WO1998017492A1 - Antriebssystem für ein kraftfahrzeug - Google Patents

Antriebssystem für ein kraftfahrzeug Download PDF

Info

Publication number
WO1998017492A1
WO1998017492A1 PCT/AT1997/000221 AT9700221W WO9817492A1 WO 1998017492 A1 WO1998017492 A1 WO 1998017492A1 AT 9700221 W AT9700221 W AT 9700221W WO 9817492 A1 WO9817492 A1 WO 9817492A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
drive system
work
compressed air
conformer
Prior art date
Application number
PCT/AT1997/000221
Other languages
English (en)
French (fr)
Inventor
Ivan Cyphelly
Jörg THURNER
Original Assignee
Tcg Unitech Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcg Unitech Aktiengesellschaft filed Critical Tcg Unitech Aktiengesellschaft
Priority to AU45427/97A priority Critical patent/AU4542797A/en
Publication of WO1998017492A1 publication Critical patent/WO1998017492A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • F15B11/072Combined pneumatic-hydraulic systems
    • F15B11/0725Combined pneumatic-hydraulic systems with the driving energy being derived from a pneumatic system, a subsequent hydraulic system displacing or controlling the output element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K3/00Arrangement or mounting of steam or gaseous-pressure propulsion units
    • B60K3/02Arrangement or mounting of steam or gaseous-pressure propulsion units of piston type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/214Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being hydrotransformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/216Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being pneumatic-to-hydraulic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41527Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve
    • F15B2211/41536Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve being connected to multiple ports of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7055Linear output members having more than two chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member

Definitions

  • the present invention relates to a drive system for a motor vehicle that enables largely emission-free operation.
  • Pneumatic vehicle drives are also known in which the energy stored in compressed air bottles is used directly to drive the wheels of the vehicle via corresponding pneumatic drive elements.
  • Such drive systems have a relatively low efficiency, which means that the total energy consumption is disproportionately large and the range of such vehicles is limited.
  • the object of the present invention is to avoid these disadvantages and to provide a drive system which uses compressed air as an energy store.
  • a drive system which has the following components: a compressed air reservoir;
  • a pneumo-hydraulic converter for converting pneumatic work into hydraulic work; a conformer with an input connection which is connected to the pneumo-hydraulic converter in order to absorb the fluctuating pressure of a hydraulic medium. take, and with an output port, at which an approximately constant hydraulic pressure is provided, and a hydraulic working machine, which is connected to the output port of the conformer to convert hydraulic work into mechanical work.
  • the compressed air reservoir is in the form of compressed air bottles, for example, which can be filled relatively quickly at corresponding petrol stations. It is essential to the present invention that the pneumatic energy of the compressed air is first converted into hydraulic work. It is surprising to the person skilled in the art that the "detour" via a hydraulic circuit brings significant advantages.
  • the pneumo-hydraulic converter can be used in the present invention approximately as disclosed in PCT / CH96 / 00386 (WO 97/17546). What is essential here is an efficient conversion of the energy contained in the compressed air into a volume flow of a hydraulic medium.
  • Another essential component of the present invention is a conformer, which largely compensates for the fluctuations in the hydraulic pressure.
  • the fluctuations in the hydraulic pressure result from two causes: On the one hand, as described above, the pneumatic pressure is very different depending on the filling level of the compressed air reservoir and, on the other hand, the pneumo-hydraulic converter causes pressure fluctuations due to its working cycle.
  • the conformer makes it possible to supply the hydraulic working machine with only a slightly fluctuating hydraulic pressure, so that these fluctuations are not noticeable when driving.
  • the conformer is designed as a piston machine with a plurality of working spaces, which can optionally be acted upon by hydraulic pressure via valves. In this way, high efficiencies can be achieved with a very small installation space.
  • the hydraulic working machine is designed as an axial piston adjustment motor which can be controlled via a swash plate.
  • Such units have a high efficiency with a relatively low weight.
  • the accelerator pedal of the motor vehicle controls the swivel angle of the swash plate.
  • a particular increase in the efficiency of the drive system according to the invention can preferably be achieved in that the pneumo-hydraulic converter is designed for approximately isothermal expansion of the compressed air removed from the compressed air store.
  • the isothermal expansion enables a much better use of the energy contained in the compressed gas than is the case with conventional adiabatic expansion. It has proven particularly useful if the pneumatic-hydraulic Transducer has a tube bundle heat exchanger penetrating its working spaces. In this way, an efficient supply of energy into the pneumo-hydraulic converter is possible without affecting the working speed.
  • FIG. 1 schematically shows a block diagram of a drive system according to the invention
  • Fig. 3 shows a possible structural design of such a conformer.
  • a compressed air reservoir 100 contains air, which is used as an energy source for the vehicle.
  • a pneumo-hydraulic converter 101 converts the pneumatic work, which is supplied via the compressed air line 105 from the compressed air store 100, into hydraulic work.
  • the hydraulic medium is supplied with a strongly fluctuating pressure to a conformer 102, which equalizes the pressure to a target pressure.
  • an axial piston adjustment motor 103 is supplied with hydraulic medium of approximately constant pressure, which motor 103 in turn drives a drive wheel 104 of the vehicle, which is not shown in detail.
  • cylinder spaces 2, 3, 4 generally consists of housing halves la, lb, in which cylinder spaces 2, 3, 4 are arranged with stepped diameters, in which cylinder spaces 2, 3, 4 a stepped piston 5 is movable back and forth.
  • the cylinder spaces 2, 3, 4 are connected to an input port 6 on both sides of the piston 5 via a plurality of first valves 7a.
  • a connection between the cylinder spaces 2, 3, 4 and an output port 8 is established via a plurality of second valves 7b.
  • the cylinder spaces 2, 3, 4 are connected to a return system via further valves, not shown.
  • FIG. 3 shows a practical exemplary embodiment of such a controlled pressure multiplier, such as that which is manufactured and sold by the Racine Tool and Manufacturing Company.
  • a stepped piston 15 is arranged to move back and forth.
  • An input connection (not visible in FIG. 3) opens into a space 16 which is connected to a control valve 20.
  • the inlet pressure is led into one of the cylinder spaces 12, 13 on the right or on the left side of the stepped piston 15.
  • a left spool 30, 31 and a right spool 32, 33 are automatically operated by the movement of the step piston 15 to control the ports on the output side.
  • Pressure relief valves 34, 35 serve to limit the pressures prevailing in the cylinder chambers 2 and 3.
  • the present invention makes it possible to present a largely emission-free drive system for a motor vehicle, in which an energy store of high energy density enables a long range with an acceptable vehicle weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Antriebssystem für ein Kraftfahrzeug, das folgende Bauteile aufweist: einen Druckluftspeicher (100); einen pneumo-hydraulischen Wandler (101) zur Umwandlung von pneumatischer Arbeit in hydraulische Arbeit; einen Konformator (102) mit einem Eingangsanschluß (6), der mit dem pneumo-hydraulischen Wandler (101) verbunden ist, um den schwankenden Druck eines Hydraulikmediums aufzunehmen, und mit einem Ausgangsanschluß (8), an dem ein annähernd konstanter Hydraulikdruck zur Verfügung gestellt wird; und eine hydraulische Arbeitsmaschine (103), die mit dem Ausgangsanschluß (8) des Konformators (102) verbunden ist, um hydraulische Arbeit in mechanische Arbeit umzuwandeln.

Description

ANTRIEBSSYSTEM FÜR EIN KRAFTFAHRZEUG
Die vorliegende Erfindung betrifft ein Antriebssystem für ein Kraftfahrzeug, das einen weitgehend abgasfreien Betrieb ermöglicht.
Es sind verschiedene Arten von Antriebssystemen vorgeschlagen worden, die einen im wesentlichen abgasfreien Betrieb ermöglichen. Kritisch bei solchen alternativen Antriebssystemen ist stets die Art der Speicherung der für den Fahrbetrieb erforderlichen Energie und die Art der Umwandlung der gespeicherten Energie in mechanische Arbeit. Elektrische Systeme besitzen den Nachteil, daß die Energiespeicherung in aufladbaren Batterien nur in unbefriedigender Weise möglich ist. Die pro Gewichtseinheit speicherbare Energiemenge ist relativ gering und die Lebensdauer dieser Batterien ist ebenfalls nicht zufriedenstellend. Dadurch sind nur geringe Reichweiten solcher Fahrzeuge erzielbar und die Kosten sind relativ hoch.
Ein weiterer Nachteil von Elektrofahrzeugen besteht darin, daß die Aufladung von Batterien nur sehr langsam ist, so daß ein herkömmlicher „Tankvorgang" nicht realisiert werden kann.
Eine alternative Möglichkeit der Energiespeicherung besteht darin, Druckluft zu verwenden, die in entsprechenden Flaschen vorliegt. Ein solches System leidet jedoch an dem Nachteil, daß bei vollständig gefüllten Druckluftflaschen ein relativ großer Druck zur Verfügung steht, der jedoch mit zunehmendem Verbrauch geringer wird. Soll nun der Energieinhalt der Druckluftbehälter einigermaßen vollständig ausgenützt werden, so muß die Tatsache berücksichtigt werden, daß ein sehr großer Druckbereich zu überstreichen ist, der beispielsweise von 300 bar bei vollständig gefüllten Flaschen bis 30 bar reichen kann. Weiters besteht das Problem, daß derzeit keine für Kraftfahrzeuge wirklich einsetzbaren Antriebseinheiten zur Verfügung stehen, die pneumatische Energie mit hohem Wirkungsgrad in mechanische Arbeit umwandeln, um damit die Antriebsräder anzutreiben.
Weiters sind pneumatische Fahrzeugantriebe bekannt, bei denen die in Druckluftflaschen gespeicherte Energie direkt dazu verwendet wird, über entsprechende pneumatische Antriebselemente die Räder des Fahrzeugs anzutreiben. Solche Antriebssysteme besitzen jedoch einen relativ geringen Wirkungsgrad, wodurch der Gesamtverbrauch an Energie unverhältnismäßig groß ist und die Reichweite solcher Fahrzeuge beschränkt ist.
Aufgabe der vorliegenden Erfindung ist es, diese Nachteile zu vermeiden und ein Antriebssystem zu schaffen, das Druckluft als Energiespeicher verwendet.
Diese Aufgaben werden durch ein Antriebssystem gelöst, das folgende Bauteile aufweist: einen Druckluftspeicher;
- einen pneumo-hydraulischen Wandler zur Umwandlung von pneumatischer Arbeit in hydraulische Arbeit; einen Konformator mit einem Eingangsanschluß, der mit dem pneumo-hydraulischen Wandler verbunden ist, um den schwankenden Druck eines Hydraulikmediums aufzu- nehmen, und mit einem Ausgangsanschluß, an dem ein annähernd konstanter Hydraulikdruck zur Verfügung gestellt wird, und eine hydraulische Arbeitsmaschine, die mit dem Ausgangsanschluß des Konformators verbunden ist, um hydraulische Arbeit in mechanische Arbeit umzuwandeln.
Der Druckluftspeicher liegt beispielsweise in Form von Druckluftflaschen vor, die an entsprechenden Tankstellen relativ rasch gefüllt werden können. Wesentlich an der vorliegenden Erfindung ist, daß die pneumatische Energie der Druckluft zunächst in hydraulische Arbeit umgewandelt wird. Es ist für den Fachmann überraschend, daß der „Umweg" über einen Hydraulikkreislauf wesentliche Vorteile bringt.
Der pneumo-hydraulische Wandler kann bei der vorliegenden Erfindung etwa so eingesetzt werden, wie er in der PCT/CH96/00386 (WO 97/17546) offenbart ist. Wesentlich dabei ist eine effiziente Umwandlung der in der Druckluft enthaltenen Energie in einen Volumenstrom eines Hydraulikmediums.
Es sind weiters bereits eine Reihe von hocheffizienten hydraulischen Arbeitsmaschinen bekannt, mit denen die Umwandlung von hydraulischer Arbeit in mechanische Arbeit zum Antrieb der Räder mit hohem Wirkungsgrad möglich ist. Weiters besitzen diese hydraulischen Arbeitsmaschinen Kennlinien, die für den Fahrbetrieb durchaus vorteilhaft sind.
Ein weiterer wesentlicher Baustein der vorliegenden Erfindung ist ein Konformator, der die Schwankungen des Hydraulikdrucks weitgehend ausgleicht. Die Schwankungen des Hydraulikdrucks resultieren aus zwei Ursachen: Zum einen ist, wie oben beschrieben, der Pneumatikdruck in Abhängigkeit vom Füllzustand des Druckluftspeichers sehr unterschiedlich und zum anderen verursacht der pneumo-hydraulische Wandler Druckschwankungen aufgrund seines Arbeitszyklus. Durch den Konformator ist es somit möglich, die hydraulische Arbeitsmaschine mit einem nur gering schwankenden Hydraulikdruck zu versorgen, so daß im Fahrbetrieb diese Schwankungen nicht spürbar sind.
Besonders bevorzugt ist es, wenn der Konformator als Kolbenmaschine mit einer Mehrzahl von Arbeitsräumen ausgebildet ist, die über Ventile wahlweise mit Hydraulikdruck beaufschlagbar sind. Auf diese Weise können bei sehr kleinem Bauraum hohe Wirkungsgrade erzielt werden.
Es ist weiters günstig, wenn die hydraulische Arbeitsmaschine als Axialkolbenverstellmotor, der über eine Taumelscheibe steuerbar ist, ausgebildet ist. Solche Aggregate besitzen einen hohen Wirkungsgrad bei relativ geringem Gewicht. Das Gaspedal des Kraftfahrzeuges steuert dabei den Schwenkwinkel der Taumelscheibe.
Eine besondere Steigerung des Wirkungsgrades des erfindungsgemäßen Antriebssystems kann vorzugsweise dadurch erreicht werden, daß der pneumo-hydraulische Wandler zur annähernd isothermen Entspannung der aus dem Druckluftspeicher entnommenen Druckluft ausgebildet ist. Die isotherme Expansion ermöglicht eine wesentlich bessere Ausnutzung der in dem verdichteten Gas enthaltenen Energie als dies bei einer herkömmlichen adiabaten Expansion der Fall ist. Besonders bewährt hat sich dabei, wenn der pneumatisch-hydraulische Wandler einen seine Arbeitsräume durchdringenden Rohrbündelwärmetauscher aufweist. Auf diese Weise ist eine effiziente Zufuhr von Energie in den pneumo-hydraulischen Wandler möglich, ohne die Arbeitsgeschwindigkeit zu beeinträchtigen.
In der Folge wird die Erfindung anhand eines in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
Fig. 1 schematisch ein Blockschaltbild eines erfindungsgemäßen Antriebssystems;
Fig. 2 die grundsätzliche Ausbildung eines Konformators für ein solches Antriebssystem; und die
Fig. 3 eine mögliche konstruktive Ausführung eines solchen Konformators.
In der Fig. 1 ist das erfindungsgemäße Antriebssystem schematisch in allgemeinster Form dargestellt. Ein Druckluftspeicher 100 enthält Luft, die als Energiequelle für das Fahrzeug herangezogen wird. Ein pneumo-hydraulischer Wandler 101 wandelt die pneumatische Arbeit, die über die Druckluftleitung 105 aus dem Druckluftspeicher 100 zugeführt wird, in hydraulische Arbeit um. Über eine Hydraulikleitung 106 wird das Hydraulikmedium mit stark schwankendem Druck einem Konformator 102 zugeführt, der den Druck auf einen Solldruck vergleichmäßigt. Über eine weitere Leitung 107 wird ein Axialkolbenverstellmotor 103 mit Hydraulikmedium von annähernd konstantem Druck versorgt, welcher Motor 103 seinerseits ein Antriebsrad 104 des nicht näher dargestellten Fahrzeugs antreibt.
Der Konformator der Fig. 2 besteht allgemein aus Gehäusehälften la, lb, in denen Zylinderräume 2, 3, 4 mit abgestuften Durchmessern angeordnet sind, in welchen Zylinderräumen 2, 3, 4 ein Stufenkolben 5 hin und her beweglich ist. Über eine Vielzahl von ersten Ventilen 7a stehen die Zylinderräume 2, 3, 4 beidseits des Kolbens 5 mit einem Eingangsanschluß 6 in Verbindung. Über eine Mehrzahl von zweiten Ventilen 7b wird eine Verbindung zwischen den Zylinderräumen 2, 3, 4 und einem Ausgangsanschluß 8 hergestellt. Über weitere nicht dargestellte Ventile, sind die Zylinderräume 2, 3, 4 mit einem Rücklaufsystem verbunden.
Mit dem in der Fig. 2 dargestellten Konformator, der grundsätzlich einen in Stufen gesteuerten Druckmultiplikator darstellt, ist es möglich, je nach der Stellung der Ventile 7a und 7b einen am Eingangsanschluß 6 anliegenden Druck in einen um einen vorbestimmten Faktor gesteigerten oder auch verringerten Druck umzuwandeln. Auf diese Weise kann erreicht werden, daß ein am Eingangsanschluß 6 anliegender Hydraulikdruck so umgewandelt wird, daß am Ausgangsanschluß 8 ein Druck anliegt, der innerhalb einer gewissen Schwankungsbreite einem gewünschten Sollwert nahekommt. Es ist offensichtlich, daß mit steigender Anzahl der verfügbaren Kolbendurchmesser eine umso genauere Einstellung des ausgangsseiti- gen Drucks erreicht werden kann.
In der Fig. 3 ist ein praktisches Ausführungsbeispiel eines solchen gesteuerten Druckmultiplikators dargestellt, wie er etwa von der Racine Tool and Manufacturing Company hergestellt und vertrieben wird. In einem Gehäuse 1 1 ist dabei ein Stufenkolben 15 hin und her beweglich angeordnet. Ein in der Fig. 3 nicht sichtbarer Eingangsanschluß mündet in einen Raum 16, der mit einem Steuerventil 20 in Verbindung steht. Je nach Stellung des Steuerventils 20 wird der Eingangsdruck in einen der Zylinderräume 12, 13 auf der rechten oder auf der linken Seite des Stufenkolbens 15 geführt. Ein linker Steuerschieber 30, 31 und ein rechter Steuerschieber 32, 33 werden durch die Bewegung des Stufenkolbens 15 automatisch betätigt, um die ausgangsseitigen Anschlüsse zu steuern. Überdruckventile 34, 35 dienen zur Begrenzung der in den Zylinderräumen 2 und 3 herrschenden Drücke.
Es ist für den Fachmann selbstverständlich, daß in dieser schematischen Darstellung nur die wesentlichen Teile der vorliegenden Erfindung dargestellt sind. Nebenaggregate, wie Rücklaufleitungen. Speicher für das Hydraulikmedium u. dgl. werden vom Fachmann je nach den gestellten Anforderungen vorgesehen.
Die vorliegende Erfindung ermöglicht es, ein weitgehend abgasfreies Antriebssystem für ein Kraftfahrzeug darzustellen, bei dem ein Energiespeicher von hoher Energiedichte eine große Reichweite bei vertretbarem Fahrzeuggewicht ermöglicht.

Claims

P A T E N T A N S P R Ü C H E
1. Antriebssystem für ein Kraftfahrzeug, das folgende Bauteile aufweist: einen Druckluftspeicher (100); einen pneumo-hydraulischen Wandler (101 ) zur Umwandlung von pneumatischer Arbeit in hydraulische Arbeit; einen Konformator (102) mit einem Eingangsanschluß (6), der mit dem pneumo-hydraulischen Wandler (101) verbunden ist, um den schwankenden Druck eines Hydraulikmediums aufzunehmen, und mit einem Ausgangsanschluß (8), an dem ein annähernd konstanter Hydraulikdruck zur Verfügung gestellt wird; und eine hydraulische Arbeitsmaschine (103), die mit dem Ausgangsanschluß (8) des Konformators (102) verbunden ist, um hydraulische Arbeit in mechanische Arbeit umzuwandeln.
2. Antriebssystem nach Anspruch 1 , dadurch gekennzeichnet, daß der Konformator (102) als Kolbenmaschine mit einer Mehrzahl von Arbeitsräumen (2, 3, 4) ausgebildet ist, die über Ventile (7a, 7b) wahlweise mit Hydraulikdruck beaufschlagbar sind.
3. Antriebssystem nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß der pneumo-hydraulische Wandler (101) als Kolbenmaschine ausgebildet ist.
4. Antriebssystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die hydraulische Arbeitsmaschine (103) als Axialkolbenverstellmotor, der über eine Taumelscheibe steuerbar ist, ausgebildet ist.
5. Antriebssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der pneumo-hydraulische Wandler (101) zur annähernd isothermen Entspannung der aus dem Druckluftspeicher (100) entnommenen Druckluft ausgebildet ist.
6. Antriebssystem nach Anspruch 5, dadurch gekennzeichnet, daß der pneumatisch-hydraulische Wandler (101) einen seine Arbeitsräume durchdringenden Rohrbündelwärmetauscher aufweist.
PCT/AT1997/000221 1996-10-18 1997-10-16 Antriebssystem für ein kraftfahrzeug WO1998017492A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU45427/97A AU4542797A (en) 1996-10-18 1997-10-16 Motor vehicle drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2625/96 1996-10-18
CH262596 1996-10-18

Publications (1)

Publication Number Publication Date
WO1998017492A1 true WO1998017492A1 (de) 1998-04-30

Family

ID=4237973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1997/000221 WO1998017492A1 (de) 1996-10-18 1997-10-16 Antriebssystem für ein kraftfahrzeug

Country Status (2)

Country Link
AU (1) AU4542797A (de)
WO (1) WO1998017492A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037800A1 (de) 1998-12-22 2000-06-29 Tcg Unitech Aktiengesellschaft Vorrichtung zur umwandlung von in druckluft gespeicherter energie in mechanische arbeit
WO2000068578A1 (de) * 1999-05-06 2000-11-16 Tcg Unitech Aktiengesellschaft Vorrichtung zur umwandlung von pneumatischer energie in hydraulische energie
WO2009152141A2 (en) * 2008-06-09 2009-12-17 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8850808B2 (en) 2009-05-22 2014-10-07 General Compression, Inc. Compressor and/or expander device
US8997475B2 (en) 2011-01-10 2015-04-07 General Compression, Inc. Compressor and expander device with pressure vessel divider baffle and piston
US9051834B2 (en) 2009-05-22 2015-06-09 General Compression, Inc. Methods and devices for optimizing heat transfer within a compression and/or expansion device
US9109512B2 (en) 2011-01-14 2015-08-18 General Compression, Inc. Compensated compressed gas storage systems
US9109511B2 (en) 2009-12-24 2015-08-18 General Compression, Inc. System and methods for optimizing efficiency of a hydraulically actuated system
US9234534B2 (en) 2012-02-20 2016-01-12 Ivan Cyphelly Liquid piston arrangement with plate exchanger for the quasi-isothermal compression and expansion of gases
US9260966B2 (en) 2011-01-13 2016-02-16 General Compression, Inc. Systems, methods and devices for the management of heat removal within a compression and/or expansion device or system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1367103A (fr) * 1963-07-29 1964-07-17 Transformateur de pression hydro-pneumatique à débit continu
US3945207A (en) * 1974-07-05 1976-03-23 James Ervin Hyatt Hydraulic propulsion system
WO1980000992A1 (en) * 1978-10-31 1980-05-15 H Taylor Regenerative energy transfer system
US4347701A (en) * 1980-04-03 1982-09-07 Tokyo Electric Co., Ltd. Power system for land vehicles
WO1987001993A1 (en) * 1985-09-27 1987-04-09 Volvo Flygmotor Ab Control method and device for a regenerative drive system, particularly for vehicles
WO1997017546A1 (de) 1995-11-03 1997-05-15 Cyphelly Ivan J Pneumo-hydraulischer wandler für energiespeicherung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1367103A (fr) * 1963-07-29 1964-07-17 Transformateur de pression hydro-pneumatique à débit continu
US3945207A (en) * 1974-07-05 1976-03-23 James Ervin Hyatt Hydraulic propulsion system
WO1980000992A1 (en) * 1978-10-31 1980-05-15 H Taylor Regenerative energy transfer system
US4347701A (en) * 1980-04-03 1982-09-07 Tokyo Electric Co., Ltd. Power system for land vehicles
WO1987001993A1 (en) * 1985-09-27 1987-04-09 Volvo Flygmotor Ab Control method and device for a regenerative drive system, particularly for vehicles
WO1997017546A1 (de) 1995-11-03 1997-05-15 Cyphelly Ivan J Pneumo-hydraulischer wandler für energiespeicherung

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037800A1 (de) 1998-12-22 2000-06-29 Tcg Unitech Aktiengesellschaft Vorrichtung zur umwandlung von in druckluft gespeicherter energie in mechanische arbeit
WO2000068578A1 (de) * 1999-05-06 2000-11-16 Tcg Unitech Aktiengesellschaft Vorrichtung zur umwandlung von pneumatischer energie in hydraulische energie
WO2009152141A2 (en) * 2008-06-09 2009-12-17 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
WO2009152141A3 (en) * 2008-06-09 2010-02-04 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8850808B2 (en) 2009-05-22 2014-10-07 General Compression, Inc. Compressor and/or expander device
US9051834B2 (en) 2009-05-22 2015-06-09 General Compression, Inc. Methods and devices for optimizing heat transfer within a compression and/or expansion device
US9109511B2 (en) 2009-12-24 2015-08-18 General Compression, Inc. System and methods for optimizing efficiency of a hydraulically actuated system
US8997475B2 (en) 2011-01-10 2015-04-07 General Compression, Inc. Compressor and expander device with pressure vessel divider baffle and piston
US9260966B2 (en) 2011-01-13 2016-02-16 General Compression, Inc. Systems, methods and devices for the management of heat removal within a compression and/or expansion device or system
US9109512B2 (en) 2011-01-14 2015-08-18 General Compression, Inc. Compensated compressed gas storage systems
US9234534B2 (en) 2012-02-20 2016-01-12 Ivan Cyphelly Liquid piston arrangement with plate exchanger for the quasi-isothermal compression and expansion of gases

Also Published As

Publication number Publication date
AU4542797A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
EP0615837B1 (de) Verfahren zur Regelung des Antriebs einer hydraulischen Presse und Vorrichtung zur Durchführung des Verfahrens
DE112004001761B4 (de) Druckbehälteranordnung für ein Druckfluidsystem
DE102011120227B4 (de) Hydraulisches Hybridsystem für rotatorische Anwendungen
WO2009024197A1 (de) Hydraulikantrieb insbesondere eines baggers insbesondere für ein drehwerk
EP2042745A2 (de) Hydraulisches Antriebssystem mit Energierückgewinnung
DE102007021063A1 (de) Hydraulisch-pneumatischer Antrieb
WO1998017492A1 (de) Antriebssystem für ein kraftfahrzeug
EP2039554A2 (de) Serieller und paralleler Hybridantrieb mit zwei Primäraggregaten
EP2890904A1 (de) Hydraulisches energierückgewinnungssystem
EP1990533B1 (de) Kraftstoffeinspritzvorrichtung mit hydropneumatischem Speicher
DE4212984C2 (de) Kraftfahrzeug mit mittels Abgasturbolader aufladbarer Brennkraftmaschine und hydrostatisch-mechanischem Antrieb der Nebenaggregate
WO2012119817A1 (de) Antriebsanordnung zum ausführen von arbeitsbewegungen bei arbeitsmaschinen
AT395960B (de) Hydrostatische antriebseinrichtung fuer ein kraftfahrzeug und verfahren zum befuellen dieser antriebseinrichtung
DE3834201A1 (de) Anordnung zum zufuehren von druckmittel zu hydraulischen verbrauchern
DE2448723A1 (de) Wandleraggregat fuer verbrennungsmotoren
EP0629455B1 (de) Stauchpressenhauptantrieb
EP1141549A1 (de) Vorrichtung zur umwandlung von in druckluft gespeicherter energie in mechanische arbeit
DE2462058B2 (de) Wandleraggregat für Verbrennungskraftmaschinen
EP0025526B1 (de) Gasturbineneinheit mit Hilfsaggregaten und Druckluftabzweigung oder unter Druck anstehendem Gas
DE102016007267A1 (de) Vorrichtung zur Rekuperation von hydraulischer Energie mittels einer Verschaltung von zwei Differentialzylindern
DE2304783A1 (de) Waermekraftanlage
DE2355734A1 (de) Antriebsanlage, insbesondere fuer lokomotiven
DE3045250A1 (de) Notversorgung fuer die servolenkung eines kraftfahrzeuges
DE102021204586A1 (de) Vorrichtung zur Kompression eines Gases und Verfahren zum Füllen eines Tanks mit einer derartigen Vorrichtung
EP2848438B1 (de) Luftfederungsvorrichtung für ein Fahrzeug mit einem Verbrennungsmotor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA