WO1998019464A1 - System using signal processor for vtr - Google Patents

System using signal processor for vtr Download PDF

Info

Publication number
WO1998019464A1
WO1998019464A1 PCT/JP1996/003144 JP9603144W WO9819464A1 WO 1998019464 A1 WO1998019464 A1 WO 1998019464A1 JP 9603144 W JP9603144 W JP 9603144W WO 9819464 A1 WO9819464 A1 WO 9819464A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
frequency
phase
color
Prior art date
Application number
PCT/JP1996/003144
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Furihata
Kenya Yamauchi
Original Assignee
Hitachi, Ltd.
Hitachi Tohbu Semiconductor, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Tohbu Semiconductor, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1996/003144 priority Critical patent/WO1998019464A1/en
Publication of WO1998019464A1 publication Critical patent/WO1998019464A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/7908Suppression of interfering signals at the reproducing side, e.g. noise
    • H04N9/7917Suppression of interfering signals at the reproducing side, e.g. noise the interfering signals being cross-talk signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/83Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal

Definitions

  • the present invention relates to a system using a signal processing device for a VTR (Video's Tape Recorder, the same applies hereinafter).
  • the present invention relates to a playback underlay signal of a PAL format by a VHS system, an S-VHS system or an 8 mm system. It relates to technology that is effective when used in frequency conversion technology for converting to standard power signals. Background art
  • color video signals are recorded using the power-under method.
  • the luminance signal is frequency-modulated, and the color signal is frequency-converted to a lower frequency band than the frequency-modulated luminance signal, and recorded on the inclined track of the magnetic tape by the rotating video head.
  • Recent VTR systems use a guard-bandless method to increase the density, and it is essential to eliminate the crosstalk caused by this.
  • This crosstalk elimination is performed by applying an azimuth angle to the video head.
  • the effect of the azimuth angle is effective for high-frequency signals, but is effective for low-frequency signals. Less effective. That is, the azimuth angle has little effect of removing crosstalk for a single signal, and a method such as a phase shift method (PS method) or a phase invert method (PI method) is adopted.
  • PS method phase shift method
  • PI method phase invert method
  • VH S Method This is explained using NTSC format.
  • the video recording track is recorded by alternately repeating two channels, channel 1 and channel 2.
  • the color under frequency is 40 times the horizontal scanning frequency (40 fH). Therefore, the subcarrier frequency of 3.57955 5 MHz of the standard color signal is converted into a frequency of 40 fH and approximately 629 KHz and recorded.
  • the phase is changed every one horizontal period.
  • Channel 1 advances by 90 ° and channel 2 delays by 90 °. This is because when the signal of 629 KHz is converted back to 3.5795 45 MHz (and the phase is also restored) during playback, a delay element for one horizontal period is used to delay the signal.
  • the cross component can be removed by adding the color signal delayed by one horizontal period using the color signal and the delay element.
  • Examples of the above-described frequency conversion technology include Japanese Patent Application Laid-Open No. 63-257394, and Japanese Utility Model Application Laid-Open No. Heisei 2-519489.
  • the PAL system is an improvement over the NTSC system in terms of non-linearity of the transmission system, so that image quality degradation is reduced.
  • (R ⁇ Y) and (B ⁇ Y) are used as color difference signals.
  • the color subcarrier is carrier-suppressed and amplitude-modulated by the color difference signal, but the phase of the subcarrier of the (R-Y) signal is inverted by 180 ° for each scanning line.
  • the color burst phase also switches between +135 degrees and -135 degrees for each scan line.
  • the color under frequency is 40.125 times the horizontal scanning frequency (40.125 fH). Therefore, the power required to convert the subcarrier frequency of the standard color signal from 4.4.33.19 MHz to 40.125 fH (approximately 627 KHz) and record it ⁇ At this time, the phase is not shifted in channel 1 for each horizontal period (scanning line), but is delayed by 90 ° in channel 2.
  • a delay element (CCD) for two horizontal periods is used as shown in FIG.
  • the crosstalk component is calculated as shown in the phase shift diagram shown in Fig. 13 (B) and the phase shift diagram shown in Fig. 13. Removal is in progress.
  • the signal (c) (a) + (b), which is the sum of the signal (b) obtained by delaying the output signal (a) by 2H and the signal (a) converted 2H later, is
  • the crosstalk components indicated by the dotted lines in the signals (a) and (b) have phases opposite to each other, and can be canceled by the above addition.
  • the PAL format uses a delay signal of two horizontal periods, a mode in which a head is mounted at the time of transition to special playback (at the time of transition to a mode such as search or still).
  • the response of the evening (cylinder motor) takes time, causing the color signal to disappear instantaneously and the color to disappear.
  • the CCD Charge Transfer Device
  • the CCD Charge Transfer Device
  • the response of the head mounted cylinder motor is slow during transition to special playback such as search and still, and the signal to be played back may be extended or shrunk in time. Yes (during special playback, the rotation of the cylinder motor is compensated so that the horizontal frequency becomes normal).
  • the phase since the delay of the two horizontal periods is fixed by the clock of the crystal oscillator, the phase may be inverted with respect to the normal phase. If the phase is inverted as described above, the signal component is canceled by the above addition, and the color component disappears.
  • the PAL format uses a signal delayed by two horizontal periods as described above. Since the television receiver performs interlaced scanning (interlaced scanning), the signal 2H before is essentially the video signal of the scanning line 4 lines before. Therefore, in a video in which the condition that the scanning line signal, which is the premise of the crosstalk principle, is not satisfied, does not hold, the signal delayed by two horizontal periods as described above is added to form a color signal. However, there is a problem that the correspondence with the luminance signal is displaced and the image is double-viewed. For example, if a video with a pattern consisting of a large number of colored points, such as a fireworks display, is recorded and played back, the above-mentioned problems will become prominent.
  • the NTSC format uses a delay of one horizontal period
  • the PAL format requires a delay of two horizontal periods.
  • the above NTSC system and PAL system can perform frequency conversion with substantially the same circuit.
  • each delay circuit must be prepared, which increases the set price of the VTR system.
  • VTRs for Latin America
  • 2 Different types of delay circuits are required, which increases the set price.
  • a delay circuit such as the CCD described above is to be incorporated in an LSI for signal processing, the difference in the delay time is a major bottleneck.
  • the present invention provides a VTR signal processing device that enables reproduction frequency conversion of a PAL-formatted color under signal by removing a color crosstalk using a one horizontal period delay circuit.
  • the purpose is to provide the system used.
  • a first reproduced color under signal of a PAL format is converted into a first standard color signal by a first frequency conversion circuit, and the first reproduced color under signal is delayed by one horizontal period by a delay circuit. Then, the signal is converted into a second standard power signal by a second frequency conversion circuit as a second power line under signal, and 2 n times the carrier frequency required for the above frequency conversion operation by an oscillation circuit.
  • a frequency signal is formed, and this frequency signal is divided into the carrier frequency, and a four-phase carrier having a phase of 0 °, 90 °, 180 °, and 270 ° is formed.
  • FIG. 1 is a block diagram showing an embodiment of a frequency converter included in a VTR signal processing device used in the present invention.
  • FIG. 2 is a main block diagram showing another embodiment of the frequency converter included in the VTR signal processing device used in the present invention.
  • FIG. 3 is a schematic configuration diagram showing one embodiment of an arithmetic circuit provided in a VTR signal processing circuit used in the present invention.
  • FIG. 4 is a circuit diagram showing one embodiment of a frequency dividing circuit provided in the VTR signal processing circuit used in the present invention.
  • FIG. 5 is a waveform diagram for explaining the operation of the frequency dividing circuit
  • FIG. 6 is a schematic configuration diagram for explaining a phase inverting circuit provided in the VTR signal processing circuit used in the present invention.
  • FIG. 7 is a schematic block diagram for explaining the present invention
  • FIG. 8 is a phase shift diagram corresponding to one channel for explaining the operation of the VTR signal processing circuit used in the present invention.
  • FIG. 9 is a phase shift diagram corresponding to two channels for explaining the operation of the VTR signal processing circuit used in the present invention.
  • FIG. 10 is a main block diagram showing another embodiment of the frequency converter included in the VTR signal processing device used in the present invention.
  • FIG. 11 is a block diagram showing an embodiment of a VTR system using the VTR signal processing device according to the present invention.
  • FIG. 12 is a block diagram for explaining conventional VTR signal processing for the PAL format.
  • FIG. 13 is a phase shift diagram for explaining a signal processing operation for a VTR for a conventional PAL format.
  • FIG. 14 is a schematic waveform diagram for explaining a conventional VAL signal processing operation for the PAL format.
  • FIG. 1 is a block diagram of an embodiment of a frequency conversion unit in a VTR signal processing device used in the present invention.
  • the circuit block shown in the figure is formed on a single semiconductor substrate such as single crystal silicon by a known semiconductor integrated circuit manufacturing technique together with other circuit blocks constituting a VTR signal processing circuit.
  • reference numeral 1 denotes a low-pass filter (LPF) for extracting a color signal from a reproduced video signal.
  • the low-pass filter 1 reproduces signals from the two magnetic heads (channel 1 and channel 2) provided on the rotating head mounted on the cylinder motor by the amplifier circuit AMP. Is supplied.
  • Reference numeral 2 denotes a delay circuit for one horizontal period.
  • the delay circuit 2 is not particularly limited, but may include a CCD (charge transfer device), an input section for analog / digital conversion, a shift device for delaying the input section, and an analog signal for converting the shifted digital signal. It may be composed of a digital Z-analog conversion circuit for returning to a signal.
  • 4 is a second frequency conversion circuit that converts a delayed under color signal into a standard color frequency, a so-called main converter.
  • 3 is a first frequency conversion circuit that converts a color signal before delay into a standard color frequency. Circuit.
  • Reference numeral 5 denotes a phase axis inverting circuit for inverting the phase axis of the standard color frequency signal converted by the main converter 4.
  • the output signal (B signal) of the phase axis inverting circuit and the output signal (A signal) of the second frequency conversion circuit 3 are supplied to the arithmetic circuit 6 to remove the crosstalk. Then, the standard force signal is output through the band pass filter (BPF) 7.
  • BPF band pass filter
  • the reproduction color under signal from the amplifier AMP includes a luminance signal and color Although the signal is included, only the color signal which is separated from the luminance signal by the above-mentioned one-pass filter 1 and frequency-converted to a low frequency is extracted.
  • the one color under signal is delayed by 1 H by the delay circuit 2 which is a delay circuit on one side as described above, and though not shown, passes through a gain control circuit (GCA) and the second frequency conversion circuit (GCA). Ma in Conv 2) Guided to 2 inputs.
  • the reproduced color under signal passed through the low-pass filter 1 is directly guided to the first frequency conversion circuit (Main Conve 1) 3.
  • the signal converted to the standard frequency signal by the first and second frequency conversion circuits 3 and 4 as described above is applied to an arithmetic circuit 6 for removing crosstalk.
  • an arithmetic circuit 6 for removing crosstalk.
  • BPF bandpass filter
  • the frequency conversion subcarrier is not particularly limited, but is twice as large as the subcarrier, that is, in the PAL format, an oscillation circuit oscillating at approximately 5.06 MHz X 2-10.2 MHz. fc VCO)
  • the output signal of 8 is obtained by dividing the output signal by 1Z2 by the divider circuit 9 and the corresponding second and first frequency converters are passed through the 4-phase SW (switch) 11 and 12 which are the switching circuit Added to circuits 4 and 3.
  • the reproduction power under signal input to the first frequency conversion circuit 3 and the reproduction color under signal delayed by 1 H input to the second frequency conversion circuit 4 have the same amplitude level.
  • Input to demodulation circuit a baseband demodulated signal can be obtained by using subcarriers that are frequency-synchronized with the burst signal of the reproduced color signal. Arithmetic operation to obtain the demodulated baseband amplitude difference After passing through the circuit, it is converted to a DC voltage by a single-pass filter, and the gain control circuit (GCA) is controlled, so that the reproduced color under signal input to the first frequency conversion circuit 3 and the second frequency conversion
  • the input amplitude of the reproduced color under signal delayed by 1 H input to the circuit 4 is made equal.
  • the voltage signal is converted into a charge signal and returned to a voltage signal again, and the level change there is relatively large. Is required.
  • the oscillation circuit 8 is an oscillator that oscillates at a frequency of 2 n X fc (fc is a subcarrier frequency) for generating a subcarrier for frequency conversion.
  • the frequency divider circuit 12 is not particularly limited, but as described later, At the same time as dividing the frequency of 11 into the frequency of the subcarrier, it is 0 °, 90 °, and 180 °. , And 270 ° four-phase subcarriers are generated. In other words, the oscillation circuit 8 only needs to be 2 n (n is a natural number) of the subcarrier ⁇ c, and divides the frequency dividing circuit by 1/2 n, and sets 0 as described above. , 90 °, 180 °, and 270 ° should be formed.
  • a crystal oscillation circuit 12 is provided for the operation of the phase axis inverting circuit.
  • the crystal oscillation circuit 12 oscillates at the reference frequency fsc2 of the reproduction standard color signal. Based on this reference frequency signal, the reproduction power signal is frequency- and phase-locked so as to be the standard power signal frequency.
  • the reference frequency signal obtained from the crystal oscillator circuit 12 is doubled in frequency by a doubler circuit 13 and applied to a phase axis inverting circuit 5.
  • Fig. 2 shows the frequency conversion of the VTR signal processing circuit used in the present invention.
  • a block diagram of one embodiment of the unit is shown. In this embodiment, a control circuit of the oscillation circuit (2 fc VCO) 8 is shown.
  • the oscillation circuit 8 is composed of a voltage-controlled oscillator (VCO) and is not particularly limited, but has a free-run frequency almost corresponding to a frequency 2 (fsc + 40.125H) twice as high as the carrier signal fc. To be.
  • the output of the oscillating circuit 8 is frequency-divided by 1/2 by the frequency dividing circuit 9 to form a 4-phase signal.
  • the frequency dividing and phase shifting operations are performed by the frequency dividing circuit 9, and the four carrier signals (5.0 6 MHz) are controlled by switch circuits 11 and 10, which are switch-controlled by a head switching signal and a horizontal synchronizing signal.
  • One is selected by a rule to be supplied to the frequency conversion circuits 4 and 3.
  • the frequency conversion circuits 4 and 3 use the 5.0 MHz carrier signal
  • the signal is synthesized with a reproduced color under signal of 627 KHz, and the frequency is converted to about 4.433 MHz corresponding to the difference.
  • a color subcarrier component is extracted from the band-converted color signal through the band pass 14 and supplied to one input of the phase detection circuit 15.
  • the other input of the phase detection circuit 15 is supplied with a 4.433 MHz reference frequency signal formed by the crystal oscillation circuit 12.
  • the phase detection circuit 15 performs a phase comparison operation of the two signals, and forms a detection signal corresponding to the phase difference (frequency difference).
  • This phase detection output is converted to a direct current by an APC filter (one-pass filter) 16 and the oscillation circuit (V
  • FIG. 3 shows a schematic configuration diagram of an embodiment of the arithmetic circuit 6 for removing the color crosstalk.
  • A the first and second The case where the A signal and the B signal output from the wave number conversion circuits 3 and 4 have the same phase is shown.
  • the phase axis inverting circuit 5 the color signal is converted into the components of fsc and 3 fsc by the carrier of 2 fsc, and the phase of the fsc component is inverted, and at the same time, the signal level is halved.
  • the arithmetic circuit 6 amplifies the level of the B signal obtained from the output of the phase axis inverting circuit 5 by twice (+6 dB), and the A signal obtained from the output of the frequency converting circuit 3 to add. Thereby, the crosstalk component of the opposite phase is removed.
  • FIG. 3B shows a case where the A signal and the B signal output from the first and second frequency conversion circuits 3 and 4 have opposite phases. Similarly to the above, the phase of the fsc component is inverted by the phase axis inverting circuit 5, and at the same time, the signal level is halved. Therefore, the level of the B signal is doubled (+6 dB). By subtracting the A signal obtained from the output of the frequency conversion circuit 3, the cross-talk component having the opposite phase is removed.
  • FIG. 4 shows a specific circuit diagram of one embodiment of the frequency divider 9 for forming the 1Z2 frequency dividing operation and the four-phase signal.
  • the two through latch circuits FF 1 and FF 2 having the ECL configuration are used to perform a 1/2 frequency dividing operation and generate a four-phase output signal.
  • Transistors Q 6 and Q 7 whose collector and base are cross-connected form a latch circuit.
  • Human differential transistors Q5 and Q8 are provided in which the collectors and collectors of these differential transistors Q6 and Q7 are connected in common.
  • Load resistances Rl and R2 are provided in the above-mentioned common collector, respectively.
  • the common emitter of each of the latch type differential transistors Q 6 and Q 7 and the input differential transistors Q 5 and Q 8 has a constant current source I 0 via a differential transistor Q 1 and Q 2. Is provided.
  • Such a circuit constitutes the first through latch circuit FF1.
  • a second through latch circuit FF2 is formed.
  • the bases of the input differential transistors Q5, Q8, Q9, and Q12 of these two through latch circuits FF1 and FF2 are supplied with the output signals of the other through latch circuits FF2 and FF1 in an intersecting manner. You.
  • the input signals to be frequency-divided are input to the bases of the differential transistors Q and Q2, Q3, and Q4 that perform the current switching operation so that the phases of the divided input signals are opposite to each other.
  • the input terminal IN 1 is connected to the base of the transistor Q 1 that performs the through input operation to the first through latch circuit FF 1, and performs the latch operation to the second through latch circuit FF 2 Connected Transistor Q Connected to base of Q3.
  • the input terminal IN2 is connected to the base of a transistor Q2 that performs a latch operation on the first through latch circuit FF1, and a transistor that performs a single input operation on the second through latch circuit FF2 Connected to Q4 base.
  • the input signals to be divided are supplied to the input terminals IN 1 and IN 2.
  • the oscillation output signal When the oscillation output signal is in the double-ended output mode, input signals having phases opposite to each other are supplied to the input terminals IN 1 and IN 2 .
  • the input terminal IN 1 (or IN 2) When the oscillation output signal is in the single-ended output mode, the input terminal IN 1 (or IN 2) is supplied with the oscillation output, and the input terminal IN 2 (or IN 1) is supplied with the midpoint potential of the oscillation output signal.
  • the four signals formed by the load resistors R1 to R4 provided in the two through latch circuits FF1 and FF2 are four-phase signals having a phase difference of 90 ° from each other. It is output through an emitter follower circuit consisting of 13 to Q16 and a constant current source Io.
  • the circuit symbol I 0 of the constant current source has a limited meaning that the same constant current flows. Note that it represents a constant current source, not a TJ flavor.
  • the operation of the frequency divider 9 will be described with reference to the operation waveform diagram shown in FIG. In the figure, a single-ended oscillation signal is supplied to an input terminal IN1, and a midpoint potential is supplied to an input terminal IN2 as a reference voltage.
  • Transistors Q2 and Q4 are turned on during the period when the oscillation signal supplied to input terminal IN1 is at the level of the reference midpoint voltage.
  • the constant current of the constant current source I0 flows through the latch-type differential transistors Q6 and Q7 due to the ON state of the transistor Q2, and the input signal captured before that time. Holding. For example, if the transistor Q6 is on, a constant current flows through the load resistor R1, and the corresponding output terminal OUT4 goes low. When the transistor Q7 is off, the corresponding output terminal OUT1 is at a high level.
  • the input differential transistors Q9 and Q12 are activated in the second through latch circuit FF2.
  • the input transistor Q9 that receives the high-level output signal corresponding to the off state of the transistor Q7 of the first through latch circuit FF1 is turned on, and corresponds to the on state of the transistor Q6.
  • the input transistor Q12 that receives the low-level output signal is off.
  • a constant current flows through the load resistor R3, and a low-level output signal is formed. Since a constant current does not flow through the load resistor R4, a high level such as the power supply voltage Vcc is formed. Therefore, the output signal of the output terminal OUT 2 is at the mouth level, and the output terminal OUT 3 is at the high level.
  • the input differential transistors Q5 and Q6 are activated in the first through latch circuit FF1.
  • the input transistor Q8 receiving the high-level output signal corresponding to the off state of the transistor Q11 is turned on, and corresponds to the on state of the transistor Q10.
  • the input transistor Q5 that receives the output signal of the closed mouth level is turned off.
  • a constant current flows through the load resistor R2 instead of the load resistor R1, and the above holding signal is inverted. That is, the output signal of the output terminal OUT4 changes from the low level to the high level, and the output terminal OUT1 changes from the high level to the low level.
  • the transistors Q1 and Q3 are turned off and the transistors Q2 and Q4 are turned on.
  • the ON state of the transistor Q2 in the first through latch circuit FF1, the constant current of the constant current source I0 flows through the latch-type differential transistors Q6 and Q7, and the input signal captured before that is input. Hold. That is, the transistor Q7 is latched on according to the on state of the input transistor Q8, and the transistor Q6 is latched off according to the off state of the human transistor Q5.
  • the output terminal OUT4 is maintained at the low level, and the output terminal OUT1 is maintained at the high level.
  • the input differential transistors Q9 and Q10 are brought into an operating state.
  • the input transistor Q12 that receives the high-level output signal corresponding to the off state of the transistor Q6 is turned on, and the transistor Q7 is turned on.
  • the input transistor Q9 that receives the output signal of the mouth level is turned off.
  • a constant current flows through the load resistor R4 instead of the load resistor R3, and the above holding signal is inverted. That is, the output signal of the output terminal OUT2 changes from low level to high level, and the output terminal OUT3 changes from high level to low level.
  • the output signals OUTl to OUT4 having a period twice as long as the oscillation frequency of the input signal IN1, that is, 1Z2 frequency-divided.
  • the phase of OUT 2 is delayed by 90 ° with respect to OUT 4, and this OUT 2
  • the phase of OUT1 is delayed by 90 ° with respect to this, and the phase of OUT3 is 90 with respect to OUT1.
  • Four output signals that are delayed can be formed.
  • the frequency divider circuit as described above, and the signals can be selectively converted to two frequency conversion circuits 3 according to the input reproduction color under signal. 4, the output signals A and B can be phase-adjusted. Therefore, the color axis under signal of the PAL format also uses the above-described 1H delay signal and the phase axis described below.
  • the above arithmetic circuit 5 enables the removal of the crosstalk component.
  • FIG. 6 (A) shows a schematic configuration diagram of an embodiment of the phase axis inverting circuit used in the present invention.
  • a known multiplication circuit is used. That is, the reproduced color signal converted to the standard color frequency ⁇ c by the second frequency conversion circuit 4 is input to one input of the multiplication circuit, and the crystal input is input to the other input of the multiplication circuit.
  • a signal obtained by multiplying the reference frequency signal of the standard color signal formed by the oscillator circuit 12 by the doubler circuit 13 is supplied.
  • the reproduced color signal converted to the standard frequency f c by the second frequency conversion circuit 4 can be described as Axs in (f c + ⁇ ).
  • A represents the amplitude of the color signal, that is, the color saturation (color density)
  • represents the phase of the color signal, that is, the hue. Since the signal of 2fc obtained from the above-mentioned double multiplier 13 is a continuous wave, it can be expressed as sin (2fc).
  • the output signal Vout can be expressed by the following equation (1).
  • Vout As i n (f c + 0) xs i n (2 f c)
  • the output signal Vout has a 3 fc component and a: fc component.
  • the fc component it is — lZ2xAs in (fc— ⁇ ).
  • the amplitude is attenuated to 1Z2, and the phase component is changed from plus to minus. It turns out that it is reversed.
  • This characteristic is the function of the phase axis inversion circuit 5.
  • the remaining 3 fc component is not considered because it is removed by the band-pass filter 7 after the calculation.
  • FIG. 6 (B) is a vector diagram for explaining the signal conversion characteristics of the phase axis conversion circuit 5.
  • FIG. 7 is a block diagram for explaining the principle of frequency conversion in the VHS PAL format.
  • (A) shows a conventional frequency conversion method
  • (B) shows the method of the present application.
  • the subcarrier 1 as described later is input to the frequency conversion circuit (Main Conv) to obtain the standard color signal (a).
  • the frequency conversion circuit Mainn Conv
  • extra signal components are removed by a bandpass filter, and a two-horizontal period is delayed by a glass delay line or CCD. The output of the evening is added.
  • two frequency conversion circuits (Main Conv 1 and 2) are used as described above, and the reproduction color under signal is delayed by one horizontal period despite the PAL format.
  • the signal delayed by the CCD (CCD) is supplied to one frequency conversion circuit (Main Conv 2), and the subcarriers that have been phase-shifted in four ways as described above are those that have a phase relationship as described later. And supplies it to the above two frequency conversion circuits (Main Conv.
  • FIG. 8 is a phase shift diagram corresponding to channel 1 for explaining the frequency conversion operation according to the method of the present invention.
  • the solid vector represents the signal component
  • the dotted vector represents the crosstalk component.
  • the short vector represents the burst signal
  • the long vector represents the chroma signal.
  • the standard color signal in the conventional method shown in FIG. 7A is used. Is shown.
  • the phase of the subcarrier 1 is selected so that the frequency-converted signal alternates. That is, in the channel 1 in the figure, there is no phase shift at the time of recording, and in the channel 2 shown in FIG. 9 described below, the phase is delayed by 90 ° every one horizontal period.
  • the subcarrier phase is selected by the four-phase switch so that is canceled.
  • FIGS. 8 (b), (c), (d) and (e) show the phases of the respective parts at the time of frequency conversion and crosstalk removal according to the method of the present invention.
  • (B) shows a color phase in which the reproduced color under signal is converted into a standard color frequency signal by the frequency conversion circuit 3.
  • they when compared with the conventional color phase (a), they are 0 °, 90 ° (advancing 90 °), 0 °, and 190 ° every horizontal period.
  • (C) is a signal (1 HDL) obtained by delaying the reproduced color under signal by one horizontal period, and standardized by the frequency conversion circuit 4 above. The color phase converted to the color frequency is shown.
  • the conventional color phase (a) before one horizontal period delay +90 for each horizontal period. (90 ° delay), 0 °, + 90 °, 0 °.
  • the color signal of (c) is inverted by the B-Y axis by the phase axis inversion circuit 5, and the signal level is doubled (d).
  • the phase of the color crosstalk component included in the color signal of (d) is opposite in phase to the color crosstalk component of (b) obtained from the frequency conversion circuit 3, and the level is also equal. . Therefore, when the two are added by the arithmetic circuit 6, the color crosstalk is canceled as shown in (e), and the first signal component is obtained in a vector-added form.
  • FIG. 9 shows a phase shift diagram corresponding to channel 2 for explaining the frequency conversion operation according to the method of the present invention.
  • (a) shows the standard color signal in the conventional system of FIG. 7 (A).
  • Fig. 9 (b), (c), (d) and (e) show the phase of each part at the time of frequency conversion and crosstalk removal according to the method of the present invention, similarly to the above. That is, (b) shows the color phase obtained by converting the reproduced color under signal into the standard color single frequency signal by the frequency conversion circuit 3. here
  • (C) shows a color phase obtained by delaying the reproduced color standard signal by one horizontal period (1 HDL) and then converting the signal to the standard frequency by the frequency conversion circuit 4.
  • + 0 °, + 90 ° (90. delay) 0 every one horizontal period. , +90. It is.
  • (D) is that the color signal of (c) is inverted by the B-Y axis by the phase axis inverting circuit 5 and the signal level is doubled.
  • the phase of the color crosstalk component included in the color signal of (d) is opposite in phase to the color crosstalk component of (b) obtained from the frequency conversion circuit 3 and has the same level. Become. Therefore, when the two are added by the arithmetic circuit 6, the color crosstalk is canceled as shown in (e), and the color signal component is obtained in a vector-added form.
  • (e) is 45 for both burst and chroma signals for (a). It can be seen that the phase relationship between the burst signal and the chroma signal is maintained, and that the alternating characteristics are also maintained.
  • both the channels 1 and 2 perform a frequency conversion operation in which continuity is maintained and adjacent color crosstalk is removed, although the phase is advanced by 45 ° from the conventional reproduced color signal. It can be done.
  • FIG. 10 is a main block diagram showing another embodiment of the frequency converter included in the VTR signal processing device used in the present invention.
  • the phase axis inversion circuit 5 is provided on the output side of the first frequency conversion circuit 3.
  • two frequency conversion circuits are used, the relative phase shift control thereof is combined with the phase inversion operation by the phase axis inversion circuit, and the color crosstalk component is reduced as in the above embodiment.
  • the arithmetic circuit adds and cancels, and if the color crosstalk has the same phase, the arithmetic circuit may subtract and cancel.
  • the phase axis inverting circuit may be provided before the frequency converting circuit or before the delay circuit.
  • FIG. 11 is a block diagram of one embodiment of a VTR system using the VTR signal processing device according to the present invention.
  • the VTR system of this embodiment is roughly divided into a tuner section, a VTR recording Z playback signal processing section, a recording / playback amplifier, a head section, a mechanical section, a system control section, a timer circuit, and operation switches 1 and 2. Consists of Such a rough system configuration is the same as that of a known VTR system, and a detailed description thereof will be omitted.
  • the VTR signal processing device is provided in the VTR recording / reproducing signal processing unit, and the overall outline thereof is as follows.
  • the following circuit is provided as a luminance system video circuit.
  • the video input is provided to an automatic gain circuit.
  • the video input signal is output as it is as a video output for monitoring through a video output amplifier circuit.
  • the output signal of the automatic gain amplifier is supplied to a low pass filter for luminance.
  • the output signal of this low-pass filter is supplied to the main enhancer through an external capacitor.
  • the output signal of the enhancer is FM-modulated by an FM modulation circuit and transmitted to an external recording pump as a recording FM output.
  • the playback FM input output from the external playback amplifier is supplied to the limiter.
  • the output signal of the limiter is supplied to an FM demodulation circuit to perform FM demodulation. Then, a main de-emphasis process corresponding to the main re-energy is performed by the main re-enhancer.
  • the luminance signal subjected to the FM demodulation and de-emphasis processing is supplied to a low-pass filter used for color separation.
  • the mixed high frequency components are removed and input to the noise canceller and peak value control. Further, the synchronization signal is separated by the synchronization separation circuit.
  • the output signal of the noise canceller is combined with a color signal reproduced by a power line video circuit by a mixer included in the video output amplifier circuit and output.
  • the following circuit is provided as a color video signal circuit.
  • the output signal of the automatic gain amplifying circuit of the luminance video circuit is supplied to an auto chroma level controller.
  • the output signal of the auto-chroma level controller is supplied to the band-pass filter.
  • the output signal of this bandpass filter is subjected to low-frequency conversion by a frequency conversion circuit.
  • the frequency-converted color signal is output as a recording signal through a color killer amplifier that also operates as a recording pump.
  • the reproduced color input is separated from the luminance signal through a low-pass filter and captured.
  • This output signal is subjected to frequency conversion by the above-described frequency conversion unit and removal of the color crosstalk, and is output through the bandpass filter and the noise canceller.
  • the video signal is input through an external capacitor, is combined with the luminance signal by a mixer included in the video output amplifier circuit, and is output.
  • a component having a large actual phase area such as a glass delay line or a CCD having a high clock frequency is not used, and a color signal path and a subcarrier path are not used. It is possible to obtain a VTR system that eliminates crosstalk with high accuracy using a low clock frequency or CCD or line memory without adding a phase correction circuit. Also, in the PAL format, since a delay signal of one horizontal period is used, a VTR system in which color crosstalk is eliminated with high accuracy is possible.
  • the above-mentioned delay circuit will also enable a VTR system composed of a semiconductor integrated circuit integrally with a VTR signal processing circuit.
  • the first reproduced color under signal in the PAL format is converted into the first standard color signal by the first frequency conversion circuit, and the first reproduced color under signal is converted into one horizontal period by the delay circuit.
  • the signal is delayed and converted to a second color signal as an under-signal by the second frequency conversion circuit to the second standard power signal, and the oscillation circuit requires 2 n times the carrier frequency required for the frequency conversion operation.
  • the above frequency signal is divided into the above carrier frequency, and a four-phase carrier having phases of 0 °, 90 °, 180 °, and 270 ° is formed.
  • the PAL format also uses a delay signal for one horizontal period, so the special playback transition due to the response delay of the head mounted mode is the same as the NTSC format, as in the NTSC format.
  • the above oscillation circuit is composed of a voltage controlled oscillation circuit, and a crystal oscillation circuit
  • the phase difference between the reference frequency of the formed standard color signal and the color sub-carrier component extracted from the standard power signal output from the first or second frequency conversion circuit is calculated by a phase detection circuit. Detecting and controlling the oscillation frequency with a control voltage obtained by converting the phase detection output into a direct current, and multiplying the reference frequency signal formed by the crystal oscillation circuit by 2 and supplying the same to the phase axis inversion circuit.
  • the oscillation circuit outputs an oscillation signal having a carrier frequency that is twice as high as that of the oscillation circuit.
  • the input and output of the two through-latch circuits of the ECL configuration serve as a frequency dividing circuit for dividing the oscillation signal.
  • the oscillating circuit 8 may be 2 n times i c and divide it by 1/2 n to form the four-phase subcarrier signal.
  • the delay circuit may comprise a CCD or an analog / digital conversion circuit, a shift register and a digital Z / analog conversion circuit, and may be formed by the same semiconductor integrated circuit device as the VTR signal processing circuit.
  • the present invention is applied to the VHS system, S-VHS system or 8 mm It can be widely used in systems that use VTR signal processors that support the PAL format.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

In a VTR system, a first frequency converting circuit converts a first reproduced color-under signal of the PAL format into a first standard color signal, a delay circuit generates a second color-under signal by delaying the first color-under signal by one horizontal period, a second frequency converting circuit converts the second color-under signal into a second standard color signal, an oscillation circuit generates a frequency signal of a frequency which is 2n times as high as the carrier frequency required for the above-mentioned frequency conversion, the frequency of the frequency signal is divided into the carrier frequency, four carriers having 0°, 90°, 180°, and 270° phases are generated, one of the carriers is selected so that the phases of the crosstalks contained in the first and second standard color signals may be the same or opposite to each other, the phase of the first or second standard color signal is inverted by a phase-axis inverting circuit, and the first standard color signal is subtracted from the second one or added to the second one so as to offset the color crosstalks.

Description

明 細  Details
V T R用信号処理装置を用い 技術分野 Technical field using VTR signal processor
この発明は、 VTR (ビディォ 'テープ · レコーダ、 以下同じ) 用信 号処理装置を用いたシステムに関し、 VH S方式、 S— VH S方式又は 8 mm方式による P A Lフォーマッ トの再生力ラーアンダ一信号を標準 力ラ一信号に変換する周波数変換技術に利用して有効な技術に関するも のである。 背景技術  The present invention relates to a system using a signal processing device for a VTR (Video's Tape Recorder, the same applies hereinafter). The present invention relates to a playback underlay signal of a PAL format by a VHS system, an S-VHS system or an 8 mm system. It relates to technology that is effective when used in frequency conversion technology for converting to standard power signals. Background art
家庭用 VTRシステムでは、 カラービデオ信号が力ラーアンダー方式 により記録されている。 このカラ一アンダー方式では、 輝度信号は周波 数変調され、 カラー信号は周波数変調された輝度信号より低い周波数帯 に周波数変換され、 回転ビデオへッ ドによって磁気テープの傾斜トラッ ク上に記録される。  In a home VTR system, color video signals are recorded using the power-under method. In this color-under method, the luminance signal is frequency-modulated, and the color signal is frequency-converted to a lower frequency band than the frequency-modulated luminance signal, and recorded on the inclined track of the magnetic tape by the rotating video head. .
近年の VT Rシステムでは、 高密度化のためガ一ドバンドレス方式を 用いており、 このために生じるクロストーク除去が不可欠とされる。 こ のクロストーク除去は、 ビデオヘッ ドにアジマス角を付けることによつ て行っている力 \ アジマス角の効果は高周波の信号に対しては有効であ るが、 低周波の信号に対しては効果が少ない。 すなわち、 上記アジマス 角はカラ一信号に対してはクロストーク除去の効果が少なく、 位相シフ ト方式 (P S方式) あるいは位相インバート方式 (P I方式) という方 法が採られている。  Recent VTR systems use a guard-bandless method to increase the density, and it is essential to eliminate the crosstalk caused by this. This crosstalk elimination is performed by applying an azimuth angle to the video head.The effect of the azimuth angle is effective for high-frequency signals, but is effective for low-frequency signals. Less effective. That is, the azimuth angle has little effect of removing crosstalk for a single signal, and a method such as a phase shift method (PS method) or a phase invert method (PI method) is adopted.
カラ一アンダー方式におけるカラ一クロストーク除去の方法を VH S 方式 NTS Cフォーマツ トを用いて説明する。 映像記録トラックはチヤ ンネル 1、 チャンネル 2の 2つのチャンネルを交互に繰り返すことによ つて記録されている。 VHS方式 NTSCフォーマツ トではカラーアン ダー周波数を水平走査周波数の 4 0倍 (4 0 f H ) としている。 従って 、 標準カラー信号のサブキャリア周波数 3. 5 7 9 54 5 MHzを 4 0 f H、 約 6 2 9 KHzに周波数変換して記録することになるが、 この時 1水平期間ごとに位相を、 チャンネル 1では 9 0° づっ進め、 チャンネ ル 2では 9 0° づっ遅らせている。 これは再生時に 6 2 9 KHzのカラ —信号を 3. 5 7 9 5 4 5 MHzに逆変換したときに (位相ももとに戻 す) 、 1水平期間の遅延素子を用い、 遅延する前のカラー信号と遅延素 子を用レ、て 1水平期間遅延したカラ一信号を加算することにより、 クロ スト一ク成分を除去できるからである。 上記のような周波数変換技術の 例として、 特開 6 3 - 25 7 3 9 4号公報、 公開実用平成 2 - 5 1 4 8 9号公報がある。 VH S Method This is explained using NTSC format. The video recording track is recorded by alternately repeating two channels, channel 1 and channel 2. In the VHS NTSC format, the color under frequency is 40 times the horizontal scanning frequency (40 fH). Therefore, the subcarrier frequency of 3.57955 5 MHz of the standard color signal is converted into a frequency of 40 fH and approximately 629 KHz and recorded. At this time, the phase is changed every one horizontal period. Channel 1 advances by 90 ° and channel 2 delays by 90 °. This is because when the signal of 629 KHz is converted back to 3.5795 45 MHz (and the phase is also restored) during playback, a delay element for one horizontal period is used to delay the signal. This is because the cross component can be removed by adding the color signal delayed by one horizontal period using the color signal and the delay element. Examples of the above-described frequency conversion technology include Japanese Patent Application Laid-Open No. 63-257394, and Japanese Utility Model Application Laid-Open No. Heisei 2-519489.
PAL方式は、 伝送系の非直線性に対して上記 NTS C方式よりも画 質劣化が少なくなるように改善したものである。 PAL方式では色差信 号として (R— Y) 及び (B— Y) を用いている。 色差信号により色副 搬送波を搬送波抑圧振幅変調するが、 (R - Y) 信号の副搬送波の位相 は走査線ごとに 1 8 0° 反転する。 カラ一バースト位相も + 1 3 5度と - 1 3 5度とに走査線ごとに切り替わる。  The PAL system is an improvement over the NTSC system in terms of non-linearity of the transmission system, so that image quality degradation is reduced. In the PAL system, (R−Y) and (B−Y) are used as color difference signals. The color subcarrier is carrier-suppressed and amplitude-modulated by the color difference signal, but the phase of the subcarrier of the (R-Y) signal is inverted by 180 ° for each scanning line. The color burst phase also switches between +135 degrees and -135 degrees for each scan line.
VSH方式 PALフォーマツ トにおいては、 カラーアンダー周波数を 水平走査周波数の 4 0. 1 25倍 ( 4 0. 1 25 f H ) としている。 し たがって、 標準カラ一信号のサブキャリア周波数 4. 4 3 3 6 1 9 MH zを 4 0. 1 25 f H (約 6 2 7 KHz) に周波数変換して記録するこ とになる力 \ この時 1水平期間 (走査線) ごとに位相を、 チャンネル 1 では位相シフトせず、 チャンネル 2では 9 0° づっ遅らせている。 上記 PALフォーマツトの再生カラ一アンダー信号におけるクロス卜 —ク除去のためには、 第 1 2図 (A) に示すように、 2水平期間の遅延 素子 (CCD) を用い、 遅延する前のカラ一信号と遅延素子を用いて 2 水平期間遅延したカラー信号を演算することにより同図 (B) に示した 位相シフ ト図及び第 1 3図に示した位相シフ ト図のようにクロストーク 成分の除去を行っている。 In the VSH PAL format, the color under frequency is 40.125 times the horizontal scanning frequency (40.125 fH). Therefore, the power required to convert the subcarrier frequency of the standard color signal from 4.4.33.19 MHz to 40.125 fH (approximately 627 KHz) and record it \ At this time, the phase is not shifted in channel 1 for each horizontal period (scanning line), but is delayed by 90 ° in channel 2. In order to remove the crosstalk in the reproduced color under signal of the PAL format, a delay element (CCD) for two horizontal periods is used as shown in FIG. By calculating the color signal delayed by two horizontal periods using the signal and the delay element, the crosstalk component is calculated as shown in the phase shift diagram shown in Fig. 13 (B) and the phase shift diagram shown in Fig. 13. Removal is in progress.
つまり、 PALフーマツ 卜においては、 第 1 2図 (B) 及び第 1 3図 に示すように、 チャンネル 1 (CH 1) 及びチャンネル 2 (CH 2) に おいて、 周波数変換部 (Main Conv.) の出力信号 (a) を 2 H遅延さ せた信号 (b) と、 それよりも 2 H後に変換された信号 (a) とを加算 した信号 (c) = (a) + (b) は、 上記信号 (a) と (b) に点線で 示したクロストーク成分が互いに逆相となり、 上記の加算により相殺さ せることができる。  In other words, in the PAL format, as shown in FIGS. 12 (B) and 13, the frequency conversion section (Main Conv.) Is used for channel 1 (CH 1) and channel 2 (CH 2). The signal (c) = (a) + (b), which is the sum of the signal (b) obtained by delaying the output signal (a) by 2H and the signal (a) converted 2H later, is The crosstalk components indicated by the dotted lines in the signals (a) and (b) have phases opposite to each other, and can be canceled by the above addition.
上記のように PALフォーマツ 卜においては、 2水平期間の遅延信号 を用いるものであるために、 特殊再生移行時 (サーチ、 スチル等へのモ ード移行時) にへッ ドを搭載したモ一夕 (シリンダモータ) の応答に時 間がかかり、 瞬間的に色信号が無くなり、 色が消えるという問題が生じ ている。 この原因は、 上記 2水平期間の遅延信号を形成する CCD (電 荷移送素子) が水晶発振器の信号をクロックとしているため固定量であ り、 モータの回転速度の変化に対応して変化する水平時間との相対的な ずれが大きくなるためである。 特に、 PALフォーマッ トのように 2水 平期間の遅延信号を用いるものでは、 第 1 4図 (A) に示すように、 通 常再生の場合には再生カラーアンダー信号は、 2水平期間の遅延により 40. 1 25 f H X 2 = 80. 25 f H 、 すなわち 80. 25サイクル の遲延となり、 遅延前の信号に対して 90° の遅れとなる (チャンネル 1の場合) 。 しかしながら、 第 1 4図 (B ) に示すように、 サーチ、 スチル等の特 殊再生移行時にはへッド搭載シリンダモー夕の応答が遅く、 再生される 信号が時間的に延びたり、 縮む場合がある (特殊再生時には水平周波数 が正規になるようにシリンダモータの回転が補整される) 。 この場合に 、 上記 2水平期間の遅延が水晶発振器のクロックにより固定されている ので正規の位相に対して反転する場合がある。 このように位相が反転し てしまうと、 上記加算により信号成分がキヤンセルされて色消えとなつ て現れてしまう。 As described above, since the PAL format uses a delay signal of two horizontal periods, a mode in which a head is mounted at the time of transition to special playback (at the time of transition to a mode such as search or still). The response of the evening (cylinder motor) takes time, causing the color signal to disappear instantaneously and the color to disappear. This is because the CCD (Charge Transfer Device), which forms the delay signal for the two horizontal periods, uses the signal of the crystal oscillator as the clock, and has a fixed amount, and the horizontal level changes according to the change in the motor rotation speed. This is because the relative deviation from time increases. In particular, in the case of using a two-horizontal delay signal such as the PAL format, as shown in Fig. 14 (A), in the case of normal reproduction, the reproduced color under signal is delayed by two horizontal periods. 40. 1 25 f HX 2 = 80. 25 f H, i.e. becomes遲延of 80.25 cycles, a delay of 90 ° with respect to the delay before the signal (in the case of channel 1). However, as shown in Fig. 14 (B), the response of the head mounted cylinder motor is slow during transition to special playback such as search and still, and the signal to be played back may be extended or shrunk in time. Yes (during special playback, the rotation of the cylinder motor is compensated so that the horizontal frequency becomes normal). In this case, since the delay of the two horizontal periods is fixed by the clock of the crystal oscillator, the phase may be inverted with respect to the normal phase. If the phase is inverted as described above, the signal component is canceled by the above addition, and the color component disappears.
また、 上記のような特殊再生時以外でも、 P A Lフォーマッ トでは上 記のように 2水平期間遅延した信号を用いている。 テレビジョン受像機 では飛び越し走查 (インターレス走査) を行っているので、 実質的には 2 H前の信号は 4本前の走査線の映像信号に対するものである。 そのた め、 クロストークの原理の前提となる走査線信号が近似しているという 条件が成立しないような映像では、 上記のような 2水平期間遅延した信 号を加算して色信号を形成すると、 輝度信号との対応がずれてしまい二 重に見えてしまうという問題がある。 例えば、 打ち上げ花火のように多 数の色付点からなるような模様の映像を録画し、 それを再生した場合に は、 上記のような問題が顕著に現れてしまう。  In addition to the above-mentioned special reproduction, the PAL format uses a signal delayed by two horizontal periods as described above. Since the television receiver performs interlaced scanning (interlaced scanning), the signal 2H before is essentially the video signal of the scanning line 4 lines before. Therefore, in a video in which the condition that the scanning line signal, which is the premise of the crosstalk principle, is not satisfied, does not hold, the signal delayed by two horizontal periods as described above is added to form a color signal. However, there is a problem that the correspondence with the luminance signal is displaced and the image is double-viewed. For example, if a video with a pattern consisting of a large number of colored points, such as a fireworks display, is recorded and played back, the above-mentioned problems will become prominent.
前記のように、 NT S Cフォーマッ トでは、 1水平期間の遅延を用い 、 上記 P A Lフォーマツ トに対しては 2水平期間の遅延が必要になる。 各周波数を切り換える等により上記 N T S C方式と P A L方式とは実質 的に同じ回路で周波数変換が可能である。 しかしながら、 上記のように クロストーク除去のための遅延回路の遅延時間が異なるために、 それぞ れの遅延回路を用意しなければならず、 V T Rシステムのセッ ト価格を 増加させる。 例えば、 中南米向の V T Rのように NT S C方式と P A L 方式との両方に適用できるようにした VT Rシステムのセットでは、 2 種類の遅延回路が必要となりセッ ト価格を高くする。 また、 上記 C C D 等の遅延回路を信号処理用の L S Iに内蔵させようとすると、 上記遅延 時間の相違が大きなネックとなるものである。 As described above, the NTSC format uses a delay of one horizontal period, and the PAL format requires a delay of two horizontal periods. By switching each frequency, the above NTSC system and PAL system can perform frequency conversion with substantially the same circuit. However, since the delay time of the delay circuit for removing crosstalk is different as described above, each delay circuit must be prepared, which increases the set price of the VTR system. For example, in a set of VTR systems that can be applied to both NTSC and PAL systems, such as VTRs for Latin America, 2 Different types of delay circuits are required, which increases the set price. In addition, if a delay circuit such as the CCD described above is to be incorporated in an LSI for signal processing, the difference in the delay time is a major bottleneck.
したがって、 この発明は、 P A Lフォ一マッ トのカラ一アンダー信号 に対しても 1水平期間の遅延回路を用いてカラ一クロストークを除去し ながら再生周波数変換を可能にした V T R用信号処理装置を用いたシス テムを提供することを目的としている。 この発明の前記ならびにそのほ かの目的と新規な特徴は、 本明細書の記述および添付図面から明らかに なるであろう。 発明の開示  Therefore, the present invention provides a VTR signal processing device that enables reproduction frequency conversion of a PAL-formatted color under signal by removing a color crosstalk using a one horizontal period delay circuit. The purpose is to provide the system used. The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings. Disclosure of the invention
本発明は、 P A Lフォーマツ 卜の第 1の再生カラーアンダー信号を第 1の周波数変換回路により第 1の標準カラ一信号に変換し、 上記第 1の 再生カラーアンダー信号を遅延回路により 1水平期間遅延させて第 2の 力ラ一アンダー信号として第 2の周波数変換回路により第 2の標準力ラ 一信号に変換するとともに、 発振回路により上記周波数変換動作に必要 とされるキヤリア周波数の 2 n倍の周波数信号を形成しておき、 この周 波数信号を上記キャリア周波数に分周するとともに 0 ° 、 9 0 ° 、 1 8 0 ° 及び 2 7 0 ° の位相を持つ 4相のキャリアを形成し、 上記第 1 と第 2の標準力ラ一信号に含まれる力ラークロストークが同相又は逆相にな るよう上記 4相のキヤリアを選択と、 上記第 1又は第 2の標準カラ一信 号の位相を位相軸反転回路に反転させることにより、 演算回路にて上記 両標準力ラ一信号を減算又は加算させて上記力ラ一クロストークを相殺 せる。 図面の簡単な説明 第 1図は、 この発明に用いられる VTR用信号処理装置に含まれる周 波数変換部の一実施例を示すブ oック図であり、 According to the present invention, a first reproduced color under signal of a PAL format is converted into a first standard color signal by a first frequency conversion circuit, and the first reproduced color under signal is delayed by one horizontal period by a delay circuit. Then, the signal is converted into a second standard power signal by a second frequency conversion circuit as a second power line under signal, and 2 n times the carrier frequency required for the above frequency conversion operation by an oscillation circuit. A frequency signal is formed, and this frequency signal is divided into the carrier frequency, and a four-phase carrier having a phase of 0 °, 90 °, 180 °, and 270 ° is formed. The above four-phase carrier is selected so that the power crosstalk included in the first and second standard power signals becomes in-phase or out-of-phase, and the phase of the first or second standard color signal is selected. To the phase axis inversion circuit And by, by subtracting or adding the two standard force La first signal to cancel the force La first cross-talk by the calculation circuit. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a block diagram showing an embodiment of a frequency converter included in a VTR signal processing device used in the present invention.
第 2図は、 この発明に用いられる VTR用信号処理装置に含まれる周 波数変換部の他の一実施例を示す要部プロック図でああり、  FIG. 2 is a main block diagram showing another embodiment of the frequency converter included in the VTR signal processing device used in the present invention.
第 3図は、 この発明に用いられる VTR用信号処理回路に設けられる 演算回路の一実施例を示す概略構成図であり、  FIG. 3 is a schematic configuration diagram showing one embodiment of an arithmetic circuit provided in a VTR signal processing circuit used in the present invention.
第 4図は、 この発明に用いられる VTR用信号処理回路に設けられる 分周回路の一実施例を示す回路図であり、  FIG. 4 is a circuit diagram showing one embodiment of a frequency dividing circuit provided in the VTR signal processing circuit used in the present invention.
第 5図は、 上記分周回路の動作を説明するための波形図であり、 第 6図は、 この発明に用いられる VTR用信号処理回路に設けられる 位相反転回路を説明するための概略構成図であり、  FIG. 5 is a waveform diagram for explaining the operation of the frequency dividing circuit, and FIG. 6 is a schematic configuration diagram for explaining a phase inverting circuit provided in the VTR signal processing circuit used in the present invention. And
第 7図は、 この発明を説明するための概略プロック図であり、 第 8図は、 この発明に用いられる VTR用信号処理回路の動作を説明 するための 1チャンネルに対応した位相シフト図であり、  FIG. 7 is a schematic block diagram for explaining the present invention, and FIG. 8 is a phase shift diagram corresponding to one channel for explaining the operation of the VTR signal processing circuit used in the present invention. ,
第 9図は、 この発明に用いられる VTR用信号処理回路の動作を説明 するための 2チャンネルに対応した位相シフト図であり、  FIG. 9 is a phase shift diagram corresponding to two channels for explaining the operation of the VTR signal processing circuit used in the present invention.
第 1 0図は、 この発明に用いられる VTR用信号処理装置に含まれる 周波数変換部の他の一実施例を示す要部プロック図でああり、  FIG. 10 is a main block diagram showing another embodiment of the frequency converter included in the VTR signal processing device used in the present invention.
第 1 1図は、 この発明に係る VTR用信号処理装置が用いられた VT Rシステムの一実施例を示すブロック図であり、  FIG. 11 is a block diagram showing an embodiment of a VTR system using the VTR signal processing device according to the present invention.
第 1 2図は、 従来の PALフォーマット用の VTR用信号処理を説明 するための構成図であり、  FIG. 12 is a block diagram for explaining conventional VTR signal processing for the PAL format.
第 1 3図は、 従来の PALフォーマツト用の VTR用信号処理動作を 説明するための位相シフト図であり、  FIG. 13 is a phase shift diagram for explaining a signal processing operation for a VTR for a conventional PAL format.
第 1 4図は、 従来の PALフォーマット用の VTR用信号処理動作の を説明するための概略波形図である。 発明を実施するための最良の形態 FIG. 14 is a schematic waveform diagram for explaining a conventional VAL signal processing operation for the PAL format. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図には、 この発明に用いられる V T R用信号処理装置における周 波数変換部の一実施例のプロック図が示されている。 同図の回路プロッ クは、 V T R用信号処理回路を構成する他の回路ブロックとともに公知 の半導体集積回路の製造技術によって、 単結晶シリコンのような 1個の 半導体基板上において形成される。  FIG. 1 is a block diagram of an embodiment of a frequency conversion unit in a VTR signal processing device used in the present invention. The circuit block shown in the figure is formed on a single semiconductor substrate such as single crystal silicon by a known semiconductor integrated circuit manufacturing technique together with other circuit blocks constituting a VTR signal processing circuit.
同図において、 1は再生ビデオ信号からカラー信号をとりだすローバ スフィルタ (L P F ) である。 このローパスフィル夕 1には、 シリンダ モータに搭載された回転へッ ドに設けられた 2つの磁気へッ ド (チャン ネル 1 とチャンネル 2 ) からの信号を増幅回路 AM Pにより増幅した再 生信号が供給される。  In the figure, reference numeral 1 denotes a low-pass filter (LPF) for extracting a color signal from a reproduced video signal. The low-pass filter 1 reproduces signals from the two magnetic heads (channel 1 and channel 2) provided on the rotating head mounted on the cylinder motor by the amplifier circuit AMP. Is supplied.
2は 1水平期間の遅延回路である。 この遲延回路 2は、 特に制限され ないが、 C C D (電荷移送素子) を用いるもの他に、 アナログ/ディジ タル変換する入力部と、 それを遅延させるシフトジス夕と、 上記シフト されたディジタル信号をアナログ信号に戻すディジタル Zアナログ変換 回路から構成してもよい。 4は遅延させたアンダー力ラ一信号を標準力 ラー周波数に変換する第 2の周波数変換回路いわゆるメインコンバータ であり、 3は遅延する前のカラー信号を標準カラー周波数に変換する第 1の周波数変換回路である。 5は上記メインコンバータ 4で変換された 標準カラー周波数信号の位相軸を反転させる位相軸反転回路である。 この位相軸反転回路の出力信号 (B信号) と、 上記第 2の周波数変換 回路 3の出力信号 (A信号) とは、 演算回路 6に供給されてクロストー クを除去が除去される。 そして、 バンドパスフィル夕 (B P F ) 7を通 して標準力ラ一信号が出力される。  Reference numeral 2 denotes a delay circuit for one horizontal period. The delay circuit 2 is not particularly limited, but may include a CCD (charge transfer device), an input section for analog / digital conversion, a shift device for delaying the input section, and an analog signal for converting the shifted digital signal. It may be composed of a digital Z-analog conversion circuit for returning to a signal. 4 is a second frequency conversion circuit that converts a delayed under color signal into a standard color frequency, a so-called main converter. 3 is a first frequency conversion circuit that converts a color signal before delay into a standard color frequency. Circuit. Reference numeral 5 denotes a phase axis inverting circuit for inverting the phase axis of the standard color frequency signal converted by the main converter 4. The output signal (B signal) of the phase axis inverting circuit and the output signal (A signal) of the second frequency conversion circuit 3 are supplied to the arithmetic circuit 6 to remove the crosstalk. Then, the standard force signal is output through the band pass filter (BPF) 7.
上記アンプ AM Pからの再生カラ一アンダー信号には、 輝度信号と色 信号が含まれるが、 上記口一パスフィルタ 1により輝度信号と分離され て低域に周波数変換された色信号のみが取り出される。 このカラーアン ダ一信号は、 上記のように一方において遅延回路である遅延回路 2によ り 1 H遅延され、 図示しないが、 利得制御回路 (GCA) を通り上記の 第 2の周波数変換回路 (Ma i n Conv 2) 2の入力に導かれる。 上記ローパスフィル夕 1を通した再生カラーアンダー信号は、 そのまま 第 1の周波数変換回路 (Ma i n C o n v e 1 ) 3に導かれるもので ある。 The reproduction color under signal from the amplifier AMP includes a luminance signal and color Although the signal is included, only the color signal which is separated from the luminance signal by the above-mentioned one-pass filter 1 and frequency-converted to a low frequency is extracted. The one color under signal is delayed by 1 H by the delay circuit 2 which is a delay circuit on one side as described above, and though not shown, passes through a gain control circuit (GCA) and the second frequency conversion circuit (GCA). Ma in Conv 2) Guided to 2 inputs. The reproduced color under signal passed through the low-pass filter 1 is directly guided to the first frequency conversion circuit (Main Conve 1) 3.
上記のように第 1及び第 2の周波数変換回路 3と 4により標準力ラ一 信号に変換された信号はクロストーク除去のための演算回路 6に加えら れる。 ここで更に上記バンドパスフィルタ (BPF) 7を設けることに より、 第 1及び第 2の周波数変換回路 3と 4や位相軸反転回路 6によつ て生じた不要周波数成分を除去してきれし、な標準力ラ一信号を得るよう にするものである。  The signal converted to the standard frequency signal by the first and second frequency conversion circuits 3 and 4 as described above is applied to an arithmetic circuit 6 for removing crosstalk. Here, by further providing the bandpass filter (BPF) 7, unnecessary frequency components generated by the first and second frequency conversion circuits 3 and 4 and the phase axis inversion circuit 6 can be removed, and It is intended to obtain a proper standard force signal.
周波数変換用サブキャリアは、 特に制限されないが、 サブキャリアの 2倍、 すなわち PALフォーマツ 卜にあっては、 約 5. 0 6 MHz X 2 - 1 0. 1 2 MHzにて発振する発振回路 (2 f c VCO) 8の出力 信号を分周回路 9によって 1Z2分周することにより得られ、 切り換え 回路である 4相 SW (スィッチ) 1 1 と 1 2を経由し対応する第 2と第 1の周波数変換回路 4と 3に加えられる。  The frequency conversion subcarrier is not particularly limited, but is twice as large as the subcarrier, that is, in the PAL format, an oscillation circuit oscillating at approximately 5.06 MHz X 2-10.2 MHz. fc VCO) The output signal of 8 is obtained by dividing the output signal by 1Z2 by the divider circuit 9 and the corresponding second and first frequency converters are passed through the 4-phase SW (switch) 11 and 12 which are the switching circuit Added to circuits 4 and 3.
第 1の周波数変換回路 3に入力される再生力ラーアンダー信号及び第 2の周波数変換回路 4に入力される 1 H遅延された再生カラーアンダー 信号は、 その振幅レベルを同じにするため、 図示しない復調回路に入力 される。 これらの復調回路では再生カラー信号のバースト信号と周波数 同期したサブキャリアを用いることにより、 ベースバンドの復調信号が 得られる。 それぞれ復調されたベースバンドの振幅差を得るための演算 回路を通し、 口一パスフィルタにより直流電圧に変換して、 上記利得制 御回路 (GCA) を制御することにより、 第 1の周波数変換回路 3入力 される再生カラーアンダー信号と第 2の周波数変換回路 4に入力される 1 H遅延された再生カラ一アンダー信号の入力振幅を同じにする。 特に 、 遅延回路として CCDを用いた場合には、 電圧信号が電荷信号に変換 され、 再び電圧信号に戻されるので、 そこでのレベル変化が比較的大き くなるので、 上記レベル調整機能を付加することが必要となる。 The reproduction power under signal input to the first frequency conversion circuit 3 and the reproduction color under signal delayed by 1 H input to the second frequency conversion circuit 4 have the same amplitude level. Input to demodulation circuit. In these demodulation circuits, a baseband demodulated signal can be obtained by using subcarriers that are frequency-synchronized with the burst signal of the reproduced color signal. Arithmetic operation to obtain the demodulated baseband amplitude difference After passing through the circuit, it is converted to a DC voltage by a single-pass filter, and the gain control circuit (GCA) is controlled, so that the reproduced color under signal input to the first frequency conversion circuit 3 and the second frequency conversion The input amplitude of the reproduced color under signal delayed by 1 H input to the circuit 4 is made equal. In particular, when a CCD is used as the delay circuit, the voltage signal is converted into a charge signal and returned to a voltage signal again, and the level change there is relatively large. Is required.
このような 2つの周波数変換回路及び上記レベル調整機能とを持つ V TR用信号処理回路に関しては、 本願出願人において特開平 7 - 9 9 6 7 1号公報にて先に提案されており、 その技術が利用される。  Such a two-frequency conversion circuit and a signal processing circuit for VTR having the above-mentioned level adjustment function have been previously proposed by the applicant of the present invention in Japanese Patent Application Laid-Open No. Hei 7-99671. Technology is used.
上記発振回路 8は、 周波数変換用サブキヤリアを発生させるための 2 n X f c (f cはサブキヤリァ周波数) の周波数で発振する発振器、 分 周回路 1 2は、 特に制限されないが、 後述するように発振回路 1 1の周 波数をサブキャリアの周波数にするための分周すると同時に、 0° , 9 0° , 1 8 0。 , 270 ° の 4位相のサブキャリアを発生している。 つ まり、 上記発振回路 8は、 上記サブキャリア ί cの 2 n (nは自然数) であればよく、 分周回路をそれを 1 /2 nに分周するとともに、 上記の ように 0。 , 9 0° , 1 8 0° , 27 0 ° の 4位相のサブキャリアを形 成すればよい。  The oscillation circuit 8 is an oscillator that oscillates at a frequency of 2 n X fc (fc is a subcarrier frequency) for generating a subcarrier for frequency conversion. The frequency divider circuit 12 is not particularly limited, but as described later, At the same time as dividing the frequency of 11 into the frequency of the subcarrier, it is 0 °, 90 °, and 180 °. , And 270 ° four-phase subcarriers are generated. In other words, the oscillation circuit 8 only needs to be 2 n (n is a natural number) of the subcarrier ίc, and divides the frequency dividing circuit by 1/2 n, and sets 0 as described above. , 90 °, 180 °, and 270 ° should be formed.
上記位相軸反転回路の動作のために、 水晶発振回路 1 2が設けられる 。 この水晶発振回路 1 2は、 再生標準カラー信号の基準周波数 f s c二 4. 4 3 3 6 1 9 MHzで発振する。 この基準周波数信号をもとに再生 力ラ一信号は標準力ラ一信号周波数になるように周波数、 位相同期がか けられる。 この水晶発振回路 1 2から得られる基準周波数信号を 2てい 倍回路 1 3にて 2倍の周波数にし、 位相軸反転回路 5に加えられる。 第 2図には、 この発明に用いられる VTR用信号処回路の周波数変換 部の一実施例のブロック図が示されている。 この実施例は、 上記発振回 路 (2 f c VCO) 8の制御回路が示されている。 A crystal oscillation circuit 12 is provided for the operation of the phase axis inverting circuit. The crystal oscillation circuit 12 oscillates at the reference frequency fsc2 of the reproduction standard color signal. Based on this reference frequency signal, the reproduction power signal is frequency- and phase-locked so as to be the standard power signal frequency. The reference frequency signal obtained from the crystal oscillator circuit 12 is doubled in frequency by a doubler circuit 13 and applied to a phase axis inverting circuit 5. Fig. 2 shows the frequency conversion of the VTR signal processing circuit used in the present invention. A block diagram of one embodiment of the unit is shown. In this embodiment, a control circuit of the oscillation circuit (2 fc VCO) 8 is shown.
上記発振回路 8は、 電圧制御型発振器 (VCO) からなり、 特に制限 されないが、 キヤリァ信号 f cの 2倍の周波数 2 ( f s c + 4 0. 1 2 5 H) にほぼ対応したフリーラン周波数を持つようにされる。 この発振 回路 8の出力は、 上記分周回路 9により 1/2に分周され、 ここで 4相 信号に形成される。  The oscillation circuit 8 is composed of a voltage-controlled oscillator (VCO) and is not particularly limited, but has a free-run frequency almost corresponding to a frequency 2 (fsc + 40.125H) twice as high as the carrier signal fc. To be. The output of the oscillating circuit 8 is frequency-divided by 1/2 by the frequency dividing circuit 9 to form a 4-phase signal.
上記分周回路 9により分周と位相シフト動作が行われ 4つのキヤリア 信号 (5. 0 6MHz) は、 へッ ド切り換え信号と水平同期信号により スィッチ制御されるスィッチ回路 1 1 と 1 0により後述するようにルー ルにより 1つが選ばれて、 上記周波数変換回路 4と 3に供給される。 周波数変換回路 4及び 3は、 上記 5. 0 6MHzのキャリア信号と約 The frequency dividing and phase shifting operations are performed by the frequency dividing circuit 9, and the four carrier signals (5.0 6 MHz) are controlled by switch circuits 11 and 10, which are switch-controlled by a head switching signal and a horizontal synchronizing signal. One is selected by a rule to be supplied to the frequency conversion circuits 4 and 3. The frequency conversion circuits 4 and 3 use the 5.0 MHz carrier signal
6 2 7 KHzの再生カラ一アンダー信号とを合成して、 その差分に対応 した約 4. 4 33MHzに周波数変換する。 このように帯域変換された カラー信号は、 バンドパス 1 4を通して色副搬送波成分が取り出されて 位相検波回路 1 5の一方の入力に供給される。 The signal is synthesized with a reproduced color under signal of 627 KHz, and the frequency is converted to about 4.433 MHz corresponding to the difference. A color subcarrier component is extracted from the band-converted color signal through the band pass 14 and supplied to one input of the phase detection circuit 15.
上記位相検波回路 1 5の他方の入力には、 上記水晶発振回路 1 2で形 成された 4. 4 3 3 MHzの基準周波数信号が供給される。 上記位相検 波回路 1 5は、 上記両信号の位相比較動作を行い、 その位相差 (周波数 差) に対応した検波信号を形成する。 この位相検波出力は、 APCフィ ル夕 (口一パスフィルタ) 1 6により直流化されて、 上記発振回路 (V The other input of the phase detection circuit 15 is supplied with a 4.433 MHz reference frequency signal formed by the crystal oscillation circuit 12. The phase detection circuit 15 performs a phase comparison operation of the two signals, and forms a detection signal corresponding to the phase difference (frequency difference). This phase detection output is converted to a direct current by an APC filter (one-pass filter) 16 and the oscillation circuit (V
CO) 8の制御電圧を形成する。 このような PLLループにより、 水晶 発振回路 1 2により形成された基準周波数信号に正確に同期した 2 X ( f s c + 4 0. 1 25 f H ) の発振信号を形成することができる。 CO) forms a control voltage of 8. With such a PLL loop, an oscillation signal of 2 × (fsc + 40.125 fH) accurately synchronized with the reference frequency signal generated by the crystal oscillation circuit 12 can be formed.
第 3図には、 上記カラ一クロクトークを除去する演算回路 6の一実施 例の概略構成図が示されている。 同図 (A) には、 上記第 1 と第 2の周 波数変換回路 3と 4から出力される A信号と B信号とが同相の場合が示 されている。 位相軸反転回路 5では 2 f s cのキャリアによってカラ一 信号は f s cと 3 f s cの成分に変換され、 上記 f s c成分の位相が反 転されると同時に、 信号レベルが半分になる。 このため、 演算回路 6で は、 位相軸反転回路 5の出力からえられる B信号に対してはレベルを 2 倍 (+ 6 dB) に増幅し、 周波数変換回路 3の出力から得られる A信号 と加算する。 これにより、 逆相のクロストーク成分が除去される。 同図 (B) には、 上記第 1 と第 2の周波数変換回路 3と 4から出力さ れる A信号と B信号とが逆相の場合が示されている。 上記同様に位相軸 反転回路 5により上記 f s c成分の位相が反転されると同時に、 信号レ ベルが半分になるため、 B信号に対してはレベルを 2倍 (+ 6 d B) に 増幅させて、 上記周波数変換回路 3の出力から得られる A信号と減算す ることにより、 逆相のクロストーク成分を除去するものである。 FIG. 3 shows a schematic configuration diagram of an embodiment of the arithmetic circuit 6 for removing the color crosstalk. In the same figure (A), the first and second The case where the A signal and the B signal output from the wave number conversion circuits 3 and 4 have the same phase is shown. In the phase axis inverting circuit 5, the color signal is converted into the components of fsc and 3 fsc by the carrier of 2 fsc, and the phase of the fsc component is inverted, and at the same time, the signal level is halved. For this reason, the arithmetic circuit 6 amplifies the level of the B signal obtained from the output of the phase axis inverting circuit 5 by twice (+6 dB), and the A signal obtained from the output of the frequency converting circuit 3 to add. Thereby, the crosstalk component of the opposite phase is removed. FIG. 3B shows a case where the A signal and the B signal output from the first and second frequency conversion circuits 3 and 4 have opposite phases. Similarly to the above, the phase of the fsc component is inverted by the phase axis inverting circuit 5, and at the same time, the signal level is halved. Therefore, the level of the B signal is doubled (+6 dB). By subtracting the A signal obtained from the output of the frequency conversion circuit 3, the cross-talk component having the opposite phase is removed.
第 4図には、 上記 1 Z 2分周動作と 4相信号を形成する分周回路 9の 一実施例の具体的回路図が示されている。 この実施例では、 ECL構成 の 2つのスルーラッチ回路 FF 1, FF 2を用いて 1 /2の分周動作を 行うとともに 4相出力信号を形成する。  FIG. 4 shows a specific circuit diagram of one embodiment of the frequency divider 9 for forming the 1Z2 frequency dividing operation and the four-phase signal. In this embodiment, the two through latch circuits FF 1 and FF 2 having the ECL configuration are used to perform a 1/2 frequency dividing operation and generate a four-phase output signal.
コレクタとベースとが交差接続されたトランジスタ Q 6と Q 7はラッ チ回路を構成する。 これら差動トランジスタ Q 6, Q 7のコレクタとコ レクタがそれぞれ共通接続された人力差動トランジスタ Q 5と Q 8が設 けられる。 上記の共通化されたコレクタには、 負荷抵抗 R l, R 2がそ れぞれ設けられる。 上記ラッチ形態の差動トランジスタ Q 6, Q 7と入 力差動トランジスタ Q 5, Q 8のそれぞれの共通エミッ夕には、 差動卜 ランジス夕 Q l, Q 2を介して定電流源 I 0が設けられる。 このような 回路により、 第 1のスルーラッチ回路 FF 1が構成される。  Transistors Q 6 and Q 7 whose collector and base are cross-connected form a latch circuit. Human differential transistors Q5 and Q8 are provided in which the collectors and collectors of these differential transistors Q6 and Q7 are connected in common. Load resistances Rl and R2 are provided in the above-mentioned common collector, respectively. The common emitter of each of the latch type differential transistors Q 6 and Q 7 and the input differential transistors Q 5 and Q 8 has a constant current source I 0 via a differential transistor Q 1 and Q 2. Is provided. Such a circuit constitutes the first through latch circuit FF1.
上記の第 1のスルーラッチ回路 FF 1 と同様にラツチ形態の差動トラ P TJP9 144 ンジス夕 Q 1 0, Q 1 1、 入力差動トランジスタ Q 9, Q 1 2、 コレク 夕負荷抵抗 R 3, R 4及び定電流源 I 0とその切り換え差動トランジス 夕 Q3, Q 4とにより第 2のスルーラッチ回路 FF 2が構成される。 これら 2つのスルーラッチ回路 FF 1と FF 2の入力差動トランジス 夕 Q5, Q8と Q9, Q 12のベースは、 互いに他方のスルーラッチ回 路 FF 2, FF 1の出力信号が交差的に供給される。 上記電流切り換え 動作を行う差動トランジスタ Qし Q2と Q3, Q4のベースに、 分周 される入力信号が互いに逆相にされるよう入力される。 Similar to the first through latch circuit FF1, the latch type differential P TJP9 144 Transistors Q10, Q11, input differential transistors Q9, Q12, collector Load resistors R3, R4 and constant current source I0 and their switching differential transistors Q3, Q4 Thus, a second through latch circuit FF2 is formed. The bases of the input differential transistors Q5, Q8, Q9, and Q12 of these two through latch circuits FF1 and FF2 are supplied with the output signals of the other through latch circuits FF2 and FF1 in an intersecting manner. You. The input signals to be frequency-divided are input to the bases of the differential transistors Q and Q2, Q3, and Q4 that perform the current switching operation so that the phases of the divided input signals are opposite to each other.
すなわち、 入力端子 I N 1は、 第 1のスル一ラッチ回路 FF 1に対し てスルー入力動作を行わせるトランジスタ Q 1のベースに接続され、 第 2のスルーラッチ回路 FF 2に対してラツチ動作を行わせるトランジス 夕 Q 3のベースに接続される。 入力端子 IN2は、 第 1のスルーラッチ 回路 FF 1に対してラツチ動作を行わせるトランジスタ Q 2のベースに 接続され、 第 2のスルーラッチ回路 FF 2に対してスル一入力動作を行 わせるトランジスタ Q 4のベースに接続される。  That is, the input terminal IN 1 is connected to the base of the transistor Q 1 that performs the through input operation to the first through latch circuit FF 1, and performs the latch operation to the second through latch circuit FF 2 Connected Transistor Q Connected to base of Q3. The input terminal IN2 is connected to the base of a transistor Q2 that performs a latch operation on the first through latch circuit FF1, and a transistor that performs a single input operation on the second through latch circuit FF2 Connected to Q4 base.
この入力端子 IN 1と IN 2には、 上記分周されるべき入力信号が供 給される。 発振出力信号がダブルェンドの出力形態のきには入力端子 I N 1と I N 2に互いに逆相の入力信号が供給され、 発振出力信号がシン グルエンドの出力形態のきには入力端子 IN 1 (又は IN 2) に発振出 力が供給され、 入力端子 I N 2 (又は I N 1 ) に発振出力信号の中点電 位が供給される。  The input signals to be divided are supplied to the input terminals IN 1 and IN 2. When the oscillation output signal is in the double-ended output mode, input signals having phases opposite to each other are supplied to the input terminals IN 1 and IN 2 .When the oscillation output signal is in the single-ended output mode, the input terminal IN 1 (or IN 2) is supplied with the oscillation output, and the input terminal IN 2 (or IN 1) is supplied with the midpoint potential of the oscillation output signal.
この実施例では、 位相が互いに 90°ずつ異なる 4相信号として、 上 記 2つのスルーラッチ回路 FF 1, FF 2に設けられた負荷抵抗 R 1〜 R 4により形成される 4つの信号がトランジスタ Q 1 3〜Q 1 6と定電 流源 I oからなるエミッ夕フォロワ回路を介して出力される。 同図にお いて定電流源の回路記号 I 0は、 同じ定電流を流すという限定された意 TJ 味ではなく、 一般的に定電流源を表すものであることに注意されたい。 上記分周回路 9の動作を第 5図に示した動作波形図を参照して説明す る。 同図では、 入力端子 IN 1にシングルエンドの発振信号が供給され 、 入力端子 IN 2にはその中点電位が基準電圧として供給される。 入力 端子 I N 1に供給される発振信号が基準となる中点電圧に対して口ウレ ベルの期間、 トランジスタ Q 2と Q 4がオン状態にされる。 トランジス 夕 Q 2のオン状態により、 第 1のスルーラッチ回路 FF 1では、 ラッチ 形態の差動トランジスタ Q 6, Q 7に定電流源 I 0の定電流が流れ、 そ れ以前に取り込んだ入力信号を保持している。 例えば、 トランジスタ Q 6がオン状態なら負荷抵抗 R 1に定電流がながれそれに対応した出力端 子 OUT 4がロウレベルとなる。 トランジスタ Q 7がオフ状態のときに は、 それに対応した出力端子 OUT 1がハイレベルになっている。 上記トランジスタ Q 4のォン状態により、 第 2のスルーラッチ回路 F F 2では、 入力差動トランジスタ Q 9, Q 1 2が動作状態にされる。 上 記のように第 1のスルーラッチ回路 FF 1のトランジスタ Q 7のオフ状 態に対応したハイレベルの出力信号を受ける入力トランジスタ Q 9がォ ン状態になり、 トランジスタ Q 6のオン状態に対応したロウレベルの出 力信号を受ける入力トランジスタ Q 1 2がオフ状態になっている。 これ により、 負荷抵抗 R 3に定電流が流れてロウレベルの出力信号が形成さ れ、 負荷抵抗 R 4には定電流が流れないから電源電圧 Vccのようなハイ レベルが形成される。 それ故、 出力端子 OUT 2の出力信号は口ウレべ ルとなり、 出力端子 OUT 3はハイレベルになっている。 In this embodiment, the four signals formed by the load resistors R1 to R4 provided in the two through latch circuits FF1 and FF2 are four-phase signals having a phase difference of 90 ° from each other. It is output through an emitter follower circuit consisting of 13 to Q16 and a constant current source Io. In the same figure, the circuit symbol I 0 of the constant current source has a limited meaning that the same constant current flows. Note that it represents a constant current source, not a TJ flavor. The operation of the frequency divider 9 will be described with reference to the operation waveform diagram shown in FIG. In the figure, a single-ended oscillation signal is supplied to an input terminal IN1, and a midpoint potential is supplied to an input terminal IN2 as a reference voltage. Transistors Q2 and Q4 are turned on during the period when the oscillation signal supplied to input terminal IN1 is at the level of the reference midpoint voltage. In the first through-latch circuit FF1, the constant current of the constant current source I0 flows through the latch-type differential transistors Q6 and Q7 due to the ON state of the transistor Q2, and the input signal captured before that time. Holding. For example, if the transistor Q6 is on, a constant current flows through the load resistor R1, and the corresponding output terminal OUT4 goes low. When the transistor Q7 is off, the corresponding output terminal OUT1 is at a high level. By the ON state of the transistor Q4, the input differential transistors Q9 and Q12 are activated in the second through latch circuit FF2. As described above, the input transistor Q9 that receives the high-level output signal corresponding to the off state of the transistor Q7 of the first through latch circuit FF1 is turned on, and corresponds to the on state of the transistor Q6. The input transistor Q12 that receives the low-level output signal is off. As a result, a constant current flows through the load resistor R3, and a low-level output signal is formed. Since a constant current does not flow through the load resistor R4, a high level such as the power supply voltage Vcc is formed. Therefore, the output signal of the output terminal OUT 2 is at the mouth level, and the output terminal OUT 3 is at the high level.
入力端子 I N 1に供給される発振信号が基準となる中点電圧に対して ハイレベルに変化すると、 トランジスタ Q2と Q4がオフ状態に、 トラ ンジス夕 Q 1と Q 3がオン状態に切り換えられる。 トランジスタ Q 3の オン状態により、 第 2のスルーラッチ回路 FF 2では、 ラッチ形態の差 動トランジスタ Q 1 0 , Q 1 1に定電流源 I 0の定電流が流れ、 それ以 前に取り込んだ入力信号を保持する。 すなわち、 上記入力トランジスタ Q 9のオン状態に応じてトランジスタ Q 1 0がオン状態に、 入カトラン ジス夕 Q 1 2のオフ状態に応じてトランジスタ Q 1 1がオフ状態にラッ チされる。 これにより、 出力端子 OUT2はロウレベルのままに維持さ れ、 出力端子 OUT 3はハイレベルのままに維持される。 When the oscillation signal supplied to input terminal IN1 changes to a high level with respect to the reference midpoint voltage, transistors Q2 and Q4 are turned off, and transistors Q1 and Q3 are turned on. Due to the ON state of the transistor Q3, the difference between the latch forms in the second through latch circuit FF2 The constant current of the constant current source I 0 flows through the active transistors Q 10 and Q 11, and the input signal acquired before that is held. That is, the transistor Q10 is turned on in accordance with the on state of the input transistor Q9, and the transistor Q11 is turned off in accordance with the off state of the input transistor Q12. As a result, the output terminal OUT2 is maintained at the low level, and the output terminal OUT3 is maintained at the high level.
上記トランジスタ Q 1のオン状態により、 第 1のスルーラッチ回路 F F 1では、 入力差動トランジスタ Q 5, Q 6が動作状態にされる。 上記 のように第 2のスルーラッチ回路 FF 2においてトランジスタ Q 1 1の オフ状態に対応したハイレベルの出力信号を受ける入力トランジスタ Q 8がオン伏態になり、 トランジスタ Q 1 0のオン状態に対応した口ウレ ベルの出力信号を受ける入力トランジスタ Q 5がオフ伏態にされる。 こ れにより、 負荷抵抗 R 1に代わって負荷抵抗 R 2に定電流が流れるよう になり上記の保持信号が反転する。 すなわち、 出力端子 OUT 4の出力 信号はロウレベルからハイレベルに変化し、 出力端子 OUT 1はハイレ ベルからロウレベルに変化する。  By the ON state of the transistor Q1, the input differential transistors Q5 and Q6 are activated in the first through latch circuit FF1. As described above, in the second through-latch circuit FF2, the input transistor Q8 receiving the high-level output signal corresponding to the off state of the transistor Q11 is turned on, and corresponds to the on state of the transistor Q10. The input transistor Q5 that receives the output signal of the closed mouth level is turned off. As a result, a constant current flows through the load resistor R2 instead of the load resistor R1, and the above holding signal is inverted. That is, the output signal of the output terminal OUT4 changes from the low level to the high level, and the output terminal OUT1 changes from the high level to the low level.
入力端子 I N 1に供給される発振信号が基準となる中点電圧に対して 再びロウレベルに変化すると、 トランジスタ Q 1 と Q 3がオフ状態に、 トランジスタ Q 2と Q 4がオン状態に切り換えられる。 トランジスタ Q 2のオン状態により、 第 1のスルーラッチ回路 FF 1では、 ラッチ形態 の差動トランジスタ Q 6, Q 7に定電流源 I 0の定電流が流れ、 それ以 前に取り込んだ入力信号を保持する。 すなわち、 上記入力トランジスタ Q 8のオン状態に応じてトランジスタ Q 7がオン状態に、 人カトランジ ス夕 Q 5のオフ状態に応じてトランジスタ Q 6がオフ状態にラッチされ る。 これにより、 出力端子 OUT4はロウレベルのままに維持され、 出 力端子 OUT 1はハイレベルのままに維持される。 上記トランジスタ Q 3のオン状態により、 第 2のスルーラッチ回路 F F 2では、 入力差動トランジスタ Q 9, Q 1 0が動作状態にされる。 上 記のように第 1のスルーラッチ回路 FF 1においてトランジスタ Q 6の オフ状態に対応したハイレベルの出力信号を受ける入力トランジスタ Q 1 2がオン状態になり、 トランジスタ Q 7のオン状態に対応した口ウレ ベルの出力信号を受ける入力トランジスタ Q 9がオフ状態にされる。 こ れにより、 負荷抵抗 R 3に代わって負荷抵抗 R 4に定電流が流れるよう になり上記の保持信号が反転する。 すなわち、 出力端子 OUT2の出力 信号はロウレベルからハイレベルに変化し、 出力端子 OUT 3はハイレ ベルからロウレベルに変化する。 When the oscillation signal supplied to the input terminal IN1 changes to low level again with respect to the reference midpoint voltage, the transistors Q1 and Q3 are turned off and the transistors Q2 and Q4 are turned on. By the ON state of the transistor Q2, in the first through latch circuit FF1, the constant current of the constant current source I0 flows through the latch-type differential transistors Q6 and Q7, and the input signal captured before that is input. Hold. That is, the transistor Q7 is latched on according to the on state of the input transistor Q8, and the transistor Q6 is latched off according to the off state of the human transistor Q5. As a result, the output terminal OUT4 is maintained at the low level, and the output terminal OUT1 is maintained at the high level. By the ON state of the transistor Q3, in the second through latch circuit FF2, the input differential transistors Q9 and Q10 are brought into an operating state. As described above, in the first through latch circuit FF1, the input transistor Q12 that receives the high-level output signal corresponding to the off state of the transistor Q6 is turned on, and the transistor Q7 is turned on. The input transistor Q9 that receives the output signal of the mouth level is turned off. As a result, a constant current flows through the load resistor R4 instead of the load resistor R3, and the above holding signal is inverted. That is, the output signal of the output terminal OUT2 changes from low level to high level, and the output terminal OUT3 changes from high level to low level.
以下、 同様な動作の繰り返しにより、 入力信号 I N 1の発振周波数に 対して 2倍の周期を持つ、 言い換えるならば、 1Z2分周された出力信 号 OUT l〜OUT4を形成することができる。 また、 同図から明らか なように、 2つのスルーラッチ回路 FF 1 , FF 2の 4つの出力信号は 、 立ち上がりでみると、 OUT 4に対して OUT 2の位相が 90° 遅れ 、 この OUT 2に対して OUT 1の位相が 90° 遅れ、 この OUT 1に 対して OUT 3の位相が 90。 遅れるという 4つの出力信号を形成する ことができる。 このような E C L構成のスルーラッチ回路からなる分周 回路を用いることにより、 簡単な構成で分周動作と位相シフト動作とを 合わせ持つ複合機能回路を実現できる。  Hereinafter, by repeating the same operation, it is possible to form the output signals OUTl to OUT4 having a period twice as long as the oscillation frequency of the input signal IN1, that is, 1Z2 frequency-divided. Also, as is clear from the figure, when the four output signals of the two through latch circuits FF 1 and FF 2 rise, the phase of OUT 2 is delayed by 90 ° with respect to OUT 4, and this OUT 2 The phase of OUT1 is delayed by 90 ° with respect to this, and the phase of OUT3 is 90 with respect to OUT1. Four output signals that are delayed can be formed. By using a frequency dividing circuit composed of a through latch circuit having such an ECL configuration, it is possible to realize a multifunction circuit having both a frequency dividing operation and a phase shift operation with a simple configuration.
上記のような分周回路によって位相が 90° ずつ遅れた 4つの信号を 形成することができので、 それを入力された再生カラ一アンダー信号に 対応して選択的に 2つの周波数変換回路 3と 4に供給することにより、 その出力信号 Aと Bの位相調整を行うことができるので、 P A Lフォー マツ 卜のカラ一アンダー信号においても上記 1 Hの遅延信号を用いつつ 、 次に説明する位相軸反転回路 5との組み合わせにより、 上記演算回路 5によりクロスト一ク成分の除去を行うことができる。 Four signals with phases delayed by 90 ° can be formed by the frequency divider circuit as described above, and the signals can be selectively converted to two frequency conversion circuits 3 according to the input reproduction color under signal. 4, the output signals A and B can be phase-adjusted. Therefore, the color axis under signal of the PAL format also uses the above-described 1H delay signal and the phase axis described below. The above arithmetic circuit 5 enables the removal of the crosstalk component.
第 6図 (A) には、 この発明に用いられる位相軸反転回路の一実施例 の概略構成図が示されている。 この実施例では、 公知の掛算回路が用い られる。 つまり、 掛算回路の一方の入力には、 上記第 2の周波数変換回 路 4により標準カラー周波数 ί cに変換された再生カラ一信号が入力さ れ、 上記掛算回路の他方の入力には、 水晶発振回路 12で形成された標 準カラ一信号の基準周波数信号を 2てい倍回路 1 3により 2てい倍され た信号が供給される。  FIG. 6 (A) shows a schematic configuration diagram of an embodiment of the phase axis inverting circuit used in the present invention. In this embodiment, a known multiplication circuit is used. That is, the reproduced color signal converted to the standard color frequency ίc by the second frequency conversion circuit 4 is input to one input of the multiplication circuit, and the crystal input is input to the other input of the multiplication circuit. A signal obtained by multiplying the reference frequency signal of the standard color signal formed by the oscillator circuit 12 by the doubler circuit 13 is supplied.
第 2の周波数変換回路 4により標準力ラ一周波数 f cに変換された再 生カラ一信号は、 Axs i n ( f c +ø) と記述することができる。 こ こで、 Aはカラ一信号の振幅、 すなわち色飽和度 (色の濃さ) を表し、 øはカラー信号の位相、 すなわち色相を表している。 上記 2てい倍回路 1 3から得られる 2 f cの信号は、 連続波であるので s i n (2 f c) と表すことができる。  The reproduced color signal converted to the standard frequency f c by the second frequency conversion circuit 4 can be described as Axs in (f c + ø). Here, A represents the amplitude of the color signal, that is, the color saturation (color density), and ø represents the phase of the color signal, that is, the hue. Since the signal of 2fc obtained from the above-mentioned double multiplier 13 is a continuous wave, it can be expressed as sin (2fc).
上記 2つの信号を掛算回路により掛算すると、 その出力信号 Vout は 、 次式 (1) のように表すことができる。  When the above two signals are multiplied by a multiplication circuit, the output signal Vout can be expressed by the following equation (1).
Vout =As i n (f c + 0) xs i n (2 f c) Vout = As i n (f c + 0) xs i n (2 f c)
= -A/2 {s i n ( 3 f c + ø) -s i n ( f c - ø) }  = -A / 2 {s in (3 f c + ø) -s in (f c-ø)}
(1) 上記出力信号 Vout には、 3 f c成分と: f c成分が得られる。 このうち 、 f c成分をみると、 — lZ2xAs i n (f c— ø) となっており、 入力カラー信号 A xs i n (f c + 0) と比較すると、 振幅が 1Z2に 減衰し、 位相成分はプラスからマイナスに反転していることが判る。 こ の特性が位相軸反転回路 5の働きである。 ここで、 残りの 3 f c成分に ついては、 演算後にバンドパスフィルタ 7により除去するため考慮しな 第 6図 (B) には、 上記位相軸変換回路 5の信号変換特性を説明する ためのべクトル図が示されている。 つまり、 周波数 f s cにおけるべク トル図で、 上記変換特性を表せば、 入力再生カラー信号 As i n (f c + ø) に対して、 2 f cの信号は、 1つの軸 (同図では横軸) で表され る。 そして、 この横軸に対して、 位相成分が反転し、 信号レベルが 1Z 2に減衰した信号が出力信号 1Z2XAS i n (f s c -ø) として得 られるものである。 (1) The output signal Vout has a 3 fc component and a: fc component. Looking at the fc component, it is — lZ2xAs in (fc— ø). Compared with the input color signal A xs in (fc + 0), the amplitude is attenuated to 1Z2, and the phase component is changed from plus to minus. It turns out that it is reversed. This characteristic is the function of the phase axis inversion circuit 5. Here, the remaining 3 fc component is not considered because it is removed by the band-pass filter 7 after the calculation. FIG. 6 (B) is a vector diagram for explaining the signal conversion characteristics of the phase axis conversion circuit 5. In other words, in the vector diagram at the frequency fsc, if the above conversion characteristics are expressed, for the input reproduction color signal As in (fc + ø), the signal of 2 fc will be on one axis (horizontal axis in the figure). expressed. Then, with respect to this horizontal axis, a signal whose phase component is inverted and whose signal level is attenuated to 1Z2 is obtained as an output signal 1Z2XAS in (fsc-ø).
第 7図には、 VHS方式の PALフォーマツ 卜における周波数変換の 原理を説明するためのブロック図が示されている。 同図には、 発明の理 解のために、 (A) には従来の周波数変換方式を示し、 (B) には本願 の方式を示している。  FIG. 7 is a block diagram for explaining the principle of frequency conversion in the VHS PAL format. In the figure, for the understanding of the invention, (A) shows a conventional frequency conversion method, and (B) shows the method of the present application.
つまり、 (A) に示した従来の 1つの周波数変換回路を用いものでは 、 周波数変換回路 (Main Conv ) に後述するようなサブキャリア 1を 入力して、 標準カラー信号 (a) を得るものであり、 PALフォーマツ 卜におけるカラークロストーク除去のためには、 バンドパスフィル夕で 余分な信号成分を除去するとともに、 ガラスディレイライン又は CCD により 2水平期間遅延させて、 かかる遅延信号と上記バンドバスフィル 夕の出力とを加算させるものである。  In other words, in the case of using the conventional one frequency conversion circuit shown in (A), the subcarrier 1 as described later is input to the frequency conversion circuit (Main Conv) to obtain the standard color signal (a). Yes, in order to remove color crosstalk in PAL format, extra signal components are removed by a bandpass filter, and a two-horizontal period is delayed by a glass delay line or CCD. The output of the evening is added.
(B) の本願方式では、 上記のように 2つの周波数変換回路 (Main Conv 1と 2) を用レ、、 PALフォーマッ トであるにもかかわらず再生 カラーアンダー信号を 1水平期間だけ遅延回路 (CCD) により、 遅延 させた信号を一方の周波数変換回路 (Main Conv 2) に供給し、 前記 のように 4通りに位相シフ卜されたサブキヤリアの中から後述するよう な位相関係になるようなものを選んで上記 2つの周波数変換回路 (Mai n Conv 1と 2) に供給して、 それぞれにおいて周波数変換された標準 カラー信号 (b) と (c) の位相制御を行い、 かつ標準カラ一信号 (c ) に対しては、 上記位相軸反転回路により位相反転させて、 それの信号 レベルを 2倍に増幅して加算回路で上記信号 (b) と加算して、 カラ一 クロストーク除去を行うものである。 In the method of the present invention (B), two frequency conversion circuits (Main Conv 1 and 2) are used as described above, and the reproduction color under signal is delayed by one horizontal period despite the PAL format. The signal delayed by the CCD (CCD) is supplied to one frequency conversion circuit (Main Conv 2), and the subcarriers that have been phase-shifted in four ways as described above are those that have a phase relationship as described later. And supplies it to the above two frequency conversion circuits (Main Conv. 1 and 2) to perform phase control of the frequency-converted standard color signals (b) and (c) in each of them, and to output a standard color signal ( c ), The signal level is inverted by the above-mentioned phase axis inverting circuit, the signal level of the inverted signal is doubled, added to the above signal (b) by the adding circuit, and the color crosstalk is removed. is there.
第 8図には、 上記本願の方式による周波数変換動作を説明するための チャンネル 1に対応した位相シフト図が示されている。 同図において、 実線のべクトルは信号成分を表し、 点線のべクトルはクロストーク成分 を表している。 また、 短いべクトルはバ一スト信号を表し、 長いべクト ルはクロマ信号を表している。 同図においては、 この発明の理解のため に、 言い換えるならば、 PALフォーマッ トでの位相シフトの理解のた めに (a) において上記第 7図 (A) の従来方式における標準カラ一信 号を示している。  FIG. 8 is a phase shift diagram corresponding to channel 1 for explaining the frequency conversion operation according to the method of the present invention. In the figure, the solid vector represents the signal component, and the dotted vector represents the crosstalk component. The short vector represents the burst signal, and the long vector represents the chroma signal. In the figure, in order to understand the present invention, in other words, in order to understand the phase shift in the PAL format, in FIG. 7A, the standard color signal in the conventional method shown in FIG. 7A is used. Is shown.
周知のように、 PALカラー信号は、 1水平期間毎に ± 4 5度位相シ フ卜されたバースト信号とクロマ信号が B— Y軸を軸に交番している。 このため、 (a) に示すように、 周波数変換後の信号も交番するようサ ブキヤリア 1の位相が選ばれている。 すなわち、 同図のチャンネル 1で は、 記録時の位相シフトがなく、 次に説明する第 9図に示したチャンネ ル 2では 1水平期間毎に 9 0° づっ遅らせているので、 この位相シフト 分が相殺されるようにサブキヤリア位相が 4相のスィツチにより選択さ れる。  As is well known, in the PAL color signal, a burst signal and a chrominance signal, which are phase-shifted by ± 45 degrees every one horizontal period, alternate around the B-Y axis. For this reason, as shown in (a), the phase of the subcarrier 1 is selected so that the frequency-converted signal alternates. That is, in the channel 1 in the figure, there is no phase shift at the time of recording, and in the channel 2 shown in FIG. 9 described below, the phase is delayed by 90 ° every one horizontal period. The subcarrier phase is selected by the four-phase switch so that is canceled.
第 8図 (b) (c) (d) 及び (e) には、 本願の方式による周波数 変換及びクロストーク除去時の各部の位相が示されている。 (b) は再 生カラーアンダー信号を上記周波数変換回路 3により標準カラー周波数 信号に変換されたカラー位相を示している。 ここで、 従来のカラー位相 ( a ) と比較すると、 1水平期間毎に 0 °、 一 9 0 ° (9 0° 進み) 、 0 °、 一 9 0° としている。 (c) は再生カラーアンダー信号を 1水平 期間遅延させた信号 ( 1 HDL) 後、 上記周波数変換回路 4により標準 カラー周波数に変換したカラ一位相を示している。 ここで、 1水平期間 遅延前の従来のカラー位相 (a) と比較すると、 1水平期間毎に + 90 。 (90° 遅れ) 、 0° 、 + 90° 、 0° としている。 FIGS. 8 (b), (c), (d) and (e) show the phases of the respective parts at the time of frequency conversion and crosstalk removal according to the method of the present invention. (B) shows a color phase in which the reproduced color under signal is converted into a standard color frequency signal by the frequency conversion circuit 3. Here, when compared with the conventional color phase (a), they are 0 °, 90 ° (advancing 90 °), 0 °, and 190 ° every horizontal period. (C) is a signal (1 HDL) obtained by delaying the reproduced color under signal by one horizontal period, and standardized by the frequency conversion circuit 4 above. The color phase converted to the color frequency is shown. Here, when compared with the conventional color phase (a) before one horizontal period delay, +90 for each horizontal period. (90 ° delay), 0 °, + 90 °, 0 °.
上記 (c) のカラー信号を上記位相軸反転回路 5により B - Y軸反転 し、 その信号レベルを 2倍にしたのが (d) である。 この (d) のカラ —信号に含まれるカラークロストーク成分の位相は、 上記周波数変換回 路 3から得られる (b) のカラ一クロストーク成分とは逆相になり、 そ のレベルも等しくなる。 したがって、 上記演算回路 6により両者を加算 すると、 (e) に示すようにカラークロストークがキャンセルされ、 力 ラ一信号成分はべクトル加算された形で得られる。  The color signal of (c) is inverted by the B-Y axis by the phase axis inversion circuit 5, and the signal level is doubled (d). The phase of the color crosstalk component included in the color signal of (d) is opposite in phase to the color crosstalk component of (b) obtained from the frequency conversion circuit 3, and the level is also equal. . Therefore, when the two are added by the arithmetic circuit 6, the color crosstalk is canceled as shown in (e), and the first signal component is obtained in a vector-added form.
上記 (a) と (e) のカラー信号成分を比較すると、 (a) に対して (e) はバ一スト信号、 クロマ信号ともに 4 5° 進んでいるが、 バース ト信号とクロマ信号の位相関係は保たれ、 その交番特性も保持されてい ることが判る。  Comparing the color signal components of (a) and (e) above, (e) leads 45 ° both the burst signal and the chroma signal to (a), but the phase of the burst signal and the chroma signal It can be seen that the relationship is maintained and that the alternation characteristics are also maintained.
第 9図には、 上記本願の方式による周波数変換動作を説明するための チャンネル 2に対応した位相シフ卜図が示されている。 上記同様に P A Lフォーマツ 卜での位相シフ卜の理解のために (a) において上記第 7 図 (A) の従来方式における標準カラー信号を示している。  FIG. 9 shows a phase shift diagram corresponding to channel 2 for explaining the frequency conversion operation according to the method of the present invention. In the same way as above, in order to understand the phase shift in the PAL format, (a) shows the standard color signal in the conventional system of FIG. 7 (A).
第 9図 (b) (c) (d) 及び (e) には、 上記同様に本願の方式に よる周波数変換及びクロストーク除去時の各部の位相が示されている。 つまり、 (b) は再生カラーアンダー信号を上記周波数変換回路 3によ り標準カラ一周波数信号に変換されたカラー位相を示している。 ここで Fig. 9 (b), (c), (d) and (e) show the phase of each part at the time of frequency conversion and crosstalk removal according to the method of the present invention, similarly to the above. That is, (b) shows the color phase obtained by converting the reproduced color under signal into the standard color single frequency signal by the frequency conversion circuit 3. here
、 従来のカラー位相 (a) と比較すると、 1水平期間毎に— 90° (9 0° 進み) 、 0° 、 — 90° 、 0° としている。 (c) は再生カラーァ ンダ一信号を 1水平期間遅延させた信号 ( 1 HD L) 後、 上記周波数変 換回路 4により標準力ラ一周波数に変換したカラ一位相を示している。 ここで、 1水平期間遅延前の従来のカラー位相 (a ) と比較すると、 1 水平期間毎に + 0 ° 、 + 9 0 ° ( 9 0。 遅れ) 、 0。 、 + 9 0。 として いる。 Compared with the conventional color phase (a), they are set to —90 ° (90 ° advance), 0 °, —90 °, 0 ° every horizontal period. (C) shows a color phase obtained by delaying the reproduced color standard signal by one horizontal period (1 HDL) and then converting the signal to the standard frequency by the frequency conversion circuit 4. Here, in comparison with the conventional color phase (a) before one horizontal period delay, + 0 °, + 90 ° (90. delay), 0 every one horizontal period. , +90. It is.
上記 (c ) のカラー信号を上記位相軸反転回路 5により B - Y軸反転 し、 その信号レベルを 2倍にしたのが (d ) である。 この (d ) のカラ —信号に含まれるカラ一クロストーク成分の位相は、 上記周波数変換回 路 3から得られる (b ) のカラ一クロストーク成分とは逆相になり、 そ のレベルも等しくなる。 したがって、 上記演算回路 6により両者を加算 すると、 (e ) に示すようにカラ一クロストークがキャンセルされ、 力 ラー信号成分はべクトル加算された形で得られる。  (D) is that the color signal of (c) is inverted by the B-Y axis by the phase axis inverting circuit 5 and the signal level is doubled. The phase of the color crosstalk component included in the color signal of (d) is opposite in phase to the color crosstalk component of (b) obtained from the frequency conversion circuit 3 and has the same level. Become. Therefore, when the two are added by the arithmetic circuit 6, the color crosstalk is canceled as shown in (e), and the color signal component is obtained in a vector-added form.
上記 (a ) と (e ) のカラ一信号成分を比較すると、 (a ) に対して ( e ) はバースト信号、 クロマ信号ともに 4 5。 進んでいるが、 バース ト信号とクロマ信号の位相関係は保たれ、 その交番特性も保持されてい ることが判る。  Comparing the single signal components of (a) and (e) above, (e) is 45 for both burst and chroma signals for (a). It can be seen that the phase relationship between the burst signal and the chroma signal is maintained, and that the alternating characteristics are also maintained.
上記のように本願発明においては、 チャンネル 1及び 2共に、 従来の 再生カラー信号よりも 4 5 ° 進みではあるが、 連続性が保たれ、 隣接の カラークロストークが除去された周波数変換動作を行わしめることがで さる。  As described above, in the present invention, both the channels 1 and 2 perform a frequency conversion operation in which continuity is maintained and adjacent color crosstalk is removed, although the phase is advanced by 45 ° from the conventional reproduced color signal. It can be done.
第 1 0図には、 この発明に用いられる V T R用信号処理装置に含まれ る周波数変換部の他の一実施例を示す要部プロック図が示されている。 この実施例では、 位相軸反転回路 5が第 1の周波数変換回路 3の出力側 に設けられる。 このように、 この実施例では、 2つの周波数変換回路を 用い、 その相対的な位相シフト制御と、 上記位相軸反転回路による位相 反転動作とを組み合わせ、 上記実施例のようにカラークロストーク成分 が除去されるもの (逆相又は同相) になるようなものを選ぶようにすれ ばよレ、。 つまり、 上記カラ一クロストークが逆相になるものでは、 上記 演算回路により加算して相殺させ、 上記カラ一クロストークが同相にな るものでは演算回路により減算して相殺させればよい。 また、 位相軸反 転回路は、 周波数変換回路の前段、 又は遅延回路の前段に設ける構成と してもよい。 FIG. 10 is a main block diagram showing another embodiment of the frequency converter included in the VTR signal processing device used in the present invention. In this embodiment, the phase axis inversion circuit 5 is provided on the output side of the first frequency conversion circuit 3. As described above, in this embodiment, two frequency conversion circuits are used, the relative phase shift control thereof is combined with the phase inversion operation by the phase axis inversion circuit, and the color crosstalk component is reduced as in the above embodiment. You should choose something that will be removed (reverse or in-phase). In other words, if the color crosstalk is in opposite phase, The arithmetic circuit adds and cancels, and if the color crosstalk has the same phase, the arithmetic circuit may subtract and cancel. Further, the phase axis inverting circuit may be provided before the frequency converting circuit or before the delay circuit.
第 1 1図には、 この発明に係る VT R用信号処理装置が用いられた V T Rシステムの一実施例のプロック図が示されている。 この実施例の V T Rシステムは、 大きく分けると、 チューナ部、 VT R記録 Z再生信号 処理部、 記録/再生アンプ、 ヘッ ド部、 メカニカル部、 システムコント ロール部、 タイマー回路、 及び操作スィッチ 1 と 2から構成される。 こ のような大まかなシステム構成は、 公知の VT Rシステムと同様である ので、 その詳細な説明は省略する。  FIG. 11 is a block diagram of one embodiment of a VTR system using the VTR signal processing device according to the present invention. The VTR system of this embodiment is roughly divided into a tuner section, a VTR recording Z playback signal processing section, a recording / playback amplifier, a head section, a mechanical section, a system control section, a timer circuit, and operation switches 1 and 2. Consists of Such a rough system configuration is the same as that of a known VTR system, and a detailed description thereof will be omitted.
この発明に係る V T R用信号処理装置は、 上記 V T R記録/再生信号 処理部に設けられるものであり、 その全体の概要は以下の通りである。 輝度系映像回路として次の回路が設けられる。 ビデオ入力は、 自動利増 幅回路に供給される。 上記ビデオ入力信号は、 ビデオ出力増幅回路を通 してモニタ用のビデオ出力としてそのまま出力される。 上記自動利得増 幅回路の出力信号は、 一方において輝度用ロウパスフィル夕に供給され る。 このロウパスフィルタの出力信号は外付けコンデンサを通りメイン ェンハンザに供給される。 上記ェンハンザの出力信号は、 F M変調回路 により F M変調されて記録 F M出力として外部の録画ァンプに伝えられ る。 外部の再生アンプから出力された再生 FM入力は、 リ ミッ夕に供給 される。 かかるリミッタの出力信号は、 F M復調回路に供給されて F M 復調が行われる。 そして、 メインディェンハンサにより上記メインェン ヽンザに対応したメインディェンファシス処理が行われる。  The VTR signal processing device according to the present invention is provided in the VTR recording / reproducing signal processing unit, and the overall outline thereof is as follows. The following circuit is provided as a luminance system video circuit. The video input is provided to an automatic gain circuit. The video input signal is output as it is as a video output for monitoring through a video output amplifier circuit. On the other hand, the output signal of the automatic gain amplifier is supplied to a low pass filter for luminance. The output signal of this low-pass filter is supplied to the main enhancer through an external capacitor. The output signal of the enhancer is FM-modulated by an FM modulation circuit and transmitted to an external recording pump as a recording FM output. The playback FM input output from the external playback amplifier is supplied to the limiter. The output signal of the limiter is supplied to an FM demodulation circuit to perform FM demodulation. Then, a main de-emphasis process corresponding to the main re-energy is performed by the main re-enhancer.
上記 FM復調とディエンファシス処理がされた輝度信号は、 色分離に 利用されたロウパスフィルタに供給され、 ここで F M復調動作のときに 混入した高周波数成分の除去が行われ、 ノイズキャンセラ、 尖頭値制御 に入力される。 また、 同期分離回路により同期信号の分離が行われる。 上記ノィズキャンセラの出力信号は、 上記ビデオ出力増幅回路に含まれ るミキサにより力ラ一系映像回路により再生された色信号と合成されて 出力される。 The luminance signal subjected to the FM demodulation and de-emphasis processing is supplied to a low-pass filter used for color separation. The mixed high frequency components are removed and input to the noise canceller and peak value control. Further, the synchronization signal is separated by the synchronization separation circuit. The output signal of the noise canceller is combined with a color signal reproduced by a power line video circuit by a mixer included in the video output amplifier circuit and output.
カラー系映像信号回路として次の回路が設けられる。 上記輝度系映像 回路の自動利得増幅回路の出力信号は、 オートクロマレべルコントロー ラに供給される。 このォ一トクロマレベルコントローラの出力信号は、 バンドパスフィル夕に供給される。 このバンドパスフィル夕の出力信号 は、 周波数変換回路により低域周波数変換される。 この周波数変換され た色信号は、 録画ァンプとしても作動するカラーキラーアンプを通して 記録カラ一出力とされる。  The following circuit is provided as a color video signal circuit. The output signal of the automatic gain amplifying circuit of the luminance video circuit is supplied to an auto chroma level controller. The output signal of the auto-chroma level controller is supplied to the band-pass filter. The output signal of this bandpass filter is subjected to low-frequency conversion by a frequency conversion circuit. The frequency-converted color signal is output as a recording signal through a color killer amplifier that also operates as a recording pump.
再生カラ一入力は、 ロウパスフィルタを通して輝度信号と分離されて 取り込まれる。 この出力信号は、 上記説明したような周波数変換部によ り周波数変換と上記カラ一クロストークの除去が行われ、 上記バンドパ スフィル夕、 ノイズキャンセラを通して出力される。 外付コンデンサを 介して入力されて上記ビデオ出力増幅回路に含まれるミキサにより上記 輝度信号と合成されて出力されるものである。  The reproduced color input is separated from the luminance signal through a low-pass filter and captured. This output signal is subjected to frequency conversion by the above-described frequency conversion unit and removal of the color crosstalk, and is output through the bandpass filter and the noise canceller. The video signal is input through an external capacitor, is combined with the luminance signal by a mixer included in the video output amplifier circuit, and is output.
本発明によれば、 カラ一アンダー方式 V T Rシステムにおいて、 ガラ スディ レイラインのような実相面積の大きな部品を用いず、 またはクロ ック周波数の高い C C Dを用いず、 更にカラー信号経路やサブキヤリア 経路に位相修正回路を付加せずに、 クロック周波数の低レ、 C C Dあるい はラインメモリでクロストークを精度よく除去した VT Rシステムが得 られる。 そして、 P A Lフォーマッ トにおいても、 1水平期間の遅延信 号を用いるものであるために、 高い精度でのカラークロストークの除去 した V T Rシステムが可能となる。 つまり、 飛び越し走査に対応した隣 接走査線では、 走査線では 2本しか離れてレ、ないから信号の近似が保た れ、 前記のような打ち上げ花火のような映像におし、ても輝度信号と色信 号のずれを小さくすることができるものとなる。 そして、 半導体技術の 進展に伴し、、 上記遅延回路も V T R信号処理回路と一体的に半導体集積 回路で構成した V T Rシステムをも可能とするものとなる。 According to the present invention, in a color-under-type VTR system, a component having a large actual phase area such as a glass delay line or a CCD having a high clock frequency is not used, and a color signal path and a subcarrier path are not used. It is possible to obtain a VTR system that eliminates crosstalk with high accuracy using a low clock frequency or CCD or line memory without adding a phase correction circuit. Also, in the PAL format, since a delay signal of one horizontal period is used, a VTR system in which color crosstalk is eliminated with high accuracy is possible. In other words, the neighbor corresponding to interlaced scanning In the tangential scanning line, the approximation of the signal is maintained because the scanning line is only two lines apart from each other, and the difference between the luminance signal and the chrominance signal is small even in the image such as the fireworks shown above. Can be done. Then, with the development of semiconductor technology, the above-mentioned delay circuit will also enable a VTR system composed of a semiconductor integrated circuit integrally with a VTR signal processing circuit.
上記の実施例から得られる作用効果は、 下記の通りである。  The operational effects obtained from the above embodiment are as follows.
( 1 ) P A Lフォーマッ トの第 1の再生カラ一アンダー信号を第 1の 周波数変換回路により第 1の標準カラ一信号に変換し、 上記第 1の再生 カラ一アンダー信号を遅延回路により 1水平期間遅延させて第 2のカラ —アンダー信号として第 2の周波数変換回路により第 2の標準力ラ一信 号に変換するとともに、 発振回路により上記周波数変換動作に必要とさ れるキヤリア周波数の 2 n倍の周波数信号を形成しておき、 この周波数 信号を上記キャリア周波数に分周するとともに 0 ° 、 9 0 °、 1 8 0 ° 及び 2 7 0 ° の位相を持つ 4相のキャリアを形成し、 上記第 1 と第 2の 標準力ラ一信号に含まれる力ラークロストークが同相又は逆相になるよ う上記 4相のキヤリァの選択と上記第 1又は第 2の標準力ラ一信号の位 相を位相軸反転回路に反転させることにより、 N T S C方式と同様に演 算回路により両標準力ラ一信号を減算又は加算して上記力ラークロスト ークを相殺させた V T Rシステムを実現できるという効果が得られる。 ( 2 ) 上記 ( 1 ) により、 P A Lフォーマッ トにおいても、 1水平期 間の遅延信号を用いるものであるために、 NT S Cフォーマツ トと同様 にへッ ド搭載モー夕の応答遅れによる特殊再生移行時での色消の低減や 、 飛び越し走査においても走査線では 2本しか離れてレ、ないから信号の 近似が保たれ、 輝度信号と色信号のずれを小さく した V T Rシステムを 実現できるという効果が得られる。  (1) The first reproduced color under signal in the PAL format is converted into the first standard color signal by the first frequency conversion circuit, and the first reproduced color under signal is converted into one horizontal period by the delay circuit. The signal is delayed and converted to a second color signal as an under-signal by the second frequency conversion circuit to the second standard power signal, and the oscillation circuit requires 2 n times the carrier frequency required for the frequency conversion operation. The above frequency signal is divided into the above carrier frequency, and a four-phase carrier having phases of 0 °, 90 °, 180 °, and 270 ° is formed. Selection of the four-phase carrier so that the power crosstalk included in the first and second standard force signals is in phase or in opposite phase, and the phase of the first or second standard force signal Is inverted by the phase axis inversion circuit. As a result, an effect is obtained that a VTR system in which the above-mentioned power crosstalk is canceled out by subtracting or adding the two standard power signals by the arithmetic circuit as in the NTSC method. (2) Due to the above (1), the PAL format also uses a delay signal for one horizontal period, so the special playback transition due to the response delay of the head mounted mode is the same as the NTSC format, as in the NTSC format. This has the effect of reducing color erasure at the time of scanning and achieving a VTR system that maintains the approximation of the signal because the scanning line is only two lines apart from each other even in interlaced scanning, and reduces the deviation between the luminance signal and the color signal. can get.
( 3 ) 上記発振回路を電圧制御型発振回路で構成し、 水晶発振回路で 形成された上記標準カラー信号の基準周波数と、 上記第 1又は第 2の周 波数変換回路から出力される標準力ラ一信号から取り出された色副搬送 波成分との位相差を位相検波回路で検出して、 かかる位相検波出力を直 流化した制御電圧で発振周波数を制御するともに、 上記水晶発振回路で 形成された基準周波数信号を 2てい倍して上記位相軸反転回路に供給す ることにより、 上記周波数変換動作及びカラークロストーク除去に必要 なサブキヤリァ及び位相軸反転を行う周波数信号を形成する回路の簡素 化と高品質での信号処理を行う VTRシステムを実現できるという効果 が得られる。 (3) The above oscillation circuit is composed of a voltage controlled oscillation circuit, and a crystal oscillation circuit The phase difference between the reference frequency of the formed standard color signal and the color sub-carrier component extracted from the standard power signal output from the first or second frequency conversion circuit is calculated by a phase detection circuit. Detecting and controlling the oscillation frequency with a control voltage obtained by converting the phase detection output into a direct current, and multiplying the reference frequency signal formed by the crystal oscillation circuit by 2 and supplying the same to the phase axis inversion circuit As a result, it is possible to simplify the circuit for forming the frequency signal for performing the subcarrier and phase axis inversion required for the above-described frequency conversion operation and color crosstalk elimination, and to achieve a VTR system capable of performing high-quality signal processing.
(4) 上記発振回路により 2倍のキヤリア周波数になるような発振信 号を出力させ、 かかる発振信号を分周する分周回路として、 ECL構成 の 2つのスル一ラッチ回路の入力と出力とが交差的に接続させて構成す ることにより、 上記 1Z2の分周動作と、 上記 2つのスルーラッチのそ れぞれの一対の出力端子から互いに 90° づっ異なる 4相信号を簡単に 得ることができるという効果が得られる。  (4) The oscillation circuit outputs an oscillation signal having a carrier frequency that is twice as high as that of the oscillation circuit. The input and output of the two through-latch circuits of the ECL configuration serve as a frequency dividing circuit for dividing the oscillation signal. By cross-connecting the configuration, it is possible to easily obtain the 1Z2 frequency division operation and obtain 4-phase signals that differ by 90 ° from each pair of output terminals of the two through latches. The effect that can be obtained is obtained.
以上本発明者よりなされた発明を実施例に基づき具体的に説明したが 、 本願発明は前記実施例に限定されるものではなく、 その要旨を逸脱し ない範囲で種々変更可能であることはいうまでもない。 例えば、 発振回 路 8は、 i cの 2 n倍とし、 それを 1/2 nに分周して上記 4相のサブ キャリア信号を形成するものであってもよい。 上記遅延回路は、 CCD 又はアナログノディジタル変換回路とシフトレジスタ及びディジタル Z アナログ変換回路により構成し、 上記 VTR用信号処理回路の同一の半 導体集積回路装置で形成してもよい。  Although the invention made by the inventor has been specifically described based on the embodiment, the invention of the present application is not limited to the embodiment, and it can be said that various modifications can be made without departing from the gist of the invention. Not even. For example, the oscillating circuit 8 may be 2 n times i c and divide it by 1/2 n to form the four-phase subcarrier signal. The delay circuit may comprise a CCD or an analog / digital conversion circuit, a shift register and a digital Z / analog conversion circuit, and may be formed by the same semiconductor integrated circuit device as the VTR signal processing circuit.
産業上の利用可能性 Industrial applicability
以上のように、 この発明は、 VHS方式、 S— VHS方式又は 8mm 方式による PALフォーマッ トに対応した V T R用信号処理装置を用レ、 たシステムに広く利用することができる。 As described above, the present invention is applied to the VHS system, S-VHS system or 8 mm It can be widely used in systems that use VTR signal processors that support the PAL format.

Claims

請 求 の 範 囲 The scope of the claims
1 . 磁気へッ ドが搭載されてなるシリンダモー夕と、 1. A cylinder motor equipped with a magnetic head,
上記磁気へッドから読み出された信号の処理を行う V T R信号処理 装置とを含み、  A VTR signal processing device for processing a signal read from the magnetic head,
上記 V T R信号処理装置は、  The above VTR signal processing device
上記磁気へッ ドから読み出された信号のうち P A Lフォーマツ トの第 1の再生カラ一アンダー信号受けて第 1の標準カラ一信号に周波 数変換する第 1の周波数変換回路と、  A first frequency conversion circuit for receiving a first playback color under signal in a PAL format among the signals read from the magnetic head and converting the frequency into a first standard color signal;
上記第 1の再生カラ一アンダー信号を 1水平期間だけ遅延させ る遅延回路と、  A delay circuit for delaying the first reproduced color under signal by one horizontal period;
上記遅延回路の遅延信号を受けて第 2の標準力ラ一信号に周波 数変換する第 2の周波数変換回路と、  A second frequency conversion circuit that receives the delay signal of the delay circuit and frequency-converts the signal into a second standard power signal;
上記周波数変換動作に必要とされるキヤリア周波数の 2 n倍の 周波数信号を形成する発振回路と、  An oscillation circuit that forms a frequency signal of 2 n times the carrier frequency required for the frequency conversion operation;
上記発振回路で形成された周波数信号を上記キヤリァ周波数に 分周するとともに 0 ° 、 9 0 ° 、 1 8 0 ° 及び 2 7 0 ° の位相を持つ 4 相のキヤリアを形成する分周回路と、  A frequency divider that divides the frequency signal formed by the oscillation circuit into the carrier frequency and forms a four-phase carrier having phases of 0 °, 90 °, 180 °, and 270 °,
上記分周回路で形成された 4相の分周信号を選択して上記第 1 と第 2の周波数変換回路に供給するスィツチ回路と、  A switch circuit for selecting the four-phase frequency-divided signal formed by the frequency divider and supplying the selected signal to the first and second frequency converters;
上記第 2の標準力ラ一信号の位相を反転させる位相軸反転回路 と、  A phase axis inverting circuit for inverting the phase of the second standard force signal;
上記位相軸反転回路の出力信号と上記第 1の標準カラー信号と 受ける演算回路と、  An arithmetic circuit for receiving the output signal of the phase axis inverting circuit and the first standard color signal;
上記演算回路の出力信号を受けて標準力ラ一信号成分のみを取 り出すバントパスフィル夕とを備え、 上記スィツチ回路を制御して選択されたキヤリアによる標準力 ラ一信号の位相シフト量と上記位相軸反転出力との組み合わせにより両 標準力ラ一信号成分に含まれる力ラークロストークが逆相又は同相にな るようにするとともに、 上記演算回路にて上記両標準力ラ一信号を加算 又は減算させて上記力ラークロストークを相殺させてなることを特徴と する V T R信号処理装置を用いたシステム。 A band-pass filter that receives only the output signal of the arithmetic circuit and extracts only the standard force signal component; By combining the phase shift amount of the standard force of the carrier selected by controlling the switch circuit and the phase axis inverting output, the force crosstalk included in the two standard force signal components is in opposite phase or in phase. A system using a VTR signal processing device, characterized in that the arithmetic circuit adds or subtracts the two standard power signals to cancel the power crosstalk.
2 . 上記位相軸反転回路は、 上記第 2の標準カラー信号と、 水晶発振回 路で形成された上記標準カラー信号の基準周波数の 2倍の周波数とを掛 算する掛算回路からなり、 上記演算回路には、 上記掛算回路の出力信号 レベルが 2倍に増幅されて入力されるものであることを特徴とする請求 の範囲第 1項記載の V T R用信号処理装置を用いたシステム。  2. The phase axis inverting circuit comprises a multiplying circuit for multiplying the second standard color signal by a frequency twice the reference frequency of the standard color signal formed by the crystal oscillation circuit. 2. The system using the signal processing device for a VTR according to claim 1, wherein an output signal level of the multiplying circuit is doubled and input to the circuit.
3 . 上記発振回路は電圧制御型発振回路からなり、 水晶発振回路で形成 された上記標準カラー信号の基準周波数と、 上記第 1又は第 2の周波数 変換回路から出力される標準力ラ一信号から取り出された色副搬送波成 分とを受ける位相検波回路と、 かかる位相検波信号が直流化された制御 電圧により発振周波数が制御されるものであることを特徴とする請求の 範囲第 1項記載の V T R用信号処理装置を用いたシステム。  3. The oscillating circuit is a voltage controlled oscillating circuit, and is based on the reference frequency of the standard color signal formed by the crystal oscillating circuit and the standard power signal output from the first or second frequency conversion circuit. 2. The phase detection circuit according to claim 1, wherein the phase detection circuit receives the extracted color subcarrier component, and the oscillation frequency is controlled by a control voltage obtained by converting the phase detection signal into a direct current. A system using a VTR signal processor.
4 . 上記発振回路は電圧制御型発振回路からなり、 上記水晶発振回路で 形成された上記標準カラー信号の基準周波数と、 上記第 1又は第 2の周 波数変換回路から出力される標準力ラ一信号から取り出された色副搬送 波成分との位相差を位相検波回路で検出して、 かかる位相検波出力を直 流化した制御電圧により発振周波数が制御されてなるものであることを 特徴とする請求の範囲第 3項記載の V T R用信号処理装置を用いたシス テム。  4. The oscillation circuit is a voltage-controlled oscillation circuit, and includes a reference frequency of the standard color signal formed by the crystal oscillation circuit, and a standard power output from the first or second frequency conversion circuit. A phase difference between the phase detection circuit and the chrominance subcarrier component extracted from the signal is detected by a phase detection circuit, and the oscillation frequency is controlled by a control voltage obtained by converting the phase detection output into a direct current. A system using the signal processing device for a VTR according to claim 3.
5 . 上記発振回路は、 2倍のキャリア周波数になるような発振信号を出 力するものであり、 分周回路は E C L構成の 2つのスルーラッチ回路の 入力と出力とが交差的に接続されて 1 / 2の分周動作を行うとともに、 2つのスル一ラッチのそれぞれの一対の出力端子から互いに 9 0° づっ 異なる 4位信号を形成するものであることを特徴とする請求の範囲第 4 項記載の V T R用信号処理装置を用いたシステム。 5. The above oscillation circuit outputs an oscillation signal with a carrier frequency that is twice as high, and the frequency divider circuit is composed of two through latch circuits of ECL configuration. The input and output are connected crosswise to perform a 1/2 frequency dividing operation, and form a fourth-order signal that differs by 90 ° from each pair of output terminals of the two through latches. 5. A system using the signal processing device for VTR according to claim 4.
6. 上記遅延回路は、 CCDにより構成されるものであることを特徴と する請求の範囲第 1項記載の VTR用信号処理装置を用いた:  6. The signal processing device for a VTR according to claim 1, wherein the delay circuit is configured by a CCD:
PCT/JP1996/003144 1996-10-28 1996-10-28 System using signal processor for vtr WO1998019464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/003144 WO1998019464A1 (en) 1996-10-28 1996-10-28 System using signal processor for vtr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/003144 WO1998019464A1 (en) 1996-10-28 1996-10-28 System using signal processor for vtr

Publications (1)

Publication Number Publication Date
WO1998019464A1 true WO1998019464A1 (en) 1998-05-07

Family

ID=14154025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003144 WO1998019464A1 (en) 1996-10-28 1996-10-28 System using signal processor for vtr

Country Status (1)

Country Link
WO (1) WO1998019464A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853287A (en) * 1981-09-04 1983-03-29 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Pal pectinated filter
JPS63257394A (en) * 1987-03-28 1988-10-25 グルンデイッヒ・エー・エム・フアウ・エレクトロ‐メカニツシエ・フエルズーフスアンシユタルト・マツクス・グルンデイツヒ・ホルレント・シユテイッフトウング・ウント・コンパニー・コマンデイトゲゼルシヤフト Mesh filter for video recorder
JPH0251489U (en) * 1988-10-06 1990-04-11
JPH03226094A (en) * 1990-01-30 1991-10-07 Victor Co Of Japan Ltd Crosstalk cancel circuit
JPH0799671A (en) * 1993-06-25 1995-04-11 Hitachi Ltd Signal processing circuit for vtr

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853287A (en) * 1981-09-04 1983-03-29 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Pal pectinated filter
JPS63257394A (en) * 1987-03-28 1988-10-25 グルンデイッヒ・エー・エム・フアウ・エレクトロ‐メカニツシエ・フエルズーフスアンシユタルト・マツクス・グルンデイツヒ・ホルレント・シユテイッフトウング・ウント・コンパニー・コマンデイトゲゼルシヤフト Mesh filter for video recorder
JPH0251489U (en) * 1988-10-06 1990-04-11
JPH03226094A (en) * 1990-01-30 1991-10-07 Victor Co Of Japan Ltd Crosstalk cancel circuit
JPH0799671A (en) * 1993-06-25 1995-04-11 Hitachi Ltd Signal processing circuit for vtr

Similar Documents

Publication Publication Date Title
US5003403A (en) Recording apparatus
JP3323611B2 (en) Frequency converter for VTR
US4991026A (en) Chrominance signal reproducing apparatus for video tape recorder
EP0360230B1 (en) Chrominance signal processing circuit and video tape recorder using such a circuit
WO1998019464A1 (en) System using signal processor for vtr
JPH0732492B2 (en) Video signal recording / reproducing device
EP0865213B1 (en) VTR signal processing circuit
KR100236878B1 (en) Circuit for processing the frequency of a signal for a video cassette recorder
JP3435446B2 (en) Signal processing circuit for VTR
JPS605675Y2 (en) PAL color video signal reproducing device
JPH05130644A (en) Semiconductor integrated circuit device for image processing
JPS63226192A (en) Color signal processor
JP3214054B2 (en) Camera integrated recording device
JPS5849073B2 (en) Time axis fluctuation correction device
JPS6132876B2 (en)
JPS6313631B2 (en)
JPS6359597B2 (en)
JPS594276A (en) Video signal recording and reproducing system
JPH0722417B2 (en) Time axis error correction device
JPH0564230A (en) Magnetic video recording and reproducing device
JPH0785591B2 (en) Color video signal reproducing device
JPS6239998A (en) Video signal reproducing device
JPH05207513A (en) Recorder for color video signal
JPH0326088A (en) Magnetic recording and reproducing device
JPH078053B2 (en) Color video signal reproducing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase