WO1998016625A1 - Microorganism which produces enzyme acting on phosphorylated 1,5-anhydroglycitol, enzyme produced by said microorganism, and method for quantitatively determining phosphorylated 1,5-anhydroglycitol using the same - Google Patents

Microorganism which produces enzyme acting on phosphorylated 1,5-anhydroglycitol, enzyme produced by said microorganism, and method for quantitatively determining phosphorylated 1,5-anhydroglycitol using the same Download PDF

Info

Publication number
WO1998016625A1
WO1998016625A1 PCT/JP1997/003754 JP9703754W WO9816625A1 WO 1998016625 A1 WO1998016625 A1 WO 1998016625A1 JP 9703754 W JP9703754 W JP 9703754W WO 9816625 A1 WO9816625 A1 WO 9816625A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorylated
enzyme
microorganism
pms
anhydroglucitol
Prior art date
Application number
PCT/JP1997/003754
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Sode
Tetsuro Hamafuji
Yoshifumi Watazu
Original Assignee
International Reagents Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Reagents Corporation filed Critical International Reagents Corporation
Publication of WO1998016625A1 publication Critical patent/WO1998016625A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to a novel microorganism, an enzyme produced by the microorganism, and a method for quantifying 1,5-anhydroglucitol using the enzyme. More specifically, microorganisms that produce enzymes that act on 1,5-anhydro-D-glucitols and phosphorylated 1,5-anhydro-D-glucitols produce and oxidize phosphorylated 1,5-anhydro-D-glucitols The present invention relates to an enzyme which can be used and a method for quantifying phosphorylated 1,5-anhydro-D-glucitol using the enzyme. This is useful for quantification of 1,5-AG). Conventional technology
  • 1,5-AG is a polyol with a structure similar to glucose, which is found in blood, cerebrospinal fluid and urine in humans, and is known to decrease 1,5-AG concentration in diabetic patients. However, it is attracting attention as an important marker for diabetes.
  • 1,5-AG was determined by gas chromatography (Inspection and Technology, Vol. 21, No. 6, 407-412, 1982).
  • quantification by this method requires a special device, and the operation is complicated and requires skill, which hinders the measurement of a large number of samples in the field of clinical testing.
  • Japanese Patent Application Laid-Open No. 63-185,397 discloses a method for quantifying 1,5-AG by producing hydrogen peroxide using an enzyme that oxidizes 1,51 AG. I have.
  • a method using an oxidase does not affect the effects of reducing substances such as pyrylvinascorbic acid in biological samples.
  • the enzyme used has a low substrate specificity for 1,5-AG, it is difficult to measure only a small amount of 1,5-AG from a sample containing a large amount of saccharides such as a clinical test. The effect on the measured values of sugars is large.
  • An exchange resin and a boric acid treatment method are disclosed.
  • Japanese Patent Application Laid-Open No. 5-304996 discloses a method of similarly adjusting the pH to 7.2 to 8.5.
  • all of these methods have the drawback of complicated operation, and have a difficulty in quickly measuring a large number of samples using an automatic analyzer.
  • the present inventors have improved such a conventional method and made intensive studies on a method applicable to the measurement of a sample in a clinical test, particularly a method applicable to an automatic analyzer.
  • a microorganism that acts on phosphorylated 1,5-AG and succeeded in separating a redox enzyme that can act on phosphorylated 1,5-AG from this microorganism.
  • the enzyme is allowed to act on phosphorylated 1,5-AG in the presence of an electron acceptor, and the measurement of its redox product makes it possible to measure phosphorylated 1,5-AG.
  • a phosphorylating enzyme is allowed to act on 1,5-AG in the presence of a phosphate group donor to produce phosphorylated 1,5-AG, and then the enzyme of the present invention is used to activate the enzyme. , 5-AG can be measured.
  • the present invention has been made based on such findings, and the present invention relates to a microorganism belonging to the genus Delaea that produces an oxidoreductase acting on phosphorylated 1,5-AG, and in particular, the microorganism is a Delaea sp. 1 5 (F ERM BP—6 140).
  • Another invention of the present invention relates to an enzyme having the following physicochemical properties and biochemical properties.
  • estimated molecular weight by SDS-PAGE is about 67 kDa
  • estimated molecular weight by gel filtration is about 55 kDa
  • a further aspect of the present invention is a phosphorylated 1,5-anhydroglucitol characterized by allowing the above enzyme to act on phosphorylated 1,5-anhydroglucitol in the presence of an electron acceptor. And a method for phosphorylating 1,5-anhydroglucitol, and allowing the above-mentioned enzyme to act on the resulting phosphorylated 1,5-anhydroglucitol in the presence of an electron acceptor. It relates to a method for determining 1,5-anhydroglucitol.
  • FIG. 1 is a diagram showing a calibration curve in the quantification of phosphorylated 1,5-AG using the enzyme of the present invention.
  • FIG. 2 is a diagram showing a calibration curve in the quantification of 1,5-AG using the enzyme of the present invention.
  • the microorganism according to the present invention produces an oxidoreductase that acts on phosphorylated 1,5-AG.
  • the enzyme is useful for the quantification of phosphorylated 1,5-AG and 1,5-AG.
  • the bacteriological properties of Delaware ⁇ -15 strain which is a specific example of the microorganism of the present invention, are as follows.
  • the culture of the bacterium of the present invention may be performed in any medium and under any culturing conditions as long as the strain can be satisfactorily grown.
  • the above medium can contain a suitable carbon source, nitrogen source, inorganic ions and other necessary components.
  • Glucose, ⁇ -methyl-D-glucoside, etc. can be used as the carbon source of the medium.
  • the nitrogen source organic nitrogen sources such as peptone, yeast extract and meat extract, and inorganic nitrogen sources such as ammonium sulfate and ammonium nitrate can be used.
  • the inorganic ions phosphate ions, potassium ions, calcium ions, magnesium ions, iron ions, copper ions, manganese ions, and the like can be used. Further, if necessary, components such as vitamins and cell growth factors can be added to the medium.
  • a culturing method using a liquid medium such as a shaking culturing method, and a culturing method using a solid medium such as an agar medium can be used according to a conventional method, and the cultivation is performed under aerobic conditions.
  • the cultivation temperature is 25 to 40, preferably around 30 ° C, and the pH during culturing is around 6 to 8, preferably around 7.
  • the number of culture days can be appropriately set depending on the amount of cells, the composition of the medium, and the like, but is usually 1 to 2 days, preferably 1 day.
  • the enzyme of the present invention can be obtained from the water-soluble fraction of the pulverized product of the microorganism of the present invention. That is, the enzyme of the present invention is obtained by pulverizing a cultured microorganism of the present invention in a suitable buffer (for example, a phosphate buffer or the like, having a pH of about 6) by a conventional method (for example, a french press), and then centrifuging. It is contained in the water-soluble fraction from which contaminants have been removed by separation.
  • a suitable buffer for example, a phosphate buffer or the like, having a pH of about 6
  • a conventional method for example, a french press
  • Separation and purification of the enzyme of the present invention from the above water-soluble fraction should be performed according to a conventional protein purification method (for example, salting out, dialysis, centrifugation, electrophoresis, gel filtration, ion exchange chromatography, etc.).
  • a salt such as ammonium sulfate is added to the above water-soluble fraction to remove contaminating proteins by salt removal, and then the salts are removed by dialysis; the obtained aqueous solution is subjected to DEAE-type ion exchange.
  • the purified enzyme of the present invention can be obtained by purifying the eluate by a gel filtration method.
  • the thus obtained enzyme of the present invention (hereinafter referred to as ⁇ - 15 GDH) had the following physicochemical and biochemical properties.
  • the method for quantifying phosphorylated 1,5-AG comprises reacting the phosphorylated 1,5-anhydroglucitol with the aforementioned ⁇ -15 GD ⁇ in the presence of an electron acceptor, The reaction is shown in equation (1). Reaction formula (1)
  • the electron acceptor used in the present invention is not particularly limited.
  • oxygen phenazine Tosulfate (PMS), Methoxy-PMS (m-PMS), Dichlorophenol-indophenol (DC IP), Fecu-Sene, Fe-Su Derivative, Nitrotetra-tetrazolium Salt (NTB), Cytochrome C , Nicotinamide dodenine dinucleotide (phosphate) oxidized form (N
  • the phosphorylated 1,5-AG can be prepared, for example, by converting 1,5-AG in the presence of a phosphate group donor using the method shown in the following reaction formula (3), (4) or (5). It can be produced by phosphorylation.
  • Reaction formula (3) or (4) Is a known reaction and can be carried out according to the conventional method, and the reagent composition and reaction conditions to be used can be set according to the conventional method.
  • the reaction shown in the reaction formula (5) is described in the literature (for example, The Journal of Biological Cliemistry Vol.269, No.26, 17537-17541, 1994; same journal Vol.270, No.51, 30453-30457, 1995).
  • the present inventors have found that 1,5-AG can be phosphorylated particularly efficiently in this reaction by the method using ADP-dependent exokinase (hereinafter referred to as ADP-dependent HK) described in). Issued.
  • ADP-dependent HK ADP-dependent exokinase
  • ADP AMP The reaction shown in the following reaction formula (6) shows another example of the present invention.
  • phosphorylated 1,5-AG is oxidized and coexisted by the action of ⁇ - 15 GDH. Since the DC IP is reduced, the phosphorylated 1,5-AG can be quantified by measuring the absorbance at a wavelength of 600 nm.
  • DCIP DCIP (reduced) The method for quantifying phosphorylated 1,5-AG according to the present invention is carried out in an appropriate buffer, and the amount of the enzyme used depends on the phosphorylated 1,5-AG concentration in the sample. It can be adjusted appropriately according to the situation.
  • Preferred examples of the reagent composition used in this enzymatic reaction include MES-
  • NaOH buffer 50 mM, pH 5.5
  • 0.1 mM m-PM S 0.01 to 2.00 mM
  • DC IP 0.01 to 10%
  • BSA 0.01 to 1 0 U
  • Preferred examples of the reagent composition used in the enzymatic reaction for phosphorylating 1,5-AG include 50 to 100 mM phosphate buffer (pH 7.3), 0.1 to; L OmM MgC 1 2, 1 0 ⁇ 3 0mM KC l , 2 ⁇ 5 mM AT P, 0. 1 ⁇ 5 0 mM PEP ( Foss Hoe Knoll pyruvate), 1 ⁇ 2 0 U / m 1 PK ( pyruvate kinase) 1 0 ⁇ 1 000 UZm 1 HK (or GK); or 5 0 to 1 0 Omm tris - HCl buffer ( ⁇ ⁇ 8. 0), 0. 1 ⁇ 1 OmM Mg C 1 2, 1 0 ⁇ 3 OmM KC 1 , 2 to 10 mM ADP or CDP, and 1 to 1000 U / m 1 ADP-dependent HK.
  • Phosphorylated 1,5-AG which is a substrate of the reaction formulas (1), (2) and (6), can be converted into a 1 , 5-AG can be produced by the action of glucokinase (GK), hexokinase (HK) or ADP-dependent HK. Therefore, the reaction According to the formula (3), (4) or (5), phosphorylation 1,5-AG is generated from 1,5-AG, and then the phosphorylation 1,5-AG is calculated according to the reaction formula (1), (2) or (6). By measuring 5-AG, 1,5-AG can be measured.
  • Phosphorylating enzymes HK (Hexokinase, EC 2.7.1.1), ADP-dependent HK (without EC registration) and GK (Glucokinase, EC 2.7.1.2) used in the above method are particularly limited in their ability to regulate, Alternaria sp.
  • Microorganisms derived from microorganisms such as sp., Aerobacter aerogenes, Aspergillus oryzae, Bacillus stearothermopilus.
  • the method for eliminating glucose in a sample described in Japanese Patent Application Laid-Open No. 5-763997 can be used to measure serum containing large amounts of glucose. 1,5-AG in a sample can be measured accurately.
  • the method for eliminating glucose in serum samples is not limited to these. Industrial applicability
  • the enzyme produced by the bacterium of the present invention acts on phosphorylated 1,5_AG to determine the enzyme of phosphorylated 1,5_AG, and furthermore, It is useful for enzyme quantification of 1,5-AG.
  • phosphorylated 1,5-AG and 1,5-AG can be quantified easily and with high accuracy, and furthermore, measurement by an automatic analyzer is possible. This has the effect that the sample can be processed quickly.
  • agar play Bok (the medium per liter, Na 2 HP0 4 6 g, KH 2 P0 4 3 g, N a C 1 30 g, NH 4 C LLG, a- methyl one D- glucoside 4 g, Mg S 0 4 1 mM, C a C 1 z 0. lml, to contain) agar 1 5 g, seawater samples taken across Japan added, 30 ° Cultured aerobically in C. The colonies were isolated and subjected to the following glucose dehydrogenase (GDH) activity test to select and isolate colonies having GDH activity.
  • GDH glucose dehydrogenase
  • the eluate was applied to a TS Kge 1 G 3000 column (8 mm x 30 cm ID) equilibrated with 10 mM potassium phosphate buffer (pH 6.0) containing 0.3 M Na C1, The GDH active fraction was separated to obtain a solution containing the enzyme of the present invention.
  • the molecular weight of the obtained enzyme solution was measured by SDS_electrophoresis (silver nitrate staining) using 8-25% polyacrylamide gradient gel (Pharmacia, PhastGel gradient 8-25). It was 67 kDa.
  • the molecular weight was measured by a gel filtration method using the above-mentioned TS Kgel G 3000, and was found to be about 55 kDa.
  • a molecular weight standard a low molecular weight standard kit (manufactured by Pharmacia) was used.
  • a calibration curve was prepared using 5-AG as a sample. Specifically, 20 ⁇ l of the enzyme solution of the present invention and 50 mM MES buffer (pH 5, 5) were mixed with 300 ⁇ l of a reagent containing 0.1 mM DC IP and 0.1% BSA, and the mixture was mixed at 37 ° C. after prewarmed 5 min, the phosphorylation 1 of various concentrations saline was measured DC IP consumed by the addition of sample 80 1 was dissolved 5-AG at 600 nm absorbance c FIG. 1 shows the relationship between the phosphorylated 1,5_AG concentration and the absorbance. As shown in FIG. 1, the measurement method using the enzyme of the present invention showed good linearity.

Abstract

A microorganism which produces a redox enzyme acting on phosphorylated 1,5-anhydro-D-glycitol, the enzyme thus produced, and a method for quantitatively determining phosphorylated 1,5-anhydro-D-glycitol using the same. The microorganism is one which produces a redox enzyme acting on phosphorylated 1,5-anhydro-D-glycitol, and the redox enzyme produced by the microorganism is useful for the quantitative determination of 1,5-anhydro-D-glycitol using an enzyme.

Description

明 細 書 リン酸化 1, 5—アンヒドログルシトールに作用する酵素を産生する微生 物、 当該微生物が産生する酵素及びそれを使用したリン酸化 1, 5—アン ヒドログルシトールの定量方法 技術分野  Description Microorganism producing an enzyme acting on phosphorylated 1,5-anhydroglucitol, enzyme produced by the microorganism, and method for quantifying phosphorylated 1,5-anhydroglucitol using the same Technical field
本発明は新規な微生物、 それが産生する酵素及び当該酵素を使用した 1, 5—アンヒドログルシトールの定量方法に関する。 より詳細には、 リン酸 ィ匕 1, 5—アンヒドロ一 D—グルシトール類に作用する酵素を産生する微 生物及び当該微生物が産生し、 リン酸化 1, 5—アンヒドロ— D—グルシ トール類を酸化し得る酵素、 並びに当該酵素を使用したリン酸化 1, 5— アンヒドロー D—グルシトールの定量方法に関し、 かかる酵素及び定量方 法は、 臨床検査などにおける 1, 5—アンヒドロ— D—グルシ卜一ル (以 下、 1, 5— A Gという) の定量に有用である。 従来の技術  The present invention relates to a novel microorganism, an enzyme produced by the microorganism, and a method for quantifying 1,5-anhydroglucitol using the enzyme. More specifically, microorganisms that produce enzymes that act on 1,5-anhydro-D-glucitols and phosphorylated 1,5-anhydro-D-glucitols produce and oxidize phosphorylated 1,5-anhydro-D-glucitols The present invention relates to an enzyme which can be used and a method for quantifying phosphorylated 1,5-anhydro-D-glucitol using the enzyme. This is useful for quantification of 1,5-AG). Conventional technology
1, 5—A Gはグルコース類似の構造を有するポリオ—ルであり、 ヒト では血液、 髄液、 尿などに存在し、 糖尿病患者では 1, 5— A G濃度が低 下することが知られており、 糖尿病の重要なマ一カーとして注目されてい る。  1,5-AG is a polyol with a structure similar to glucose, which is found in blood, cerebrospinal fluid and urine in humans, and is known to decrease 1,5-AG concentration in diabetic patients. However, it is attracting attention as an important marker for diabetes.
従来、 1 , 5—A Gはガスクロマトグラフィーにより定量されていた (検査と技術、 21卷、 No.6、 407〜412、 1982年) 。 しかし、 この方法で定 量するには特別な装置が必要であり、 また操作が繁雑で熟練を要するため、 臨床検査の分野で多数の検体を測定するには支障があった。  Conventionally, 1,5-AG was determined by gas chromatography (Inspection and Technology, Vol. 21, No. 6, 407-412, 1982). However, quantification by this method requires a special device, and the operation is complicated and requires skill, which hinders the measurement of a large number of samples in the field of clinical testing.
近年、 操作性の改善を目的として 1, 5— A Gの定量に酵素を用いた方 法が報告されている。 例えば日本特開昭 6 3 - 1 8 5 3 9 7号には 1, 5 一 A Gを酸化する酵素を用いて過酸化水素を産生させて 1, 5— A Gを定 量する方法が開示されている。 しかし、 このような酸化酵素を用いる方法 は、 生体試料中のピリルビンゃァスコルビン酸などの還元性物質の影響を 受けるという問題がある。 更に、 使用する酵素の 1, 5— A Gに対する基 質特異性が低いため、 臨床検査のような各種 多量の糖類を含む試料から 微量の 1, 5—A Gのみを測定することは困難で、 各種糖類の測定値に与 える影響が大きい。 特に、 グルコースの影響が大きいため、 これらの対策 として、 たとえば前記日本特開昭 6 3 - 1 8 5 3 9 7号や日本特開平 7— 2 3 1 7 9 6号では、 強塩基性陰イオン交換樹脂やホウ酸処理法が開示さ れている。 また日本特開平 5— 3 0 4 9 9 6号では同様に p Hを 7 . 2〜 8 . 5に調整する方法が開示されている。 しかし、 これらの方法はいずれ も操作が繁雑であるという欠点があり、 自動分析装置を用いて多数の検体 を迅速に測定するには難点を持っていた。 In recent years, methods using enzymes to quantify 1,5-AG have been reported for the purpose of improving operability. For example, Japanese Patent Application Laid-Open No. 63-185,397 discloses a method for quantifying 1,5-AG by producing hydrogen peroxide using an enzyme that oxidizes 1,51 AG. I have. However, such a method using an oxidase does not affect the effects of reducing substances such as pyrylvinascorbic acid in biological samples. There is a problem of receiving. Furthermore, since the enzyme used has a low substrate specificity for 1,5-AG, it is difficult to measure only a small amount of 1,5-AG from a sample containing a large amount of saccharides such as a clinical test. The effect on the measured values of sugars is large. In particular, since the influence of glucose is large, as a countermeasure against these, for example, in the above-mentioned Japanese Patent Application Laid-Open No. 63-185,977 and Japanese Patent Application, First Publication No. An exchange resin and a boric acid treatment method are disclosed. Japanese Patent Application Laid-Open No. 5-304996 discloses a method of similarly adjusting the pH to 7.2 to 8.5. However, all of these methods have the drawback of complicated operation, and have a difficulty in quickly measuring a large number of samples using an automatic analyzer.
このような臨床検査における実状を考慮して、 自動化に適した検査方法 の開発が行われ、 日本特開平 6— 3 0 3 9 9 5号、 日本特開平 6— 1 8 9 7 5 5号あるは日本特開平 6 - 2 3 9 7 0 4号に示すように、 酸化還元酵 素を用いた 1, 5 — A Gの測定方法が検討されてきた。 しかし、 各種 Z多 量の糖類を含む臨床検体試料中から微量の 1, 5— A Gを分別測定するこ とは困難であった。 特に、 酸化酵素、 例えば、 ビラノースォキシダーゼを 用いた方法では混在する糖類の測定値に与える影響が指摘されている (臨 床化学、 第 2 3巻、 第 2号、 188〜194、 1994年) 。 このような実状は精密 かつ高精度を要求される臨床検査の分野では改善されなければならない問 題である。 発明の開示  In consideration of the actual situation in such clinical tests, test methods suitable for automation have been developed, and are disclosed in Japanese Patent Application Laid-Open Nos. Hei 6-30995 and Hei 6-189755 As disclosed in Japanese Patent Application Laid-Open No. Hei 6-239704, a method for measuring 1,5-AG using a redox enzyme has been studied. However, it was difficult to separately measure trace amounts of 1,5-AG from clinical specimens containing a large amount of various saccharides. In particular, it has been pointed out that a method using an oxidase, for example, vilanose oxidase, has an effect on the measurement value of mixed saccharides (Clinical Chemistry, Vol. 23, No. 2, 188-194, 1994 ). Such a situation is a problem that needs to be improved in the field of clinical tests that require precision and high precision. Disclosure of the invention
本発明者等はこのような従来の方法を改良して、 臨床検査における検体 試料の測定に適応できる方法、 特に自動分析装置に利用できる方法につい て鋭意研究を行った。 その結果、 リン酸化 1, 5— A Gに作用する微生物 を見出し、 またこの微生物からリン酸化 1, 5—A Gに作用し得る酸化還 元酵素の分離に成功した。 そして、 この酵素を、 電子受容体の存在下にリ ン酸化 1, 5— A Gに作用させて、 その酸化還元物を測定することにより、 リン酸化 1, 5— A Gの測定が可能になることが確認され、 更にその反応 を利用することによって、 1, 5—A Gを高精度で測定できることを見出 した。 詳しくは、 リン酸基供与体の存在下で、 1, 5— AGにリン酸化酵 素を作用させてリン酸化 1, 5— AGを生成し、 次いで本発明の酵素を作 用させることにより 1, 5—AGの測定が可能になる。 The present inventors have improved such a conventional method and made intensive studies on a method applicable to the measurement of a sample in a clinical test, particularly a method applicable to an automatic analyzer. As a result, we found a microorganism that acts on phosphorylated 1,5-AG, and succeeded in separating a redox enzyme that can act on phosphorylated 1,5-AG from this microorganism. The enzyme is allowed to act on phosphorylated 1,5-AG in the presence of an electron acceptor, and the measurement of its redox product makes it possible to measure phosphorylated 1,5-AG. Was confirmed, and it was found that 1,5-AG could be measured with high accuracy by using the reaction. did. Specifically, a phosphorylating enzyme is allowed to act on 1,5-AG in the presence of a phosphate group donor to produce phosphorylated 1,5-AG, and then the enzyme of the present invention is used to activate the enzyme. , 5-AG can be measured.
これらの方法は操作が繁雑でなく、 反応条件が穏和なため自動分析装置 での測定が可能となり、 日常の臨床検査で多数の試料測定に有用であるこ とが分かり、 本発明を完成するに至った。  Since these methods are not complicated and the reaction conditions are mild, measurement with an automatic analyzer is possible, which proves to be useful for measuring a large number of samples in daily clinical tests. Was.
本発明はかかる知見に基づいてなされたもので、 本発明は、 リン酸化 1 , 5— AGに作用する酸化還元酵素を産生するデレャ属に属する微生物に関 し、 特に当該微生物がデレャ エスピー α- 1 5 (F ERM B P— 6 1 4 0) である微生物に関する。  The present invention has been made based on such findings, and the present invention relates to a microorganism belonging to the genus Delaea that produces an oxidoreductase acting on phosphorylated 1,5-AG, and in particular, the microorganism is a Delaea sp. 1 5 (F ERM BP—6 140).
また、 本発明の他の発明は、 下記の理化学的性質及び生化学的性質を有 する酵素に関する。  Another invention of the present invention relates to an enzyme having the following physicochemical properties and biochemical properties.
a) リン酸化 1, 5— AGに作用する ;  a) Acts on phosphorylated 1,5-AG;
b) SD S— PAGEによる推定分子量が約 6 7 kD aである ; c ) ゲル濾過法による推定分子量が約 5 5 kD aである ;  b) estimated molecular weight by SDS-PAGE is about 67 kDa; c) estimated molecular weight by gel filtration is about 55 kDa;
d) 1 OmM リン酸カリウム緩衝液 (p H 6. 0) で平衡化した DE AE型樹脂ゲルに吸着し、 0. 3M Na C〗 を含有する同緩衝液で溶出 する。  d) Adsorb to DEAE-type resin gel equilibrated with 1 OmM potassium phosphate buffer (pH 6.0), and elute with 0.3 M NaCM buffer.
本発明の更なる発明は、 リン酸化 1, 5—アンヒドログルシトールに、 電子受容体の存在下、 上記の酵素を作用させることを特徴とするリン酸化 1, 5—アンヒドログルシトールの定量方法、 及び 1, 5—アンヒドログ ルシトールをリン酸化し、 生成したリン酸化 1, 5—アンヒドログルシト ールに、 電子受容体の存在下、 上記の酵素を作用させることを特徴とする 1, 5—アンヒドログルシトールの定量方法に関する。 図面の簡単な説明  A further aspect of the present invention is a phosphorylated 1,5-anhydroglucitol characterized by allowing the above enzyme to act on phosphorylated 1,5-anhydroglucitol in the presence of an electron acceptor. And a method for phosphorylating 1,5-anhydroglucitol, and allowing the above-mentioned enzyme to act on the resulting phosphorylated 1,5-anhydroglucitol in the presence of an electron acceptor. It relates to a method for determining 1,5-anhydroglucitol. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の酵素を用いたリン酸化 1, 5— AGの定量における検 量線を示す図である。  FIG. 1 is a diagram showing a calibration curve in the quantification of phosphorylated 1,5-AG using the enzyme of the present invention.
図 2は、 本発明の酵素を用いた 1 , 5— AGの定量における検量線を示 す図である。 発明を実施するための最良の形態 FIG. 2 is a diagram showing a calibration curve in the quantification of 1,5-AG using the enzyme of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る微生物は、 リン酸化 1, 5—AGに作用する酸化還元酵素 を産生する。 当該酵素はリン酸化 1, 5— AG及び 1, 5— AGの定量に 有用である。  The microorganism according to the present invention produces an oxidoreductase that acts on phosphorylated 1,5-AG. The enzyme is useful for the quantification of phosphorylated 1,5-AG and 1,5-AG.
本発明の微生物の具体例であるデレャ エスピー α- 1 5株の菌学的性 質は以下のとおりである。  The bacteriological properties of Delaware α-15 strain, which is a specific example of the microorganism of the present invention, are as follows.
(a)形態学的性状  (a) Morphological properties
1. 細胞の形及び大きさ : カン菌  1. Shape and size of cells: Bacillus
2. 細胞の多形性の有無: なし  2. Cell polymorphism: None
3. 運動性の有無: あり  3. Mobility: Yes
4. 胞子の有無: なし  4. Spore presence: None
5. グラム染色性: 陰性  5. Gram stainability: negative
(b)各培地における生育状態  (b) Growth status in each medium
1. 肉汁寒天平板培養: 乳白色 良好  1. Gravy agar plate culture: milky white good
2. 肉汁寒天斜面培養: 乳白色 良好  2. Gravy agar slant culture: milky white good
3. 肉汁液体培養: 乳白色/良好  3. Broth liquid culture: milky / good
(c)生理学的性質  (c) Physiological properties
1. 硝酸塩の還元: 陽性  1. Nitrate reduction: positive
2. 脱窒反応: 陰性  2. Denitrification: negative
3. VP反応: 陰性  3. VP reaction: negative
4. インドールの生成: 陰性  4. Indole production: negative
5. 硫化水素の生成: 陰性  5. Production of hydrogen sulfide: negative
6. クェン酸の利用 : 陰性  6. Use of cunic acid: negative
7. 色素の生成: 陰性  7. Dye formation: negative
8. ゥレアーゼ: 陰性  8. Perase: negative
9. ォキシダーゼ: 陰性  9. Oxidase: negative
10 カタラーゼ: 陽性  10 Catalase: positive
11 生育の範囲: p H 6 0〜 8 3 0°C付近  11 Growth range: pH 60 ~ 83 0 ° C
12. 酸素に対する態度: 好気性  12. Attitude to oxygen: aerobic
13. 0- Fテス卜: 無変化型 14. 下記の糖類からの酸の生成 13. 0- F test: No change 14. Generation of acids from the following saccharides
Lーァラビノ一ス 陽性  L-arabinos positive
D—キシロース 陽性  D—xylose positive
D—グルコース 陽件  D-glucose
5 D マンノース 陰性  5D Mannose negative
D フルク ト一ス 陽性  D fructos positive
D ガラクトース 陽性  D galactose positive
麦芽糖 陽件  Maltose positive
ショ糖 陽件  You Sucrose
1  1
丄 U 丄 U
卜レハロース 陽性  Trehalose positive
D ソルビッ卜 陽性  D sorbit positive
D—マンニッ卜 陽性  D—Mannit positive
イノシッ卜 陽性  Inosit positive
15 グリセリン 陽性  15 Glycerin positive
(d)その他の諸性質  (d) Other properties
1. -ガラク 卜シダ一ゼ 陽性  1. -galactosidase positive
2. アルギニンジヒドラ一ゼ: 陰性  2. Arginine dihydrase: negative
3. リジンデカルボキシラ一セ : 陰性  3. Lysine decarboxylase: negative
20 4. オル二チンデカルボキシラ一ゼ: 陰性  20 4. Orditin decarboxylase: negative
5. 卜リブトフアンデァミナ一ゼ: 陰性  5. Tributeminaze: negative
6. ゼラチナ一ゼ: 陰性  6. Gelatinase: negative
7. α メチル—D グルコシドでの増殖: 陽性  7. Growth on α-methyl-D-glucoside: positive
8. N a C 1の要求性: 陽性  8. Requirement of NaC1: Positive
25 以上の菌学的性質から、 Bergey' s Manual of Determinative Bacteriol ogy (Ninth Edition)に基づいて検索したところ、 本菌株はデレャ(Deleya) 属の細菌に比較的類似しているが、 上記の諸性質と一致するものは見出さ れなかった。 そこで、 本発明菌はデレャ属に属する新種の菌株と判断し、 デレャ エスピー α - 1 5 (Deleya sp. α - 15)と命名した。 また、 この菌 Based on over 25 mycological properties, a search based on Bergey's Manual of Determinative Bacteriolgy (Ninth Edition) revealed that this strain was relatively similar to bacteria of the genus Deleya. No match was found with the nature. Thus, the fungus of the present invention was determined to be a new strain belonging to the genus Delaea, and was named Delaea sp. Α-15 (Deleya sp. Α-15). Also, this fungus
30 株は日本工業技術院生命工学工業技術研究所に 「受託番号 F E R M B P — 6 1 4 0」 として寄託されている。 30 shares were submitted to the Japan Institute of Industrial Science and Technology, Institute of Biotechnology and Industrial Technology under the accession number FERMBP — 6 1 4 0 ”.
本発明菌の培養は、 当該菌株が良好に生育できるものであれば、 いかな る培地及び培養条件であってもよく、 かかる培養によリ増殖させて必要量 の菌体を得ることができる。 上記の培地は、 適当な炭素源、 窒素源、 無機 イオン及びその他必要な成分を含有させることができる。  The culture of the bacterium of the present invention may be performed in any medium and under any culturing conditions as long as the strain can be satisfactorily grown. . The above medium can contain a suitable carbon source, nitrogen source, inorganic ions and other necessary components.
培地の炭素源としては、 グルコース、 α—メチルー D—グルコシドなど が利用できる。 また、 窒素源としては、 ペプトン、 酵母エキス、 肉エキス などの有機窒素源、 硫酸アンモニゥム、 硝酸アンモニゥムなどの無機窒素 源が利用できる。 更に、 無機イオンとしては、 リン酸イオン、 カリウムィ オン、 カルシウムイオン、 マグネシウムイオン、 鉄イオン、 銅イオン、 マ ンガンイオンなどが利用できる。 また、 必要に応じて、 培地には、 ビタミ ン類、 細胞増殖因子などの成分を添加することもできる。  Glucose, α-methyl-D-glucoside, etc. can be used as the carbon source of the medium. As the nitrogen source, organic nitrogen sources such as peptone, yeast extract and meat extract, and inorganic nitrogen sources such as ammonium sulfate and ammonium nitrate can be used. Further, as the inorganic ions, phosphate ions, potassium ions, calcium ions, magnesium ions, iron ions, copper ions, manganese ions, and the like can be used. Further, if necessary, components such as vitamins and cell growth factors can be added to the medium.
本発明菌の培養方法としては、 常法に準じ、 振盪培養法などの液体培地 を用いる培養方法、 寒天培地などの固体培地を用いる培養方法が利用でき、 好気的条件下に行われる。 培養温度は 2 5〜4 0で、 好ましくは 3 0 °C付 近、 培養途中の p Hは 6〜 8、 好ましくは 7付近にて行われる。 培養日数 としては、 菌体量、 培地組成などに応じて適宜設定できるが、 通常 1〜 2 日、 好ましくは 1 日である。  As a method for culturing the bacterium of the present invention, a culturing method using a liquid medium such as a shaking culturing method, and a culturing method using a solid medium such as an agar medium can be used according to a conventional method, and the cultivation is performed under aerobic conditions. The cultivation temperature is 25 to 40, preferably around 30 ° C, and the pH during culturing is around 6 to 8, preferably around 7. The number of culture days can be appropriately set depending on the amount of cells, the composition of the medium, and the like, but is usually 1 to 2 days, preferably 1 day.
本発明の酵素は、 本発明の微生物の粉砕物の水溶性画分から得ることが できる。 即ち、 本発明の酵素は、 培養した本発明の微生物を適当な緩衝液 (例えば、 リン酸緩衝液等、 P H 6程度) 中で慣用の方法 (例えば、 フレ ンチプレス等) で粉砕し、 次いで遠心分離して夾雑物を除去した水溶性画 分に含まれている。  The enzyme of the present invention can be obtained from the water-soluble fraction of the pulverized product of the microorganism of the present invention. That is, the enzyme of the present invention is obtained by pulverizing a cultured microorganism of the present invention in a suitable buffer (for example, a phosphate buffer or the like, having a pH of about 6) by a conventional method (for example, a french press), and then centrifuging. It is contained in the water-soluble fraction from which contaminants have been removed by separation.
上記の水溶性画分からの本発明の酵素の分離 ·精製は、 慣用の蛋白質精 製法 (例えば、 塩析、 透析、 遠心分離、 電気泳動、 ゲル濾過、 イオン交換 クロマトグラフィー等) に準じて行うことができる。 より具体的には、 上 記の水溶性画分に硫酸アンモニゥム等の塩を加え、 夾雑蛋白を塩祈して除 去し、 次いで透析により塩を除去し ;得られた水溶液を D E A E型イオン 交換クロマトグラフィーで精製し ;溶出液をゲル濾過法で精製することに より、 精製された本発明の酵素を得ることができる。 かくして得られた本発明の酵素 (以下、 α— 1 5 GDHという) は、 下記の理化学的性質及び生化学的性質を有していた。 Separation and purification of the enzyme of the present invention from the above water-soluble fraction should be performed according to a conventional protein purification method (for example, salting out, dialysis, centrifugation, electrophoresis, gel filtration, ion exchange chromatography, etc.). Can be. More specifically, a salt such as ammonium sulfate is added to the above water-soluble fraction to remove contaminating proteins by salt removal, and then the salts are removed by dialysis; the obtained aqueous solution is subjected to DEAE-type ion exchange. Purification by chromatography; The purified enzyme of the present invention can be obtained by purifying the eluate by a gel filtration method. The thus obtained enzyme of the present invention (hereinafter referred to as α- 15 GDH) had the following physicochemical and biochemical properties.
a) リン酸化 1, 5— AGに作用する ; a) Acts on phosphorylated 1,5-AG;
b) SD S— PAGEによる推定分子量が約 67 kD aである ; b) estimated molecular weight by SD S-PAGE is about 67 kDa;
c) ゲル濾過法による推定分子量が約 55 kD aである ; c) The estimated molecular weight by gel filtration is about 55 kDa;
d) 1 0 mM リン酸カリウム緩衝液 (pH6. 0) で平衡化した DE A E型樹脂ゲルに吸着し、 0. 3M NaC 1を含有する同緩衝液 (pH 6. 0) で溶出する。 d) Adsorb to DE AE resin gel equilibrated with 10 mM potassium phosphate buffer (pH 6.0) and elute with the same buffer containing 0.3 M NaCl (pH 6.0).
本発明におけるリン酸化 1, 5— AGの定量方法は、 リン酸化 1, 5— アンヒドログルシトールに、 電子受容体の存在下、 前記の α— 1 5 GD Ηを作用させることからなり、 その酵素反応を反応式 ( 1) に示す。 反応式 ( 1 ) The method for quantifying phosphorylated 1,5-AG according to the present invention comprises reacting the phosphorylated 1,5-anhydroglucitol with the aforementioned α-15 GDΗ in the presence of an electron acceptor, The reaction is shown in equation (1). Reaction formula (1)
- 1 5 GDH .„ リン酸化 1,5-AG ― ► リン酸化 1,5-AG (酸化型) 電子受容体 本発明に使用される電子受容体としては特に制限はなく、 例えば、 酸素、 フエナジンメ トサルフェート (PMS) 、 メ 卜キシ一 PMS (m-PM S) 、 ジクロロフエノ一ルインドフエノール(DC I P) 、 フエ口セン、 フエ 口セン誘導体、 ニトロテトラブル一テトラゾリゥム塩 (NTB) 、 チトク ローム C、 ニコチンアミ ドアデニンジヌクレオチド (リン酸) 酸化型 (N -15 GDH. „Phosphorylated 1,5-AG ― ► Phosphorylated 1,5-AG (oxidized form) Electron acceptor The electron acceptor used in the present invention is not particularly limited. For example, oxygen, phenazine Tosulfate (PMS), Methoxy-PMS (m-PMS), Dichlorophenol-indophenol (DC IP), Fecu-Sene, Fe-Su Derivative, Nitrotetra-tetrazolium Salt (NTB), Cytochrome C , Nicotinamide dodenine dinucleotide (phosphate) oxidized form (N
AD (P) ) 、 フラビンモノヌクレオチド (FMN) などが例示される。 本発明の方法を、 下記の反応式 (2) に示す例をもってより具体的に説 明する。 この反応において、 リン酸化 1, 5—AGは α— 1 5 GDHの 作用にょリ酸化されると共に共存する m-PMSは還元され、 生成した還 元型 m-PMSで NT Bを還元してフオルマザンを生成させて、 これを波 長 570 nmの吸光度で測定することにより、 リン酸化 1, 5— AGの定 量を行うことができる。 AD (P)), flavin mononucleotide (FMN) and the like. The method of the present invention will be described more specifically with reference to the following reaction formula (2). In this reaction, the phosphorylated 1,5-AG is oxidized by the action of α- 15 GDH, and the co-existing m-PMS is reduced. The reduced m-PMS is used to reduce NTB to formazan. Phosphorylated 1,5-AG can be determined by measuring the absorbance at a wavelength of 570 nm.
なお、 リン酸化 1, 5— AGは、 例えば、 下記の反応式 (3) 、 (4) 又は (5) に示す方法を用いて、 1, 5—AGをリン酸基供与体の存在下 でリン酸化することにより生成することができる。 反応式 (3) 又は (4) に示す酵素反応は公知の反応であり、 従来法に準じて実施することができ、 使用される試薬組成物、 反応条件などは従来法に準じて設定することがで きる。 また、 反応式 (5 ) に示す反応は、 文献(例えば、 The Journal of Biological Cliemistry Vol.269, No.26, 17537-17541, 1994; 同誌 Vol.2 70, No.51 , 30453-30457, 1995)に記載されている ADP-dependent Hexokin ase (以下、 ADP- dependent H Kという)を用いる方法で、 本反応では特に 効率よく 1 , 5— A Gをリン酸化することができることを本発明者らは見 出した。 反応式 ( 2 ) The phosphorylated 1,5-AG can be prepared, for example, by converting 1,5-AG in the presence of a phosphate group donor using the method shown in the following reaction formula (3), (4) or (5). It can be produced by phosphorylation. Reaction formula (3) or (4) Is a known reaction and can be carried out according to the conventional method, and the reagent composition and reaction conditions to be used can be set according to the conventional method. In addition, the reaction shown in the reaction formula (5) is described in the literature (for example, The Journal of Biological Cliemistry Vol.269, No.26, 17537-17541, 1994; same journal Vol.270, No.51, 30453-30457, 1995). The present inventors have found that 1,5-AG can be phosphorylated particularly efficiently in this reaction by the method using ADP-dependent exokinase (hereinafter referred to as ADP-dependent HK) described in). Issued. Reaction formula (2)
a - 1 5 GD H  a-15 GD H
リン酸ィ匕 1,5-AG リン酸化 1,5 -AG (酸化型)  Phosphoridation 1,5-AG Phosphorylated 1,5-AG (oxidized form)
m-P S  m-P S
NTB フオルマザン 反応式 ( 3 )  NTB Formazan Reaction Formula (3)
H K又は G K  H K or G K
L,5-AG リン酸化 l'5-AG  L, 5-AG phosphorylated l'5-AG
ATP ADP 反応式 (4 )  ATP ADP reaction formula (4)
,5-AG , 5-AG
Figure imgf000010_0001
Figure imgf000010_0001
I h ( 5 ) I h (5)
ADP - dependent HK ADP-dependent HK
L.5-AG ― リン酸化 1,5-AG  L.5-AG-phosphorylated 1,5-AG
ADP AMP また、 下記の反応式 (6) に示される反応は本発明の他の例を示すもの で、 この例では α— 1 5 GDHの作用によりリン酸化 1, 5— AGは酸 化されると共に共存する DC I Pは還元されるので、 波長 6 00 nmの吸 光度で測定することにより、 リン酸化 1, 5—AGの定量を行うことがで さる。 ADP AMP The reaction shown in the following reaction formula (6) shows another example of the present invention. In this example, phosphorylated 1,5-AG is oxidized and coexisted by the action of α- 15 GDH. Since the DC IP is reduced, the phosphorylated 1,5-AG can be quantified by measuring the absorbance at a wavelength of 600 nm.
反応式 ( 6 ) - 1 5 GDH  Reaction formula (6)-15 GDH
リン酸化 1,5-AG リン酸化 1,5-AG (酸化型)  Phosphorylated 1,5-AG Phosphorylated 1,5-AG (oxidized form)
DCIP DCIP (還元型) 本発明のリン酸化 1, 5— AGの定量方法は、 適当な緩衝液中で行われ、 用いられる酵素の使用量は、 試料中のリン酸化 1, 5— AG濃度などに応 じて適宜調整することができる。  DCIP DCIP (reduced) The method for quantifying phosphorylated 1,5-AG according to the present invention is carried out in an appropriate buffer, and the amount of the enzyme used depends on the phosphorylated 1,5-AG concentration in the sample. It can be adjusted appropriately according to the situation.
この酵素反応に使用される試薬組成物の好ましい例としては、 ME S— Preferred examples of the reagent composition used in this enzymatic reaction include MES-
N a OH緩衝液 ( 50 mM, p H 5. 5 ) 、 0. 1 mM m-PM S, 0. 0 1〜 2. 00 mM DC I P, 0. 0 1〜1 0% B SA、 1〜 1 0 UNaOH buffer (50 mM, pH 5.5), 0.1 mM m-PM S, 0.01 to 2.00 mM DC IP, 0.01 to 10% BSA, 1 to 1 0 U
/m 1 a— 1 5 GDHなどが挙げられる。 / m 1 a—15 GDH.
また、 1, 5—AGをリン酸化する酵素反応で使用される試薬組成物の 好ましい例としては、 5 0〜 1 00mM リン酸緩衝液 (pH7. 3) 、 0. 1〜; L OmM Mg C 12、 1 0〜3 0mM KC l、 2〜5 mM AT P、 0. 1〜 5 0 mM P E P (フォスホェノールピルビン酸) 、 1〜2 0 U/m 1 P K (ピルビン酸キナーゼ) 、 1 0〜 1 000 UZm 1 H K (又は GK) ;又は 5 0〜 1 0 OmM トリス—塩酸緩衝液 (ρ Η 8. 0) 、 0. 1〜 1 OmM Mg C 12、 1 0〜3 OmM KC 1、 2〜1 0 mM AD P若しくは CD P、 1〜1 000 U/m 1 ADP- dependent H Kなどが挙げられる。 Preferred examples of the reagent composition used in the enzymatic reaction for phosphorylating 1,5-AG include 50 to 100 mM phosphate buffer (pH 7.3), 0.1 to; L OmM MgC 1 2, 1 0~3 0mM KC l , 2~5 mM AT P, 0. 1~ 5 0 mM PEP ( Foss Hoe Knoll pyruvate), 1~2 0 U / m 1 PK ( pyruvate kinase) 1 0~ 1 000 UZm 1 HK (or GK); or 5 0 to 1 0 Omm tris - HCl buffer (ρ Η 8. 0), 0. 1~ 1 OmM Mg C 1 2, 1 0~3 OmM KC 1 , 2 to 10 mM ADP or CDP, and 1 to 1000 U / m 1 ADP-dependent HK.
反応式 ( 1) 、 (2) 及び (6) の基質であるリン酸化 1, 5— AGは、 反応式 (3) 、 (4) 又は (5) に示されるように、 常法に準じ 1, 5— AGにグルコキナーゼ (GK) 、 へキソキナーゼ (HK) 又は ADP- depend ent HKを作用させることにより生成させることができる。 従って、 反応 式 (3) 、 (4) 又は (5) により、 1, 5— AGからリン酸化 1, 5— AGを生成させ、 ついで反応式 ( 1 ) 、 (2) 又は (6) によりリン酸化 1, 5—AGを測定することにより 1, 5—AGを測定することが可能に なる。 Phosphorylated 1,5-AG, which is a substrate of the reaction formulas (1), (2) and (6), can be converted into a 1 , 5-AG can be produced by the action of glucokinase (GK), hexokinase (HK) or ADP-dependent HK. Therefore, the reaction According to the formula (3), (4) or (5), phosphorylation 1,5-AG is generated from 1,5-AG, and then the phosphorylation 1,5-AG is calculated according to the reaction formula (1), (2) or (6). By measuring 5-AG, 1,5-AG can be measured.
上記の方法に用いるリン酸化酵素 HK(Hexokinase, EC 2.7.1.1)、 ADP- dependent H K (EC登録なし)及び G K (Glucokinase, EC 2.7.1.2)は特に 限定されなレヽ力、 Alternaria sp. , Bacillus sp. , Aerobacter aerogenes, Aspergillus oryzae, Bacillus stearothermopilus. Collectotrichum t rifolii, Collectotrichum trunctum, Escherichia coli, Fusarium rose urn, Gibberella fujikuroi, Leuconostoc mesenteroides, Saccharomyces cerevisiae. Pyrococcus furiosusなど微生物由来の酵素が適する。  Phosphorylating enzymes HK (Hexokinase, EC 2.7.1.1), ADP-dependent HK (without EC registration) and GK (Glucokinase, EC 2.7.1.2) used in the above method are particularly limited in their ability to regulate, Alternaria sp. Microorganisms derived from microorganisms such as sp., Aerobacter aerogenes, Aspergillus oryzae, Bacillus stearothermopilus.
また、 血清などの試料中の 1, 5— AGを測定する場合は、 日本特開平 5 - 7 6 3 9 7号に示す試料中のグルコースの消去法を用いることにより、 多量のグルコースを含む血清試料中の 1, 5—AGを正確に測定すること もできる。 なお、 血清試料中のグルコースの消去に関する方法はこれらに 限定されるものではない。 産業上の利用可能性  In addition, when measuring 1,5-AG in a sample such as serum, the method for eliminating glucose in a sample described in Japanese Patent Application Laid-Open No. 5-763997 can be used to measure serum containing large amounts of glucose. 1,5-AG in a sample can be measured accurately. The method for eliminating glucose in serum samples is not limited to these. Industrial applicability
本発明菌はリン酸化 1, 5— AGを炭素源として利用できるので、 本発 明菌の産生する酵素はリン酸化 1, 5 _ AGに作用しリン酸化 1 , 5 _A Gの酵素定量、 ひいては 1, 5—AGの酵素定量法に有用である。  Since the bacterium of the present invention can utilize phosphorylated 1,5-AG as a carbon source, the enzyme produced by the bacterium of the present invention acts on phosphorylated 1,5_AG to determine the enzyme of phosphorylated 1,5_AG, and furthermore, It is useful for enzyme quantification of 1,5-AG.
また、 本発明の方法によれば、 リン酸化 1 , 5— AG及び 1, 5— AG を簡便にして且つ高精度で定量することができ、 更に自動分析装置による 測定が可能であるので、 多数の試料を迅速に処理することができるという 効果を奏する。 実施例  Further, according to the method of the present invention, phosphorylated 1,5-AG and 1,5-AG can be quantified easily and with high accuracy, and furthermore, measurement by an automatic analyzer is possible. This has the effect that the sample can be processed quickly. Example
以下、 実施例に基づいて本発明をより詳細に説明するが、 本発明はこれ らの実施例に限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
実施例 1 菌株の取得 Example 1 Acquisition of strain
唯一の炭素源として α—メチルー D—グルコシドを添加した Μ 9培地寒 天プレー卜 (培地 1 リットル当り、 Na2HP04 6 g、 KH2 P04 3 g、 N a C 1 30 g、 NH4C l l g、 a—メチル一 D—グルコシド 4 g、 Mg S 04 1 mM、 C a C 1 z 0. l m l , 寒天 1 5 gを含有) に、 日本 各地で採取した海水試料を加え、 30°Cで好気的に培養した。 コロニーを 単離し、 下記のグルコース デヒドロゲナ一ゼ (GDH) 活性試験に付し、 GDH活性を有するコロニ一を選択 ·分離した。 As the sole carbon source alpha - methyl-D- glucoside added with Micromax 9 medium agar play Bok (the medium per liter, Na 2 HP0 4 6 g, KH 2 P0 4 3 g, N a C 1 30 g, NH 4 C LLG, a- methyl one D- glucoside 4 g, Mg S 0 4 1 mM, C a C 1 z 0. lml, to contain) agar 1 5 g, seawater samples taken across Japan added, 30 ° Cultured aerobically in C. The colonies were isolated and subjected to the following glucose dehydrogenase (GDH) activity test to select and isolate colonies having GDH activity.
GDH活性試験は、 各コロニーの細胞を 1 OmM リン酸緩衝液 (3% N a C 1含有、 p H 6. 0) で 3回洗浄した後、 0. 7 5 mM 2 , 6 - ジクロロフエノ一ルインドフエノ一ル (DC I P) 、 0. 7 5 mM フエ ナジンメ 卜サルフェート (PM S) 及び 1 00 mM α—メチル— D—グ ルコシドを含有する 25 mM トリスー塩酸緩衝液 (pH 8. 0) に加え、 DC I Pの消色を観察し、 消色が認められたコロニ一は GDH活性を有す ると判断した。  In the GDH activity test, cells in each colony were washed three times with 1 OmM phosphate buffer (containing 3% NaC1, pH 6.0), and then washed with 0.75 mM 2,6, -dichlorophenol-indophenol. (DC IP), 0.75 mM phenazine sulphate (PMS) and 100 mM α-methyl-D-glucoside in 25 mM Tris-HCl buffer (pH 8.0). The decolorization of DC IP was observed, and the colonies where decolorization was observed were judged to have GDH activity.
その結果、 幾つかの GDH活性を有するコロニーが見出され、 そのうち GDH活性が特に強い株を単離した (デレャ エスピー - 1 5株) 。 実施例 2  As a result, colonies having several GDH activities were found, of which a strain with particularly strong GDH activity was isolated (Delha SP-15 strain). Example 2
デレャ エスピー α-1 5株の培養 Culture of Dera sp. Α-1 5 strain
上記の菌株を、 1 リットル当り 1 0 gポリペプトン、 l g酵母抽出物、 30 g Na C l、 2 g K2HP04、 1 0 g α—メチル—D—グルコシ ドを含有する培地(P H 7. 0)中で、 30°Cにて 1 2〜48時間好気的に 培養した。 培養細胞を分離し、 3% N a C 1を含有する 1 0 mM リン酸 カリウム緩衝液(pH 6. 0)で洗浄した。 1 リッ トルの培養液から約 1 0 g (湿潤重量)の細胞を得た。 実施例 3 The above strain, per liter 1 0 g of polypeptone, lg yeast extract, 30 g Na C l, 2 g K 2 HP0 4, 1 0 g α- methyl -D- Gurukoshi medium containing de (PH 7. In 0), the cells were cultured aerobically at 30 ° C. for 12 to 48 hours. The cultured cells were separated and washed with 10 mM potassium phosphate buffer (pH 6.0) containing 3% NaCl. Approximately 10 g (wet weight) of cells were obtained from 1 liter of culture. Example 3
酵素 — 1 5 GDH) の分離 ·精製 Separation and purification of enzyme (15 GDH)
後期対数期にある上記の培養細胞をフレンチプレス ( 1 500 k g f ) で粉砕した後、 超遠心 (4°C、 69800 X g, 90分間) して上清の水 溶性画分 ( 1 0mM リン酸カリウム緩衝液、 pH 6. 0) を分離した。 この画分に硫酸アンモニゥムを 30%となるように添加して析出物を廃棄 し、 水溶液は 1 0mM リン酸カリウム緩衝液 (pH 6. 0) を用いて透 祈した。 透析後の水溶液は、 DEAE—トヨパールカラム (内径 22 mm X 20 c m) に付し、 更に 1 0 mM リン酸カリゥム緩衝液 (p H 6. 0) で平衡化した DEAE— 5 PWカラム (内径 5mmX 5 cm) に付した。 0〜0. 4 5M N a C 1を含有する 1 0 mM リン酸カリゥム緩衝液 (p H 6. 0) を用いた直線勾配法で溶出したところ、 目的物質は 0. 3M Na C lにて溶出した。 French culture (1500 kgf) of the above cultured cells in late log phase After ultra-centrifuging (4800C, 69800 Xg, 90 minutes), the water-soluble fraction of the supernatant (10 mM potassium phosphate buffer, pH 6.0) was separated. The precipitate was discarded by adding ammonium sulfate to this fraction to a concentration of 30%, and the aqueous solution was permeated using a 10 mM potassium phosphate buffer (pH 6.0). The aqueous solution after dialysis was applied to a DEAE-Toyopearl column (22 mm ID x 20 cm), and further equilibrated with 10 mM potassium phosphate buffer (pH 6.0). 5 mm X 5 cm). Elution was performed by a linear gradient method using 10 mM potassium phosphate buffer (pH 6.0) containing 0 to 0.4 M NaCl, and the target substance was dissolved in 0.3 M NaCl. Eluted.
溶出液を、 0. 3 M N a C 1を含有する 1 0 mM リン酸カリウム緩衝 液 (pH 6. 0) で平衡化した T S Kg e 1 G 3000カラム (内径 8 mmX 30 cm) に付し、 G D H活性画分を分離して本発明の酵素を含む 溶液を得た。  The eluate was applied to a TS Kge 1 G 3000 column (8 mm x 30 cm ID) equilibrated with 10 mM potassium phosphate buffer (pH 6.0) containing 0.3 M Na C1, The GDH active fraction was separated to obtain a solution containing the enzyme of the present invention.
得られた酵素液を、 8— 25 %ポリアクリルアミ ド勾配ゲル (フアルマ シァ社製、 PhastGel gradient 8-25) を用いた S D S _電気泳動法 (硝酸 銀染色) で分子量を測定したところ、 約 67 kDaであった。  The molecular weight of the obtained enzyme solution was measured by SDS_electrophoresis (silver nitrate staining) using 8-25% polyacrylamide gradient gel (Pharmacia, PhastGel gradient 8-25). It was 67 kDa.
また、 前述の T S Kg e l G 3000を用いたゲル濾過法で分子量を 測定したところ、 約 5 5 kD aであった。 なお、 分子量標準として、 低分 子量スタンダードキッ ト (フアルマシア社製) を使用した。 実施例 4  The molecular weight was measured by a gel filtration method using the above-mentioned TS Kgel G 3000, and was found to be about 55 kDa. As a molecular weight standard, a low molecular weight standard kit (manufactured by Pharmacia) was used. Example 4
本発明の酵素 (α— 1 5 GDH) を用いたリン酸化 1, 5—AGの定量 本発明の酵素の存在下、 リン酸化 1, 5—AGを酸化すると共に DC I Pを還元する酵素反応 (反応式 6) を利用し、 種々の濃度のリン酸化 1 ,Determination of phosphorylated 1,5-AG using the enzyme (α- 15 GDH) of the present invention In the presence of the enzyme of the present invention, an enzyme reaction that oxidizes phosphorylated 1,5-AG and reduces DC IP ( Using reaction formula 6), various concentrations of phosphorylation 1,
5— AGを試料として検量線を作成した。 即ち、 本発明の酵素溶液 20 μ 1と 50 mM ME S緩衝液 (pH 5, 5) に 0. I mM DC I P、 0. 1 % B S Aを含む試薬 300 μ 1を混和して 37 °Cで 5分間予備加温し た後、 生理的食塩水に種々の濃度のリン酸化 1, 5— AGを溶解した試料 80 1を添加して消費される DC I Pを 600 nmの吸光度で測定した c リン酸化 1 , 5 _ AG濃度と吸光度の関係を図 1に示す。 図 1に示される ように、 本発明の酵素を用いた測定法は良好な直線性を示した。 実施例 5 A calibration curve was prepared using 5-AG as a sample. Specifically, 20 μl of the enzyme solution of the present invention and 50 mM MES buffer (pH 5, 5) were mixed with 300 μl of a reagent containing 0.1 mM DC IP and 0.1% BSA, and the mixture was mixed at 37 ° C. after prewarmed 5 min, the phosphorylation 1 of various concentrations saline was measured DC IP consumed by the addition of sample 80 1 was dissolved 5-AG at 600 nm absorbance c FIG. 1 shows the relationship between the phosphorylated 1,5_AG concentration and the absorbance. As shown in FIG. 1, the measurement method using the enzyme of the present invention showed good linearity. Example 5
本発明の酵素 (α— 1 5 GDH) を用いた 1, 5—AGの定量 Quantification of 1,5-AG using the enzyme (α-15GDH) of the present invention
へキソキナーゼ (HK) 又はグルコキナーゼ (GK) を用いて 1, 5_ AGをリン酸化する酵素反応 (反応式 4) と、 本発明の酵素を用いてリン 酸化 1, 5— AGを酸化する酵素反応 (反応式 2) を組み合わせ、 種々の 濃度の 1, 5— AGを用いて検量線を作成した。 即ち、 0. 1 %トリ トン X— 1 00、 0. 1 % B SA、 1 0 m M g C 12, 20 miM PEP (フォスホエノ一ルビルビン酸) 、 20mM KC 1、 5 mM ATP、 5 00 U/m 1 HK、 1 0 U/m 1 P K (ピルビン酸キナーゼ) 、 1. 3 mM NT B (ニトロテロラブルーテトラゾリゥム塩) 及び 0. 1 3 m M m-PMS (メ トキシ-フエナジンメ トサルフェート) を含む 50mM トリス-塩酸緩衝液 (pH 8. 0) の第一試薬 320 μに 1, 5— AG試 料 20 μ 1を加え、 37 °C下で 5分間予備加温した後、 0. 1 %トリ トン X- 1 00, 0. 1 % B SA、 60 UZm 1の本発明の酵素を含む 50 mM トリス-塩酸緩衝液 (pH 8. 0) の第二試薬 80 μ 1を加え 5分間 加温した。 その後、 570 nmにおける吸光度を測定した。 図 2にその検 量線を示す。 図 2に示されるように、 本発明の酵素を用いた測定法は良好 な直線性を示した。 Enzymatic reaction of phosphorylating 1,5_AG using hexokinase (HK) or glucokinase (GK) (reaction formula 4), and enzymatic reaction of oxidizing phosphorylated 1,5-AG using the enzyme of the present invention (Reaction equation 2) was combined, and calibration curves were prepared using 1,5-AG at various concentrations. That is, 0.1% Triton X- 1 00, 0. 1% B SA, 1 0 m M g C 1 2, 20 miM PEP ( Fosuhoeno one Rubirubin acid), 20mM KC 1, 5 mM ATP, 5 00 U / m 1 HK, 10 U / m 1 PK (pyruvate kinase), 1.3 mM NTB (nitrotellora blue tetrazolium salt) and 0.13 mM M-PMS (Methoxy-phenazine meth Add 20 μl of 1,5-AG sample to 320 μl of 50 mM Tris-HCl buffer (sulfate) containing 50 mM Tris-HCl buffer (pH 8.0), preheat at 37 ° C for 5 min, 1% Triton X-100, 0.1% BSA, 50 U Tris-HCl buffer (pH 8.0) containing 60 UZm 1 of the enzyme of the present invention, and add 80 μl of the second reagent 5 Warmed for minutes. Thereafter, the absorbance at 570 nm was measured. Figure 2 shows the calibration curve. As shown in FIG. 2, the assay using the enzyme of the present invention showed good linearity.

Claims

請 求 の 範 囲 The scope of the claims
1. リン酸化 1, 5—アンヒドロ— D—グルシトールに作用する酸 化還元酵素を産生するデレャ属に属する微生物。 1. A microorganism belonging to the genus Delaea that produces an oxidoreductase that acts on phosphorylated 1,5-anhydro-D-glucitol.
2 · 微生物が、 デレャ エスピー "-1 5 (F ERM B P- 6 1 4 2 · The microorganisms are in the Dera sp. "-1 5 (F ERM B P-
0) である請求の範囲 1記載の微生物。 The microorganism according to claim 1, which is 0).
3. 下記の理化学的性質及び生化学的性質を有する酵素。  3. Enzymes having the following physicochemical and biochemical properties.
a) リン酸化 1, 5—アンヒドロー D—グルシトールに作用する ; a) acts on phosphorylated 1,5-anhydro-D-glucitol;
b) SD S— PAGEによる推定分子量が約 6 7 kD aである ; b) estimated molecular weight by SD S-PAGE is about 67 kDa;
c) ゲル濾過法による推定分子量が約 5 5 kD aである ; c) estimated molecular weight by gel filtration is about 55 kDa;
d) 1 0 mM リン酸カリウム緩衝液 (p H 6. 0) で平衡化した DE A E型樹脂ゲルに吸着し、 0. 3M N a C 1を含有する同緩衝液で溶出す る。 d) Adsorb to DEA E-type resin gel equilibrated with 10 mM potassium phosphate buffer (pH 6.0), and elute with 0.3 M NaC1 buffer.
4. リン酸化 1 , 5—アンヒドログルシトールに、 電子受容体の存 在下、 請求の範囲 3記載の酵素を作用させることを特徴とするリン酸化 1, 5—アンヒドログルシトールの定量方法。  4. Quantification of phosphorylated 1,5-anhydroglucitol characterized by allowing the enzyme according to claim 3 to act on phosphorylated 1,5-anhydroglucitol in the presence of an electron acceptor Method.
5. 電子受容体が、 酸素、 フエナジンメ トサルフェート (PMS) 、 メ 卜キシ一 PMS (m-PMS) 、 ジクロロフエノ一ルインドフエノール (DC I P) 、 フエ口セン、 フエ口セン誘導体、 二卜ロテトラブル一テト ラゾリゥム塩 (NTB) 、 チトクローム C、 ニコチンアミ ドアデニンジヌ クレオチド (リン酸) 酸化型 (NAD (P) ) 又はフラビンモノヌクレオ チド (FMN) である請求の範囲 4記載のリン酸化 1, 5—アンヒドログ ルシトールの定量方法。  5. The electron acceptors are oxygen, phenazine methosulphate (PMS), methoxy-PMS (m-PMS), dichlorophenol-indophenol (DC IP), phlegmene, phlegmene derivative, 5. The phosphorylated 1,5-anhydrog according to claim 4, which is one of tetrazolium salt (NTB), cytochrome C, nicotinamide adenine dinucleotide (phosphate) oxidized form (NAD (P)) or flavin mononucleotide (FMN). Method for quantifying lucitol.
6. 1, 5—アンヒドログルシトールをリン酸化し、 生成したリン 酸化 1, 5—アンヒドログルシトールに、 電子受容体の存在下、 請求の範 囲 3記載の酵素を作用させることを特徴とする 1, 5—アンヒドログルシ トールの定量方法。  6. Phosphorylating 1,5-anhydroglucitol and causing the enzyme according to claim 3 to act on the resulting phosphorylated 1,5-anhydroglucitol in the presence of an electron acceptor. A method for quantifying 1,5-anhydroglucitol, characterized in that:
7. 電子受容体が、 酸素、 フエナジンメ トサルフエ一卜 (PMS) 、 メ トキシ一 PMS (m-PM S) 、 ジクロロフェノールインドフエノール (DC I P) 、 フエ口セン、 フエ口セン誘導体、 ニトロテトラブル一テ卜 ラゾリゥム塩 (NTB) 、 チ卜クローム C、 ニコチンアミ ドアデニンジヌ クレオチド (リン酸) 酸化型 (NAD (P) ) 又はフラビンモノヌクレオ チド (FMN) である請求の範囲 6記載の 1, 5—アンヒドログルシトー ルの定量方法。 7. The electron acceptors are oxygen, phenazine methosulfurate (PMS), methoxy-PMS (m-PMS), dichlorophenol indophenol (DC IP), Teto 7. The 1,5-anhydrogel according to claim 6, which is a lazolidium salt (NTB), cytochrome C, nicotinamide adodenine dinucleotide (phosphate) oxidized form (NAD (P)) or flavin mononucleotide (FMN). The method of quantification of citole
PCT/JP1997/003754 1996-10-16 1997-10-16 Microorganism which produces enzyme acting on phosphorylated 1,5-anhydroglycitol, enzyme produced by said microorganism, and method for quantitatively determining phosphorylated 1,5-anhydroglycitol using the same WO1998016625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29568796 1996-10-16
JP8/295687 1996-10-16

Publications (1)

Publication Number Publication Date
WO1998016625A1 true WO1998016625A1 (en) 1998-04-23

Family

ID=17823887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003754 WO1998016625A1 (en) 1996-10-16 1997-10-16 Microorganism which produces enzyme acting on phosphorylated 1,5-anhydroglycitol, enzyme produced by said microorganism, and method for quantitatively determining phosphorylated 1,5-anhydroglycitol using the same

Country Status (1)

Country Link
WO (1) WO1998016625A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279780A (en) * 1985-05-28 1987-04-13 Nippon Kayaku Co Ltd Quantitative determination of 1,5-anhydroglucitol, enzyme used therefor and production thereof
JPS63185397A (en) * 1986-09-22 1988-07-30 Nippon Kayaku Co Ltd Quantitative determination of 1,5-anhydroglucitol and kit for determination
JPS63216488A (en) * 1987-03-06 1988-09-08 Sagami Chem Res Center Production of eicosapentaenoic acid by microorganism and microorganism using therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279780A (en) * 1985-05-28 1987-04-13 Nippon Kayaku Co Ltd Quantitative determination of 1,5-anhydroglucitol, enzyme used therefor and production thereof
JPS63185397A (en) * 1986-09-22 1988-07-30 Nippon Kayaku Co Ltd Quantitative determination of 1,5-anhydroglucitol and kit for determination
JPS63216488A (en) * 1987-03-06 1988-09-08 Sagami Chem Res Center Production of eicosapentaenoic acid by microorganism and microorganism using therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AGRIC. BIOL. CHEM., Vol. 54, No. 11, (1990), MIZUNO H. et al., "Purification and Properties of Restriction Endonuclease from Deleya Marina IAM 14114, a Marine Bacterium (DmaI)", pages 2863-2867. *

Similar Documents

Publication Publication Date Title
Turner et al. Carbon monoxide: acceptor oxidoreductase from Pseudomonas thermocarboxydovorans strain C2 and its use in a carbon monoxide sensor
Koditschek et al. α-Glycerophosphate oxidase in Streptococcus faecium F 24
JPS61280272A (en) Uricase and production thereof
EP0012446B1 (en) Acidic uricase, its production and its use for the determination of uric acid
US5871949A (en) Method of quantitative assay for 1,5-anhydroglucitol and reagent for quantitative assay
Baich The biosynthesis of proline in Escherichia coli phosphate-dependent glutamate γ-semialdehyde dehydrogenase (NADP), the second enzyme in the pathway
Poels et al. NAD (P)+‐independent aldehyde dehydrogenase from Pseudomonas testosteroni: A novel type of molybdenum‐containing hydroxylase
CA1210310A (en) Method for determining glucose content of fluid
Ghindilis et al. Glucose potentiometric electrodes based on mediatorless bioelectrocatalysis. A new approach
KR100750557B1 (en) Quantitative determination method of mannose
JPH0234599B2 (en)
Kulys et al. Reagentless biosensors for substrates of dehydrogenases
JPS5910190B2 (en) Novel method for producing lactate oxidase
Compagnone et al. An amperometric NADH biosensor based on NADH oxidase from Thermus aquaticus
JPH0767697A (en) Quantification of 1,5-anhydroglucitol
JP2872983B2 (en) Method for quantifying 1,5-anhydroglucitol and reagent for quantification
WO1998016625A1 (en) Microorganism which produces enzyme acting on phosphorylated 1,5-anhydroglycitol, enzyme produced by said microorganism, and method for quantitatively determining phosphorylated 1,5-anhydroglycitol using the same
JP3929576B2 (en) Microorganism producing enzyme acting on phosphorylated 1,5-anhydroglucitol, enzyme produced by the microorganism, and method for quantifying phosphorylated 1,5-anhydroglucitol using the same
Takeuchi et al. Pyruvate oxidase (CoA acetylating) in Entamoeba histolytica
US4229529A (en) Process for determining formate and reagent therefor
JP2001204494A (en) Kit for assaying saccharified hemoglobin
JP2886846B2 (en) 1,5-anhydroglucitol dehydrogenase and method for producing the same
JP3819094B2 (en) 1,5-Anhydroglucitol dehydrogenase, method for producing the same, and method for quantifying 1,5-anhydroglucitol using the same
JP2000270855A (en) Fructosylvaline oxidase
JPH04126099A (en) Highly sensitive determination method of myoinositol and composition for determination

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase