、 セルロース自体はいうま でもなく、 紙、 木材等を、 好ましくは微粉砕された粉末の形態で用いることがで きる。  As the plant fiber material used in the present invention, paper, wood, etc., not to mention cellulose itself, can be used, preferably in the form of finely pulverized powder.
以上のように、 本発明によれば、 セルロース繊維を含む植物系繊維材料を効率 よく、 力、つ、 二次分解が生じない比較的穏和な反応条件で加水分解してダルコ一 スを良好な収率をもって製造することができる。  As described above, according to the present invention, a plant fiber material containing cellulose fibers is efficiently hydrolyzed under relatively mild reaction conditions in which no force, no secondary decomposition occurs, and good darcos is obtained. It can be produced with a high yield.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る好適な実施例について詳細に説明する。  Hereinafter, preferred embodiments according to the present invention will be described in detail.
実施例 1  Example 1
結晶性セルロース粉末 5 gに 8 5 %リン酸水溶液 5 0 gを加え、 十分に攪拌した。 結晶性セルロース粉末がリン酸水溶液に溶解するにつれ、 溶液の粘度は徐々に低 下した。 この粘度の変化が認められなくなるまで攪拌を続け、 セルロース粉末が リン酸水溶液に完全に溶解し、 残存しないことを目視によって確認した後、 混入 した気泡が脱泡するまで放置した。 このようにして、 セルロースを溶媒に溶解さ せた溶液を得た。 50 g of an 85% phosphoric acid aqueous solution was added to 5 g of the crystalline cellulose powder, and the mixture was sufficiently stirred. As the crystalline cellulose powder dissolved in the aqueous phosphoric acid solution, the viscosity of the solution gradually decreased. Stirring was continued until this change in viscosity was no longer observed. After visually confirming that the cellulose powder was completely dissolved in the phosphoric acid aqueous solution and did not remain, the mixture was left until the mixed air bubbles were removed. Thus, a solution in which cellulose was dissolved in the solvent was obtained.
このようにして調製したセルロースのリン酸水溶液に塩化リチウム 3 gを加え、 室温で攪抻しながら溶解させた。 このとき、 アンモニア水を溶液に近づけたとこ ろ塩化アンモニゥム白煙が発生し、 また塩化アンモニゥム臭もしたことにより、 塩化水素力発生したことを確認した。 その後、 室温で 2 0分間攪拌した後、 溶液 を 5分間の間に 8 0 °Cに加熱し、 さらに 3 0分間攪拌したところ、 黄色を帯びた 溶液が得られた。 この溶液を室温まで放冷した後、 イオン交換樹脂 (オルガノ社 製、 商品名:アンバーライト) を充填したカラムに通し、 流出する無色透明な溶 液を採取した。 この溶液を、 減圧下で約 2 O m 1まで濃縮して白色沈殿 4 gを得 た。 フェーリング反応試験及び酵素電極法により、 この白色沈殿がグルコースで あることを確認した。 3 g of lithium chloride was added to the aqueous phosphoric acid solution of cellulose thus prepared, and dissolved while stirring at room temperature. At this time, it was confirmed that ammonia chloride white smoke was generated when the ammonia water was brought close to the solution, and that ammonia chloride odor was generated due to the smell of ammonium chloride. Then, after stirring at room temperature for 20 minutes, the solution was heated to 80 ° C for 5 minutes, and further stirred for 30 minutes, and turned yellow. A solution was obtained. After allowing this solution to cool to room temperature, the solution was passed through a column filled with an ion exchange resin (manufactured by Organo, trade name: Amberlite), and a colorless and transparent solution flowing out was collected. This solution was concentrated under reduced pressure to about 2 Om1 to obtain 4 g of a white precipitate. The Fehling reaction test and the enzyme electrode method confirmed that this white precipitate was glucose.
実施例 2  Example 2
実施例 1の手順に従って古紙粉末 3 gを 8 5 %リン酸水溶液 3 0 gに溶解した。 その後、 塩化リチウムに代えて濃硫酸 3 m 1をこの溶液に加えた以外は、 実施例 1と同じ手順に従って加水分解反応及び後処理を行って、 グルコース 2. 4 gを 得た。  According to the procedure of Example 1, 3 g of waste paper powder was dissolved in 30 g of an 85% phosphoric acid aqueous solution. Thereafter, a hydrolysis reaction and post-treatment were carried out according to the same procedure as in Example 1 except that 3 ml of concentrated sulfuric acid was added to this solution instead of lithium chloride, to obtain 2.4 g of glucose.
実施例 3  Example 3
セルロース粉末 5 gに 8 5 %リン酸水溶液 4 0 gを加えて十分に攪拌したとこ ろ、 水飴状溶液が得られた。 これに塩化リチウム 5 gを加えて混練りした。 この 混練り物の入った容器を湯浴中で 8 0 °Cまで加熱し、 容器内に発生する塩化水素 ガスを含む蒸気が水飴状セルロースと接触するように、 この容器に蓋をしたまま 3 0分間保持した。 水飴状物が溶液となったことを目視により確認した後、 その 少量を取り出し、 これに水を加えて白濁しなくなるまで加水分解反応を続けた。 反応終了後、 この溶液に水 2 O m 1を加えて希釈し、 イオン交換樹脂 (オルガノ 社製、 商品名:アンバーライ ト) を充填したカラムに通し、 流出物を濃縮して粗 製グルコース 4 gを得た。  When 40 g of an 85% phosphoric acid aqueous solution was added to 5 g of the cellulose powder and sufficiently stirred, a syrup-like solution was obtained. 5 g of lithium chloride was added thereto and kneaded. The container containing the kneaded material is heated to 80 ° C in a water bath, and the container is kept covered with the lid so that the vapor containing hydrogen chloride gas generated in the container comes into contact with the syrup-like cellulose. Hold for minutes. After visually confirming that the starch syrup had turned into a solution, a small amount thereof was taken out, water was added thereto, and the hydrolysis reaction was continued until the syrup did not become cloudy. After completion of the reaction, the solution was diluted by adding water 2 Om 1, passed through a column filled with ion exchange resin (manufactured by Organo, trade name: Amberlite), and the effluent was concentrated to obtain crude glucose 4. g was obtained.
実施例 4 Example 4
古紙粉末 1 0 gに蒸留水 1 O m 1を加え古紙粉末に蒸留水を十分に吸収させた 後、 8 5 %リン酸水溶液 3 0 gを加え十分に混練りした。 この混練り物を 5 0〜 6 0 °Cに加熱し、 混練りを続けてペーストを得た。 このペーストを室温に冷却し た後、 塩化水素ガスを吹き付けながら十分に攪拌した。 これを密閉容器に入れ、 8 0 °Cまで加熱し、 ガス抜きしながらその状態で攪拌を続けた。 そして、 実施例 3と同様にして加水分解反応の終了を確認し後処理を行って、 粗製グルコース 7 を得た。  Distilled water (1 Om1) was added to waste paper powder (10 g), and distilled water was sufficiently absorbed in the waste paper powder. Then, 30 g of an 85% phosphoric acid aqueous solution was added and kneaded sufficiently. This kneaded material was heated to 50 to 60 ° C., and kneading was continued to obtain a paste. After the paste was cooled to room temperature, the mixture was sufficiently stirred while blowing hydrogen chloride gas. This was placed in a closed container, heated to 80 ° C, and stirring was continued in that state while degassing. After completion of the hydrolysis reaction was confirmed in the same manner as in Example 3, post-treatment was performed to obtain crude glucose 7.

Claims

請求の範囲 The scope of the claims
1 . 植物系繊維材料をリンのォキソ酸を含む溶媒に溶解することを特徴とす る植物系繊維材料からグルコースを製造する方法。 1. A method for producing glucose from a plant fiber material, comprising dissolving the plant fiber material in a solvent containing oxo acid of phosphorus.
2. 前記溶媒が、 リン酸、 ホスホン酸、 ホスフィン酸及びメタリン酸からな る群から選ばれる少なくとも 1種の水溶液を含み、 その濃度が 7 0重量%以上で あることを特徴とする請求項 1に記載の植物系繊維材料からグルコースを製造す る方法。 2. The solvent according to claim 1, wherein the solvent contains at least one aqueous solution selected from the group consisting of phosphoric acid, phosphonic acid, phosphinic acid and metaphosphoric acid, and has a concentration of 70% by weight or more. A method for producing glucose from a plant fiber material according to claim 1.
3. 前記植物系繊維材料をリンのォキソ酸を含む溶媒に溶解した溶液を、 無 機酸触媒又はアル力リ溶液で中和後に酵素と接触させて該植物系繊維材料に含ま れる多糖類を加水分解させて、 グルコースを生成させることを特徴とする請求項 1又は請求項 2に記載の植物系繊維材料からグルコースを製造する方法。  3. A solution prepared by dissolving the plant fiber material in a solvent containing oxo acid of phosphorus is neutralized with an organic acid catalyst or an alkaline solution, and then contacted with an enzyme to remove polysaccharides contained in the plant fiber material. 3. The method for producing glucose from a plant fiber material according to claim 1, wherein glucose is produced by hydrolysis.
4. 前記無機酸触媒が、 ハロゲン化水素及び濃硫酸の少なくとも 1種からな ることを特徴とする請求項 3に記載の植物系繊維材料からグルコースを製造する 方法。  4. The method for producing glucose from a plant fiber material according to claim 3, wherein the inorganic acid catalyst comprises at least one of hydrogen halide and concentrated sulfuric acid.
5. 前記無機酸触媒が、 ハロゲン化水素からなることを特徴とする請求項 3 又は請求項 4に記載の植物系繊維材料からグルコースを製造する方法。  5. The method for producing glucose from a plant fiber material according to claim 3, wherein the inorganic acid catalyst comprises hydrogen halide.
6. 前記植物系繊維材料を溶媒中に溶解する間又は溶解後に、 ハロゲン化金 属塩を添加し、 ハロゲン化水素を生成させることを特徴とする請求項 5に記載の 植物系繊維材料からグルコースを製造する方法。  6. The glucose from the plant fiber material according to claim 5, wherein a metal halide is added during or after dissolving the plant fiber material in a solvent to generate hydrogen halide. How to manufacture.
PCT/JP1996/003319 1996-11-12 1996-11-12 Process for the preparation of glucose from vegetable fibrous materials WO1998021217A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1996/003319 WO1998021217A1 (en) 1996-11-12 1996-11-12 Process for the preparation of glucose from vegetable fibrous materials
AU75074/96A AU7507496A (en) 1996-11-12 1996-11-12 Process for the preparation of glucose from vegetable fibrous materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/003319 WO1998021217A1 (en) 1996-11-12 1996-11-12 Process for the preparation of glucose from vegetable fibrous materials

Publications (1)

Publication Number Publication Date
WO1998021217A1 true WO1998021217A1 (en) 1998-05-22

Family

ID=14154099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003319 WO1998021217A1 (en) 1996-11-12 1996-11-12 Process for the preparation of glucose from vegetable fibrous materials

Country Status (2)

Country Link
AU (1) AU7507496A (en)
WO (1) WO1998021217A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500002A (en) * 1983-08-25 1986-01-09 パ−ソンズ アンド ウイツトモア,インコ−ポレイテイド Method for converting cellulosic substrate to glucose using Microbispora bispora rutgers P&W strain

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500002A (en) * 1983-08-25 1986-01-09 パ−ソンズ アンド ウイツトモア,インコ−ポレイテイド Method for converting cellulosic substrate to glucose using Microbispora bispora rutgers P&W strain

Also Published As

Publication number Publication date
AU7507496A (en) 1998-06-03

Similar Documents

Publication Publication Date Title
US4018620A (en) Method of hydrolyzing cellulose to monosaccharides
JPH08299000A (en) Production of glucose from vegetable fiber material
JP2007202560A (en) Strong acid hydrolysis
CA2562467A1 (en) Recovery of inorganic salt during processing of lignocellulosic feedstocks
CN101253276B (en) Method of producing saccharide compositions starting with biomass
CN103748232A (en) Method for producing ethanol using cellulosic biomass as starting material
US6608184B2 (en) Production of products from sewer sludge
CN105074002A (en) Sugar-solution production method
JP2008228583A (en) Method for decomposing cellulose and method for producing glucose
CN102311507B (en) Preparation method of pharmaceutical adjuvant sodium carboxymethyl starch
WO1998021217A1 (en) Process for the preparation of glucose from vegetable fibrous materials
JP4200537B2 (en) Phosphate-bound starch having high Ca solubilizing activity, oligosaccharide composition thereof, and production method thereof
WO2024119730A1 (en) System and method for co-production of premium-grade xylose and high-end caramel pigment using corncobs
JP2011206044A (en) Method of saccharifying cellulose
US3677818A (en) Processes for preparing mannose and mannose derivatives
JP5256509B2 (en) Method for producing N-acetylglucosamine and use thereof
CN115838389A (en) Method for improving extraction rate of glucosamine in fermentation liquor
JP3153780B2 (en) Method for producing glucose from plant fiber
CN102085483A (en) Novel catalyst for urea method hydrazine hydrate production process
CN111321182A (en) Pretreatment method for solid acidolysis of straw
KR20090116283A (en) Method for the production of invert sugar syrup from raw sugar
WO2009039653A1 (en) Method for transforming polysaccharides into oligosaccharides with bipolar membrane electrodialysis
JPS6363388A (en) Production of low molecular weight chitosan
CN115340580A (en) Preparation method of glucosamine sulfate and sodium chloride double salt
CA1193252A (en) Solubilisation and hydrolysis of cellulose

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN IL KR MN MX NZ SG US VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase