WO1998017845A1 - Electrolyzer - Google Patents

Electrolyzer Download PDF

Info

Publication number
WO1998017845A1
WO1998017845A1 PCT/JP1997/003809 JP9703809W WO9817845A1 WO 1998017845 A1 WO1998017845 A1 WO 1998017845A1 JP 9703809 W JP9703809 W JP 9703809W WO 9817845 A1 WO9817845 A1 WO 9817845A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
anode
base
substrate
hole
Prior art date
Application number
PCT/JP1997/003809
Other languages
French (fr)
Japanese (ja)
Inventor
Fumio Hine
Teruki Takayasu
Tomoyoshi Asaki
Yukio Arai
Yoichi Kamegaya
Masahisa Komiya
Original Assignee
Ishifuku Metal Industry Co., Ltd.
Showa Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co., Ltd., Showa Co., Ltd. filed Critical Ishifuku Metal Industry Co., Ltd.
Publication of WO1998017845A1 publication Critical patent/WO1998017845A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form

Definitions

  • the present invention relates to an electrolytic apparatus used for producing copper foil by a tin plating, a zinc plating, and an electroplating method on a steel sheet to which a large current flows.
  • a high plating current density of 30 to 25 OA dm 2 is employed.
  • the demand for higher quality of these products is increasing, and the distance between the anode and the cathode must be increased in order to make the current distribution more uniform when manufacturing the products.
  • an electrolysis apparatus that can minimize the variation in the temperature.
  • the anodes of large electrolyzers operated at such a high current density have been mainly made of low-cost lead or lead alloy, which is easy to process.
  • the lead or lead alloy of the anode material melts or corrodes due to electrolysis, resulting in a change in the shape of the anode surface.
  • conductive metal materials such as copper, iron, aluminum, lead, and tin are used as core materials, and these core materials are used as corrosion-resistant conductive metals such as titanium plates.
  • electrolytic devices that use an anode in which an anode substrate made of a corrosion-resistant conductive metal such as titanium is coated on a composite substrate coated with a metal and an anode substrate coated with an electrode catalyst is detachably attached. .
  • the cost of manufacturing the composite substrate is high, and it is difficult to process the arc-shaped inner surface ⁇ processing of the current-carrying part, especially in an electrolytic device where the anode requires an arc-shaped inner surface.
  • the anode of the electrolysis device has a lead base made of lead or a lead alloy, and the lead base is coated with a corrosion-resistant conductive metal such as titanium and an electrode catalyst, and the anode base is fixed with a corrosion-resistant conductive metal screw. Attempts have also been made to attach using bolts and nuts. This method had the following problems.
  • the size and structure of mechanical members (for example, those using corrosion-resistant conductive metal nuts and bolts) that allow the anode substrate to be detachably attached to the lead substrate are limited, and the mechanical members have sufficient current carrying capacity. Or welding may occur,
  • the anode is a
  • An electrolysis device comprising:
  • the anode is a
  • a feeder made of a corrosion-resistant conductive metal fixedly attached to the lead base; and ⁇ ) a feeder detachably attached to the feeder and provided to face the cathode at regular intervals;
  • An electrolysis apparatus comprising: a power supply body and an anode substrate made of a corrosion-resistant conductive metal connected so as to ensure sufficient electric conductivity.
  • the lead substrate according to the present invention can use lead or a lead alloy conventionally used as an anode.
  • the lead alloy an alloy of tin, silver, indium, bismuth, calcium, antimony, or the like can be used.
  • the surface of the lead substrate is subjected to plane processing or arc-shaped inner surface processing according to the shape of the cathode so as to face the cathode at regular intervals.
  • the lead base has a hole for mounting the anode base or the power supply, as necessary.
  • the anode material can be modified and used as a lead base in the present invention.
  • the thickness required to mount the anode base and the power supply according to the present invention is cut, and if necessary, a through hole for mounting the anode base and the power supply is provided.
  • the lead base of the present invention can be obtained.
  • the precision of the through-hole provided in the lead base does not require special high precision, and it is used in the present invention if the precision at which the drilling can be performed is obtained even at the site where the electrolytic device is installed. Can be used as a lead base.
  • the material of the anode substrate according to the present invention is made of a corrosion-resistant conductive metal such as titanium, tantalum, niobium, and zirconium, or an alloy containing these as a main component.
  • the anode substrate is plate-shaped, is divided into a plurality as necessary, and has a mounting structure with a mechanism that can be attached to and detached from the lead substrate, and the surface facing the cathode is a platinum group metal, an alloy thereof, and / or an alloy thereof.
  • An electrode catalyst mainly composed of an oxide or an electrode medium mainly composed of a base metal oxide such as cobalt oxide, tin oxide, manganese oxide or the like is coated, and on the back surface, a current is supplied from the power supply to the anode substrate.
  • the mounting of the anode substrate should be as flexible as possible. Therefore, especially when the anode substrate is mounted on a lead substrate having an arc-shaped inner surface, it is desirable that the anode substrate also has a similar arc shape.
  • the contact point between the anode substrate and the power supply body is coated with a platinum group metal as a main component, if necessary, to reduce the contact resistance.
  • a coating thickness of submicrometer to several micrometers is sufficient.
  • An example of a specific structure for detachably connecting the anode substrate to the surface of the lead substrate according to the present invention is as follows.
  • the lead base has a through hole
  • the anode base has a rod passing through the through hole
  • a female screw or a male screw is attached to the rod on the back surface of the lead base, whereby the positive
  • the polar base is detachably connected to the lead base.
  • the lead base has a through hole, a rod is provided in the through hole, the rod is fixed on the back surface of the lead base, the anode base has a hole, and a male screw is formed in the hole of the anode base from the front side of the lead base. That is attached to the rod via a lead, whereby the anode substrate is detachably connected to the lead substrate.
  • the rod used to attach the anode substrate to the lead substrate may be any shape, such as circular, square or polygonal.
  • the rod is provided with a screw to remove the anode substrate.
  • the member used for the mounting mechanism of the anode substrate may be any material having corrosion resistance and mechanical strength, such as the same corrosion-resistant conductive metal or corrosion-resistant ceramic as the anode substrate. Normally, titanium material is suitable in terms of workability, cost, corrosion resistance and the like.
  • Electricity is supplied from the lead substrate to the anode substrate via a power supply.
  • the feeder is divided between the lead base and the anode base, and is evenly arranged.
  • the anode base and the feeder come into contact with each other by the tightening pressure for mounting the anode base to the lead base, and the contact point is a current-carrying part.
  • it is not always necessary to electrically insulate the lead substrate and the anode substrate at locations other than the current-carrying location with the power supply. However, it is necessary to provide insulation in the following cases.
  • the insulation can be made of a corrosion-resistant resin material, and by installing it in the mechanism that attaches the anode substrate to the lead substrate, the energizing circuit is interrupted, and welding and other problems occur when the anode substrate attachment mechanism is energized. Can be prevented from being caused by the current supply.
  • a hole is formed in the anode substrate, a female screw is provided in the power supply, and a male screw is screwed from the cathode side with the female screw of the power supply through the hole in the anode substrate, and the anode substrate is detachably connected to the power supply. thing.
  • the anode base is detachably connected to the power feeder.
  • An anode base screw is detachably connected to a power feeder by screwing a male screw from the hole side with a female screw of the anode base via a hole in the feeder.
  • a hole is formed in the lead base, a hole is formed in the feeder, and the anode base has a rod that penetrates the hole in the feeder.
  • a male screw or a female screw is provided at the tip of this rod, and the anode is inserted from the hole side of the lead base.
  • the base is detachably connected to the power feeder.
  • the same corrosion-resistant conductive metal as that of the anode base is used for the screws, nuts, and rods used to attach the feeder to the anode base.
  • Electricity is supplied from the lead substrate to the anode substrate via a power supply. It is desirable that the power feeder is divided between the lead base and the anode base and arranged uniformly.
  • the role of the power supply according to the present invention is as follows.
  • the material of the power supply according to the present invention may be a corrosion-resistant conductive metal such as titanium, tantalum, niobium, or zirconium, or an alloy containing these as a main component, or a clad of the above-described corrosion-resistant conductive metal and lead or a lead alloy. Can be used. When a cladding material is used, at least the portion that comes into contact with the anode substrate and becomes a current-carrying part must be made of a corrosion-resistant conductive metal.
  • the power supply body when the anode substrate is detachably attached to the power supply body is divided and arranged between a lead base and an anode base.
  • the feeders are uniformly distributed in an island shape or gap to ensure stable and sufficient electric conductivity and current carrying capacity. Place without.
  • the shape of the power supply may be any shape, but a structure and strength that allow the anode base to be detachably attached to the power supply are required, and at the contact portion between the power supply and the anode base, Welding due to energization must be avoided. To avoid welding, it is necessary to secure a contact area according to the magnitude of the current flowing through the contact part.
  • a power supply shall be provided so that a large contact area can be secured according to the current.
  • the shape of the power supply is plate-like, similar to the anode substrate, and the size or shape of the plate is changed to adjust the contact area with the anode substrate.
  • more stable electrical conductivity can be maintained by coating at least one of the contact surfaces between the power supply and the anode substrate with a platinum group metal as a main component. The coating thickness is sufficient if the sub-micrometer to several micrometer is sufficient.
  • the power supply according to the present invention is divided between the lead base and the anode base.
  • the lead base has an arc-shaped inner surface or when an extremely large current flows, it is necessary to arrange the feeders uniformly in an island shape to ensure stable and sufficient electric conductivity and current carrying capacity.
  • the shape of the power supply may be any shape, but welding at the contact portion between the power supply and the anode substrate due to energization must be avoided. To avoid welding, it is necessary to secure a contact area according to the magnitude of the current flowing through the contact. If the current in the contact area is high, a power feeder is provided so that a large contact area can be secured according to the current.
  • the shape of the power supply is plate-like, similar to the anode substrate, and the size of the plate is changed to adjust the contact area with the anode substrate. At least one of the contact surfaces between the power supply and the anode substrate is coated with platinum group metal as the main component. W
  • a coating thickness of submicrometer to several micrometers is sufficient.
  • the power feeder should be provided in the form of an island in the vicinity of the mechanism where the anode base is attached, so that the contact pressure at the current-carrying point between the feeder and the anode base is increased, and the contact resistance is reduced. It is more desirable.
  • a support for maintaining the predetermined shape of the anode base in a part of the space where the power feeder is not mounted, in order to keep the distance between the anode base and the cathode constant. Attach as necessary.
  • the material of the support is a material that has corrosion resistance to the electrolytic solution. If the support does not deform so as not to impair the function as a support, the conductor is an insulator. You may. Specific materials include a corrosion-resistant conductive metal similar to that of the power feeder, a synthetic resin such as a fluorinated resin, an acrylic resin, and an epoxy resin, and a natural polymer such as rubber and a processed material thereof (hard rubber. Ebonite, etc.).
  • the support is attached to the lead base or anode base by screws or the like. Fixed connection between the power feeder and the lead base.
  • a fixed connection with the lead base is performed so as to ensure sufficient electric conductivity.
  • the term “fixed joining” refers to a mechanism that can remove the anode base when the anode base and the lead base are joined, but has a high electrical conductivity mounting mechanism that does not require removal of the power feeder.
  • the power supply according to the present invention is mounted on a lead base and fixedly joined as follows. ⁇ The power feeder is attached to the lead base by welding. It is more desirable that the power feeder is welded to the surface of the lead base.
  • the lead base has a through hole
  • the power feeder has a rod of corrosion resistant conductive metal penetrating the through hole, and on the back of the lead base, a female or male screw of the corrosion resistant conductive metal is attached.
  • the power feeder is fixedly joined to the lead base.
  • the internal and external threads attached to the rod are connected to the lead base via corrosion-resistant conductive metal washers.
  • each of the connecting members it is more desirable to weld each of the connecting members to ensure stable electrical conductivity.
  • welding of a rod provided on a power supply body to a power supply body welding of a female screw or a male screw attached to the rod, welding of a female screw or a male screw to a washer, welding of a washer to a lead base, and the like.
  • Brazing welding using a lead alloy with a low melting point is also an effective method of welding the lead base to the power feeder and welding the lead base to the washer.
  • the welding surface of the corrosion-resistant conductive metal requires special activation treatment. Welding of the corrosion-resistant conductive metal used for covering the power supply, anode substrate, lead substrate, etc. is performed in an inert atmosphere such as an argon gas atmosphere, argon gas seal, or vacuum atmosphere.
  • Welding is performed in the air.
  • Welding methods include fusion welding methods such as plasma arc welding, TIG welding, and laser welding, welding methods such as forging welding, friction welding, and brazing methods.
  • fusion welding methods such as plasma arc welding, TIG welding, and laser welding
  • welding methods such as forging welding, friction welding, and brazing methods.
  • pressure welding and brazing using a low-melting brazing material it is possible even in air.
  • the fixed connection between the power supply and the lead base makes it possible to eliminate the following permanent treatment of the joint to ensure stable electrical conductivity. For example, if the lead base and the corrosion-resistant conductive metal of the power feeder are not welded together, the following method is used as a permanent measure to prevent poor current flow due to infiltration of the electrolyte into the joint. Is raised.
  • the lead base material is a lead alloy
  • a lead plate is sandwiched between the joint between the lead base and the corrosion-resistant conductive metal of the power feeder, and strong crimping is applied so that the corrosion-resistant conductive metal can sufficiently deform the lead plate.
  • strong crimping is applied so that the corrosion-resistant conductive metal can sufficiently deform the lead plate.
  • a bonding state in which the electrolyte does not penetrate can be easily obtained. Treatment by this method.
  • the mounting position of the anode base with respect to the electrode spacing can be adjusted.
  • the height of the feeder can be adjusted by inserting a ⁇ having a desired thickness made of the same material as that used for the feeder between the feeder and the anode base. Inserting a plurality of stacked plates is not preferable because it increases the contact resistance. In this way, by adjusting the position of the anode substrate, fine adjustment of the electrode interval can be partially performed. As a result, the distance between the electrodes as a whole can be secured uniformly, and the quality of products manufactured by electrolysis can be further improved.
  • Coating the lead base with a corrosion-resistant resin, rubber or corrosion-resistant metal is an effective means to solve this problem.
  • resin having corrosion resistance fluorinated resin, epoxy resin or acrylic resin reinforced with glass fiber or carbon fiber can be used.
  • corrosion-resistant metal titanium, tantalum, niobium, zirconium, or an alloy containing these as a main component can be used.
  • the electrolytic device according to the present invention has the following effects by having the above structure.
  • FIG. 1 is an external view showing an example of a plate-shaped anode according to a preferred embodiment of the present invention.
  • FIG. 2 is a plan view showing an example of a plate-shaped anode according to a preferred embodiment of the present invention.
  • FIG. 3 is a sectional view showing an example of a flat plate-shaped anode according to a preferred embodiment of the present invention.
  • FIG. 4 is an external view showing an example of an arc-shaped inner surface anode according to a preferred embodiment of the present invention.
  • FIG. 5 is a plan view showing an example of an arc-shaped inner surface anode according to a preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing an example of an arc-shaped inner surface anode according to a preferred embodiment of the present invention.
  • FIG. 7 is a partial cross-sectional view showing an example of an arc-shaped inner surface anode according to a preferred embodiment of the present invention.
  • FIG. 8 is a partial cross-sectional view showing an example of a flat anode according to the present invention.
  • FIG. 9 is a partial cross-sectional view showing an example of the arc-shaped inner surface anode of the present invention.
  • FIG. 10 is an external view showing an example of a plate-shaped anode according to a preferred embodiment of the present invention.
  • Figure 1 1 is a partial sectional view c
  • Figure 1 2 shows an example of an anode of a flat plate in accordance with a preferred embodiment of the present invention
  • FIG. 14 is a cross-sectional view showing an example of an arc-shaped inner surface anode according to a preferred embodiment of the present invention.
  • FIG. 15 is a partial cross-sectional view showing an example of an anode on the inner surface of a circular arc shape according to the preferred embodiment of the present invention.
  • FIG. 16 is a partial cross-sectional view in which an anode substrate and a power supply are mounted on a lead substrate having another structure according to the present invention.
  • FIG. 1 shows the appearance of an anode 20 having a flat plate shape in an electrolytic apparatus according to a preferred embodiment of the present invention.
  • FIG. 2 shows a partial plan view of FIG.
  • FIG. 3 is a cross-sectional view of FIG. Anode for electrolysis with a circular arc inner surface 20
  • FIG. 4 shows the appearance of an anode 20 having an arc-shaped inner surface in an electrolytic device according to a preferred embodiment of the present invention.
  • FIG. 5 is a plan view of FIG.
  • FIG. 6 is a cross-sectional view of FIG.
  • FIG. 7 is a partially enlarged sectional view of FIG.
  • FIG. 8 and FIG. 9 are partial cross-sectional views in which the anode base 2 and the power supply 3 are attached to a lead base 1 having another structure according to the present invention.
  • FIGS. 1, 2 and 3 show an electrolysis apparatus according to a preferred embodiment of the present invention, in which the anode 20 includes a plate-shaped lead base 1, an anode base 2, a power supply 3, and the like.
  • the lead substrate 1 is a flat plate-shaped alloy made of lead and tin having through-holes for mounting the current-carrying terminals 13 and the anode substrate 2 and the power supply 3 from the outside.
  • An externally threaded titanium rod 4 is welded to the back surface of the anode substrate 2 made of titanium divided into three parts.
  • a mechanism in which the titanium rod 4 passes through the holes provided in the power feeder 3 and the lead base 1 made of titanium, and the anode base 2 can be attached and detached by the nut 5 of the titanium via the titanium 6 on the back side of the lead base 1. And is fastened to the lead base 1. By tightening the nut 5, the electric current between the power feeder 3 and the electrode base 2 is reduced. The required contact pressure is obtained.
  • the surface of the anode substrate 2 is coated with an electrode catalyst of a iridium oxide component.
  • a titanium feeder 3 divided into three and provided with holes is uniformly arranged around a titanium rod 4 extending from the anode base 2 between the lead base 1 and the anode base 2.
  • a titanium rod 7 with an external thread whose screw portion is coated with platinum is provided by welding.
  • the titanium rod 7 passes through a hole in the lead base 1 provided separately from the titanium rod 4 of the anode base, and is coated with platinum through a titanium washer 9 welded to the lead base 1 with a lead-tin alloy. After being tightened by the nut 8, the washer 9 and the nut 8, and the nut 8 and the titanium rod 7 are welded using a lead-tin alloy. By these joining processes, the power feeder 3 and the lead base 1 are fixedly joined.
  • a support 10 made of a fluorinated resin is arranged to support the anode substrate and keep the distance from the cathode constant with high accuracy.
  • the main energizing circuit in this embodiment is energized from the energizing terminal 13, passes through the lead base 1, the washer 9, the bolt 8, the titanium rod 7, the power supply 3, and reaches the anode base 2.
  • the lead base 1 to the power feeder 3 form an energized circuit fixedly mounted.
  • a sufficiently large contact area and contact pressure are secured in the contact portion between the anode base 2 and the power supply 3, and each contact surface is coated with platinum, so that the contact resistance is greatly reduced.
  • the anode of the electrolysis apparatus of the present embodiment forms a stable and sufficient electric conduction circuit between the lead base and the anode base so that the contact resistance does not increase for a long period of time, A current can be stably supplied to the anode substrate 2.
  • the power supply 3 can prevent the lead substrate surface from being damaged by repeated removal of the anode substrate.
  • the lead base 1 is an alloy made of lead and silver having an arc-shaped inner surface provided with a through hole for mounting the current-carrying terminal 13 and the anode base 2 from the outside.
  • the anode substrate 2 is divided into 18 sheets, and is made of a titanium plate having the same arc inner surface shape as the lead substrate 1.
  • a titanium rod 4 having an external thread is provided by welding.
  • the titanium rod 4 passes through the hole provided in the lead base 1, and the anode base 2 is fastened to the lead base 1 by a nut 5 using a titanium nut 5 through a titanium washer 6 on the back side of the lead base 1. Installed. By tightening the nut 5, a contact pressure necessary for energizing the power supply body 3 and the electrode base 2 can be obtained.
  • the surface of the anode substrate 2 is coated with an electrode catalyst containing iridium oxide, and the surface of the anode substrate 2 that contacts the power supply 3 is coated with platinum.
  • Disc-shaped power feeder made of clad material of titanium and lead-silver alloy 3 Force Lead-tin alloy is fixedly welded to the surface of the hole around the lead base 1 using a lead-tin alloy .
  • the titanium surface of the power feeder 3 in contact with the anode substrate 2 is coated with platinum.
  • a titanium support 10 for supporting the anode base 2 and keeping the distance from the cathode constant with high precision is attached to the anode base 2. , Has been placed.
  • the anode of the electrolysis apparatus is supplied with electricity from the conducting terminals 13, passes through the lead base 1 and the power supply 3, and is supplied with power to the anode base 2.
  • an energizing circuit having sufficient electric conductivity was secured between the lead base and the anode base, and stable energization was ensured for a long period of time.
  • the titanium rod 4 and nut The occurrence of welding with G5 also disappeared.
  • the power supply 3 can prevent the surface of the lead substrate from being damaged due to the removal of the anode substrate.
  • the power supply body 3 and the support body 10 support the anode base 2, and the anode base 2 can maintain a predetermined arc-shaped inner surface shape, so that a uniform electrode interval can be secured.
  • FIG. 8 is a partial sectional view of another plate-shaped anode 20 according to the present invention.
  • a boss with a hole is provided on the back surface of the anode substrate 2, and is attached to the lead substrate in a detachable manner using titanium female fasteners 11 and titanium male screws 12.
  • Power is supplied to the anode base 2 from a titanium power feeder 3 welded to a lead base.
  • a titanium support 10 for supporting the anode base 2 and keeping the distance between the anode base 2 and the cathode high and accurate and constant is arranged.
  • FIG. 9 shows another anode 20 having an arc-shaped inner surface according to the present invention.
  • a titanium externally threaded rod 4 is welded to the anode substrate 2 and is detachably attached to the lead substrate using the externally threaded rod 4, a fluorinated resin mesh 6 and a titanium nut 5.
  • Power is supplied to the anode base 2 by a titanium feeder 3 provided between the anode base 2 and the lead base 1, and the energization circuit from the mounting mechanism of the anode base 2 is cut off by the hash 6.
  • An externally threaded rod 7 is welded to the power supply 3, and the externally threaded rod 7 penetrates a hole in the lead base and is fastened by a titanium nut 8 and a washer 9.
  • the titanium rod 7 and the nut 8 are welded to stabilize the power supply from the lead base 1 to the power supply 3.
  • the titanium rod 7 has a cross-sectional area that can secure a current carrying capacity to the anode substrate 2.
  • FIG. 10 shows the appearance of the anode 120 having a flat plate shape in the electrolytic apparatus according to the preferred embodiment of the present invention.
  • FIG. 11 shows a partial cross-sectional view of FIG.
  • FIG. 12 shows the appearance of an anode 120 having an arc-shaped inner surface in an electrolysis apparatus according to a preferred embodiment of the present invention.
  • FIG. 13 is a plan view of FIG.
  • FIG. 14 is a cross-sectional view of FIG.
  • FIG. 15 is a partially enlarged sectional view of FIG.
  • FIG. 16 is a partial cross-sectional view in which the anode substrate 102 and the power supply 103 are attached to a lead substrate 101 having another structure according to the present invention.
  • FIGS. 10 and 11 show an electrolysis apparatus according to a preferred embodiment of the present invention, in which the anode 120 has a plate-shaped lead base 101, an anode base 102, a power feeder 103, and the like.
  • the lead substrate 101 shown in the figure is a flat plate-shaped alloy having through holes for mounting the current-carrying terminals 113 from the outside, the anode substrate 102 and the power feeder 103, and is made of an alloy composed of lead and tin.
  • the power feeder 103 is an 8 mm thick titanium plate divided into four, and has a through hole for mounting on the lead base 101 and an anode base 102 for mounting the anode base 102 with the flathead screw 114. An internal thread is provided.
  • the power feeder 103 is tightened with titanium female screw 1 1 1 and male screw 1 1 2 and attached to the lead base 101, then the female screw 1 1 1 flange and lead base 1 1 Was welded.
  • the anode substrate 102 is a titanium plate having a thickness of 3 mm divided into two, and has a through hole for attaching to the power feeder 103 with a countersunk titanium screw 114, facing the cathode.
  • the mating surface was coated with an electrode catalyst made of iridium oxide, and the back surface was coated with platinum to reduce the current-carrying contact resistance with the feeder 103.
  • the main energizing circuit is energized from the energizing terminal 113, the lead base 101, the female threaded fastener 111, the male screw 111, the boss of the power source 103, the power source 110, and Through 0 3, the anode substrate 102 is reached.
  • the lead base 101 to the power feeder 103 form a fixedly connected energized circuit.
  • the contact portion between the anode substrate 102 and the power supply body 103 has a sufficiently large contact area and contact pressure, and each contact surface is coated with platinum to greatly reduce contact resistance. .
  • the lead base 1 and the female threaded fastener 1 1 1 in contact with the electrolyte were covered with an epoxy resin coating 1 15 containing glass fiber to prevent the elution of trace amounts of lead components into the electrolyte. .
  • the anode 120 of the electrolytic apparatus of the present example has a stable and sufficient electric conductivity between the lead substrate 101 and the anode substrate 102 such that the contact resistance does not increase for a long period of time.
  • an energizing circuit having the following formula was formed, and it was possible to stably energize the anode substrate 102.
  • the power supply body 103 can prevent the surface of the lead substrate 101 from being damaged by the repeated removal of the anode substrate 2.
  • FIGS. 12, 13, 14, and 15 show an arc shape according to a preferred embodiment of the present invention, including a lead base 101, an anode base 102, a power feeder 103, and the like. An anode 120 having an inner surface is shown.
  • the thicknesses of the anode substrate 102 and the power feeder 103 in FIG. 12 are exaggerated and the countersunk screws 114 are omitted.
  • the lead base 101 attaches the energized terminal 113 from the outside and the anode base 102 Is an alloy made of lead and silver having an arc-shaped inner surface with a through hole for it.
  • the anode substrate 102 is a titanium plate having a thickness of l mm and divided into 18 pieces, and is made of a titanium plate having the same arc-shaped inner surface shape as the lead substrate 101.
  • the anode substrate 102 has a through hole for attachment to the power supply 103 by means of a countersunk screw 114.
  • the surface facing the cathode is coated with an electrode catalyst containing iridium oxide.
  • the surface of the anode substrate 102 in contact with was coated with platinum.
  • the power feeding body 103 is made of a titanium plate having a thickness similar to that of the anode substrate 102 and having a thickness of 5 mm divided into 18 pieces.
  • a titanium rod 107 with an external thread is provided by force welding.
  • the titanium rod 107 passed through the hole provided in the lead base 101, and the titanium nut 105 through the titanium washer 106 on the back side of the lead base 101.
  • 03 is attached to the lead base 101.
  • the washer 106 was joined to the lead base 101 by welding.
  • the anode 120 of the electrolysis apparatus of this embodiment is energized from the current-carrying terminal 113, and the lead base 101, washer 106, nut 105, titanium rod 107, power feeder 103 Power is supplied to the anode substrate 102 through the fastening portion of the plate screw 114.
  • a current-carrying circuit having sufficient electric conductivity was secured, and stable current could be secured for a long period of time.
  • the removal of the anode substrate 2 became easy.
  • the power supply body 103 can prevent the lead substrate 1 from being damaged by the removal of the anode substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

A feeder is constituted with a corrosion resisting conductive metal which is disposed in a divided manner between a lead base and an anode substrate, bonded fixedly to the lead base, and brought into contact with the anode substrate so that a sufficient electric conductivity is secured with respect to both the lead base and the anode substrate. A stable and sufficient electric conductivity concerning a current flowing from the lead base to the anode substrate is secured.

Description

明 細 書 技術分野  Description Technical field
本発明は、 大電流を通電する鋼板への錫めつき、 亜鉛めつき、 電気めつき法に よる銅箔製造等に用いられる電解装置に関する。  TECHNICAL FIELD The present invention relates to an electrolytic apparatus used for producing copper foil by a tin plating, a zinc plating, and an electroplating method on a steel sheet to which a large current flows.
背景技術  Background art
近年、 電気めつき分野では、 めっきの高速化と共に電流密度が高くなつてきた c 鋼板への亜鉛めつきや錫めつき、 電気めつき法による金属箔の製造等においては、In recent years, in an electric-plating areas, zinc plated or tin-plated to c steel current density has been high summer with high speed plating, in the manufacture of a metallic foil, or the like by the electric-plating method,
3 0 ~ 2 5 O A d m2という高いめっき電流密度が採用されている。 しかも、 帯状でその幅が 5 0 0〜2 0 0 O mmの大きなサイズの材料にめっきすることも しくは電気めつきによって金属箔を得ることが要求されている。 そのため、 その ようにサイズが大きい材料のめっき皮膜を得るためには、 使用する電解装置も大 型のものとならざるをえない。 また、 電気めつき品製造、 金属箔製造では、 それ ら製品の品質向上の要求が益々高まり、 製品を製造する時の電流分布をさらに均 一にするために、 陽極と陰極との電極間距離のバラツキをできる限り小さくでき る電解装置が要求されている。 A high plating current density of 30 to 25 OA dm 2 is employed. In addition, it is required to obtain a metal foil by plating on a large-sized band-shaped material having a width of 500 to 200 mm or by electroplating. Therefore, in order to obtain a plating film of such a large-sized material, the electrolytic device used must be large. In the production of electroplated products and metal foil, the demand for higher quality of these products is increasing, and the distance between the anode and the cathode must be increased in order to make the current distribution more uniform when manufacturing the products. There is a demand for an electrolysis apparatus that can minimize the variation in the temperature.
このように高電流密度で操作される大型電解装置の陽極には、 主に加工が容易 で低価格の鉛又は鉛合金が用いられてきた。 しかし、 陽極材料の鉛又は鉛合金は 電解によって溶解又は腐食し、 その結果、 陽極面の形状が変化し、 電解電流分布 の不均一による製品品質の低下や電極間隔の増大による消費電力の増大をまねい たり、 電解液中への鉛等の混入による製品品質の低下をまねいたり、 鉛汚染の環 境対策を必要としたり等、 多くの問題がある。  The anodes of large electrolyzers operated at such a high current density have been mainly made of low-cost lead or lead alloy, which is easy to process. However, the lead or lead alloy of the anode material melts or corrodes due to electrolysis, resulting in a change in the shape of the anode surface. There are a number of problems, including the risk of product quality degradation due to contamination of the electrolyte with lead, etc., and the need for environmental measures to prevent lead contamination.
これら陽極材料の鉛又は鉛合金の問題を解決するため、 銅、 鉄、 アルミニウム、 鉛、 錫等の電導性金属材料を芯材とし、 これら芯材をチタン板等の耐食性導電金 属で被覆した複合基盤に、 チタン等の耐食性導電金属か.らなる陽極基体に電極触 媒を被覆したものを着脱可能な方法で取付けた陽極を用いた電解装置の使用が試 みられてきた。 し力、し、 これらの試みも、 複合基盤の製造にコストがかかったり、 特に陽極が円弧形状内面を必要とする電解装置では、 円弧形状内面の加工ゃ通電 部の加工が困難であったり、 複雑な加工を必要としたりしてコス卜がかかったり、 加工の精度が劣つたり、 通電不良を生じたりするなどの多くの問題があつた。 また、 電解装置の陽極が、 鉛又は鉛合金を鉛基盤として、 その鉛基盤にチタン 等の耐食性導電金属に電極触媒を被覆した陽極基体を、 耐食性導電金属のねじで 止めたり、 耐食性導電金属のボル卜とナットを使用して取り付けたりする方法も 試みられた。 し力、し、 この方法では次のような問題があった。 In order to solve the problem of lead or lead alloy of these anode materials, conductive metal materials such as copper, iron, aluminum, lead, and tin are used as core materials, and these core materials are used as corrosion-resistant conductive metals such as titanium plates. Attempts have been made to use electrolytic devices that use an anode in which an anode substrate made of a corrosion-resistant conductive metal such as titanium is coated on a composite substrate coated with a metal and an anode substrate coated with an electrode catalyst is detachably attached. . In these attempts, the cost of manufacturing the composite substrate is high, and it is difficult to process the arc-shaped inner surface 加工 processing of the current-carrying part, especially in an electrolytic device where the anode requires an arc-shaped inner surface. There were many problems, such as the need for complicated processing, costing, poor processing accuracy, and poor power distribution. In addition, the anode of the electrolysis device has a lead base made of lead or a lead alloy, and the lead base is coated with a corrosion-resistant conductive metal such as titanium and an electrode catalyst, and the anode base is fixed with a corrosion-resistant conductive metal screw. Attempts have also been made to attach using bolts and nuts. This method had the following problems.
1 ) 鉛基盤が軟らかいため、  1) Because the lead base is soft,
•鉛基盤に直接、 強い力でねじ止めができないことから、 接触抵抗が増大し、 通 電不良を生じたりする、  • Since the screw cannot be screwed directly to the lead base with a strong force, the contact resistance increases, resulting in poor electrical connection.
,陽極基体が鉛基盤に取り外し可能に取付ける機構部材 (例えば、 耐食性導電金 属のナツ 卜とボルトを使用した機構部材) の大きさや構造に制限が生じ、 その機 構部材が充分な通電の容量を確保できずに、 溶着を生じたりする、  In addition, the size and structure of mechanical members (for example, those using corrosion-resistant conductive metal nuts and bolts) that allow the anode substrate to be detachably attached to the lead substrate are limited, and the mechanical members have sufficient current carrying capacity. Or welding may occur,
•陽極基体の取り外しの繰り返しにより、 鉛基盤から陽極基体に通電する個所の 鉛基盤を損傷して、 接触面積が低下し、 通電による異常発熱を生じ、 その結果、 通電不良を起こしたりする、  • Repeated removal of the anode substrate damages the lead substrate where the current flows from the lead substrate to the anode substrate, reduces the contact area, causes abnormal heat generation due to energization, and consequently results in poor energization.
·陽極基体の取り外しの繰り返しにより、 陰極と一定間隔で向き合う鉛基盤の表 面を損傷し、 陽極基体の取り付け精度を低下させ、 電極間隔の不均一を起こした りする。  · Repeated removal of the anode substrate damages the surface of the lead substrate facing the cathode at regular intervals, lowers the mounting accuracy of the anode substrate, and causes uneven electrode spacing.
2 ) 鉛又は鉛合金の性質から、 電解液との接触にともない、 鉛基盤の表面が徐 々に酸化し、 鉛基盤から陽極基体へ通電する個所の接触抵抗が増大し、 通電不良 や異常発熱を起こしたりする。 2) Due to the properties of lead or lead alloy, the surface of the lead substrate gradually oxidizes with contact with the electrolyte, increasing the contact resistance at the point where current flows from the lead substrate to the anode substrate, resulting in poor current conduction. Or abnormal heat generation.
特に、 陽極が円弧形状内面を有する電解装置では、 構造の複雑さから、 上記の 問題が顕著に現れる。  In particular, in an electrolytic device in which the anode has an arc-shaped inner surface, the above-mentioned problem is conspicuous due to the complexity of the structure.
以上の鉛、 鉛合金陽極及び従来の複合基盤の陽極を用いた電解装置が抱える問 題を解消する。  It solves the problems of electrolytic devices using lead and lead alloy anodes and conventional composite substrate anodes.
発明の開示  Disclosure of the invention
本発明に従い上記の課題を解決するために、  In order to solve the above problems according to the present invention,
陽極と陰極との間に電解液が維持できる電解装置において、  In an electrolytic device that can maintain an electrolytic solution between an anode and a cathode,
該陽極が、  The anode is
ァ) 外部からの通電端子を有し、 陰極と一定間隔で向き合う表面を有する鉛ま たは鉛合金からなる鉛基盤と、  A) a lead base made of lead or a lead alloy, which has a current-carrying terminal from the outside and has a surface facing the cathode at regular intervals;
ィ) 鉛基盤の表面上に着脱可能に取付けられ、 陰極と一定間隔で向き合うよう に設けられ、 該陰極と向き合う面が電極触媒で被覆されている耐食性導電金属か らなる陽極基体と、  A) an anode substrate made of a corrosion-resistant conductive metal, which is detachably mounted on a surface of a lead substrate, is provided so as to face the cathode at regular intervals, and a surface facing the cathode is coated with an electrode catalyst;
ゥ) 鉛基盤と陽極基体との間に分割配置し、 鉛基盤及び該陽極基体のいずれと も充分な電気伝導性を確保するように、 鉛基盤と固定的に接合され、 陽極基体と 接触している耐食性導電金属からなる給電体と  Ii) Divided between the lead substrate and the anode substrate, fixedly joined to the lead substrate and contacted with the anode substrate so as to ensure sufficient electrical conductivity with both the lead substrate and the anode substrate. Feeder made of conductive metal with corrosion resistance
を具備していることを特徴とする電解装置が提供される。 An electrolysis device is provided, comprising:
更に、 本発明に従い上記の課題を解決するために、  Further, in order to solve the above-mentioned problems according to the present invention,
陽極と陰極との間に電解液を維持できる電解装置において、  In an electrolytic device that can maintain an electrolytic solution between an anode and a cathode,
該陽極が、  The anode is
ァ) 外部からの通電端子を有し、 該陰極と一定間隔で向き合う表面を有する鉛 または鉛合金からなる鉛基盤と、  A) a lead base made of lead or a lead alloy, having a current-carrying terminal from the outside and having a surface facing the cathode at regular intervals;
ィ) 該鉛基盤の表面上に分割配置し、 該鉛基盤と充分な電気伝導性を確保する ように、 該鉛基盤と固定的に取付けられている耐食性導電金属からなる給電体と、 ゥ) 該給電体と着脱可能に取付けられ、 該陰極と一定間隔で向き合うように設 けられ、 該陰極と向き合う面が電極触媒で被覆され、 該給電体と充分な電気伝導 性を確保するように接続されている耐食性導電金属からなる陽極基体とを具備す ることを特徴とする電解装置が提供される。 B) Divided on the surface of the lead base to ensure sufficient electrical conductivity with the lead base A feeder made of a corrosion-resistant conductive metal fixedly attached to the lead base; and ゥ) a feeder detachably attached to the feeder and provided to face the cathode at regular intervals; An electrolysis apparatus, comprising: a power supply body and an anode substrate made of a corrosion-resistant conductive metal connected so as to ensure sufficient electric conductivity. You.
一鉛基盤一  One lead base
本発明による鉛基盤は、 従来から陽極として用いている鉛又は鉛合金を使用で さる。  The lead substrate according to the present invention can use lead or a lead alloy conventionally used as an anode.
鉛合金としては、 錫、 銀、 インジウム、 ビスマス、 カルシウム又はアンチモン 等と合金化したものが使用できる。  As the lead alloy, an alloy of tin, silver, indium, bismuth, calcium, antimony, or the like can be used.
鉛基盤の表面は、 陰極と一定間隔で向き合うように、 陰極の形状に合わせて、 平面加工や円弧形状内面加工が施される。 鉛基盤には、 必要に応じて、 陽極基体 又はノ及び給電体を取付けるための穴を有する。  The surface of the lead substrate is subjected to plane processing or arc-shaped inner surface processing according to the shape of the cathode so as to face the cathode at regular intervals. The lead base has a hole for mounting the anode base or the power supply, as necessary.
もし、 現在、 鉛又は鉛合金陽極を具備した電解装置を使用している場合、 その 陽極材料を改造し、 本発明での鉛基盤として使用できる。 その鉛又は鉛合金の改 造加工は、 本発明による陽極基体及び給電体を取付けるのに必要な厚さ分を切削 し、 必要に応じて、 陽極基体及び給電体を取付けするための貫通穴を設けたりす ることで、 本発明での鉛基盤とすることができる。 鉛基盤に設ける貫通穴の精度 は、 特別に高い精度を必要としするものではなく、 電解装置が設置されている現 場でも、 その穴あけ加工ができる程度の精度が得られれば、 本発明に用いる鉛基 盤として使用できる。  If an electrolytic device equipped with a lead or lead alloy anode is currently used, the anode material can be modified and used as a lead base in the present invention. In the modification of the lead or lead alloy, the thickness required to mount the anode base and the power supply according to the present invention is cut, and if necessary, a through hole for mounting the anode base and the power supply is provided. By providing them, the lead base of the present invention can be obtained. The precision of the through-hole provided in the lead base does not require special high precision, and it is used in the present invention if the precision at which the drilling can be performed is obtained even at the site where the electrolytic device is installed. Can be used as a lead base.
一陽極基体一  One anode substrate
本発明による陽極基体の材料は、 チタン、 タンタル、 ニオブ、 ジルコニウム等 の耐食性導電金属又はそれらを主成分とした合金からなる。 陽極基体は板状であって、 必要に応じて複数に分割され、 鉛基盤に着脱可能な 機構での取り付け構造を有し、 陰極と向き合う面には白金族金属、 それらの合金 及び 又はそれらの酸化物を主成分とした電極触媒もしくはコバルト酸化物、 錫 酸化物、 マンガン酸化物等の卑金属酸化物を主成分とした電極媒体の被覆が施さ れ、 その裏面には給電体から陽極基体に通電するための給電個所を有している。 鉛基盤に陽極基体を取り付けた時に発生する陽極基体の撓みによって、 表面に 被覆された電極触媒層が損傷する。 陽極基体の取り付けは、 できる限り撓みがか からないようにする必要がある。 そのことから、 特に円弧形状内面を有する鉛基 盤に陽極基体を取付ける場合、 陽極基体も同様な円弧形状を有することが望まし い。 The material of the anode substrate according to the present invention is made of a corrosion-resistant conductive metal such as titanium, tantalum, niobium, and zirconium, or an alloy containing these as a main component. The anode substrate is plate-shaped, is divided into a plurality as necessary, and has a mounting structure with a mechanism that can be attached to and detached from the lead substrate, and the surface facing the cathode is a platinum group metal, an alloy thereof, and / or an alloy thereof. An electrode catalyst mainly composed of an oxide or an electrode medium mainly composed of a base metal oxide such as cobalt oxide, tin oxide, manganese oxide or the like is coated, and on the back surface, a current is supplied from the power supply to the anode substrate. To supply power for The bending of the anode base when the anode base is attached to the lead base damages the electrode catalyst layer coated on the surface. The mounting of the anode substrate should be as flexible as possible. Therefore, especially when the anode substrate is mounted on a lead substrate having an arc-shaped inner surface, it is desirable that the anode substrate also has a similar arc shape.
陽極基体と給電体との接触個所は、 その接触抵抗を下げるため、 必要に応じて 白金族金属を主成分とした被覆が施される。 その被覆厚さは、 サブマイクロメ一 トルから数マイクロメ一トルあれば十分である。  The contact point between the anode substrate and the power supply body is coated with a platinum group metal as a main component, if necessary, to reduce the contact resistance. A coating thickness of submicrometer to several micrometers is sufficient.
本発明による鉛基盤の表面上に陽極基体を取り外し可能に連結する具体的な構 造の例は、 次の通りである。  An example of a specific structure for detachably connecting the anode substrate to the surface of the lead substrate according to the present invention is as follows.
,鉛基盤が貫通穴を有し、 陽極基体が、 貫通穴を貫通している棒を有し、 鉛基 盤の裏面でこの棒に雌ねじ又は雄ねじが取り付けられており、 これによつて、 陽 極基体が鉛基盤に取り外し可能に連結されているもの。  The lead base has a through hole, the anode base has a rod passing through the through hole, and a female screw or a male screw is attached to the rod on the back surface of the lead base, whereby the positive The polar base is detachably connected to the lead base.
,鉛基盤が貫通穴を有し、 貫通穴に棒が設けられ、 その棒が鉛基盤の裏面で固 定され、 陽極基体が穴を有し、 鉛基盤の表面側から雄ねじが陽極基体の穴を介し てその棒に取り付けられており、 これによつて、 陽極基体が該鉛基盤に取り外し 可能に連結されているもの。  , The lead base has a through hole, a rod is provided in the through hole, the rod is fixed on the back surface of the lead base, the anode base has a hole, and a male screw is formed in the hole of the anode base from the front side of the lead base. That is attached to the rod via a lead, whereby the anode substrate is detachably connected to the lead substrate.
鉛基盤への陽極基体の取り付けに使用される棒は、 円形、 角形や多角形などい ずれの形状でもよい。 棒には、 ねじが設けられ、 陽極基体の取り外しのできる機 構とて使用される。 これら陽極基体の取り付け機構に用いられる部材は、 陽極基 体と同じ耐食性導電金属や耐食性セラミックス等、 耐食性と機械的強度を有する 材料であればいずれでもよい。 通常、 チタン材が加工性の容易性、 コスト面、 耐 食性面等から適当である。 The rod used to attach the anode substrate to the lead substrate may be any shape, such as circular, square or polygonal. The rod is provided with a screw to remove the anode substrate. Used for construction. The member used for the mounting mechanism of the anode substrate may be any material having corrosion resistance and mechanical strength, such as the same corrosion-resistant conductive metal or corrosion-resistant ceramic as the anode substrate. Normally, titanium material is suitable in terms of workability, cost, corrosion resistance and the like.
鉛基盤から陽極基体への通電は、 給電体を介して行われる。 給電体は、 鉛基盤 と陽極基体との間に分割し、 均一に配置され、 陽極基体を鉛基盤に取付けの締め つけ圧力により、 陽極基体と給電体とが接触し、 その接触個所が通電部となる。 尚、 給電体との通電個所以外の個所で、 必ずしも、 鉛基盤と陽極基体との電気 的な絶縁をとる必要はない。 ただし、 次の場合、 絶縁をとる必要がある。 その絶 縁には、 耐食性の樹脂材料が使用でき、 鉛基盤に陽極基体を取付ける機構部に設 けることで、 通電回路を遮断し、 陽極基体の取付け機構部での通電による溶着の 発生やその他の通電による不具合の発生を防ぐことができる。  Electricity is supplied from the lead substrate to the anode substrate via a power supply. The feeder is divided between the lead base and the anode base, and is evenly arranged. The anode base and the feeder come into contact with each other by the tightening pressure for mounting the anode base to the lead base, and the contact point is a current-carrying part. Becomes It should be noted that it is not always necessary to electrically insulate the lead substrate and the anode substrate at locations other than the current-carrying location with the power supply. However, it is necessary to provide insulation in the following cases. The insulation can be made of a corrosion-resistant resin material, and by installing it in the mechanism that attaches the anode substrate to the lead substrate, the energizing circuit is interrupted, and welding and other problems occur when the anode substrate attachment mechanism is energized. Can be prevented from being caused by the current supply.
•鉛基盤から陽極基体へ形成される通電回路の抵抗が、 給電体を経由しての回 路の抵抗より低い場合。  • When the resistance of the current-carrying circuit formed from the lead substrate to the anode substrate is lower than the resistance of the circuit via the power feeder.
·陽極基体の取付け機構部等で溶着や異常発熱を生じる場合等。  · When welding or abnormal heat generation occurs in the mounting mechanism of the anode substrate.
更に、 本発明による給電体と陽極基体とを取り外し可能に連結する具体的な構 造は、 次のものが上げられる。  Further, specific structures for detachably connecting the power supply body and the anode base according to the present invention include the following.
•陽極基体に穴を設け、 給電体に雌ねじを設け、 陰極側から雄ねじを陽極基体 の穴を介して給電体の雌ねじと螺合させて、 陽極基体が給電体に取り外し可能に 連結されているもの。  • A hole is formed in the anode substrate, a female screw is provided in the power supply, and a male screw is screwed from the cathode side with the female screw of the power supply through the hole in the anode substrate, and the anode substrate is detachably connected to the power supply. thing.
•鉛基盤に穴を設け、 給電体に穴を設け、 陽極基体に穴を設け、 雄ねじを陰極 側又は鉛基盤の穴側から、 給電体の穴及び陽極基体の穴に貫通させ、 ナツ トを用 いて螺合させて、 陽極基体が給電体に取り外し可能に連結されているもの。  Provide a hole in the lead base, provide a hole in the power supply body, provide a hole in the anode base, insert a male screw from the cathode side or the hole side of the lead base into the hole in the power supply body and the hole in the anode base, and insert the nut. The anode base is detachably connected to the power feeder.
•鉛基盤に穴を設け、 給電体に穴を設け、 陽極基体に雌ねじを設け、 鉛基盤の 穴側から雄ねじを給電体の穴を介して陽極基体の雌ねじと螺合させて、 陽極基体 が給電体に取り外し可能に連結されているもの。 • Make a hole in the lead base, make a hole in the power feeder, make a female screw in the anode base, An anode base screw is detachably connected to a power feeder by screwing a male screw from the hole side with a female screw of the anode base via a hole in the feeder.
•鉛基盤に穴を設け、 給電体に穴を設け、 陽極基体が給電体の穴を貫通する棒 を有し、 この棒の先に雄ねじ又は雌ねじが設けられ、 鉛基盤の穴側から、 陽極基 体が給電体に取り外し可能に連結されているもの。  • A hole is formed in the lead base, a hole is formed in the feeder, and the anode base has a rod that penetrates the hole in the feeder. A male screw or a female screw is provided at the tip of this rod, and the anode is inserted from the hole side of the lead base. The base is detachably connected to the power feeder.
給電体と陽極基体との取り付けに使用されるねじ、 ナツ ト及び棒の材質は、 陽 極基体と同じ耐食性導電金属を使用される。  The same corrosion-resistant conductive metal as that of the anode base is used for the screws, nuts, and rods used to attach the feeder to the anode base.
鉛基盤から陽極基体への通電は、 給電体を介して行われる。 給電体は、 鉛基盤 と陽極基体との間に分割し、 均一に配置されることが望ましい。  Electricity is supplied from the lead substrate to the anode substrate via a power supply. It is desirable that the power feeder is divided between the lead base and the anode base and arranged uniformly.
一給電体一  One feeder
一一給電体の役割一一  The role of the power feeder
本発明による給電体の役割は、 次の通り。  The role of the power supply according to the present invention is as follows.
1 ) 鉛基盤から陽極基盤へ安定且つ充分に通電を行う。  1) Stable and sufficient current supply from the lead substrate to the anode substrate.
2 ) 陽極基体の取り外しの繰り返しにともなう、 陰極と一定間隔で向き合う軟 らかい鉛基盤の表面の損傷を防ぐ。  2) Prevent damage to the surface of the soft lead base facing the cathode at regular intervals due to repeated removal of the anode base.
3 ) 陰極と陽極基体とが一定間隔で向き合うように、 陽極基体を支持する。 3) Support the anode substrate so that the cathode and the anode substrate face each other at regular intervals.
4 ) 陽極基体を給電体に着脱可能に取付ける。 4) Removably attach the anode substrate to the power supply.
——給電体の材質について——  ——Material of feeder——
本発明による給電体の材料は、 陽極基体と同様なチタン、 タンタル、 ニオブ、 ジルコニウム等の耐食性導電金属又はそれらを主成分とした合金又は、 前記の耐 食性導電金属と鉛又は鉛合金とのクラッ ド材が使用できる。 クラッ ド材を使用す る場合、 少なくとも陽極基体と接触し通電部となる個所は耐食性導電金属である 必要がある。  The material of the power supply according to the present invention may be a corrosion-resistant conductive metal such as titanium, tantalum, niobium, or zirconium, or an alloy containing these as a main component, or a clad of the above-described corrosion-resistant conductive metal and lead or a lead alloy. Can be used. When a cladding material is used, at least the portion that comes into contact with the anode substrate and becomes a current-carrying part must be made of a corrosion-resistant conductive metal.
一一陽極基体を給電体に着脱可能に取付ける場合の給電体一一 本発明による給電体は、 鉛基盤と陽極基体の間に分割.配置する。 鉛基盤が円弧 形状内面を有する場合や極めて大きい電流を流す場合には、 安定で充分な電気伝 導性と通電容量を確保するため、 給電体が島状に均一に分散して配置、 又は隙間 なく配置する。 給電体の形状は、 任意形状であってもよいが、 陽極基体を給電体 に着脱可能に取付けることができる構造と強度が必要であって、 また給電体と陽 極基体との接触部において、 通電による溶着を避けなければならない。 溶着を避 けるには、 接触部に流れる電流の大きさに応じた、 接触面積を確保する必要があ る。 接触部の電流が高い場合、 その電流に応じ広い接触面積が確保できる様に、 給電体を設ける。 通常、 給電体の形状は、 陽極基体と同様な、 板状であって、 そ の板の大きさ又は形状を変えて、 陽極基体との接触面積を調整する。 通常、 給電 体と陽極基体との接触面の少なくともいずれか一方の面に白金族金属を主成分と した被覆を行うことにより、 より安定な電気伝導性を保持できるようになる。 そ の被覆厚さは、 サブマイクロメ一トルから数マイクロメ一トルあれば十分である c 一一陽極基体を鉛基盤に着脱可能に取付ける場合の給電体一一 Power supply body when the anode substrate is detachably attached to the power supply body The power supply according to the present invention is divided and arranged between a lead base and an anode base. When the lead base has an arc-shaped inner surface or when an extremely large current flows, the feeders are uniformly distributed in an island shape or gap to ensure stable and sufficient electric conductivity and current carrying capacity. Place without. The shape of the power supply may be any shape, but a structure and strength that allow the anode base to be detachably attached to the power supply are required, and at the contact portion between the power supply and the anode base, Welding due to energization must be avoided. To avoid welding, it is necessary to secure a contact area according to the magnitude of the current flowing through the contact part. If the current in the contact area is high, a power supply shall be provided so that a large contact area can be secured according to the current. Usually, the shape of the power supply is plate-like, similar to the anode substrate, and the size or shape of the plate is changed to adjust the contact area with the anode substrate. Normally, more stable electrical conductivity can be maintained by coating at least one of the contact surfaces between the power supply and the anode substrate with a platinum group metal as a main component. The coating thickness is sufficient if the sub-micrometer to several micrometer is sufficient. C- 1-1 When the anode substrate is detachably mounted on the lead substrate,
本発明による給電体は、 鉛基盤と陽極基体の間に分割配置する。 鉛基盤が円弧 形状内面を有する場合や極めて大きい電流を流す場合には、 安定で充分な電気伝 導性と通電容量を確保するため、 給電体が島状に均一に分散して配置させること が特に望ましい。 給電体の形状は、 任意形状であってもよいが、 給電体と陽極基 体との接触部において、 通電による溶着を避けなければならない。 溶着を避ける には、 接触部に流れる電流の大きさに応じた、 接触面積を確保する必要がある。 接触部の電流が高い場合、 その電流に応じ広い接触面積が確保できる様に、 給電 体を設ける。 通常、 給電体の形状は、 陽極基体と同様な、 板状であって、 その板 の大きさを変えて、 陽極基体との接触面積を調整する。 給電体と陽極基体との接 触面の少なくともいずれか一方の面に白金族金属を主成分とした被覆を行うこと W The power supply according to the present invention is divided between the lead base and the anode base. When the lead base has an arc-shaped inner surface or when an extremely large current flows, it is necessary to arrange the feeders uniformly in an island shape to ensure stable and sufficient electric conductivity and current carrying capacity. Especially desirable. The shape of the power supply may be any shape, but welding at the contact portion between the power supply and the anode substrate due to energization must be avoided. To avoid welding, it is necessary to secure a contact area according to the magnitude of the current flowing through the contact. If the current in the contact area is high, a power feeder is provided so that a large contact area can be secured according to the current. Usually, the shape of the power supply is plate-like, similar to the anode substrate, and the size of the plate is changed to adjust the contact area with the anode substrate. At least one of the contact surfaces between the power supply and the anode substrate is coated with platinum group metal as the main component. W
により、 より安定な電気伝導性を保持できるようにな 。 その被覆厚さは、 サブ マイクロメ一トルから数マイクロメートルあれば十分である。  As a result, more stable electrical conductivity can be maintained. A coating thickness of submicrometer to several micrometers is sufficient.
給電体は、 陽極基体を取付ける機構の近傍の周辺部に、 島状に分散配置させて 設けることが、 給電体と陽極基体との通電個所の接触圧力を上げ、 接触抵抗を下 げることから、 更に望ましい。  The power feeder should be provided in the form of an island in the vicinity of the mechanism where the anode base is attached, so that the contact pressure at the current-carrying point between the feeder and the anode base is increased, and the contact resistance is reduced. It is more desirable.
この様な、 給電体から陽極基体への安定で充分な電気伝導性を確保するために は、  In order to ensure stable and sufficient electrical conductivity from the power supply to the anode substrate,
•陽極基体への通電及び陽極基体の支持に適した給電体の形状や大きさが確保で きたり、  • It is possible to secure the shape and size of the power feeder suitable for energizing the anode substrate and supporting the anode substrate.
·給電体と陽極基体との通電で、 その通電に必要な接触面積と接触圧力が確保で きたり、  · By energizing the power supply and the anode substrate, the contact area and contact pressure necessary for energization can be secured,
•均一な通電配分ができるように給電体の均一な分割配置ができたり、 すること ができる空間が必要である。 給電体を鉛基盤と陽極基体の間に設けたことにより、 この空間の確保が容易にできるようになつた。  • There must be a space where power feeders can be divided evenly so that power distribution can be evenly distributed. By providing the power supply between the lead base and the anode base, this space can be easily secured.
——支持体について——  ——About the support——
また、 給電体を分散配置させて取付ける場合、 陽極基体と陰極間の間隔を一定 にするため、 給電体が取付けられていない空間の一部に陽極基体の所定形状を保 持する支持体 (スぺーサ) を必要に応じて取付ける。 支持体の材質は、 電解液に 対して耐食性を有するものであって、 支持体 (スぺ一サ) としての機能を損なう ような変形が生じなければ、 電導体であっても絶縁体であってもよい。 具体的な 材質としては、 給電体と同様な耐食性導電金属であったり、 ふつ素化樹脂、 ァク リル樹脂、 エポキシ樹脂等の合成樹脂やゴム等の天然高分子とその加工材 (硬質 ゴムゃェボナイ ト等) であったりすることができる。 支持体 (スぺ一サ) は、 鉛 基盤や陽極基体にねじ止めなどによつて取付けられる。 一一給電体と鉛基盤との固定的な接合一一 . In addition, when the power feeders are mounted in a dispersed manner, a support (strip) for maintaining the predetermined shape of the anode base in a part of the space where the power feeder is not mounted, in order to keep the distance between the anode base and the cathode constant. Attach as necessary. The material of the support is a material that has corrosion resistance to the electrolytic solution. If the support does not deform so as not to impair the function as a support, the conductor is an insulator. You may. Specific materials include a corrosion-resistant conductive metal similar to that of the power feeder, a synthetic resin such as a fluorinated resin, an acrylic resin, and an epoxy resin, and a natural polymer such as rubber and a processed material thereof (hard rubber. Ebonite, etc.). The support is attached to the lead base or anode base by screws or the like. Fixed connection between the power feeder and the lead base.
本発明による給電体と鉛基盤との接合は、 充分な電気伝導性を確保できるよう に、 鉛基盤との固定的な接合を行う。 その固定的な接合とは、 陽極基体と鉛基盤 との接合が陽極基体を取り外しができる機構であるのに対し、 給電体を取り外し する必要がない電気伝導性に優れた接台機構を指す。  In the connection between the power supply body and the lead base according to the present invention, a fixed connection with the lead base is performed so as to ensure sufficient electric conductivity. The term “fixed joining” refers to a mechanism that can remove the anode base when the anode base and the lead base are joined, but has a high electrical conductivity mounting mechanism that does not require removal of the power feeder.
給電体と鉛基盤とが固定的な接合をとることにより、 電気伝導性に優れ又大き な通電容量が確保でくきるさまざまな接台を行うことができたり、 接合部が電気 伝導性を安定に確保できるように、 恒久的な処置が無駄なくできたりできる。 本発明による給電体は、 次の通り、 鉛基盤に取付けるられ、 固定的に接合する。 ·鉛基盤に給電体が溶接によってとりつけられたもの。 鉛基盤の表面に給電体 が溶接されたものがさらに望ましい。  By providing a fixed connection between the power supply and the lead base, it is possible to perform various types of joints that have excellent electrical conductivity and a large current carrying capacity, and that the electrical connection is stable. Permanent treatment can be done without waste so that The power supply according to the present invention is mounted on a lead base and fixedly joined as follows. · The power feeder is attached to the lead base by welding. It is more desirable that the power feeder is welded to the surface of the lead base.
•鉛基盤が貫通穴を有し、 給電体が、 貫通穴を貫通している耐食性導電金属の 棒を有し、 鉛基盤の裏面でこの棒に耐食性導電金属の雌ねじ又は雄ねじが取り付 けられていて、 給電体が鉛基盤に固定的に接合されたもの。 棒に取付けられてい る雌ねじや雄ねじは、 耐食性導電金属のワッシャーを介して、 鉛基盤と接合する。  • The lead base has a through hole, and the power feeder has a rod of corrosion resistant conductive metal penetrating the through hole, and on the back of the lead base, a female or male screw of the corrosion resistant conductive metal is attached. And the power feeder is fixedly joined to the lead base. The internal and external threads attached to the rod are connected to the lead base via corrosion-resistant conductive metal washers.
•また、 給電体が鉛基盤に雌ねじや雄ねじを用いて接合するものは、 安定な電 気伝導性を確保するために、 それぞれの接合用の部材を溶接接合することがさら に望ましい。 例えば、 給電体に設けられた棒と給電体との溶接、 その棒に取付け られる雌ねじや雄ねじとの溶接、 雌ねじや雄ねじとワッシャーとの溶接、 ヮッシャ 一と鉛基盤との溶接等がある。 鉛基盤と給電体との溶接及び鉛基盤とワッシャー との溶接方法で、 低融点の鉛合金等を用いたろう付け溶接も有効な方法である。 ろう付け溶接を行う場合、 耐食性導伝金属の溶接面は特別な活性化処理が必要と なる。 給電体、 陽極基体、 鉛基盤の被覆等に用いられている耐食性導伝金属の溶 接には、 アルゴンガス雰囲気、 アルゴンガスシール、 真空雰囲気等の不活性雰囲 W • In the case where the power feeder is connected to the lead base using a female screw or male screw, it is more desirable to weld each of the connecting members to ensure stable electrical conductivity. For example, welding of a rod provided on a power supply body to a power supply body, welding of a female screw or a male screw attached to the rod, welding of a female screw or a male screw to a washer, welding of a washer to a lead base, and the like. Brazing welding using a lead alloy with a low melting point is also an effective method of welding the lead base to the power feeder and welding the lead base to the washer. When performing brazing welding, the welding surface of the corrosion-resistant conductive metal requires special activation treatment. Welding of the corrosion-resistant conductive metal used for covering the power supply, anode substrate, lead substrate, etc. is performed in an inert atmosphere such as an argon gas atmosphere, argon gas seal, or vacuum atmosphere. W
気下で溶接が行われる。 溶接方法としては、 プラズマアーク溶接、 T I G溶接、 レーザー溶接等の融接法又は鍛造圧接、 摩擦圧接等の圧接法並びにろう付け法等 がとれる。 尚、 圧接及び低融点のろう材を用いたろう付け溶接の場合、 大気中で も可能である。 Welding is performed in the air. Welding methods include fusion welding methods such as plasma arc welding, TIG welding, and laser welding, welding methods such as forging welding, friction welding, and brazing methods. In the case of pressure welding and brazing using a low-melting brazing material, it is possible even in air.
·更に、 別途に耐食性導電金属からなる部材を準備し、 その部材を鉛基盤に溶 接し、 その部材の一方を給電体に接合して、 通電回路を形成したものも有効であ る。  · Furthermore, it is also effective to separately prepare a member made of corrosion-resistant conductive metal, weld the member to a lead base, and join one of the members to a power feeder to form an energizing circuit.
一一電気伝導性を安定に確保するための接合部の恒久的な処置一一  Permanent treatment of joints to ensure stable electrical conductivity
給電体と鉛基盤との固定的な接合により、 次の様な、 電気伝導性を安定に確保 するための接合部の恒久的な処置が無駄なくできる。 例えば、 鉛基盤と給電体の 耐食性導電金属とが溶接接合がなされていない場合、 その接合部への電解液の浸 透による通電不良を防止するための恒久的な処置として、 次の様な方法があげら れる。  The fixed connection between the power supply and the lead base makes it possible to eliminate the following permanent treatment of the joint to ensure stable electrical conductivity. For example, if the lead base and the corrosion-resistant conductive metal of the power feeder are not welded together, the following method is used as a permanent measure to prevent poor current flow due to infiltration of the electrolyte into the joint. Is raised.
1 ) 接合部の耐食性樹脂による被覆処置。  1) Coating treatment of the joint with corrosion resistant resin.
2 ) 鉛基盤と耐食性導電金属の溶接は難しい加工である。 それに対し、 接合部 を加熱し、 鉛又は鉛合金を軟化させながら給電体の耐食性導電金属を圧着させる ことにより、 電解液が浸透しない接台状態を容易に得ることができ、 その圧着力 を除かない限りその接合状態が維持できる。 この方法による処置。  2) Welding of lead base and corrosion-resistant conductive metal is a difficult process. On the other hand, by heating the joint and compressing the corrosion-resistant conductive metal of the power supply while softening the lead or lead alloy, it is possible to easily obtain a mating state where the electrolyte does not penetrate, and remove the crimping force. The joined state can be maintained as long as it does not exist. Treatment by this method.
3 ) 鉛基盤の材料が鉛合金である場合、 鉛基盤と給電体の耐食性導電金属との 接合部の間に鉛板を挟み、 耐食性導電金属で鉛板を十分に変形できる程度の強い 圧着により、 電解液が浸透しない接合状態を容易に得ることができる。 この方法 による処置等。  3) When the lead base material is a lead alloy, a lead plate is sandwiched between the joint between the lead base and the corrosion-resistant conductive metal of the power feeder, and strong crimping is applied so that the corrosion-resistant conductive metal can sufficiently deform the lead plate. However, a bonding state in which the electrolyte does not penetrate can be easily obtained. Treatment by this method.
もし、 陽極基体の取り外しごとに、 給電体の取り外しが生じた場合、 上記に示 した電気伝導性を安定に確保するための接合部の恒久的な処置がその機能を失い、 再度その処置を行う無駄が発生することになる。 , If the feeder is removed each time the anode substrate is removed, the permanent treatment of the joint to ensure stable electrical conductivity described above loses its function, Waste of performing the treatment again will occur. ,
一一給電体による陽極基体の位置調整一一  Position Adjustment of Anode Substrate by Eleven Feeders
鉛基盤と陽極基体の間に取付けられた給電体は、 給電体の高さを変えることに より、 電極間隔にかかわる陽極基体の取付け位置の調整ができる。 給電体の高さ 調整は、 給電体と陽極基体との間に、 給電体に用いられているのと同じ材料から なる調整したい厚さの扳を挿入することによりできる。 複数の重ねた板を挿入す ることは、 接触抵抗の増大を招くので好ましくない。 この様に、 陽極基体の位置 を調整することにより、 部分的に電極間隔の微調整ができる。 その結果、 全体と しての電極間距離を均一に確保でき、 電解にて製造する品物の品質を更に向上で きる。  By changing the height of the power feeder attached between the lead base and the anode base, the mounting position of the anode base with respect to the electrode spacing can be adjusted. The height of the feeder can be adjusted by inserting a 扳 having a desired thickness made of the same material as that used for the feeder between the feeder and the anode base. Inserting a plurality of stacked plates is not preferable because it increases the contact resistance. In this way, by adjusting the position of the anode substrate, fine adjustment of the electrode interval can be partially performed. As a result, the distance between the electrodes as a whole can be secured uniformly, and the quality of products manufactured by electrolysis can be further improved.
一鉛基盤の被覆一  Lead-based coatings
長い時間、 電解を続けていると、 陽極基体に被覆された電極触媒が劣化し、 陽 極電位が上昇してくる。 鉛基盤が電解液と接触していると、 陽極電位の上昇に伴 い、 鉛基盤から鉛等が溶出する問題がある。 鉛基盤に耐食性を有する樹脂、 ゴム 又は耐食性金属で被覆することがこの問題を解決する有効な手段である。 耐食性 を有する樹脂として、 ふつ素化樹脂、 硝子繊維や力一ボン繊維で強化したェポキ シ樹脂やアクリル樹脂などが使用できる。 耐食性金属として、 チタン、 タンタル、 ニオブ、 ジルコニウム、 又はそれらを主成分とした合金などが使える。  If electrolysis is continued for a long time, the electrode catalyst coated on the anode substrate deteriorates, and the anode potential increases. When the lead substrate is in contact with the electrolyte, there is a problem that lead and the like are eluted from the lead substrate as the anode potential increases. Coating the lead base with a corrosion-resistant resin, rubber or corrosion-resistant metal is an effective means to solve this problem. As the resin having corrosion resistance, fluorinated resin, epoxy resin or acrylic resin reinforced with glass fiber or carbon fiber can be used. As the corrosion-resistant metal, titanium, tantalum, niobium, zirconium, or an alloy containing these as a main component can be used.
作用  Action
本発明による電解装置は、 上記の構造を有することで次の作用が得られた。 The electrolytic device according to the present invention has the following effects by having the above structure.
1 ) 鉛基盤への陽極基体の取付け構造と鉛基盤から陽極基体への通電の構造と を別々に設けられる作用が得られた。 1) The effect of separately providing the structure for mounting the anode substrate to the lead substrate and the structure for conducting electricity from the lead substrate to the anode substrate was obtained.
2 ) 給電体を用いた通電の構造が、 鉛基盤と陽極基体との間に設けられる作用 が得られた。 3 ) その結果、 鉛基盤から陽極基体への安定で充分な雩気伝導性が容易に確保 できる接合構造や接合機構をつくりだせる作用が得られた。 2) The effect of providing the current-carrying structure using the power feeder between the lead base and the anode base was obtained. 3) As a result, the effect of creating a bonding structure and a bonding mechanism that can easily secure stable and sufficient air conductivity from the lead substrate to the anode substrate was obtained.
4 ) 鉛基盤への陽極基体の着脱可能な取付け機構が簡素化され、 小型化できる 作用が得られた。  4) The mechanism for attaching and detaching the anode substrate to and from the lead substrate was simplified, and the effect of miniaturization was obtained.
5 ) 陰極と陽極との間隔を高い精度で容易に調整できる作用が得られた。  5) The effect of easily adjusting the distance between the cathode and the anode with high accuracy was obtained.
6 ) 陽極として使用していた鉛又は鉛合金を容易に利用できる作用が得られた。 6) The effect of easily using the lead or lead alloy used as the anode was obtained.
7 ) 電解液が鉛基盤と直接に接することを防止するための鉛基盤の被覆加工が 容易にできる作用が得られた。 7) The effect of easily coating the lead base to prevent the electrolyte from coming into direct contact with the lead base was obtained.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の好適実施例に従う平板形状の陽極の一例を示す外観図。  FIG. 1 is an external view showing an example of a plate-shaped anode according to a preferred embodiment of the present invention.
図 2は、 本発明の好適実施例に従う平板形状の陽極の一例を示す平面図。  FIG. 2 is a plan view showing an example of a plate-shaped anode according to a preferred embodiment of the present invention.
図 3は、 本発明の好適実施例に従う平板形状の陽極の一例を示す断面図。  FIG. 3 is a sectional view showing an example of a flat plate-shaped anode according to a preferred embodiment of the present invention.
図 4は、 本発明の好適実施例に従う円弧形状内面の陽極の一例を示す外観図。 図 5は、 本発明の好適実施例に従う円弧形状内面の陽極の一例を示す平面図。 図 6は、 本発明の好適実施例に従う円弧形状内面の陽極の一例を示す断面図。 図 7は、 本発明の好適実施例に從ぅ円弧形状内面の陽極の一例を示す部分断面 図。  FIG. 4 is an external view showing an example of an arc-shaped inner surface anode according to a preferred embodiment of the present invention. FIG. 5 is a plan view showing an example of an arc-shaped inner surface anode according to a preferred embodiment of the present invention. FIG. 6 is a cross-sectional view showing an example of an arc-shaped inner surface anode according to a preferred embodiment of the present invention. FIG. 7 is a partial cross-sectional view showing an example of an arc-shaped inner surface anode according to a preferred embodiment of the present invention.
図 8は、 本発明の平板形状の陽極の一例を示す部分断面図。  FIG. 8 is a partial cross-sectional view showing an example of a flat anode according to the present invention.
図 9は、 本発明の円弧形状内面の陽極の一例を示す部分断面図。  FIG. 9 is a partial cross-sectional view showing an example of the arc-shaped inner surface anode of the present invention.
図 1 0は、 本発明の好適実施例に従う平板形状の陽極の一例を示す外観図。 図 1 1は、 本発明の好適実施例に従う平板形状の陽極の一例を示す部分断面図 c 図 1 2は、 本発明の好適実施例に従う円弧形状内面の陽極の一例を示す外観図 c 図 1 3は、 本発明の好適実施例に従う円弧形状内面の陽極の一例を示す平面図 c 図 1 4は、 本発明の好適実施例に従う円弧形状内面の陽極の一例を示す断面図 c 図 1 5は、 本発明の好適実施例に従う円弧形状内面の,陽極の一例を示す部分断 面図。 FIG. 10 is an external view showing an example of a plate-shaped anode according to a preferred embodiment of the present invention. Figure 1 1 is a partial sectional view c Figure 1 2 shows an example of an anode of a flat plate in accordance with a preferred embodiment of the present invention, external view c Figure 1 showing an example of an anode of an arc-shaped inner surface in accordance with a preferred embodiment of the present invention 3 is a plan view showing an example of an arc-shaped inner surface anode according to a preferred embodiment of the present invention.c FIG. 14 is a cross-sectional view showing an example of an arc-shaped inner surface anode according to a preferred embodiment of the present invention. FIG. 15 is a partial cross-sectional view showing an example of an anode on the inner surface of a circular arc shape according to the preferred embodiment of the present invention.
図 1 6は、 本発明によるその他構造の鉛基盤への陽極基体及び給電体の取付け た部分断面図である。  FIG. 16 is a partial cross-sectional view in which an anode substrate and a power supply are mounted on a lead substrate having another structure according to the present invention.
発明を実施する最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の具体的実施例を示し、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail by showing specific examples of the present invention.
一平板形状の陽極 2 0—  One-plate anode 20—
図 1は、 本発明の好適実施例に従う電解装置が平板形伏を有する陽極 2 0の外 観を示す。 図 2は、 図 1の部分平面図を示す。 図 3は、 図 2の断面図である。 一円弧形状内面を有する電解用陽極 2 0—  FIG. 1 shows the appearance of an anode 20 having a flat plate shape in an electrolytic apparatus according to a preferred embodiment of the present invention. FIG. 2 shows a partial plan view of FIG. FIG. 3 is a cross-sectional view of FIG. Anode for electrolysis with a circular arc inner surface 20
図 4は、 本発明の好適実施例に従う電解装置が円弧形状内面を有する陽極 2 0 の外観を示す。 図 5は、 図 4の平面図である。 図 6は、 図 5の断面図である。 図 7は、 図 6の部分拡大断面図である。 図 8及び図 9は、 本発明によるその他構造 の鉛基盤 1への陽極基体 2及び給電体 3の取付けた部分断面図である。  FIG. 4 shows the appearance of an anode 20 having an arc-shaped inner surface in an electrolytic device according to a preferred embodiment of the present invention. FIG. 5 is a plan view of FIG. FIG. 6 is a cross-sectional view of FIG. FIG. 7 is a partially enlarged sectional view of FIG. FIG. 8 and FIG. 9 are partial cross-sectional views in which the anode base 2 and the power supply 3 are attached to a lead base 1 having another structure according to the present invention.
一平板形状の電解用陽極 2 0の実施例の詳細説明一  Detailed Description of Example of One-Plate Electrolytic Anode 20
図 1、 図 2及び図 3は、 本発明の好適実施例に従う電解装置の陽極 2 0が平板 形状の鉛基盤 1、 陽極基体 2及び給電体 3等を具備するものを示す。  FIGS. 1, 2 and 3 show an electrolysis apparatus according to a preferred embodiment of the present invention, in which the anode 20 includes a plate-shaped lead base 1, an anode base 2, a power supply 3, and the like.
鉛基盤 1は、 外部からの通電端子 1 3及び陽極基体 2と給電体 3を取り付ける ための貫通穴を有する平板形状の鉛と錫からなる合金である。  The lead substrate 1 is a flat plate-shaped alloy made of lead and tin having through-holes for mounting the current-carrying terminals 13 and the anode substrate 2 and the power supply 3 from the outside.
3つに分割されたチタンからなる陽極基体 2の裏面には、 雄ねじ付きのチタン 棒 4が溶接によって接合されている。 そのチタン棒 4がチタンの給電体 3及び鉛 基盤 1に設けられた穴を通り、 鉛基盤 1の裏側でチタンのヮッシヤー 6を介して チタンのナツ ト 5により、 陽極基体 2が着脱可能な機構で鉛基盤 1に締め付け取 付けられている。 ナツ ト 5の締めつけによつて、 給電体 3と電極基体 2との诵電 に必要な接触圧力が得られる構造となっている。 陽極基体 2の表面は酸化ィリジ ゥム成分の電極触媒が被覆されている。 An externally threaded titanium rod 4 is welded to the back surface of the anode substrate 2 made of titanium divided into three parts. A mechanism in which the titanium rod 4 passes through the holes provided in the power feeder 3 and the lead base 1 made of titanium, and the anode base 2 can be attached and detached by the nut 5 of the titanium via the titanium 6 on the back side of the lead base 1. And is fastened to the lead base 1. By tightening the nut 5, the electric current between the power feeder 3 and the electrode base 2 is reduced. The required contact pressure is obtained. The surface of the anode substrate 2 is coated with an electrode catalyst of a iridium oxide component.
3つに分割され、 穴が設けられたチタンの給電体 3が、 鉛基盤 1と陽極基体 2 との間の陽極基体 2から伸びたチタン棒 4の周辺に均一に配置されている。 給電 体 3の裏側には、 ねじ部が白金で被覆された雄ねじ付きチタン棒 7が溶接によつ て設けられている。 そのチタン棒 7は陽極基体のチタン棒 4とは別に設けられた 鉛基盤 1の穴を通り、 鉛基盤 1に鉛錫合金で溶接されたチタンのワッシャー 9を 介して白金が被覆されたチタンのナツ ト 8により締め付けられた後、 ワッシャー 9とナツ ト 8及びナツ ト 8とチタン棒 7とは、 鉛錫合金を用いて、 溶接がなされ ている。 これらの接合加工により、 給電体 3と鉛基盤 1とは、 固定的な接合となつ ている。  A titanium feeder 3 divided into three and provided with holes is uniformly arranged around a titanium rod 4 extending from the anode base 2 between the lead base 1 and the anode base 2. On the back side of the power supply body 3, a titanium rod 7 with an external thread whose screw portion is coated with platinum is provided by welding. The titanium rod 7 passes through a hole in the lead base 1 provided separately from the titanium rod 4 of the anode base, and is coated with platinum through a titanium washer 9 welded to the lead base 1 with a lead-tin alloy. After being tightened by the nut 8, the washer 9 and the nut 8, and the nut 8 and the titanium rod 7 are welded using a lead-tin alloy. By these joining processes, the power feeder 3 and the lead base 1 are fixedly joined.
また、 陽極基体と鉛基盤との間の空間には、 陽極基体を支持し陰極との間隔を 高い精度で一定に保っためにふつ素化樹脂の支持体 1 0が配置されている。  In the space between the anode substrate and the lead substrate, a support 10 made of a fluorinated resin is arranged to support the anode substrate and keep the distance from the cathode constant with high accuracy.
本実施例での主な通電回路は、 通電端子 1 3から通電され、 鉛基盤 1、 ヮッシャ —9、 ボルト 8、 チタン棒 7、 給電体 3を通り、 陽極基体 2に至るものである。 鉛基盤 1から給電体 3までが、 固定的に接台された通電回路となる。 そして、 陽 極基体 2と給電体 3との接触部は充分に広い接触面積と接触圧力が確保され、 そ れぞれの接触面には白金が被覆され、 接触抵抗が大きく低減されている。  The main energizing circuit in this embodiment is energized from the energizing terminal 13, passes through the lead base 1, the washer 9, the bolt 8, the titanium rod 7, the power supply 3, and reaches the anode base 2. The lead base 1 to the power feeder 3 form an energized circuit fixedly mounted. In addition, a sufficiently large contact area and contact pressure are secured in the contact portion between the anode base 2 and the power supply 3, and each contact surface is coated with platinum, so that the contact resistance is greatly reduced.
以上より、 本実施例の電解装置の陽極は、 鉛基盤と陽極基体との間で、 長期間 に渡り接触抵抗の増加が生じない安定で充分な電気伝導性を有する通電回路が形 成され、 陽極基体 2に安定に通電できるようになった。 また、 陽極基体の取り外 し機構部のチタン棒 4とナツ 卜 5との溶着の発生のおそれもなくなった。 さらに、 陽極基体の取り外しの繰り返しによる鉛基盤の表面の損傷も、 給電体 3によって、 防ぐことができるようになつた。 一円弧形状内面を有する電解用陽極 2 0の実施例の詳細説明一 また、 図 4、 図 5、 図 6及び図 7は、 鉛基盤 1、 陽極基体 2及び給電体 3等を 具備する、 本発明の好適実施例に従う円弧形状内面を有する陽極 2 0を示す。 尚、 図 4の陽極基体 2、 給電体 3、 支持体 1 0の厚さ寸法を誇張して描いた。 鉛基盤 1は、 外部からの通電端子 1 3及び陽極基体 2を取り付けるための貫通 穴を備えた円弧形状内面を有する鉛と銀からなる合金である。 As described above, the anode of the electrolysis apparatus of the present embodiment forms a stable and sufficient electric conduction circuit between the lead base and the anode base so that the contact resistance does not increase for a long period of time, A current can be stably supplied to the anode substrate 2. In addition, there is no danger of welding between the titanium rod 4 and the nut 5 in the mechanism for removing the anode substrate. In addition, the power supply 3 can prevent the lead substrate surface from being damaged by repeated removal of the anode substrate. Detailed Description of Embodiment of Electrolytic Anode 20 Having One Circular Inner Inner Surface FIG. 4, FIG. 5, FIG. 6, and FIG. 7 show a lead base 1, an anode base 2, a power supply 3, etc. Fig. 4 shows an anode 20 having an arc-shaped inner surface according to a preferred embodiment of the invention. Note that the thickness dimensions of the anode substrate 2, the power supply 3, and the support 10 in FIG. 4 are exaggerated. The lead base 1 is an alloy made of lead and silver having an arc-shaped inner surface provided with a through hole for mounting the current-carrying terminal 13 and the anode base 2 from the outside.
陽極基体 2は、 1 8枚に分割され、 鉛基盤 1と同様の円弧内面形状を有するチ タン板からなる。 陽極基体 2の裏面には、 雄ねじ付きのチタン棒 4が溶接によつ て設けられている。 そのチタン棒 4が鉛基盤 1に設けられた穴を通り、 鉛基盤 1 の裏側でチタンのワッシャー 6を介してチタンのナツ ト 5により、 陽極基体 2が 鉛基盤 1に着脱可能な機構で締め付け取付けられている。 ナツ ト 5の締めつけに よって、 給電体 3と電極基体 2との通電に必要な接触圧力が得られる。 陽極基体 2の表面は酸化ィリジゥムを含む電極触媒が被覆され、 給電体 3と接触する陽極 基体 2の面は、 白金が被覆されている。  The anode substrate 2 is divided into 18 sheets, and is made of a titanium plate having the same arc inner surface shape as the lead substrate 1. On the back surface of the anode base 2, a titanium rod 4 having an external thread is provided by welding. The titanium rod 4 passes through the hole provided in the lead base 1, and the anode base 2 is fastened to the lead base 1 by a nut 5 using a titanium nut 5 through a titanium washer 6 on the back side of the lead base 1. Installed. By tightening the nut 5, a contact pressure necessary for energizing the power supply body 3 and the electrode base 2 can be obtained. The surface of the anode substrate 2 is coated with an electrode catalyst containing iridium oxide, and the surface of the anode substrate 2 that contacts the power supply 3 is coated with platinum.
チタンと鉛銀合金とのクラッ ド材からなる円盤状の給電体 3力 鉛基盤 1に設 けられた穴の周辺部の表面に鉛錫合金を用いて溶接され、 固定的に接合されてい る。 陽極基体 2と接する給電体 3のチタン表面は、 白金によって被覆されている。 また、 陽極基体 2と鉛基盤 1との間の空間には、 陽極基体 2を支持し陰極との 間隔を高い精度で一定に保っためのチタンの支持体 1 0が陽極基体 2に取付けら れ、 配置している。  Disc-shaped power feeder made of clad material of titanium and lead-silver alloy 3 Force Lead-tin alloy is fixedly welded to the surface of the hole around the lead base 1 using a lead-tin alloy . The titanium surface of the power feeder 3 in contact with the anode substrate 2 is coated with platinum. Further, in the space between the anode base 2 and the lead base 1, a titanium support 10 for supporting the anode base 2 and keeping the distance from the cathode constant with high precision is attached to the anode base 2. , Has been placed.
本実施例の電解装置の陽極は、 通電端子 1 3から通電され、 鉛基盤 1、 給電体 3を通り、 陽極基体 2に給電される。 このことより、 鉛基盤と陽極基体との間で、 充分な電気伝導性を有する通電回路が確保され、 且つ長期に渡り安定な通電が確 保できるようになった。 その結果、 陽極基体の取り外し機構部のチタン棒 4とナツ ト 5との溶着の発生もなくなった。 また、 陽極基体の取.り外しによる鉛基盤の表 面の損傷も、 給電体 3により、 防ぐことができるようになった。 更に、 給電体 3 及び支持体 1 0が陽極基体 2を支持し、 陽極基体 2は所定の円弧形状内面形状を 保持することができ、 均一な電極間隔を確保できるようになつた。 The anode of the electrolysis apparatus according to the present embodiment is supplied with electricity from the conducting terminals 13, passes through the lead base 1 and the power supply 3, and is supplied with power to the anode base 2. As a result, an energizing circuit having sufficient electric conductivity was secured between the lead base and the anode base, and stable energization was ensured for a long period of time. As a result, the titanium rod 4 and nut The occurrence of welding with G5 also disappeared. Also, the power supply 3 can prevent the surface of the lead substrate from being damaged due to the removal of the anode substrate. Further, the power supply body 3 and the support body 10 support the anode base 2, and the anode base 2 can maintain a predetermined arc-shaped inner surface shape, so that a uniform electrode interval can be secured.
図 8は、 他の本発明での平板形状の陽極 2 0の部分断面図である。 陽極基体 2 の裏面には穴付きのボスが設けられ、 チタン製の雌ねじ付き留め具 1 1とチタン 製の雄ねじ 1 2を用いて、 鉛基盤に着脱可能な方法で取り付けられている。 陽極 基体 2への給電は、 鉛基盤に溶接されたチタン製の給電体 3から行われる。 陽極 基体 2と鉛基盤 1との間の空間には、 陽極基体 2を支持し陰極との間隔を高 t、精 度で一定に保っためのチタン製の支持体 1 0が配置されている。  FIG. 8 is a partial sectional view of another plate-shaped anode 20 according to the present invention. A boss with a hole is provided on the back surface of the anode substrate 2, and is attached to the lead substrate in a detachable manner using titanium female fasteners 11 and titanium male screws 12. Power is supplied to the anode base 2 from a titanium power feeder 3 welded to a lead base. In the space between the anode base 2 and the lead base 1, a titanium support 10 for supporting the anode base 2 and keeping the distance between the anode base 2 and the cathode high and accurate and constant is arranged.
図 9は、 他の本発明での円弧形状内面を有する陽極 2 0である。 陽極基体 2に チタン製の雄ねじ付き棒 4が溶接され、 その雄ねじ付き棒 4、 ふつ素化樹脂のヮッ シヤー 6及びチタンのナツ ト 5を用いて、 鉛基盤に着脱可能な状態で取り付けら れている。 陽極基体 2への給電は、 陽極基体 2と鉛基盤 1の間に設けられたチタ ン製の給電体 3によって行われ、 陽極基体 2の取り付け機構からの通電回路はヮッ シヤー 6によって遮断している。 給電体 3には雄ねじ付き棒 7が溶接され、 雄ね じ付き棒 7は鉛基盤の穴を貫通し、 チタンのナツ ト 8とワッシャー 9によって締 め付けられている。 ワッシャー 9と鉛基盤 1の間には、 鉛板を挿入しナツ ト 8を 締め上げることにより、 チタンのワッシャー 9と鉛基盤 1との固定的な接合部へ 電解液が進入することを防ぎ、 鉛基盤 1の酸化による接触抵抗の増大を防止して いる。 チタン棒 7とナツ ト 8とは溶接がなされ、 鉛基盤 1から給電体 3への通電 の安定を図っている。 チタン棒 7は陽極基体 2への通電容量を確保できる断面積 を有している。  FIG. 9 shows another anode 20 having an arc-shaped inner surface according to the present invention. A titanium externally threaded rod 4 is welded to the anode substrate 2 and is detachably attached to the lead substrate using the externally threaded rod 4, a fluorinated resin mesh 6 and a titanium nut 5. ing. Power is supplied to the anode base 2 by a titanium feeder 3 provided between the anode base 2 and the lead base 1, and the energization circuit from the mounting mechanism of the anode base 2 is cut off by the hash 6. I have. An externally threaded rod 7 is welded to the power supply 3, and the externally threaded rod 7 penetrates a hole in the lead base and is fastened by a titanium nut 8 and a washer 9. Inserting a lead plate between washer 9 and lead base 1 and tightening nut 8 prevent the electrolyte from entering the fixed joint between titanium washer 9 and lead base 1. An increase in contact resistance due to oxidation of the lead base 1 is prevented. The titanium rod 7 and the nut 8 are welded to stabilize the power supply from the lead base 1 to the power supply 3. The titanium rod 7 has a cross-sectional area that can secure a current carrying capacity to the anode substrate 2.
次に、 本発明の他の具体的実施例を示し、 本発明を更に詳細に説明する。 一平板形状の陽極 1 2 0— - 図 1 0は、 本発明の好適実施例に従う電解装置が平板形状を有する陽極 1 2 0 の外観を示す。 Next, the present invention will be described in more detail by showing other specific examples of the present invention. FIG. 10 shows the appearance of the anode 120 having a flat plate shape in the electrolytic apparatus according to the preferred embodiment of the present invention.
図 1 1は、 図 1 0の部分断面図を示す。  FIG. 11 shows a partial cross-sectional view of FIG.
一円弧形状内面を有する陽極 1 2 0—  Anode with inner surface of one circular arc 1 2 0—
図 1 2は、 本発明の好適実施例に従う電解装置が円弧形状内面を有する陽極 1 2 0の外観を示す。  FIG. 12 shows the appearance of an anode 120 having an arc-shaped inner surface in an electrolysis apparatus according to a preferred embodiment of the present invention.
図 1 3は、 図 1 2の平面図である。  FIG. 13 is a plan view of FIG.
図 1 4は、 図 1 2の断面図である。  FIG. 14 is a cross-sectional view of FIG.
図 1 5は、 図 1 4の部分拡大断面図である。  FIG. 15 is a partially enlarged sectional view of FIG.
図 1 6は、 本発明によるその他構造の鉛基盤 1 0 1への陽極基体 1 0 2及び給 電体 1 0 3の取付けた部分断面図である。  FIG. 16 is a partial cross-sectional view in which the anode substrate 102 and the power supply 103 are attached to a lead substrate 101 having another structure according to the present invention.
一平板形状の電解用陽極 1 2 0の実施例の詳細説明一  Detailed Description of Example of One Plate Electrolytic Anode 120
図 1 0及び図 1 1は、 本発明の好適実施例に従う電解装置の陽極 1 2 0が平板 形状の鉛基盤 1 0 1、 陽極基体 1 0 2及び給電体 1 0 3等を具備するものを示す c 鉛基盤 1 0 1は、 外部からの通電端子 1 1 3及び陽極基体 1 0 2と給電体 1 0 3を取り付けるための貫通穴を有する平板形状の鉛と錫からなる合金である。 給電体 1 0 3は、 4つに分割した厚さ 8 mmのチタン板であって、 鉛基盤 1 0 1に取付けるための貫通穴及び陽極基体 1 0 2を皿ねじ 1 1 4で取付けるための 雌ねじが設けられている。 給電体 1 0 3はチタン製の雌ねじ付き留め具 1 1 1と 雄ねじ 1 1 2によって締付け、 鉛基盤 1 0 1に取付け後、 雌ねじ付き留め具 1 1 1の鍔部と鉛基盤 1 0 1とを溶接した。  FIGS. 10 and 11 show an electrolysis apparatus according to a preferred embodiment of the present invention, in which the anode 120 has a plate-shaped lead base 101, an anode base 102, a power feeder 103, and the like. The lead substrate 101 shown in the figure is a flat plate-shaped alloy having through holes for mounting the current-carrying terminals 113 from the outside, the anode substrate 102 and the power feeder 103, and is made of an alloy composed of lead and tin. The power feeder 103 is an 8 mm thick titanium plate divided into four, and has a through hole for mounting on the lead base 101 and an anode base 102 for mounting the anode base 102 with the flathead screw 114. An internal thread is provided. The power feeder 103 is tightened with titanium female screw 1 1 1 and male screw 1 1 2 and attached to the lead base 101, then the female screw 1 1 1 flange and lead base 1 1 Was welded.
陽極基体 1 0 2は、 2つに分割した厚さ 3 mmのチタン板であって、 チタンの 皿ねじ 1 1 4によって給電体 1 0 3に取付けるための貫通穴が有り、 陰極と向き 合う面には酸化ィリジゥムからなる電極触媒が被覆され, その裏面には給電体 1 0 3との通電接触抵抗を下げるために白金を被覆した。 The anode substrate 102 is a titanium plate having a thickness of 3 mm divided into two, and has a through hole for attaching to the power feeder 103 with a countersunk titanium screw 114, facing the cathode. The mating surface was coated with an electrode catalyst made of iridium oxide, and the back surface was coated with platinum to reduce the current-carrying contact resistance with the feeder 103.
本実施例での主な通電回路は、 通電端子 1 1 3から通電され、 鉛基盤 1 0 1、 雌ねじ付き留め具 1 1 1、 雄ねじ 1 1 2と給電体 1 0 3のボス、 給電体 1 0 3を 通り、 陽極基体 1 0 2に至るものである。 鉛基盤 1 0 1から給電体 1 0 3までが、 固定的に接合された通電回路となる。 そして、 陽極基体 1 0 2と給電体 1 0 3と の接触部は充分に広い接触面積と接触圧力が確保され、 それぞれの接触面には白 金が被覆され、 接触抵抗が大きく低減されている。  In the present embodiment, the main energizing circuit is energized from the energizing terminal 113, the lead base 101, the female threaded fastener 111, the male screw 111, the boss of the power source 103, the power source 110, and Through 0 3, the anode substrate 102 is reached. The lead base 101 to the power feeder 103 form a fixedly connected energized circuit. The contact portion between the anode substrate 102 and the power supply body 103 has a sufficiently large contact area and contact pressure, and each contact surface is coated with platinum to greatly reduce contact resistance. .
また、 電解液と接する個所の鉛基盤 1及び雌ねじ付き留め具 1 1 1はガラス繊 維入りのエポキシ樹脂の被覆材 1 1 5で被覆し、 電解液への微量な鉛成分の溶出 を防止した。  In addition, the lead base 1 and the female threaded fastener 1 1 1 in contact with the electrolyte were covered with an epoxy resin coating 1 15 containing glass fiber to prevent the elution of trace amounts of lead components into the electrolyte. .
以上より、 本実施例の電解装置の陽極 1 2 0は、 鉛基盤 1 0 1と陽極基体 1 0 2との間で、 長期間に渡り接触抵抗の増加が生じない安定で充分な電気伝導性を 有する通電回路が形成され、 陽極基体 1 0 2に安定に通電できるようになった。 また、 陽極基体 1 0 2の取り外し機構部では溶着の発生のおそれもなくなった。 さらに、 陽極基体 2の取り外しの繰り返しによる鉛基盤 1 0 1の表面の損傷も、 給電体 1 0 3によって、 防ぐことができるようになった。  As described above, the anode 120 of the electrolytic apparatus of the present example has a stable and sufficient electric conductivity between the lead substrate 101 and the anode substrate 102 such that the contact resistance does not increase for a long period of time. Thus, an energizing circuit having the following formula was formed, and it was possible to stably energize the anode substrate 102. In addition, there is no possibility of occurrence of welding in the mechanism for removing the anode substrate 102. Further, the power supply body 103 can prevent the surface of the lead substrate 101 from being damaged by the repeated removal of the anode substrate 2.
一円弧形状内面を有する電解用陽極 1 2 0の実施例の詳細説明一  Detailed Description of Embodiment of Electrolytic Anode 120 Having One Arc-Shaped Inner Surface
また、 図 1 2、 図 1 3、 図 1 4及び図 1 5は、 鉛基盤 1 0 1、 陽極基体 1 0 2 及び給電体 1 0 3等を具備する、 本発明の好適実施例に従う円弧形状内面を有す る陽極 1 2 0を示す。  FIGS. 12, 13, 14, and 15 show an arc shape according to a preferred embodiment of the present invention, including a lead base 101, an anode base 102, a power feeder 103, and the like. An anode 120 having an inner surface is shown.
尚、 図 1 2の陽極基体 1 0 2、 給電体 1 0 3の厚さは誇張して描き、 皿ねじ 1 1 4の記載は割愛した。  The thicknesses of the anode substrate 102 and the power feeder 103 in FIG. 12 are exaggerated and the countersunk screws 114 are omitted.
鉛基盤 1 0 1は、 外部からの通電端子 1 1 3及び陽極基体 1 0 2を取り付ける ための貫通穴を備えた円弧形状内面を有する鉛と銀から,なる合金である。 The lead base 101 attaches the energized terminal 113 from the outside and the anode base 102 Is an alloy made of lead and silver having an arc-shaped inner surface with a through hole for it.
陽極基体 1 0 2は、 1 8枚に分割した厚さ l mmのチタン板であって、 鉛基盤 1 0 1と同様の円弧内面形状を有するチタン板からなる。 陽極基体 1 0 2には、 皿ねじ 1 1 4によって給電体 1 0 3に取付けるための貫通穴が有り、 陰極と向き 合う面には酸化イリジウムを含む電極触媒が被覆され、 給電体 1 0 3と接触する 陽極基体 1 0 2の面は、 白金で被覆した。  The anode substrate 102 is a titanium plate having a thickness of l mm and divided into 18 pieces, and is made of a titanium plate having the same arc-shaped inner surface shape as the lead substrate 101. The anode substrate 102 has a through hole for attachment to the power supply 103 by means of a countersunk screw 114. The surface facing the cathode is coated with an electrode catalyst containing iridium oxide. The surface of the anode substrate 102 in contact with was coated with platinum.
給電体 1 0 3は、 陽極基体 1 0 2と同様の形状で 1 8枚に分割した厚さ 5 mm のチタン板からなる。 給電体 1 0 3の裏面には、 雄ねじ付きのチタン棒 1 0 7力 溶接によって設けられている。 そのチタン棒 1 0 7が鉛基盤 1 0 1に設けられた 穴を通り、 鉛基盤 1 0 1の裏側でチタンのヮッシャ一 1 0 6を介してチタンのナツ ト 1 0 5により、 給電体 1 0 3が鉛基盤 1 0 1に取付けられている。 ワッシャー 1 0 6は鉛基盤 1 0 1と溶接によって接合させた。  The power feeding body 103 is made of a titanium plate having a thickness similar to that of the anode substrate 102 and having a thickness of 5 mm divided into 18 pieces. On the back surface of the power supply body 103, a titanium rod 107 with an external thread is provided by force welding. The titanium rod 107 passed through the hole provided in the lead base 101, and the titanium nut 105 through the titanium washer 106 on the back side of the lead base 101. 03 is attached to the lead base 101. The washer 106 was joined to the lead base 101 by welding.
本実施例の電解装置の陽極 1 2 0は、 通電端子 1 1 3から通電され、 鉛基盤 1 0 1、 ワッシャー 1 0 6、 ナッ ト 1 0 5、 チタン棒 1 0 7、 給電体 1 0 3、 皿ね じ 1 1 4の締付け部を通り陽極基体 1 0 2に給電される。 このことより、 鉛基盤 1 0 1と陽極基体 1 0 2との間で、 充分な電気伝導性を有する通電回路が確保さ れ、 且つ長期に渡り安定な通電が確保できるようになった。 その結果、 陽極基体 2の取り外しも容易となった。 また、 陽極基体の取り外しによる鉛基盤 1の損傷 が、 給電体 1 0 3により、 防ぐことができるようになつた。  The anode 120 of the electrolysis apparatus of this embodiment is energized from the current-carrying terminal 113, and the lead base 101, washer 106, nut 105, titanium rod 107, power feeder 103 Power is supplied to the anode substrate 102 through the fastening portion of the plate screw 114. As a result, between the lead substrate 101 and the anode substrate 102, a current-carrying circuit having sufficient electric conductivity was secured, and stable current could be secured for a long period of time. As a result, the removal of the anode substrate 2 became easy. In addition, the power supply body 103 can prevent the lead substrate 1 from being damaged by the removal of the anode substrate.
本発明による電解装置の陽極が、 上記の構造を有することで次の効果が得られ た。  The following effects were obtained when the anode of the electrolytic device according to the present invention had the above structure.
1 ) 鉛基盤から陽極基体への安定で充分な電気伝導性が容易に確保できる効果 がえられた。  1) Stable and sufficient electrical conductivity from the lead substrate to the anode substrate was obtained easily.
2 ) 鉛基盤への陽極基体の着脱可能な取付け機構が簡素化され、 小型化できる 効果が得られた。 2) The mechanism for attaching and detaching the anode base to the lead base can be simplified and downsized. The effect was obtained.
3 ) 軟らかく、 損傷を受けやすく、 電極間隔に大きな影響をおよぼす鉛基盤の 表面を保護できる効果が得られた。  3) The effect of protecting the surface of the lead base, which is soft and susceptible to damage, and greatly affects the electrode spacing, was obtained.
4 ) 陰極と陽極との間隔を高い精度で容易に調整できる効果が得られた。 4) The effect of easily adjusting the distance between the cathode and the anode with high accuracy was obtained.
5 ) 陽極として使用していた鉛又は鉛合金を容易に、 低コストで利用できる効 果が得られた。 5) Lead or lead alloy used as the anode was easily and inexpensively used.
6 ) 電解液が鉛基盤と直接に接することを防止するための鉛基盤の被覆加工が 容易にできる効果が得られた。  6) The effect of facilitating coating of the lead base to prevent the electrolyte from coming into direct contact with the lead base was obtained.
以上の効果から、 さらに、 次の総合的な効果を得た。  From the above effects, the following comprehensive effects were obtained.
大型で高 t、電流密度で操業される電解装置へ、 優れた性能を有するチタン等の 耐食性導電金属に電極触媒を被覆した陽極基体がその性能を損なうことなく、 容 易に、 低コストで使用できるようになった。  Anode bases coated with an electrode catalyst on a corrosion-resistant conductive metal such as titanium, which has excellent performance, can be used easily and at low cost without compromising the performance of large electrolysis equipment operated at high t and current density. Now you can.

Claims

請 求 の 範 囲 . The scope of the claims .
1. 陽極と陰極との間に電解液が維持できる電解装置において、  1. In an electrolytic device that can maintain an electrolytic solution between the anode and the cathode,
該陽極が、  The anode is
ァ) 外部からの通電端子を有し、 該陰極と一定間隔で向き合う表面を有する鉛 または鉛合金からなる鉛基盤と、  A) a lead base made of lead or a lead alloy, having a current-carrying terminal from the outside and having a surface facing the cathode at regular intervals;
ィ) 該鉛基盤の表面上に着脱可能に取付けられ、 該陰極と一定間隔で向き合う ように設けられ、 該陰極と向き合う面が電極触媒で被覆されて t、る耐食性導電金 属からなる陽極基体と、  A) an anode substrate made of a corrosion-resistant conductive metal, which is detachably mounted on the surface of the lead substrate and is provided so as to face the cathode at regular intervals, and the surface facing the cathode is covered with an electrode catalyst; When,
ゥ) 該鉛基盤と該陽極基体との間に分割配置し、 該鉛基盤及び該陽極基体のい ずれとも充分な電気伝導性を確保するように、 該鉛基盤と固定的に接合され、 該 陽極基体と接触している耐食性導電金属からなる給電体と  ゥ) The lead base and the anode base are divided and arranged, and both the lead base and the anode base are fixedly joined to the lead base so as to secure sufficient electric conductivity. A feeder made of a corrosion-resistant conductive metal in contact with the anode substrate;
を具備することを特徴とする電解装置。 An electrolysis device comprising:
2. 該鉛基盤と該給電体とが溶接されている請求項 1の電解装置。  2. The electrolytic device according to claim 1, wherein the lead base and the power supply body are welded.
3. 該鉛基盤の表面と該給電体とが溶接されている請求項 2記載の電解装置。  3. The electrolytic device according to claim 2, wherein the surface of the lead base and the power supply body are welded.
4. 該鉛基盤が貫通穴を有し、 該給電体が、 該貫通穴を貫通している棒を有 し、 該鉛基盤の裏面でこの棒に雌ねじ又は雄ねじが取り付けられていて、 該給電 体が該鉛基盤に固定的に接合されている請求項 1記載の電解装置。 4. The lead base has a through hole, the power supply body has a rod passing through the through hole, and a female screw or a male screw is attached to the rod on the back surface of the lead base, The electrolytic device according to claim 1, wherein a body is fixedly joined to the lead base.
5 . 該鉛基盤が貫通穴を有し、 該陽極基体が、 該貫通穴を貫通している棒を有 し、 該鉛基盤の裏面でこの棒に雌ねじ又は雄ねじが取り付けられており、 これに よって、 該陽極基体が該鉛基盤に取り外し可能に連結されている請求項 1記載の  5. The lead base has a through hole, the anode base has a rod passing through the through hole, and a female screw or a male screw is attached to the rod on the back surface of the lead base. Therefore, the anode substrate is detachably connected to the lead substrate.
6. 該鉛基盤が貫通穴を有し、 該貫通穴に棒が設けられ、 該棒が該鉛基盤の裏 面で固定され、 該陽極基体が穴を有し、 該鉛基盤の表面側から雄ねじが該陽極基 体の穴を介して該棒に取り付けられており、 これによつて、 該陽極基体が該鉛基 盤に取り外し可能に連結されている請求項 1記載の電解装置。 6. The lead base has a through hole, a rod is provided in the through hole, the rod is fixed on the back surface of the lead base, the anode base has a hole, and A male screw is attached to the rod through a hole in the anode base, whereby the anode base is connected to the lead base. 2. The electrolytic device according to claim 1, wherein the electrolytic device is detachably connected to the panel.
7. 該鉛基盤から該陽極基体への通電回路が、 該陽極基体を取り外しする機構 部に形成させないように、 耐食性の絶縁材で遮断されている請求項 1記載の電解 7. The electrolytic cell according to claim 1, wherein a current-carrying circuit from the lead substrate to the anode substrate is blocked by a corrosion-resistant insulating material so as not to be formed in a mechanism for removing the anode substrate.
8. 該給電体が、 耐食性導電金属と鉛又は鉛合金とのクラッ ド材で構成されて いる請求項 1記載の電解装置。 8. The electrolytic device according to claim 1, wherein the power supply body is made of a clad material of a corrosion-resistant conductive metal and lead or a lead alloy.
9. 該給電体と該陽極基体とが接触する少なくとも何れか一方の面が、 白金族 金属で被覆されている請求項 1記載の電解装置。  9. The electrolytic apparatus according to claim 1, wherein at least one surface of the power supply body and the anode base body in contact with each other is coated with a platinum group metal.
1 0. 該陽極基体に被覆された電極触媒が、 白金族金属、 それらの合金及び 又はそれらの酸化物もしくは卑金属酸化物を主成分とする請求項 1記載の電解装 置。  10. The electrolytic device according to claim 1, wherein the electrocatalyst coated on the anode substrate mainly comprises a platinum group metal, an alloy thereof, and / or an oxide or base metal oxide thereof.
1 1. 該電解液と接する該鉛基盤が、 耐食性を有する樹脂、 ゴム又は耐食性金 属で被覆されている請求項 1記載の電解装置。  1 1. The electrolytic apparatus according to claim 1, wherein the lead substrate in contact with the electrolytic solution is coated with a corrosion-resistant resin, rubber, or a corrosion-resistant metal.
1 2. 陽極と陰極との間に電解液を維持できる電解装置において、  1 2. In an electrolytic device that can maintain an electrolytic solution between the anode and the cathode,
該陽極が、  The anode is
ァ) 外部からの通電端子を有し、 該陰極と一定間隔で向き合う表面を有する鉛 または鉛合金からなる鉛基盤と、  A) a lead base made of lead or a lead alloy, having a current-carrying terminal from the outside and having a surface facing the cathode at regular intervals;
ィ) 該鉛基盤の表面上に分割配置し、 該鉛基盤と充分な電気伝導性を確保する ように、 該鉛基盤と固定的に取付けられている耐食性導電金属からなる給電体と、 ゥ) 該袷電体と着脱可能に取付けられ、 該陰極と一定間隔で向き合うように設 けられ、 該陰極と向き合う面が電極触媒で被覆され、 該給電体と充分な電気伝導 性を確保するように接続されている耐食性導電金属からなる陽極基体とを具備す ることを特徴とする電解装置。  A) a feeder made of a corrosion-resistant conductive metal fixedly attached to the lead base so as to be divided and arranged on the surface of the lead base and to secure sufficient electrical conductivity with the lead base; It is detachably attached to the lined electric body, is provided so as to face the cathode at regular intervals, and a surface facing the cathode is coated with an electrode catalyst so that sufficient electric conductivity with the power supply body is secured. An electrolytic apparatus comprising: a connected anode substrate made of a corrosion-resistant conductive metal.
1 3. 該鉛基盤と該給電体とが溶接されている請求項 1 2の電解装置。 1 3. The electrolytic device according to claim 12, wherein the lead base and the power supply body are welded.
1 4. 該鉛基盤が貫通穴を有し、 該給電体が、 該貫通^:を貫通している棒を有 し、 該鉛基盤の裏面でこの棒に雌ねじ又は雄ねじが設けられて、 該給電体が該鉛 基盤に取り付けられている請求項 1 2の電解装置。 1 4. The lead base has a through hole, and the power supply body has a rod penetrating through the through hole ^; on the back surface of the lead base, a female screw or a male screw is provided on the rod, 13. The electrolytic device according to claim 12, wherein a power supply body is attached to the lead base.
1 5. 該鉛基盤が貫通穴を有し、 該貫通穴に棒が設けられ、 該棒が該鉛基盤の 裏面で固定され、 該給電体が穴を有し、 雄ねじが該給電体の穴を通り該棒に締め 付けられ、 該給電体が該鉛基盤に取り付けられている請求項 1 2の電解装置。  1 5. The lead base has a through hole, a rod is provided in the through hole, the rod is fixed on the back surface of the lead base, the power supply body has a hole, and a male screw is a hole in the power supply body. 13. The electrolytic device according to claim 12, wherein the power supply is attached to the lead base through the rod.
1 6. 該袷電体が雌ねじ穴を有し、 該陽極基体が貫通穴を有し、 雄ねじが該貫 通穴を通り該雌ねじ穴に締め付けられ、 該陽極基体が該給電体に着脱可能に取り 付けられている請求項 1 2の電解装置。  1 6. The lined electric body has a female screw hole, the anode base has a through hole, a male screw is tightened into the female screw hole through the through hole, and the anode base is detachably attached to the power feeder. 13. The electrolysis device of claim 12, which is installed.
1 7. 該給電体と該陽極基体とが接触する少なくとも何れか一方の面が、 白金 族金属で被覆されている請求項 1 2の電解装置。  17. The electrolytic apparatus according to claim 12, wherein at least one surface of the power supply body and the anode substrate that is in contact with each other is coated with a platinum group metal.
1 8. 該陽極基体に被覆された該電極触媒が、 白金族金属、 それらの合金及び 又はそれらの酸化物もしくは卑金属酸化物を主成分とする請求項 1 2の電解装  18. The electrolytic device according to claim 12, wherein the electrode catalyst coated on the anode base is mainly composed of a platinum group metal, an alloy thereof, or an oxide or a base metal oxide thereof.
1 9. 該電解液と接する該鉛基盤が、 耐食性を有する樹脂、 ゴム又は耐食性金 属で被覆されている請求項 1 2の電解装置。 1 9. The electrolytic apparatus according to claim 12, wherein the lead base in contact with the electrolytic solution is coated with a corrosion-resistant resin, rubber, or a corrosion-resistant metal.
Figure imgf000027_0001
Figure imgf000027_0001
PCT/JP1997/003809 1996-10-24 1997-10-22 Electrolyzer WO1998017845A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/299259 1996-10-24
JP29925996 1996-10-24

Publications (1)

Publication Number Publication Date
WO1998017845A1 true WO1998017845A1 (en) 1998-04-30

Family

ID=17870228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003809 WO1998017845A1 (en) 1996-10-24 1997-10-22 Electrolyzer

Country Status (2)

Country Link
TW (1) TW391991B (en)
WO (1) WO1998017845A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164395A (en) * 2000-02-04 2001-06-19 Mifune Tekkosho:Kk Apparatus for production of electrolytic copper foil
JP2004332102A (en) * 2003-04-18 2004-11-25 Nippon Stainless Kozai Kk Insoluble electrode for metallic foil production
JP2013204042A (en) * 2012-03-27 2013-10-07 Daiso Co Ltd Insoluble electrode structural body and method of repairing the insoluble electrode structural body
JP2018044238A (en) * 2016-09-12 2018-03-22 Jfeスチール株式会社 Electrolytic cleaning device for steel sheet, continuous annealing equipment, and method for producing steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI413707B (en) * 2010-08-26 2013-11-01 Zhen Ding Technology Co Ltd Electrolyzing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131764U (en) * 1987-02-20 1988-08-29
JPH02136058U (en) * 1989-04-13 1990-11-13
JPH04346697A (en) * 1991-03-21 1992-12-02 Eltech Syst Corp Electrolytic cell and anode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131764U (en) * 1987-02-20 1988-08-29
JPH02136058U (en) * 1989-04-13 1990-11-13
JPH04346697A (en) * 1991-03-21 1992-12-02 Eltech Syst Corp Electrolytic cell and anode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164395A (en) * 2000-02-04 2001-06-19 Mifune Tekkosho:Kk Apparatus for production of electrolytic copper foil
JP2004332102A (en) * 2003-04-18 2004-11-25 Nippon Stainless Kozai Kk Insoluble electrode for metallic foil production
JP4532093B2 (en) * 2003-04-18 2010-08-25 日本ステンレス工材株式会社 Insoluble electrode for metal foil production
JP2013204042A (en) * 2012-03-27 2013-10-07 Daiso Co Ltd Insoluble electrode structural body and method of repairing the insoluble electrode structural body
JP2018044238A (en) * 2016-09-12 2018-03-22 Jfeスチール株式会社 Electrolytic cleaning device for steel sheet, continuous annealing equipment, and method for producing steel sheet

Also Published As

Publication number Publication date
TW391991B (en) 2000-06-01

Similar Documents

Publication Publication Date Title
US11355871B2 (en) Joint of copper terminal and aluminium conductor and ultrasonic welding method hereof
CA1110202A (en) Bipolar electrode
JPH08209396A (en) Composite electrode for electrolysis
EP0504939A2 (en) Electrolytic cell anode
CN100424231C (en) Hanger bar
CA1131173A (en) Bipolar electrode and method for the production thereof
JP4904097B2 (en) Insoluble anode for metal wire plating and metal wire plating method using the same
US3700582A (en) Electrolytic cell
WO1998017845A1 (en) Electrolyzer
KR100189074B1 (en) Electroplating cell anode
US5135633A (en) Electrode arrangement for electrolytic processes
US4264426A (en) Electrolytic cell and a method for manufacturing the same
KR102500973B1 (en) Electrode structure
JPS6260470B2 (en)
EP3604629B1 (en) Plating treatment device
JP2615863B2 (en) Cathode plate for electrolysis
US11926912B2 (en) Electrode assembly for electrochemical processes
JP4206189B2 (en) Galvanic anode body using magnetic sheet and installation method thereof
JPH11302900A (en) Electrolytic device and its assembling method
JP2002038291A (en) Anode for manufacturing metallic foil
JPH01176100A (en) Nonsoluble anode for plating steel strip
KR102532620B1 (en) High Efficiency Plating Device for Coil Steel Plates
JP4638635B2 (en) Sacrificial electrode and cathodic protection method
CA1147034A (en) Electrical connection between copper conductor and titanium conductor
JP2998833B2 (en) Electrodes for iron ion generation and cathodic protection

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase