WO1998017025A1 - Systeme de communication bidirectionnelle simultanee entre deux organes electriques ou electroniques d'un vehicule automobile, et organe equipe des moyens correspondants - Google Patents

Systeme de communication bidirectionnelle simultanee entre deux organes electriques ou electroniques d'un vehicule automobile, et organe equipe des moyens correspondants Download PDF

Info

Publication number
WO1998017025A1
WO1998017025A1 PCT/FR1997/001813 FR9701813W WO9817025A1 WO 1998017025 A1 WO1998017025 A1 WO 1998017025A1 FR 9701813 W FR9701813 W FR 9701813W WO 9817025 A1 WO9817025 A1 WO 9817025A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
voltage
transmitted
dec
vehicle
Prior art date
Application number
PCT/FR1997/001813
Other languages
English (en)
Inventor
Jean-Marie Pierret
Frédéric Brandy
Jean-Louis Boucheron
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9612437A external-priority patent/FR2746946B1/fr
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Publication of WO1998017025A1 publication Critical patent/WO1998017025A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/0315Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for using multiplexing techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1423Two-way operation using the same type of signal, i.e. duplex for simultaneous baseband signals

Definitions

  • the present invention relates generally to communication between two electrical or electronic components of a motor vehicle.
  • two separate links must be provided between these two members; the first allows a binary logic signal, typically a rectangular signal, representative of the alternator's excitation rate to be sent from the alternator to the computer; the second allows information, also logical, to be sent from the computer to the alternator (for example coded by pulse width modulation, delta modulation, etc.) representative of the voltage on which the regulation is to be carried out, or a required variation of this voltage.
  • a binary logic signal typically a rectangular signal
  • information also logical, to be sent from the computer to the alternator (for example coded by pulse width modulation, delta modulation, etc.) representative of the voltage on which the regulation is to be carried out, or a required variation of this voltage.
  • Figure 1 of the accompanying drawings shows two members A, B both connected to ground and further connected together, for this communication, by two separate conductors L1 and L2.
  • the present invention aims to overcome these drawbacks of the state of the art and to propose a communication system of the aforementioned type, the construction of which is simplified and which at the same time ensures more reliable transmission of information in a disturbed environment.
  • the invention proposes, according to a first aspect, a communication system between two electric or electronic members of a motor vehicle, both connected to a common potential such as the mass of the vehicle, a system intended to circulate in a bidirectional manner between said organs binary logic information having alternately a high level and a low level, comprising a single conductor between the two organs and, in each member, a decoding circuit capable of combining a binary logic signal to be transmitted to the other member with the voltage present on the single conductor, said voltage being able to take, at a given instant, one of three levels, namely a level high, a low level and an intermediate level, so as to reconstruct at output, in real time, the signal transmitted by the other member, and in which each decoding circuit comprises threshold comparator means receiving the voltage present on the conductor unique, system characterized in that the comparator means are variable single threshold comparator means, reconstituting di output the signal transmitted by the other organ.
  • each decoding circuit comprises threshold comparator means receiving the voltage present on the conductor unique,
  • Electric or electronic component of a motor vehicle connected to a reference potential such as the mass of the vehicle and intended to exchange bidirectional binary logic information simultaneously with a component remote from said vehicle, comprising a terminal for the connection of a single driver for connection with the remote member, a resistor on a first end of which is applied a binary logic signal to be transmitted to the remote member, and the other end of which is connected to said connection terminal, and a decoding circuit for combine the voltage present on the connection terminal with the signal to be transmitted, so as to reconstruct at output a signal transmitted by the distant member, the decoding circuit comprising threshold comparator means receiving the present voltage on the single conductor, characterized in that the comparator means are comparator means with a single variable threshold, directly reconstructing at output the signal transmitted by the distant member.
  • FIG. 1 is a general diagram of two electrical or electronic components connected according to the prior art by two conductors, in addition to the ground
  • Figure 2 is a general diagram of two electrical or electronic components connected according to the invention by a single conductor
  • FIG. 3 is a block diagram of the assembly of FIG. 2, on which are illustrated decoding circuits of the two electric or electronic members
  • FIG. 4 illustrates in detail a part forming a comparator with variable threshold of the decoding circuit of one of the members.
  • FIG. 2 two electrical, electronic or electromechanical members A and B of a motor vehicle have been illustrated. It can be for example, respectively, a regulation circuit provided on an alternator or . in its vicinity to regulate the charging voltage of a battery by this alternator, and of a computer intended for the electronic management of the heat engine of the vehicle. These two members A and B are, conventionally, connected somewhere to the ground potential of the vehicle.
  • these two computers can exchange information of binary type, bidirectional simultaneously, using a single-conductor link L.
  • each computer for a resistance, RI and R'I respectively.
  • the latter applies to a first terminal of the resistor RI a binary logic signal to be transmitted, denoted E, while the other terminal of RI, denoted F (as well as the corresponding signal for reasons of convenience) is directly connected to a first end of the link L.
  • Each signal E and E ' can take, for example, a value equal to either zero volts or 5 volts, the corresponding logic values being denoted in the following "0" and "1".
  • the ohmic values of RI and R'I are identical, without this being imperative.
  • the link L is at a potential which varies as a function of the values of the signals E and E ', being able to take one of three values, and more precisely: if the signals E and E' are at zero volts, then the signals F and F 'are at the same value; if the signals E and E 'are at 5 volts, then the signals F and F' are at the same value; if one of the signals E and E 'is at zero volts, while the other is at 5 volts, then the signals F and F' are at 2.5 volts (the corresponding logic signal being noted "1/2" ), the resistors RI and R'I playing the role of a divider bridge.
  • FIG. 4 represents an example of a decoding circuit DEC of the computer A. An identical circuit is provided in the computer B.
  • this circuit comprises a divider bridge which will fix two voltage ranges, the transition level between these two voltage ranges being able to be modified according to the logic value of the signal (E or E ') issued by the respective body.
  • FIG. 4 shows a divider bridge constituted by two resistors R11 and R12 connected in series between a positive supply voltage Ualim and the ground.
  • a divider bridge constituted by two resistors R11 and R12 connected in series between a positive supply voltage Ualim and the ground.
  • a and B a Ualim voltage taken directly from the battery
  • the voltage ranges at the resistors R11 and R12 are denoted respectively Ull and U12.
  • the circuit also includes a resistor R13 connected between the terminal of the signal E transmitted and the common point of the divider bridge R11, R12. This common point is applied to the negative input of a single comparator Ail, the positive input of which is connected to the terminal F via a protective resistor R14 which does not influence the signal level.
  • the comparator Ail directly outputs the decoded signal S. More specifically, the values of the voltage ranges U11 and U12 are governed as follows:
  • the divider bridge is defined by R11 and R13 in parallel, which fix the range Ull, and by R12 alone, which fixes the range U12; because of this, the ohmic value of Rll being reduced by placing R13 in parallel, the range U11 is reduced in favor of the range U12;
  • the divider bridge is defined by Rll alone, which fixes the range Ull, and by R12 and R13 in parallel, which fixes the range U12; therefore, the ohmic value of R12 being reduced by placing R13 in parallel, the range U12 is reduced in favor of the range U11.
  • the single comparator Ail therefore makes it possible to directly deliver the output signal S equal to the signal E 'emitted by the remote computer, insofar as the comparison threshold is adapted each time, thanks to resistor R13, to be between the two potential values that line L can take as a function of the value E 'for a given value of E.
  • the selective widening of one of the ranges as a function of the value of E makes it possible to accept without error large shifts in the voltages E and E 'applied in the two members (due to mass shifts or to wave components).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Dc Digital Transmission (AREA)

Abstract

Un système de communication entre deux organes électriques ou électroniques (A, B) d'un véhicule automobile, reliés tous deux à la masse, fait circuler de façon bidirectionnelle simultanée entre ces organes, sur un conducteur unique (L), des informations logiques binaires ayant alternativement un niveau haut et un niveau bas. Chaque organe comprend un circuit de décodage (DEC, DEC') apte à combiner un signal logique binaire (E, E') à transmettre à l'autre organe avec la tension (F, F') présente sur le conducteur unique, ladite tension pouvant prendre à un instant donné l'un parmi trois niveaux, à savoir un niveau haut, un niveau bas et un niveau intermédiaire, de manière à reconstituer en sortie (S, S'), en temps réel, le signal transmis par l'autre organe; chaque circuit de décodage (DEC, DEC') comprend des moyens comparateurs à seuil (A11) recevant la tension (F) présente sur le conducteur unique. Selon l'invention, ces moyens comparateurs sont des moyens comparateurs (A11) à seuil unique variable, reconstituant directement en sortie (S) le signal (E') transmis par l'autre organe.

Description

SYSTEME DE COMMUNICATION BIDIRECTIONNELLE SIMULTANEE ENTRE DEUX ORGANES ELECTRIQUES OU ELECTRONIQUES D'UN VEHICULE AUTOMOBILE, ET ORGANE EQUIPE DES MOYENS CORRESPONDANTS
La présente invention a trait d'une façon générale à la communication entre deux organes électriques ou électroniques d'un véhicule automobile.
D'une façon générale, lorsqu'un véhicule est équipé d'un alternateur à régulation électronique et d'un calculateur de gestion du fonctionnement du moteur, on doit prévoir entre ces deux organes deux liaisons distinctes; la première permet d'acheminer de l'alternateur vers le calculateur un signal logique binaire, typiquement un signal rectangulaire, représentatif du taux d'excitation de l'alternateur; la seconde permet d'acheminer du calculateur vers l'alternateur une information, également logique, (par exemple codée par modulation de largeur d'impulsion, modulation delta, etc..) représentative de la tension sur laquelle doit s'effectuer la régulation, ou d'une variation requise de cette tension.
Ainsi la figure 1 des dessins annexés représente deux organes A, B reliés tous deux à la masse et reliés ensemble en outre, pour cette communication, par deux conducteurs distincts Ll et L2. Par ailleurs, on cherche constamment à simplifier et à réduire le coût des réseaux de bord des véhicules automobiles en diminuant le nombre ou la longueur des différentes liaisons électriques qui le constituent. Toutefois, dans la mesure où cette diminution du nombre de conducteurs aboutit à une complication sensible des équipements connectés, elle perd son intérêt économique .
On connaît déjà notamment par le document EP-A-0 118 110 un système de communication permettant à deux organes d'échanger de façon bidirectionnelle simultanée des informations logiques sur un même conducteur, tout en conservant au niveau de chaque organe des moyens d'émission-réception suffisamment simples et économiques. Ce système comprend un conducteur unique entre les deux organes, et dans chaque organe, un circuit de décodage apte à combiner un signal logique binaire à transmettre à l'autre organe avec la tension présente sur le conducteur unique, ladite tension pouvant prendre à un instant donné l'un parmi trois niveaux, à savoir un niveau haut, un niveau bas et un niveau intermédiaire, de manière à reconstituer en sortie, en temps réel, le signal transmis par l'autre organe.
Ce système connu présente toutefois des inconvénients. Ainsi, dans le cas où le signal sur la ligne unique est sujet à de fortes perturbations électromagnétiques, il peut adopter une composante ondulatoire suffisamment importante pour que les circuits de décodage délivrent des informations erronées. Il en est de même dans le cas où les deux organes sont assujettis à des décalages de tensions, notamment si l'un des organes présente un décalage de masse important par rapport à l' autre.
Enfin ce système connu est désavantageux en ce qu'il nécessite impérativement dans chaque circuit de décodage deux comparateurs ou inverseurs à seuil.
La présente invention vise à pallier ces inconvénients de l'état de la technique et à proposer un système de communication du type précité, dont la construction soit simplifiée et qui en même temps assure une transmission plus fiable des informations en milieu perturbé.
Ainsi l'invention propose selon un premier aspect un système de communication entre deux organes électriques ou électroniques d'un véhicule automobile, reliés tous deux à un potentiel commun tel que la masse du véhicule, système destiné à faire circuler de façon bidirectionnelle simultanée entre lesdits organes des informations logiques binaires ayant alternativement un niveau haut et un niveau bas, comprenant un conducteur unique entre les deux organes et, dans chaque organe, un circuit de décodage apte à combiner un signal logique binaire à transmettre à l'autre organe avec la tension présente sur le conducteur unique, ladite tension pouvant prendre à un instant donné l'un parmi trois niveaux, à savoir un niveau haut, un niveau bas et un niveau intermédiaire, de manière à reconstituer en sortie, en temps réel, le signal transmis par l'autre organe, et dans lequel chaque circuit de décodage comprend des moyens comparateurs à seuil recevant la tension présente sur le conducteur unique, système caractérisé en ce que les moyens comparateurs sont des moyens comparateurs à seuil unique variable, reconstituant directement en sortie le signal transmis par l'autre organe. Selon un deuxième aspect, il est proposé un o
Organe électrique ou électronique de véhicule automobile, relié à un potentiel de référence tel que la masse du véhicule et destiné à échanger de façon bidirectionnelle simultanée des informations logiques binaires avec un organe distant dudit véhicule, comprenant une borne pour la connexion d'un conducteur unique de liaison avec l'organe distant, une résistance sur une première extrémité de laquelle est appliqué un signal logique binaire à transmettre à l'organe distant, et dont l'autre extrémité est reliée à ladite borne de connexion, et un circuit de décodage pour combiner la tension présente sur la borne de connexion avec le signal à transmettre, de manière à reconstituer en sortie un signal transmis par l'organe distant, le circuit de décodage comprenant des moyens comparateurs à seuil recevant la tension présente sur le conducteur unique, caractérisé en ce que les moyens comparateurs sont des moyens comparateurs à seuil unique variable, reconstituant directement en sortie le signal transmis par l'organe distant. D'autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d'exemple et faite en référence aux dessins annexés, sur lesquels : la figure 1 est un schéma général de deux organes électriques ou électroniques reliés selon l'art antérieur par deux conducteurs, en plus de la masse, la figure 2 est un schéma général de deux organes électriques ou électroniques reliés selon l'invention par un conducteur unique, en plus de la masse, la figure 3 est un schéma-bloc de l'ensemble de la figure 2, sur lequel sont illustrés des circuits de décodage des deux organes électriques ou électroniques, et la figure 4 illustre en détail une partie formant comparateur à seuil variable du circuit de décodage de l'un des organes.
En référence tout d'abord à la figure 2, on a illustré deux organes A et B électriques, électroniques ou électromécaniques d'un véhicule automobile. II peut s'agir par exemple, respectivement, d'un circuit de régulation prévu sur un alternateur ou. à son voisinage pour réguler la tension de charge d'une batterie par cet alternateur, et d'un calculateur destiné à la gestion électronique du moteur thermique du véhicule. Ces deux organes A et B sont, classiquement, reliés quelque part au potentiel de masse du véhicule.
Selon l'invention, et grâce à des moyens que l'on va expliciter plus loin, ces deux calculateurs peuvent échanger des informations de type binaire, de façon bidirectionnelle simultanée, à l'aide d'une liaison monoconducteur L.
En référence maintenant à la figure 3, on prévoir dans chaque calculateur une résistance, respectivement RI et R'I.
Dans le calculateur A, ce dernier applique à une première borne de la résistance RI un signal logique binaire à émettre, noté E, tandis que l'autre borne de RI, notée F (de même que le signal correspondant par raison de commodité) est directement reliée à une première extrémité de la liaison L.
De façon analogue, dans le calculateur B, ce dernier applique à une première borne de la résistance R' 1 un signal logique binaire à émettre, noté E' , tandis que l'autre borne de R'I, notée F' (de même que le signal correspondant par raison de commodité) est directement reliée à l'autre extrémité de la liaison L.
On comprend que les valeurs de F et F' sont en permanence identiques, à la résistance de la liaison près (négligeable) .
Chaque signal E et E' peut prendre par exemple une valeur égale soit à zéro volt, soit à 5 volts, les valeurs logiques correspondantes étant notées dans la suite "0" et "1". De préférence, les valeurs ohmiques de RI et R'I sont identiques, sans que ceci ne soit impératif.
Ainsi la liaison L se trouve à un potentiel qui varie en fonction des valeurs des signaux E et E' , en pouvant prendre l'une parmi trois valeurs, et plus précisément : si les signaux E et E' sont à zéro volt, alors les signaux F et F' sont à la même valeur; si les signaux E et E' sont à 5 volts, alors les signaux F et F' sont à la même valeur; si l'un des signaux E et E' est à zéro volt, tandis que l'autre est à 5 volts, alors les signaux F et F' sont à 2,5 volts (le signal logique correspondant étant noté "1/2"), les résistances RI et R'I jouant le rôle d'un pont diviseur.
Ceci peut être résumé dans le tableau suivant :
E E ' F F'
0 0 0 0
1 1 1 1
0 1 1 /2 1 /2
1 0 1 /2 1 /2
On utilise dans chaque calculateur A ou B un circuit décodeur, respectivement DEC et DEC , qui utilise la valeur du signal émis, respectivement E ou E' , pour décoder le signal présent sur la liaison L (point F ou F' , respectivement) et reconstituer le signal, E' ou E, que l'autre calculateur a émis. Plus précisément, si l'on appelle S et S' les signaux décodés dans les calculateurs respectifs A et B, et si l'on souhaite obtenir S = E' et S' = E, alors on constate que :
pour le calculateur A : S = E' = E si F = E
S = E' = Ε si F = 1/2
pour le calculateur B :
S' = E = E' si F' = E' S' = E = Ε' si F' = 1/2 Ainsi l'on comprend qu'en effectuant une combinaison logique appropriée des signaux E et F dans le décodeur DEC du calculateur A, et E' et F' dans le décodeur DEC du calculateur B, on peut reconstituer en temps réel le signal logique émis dans le calculateur distant. La figure 4 représente un exemple de circuit de décodage DEC du calculateur A. Un circuit identique est prévu dans le calculateur B.
Selon un aspect essentiel de l'invention, ce circuit comporte un pont diviseur qui va fixer deux plages de tension, le niveau de transition entre ces deux plages de tension pouvant être modifié en fonction de la valeur logique du signal (E ou E' ) émis par l'organe respectif.
Ainsi la figure 4 montre un pont diviseur constitué par deux résistances Rll et R12 branchées en série entre une tension d'alimentation positive Ualim et la masse. De préférence, on utilise dans les deux organes
A et B une tension Ualim prise directement sur la batterie
(environ 14 volts), de façon à accroître l'immunité au bruit. Les plages de tension au niveau des résistances Rll et R12 sont notées respectivement Ull et U12.
Le circuit comprend également une résistance R13 branchée entre la borne du signal E émis et le point commun du pont diviseur Rll, R12. Ce point commun est appliqué à l'entrée négative d'un comparateur unique Ail, dont l'entrée positive est reliée à la borne F via une résistance de protection R14 n'influençant pas le niveau du signal.
La résistance RI créant les éventuels changements de tension sur la ligne L est également illustrée sur la figure 4.
Le comparateur Ail délivre directement en sortie le signal décodé S. Plus précisément, les valeurs des plages de tension Ull et U12 sont régies de la façon suivante :
- si la tension E est au niveau "1" (14 volts), alors le pont diviseur est défini par Rll et R13 en parallèle, qui fixent la plage Ull, et par R12 seule, qui fixe la plage U12; de ce fait, la valeur ohmique de Rll étant réduite par la mise en parallèle de R13, la plage Ull est réduite au profit de la plage U12;
- si au contraire la tension E est au niveau "0" (0 volt), alors le pont diviseur est défini par Rll seule, qui fixe la plage Ull, et par R12 et R13 en parallèle, qui fixent la plage U12; de ce fait, la valeur ohmique de R12 étant réduite par la mise en parallèle de R13, la plage U12 est réduite au profit de la plage Ull.
Si par exemple on choisit Rll ≈ R12 = 33 kΩ, et R13 = 18 kΩ, alors il est aisé de vérifier par calcul que
- si E = 14 volts, alors
Ull = 3, 65 volts et U12 = 10,35 volts; - si E = 0 volt, alors
Ull = 10,35 volts et U12 = 3, 65 volts.
On comprend à la lecture de ce qui précède que le comparateur unique Ail permet donc de délivrer directement le signal de sortie S égal au signal E' émis par le calculateur distant, dans la mesure où le seuil de comparaison est à chaque fois adapté, grâce à la résistance R13, pour se situer entre les deux valeurs de potentiel que peut prendre la ligne L en fonction de la valeur E' pour une valeur de E donnée.
Ce résultat est globalement équivalent à celui qui serait obtenu avec deux comparateurs à seuil fixe coopérant avec trois résistances R2, R3 R4 définissant des plages de tensions respectives de 3,65 volts, 6,70 volts et 3, 65 volts .
Toutefois, dans la mesure où, dans tous les cas, la comparaison ne s'effectue plus qu'avec une seule valeur de seuil, à savoir le point de transition entre les plages Ull et U12, on diminue sensiblement les risques de fausse détection en cas de perturbation du signal présent sur la ligne L.
Plus précisément, l'élargissement sélectif de l'une des plages en fonction de la valeur de E permet d' accepter sans erreur des décalages importants dans les tensions E et E' appliquées dans les deux organes (dus à des décalage de masse ou à des composantes ondulatoires) .
Ainsi, en pratique, si les valeurs de Rll, R12 et R13 sont telles que U12 = 3. Ull (cas où E = "1") ou Ull = 3.U12 (cas où E = "0"), et si l'on conserve l'hypothèse d'une alimentation sous 14 volts, alors la comparaison s'effectue respectivement sur des valeurs de seuil de 10,5 volts et de 3,5 volts.
Il en résulte que l'erreur acceptable sur le signal F dans les cas où E = E' = F = "1" ou E = E' = F = "0" est de 3,5 volts; or F étant égal à (E+E' ) /2 (dans l'hypothèse où RI = R'I), l'erreur maximale admissible sur la différence entre E et E' est donc de 7 volts.
De même, l'erreur acceptable sur F = 1/2 (qui vaut normalement 7 volts) dans le cas où E = "0" et E' = "1" ou dans le cas inverse est également de 3,5 volts. Il faudrait donc que la différence entre E et E' baisse accidentellement en deçà de 7 volts pour effectuer un décodage erroné. On observera ici que le circuit de la figure 4 est sensiblement plus simple et économique qu'un circuit à deux comparateurs dotés chacun d'un seuil fixe, et dont les sorties doivent en outre faire l'objet d'une combinaison logique. On notera ici que ce circuit de décodage peut équiper soit un seul des organes soit, plus avantageusement, les deux organes.

Claims

REVENDICATIONS
1. Système de communication entre deux organes électriques ou électroniques (A, B) d'un véhicule automobile, reliés tous deux à un potentiel commun tel que la masse du véhicule, système destiné à faire circuler de façon bidirectionnelle simultanée entre lesdits organes des informations logiques binaires ayant alternativement un niveau haut et un niveau bas, comprenant un conducteur unique (L) entre les deux organes et, dans chaque organe, un circuit de décodage (DEC, DEC ) apte à combiner un signal logique binaire (E, E' ) à transmettre à l'autre organe avec la tension (F, F' ) présente sur le conducteur unique, ladite tension pouvant prendre à un instant donné l'un parmi trois niveaux, à savoir un niveau haut, un niveau bas et un niveau intermédiaire, de manière à reconstituer en sortie (S, S' ) , en temps réel, le signal transmis par l'autre organe, et dans lequel chaque circuit de décodage (DEC, DEC ) comprend des moyens comparateurs à seuil (Ail) recevant la tension (F) présente sur le conducteur unique, système caractérisé en ce que les moyens comparateurs sont des moyens comparateurs (Ail) à seuil unique variable, reconstituant directement en sortie
(S) le signal (E' ) transmis par l'autre organe.
2. Système selon la revendication 1, caractérisé en ce que le seuil unique variable est établi à l'aide d'un pont diviseur comprenant deux résistances (Rll, R12) branchées en série entre une source de tension (Ualim) et ledit potentiel commun et une troisième résistance (R13) branchée entre le signal logique (E) à transmettre et le point commun entre lesdites deux résistances .
3. Système selon l'une des revendications 1 et 2, caractérisé en ce que le premier organe (A) du véhicule constitue un circuit régulateur de la tension de charge d'une batterie par un alternateur, en ce que le second organe (B) du véhicule constitue un calculateur de gestion du fonctionnement du moteur thermique du véhicule, en ce que le signal (E) à transmettre par le premier organe est un signal représentatif du taux d'excitation de l'alternateur, et en ce que le signal (E' ) à transmettre par le second organe est un signal représentatif de la tension à réguler ou d'une variation de la tension à réguler.
4. Système selon l'une des revendications 1 à 3, caractérisé en ce que les niveaux haut et bas des informations logiques binaires (E, E' ) sont respectivement la tension de batterie et la masse du véhicule.
5. Organe électrique ou électronique (A; B) de véhicule automobile, relié à un potentiel de référence tel que la masse du véhicule et destiné à échanger de façon bidirectionnelle simultanée des informations logiques binaires (E; E' ) avec un organe distant dudit véhicule, comprenant une borne (F) pour la connexion d'un conducteur unique (L) de liaison avec l'organe distant, une résistance (RI) sur une première extrémité de laquelle est appliqué un signal logique binaire (E) à transmettre à l'organe distant, et dont l'autre extrémité est reliée à ladite borne de connexion, et un circuit de décodage (DEC) pour combiner la tension présente sur la borne de connexion avec le signal à transmettre, de manière à reconstituer en sortie un signal transmis par l'organe distant, le circuit de décodage (DEC, DEC ) comprenant des moyens comparateurs à seuil (Ail) recevant la tension (F) présente sur le conducteur unique, caractérisé en ce que les moyens comparateurs sont des moyens comparateurs (Ail) à seuil unique variable, reconstituant directement en sortie (S) le signal (E' ) transmis par l'organe distant.
6. Organe selon la revendication 5, caractérisé en ce que le seuil unique variable est établi à l'aide d'un pont diviseur comprenant deux résistances (Rll, R12) branchées en série entre une source de tension (Ualim) et ledit potentiel commun et une troisième résistance (R13) branchée entre le signal logique à transmettre (E) et le point commun entre lesdites deux résistances.
7. Organe selon l'une des revendications 5 et 6, caractérisé en ce que les niveaux haut et bas des informations logiques binaires sont respectivement la tension de batterie et la masse du véhicule.
PCT/FR1997/001813 1996-10-11 1997-10-10 Systeme de communication bidirectionnelle simultanee entre deux organes electriques ou electroniques d'un vehicule automobile, et organe equipe des moyens correspondants WO1998017025A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96/12437 1996-10-11
FR9612437A FR2746946B1 (fr) 1996-03-29 1996-10-11 Systeme de communication bidirectionnelle simultanee entre deux organes electriques ou electroniques d'un vehicule automobile, et organe equipe des moyens correspondants

Publications (1)

Publication Number Publication Date
WO1998017025A1 true WO1998017025A1 (fr) 1998-04-23

Family

ID=9496586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/001813 WO1998017025A1 (fr) 1996-10-11 1997-10-10 Systeme de communication bidirectionnelle simultanee entre deux organes electriques ou electroniques d'un vehicule automobile, et organe equipe des moyens correspondants

Country Status (1)

Country Link
WO (1) WO1998017025A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104756A1 (fr) 2019-12-17 2021-06-18 Thales Bus monofil ou « One-Wire »

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2460573A1 (fr) * 1979-07-04 1981-01-23 Radiotechnique Compelec Dispositif d'echange de signaux numeriques entre une unite centrale et au moins un poste peripherique relies par une ligne de transmission
US4463341A (en) * 1981-06-01 1984-07-31 Aisin Seiki Kabushiki Kaisha Single conductor multi-frequency electric wiring system for vehicles
EP0118110A2 (fr) * 1983-03-04 1984-09-12 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Emetteur-récepteur numérique pour la transmission en duplex de signaux logiques au moyen d'une seule ligne
US4481585A (en) * 1981-08-03 1984-11-06 General Motors Corporation System for selectively controlling motor vehicle electrical loads
JPH07202675A (ja) * 1993-12-28 1995-08-04 Hitachi Ltd 送受信回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2460573A1 (fr) * 1979-07-04 1981-01-23 Radiotechnique Compelec Dispositif d'echange de signaux numeriques entre une unite centrale et au moins un poste peripherique relies par une ligne de transmission
US4463341A (en) * 1981-06-01 1984-07-31 Aisin Seiki Kabushiki Kaisha Single conductor multi-frequency electric wiring system for vehicles
US4481585A (en) * 1981-08-03 1984-11-06 General Motors Corporation System for selectively controlling motor vehicle electrical loads
EP0118110A2 (fr) * 1983-03-04 1984-09-12 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Emetteur-récepteur numérique pour la transmission en duplex de signaux logiques au moyen d'une seule ligne
JPH07202675A (ja) * 1993-12-28 1995-08-04 Hitachi Ltd 送受信回路
US5514983A (en) * 1993-12-28 1996-05-07 Hitachi, Ltd. CMOS full duplex transmission-reception circuit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 095, no. 011 26 December 1995 (1995-12-26) *
WOODHOUSE R D ET AL: "ONE-WIRE FULL-DUPLEX COMMUNICATION SCHEME", MOTOROLA TECHNICAL DEVELOPMENTS, vol. 14, 1 December 1991 (1991-12-01), pages 111 - 112, XP000276212 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104756A1 (fr) 2019-12-17 2021-06-18 Thales Bus monofil ou « One-Wire »

Similar Documents

Publication Publication Date Title
EP0709254B1 (fr) Système de communication d'informations par courants porteurs, notamment pour un véhicule automobile
EP0318354B1 (fr) Dispositif de transmission d'informations pour véhicule automobile et procédé de mise en oeuvre d'un tel dispositif
FR2657643A1 (fr) Systeme de telecommande en particulier pour le controle de portieres de vehicules automobiles.
EP0222630A1 (fr) Dispositif de transmission simultanée de deux informations sur une même ligne électrique suivant des sens opposés
FR3090888A1 (fr) Dispositif de détection automatique de couplage entre dispositifs électronique
FR3038807A1 (fr) Dispositif d'emetteur-recepteur apte a etre connecte sur un reseau de communication par bus de type can ou flexray
FR2480000A1 (fr) Commande electronique pour transmission automatique de vehicule automobile utilisant un microcalculateur
WO1998017025A1 (fr) Systeme de communication bidirectionnelle simultanee entre deux organes electriques ou electroniques d'un vehicule automobile, et organe equipe des moyens correspondants
EP0962869A1 (fr) Circuit d'interface bistandard pour liaison série
FR2746946A1 (fr) Systeme de communication bidirectionnelle simultanee entre deux organes electriques ou electroniques d'un vehicule automobile, et organe equipe des moyens correspondants
FR2720703A1 (fr) Système antivol de véhicule.
FR2746945A1 (fr) Systeme de communication bidirectionnelle simultanee entre deux organes electriques ou electroniques d'un vehicule automobile, et organe equipe des moyens correspondants
EP0466539A1 (fr) Dispositif de commande de l'inclinaison d'un projecteur d'un véhicule automobile
FR2596596A1 (fr) Procede et dispositif de transmission d'informations entre deux circuits electroniques
FR2660780A1 (fr) Circuit de reception d'un signal radioelectrique module pour un dispositif electronique autonome.
EP0367668A1 (fr) Dispositif de commande de la position d'au moins un organe mobile, parmi un ensemble de positions discrètes, en particulier pour l'inclinaison d'un projecteur d'un vehicule automobile
EP0838895B1 (fr) Commande d'un moteur électrique pas à pas de véhicule automobile, notamment d'un moteur pas à pas pour la correction d'un projecteur
FR2820923A1 (fr) Alimentation asservie pour liaison serie, de type maitre esclave
FR2685506A1 (fr) Agencement de commande a distance d'un dispositif actionneur a l'aide d'un appareil de telecommande.
EP1402547B1 (fr) Interrupteur de demarrage a faible courant pour vehicules, et equipement de demarrage dote dudit interrupteur
EP2845355A1 (fr) Unite de commande electronique a terminaison de ligne configurable
FR2673735A1 (fr) Appareil d'interface de bus.
EP0918418B1 (fr) Système de transmission d'informations entre stations raccordées par un réseau multiplexé notamment pour véhicule automobile
FR2705473A1 (fr) Dispositif de commande de positions d'axes de déplacement.
FR2646907A1 (fr) Dispositif de mesure de niveau et/ou de volume de liquide dans un reservoir

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase