WO1998015350A2 - Catalyseurs d'hydrogenation, procede de fabrication de ces catalyseurs et leur utilisation pour preparer du peroxyde d'hydrogene - Google Patents

Catalyseurs d'hydrogenation, procede de fabrication de ces catalyseurs et leur utilisation pour preparer du peroxyde d'hydrogene Download PDF

Info

Publication number
WO1998015350A2
WO1998015350A2 PCT/BE1997/000115 BE9700115W WO9815350A2 WO 1998015350 A2 WO1998015350 A2 WO 1998015350A2 BE 9700115 W BE9700115 W BE 9700115W WO 9815350 A2 WO9815350 A2 WO 9815350A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalysts
weight
metal
palladium
Prior art date
Application number
PCT/BE1997/000115
Other languages
English (en)
Other versions
WO1998015350A3 (fr
Inventor
Véronique Mathieu
Pascal Pennetreau
Noël VANLAUTEM
Original Assignee
Solvay Interox (Societe Anonyme)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BE9600835A external-priority patent/BE1010665A3/fr
Priority claimed from BE9700743A external-priority patent/BE1011364A6/fr
Application filed by Solvay Interox (Societe Anonyme) filed Critical Solvay Interox (Societe Anonyme)
Priority to BR9712193-2A priority Critical patent/BR9712193A/pt
Priority to US09/269,877 priority patent/US6306359B1/en
Priority to AU44469/97A priority patent/AU4446997A/en
Priority to EP97942722A priority patent/EP0930938A2/fr
Publication of WO1998015350A2 publication Critical patent/WO1998015350A2/fr
Publication of WO1998015350A3 publication Critical patent/WO1998015350A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps

Definitions

  • Hydrogenation catalysts process for the manufacture of these catalysts and their use for preparing hydrogen peroxide
  • the present invention relates to hydrogenation catalysts based on palladium, platinum or rhodium deposited on supports of zirconium and silicon oxides, their manufacturing process and their use in hydrogenation reactions and in particular for preparing hydrogen peroxide.
  • patent application EP-A1-0149816 describes particular catalysts based on palladium, zirconium oxide and silica.
  • the object of the present invention is to provide other hydrogenation catalysts which have a high and stable catalytic activity.
  • Another object of the present invention is to provide hydrogenation catalysts which have a high catalytic selectivity.
  • the catalysts according to the invention when used for the synthesis of hydrogen peroxide by the AO process (auto-oxidation process), limit the formation of degradation products.
  • the invention relates to hydrogenation catalysts based on palladium, platinum or rhodium on a support of zirconium and silicon oxides comprising at least one other metal M and / or in which the support does not is not in the physical form of airgel.
  • the invention also relates to the process for the manufacture of these catalysts, as well as to the use of these catalysts in hydrogenation reactions and in particular for preparing hydrogen peroxide.
  • the catalysts comprise, on the one hand, palladium, platinum or rhodium, palladium being preferred, and, on the other hand, at least one other metal M.
  • the metal M can be chosen from the group consisting of silver, copper, gold, germanium, tin, iron, tellurium, nickel and their mixtures.
  • the metal M is preferably chosen from silver, copper and gold Particularly preferably, the metal M is silver or copper Excellent results have been obtained by combining palladium and silver
  • the catalysts of the first variant of the invention preferably consist essentially of of palladium, platinum or rhodium and another metal M, on a support of zirconium and silicon oxides
  • the support of the catalysts according to the invention contains zirconium and silicon oxides
  • the support can be in crystalline, partially crystalline, amorphous or partially amorphous form
  • the support is advantageously amorphous II preferably has a homogeneous distribution between zirconium oxide and silicon oxide
  • a homogeneous distribution between zirconium oxide and silicon oxide is understood to mean a distribution such that the experimental Zr / Si ratio, measured by X-ray photoelectron spectroscopy (XPS), does not differ more 20% of the theoretical Zr / Si ratio established by calculation on the basis of the chemical composition of the support.
  • Particularly preferred are the supports in which the difference between the experimental Zr / Si ratio measured by XPS and the theoretical Zr / Si ratio does not exceed not 10%
  • the presence of the metal M in the catalysts according to the invention as defined above is optional.
  • the support must not be in the physical form of an airgel De such catalysts can be used in the liquid phase without exhibiting the filtration disadvantages observed with aerogel-based catalysts.
  • the palladium, platinum or rhodium and the metal M may be in the elementary state or in the form of a compound such as a salt or an oxide
  • catalysts preferably comprise palladium, platinum or rhodium and metal M in the elementary state
  • the amount of palladium, platinum or rhodium in the catalysts is advantageously at least 0.1%, preferably at least at least 0.2% by weight relative to the total weight of the catalyst, that is to say of all of the metal compounds and of the support.
  • an amount is preferably used.
  • the amount of palladium, platinum or rhodium does not exceed 5% of the weight of the catalyst. Preferably, it does not exceed 4% or even 3%.
  • the amount of metal M in the catalysts of the first variant of the invention is advantageously at least 0.1%, preferably at least 0.2% by weight relative to the weight of the catalyst. Usually, the amount of this metal M does not exceed 5% by weight relative to the weight of the catalyst Preferably, it does not exceed 4%
  • the weight ratio of palladium, platinum or rhodium to metal M is preferably at least 0.05. In a particularly preferred manner, this weight ratio is at least minus 0, 1 In a very particularly preferred manner, this ratio is at least 0.25 Preferably, the weight ratio of palladium, platinum or rhodium to metal M does not exceed 20 In a particularly preferred manner, this ratio does not exceed 10 In a very particularly preferred manner, this ratio does not exceed 4
  • the amount of zirconium oxide in the catalysts is advantageously at least 1%, preferably at least 2% by weight relative to the weight of the catalyst. Usually, the amount of zirconium oxide does not exceed 10% by weight. weight relative to the weight of the catalyst Preferably, it does not exceed 5%
  • the amount of silicon oxide generally represents at least 75% by weight relative to the weight of the catalyst, in particular at least 80%, or even 85%
  • the amount of silicon oxide is usually less than or equal to 98.8% , especially 95%
  • Catalysts of the first variant of the invention giving good results comprise from 0.5 to 2.5% of Pd, Pt or Rh by weight relative to the weight of the catalyst, from 0.5 to 2.5% of metal M by weight relative to the weight of the catalyst, from 4 to 6% of Zr ⁇ 2 by weight relative to the weight of the catalyst, and from 89 to 95% of Si ⁇ 2 by weight relative to the weight of the catalyst
  • Catalysts of the second variant of the invention which give good results comprise from 15 to 25 g of Pd / kg of catalyst, from 40 to 60 g of Zr ⁇ 2 / g of catalyst, from 945 to 915 g of Si ⁇ 2 / kg of catalyst
  • the catalysts according to the invention can also optionally comprise at least one additional metal chosen from the metals of group IB, IIB, IIIA, IVA, VA and VIII, in the elementary state or in the form of a composed of this metal (the designation of the groups is made according to the CAS nomenclature as reproduced in the CRC Handbook of Chemistry and Physics, 75th Edition, 1994-1995, DR Lide, cover page). Where appropriate, the quantity of this additional metal does not exceed 50% by weight of the overall weight of palladium, platinum or rhodium and of metal M.
  • the catalysts of the invention can be prepared by the usual techniques, such as for example for the catalysts of the first variant, by co-impregnation of the metals on the support, by co-precipitation of the metals on the support or by successive deposits of metals on the support.
  • the catalysts of the first variant according to the invention are prepared by successive deposits, on the one hand, of palladium, platinum or rhodium and, on the other hand, of metal M in any order on a support of oxides of zirconium and silicon by impregnation.
  • the support is impregnated, first, with palladium, platinum or rhodium and, then, with the other metal M.
  • the impregnation of the support can be carried out using solutions containing the metallic constituents of the catalyst.
  • the impregnating solutions are preferably aqueous saline solutions.
  • the salts used for this purpose are in particular chlorides, nitrates, acetates or ammoniacal complexes.
  • the metal M is deposited by impregnating a Pd / Si ⁇ 2.ZrC> 2, Pt / Si ⁇ 2-Zr ⁇ 2 or Rh / Si ⁇ 2.ZrC> 2 catalyst with a solution containing the metallic constituent M under a reducing atmosphere. such as for example a hydrogen atmosphere.
  • the deposition of the metal M by reduction with hydrogen or by any other form of reduction also leads to the reduction of palladium, platinum or rhodium.
  • the catalysts can then be filtered, washed and dried.
  • the Pd.Ag/Si ⁇ 2-Zr ⁇ 2 catalysts can be prepared by suspending a Pd / Si ⁇ 2-Zr ⁇ 2 catalyst in a solution of AgN03 and reducing the metals by bubbling hydrogen.
  • the Pd.Cu/Si ⁇ 2- r ⁇ 2 catalysts can be prepared in the same way starting from a CuCl2 solution.
  • the catalysts of the invention unexpectedly exhibit a catalytic selectivity much higher than that observed with the catalysts described in patent application EP-A1-0009802.
  • the catalysts according to the present invention are suitable for all types of hydrogenation catalysis Consequently, the invention also relates to their use in hydrogenation reactions.
  • Examples of hydrogenation reactions that may be mentioned include the hydrogenation of alkynes to alkenes, hydrogenation of CO to methanol and reduction of unsaturated aldehydes to unsaturated alcohols
  • the catalysts according to the invention are used with very good results in the processes for manufacturing hydrogen peroxide Consequently, the invention relates also on a process for manufacturing hydrogen peroxide in their presence
  • a process for the synthesis of hydrogen peroxide which has given particularly advantageous results in the presence of the catalysts of the invention is the process for the synthesis of hydrogen peroxide known as the AO process or the anthraquinone process This process is described in particular in ULLMANN's Encyclopedia of Industrial Chemistry - 5th Edition, 1989, Vol. A13, p. 443 et seq.
  • the palladium catalysts according to the present invention give excellent results, in particular those of the first variant, especially when the metal M is silver or copper.
  • the examples which follow are intended to illustrate the present invention without however limiting its scope.
  • Example 1 R - Synthesis of a Pd / ZrC catalyst> 2 SiC> 2, according to example 2 of European patent application 0 009 802
  • the wet filtration product was resuspended in 45 ml of demineralized water, then 4.75 ml of a solution of P Cl2 dissolved in HCl (25 g Pd / 1 HCl N) was then added to the suspension, then 0 , 37 ml of a 0.5 molar aqueous solution in
  • Catalyst support obtained ZrU2 content in g / kg (emission spectrometry) - 44 BET surface in m * -7g (adsorption / desorption of N2) 292 351 pore volume in cm-Vg 1.2 1 25 average pore diameter in nm 9 1 1 Pd content in g / kg (quantities used) - 20 dispersion of Pd in% (adsorption / desorption of CO) - 23 surface occupied by the metal in m?
  • Catalyst support obtained Zr ⁇ 2 content in g / kg (emission spectrometry) 49 49 BET surface in m -Vg (adsorption / desorption of N2) 291 242 pore volume in cm-Vg 1.6 1, 1 mean pore diameter in nm 12 8 Pd content in g / kg (quantities used) - 20 Pd dispersion in% (adsorption / desorption of CO) - 10 surface occupied by the metal in m ⁇ Pd / g of catalyst - 0.9 ratio Zr / Si experimental (XPS spectroscopy) - 0.026 theoretical established by calculation _ 0.025 number of acid sites / g SU pp 0r t (NH3 adsorption) 2.5 10 TM
  • Example 3 Synthesis of a Pd / Si ⁇ 2 catalyst, according to Example 2 of European patent application 0 009 802 but without the use of Zr0
  • the method used is that of Example 1R, except that the zirconium salt is not added.
  • the characteristics of the support used and of the synthesized catalyst are presented below.
  • Catalyst support obtained BET surface in m * - / g (emission spectrometry) 292 292 pore volume in cm- '/ g (adsorption desorption of N2) 1, 2 1.2 mean pore diameter in nm 9 9 Pd content in g / kg (quantities used) - 20 dispersion of Pd in% (adsorption / desorption of CO) - 10 surface occupied by the metal in rr - Pd / g of catalyst - 0.9 number of acid sites / g SU pp 0r1 ; (NH3 adsorption) 1, 1 10 TM
  • the catalysts of Examples 1R, 2 and 3R were evaluated from the point of view of their activity and their selectivity of hydrogenation of amylanthraquinone (AQ) in solution in a diisobutylcarbinol-Solvesso 150 mixture.
  • the initial rate of consumption of hydrogen was measured and the importance of the transformation processes of amylanthraquinone into amyltetrahydroanthraquinone (ATQ), amyloxanthrone (AO) and amylanthrone (AA) as well as the transformation of amyltetrahydroanthraquinone into amyltetrahydrodihydrooxanthrone (ATDO) are expressed as a function the amount of hydrogen peroxide produced over time.
  • Procedure for evaluating catalysts in a continuous hydrogenation reactor the installation consisted of a hydrogenator, an oxidizer and an extraction column placed in series, the oxidized working solution being recycled to the hydrogenator after extraction of the hydrogen peroxide produced by Oxidation with oxygen of hydroanthraquinone, produced in the hydrogenator
  • the working solution consisted of amylanthraquinone at 70 g / kg in the mixture diisobutylcarbinol (20% by weight) -Solvesso 150 (80% by weight)
  • the total volume of working solution was 1,260 ml and its flow rate 6 ml / min
  • the temperature in the hydrogenator was 50 ° C, the hydrogen pressure of 18 bar absolute and the catalyst concentration of 100 g / 1
  • the time average residence time of the working solution in the hydrogenator was 33 min
  • the oxidizer operated at 45 ° C.
  • composition of the working solution was established by HPLC chromatography and its evolution followed over time and according to the quantity of hydrogen peroxide produced
  • selectivity of the catalysts was established on the basis of the quantities of AQ transformed into ATQ, AO and AA, and of ATDO produced from ATQ, referred to a unit quantity of peroxide hydrogen produced
  • Example 4 5 6 operating mode Catalyst implemented IR 2 3R relative catalytic activity 1 2 1 3 1 0 batch degradation rate of AQ -1 8 -1 1 -1 9 continuous rate of formation of ATQ 1 4 0 5 1 5 continuous formation speed of AO 0 2 0 3 0 2 continuous formation speed of AA 0 2 0 2 0 2 continuous degradation rate of ATQ -0 2 0 0 -0 1 continuous formation speed of ATDO 0.06 0 004 0 08 continuous
  • Pd Cu / Si ⁇ 2 r ⁇ 2 catalysts containing respectively 0.5% (ex 10) and 0.9% (ex 1 1) of copper (by weight relative to the weight of the catalyst) were prepared according to the same procedure as the Pd Ag / SiO2 Zr ⁇ 2 catalysts of Examples 7 to 9 except that the AgN03 solution was replaced by a solution of CuCl 2 2H 2 O at 26.8 g / kg (10 g / 1 in Cu ++ )
  • Examples 12 and 13 Hydrogenation of a mixture of amylanthraquinone and amyltetrahydroanthraquinone continuously by the Pd / Si ⁇ 2 Zr ⁇ 2and Pd Ag] oySi ⁇ 2 Zr ⁇ 2 catalysts according to the invention
  • the catalysts of Examples 2 and 8 were evaluated from the point of view of their activity in regime, of the evolution of their activity over time and from the point of view of their selectivity for hydrogenation of a mixture of amylanthraquinone ( AQ) and amyltetrahydroanthraquinone (ATQ) continuously in solution in a DBC-S 150 mixture
  • the test installation consists of a hydrogenator, an oxidizer and an extraction column placed in series.
  • Hydrogen peroxide is produced by oxygen oxidation of amylanthrahydroquinone (AQH) and l 'amyltetrahydroanthrahydroquinone (ATQH) produced in the hydrogenator
  • AQH amylanthrahydroquinone
  • ATQH l 'amyltetrahydroanthrahydroquinone
  • the working solution consists of amylanthraquinone at 25 g / kg and amyltetrahydroanthraquinone at 75 g / kg dissolved in the DBC-S 150 mixture (20/80)
  • the total volume of the working solution is 1260 ml and its flow rate is 6 ml / min
  • the temperature in the hydrogenator is 55 ° C and the pressure d hydrogen of 2 bar absolute
  • the concentration of the catalyst is adapted to compensate for the initial de
  • FIGS. 1 to 3 The results are presented in FIGS. 1 to 3. They clearly demonstrate the influence of the addition of silver on the activity under catalyst regime, on the evolution of its activity over time and on its selectivity.
  • the graph in FIG. 1 compares the evolution of the activity of the catalyst Pd Ag ⁇ o / 0 / S ⁇ 2 Zrt> 2 (example 13) to that of the catalyst Pd / S ⁇ 2 Zr ⁇ 2 (example 12)
  • the curves represent the evolution of quinones hydrogenated (mixture of AQH and ATQH) produced per g of catalyst, depending on the cumulative amount of hydrogen peroxide produced
  • the graph in FIG. 2 represents the change in the concentration of amyltetrahydrodihydroanthraquinone (ATDQ) as a function of the cumulative amount of hydrogen peroxide produced
  • the graph in FIG. 3 represents the change in the concentration of amyltetrahydrodihydrooxanthrone (ATDO) as a function of the cumulative amount of hydrogen peroxide produced

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Catalyseurs d'hydrogénation à base de palladium, de platine ou de rhodium comprenant au moins un autre métal M, déposés sur des supports d'oxydes de zirconium et de silicium. Procédé de fabrication de ces catalyseurs par imprégnation successive du support à l'aide de palladium, de platine ou de rhodium et d'un autre métal M. Utilisation de ces catalyseurs dans des réactions d'hydrogénation et notamment pour préparer du peroxyde d'hydrogène.

Description

Catalyseurs d'hydrogénation, procédé de fabrication de ces catalyseurs et leur utilisation pour préparer du peroxyde d'hydrogène
La présente invention concerne des catalyseurs d'hydrogénation à base de palladium, de platine ou de rhodium déposé sur des supports d'oxydes de zirconium et de silicium, leur procédé de fabrication ainsi que leur utilisation dans des réactions d'hydrogénation et notamment pour préparer du peroxyde d'hydrogène.
La synthèse du peroxyde d'hydrogène à l'intervention de catalyseurs d'hydrogénation comprenant du palladium et de la silice est une réaction connue de longue date. Il a aussi été déjà proposé dans la demande de brevet EP-A1 -0009802 de préparer du peroxyde d'hydrogène à l'intervention de catalyseurs comprenant du palladium, de l'oxyde de zirconium et de la silice.
D'autre part, la demande de brevet EP-A1-0149816 décrit des catalyseurs particuliers à base de palladium, d'oxyde de zirconium et de silice.
La présente invention a pour objet de fournir d'autres catalyseurs d'hydrogénation qui présentent une activité catalytique élevée et stable. Un autre objet de la présente invention est de fournir des catalyseurs d'hydrogénation qui présentent une sélectivité catalytique élevée. Ainsi, les catalyseurs selon l'invention, lorsqu'ils sont utilisés pour la synthèse du peroxyde d'hydrogène par le procédé AO (auto-oxidation process), limitent la formation de produits de dégradation. A cet effet, l'invention concerne des catalyseurs d'hydrogénation à base de palladium, de platine ou de rhodium sur un support d'oxydes de zirconium et de silicium comprenant au moins un autre métal M et/ou dans lesquels le support n'est pas sous la forme physique d'aérogel.
L'invention concerne également le procédé de fabrication de ces catalyseurs, ainsi que l'utilisation de ces catalyseurs dans des réactions d'hydrogénation et notamment pour préparer du peroxyde d'hydrogène.
Dans une première variante de l'invention, les catalyseurs comprennent, d'une part, du palladium, du platine ou du rhodium, le palladium étant préféré, et, d'autre part, au moins un autre métal M. Le métal M peut être choisi dans le groupe constitué par l'argent, le cuivre, l'or, le germanium, l'étain, le fer, le tellure, le nickel et leurs mélanges. Le métal M est de préférence choisi parmi l'argent, le cuivre et l'or De manière particulièrement préférée, le métal M est l'argent ou le cuivre D'excellents résultats ont été obtenus en associant le palladium et l'argent Les catalyseurs de la première variante de l'invention sont de préférence constitués essentiellement de palladium, de platine ou de rhodium et d'un autre métal M, sur un support d'oxydes de zirconium et de silicium
Le support des catalyseurs selon l'invention contient des oxydes de zirconium et de silicium Le support peut être sous forme cristalline, partiellement cristalline, amorphe ou partiellement amorphe Le support est avantageusement amorphe II présente de préférence une répartition homogène entre l'oxyde de zirconium et l'oxyde de silicium On entend par répartition homogène entre l'oxyde de zirconium et l'oxyde de silicium une répartition telle que le rapport Zr/Si expérimental, mesuré par spectroscopie de photoélectrons induits par rayons X (XPS), ne diffère pas plus de 20 % du rapport Zr/Si théorique établi par calcul sur base de la composition chimique du support Tout particulièrement préférés sont les supports dans lesquels l'écart entre le rapport Zr/Si expérimental mesuré par XPS et le rapport Zr/Si théorique ne dépasse pas 10 %
Dans une deuxième variante de l'invention, la présence du métal M dans les catalyseurs selon l'invention telle que définie ci-dessus est facultative Dans ce cas, il faut que le support ne soit pas sous la forme physique d'un aérogel De tels catalyseurs peuvent être mis en oeuvre en phase liquide sans présenter les inconvénients de filtration observés avec les catalyseurs à base d' aérogels
Dans les catalyseurs selon l'invention, le palladium, le platine ou le rhodium et le métal M (dans la première variante) peuvent être à l'état élémentaire ou sous la forme d'un composé tel qu'un sel ou un oxyde Les catalyseurs comprennent de préférence le palladium, le platine ou le rhodium et le métal M à l'état élémentaire La quantité de palladium, de platine ou de rhodium dans les catalyseurs est avantageusement d'au moins 0, 1 %, de préférence d'au moins 0,2 % en poids par rapport au poids total du catalyseur, c'est-à-dire de l'ensemble des composés métalliques et du support En particulier dans les catalyseurs de la deuxième variante, on met en oeuvre de préférence une quantité de palladium, de platine ou de rhodium d'au moins 0,5 %, voire d'au moins 1% en poids par rapport au poids du catalyseur. Habituellement, la quantité de palladium, de platine ou de rhodium ne dépasse pas 5 % du poids du catalyseur De préférence, elle ne dépasse pas 4 %, voire 3 % La quantité du métal M dans les catalyseurs de la première variante de l'invention est avantageusement d'au moins 0, 1 %, de préférence d'au moins 0,2 % en poids par rapport au poids du catalyseur Habituellement, la quantité de ce métal M ne dépasse pas 5 % en poids par rapport au poids du catalyseur De préférence, elle ne dépasse pas 4 %
Dans les catalyseurs de la première variante de l'invention, le rapport pondéral du palladium, du platine ou du rhodium au métal M est de préférence d'au moins 0,05 D'une manière particulièrement préférée, ce rapport pondéral est d'au moins 0, 1 D'une manière tout particulièrement préférée, ce rapport est d'au moins 0,25 De préférence, le rapport pondéral du palladium, du platine ou du rhodium au métal M ne dépasse pas 20 D'une manière particulièrement préférée, ce rapport ne dépasse pas 10 D'une manière tout particulièrement préférée, ce rapport ne dépasse pas 4
La quantité d'oxyde de zirconium dans les catalyseurs est avantageusement d'au moins 1 %, de préférence d'au moins 2 % en poids par rapport au poids du catalyseur Habituellement, la quantité d'oxyde de zirconium ne dépasse pas 10 % en poids par rapport au poids du catalyseur De préférence, elle ne dépasse pas 5 %
La quantité d'oxyde de silicium représente en général au minimum 75 % en poids par rapport au poids du catalyseur, en particulier au moins 80 %, voire 85 % La quantité d'oxyde de silicium est habituellement inférieure ou égale à 98,8 %, en particulier à 95 %
Des catalyseurs de la première variante de l'invention donnant de bons résultats comprennent de 0,5 à 2,5 % de Pd, de Pt ou de Rh en poids par rapport au poids du catalyseur, de 0,5 à 2,5 % de métal M en poids par rapport au poids du catalyseur, de 4 à 6 % de Zrθ2 en poids par rapport au poids du catalyseur, et de 89 à 95 % de Siθ2 en poids par rapport au poids du catalyseur
Des catalyseurs de la deuxième variante de l'invention donnant de bons résultats comprennent de 15 à 25 g de Pd/kg de catalyseur, de 40 à 60 g de Zrθ2/ g de catalyseur, de 945 à 915 g de Siθ2/kg de catalyseur
Les catalyseurs selon l'invention peuvent en outre éventuellement comprendre au moins un métal supplémentaire choisi parmi les métaux du groupe IB, IIB, IIIA, IVA, VA et VIII, à l'état élémentaire ou sous la forme d'un composé de ce métal (la désignation des groupes est effectuée selon la nomenclature CAS telle que reprise dans le CRC Handbook of Chemistry and Physics, 75th Edition, 1994-1995, D.R. Lide, page de couverture). Le cas échéant, la quantité de ce métal supplémentaire n'excède pas 50 % en poids du poids global de palladium, de platine ou de rhodium et du métal M.
Les catalyseurs de l'invention peuvent être préparés par les techniques habituelles, comme par exemple pour les catalyseurs de la première variante, par co-imprégnation des métaux sur le support, par co-précipitation des métaux sur le support ou par dépôts successifs des métaux sur le support. Avantageusement, les catalyseurs de la première variante selon l'invention sont préparés par dépôts successifs, d'une part, du palladium, du platine ou du rhodium et, d'autre part, du métal M dans un ordre quelconque sur un support d'oxydes de zirconium et de silicium par imprégnation. De préférence, on imprègne le support, d'abord, avec le palladium, le platine ou le rhodium et, ensuite, avec l'autre métal M. L'imprégnation du support peut être effectuée à l'aide de solutions contenant les constituants métalliques du catalyseur. Les solutions d'imprégnation sont de préférence des solutions aqueuses salines. Les sels utilisés à cet effet sont notamment des chlorures, des nitrates, des acétates ou des complexes ammoniacaux. De manière préférée, le dépôt du métal M est effectué par imprégnation d'un catalyseur Pd/Siθ2.ZrC>2, Pt/Siθ2-Zrθ2 ou Rh/Siθ2.ZrC>2 par une solution contenant le constituant métallique M sous une atmosphère réductrice telle que par exemple une atmosphère d'hydrogène. Le dépôt du métal M par réduction à l'hydrogène ou par toute autre forme de réduction conduit également à la réduction du palladium, du platine ou du rhodium. Les catalyseurs peuvent ensuite être filtrés, lavés et séchés.
Ainsi, les catalyseurs Pd.Ag/Siθ2-Zrθ2 peuvent être préparés en mettant en suspension un catalyseur Pd/Siθ2-Zrθ2 dans une solution d'AgN03 et en réduisant les métaux par barbotage d'hydrogène. Les catalyseurs Pd.Cu/Siθ2- rθ2 peuvent être préparés de la même manière au départ d'une solution de CuCl2.
Les catalyseurs de l'invention présentent de façon inattendue une sélectivité catalytique largement supérieure à celle observée avec les catalyseurs décrits dans la demande de brevet EP-A1-0009802.
En effet, lorsque des catalyseurs conformes à la présente invention sont utilisés pour la synthèse de peroxyde d'hydrogène par le procédé AO, on remarque une vitesse de formation réduite des produits de dégradation de l'amylanthraquinone (AQ) et de l'amyltétrahydroanthraquinone (ATQ)
Les catalyseurs selon la présente invention conviennent à tous les types de catalyse d'hydrogénation Par conséquent, l'invention concerne aussi leur utilisation dans des réactions d'hydrogénation A titre d'exemples de réactions d'hydrogénation, on peut citer l'hydrogénation des alcynes en alcènes, l'hydrogénation du CO en méthanol et la réduction des aldéhydes insaturés en alcools insaturés Les catalyseurs selon l'invention sont utilisés avec de très bons résultats dans les procédés de fabrication du peroxyde d'hydrogène Par conséquent, l'invention porte également sur un procédé de fabrication de peroxyde d'hydrogène en leur présence
Un procédé de synthèse de peroxyde d'hydrogène qui a donné des résultats particulièrement intéressants en présence des catalyseurs de l'invention est le procédé de synthèse du peroxyde d'hydrogène connu sous le nom de procédé AO ou procédé aux anthraquinones Ce procédé est décrit notamment dans l'ouvrage ULLMANN's Encyclopedia of Industrial Chemistry - 5th Edition, 1989, Vol. A13, p. 443 et suivantes Les catalyseurs selon la présente invention au palladium donnent d'excellents résultats, en particulier ceux de la première variante, surtout lorsque le métal M est de l'argent ou du cuivre . Les exemples qui suivent sont destinés à illustrer la présente invention sans toutefois en limiter la portée.
Exemple 1 R - Synthèse d'un catalyseur Pd /ZrC>2 SiC>2, selon l'exemple 2 de la demande de brevet européen 0 009 802 Support de silice 10 g de silice amorphe, dont les caractéristiques sont précisées ci-dessous, ont été portés à l'ébullition dans 100 ml d'acide nitrique à 5 % pendant 5 min, sous agitation douce, refroidis ensuite, filtrés et lavés avec 900 ml d'eau déminéralisée jusqu'à l'obtention d'un pH neutre des eaux de lavage. Le produit de filtration humide a été remis en suspension dans 45 ml d'eau déminéralisée, on a ensuite ajouté à la suspension 4,75 ml d'une solution de P Cl2 dissous dans HC1 (25 g Pd / 1 HC1 N) puis 0,37 ml d'une solution aqueuse 0 5 molaire en
Zr(Nθ3)4. L'ensemble a été porté à 85 °C et une solution saturée en Na2C03 a été ajoutée pour atteindre le pH final de 10, pour assurer la précipitation complète des hydroxydes. 3.1 ml d'une solution aqueuse de formaldéhyde à 37 % ont ensuite été ajoutés à la suspension et celle-ci a été agitée pendant 10 min. Le catalyseur a été filtré et lavé avec environ 600 ml d'eau déminéralisée (jusqu'à l'obtention d'un pH neutre des eaux de lavage); il a finalement été séché sous vide a 130- 140 °C pendant 3 h
Les caractéristiques du support obtenu et du catalyseur forme sont les suivantes
Support Catalyseur obtenu teneur en ZrU2 en g/kg (spectrometπe d'émission) - 44 surface BET en m*-7g (adsorption/desorption de N2) 292 351 volume poreux en cm-Vg 1,2 1 25 diamètre moyen des pores en nm 9 1 1 teneur en Pd en g/kg (quantités mises en oeuvre) - 20 dispersion du Pd en % (adsorption/desorption du CO) - 23 surface occupée par le métal en m? Pd / g de catalyseur - 2 0 rapport Zr/Si expérimental (spectroscopie de photoelectrons induits par ravons X-XPS) - 0 041 théorique établi par calcul - 0,025 nombre de sites acιdes/gSUpport (adsorption NH3) 1 , 1 10-^0
Exemple 2 - Synthèse d'un catalyseur Pd/Sιθ2 Zrθ2, selon l'invention
10 g de support, dont les carateπstiques sont précisées ci-dessous, ont ete mis en suspension dans 100 ml d'eau déminéralisée 20 ml d'une solution de PdCl2 dissous dans HCl (10 gprj/lHCl N) ont ete ajoutes a la suspension puis environ 25 ml d'une solution de NaOH N ont ete additionnées goutte a goutte, sous bonne agitation, en veillant a maintenir le pH aux environs de 8 Le catalyseur a ensuite ete filtre, lave avec environ 600 ml d'eau déminéralisée jusqu'à l'obtention d'un pH neutre des eaux de lavage Le catalyseur a ete sèche a pression atmosphérique pendant 16 h environ a 100 °C
Support Catalyseur obtenu teneur en Zrθ2 en g/kg (spectrometπe d'émission) 49 49 surface BET en m -Vg (adsorption/desorption de N2) 291 242 volume poreux en cm-Vg 1,6 1, 1 diamètre moyen des pores en nm 12 8 teneur en Pd en g/kg (quantités mises en oeuvre) - 20 dispersion du Pd en % (adsorption/desorption du CO) - 10 surface occupée par le métal en m^ Pd / g de catalyseur - 0,9 rapport Zr/Si expérimental (spectroscopie XPS) - 0,026 théorique établi par calcul _ 0,025 nombre de sites acides/gSUpp0rt (adsorption NH3) 2,5 10™
Exemple 3 R - Synthèse d'un catalyseur Pd/Siθ2, selon l'exemple 2 de la demande de brevet européen 0 009 802 mais sans mise en oeuvre de Zr0 La méthode utilisée est celle de l'exemple 1R, exception faite que l'on n'ajoute pas le sel de zirconium. Les caractéristiques du support mis en oeuvre et du catalyseur synthétisé sont présentées ci-dessous.
Support Catalyseur obtenu surface BET en m*-- /g (spectrométrie d'émission) 292 292 volume poreux en cm-' /g (adsorption desorption de N2) 1 ,2 1.2 diamètre moyen des pores en nm 9 9 teneur en Pd en g/kg (quantités mises en oeuvre) - 20 dispersion du Pd en % (adsorption/desorption du CO) - 10 surface occupée par le métal en rr - Pd / g de catalyseur - 0,9 nombre de sites acides/gSUpp0r1; (adsorption NH3) 1 , 1 10™
Exemples 4-6
Les catalyseurs des exemples 1R, 2 et 3R ont été évalués du point de vue de leur activité et de leur sélectivité d'hydrogénation de l'amylanthraquinone (AQ) en solution dans un mélange diisobutylcarbinol-Solvesso 150. La vitesse initiale de consommation d'hydrogène a été mesurée et l'importance des processus de transformation de l'amylanthraquinone en amyltetrahydroanthraquinone (ATQ), amyloxanthrone (AO) et amylanthrone (AA) de même que la transformation de l' amyltetrahydroanthraquinone en amyltetrahydrodihydrooxanthrone (ATDO) sont exprimées en fonction de la quantité de peroxyde d'hydrogène produit au cours du temps.
Mode opératoire d'hydrogénation de l'amylanthraquinone en réacteur batch : la solution de travail (1.0 kg), constituée de 70 g/kg d'amylanthraquinone dissoute dans le mélange diisobutylcarbinol-Solvesso 150 (rapport pondéral 20/80), saturée en eau, a été hydrogénée à 55 °C, sous pression constante de 1.1 bar absolu. Le catalyseur (6g/kgsoιutjon rje travail) a été maintenu en suspension à l'aide d'un agitateur type turbine tournant à 1 300 rpm.
Mode opératoire d'évaluation des catalyseurs en réacteur d'hydrogénation continu : l'installation était constituée d'un hydrogénateur, d'un oxydateur et d'une colonne d'extraction placés en série, la solution de travail oxydée étant recyclée à l' hydrogénateur après extraction du peroxyde d'hydrogène produit par oxydation à l'oxygène de l'hydroanthraquinone, fabriquée dans l' hydrogénateur La solution de travail était constituée d'amylanthraquinone à 70 g/kg dans le mélange diisobutylcarbinol (20 % poids)-Solvesso 150 (80 % poids) Le volume total de solution de travail était de 1 260 ml et son débit de 6 ml/min La température dans l' hydrogénateur était de 50 °C, la pression d'hydrogène de 1 8 bar absolu et la concentration en catalyseur de 100 g/1 Le temps de séjour moyen de la solution de travail dans l' hydrogénateur était de 33 min L'oxydateur opérait à 45 °C La composition de la solution de travail a été établie par chromatographie HPLC et son évolution suivie au cours du temps et en fonction de la quantité de peroxyde d'hydrogène produit La sélectivité des catalyseurs a été établie sur la base des quantités d'AQ transformée en ATQ, AO et AA, et d'ATDO produite à partir d'ATQ, rapportées a une quantité unitaire de peroxyde d'hydrogène produit
Les résultats obtenus sont rassemblés au tableau I ci-apres Les vitesses y sont exprimées en g de produit considéré par kg de solution et par g d'H2Û2 produit
Tableau I
Exemple 4 5 6 mode opératoire Catalyseur mis en oeuvre IR 2 3R activité catalytique relative 1 2 1 3 1 0 batch vitesse de dégradation de AQ -1 8 -1 1 -1 9 continu vitesse de formation de ATQ 1 4 0 5 1 5 continu vitesse de formation de AO 0 2 0 3 0 2 continu vitesse de formation de AA 0 2 0 2 0 2 continu vitesse de dégradation de ATQ -0 2 0 0 -0 1 continu vitesse de formation de ATDO 0.06 0 004 0 08 continu
On peut déduire des résultats ci-dessus et plus particulièrement de la vitesse de formation de ATQ que la sélectivité d'hydrogénation de la quinone de départ est de deux à trois fois supérieure à celle obtenue avec des catalyseurs IR et 3R de l'art antérieur
Par ailleurs on peut également constater par la vitesse de formation de l'ATDO que la formation des sous-produits est significativement réduite dans le procédé selon l'invention par comparaison avec ce qui est constaté avec les catalyseurs des exemples IR et 3R de l'art antérieur Exemples 7 à 9 - Synthèse de catalyseurs Pd Ag/SiÛ2 ZrÛ2 selon l'invention
Dans un barboteur muni d'une plaque frittée, 20 g de catalyseur Pd/Siθ2 Z >2 de l'exemple 2 ont été mis en suspension dans 400 ml d'eau Après avoir purgé le milieu sous azote pendant quelques minutes, on a introduit de l'hydrogène à un débit d'environ 700 ml/min On a ensuite ajouté 10 ml
(exemple 7), 20 ml (ex 8) ou 40 ml (ex 9) d'une solution 0, 1 N en AgN03 en vue d'obtenir des catalyseurs contenant respectivement 0,5 %, 1,0 % ou 2,0 % d'argent (en poids par rapport au poids du catalyseur) On a laissé barboter l'hydrogène durant 1 heure Les catalyseurs ont ensuite été filtrés, lavés à l'eau déminéralisée jusqu'à l'obtention d'un pH neutre des eaux de lavage et séchés à pression atmosphérique pendant environ 16 heures à 100 °C Exemples 10 et 1 1 - Synthèse de catalyseurs Pd Cu/Siθ2 Zrθ2 selon l'invention
Des catalyseurs Pd Cu/Siθ2 rθ2, contenant respectivement 0,5 % (ex 10) et 0,9 % (ex 1 1) de cuivre (en poids par rapport au poids du catalyseur) ont été préparés selon le même mode opératoire que les catalyseurs Pd Ag/SiÛ2 Zrθ2 des exemples 7 à 9 mis à part que la solution d'AgN03 a été remplacée par une solution de CuCl2 2H2O à 26,8 g/kg (10 g/1 en Cu++) Exemples 12 et 13 - Hydrogénation d'un mélange d'amylanthraquinone et d'amyltétrahydroanthraquinone en continu par les catalyseurs Pd/Siθ2 Zrθ2et Pd Ag]oySiθ2 ZrÛ2 selon l'invention
Les catalyseurs des exemples 2 et 8 ont été évalués du point de vue de leur activité en régime, de l'évolution de leur activité au cours du temps et du point de vue de leur sélectivité d'hydrogénation d'un mélange d'amylanthraquinone (AQ) et d'amyltétrahydroanthraquinone (ATQ) en continu en solution dans un mélange DBC-S 150
L'installation de test est constituée d'un hydrogénateur, d'un oxydateur et d'une colonne d'extraction placés en série Le peroxyde d'hydrogène est produit par oxydation à l'oxygène de l'amylanthrahydroquinone (AQH) et de l'amyltétrahydroanthrahydroquinone (ATQH) fabriquées dans l'hydrogénateur Après extraction du peroxyde d'hydrogène, la solution de travail oxydée est recyclée à l'hydrogénateur La solution de travail est constituée d'amylanthraquinone à 25 g/kg et d'amyltétrahydroanthraquinone à 75 g/kg dissoutes dans le mélange DBC-S 150 (20/80) Le volume total de la solution de travail est de 1260 ml et son débit de 6 ml/min La température dans l'hydrogénateur est de 55°C et la pression d'hydrogène de 2 bar absolu La concentration du catalyseur est adaptée pour compenser la désactivation initiale et maintenir le taux d'hydrogénation plus ou moins constant (~50-55 %) l'essai est démarre avec une quantité limitée de catalyseur, du catalyseur frais est rajoute périodiquement Le temps de séjour de la solution de travail dans l'hydrogénateur est de 33 minutes L'oxydateur opère a 45°C La composition de la solution de travail est établie par chromatographie
HPLC et son évolution est suivie au cours du temps et en fonction de la quantité de peroxyde d'hydrogène produit
Les résultats sont présentes dans les figures 1 a 3 Ils démontrent clairement l'influence de l'ajout d'argent sur l'activité en régime du catalyseur, sur l'évolution de son activité au cours du temps et sur sa sélectivité
Le graphique a la figure 1 compare l'évolution de l'activité du catalyseur Pd Agι o/0/Sιθ2 Zrt>2 (exemple 13) a celle du catalyseur Pd/Sιθ2 Zrθ2 (exemple 12) Les courbes représentent l'évolution des quinones hydrogénées (mélange d'AQH et d'ATQH) produites par g de catalyseur, en fonction de la quantité cumulée de peroxyde d'hydrogène produit
Les graphiques des figures 2 et 3 comparent l'évolution de deux composes de dégradation des solutions de travail en présence du catalyseur Pd Agi o/o/Sιθ2 Z1O2 ou du catalyseur Pd/Sιθ2 Zrθ2
Le graphique de la figure 2 représente l'évolution de la concentration en amyltetrahydrodihydroanthraquinone (ATDQ) en fonction de la quantité cumulée de peroxyde d'hydrogène produit
Le graphique de la figure 3 représente l'évolution de la concentration en amyltetrahydrodihydrooxanthrone (ATDO) en fonction de la quantité cumulée de peroxyde d'hydrogène produit

Claims

R E V E N D I C A T I O N S
1 - Catalyseurs d'hydrogénation à base de palladium, de platine ou de rhodium sur un support d'oxydes de zirconium et de silicium, caractérisés en ce qu'ils contiennent au moins un autre métal M et/ou en ce que le support n'est pas sous la forme physique d'aérogel
2 - Catalyseurs selon la revendication 1, caractérisés en ce que le métal M est choisi parmi l'argent, le cuivre, l'or, le germanium, l'étain, le fer, le tellure, le nickel et leurs mélanges
3 - Catalyseurs selon la revendication 1 ou 2, caractérisés en ce que le métal M est l'ar * _g-ent ou le cuivre
4 - Catalyseurs selon l'une quelconque des revendications 1 à 3, caractérises en ce que le support présente une répartition homogène entre l'oxyde de zirconium et l'oxyde de silicium
5 - Catalyseurs selon la revendication 4, comprenant de 15 à 25 g de palladium par kg de catalyseur, de 40 à 60 g de ZrÛ2 par kg de catalyseur, de 945 à 915 g de Siθ2 par kg de catalyseur
6 - Catalyseurs selon l'une quelconque des revendications 1 à 5, caractérises en ce que la quantité de palladium, de platine ou de rhodium est de 0, 1 à 5 % en poids par rapport au poids du catalyseur, en ce que la quantité de métal M est de 0, 1 à 5 % en poids par rapport au poids du catalyseur, en ce que le rapport pondéral du palladium, du platine ou du rhodium au métal M est de 0,05 à 20 et en ce que la quantité d'oxyde de zirconium est de 1 à 10 % en poids par rapport au poids du catalyseur
7 - Catalyseurs selon l'une quelconque des revendications 1 à 6, comprenant de 0,5 à 2,5 % de Pd, de Pt ou de Rh en poids par rapport au poids du catalyseur, de 0,5 à 2,5 % de métal M en poids par rapport au poids du catalyseur, de 4 à 6 % de ZrÛ2 en poids par rapport au poids du catalyseur, et de 89 à 95 % de Siθ2 en poids par rapport au poids du catalyseur 8 - Procédé de fabrication des catalyseurs selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le palladium, le platine ou le rhodium et le métal M sont imprégnés successivement sur un support d'oxydes de zirconium et de silicium.
9 - Utilisation des catalyseurs à base de palladium, de platine ou de rhodium sur un support d'oxydes de zirconium et de silicium qui contient au moins un autre métal M et/ou dont le support n'est pas sous la forme physique d'aérogel dans des réactions d'hydrogénation.
10 - Procédé de fabrication de peroxyde d'hydrogène en présence d'un catalyseur à base de palladium, de platine ou de rhodium sur un support d'oxydes de zirconium et de silicium qui contient au moins un autre métal M et/ou dont le support n'est pas sous la forme physique d'aérogel.
1 1 - Procédé selon la revendication 9 appliqué à la fabrication de peroxyde d'hydrogène par le procédé AO.
PCT/BE1997/000115 1996-10-04 1997-10-03 Catalyseurs d'hydrogenation, procede de fabrication de ces catalyseurs et leur utilisation pour preparer du peroxyde d'hydrogene WO1998015350A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR9712193-2A BR9712193A (pt) 1996-10-04 1997-10-03 Catalisadores de hidrogenação à base de paládio, platina ou ródio, sobre um suporte de óxidos de zircónio e de silício, processo de fabricação e utilização dos mesmos, e, processo de fabricação de peróxido de hidrogênio.
US09/269,877 US6306359B1 (en) 1996-10-04 1997-10-03 Hydrogenation catalysts, method for making same and use thereof for preparing hydrogen peroxide
AU44469/97A AU4446997A (en) 1996-10-04 1997-10-03 Hydrogenation catalysts, method for making same and use thereof for preparing hydrogen peroxide
EP97942722A EP0930938A2 (fr) 1996-10-04 1997-10-03 Catalyseurs d'hydrogenation, procede de fabrication de ces catalyseurs et leur utilisation pour preparer du peroxyde d'hydrogene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BE9600835A BE1010665A3 (fr) 1996-10-04 1996-10-04 Catalyseurs d'hydrogenation et leur utilisation pour preparer du peroxyde d'hydrogene.
BE9600835 1996-10-04
BE9700743 1997-09-11
BE9700743A BE1011364A6 (fr) 1997-09-11 1997-09-11 Catalyseurs d'hydrogenation, procede de fabrication de ces catalyseurs et leur utilisation pour preparer du peroxyde d'hydrogene.

Publications (2)

Publication Number Publication Date
WO1998015350A2 true WO1998015350A2 (fr) 1998-04-16
WO1998015350A3 WO1998015350A3 (fr) 1998-07-30

Family

ID=25663057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BE1997/000115 WO1998015350A2 (fr) 1996-10-04 1997-10-03 Catalyseurs d'hydrogenation, procede de fabrication de ces catalyseurs et leur utilisation pour preparer du peroxyde d'hydrogene

Country Status (5)

Country Link
US (1) US6306359B1 (fr)
EP (1) EP0930938A2 (fr)
AU (1) AU4446997A (fr)
BR (1) BR9712193A (fr)
WO (1) WO1998015350A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053617A1 (fr) 2011-10-11 2013-04-18 Solvay Sa Procédé pour la production de peroxyde d'hydrogène
WO2013053616A1 (fr) 2011-10-11 2013-04-18 Solvay Sa Procédé pour la production de peroxyde d'hydrogène
EP2639200A1 (fr) 2012-03-13 2013-09-18 Solvay Sa Installation de production de peroxyde d'hydrogène et procédé l'utilisant
WO2013160163A1 (fr) 2012-04-27 2013-10-31 Solvay Sa Catalyseurs d'hydrogénation, leur procédé de fabrication et leur utilisation pour la préparation de peroxyde d'hydrogène
WO2014001133A1 (fr) 2012-06-27 2014-01-03 Solvay Sa Catalyseur d'hydrogénation, procédé de fabrication de celui-ci et procédé pour préparer du peroxyde d'hydrogène
EP2705901A1 (fr) 2012-09-06 2014-03-12 Solvay SA Catalyseurs d'hydrogénation, procédé de fabrication associé et son utilisation pour préparer du peroxyde d'hydrogène

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420613B1 (en) * 1999-03-09 2002-07-16 Tokuyama Corporation Process for preparing reductants of unsaturated organic compounds by the use of trichlorosilane and reducing agents
EP1101733B1 (fr) * 1999-11-22 2005-12-28 Akzo Nobel N.V. Procédé et composition pour la production de l'eau oxygénée
US7390768B2 (en) * 2002-01-22 2008-06-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Stabilized tin-oxide-based oxidation/reduction catalysts
CN106486687B (zh) * 2016-11-21 2019-03-19 重庆大学 光催化产过氧化氢与光催化燃料电池耦合系统
KR102044382B1 (ko) * 2017-08-16 2019-11-13 한국과학기술연구원 과산화수소 합성용 촉매 및 이를 이용한 과산화수소 합성 방법
CN109833901A (zh) * 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 一种高分散负载型浆态床加氢颗粒催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009802A1 (fr) * 1978-10-02 1980-04-16 E.I. Du Pont De Nemours And Company Catalyseur d'hydrogénation Pd/SiO2, procédé pour préparer ce catalyseur et son utilisation dans la production du peroxyde d'hydrogène
EP0149816A1 (fr) * 1983-12-27 1985-07-31 Stauffer Chemical Company Aéogels d'oxydes inorganiques et leur préparation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007256A (en) * 1975-04-11 1977-02-08 Shell Oil Company Catalytic production of hydrogen peroxide from its elements
US4240933A (en) * 1979-02-26 1980-12-23 E. I. Du Pont De Nemours And Company Pd/SiO2 Hydrogenation catalyst suitable for H2 O2 manufacture
DE3166782D1 (en) * 1980-04-23 1984-11-29 Rhone Poulenc Spec Chim Oxidation process of hydrogen sulfide and organic compounds of sulfur
US4601996A (en) * 1984-11-13 1986-07-22 Chevron Research Company Hydrofinishing catalyst comprising palladium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009802A1 (fr) * 1978-10-02 1980-04-16 E.I. Du Pont De Nemours And Company Catalyseur d'hydrogénation Pd/SiO2, procédé pour préparer ce catalyseur et son utilisation dans la production du peroxyde d'hydrogène
EP0149816A1 (fr) * 1983-12-27 1985-07-31 Stauffer Chemical Company Aéogels d'oxydes inorganiques et leur préparation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053617A1 (fr) 2011-10-11 2013-04-18 Solvay Sa Procédé pour la production de peroxyde d'hydrogène
WO2013053616A1 (fr) 2011-10-11 2013-04-18 Solvay Sa Procédé pour la production de peroxyde d'hydrogène
US9617153B2 (en) 2011-10-11 2017-04-11 Solvay Sa Process for producing hydrogen peroxide
US10793433B2 (en) 2011-10-11 2020-10-06 Solvay Sa Process for producing hydrogen peroxide
EP2639200A1 (fr) 2012-03-13 2013-09-18 Solvay Sa Installation de production de peroxyde d'hydrogène et procédé l'utilisant
WO2013135491A1 (fr) 2012-03-13 2013-09-19 Solvay Sa Installation de production de peroxyde d'hydrogène et procédé l'utilisant
WO2013160163A1 (fr) 2012-04-27 2013-10-31 Solvay Sa Catalyseurs d'hydrogénation, leur procédé de fabrication et leur utilisation pour la préparation de peroxyde d'hydrogène
WO2014001133A1 (fr) 2012-06-27 2014-01-03 Solvay Sa Catalyseur d'hydrogénation, procédé de fabrication de celui-ci et procédé pour préparer du peroxyde d'hydrogène
EP2705901A1 (fr) 2012-09-06 2014-03-12 Solvay SA Catalyseurs d'hydrogénation, procédé de fabrication associé et son utilisation pour préparer du peroxyde d'hydrogène
WO2014037300A1 (fr) * 2012-09-06 2014-03-13 Solvay Sa Procédé de production de peroxyde d'hydrogène

Also Published As

Publication number Publication date
EP0930938A2 (fr) 1999-07-28
WO1998015350A3 (fr) 1998-07-30
US6306359B1 (en) 2001-10-23
BR9712193A (pt) 1999-08-31
AU4446997A (en) 1998-05-05

Similar Documents

Publication Publication Date Title
EP0793633B1 (fr) Procede de conversion d'un alcane chlore en un alcene moins chlore
EP0686615B2 (fr) Procédé d'hydrogénation catalytique et catalyseur utilisable dans ce procédé
WO1998015350A2 (fr) Catalyseurs d'hydrogenation, procede de fabrication de ces catalyseurs et leur utilisation pour preparer du peroxyde d'hydrogene
EP0780155B1 (fr) Catalyseur d'hydrogénation sélective et procédé utilisant ce catalyseur
FR2674769A1 (fr) Catalyseur du type galloaluminosilicate contenant du gallium, un metal noble de la famille du platine et au moins un metal additionnel, et son utilisation en aromatisation des hydrocarbures.
FR2458524A1 (fr) Procede d'hydrogenation selective d'une fraction d'hydrocarbures renfermant 2 ou 3 atomes de carbone par molecule
EP0343707B1 (fr) Procédé pour l'hydrogénation de chlorofluoralcènes
FR2505205A1 (fr) Nouveaux catalyseurs de metaux nobles du groupe viii supportes a haute dispersion et grande activite leur fabrication et leur utilisation notamment dans les reactions d'hydrogenation
EP0422968B1 (fr) Hydrogénation du citral
US6936568B2 (en) Selective hydrogenation catalyst
EP0486091B1 (fr) Procédé pour la fabrication du chloroforme à partir de tétrachlorure de carbone, compositions catalytiques et procédé pour leur obtention
CA1303013C (fr) Catalyseurs a base d'argent pour la fabrication d'oxyde d'ethylene
FR2635471A1 (fr) Compositions catalytiques, procede pour leur obtention et procede d'hydrogenation de 1,1,2-trichloro-1,2,2-trifluorethane au moyen de ces compositions
EP0657211B1 (fr) Système catalytique comprenant un catalyseur d'hydrogénation sur un support et procédé d'hydrodéchloration d'hydrocarbures chlorofluorés
CA2123071A1 (fr) Procede de preparation de catalyseur utilisable en deshydrogenation
BE1011364A6 (fr) Catalyseurs d'hydrogenation, procede de fabrication de ces catalyseurs et leur utilisation pour preparer du peroxyde d'hydrogene.
BE1005797A3 (fr) Procede de dechloration des chloromethanes superieurs.
JP2007501699A (ja) 接触的還元及び酸化方法
EP0623385B1 (fr) Procédé de préparation de catalyseurs applicables à la déshydrogénation
BE1012267A3 (fr) Procede de fabrication de peroxyde d'hydrogene.
BE1010665A3 (fr) Catalyseurs d'hydrogenation et leur utilisation pour preparer du peroxyde d'hydrogene.
BE1009128A3 (fr) Procede de production de cycloolefines.
BE1009400A3 (fr) Procede de preparation d'un catalyseur et son utilisation pour la conversion d'alcanes chlores en alcenes moins chlores.
EP0507658A1 (fr) Procédé de reduction en milieu organique d'un catalyseur raffinage avant sa mise en oeuvre
JPH09110733A (ja) シクロオレフィンの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997942722

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998517027

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09269877

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997942722

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1997942722

Country of ref document: EP