WO1998013362A1 - Process for the purification of trioxane - Google Patents

Process for the purification of trioxane Download PDF

Info

Publication number
WO1998013362A1
WO1998013362A1 PCT/JP1997/003390 JP9703390W WO9813362A1 WO 1998013362 A1 WO1998013362 A1 WO 1998013362A1 JP 9703390 W JP9703390 W JP 9703390W WO 9813362 A1 WO9813362 A1 WO 9813362A1
Authority
WO
WIPO (PCT)
Prior art keywords
trioxane
column
distillation column
benzene
raw material
Prior art date
Application number
PCT/JP1997/003390
Other languages
French (fr)
Japanese (ja)
Inventor
Junzo Masamoto
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to JP10515492A priority Critical patent/JP3101326B2/en
Publication of WO1998013362A1 publication Critical patent/WO1998013362A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D323/00Heterocyclic compounds containing more than two oxygen atoms as the only ring hetero atoms
    • C07D323/04Six-membered rings
    • C07D323/06Trioxane

Definitions

  • the present invention relates to a method for extracting a trioxane-containing distillate obtained by heating a formaldehyde aqueous solution with benzene, and using a benzene solution containing the trioxane as a raw material, the distillation column is used in a distillation column. Feed, distills benzene from the top of the column, continuously distills the trioxane from the bottom of the column, and separates and removes the trioxane.
  • the distillation column has a number of stages of B or more, more than 30 in the morning.
  • the temperature profile is located at a distance of 0 or more steps and at least 5 steps from the bottom of the tower and at a distance from the bottom of the tower.
  • the temperature of the distillation column is adjusted so that an inflection point of the distillation column appears.
  • a process for highly purifying trioxane by subjecting a trioxane-containing distillate obtained by heating an aqueous solution of formaldehyde to extraction with benzene, feeding the obtained benzene solution of trioxane into a distillation column to conduct continuous distillation, and continuously withdrawing trioxane from the bottom of the column while distilling benzene out of the top them, characterized in that the distillation column has a number of trays of 30 or more and that the distillation is conductced in such a way as to meet the following requirements: (i) the above benzene solution of trioxane is extracted with water, (ii) the trioxane concentration X (wl.%) of the solution on the feed tray of the distillation column is kept within the range satisfying a specific relationship, and (iii) the temperature of the column is controlled so that an inflection point can appear in the temperature profile of the column with temperature as the abscissa and the number of trays as the ordinate at a point which is present
  • the trioxane concentration X (weight 3 ⁇ 4) of the liquid composition in the raw material supply stage of the distillation column is represented by the following formula (1)
  • R (l -C / 1 00) is a parameter defined by -C / 1 00 + q)
  • a method for separating trioxane characterized in that the trioxane is kept within a range satisfying the relational expression represented by:
  • L + q F-W L + q F-W (for example, see Hirata and Yorimi, “Distillation Engineering Handbook”, pp. 11-11).
  • L is the molar flow rate of the descending liquid
  • F is the raw material supply amount
  • W is the bottom liquid amount
  • q is the ratio of the liquid part in the raw material
  • X is the molar amount of the liquid leaving the j-th stage counted from the top
  • X is the mole fraction of bottoms.
  • is a power that can be used as a parameter indicating ideal distillation conditions, and the invention of JPB-64 ('89) -10513 and US- ⁇ -43-2644 described above. Uses this key as a basic parameter and specifies the optimal range experimentally.
  • equation (1) shows that the liquid composition of the raw material supply stage is set on an extension of the ideal recovery section operation line, and that gas-liquid separation of benzene and trioxane is possible, and that FIG. 3 shows experimentally the allowable range of the liquid composition in the feed column of the distillation column capable of reducing the content of the chain transfer agent in the trioxane at the bottom of the distillation column.
  • r-0.5 is the minimum value of the trioxane concentration in the liquid composition of the distillation column, and is the right-hand side of the above formula (1).
  • the liquid composition of the raw material supply stage is usually made to coincide with the intersection of the operation line of the concentration section and the raw material line (Q line).
  • Q line the raw material line
  • JP-B-64 ('89) -105-13 and US- 4-4 33 32 644 disclose powerful methods for providing highly purified trioxane. ing. However, under certain conditions, employing the methods disclosed in JP-B-64 ('89) -105-133 and US-A-433-264, It has been found that the purification of the trioxane may still be insufficient.
  • the above-mentioned invention of JP-A-3 ('91)-123, 777 aims to improve this point.
  • trioxane may require a particularly highly purified trioxane.
  • a trioxane having an impurity such as water of 0.1 0ppm or less is required, and the present invention provides a method for purifying such highly purified trioxane.
  • the present inventors have conducted intensive studies on the distillation method in order to find a method for purifying trioxane to a higher degree under all conditions, and as a result, using a distillation column having 30 or more stages, using a distillation column having a number of stages of more than 30. It has been found that trioxane can be purified to a higher degree by creating an inflection point in the temperature profile of the distillation column at the bottom of the distillation column at least 10 stages away and at least 5 stages away from the bottom of the column. The present invention has been completed.
  • a trioxane-containing distillate obtained by heating a formaldehyde aqueous solution is extracted with benzene, a benzene solution containing trioxane is supplied as a raw material to a distillation column, and benzene is distilled from the top of the column.
  • the distillation column has 30 or more stages,
  • R is the reflux ratio
  • a is the weight ratio of the liquid part in the feedstock
  • q is the trioxane concentration in the raw material supplied
  • C wt%
  • the lower stage than the raw material supply stage is at least 10 stages away from the raw material supply stage and 5 stages from the bottom of the column.
  • the extraction operation with water is performed by a batch extraction method using a tank or a continuous extraction method using a tower.
  • a benzene solution containing trioxane is flowed from the lower part of the tower, and a step or a filler such as a filler is placed in the tower.
  • a so-called counter-current contact method is employed, in which an auxiliary substance for improving the interfacial contact between water and a benzene solution containing trioxane is contained.
  • the ratio of the water used and the benzene solution containing trioxane is from 0.01: 1 to 1: 1, preferably from 0.03: 1 to 0.3: 1, more preferably 0.05: From 1 to 0.2: 1. If the amount of water used is small, the extraction effect is insufficient, and if it is too large, loss of trioxane and the like is large and uneconomical.
  • the formaldehyde concentration of the benzene solution containing trioxane after the water extraction treatment varies depending on the target degree of purification, but is usually 1% or less, preferably 0.2% or less, and particularly preferably. 0.05% or less.
  • the concentration of trioxane in the feed stage can be controlled by increasing or decreasing the amount of rising steam at the bottom of the column, changing the temperature profile in the column, and other methods.
  • the temperature profile in the distillation column is particularly important.
  • the inflection point of the temperature profile below the raw material supply stage is separated by more than 10 stages from the raw material supply stage.
  • highly purified trioxane can be obtained.
  • the position of the inflection point is located at least i0 step from the raw material supply step, but preferably at least 15 step. The reason why it is necessary that the position of the inflection point be at least 10 stages away from the raw material supply stage is not clear, but it is due to the relationship between the temperature profile in the distillation column and the distillation separation behavior of trace impurities. Guessed.
  • distillation In order for the inflection point of the temperature profile to appear at a position below the raw material supply stage, at least 10 stages away from the raw material supply stage, and at least 5 stages away from the bottom of the column, distillation
  • the position of the inflection point may be adjusted by appropriately changing the supply amount of the raw material, the reflux ratio, the supply amount of steam used as a heating source, and the like.
  • the reflux ratio varies depending on the trioxane concentration of the feed solution, but is usually in the range of 1.1 to 8. Reflux ratios higher than 8 can be used, and use of an unnecessarily high reflux ratio only results in energy loss and is disadvantageous.
  • a preferred reflux ratio is from 1.2 to 6, more preferably from 1.5 to 4.
  • a multi-stage distillation column is used for continuous distillation.
  • the number of stages of the distillation column is 30 or more, but the number of stages actually used varies depending on the intended separation accuracy, the feed material used, the reflux ratio, and the like.
  • a 65% aqueous solution of formalin containing 6% of methanol was heated and distilled in the presence of sulfuric acid to obtain a water-soluble distillate (aqueous solution) containing 45% of trioxane and the balance being formaldehyde, methanol and water.
  • This aqueous solution was subjected to countercurrent extraction with benzene to obtain a benzene solution containing 42% of trioxane.
  • the benzene solution containing the trioxane was supplied from the lower part of the packed tower packed with Raschig rings, and water was supplied from the upper part.
  • the ratio of the water to the benzene solution containing trioxane was 0.2: 1 (weight ratio).
  • the formaldehyde in the benzene solution containing trioxane that was extracted and washed with water was 0.055%.
  • the trioxane concentration was 38%.
  • the benzene solution containing the trioxane is continuously supplied as a liquid having a boiling point of 20 from the top to a distillation column of 65 stages as a raw material supply stage, and rectification is performed under a reflux ratio of 3; Distillation was performed so that the inflection point appeared at the 15th stage from the raw material supply stage in the temperature profile below the raw material supply stage in the distillation column, and benzene was continuously separated from the top of the column, and trioxane was continuously separated from the bottom of the column. .
  • the trioxane concentration in the supply stage was maintained at 25% according to the above formula (1).
  • the chain transfer agent in the obtained trioxane contained 0.1 ppm of water and 0.1 part of formic acid. Otsu, ppm.
  • Example 2 The same operation as in Example 1 was performed, except that the benzene solution containing trioxane was not subjected to extraction and washing with water.
  • the water content in the obtained trioxane was 90 ppm and formic acid was 60 ppm.
  • Example 1 the same operation as in Example 1 was performed except that the inflection point of the temperature profile below the distillation column raw material supply stage was changed to the seventh stage from the supply stage as the operation conditions of the distillation column. .
  • the water content in the obtained trioxane was 1 ppm and formic acid was 1 ppm.
  • Example 3 The same operation as in Example 1 was performed, except that the ratio of the amount of water to be subjected to the countercurrent extraction to the benzene solution containing trioxane was 0.15: 1 (weight ratio).
  • the formaldehyde in the benzene solution containing trioxane that had been extracted and washed with water was 0.11%.
  • the trioxane concentration was 39%.
  • Moisture in trioxane after distillation and purification was 0.2 ppm, and formic acid was 0.2 ppm.
  • Example 1 the same operation as in Example 2 was performed except that the position of the inflection point of the temperature profile in the lower stage of the distillation column was set at the 10th stage from the raw material supply stage.
  • the water content in the obtained trioxane was 0.3 ppm, and that of formic acid was 0.3 ppm.
  • the present invention provides trioxane, a highly purified, high quality, polymerized grade for polyacetal resins, which is useful in the polyacetal manufacturing industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for highly purifying trioxane by subjecting a trioxane-containing distillate obtained by heating an aqueous solution of formaldehyde to extraction with benzene, feeding the obtained benzene solution of trioxane into a distillation column to conduct continuous distillation, and continuously withdrawing trioxane from the bottom of the column while distilling benzene out of the top thereof, characterized in that the distillation column has a number of trays of 30 or more and that the distillation is conducteed in such a way as to meet the following requirements: (i) the above benzene solution of trioxane is extracted with water, (ii) the trioxane concentration X (wt. %) of the solution on the feed tray of the distillation column is kept within the range satisfying a specific relationship, and (iii) the temperature of the column is controlled so that an inflection point can appear in the temperature profile of the column with temperature as the abscissa and the number of trays as the ordinate at a point which is present below the feed tray and apart from the feed tray by at least ten trays and from the bottom by at least five trays.

Description

(57) 要約 本発明は、 ホルムアルデヒ ド水溶液の加熱によ り 得られる ト リ オ キサン含有留出物をベンゼ ンで抽出 し、 ト リ オキサンを含むベンゼ ン溶液を原料と して、 蒸留塔に供給し、 塔頂部からベ ンゼ ンを留出 させ、 塔底よ り ト リ オキサンを連続的に蒸留 し、 分離して取 り 出す こ と からなる ト リ オキサンをよ り 高度に精製する方法において、 該 蒸留塔は 3 0以上のハ朝大セ英イキカアケガギギィイアガガギグ Bリスフフ段数を有 してお り、  (57) Summary The present invention relates to a method for extracting a trioxane-containing distillate obtained by heating a formaldehyde aqueous solution with benzene, and using a benzene solution containing the trioxane as a raw material, the distillation column is used in a distillation column. Feed, distills benzene from the top of the column, continuously distills the trioxane from the bottom of the column, and separates and removes the trioxane. The distillation column has a number of stages of B or more, more than 30 in the morning.
ル韓本ザイイーン Bルー一ベボンタ »ヒ一ンス一ラン一ィ一リ  Le Korean Book Zayin B-Lu-Vonta
( i ) 前記 ト リ オキサルテ民民ァギガスフナイアァシンンジランリビトド  (i) the trioxalte people
国ルンネ主エァススララァヤンスァラビリンを含むベンゼ ン溶液を水で抽出 し、  Extract the benzene solution containing the country's main runner, Aesurarayansuaravirin, with water,
一ル主シタシサンンタシン  One L Lord Shitashi Santasin
( ii) 義ュンンァアゥドドド  (ii) Right-click
次いで、 該蒸留塔人タの原料供給段の液組成の ト リ オキサン濃度 ィ民  Next, the trioxane concentration of the liquid composition in the raw material supply stage of the distillation column
共ン  Common
X (重量%) を、 特定の関係和式を満たす範囲に保持 し、 かつ  X (% by weight) within a range that satisfies a specific relational formula, and
(iii) 横軸に温度を、 縦軸に蒸留塔の段数を と つた蒸留塔の温度 (iii) Temperature of the distillation column with the temperature on the horizontal axis and the number of distillation columns on the vertical axis
MMMMMNNNNMRRSPPLL LL "し  MMMMMNNNNMRRSPPLL LL
プロ フ ィ ールにおいて、 原料供給段WUDNXEOTODKRUGZ KTVC LLLRS よ り 下段で、 原料供給段よ り 1  In the profile, below the raw material supply stage WUDNXEOTODKRUGZ KTVC LLLRS and below the raw material supply stage
ルマモモマボポスママ一オ一ルモモメ一ノ一ロララスリレリ  Rumomomobo Posumama Loromomo Lorarasirireri
0段以上離れ、 かつ塔底よ り 5段以上ール一キルールシベナンジュケララクダヴリンリトト離ダ一マァヤガシェンゴラィゥラアコウリヴリトドドト れた位置に温度プロ フ ィ 一  The temperature profile is located at a distance of 0 or more steps and at least 5 steps from the bottom of the tower and at a distance from the bottom of the tower.
Wーイダガ一タース一ァコ一一一ウ  W-Idaga
ルル一ァ «共二ジカァ力アブァァド  Lulua «Community Acad
ルの変曲点が現れる よ う に蒸留塔の温度を一和ルルァ *旧調整する こ と を特徴とす  The temperature of the distillation column is adjusted so that an inflection point of the distillation column appears.
S和ュラグ  S Japanese rug
国一ン  Country
る。 ゴド UUUUTVYTTTTZTSS SSSSS WMURTAGNNDGZ EGKSLZJI  You. God UUUUTVYTTTTZTSS SSSSS WMURTAGNNDGZ EGKSLZJI
PCTに基づいて公 fflされる gfSS Igのパンフレツト第一頁に S«された FCT加 Sを 定するために使用されるコ一ド (参考情報)Code used to determine the FCT value added to the first page of the gfSS Ig pamphlet that is publicly ffl based on the PCT (Informative)
AL アルバニア E S スウェーデン AL Albania E S Sweden
AM F I シンガポール  AM F I Singapore
AT オース トリア FR スロヴェニア  AT Austria FR Slovenia
AU オーストラリア GA スロヴァキア共和国 AU Australia GA Slovak Republic
AZ アゼルバイジャン GB シエラレオネ AZ Azerbaijan GB Sierra Leone
B A ポズニァ ·エルツェゴビナ GE セネガル  B A Poznia Elzegovina GE Senegal
BB バルバドス GH スヮジランド  BB Barbados GH Swaziland
BE ベルギー GM チヤ一ド  BE Belgium GM Charid
BF ブルギナ · ファン GN トーゴ  BF Bulgina Fan GN Togo
BG ブルガリア GW タジキスタン  BG Bulgaria GW Tajikistan
B J ベナン GR トルタメ-スタン  B J Benin GR Torturamestan
BR ブラジル HU トルコ  BR Brazil HU Turkey
BY ベラル一シ I D トリニダ一ド · トバゴ BY Belarus I D Trinidad and Tobago
CA カナダ I E ウクライナ CA Canada I E Ukraine
CF 中央アフリカ共和国 I L ウガンダ  CF Central African Republic I L Uganda
CG コンゴ一 I S 米国  CG Congo I S United States
CH スイス I T ゥズべキスタン  CH Switzerland I T ゥ zbekistan
C I コート - ジボアール J P ヴイエ トナム  C I Coat-Jiboard J P Vie Tonum
CM カメルーン KE ユーゴスラビア  CM Cameroon KE Yugoslavia
CN 中国 KG ジンバブエ  CN China KG Zimbabwe
CU キューバ KP  CU Cuba KP
CZ チェッコ其 ft国 KR  CZ Chekko its ft country KR
DE ドイツ KZ  DE Germany KZ
D デンマーク LC  D Denmark LC
EE エス トニア L I 特許協力条約に基づいて公開された国際出願 EE Estonia LI International applications published under the Patent Cooperation Treaty
(51) 国際特許分類 6 (11) 国際公開番号 W098/13362 C07D 323/06 A1 (51) International Patent Classification 6 (11) International Publication Number W098 / 13362 C07D 323/06 A1
(43) 国際公開 H 1998年 4月 2 fi i02.04.98)  (43) International Publication H April 1998 2 fi i02.04.98)
(21) 国際出願番号 PCT/JP97/03390 (81) 指定国 CN, DE, JP, KR, SG, US. (21) International application number PCT / JP97 / 03390 (81) Designated country CN, DE, JP, KR, SG, US.
(22) 国際出願日 1997年 9月 24日(24.09.97) 添付公開書類  (22) International filing date September 24, 1997 (24.09.97)
国際颺査報告謇  International Survey Report
(30) 優先権データ  (30) Priority data
特願平 8/272862 1996年 9月 25日(25.09.96) JP Japanese Patent Application No. 8/272862 September 25, 1996 (25.09.96) JP
(71) 出願人 (米国を除くすべての指定国について)  (71) Applicant (for all designated countries except the United States)
旭化成工業株式会社 Asahi Chemical Industry Co., Ltd.
(ASAHI KASEI OGYO KABUSHI I AISHA)[JP/JP]  (ASAHI KASEI OGYO KABUSHI I AISHA) [JP / JP]
〒530 大阪府大阪市北区堂 ft浜一丁目 2番 6号 Osaka, (JP) 〒530 Osaka, Kita-ku, Osaka fthama 1-chome 2-6 Osaka, (JP)
(72) 発明者;および  (72) the inventor; and
(75) 発明者 /出願人 (米国についてのみ)  (75) Inventor / Applicant (US only)
正本順三 (MASAMOTO, Junzo)[JP/JP] Junzo Masamoto (MASAMOTO, Junzo) [JP / JP]
〒606 京都府京都市左京区髙野東開町 20カストルム洛北 712  〒 Castorum Rakuhoku 712, Takano Higashikaicho, Sakyo-ku, Kyoto-shi, Kyoto Prefecture 606, Japan
Kyoto, (JP) Kyoto, (JP)
(74) 代理人 (74) Agent
弁理士 浅村 皓, 外 (ASAMURA, Kiyoshi et al.) Patent Attorney Akira Asamura, Outside (ASAMURA, Kiyoshi et al.)
〒100 東京都千代田区大手町 2丁目 2番 1号 〒100 2-1-1 Otemachi, Chiyoda-ku, Tokyo
新大手町ビル 331 Tokyo, (JP) Shin-Otemachi Building 331 Tokyo, (JP)
(54)Title: PROCESS FOR THE PURIFICATION OF TRIOXANE (54) Title: PROCESS FOR THE PURIFICATION OF TRIOXANE
(54)発明の名称 トリオキサンの精製方法 (54) Title of the invention Method for purifying trioxane
(57) Abstract (57) Abstract
A process for highly purifying trioxane by subjecting a trioxane-containing distillate obtained by heating an aqueous solution of formaldehyde to extraction with benzene, feeding the obtained benzene solution of trioxane into a distillation column to conduct continuous distillation, and continuously withdrawing trioxane from the bottom of the column while distilling benzene out of the top thereof, characterized in that the distillation column has a number of trays of 30 or more and that the distillation is conductced in such a way as to meet the following requirements: (i) the above benzene solution of trioxane is extracted with water, (ii) the trioxane concentration X (wl. %) of the solution on the feed tray of the distillation column is kept within the range satisfying a specific relationship, and (iii) the temperature of the column is controlled so that an inflection point can appear in the temperature profile of the column with temperature as the abscissa and the number of trays as the ordinate at a point which is present below the feed tray and apart from the feed tray by at least ten trays and from the bottom by at least five trays. A process for highly purifying trioxane by subjecting a trioxane-containing distillate obtained by heating an aqueous solution of formaldehyde to extraction with benzene, feeding the obtained benzene solution of trioxane into a distillation column to conduct continuous distillation, and continuously withdrawing trioxane from the bottom of the column while distilling benzene out of the top them, characterized in that the distillation column has a number of trays of 30 or more and that the distillation is conductced in such a way as to meet the following requirements: (i) the above benzene solution of trioxane is extracted with water, (ii) the trioxane concentration X (wl.%) of the solution on the feed tray of the distillation column is kept within the range satisfying a specific relationship, and (iii) the temperature of the column is controlled so that an inflection point can appear in the temperature profile of the column with temperature as the abscissa and the number of trays as the ordinate at a point which is present below the feed tray and apart from the feed tray by at least ten trays and from the bottom by at least five trays.
リオキサンの連続蒸留分離方法において、 蒸留塔の原料供給段の液組成のトリオ キサン濃度 X (重量 ¾ を、 下記式 (1 ) In the method for continuously distilling and separating lioxane, the trioxane concentration X (weight ¾) of the liquid composition in the raw material supply stage of the distillation column is represented by the following formula (1)
50 50 50 50
100 -2(r - 1 ) ° 2 ≤x≤ioo 100 -2 (r-1) ° 2 ≤x≤ioo
ァ—0.5 ァー 0.5  0.5-0.5 0.5
一 2(7— 1 ) 0 2 + 2 Ru 5 ( 1 ) One 2 (7-1) 0 2 + 2 Ru 5 (1)
(ただし、 Rは還流比であり、 ァは供給原料中の液体部分の重量比を q、 供給原 料中のトリオキサン濃度を C (重量%) としたとき、 下記式 (2) (Where R is the reflux ratio, and a is the weight ratio of the liquid part in the feedstock, q, and the trioxane concentration in the feedstock, C (% by weight).
R (1 -C/1 0 0) +q R (1 -C / 1 0 0) + q
7 - (2) 7-(2)
R (l -C/1 0 0) -C/1 0 0 +q で定義されるパラメータである) R (l -C / 1 00) is a parameter defined by -C / 1 00 + q)
で示される関係式を満たす範囲に保持することを特徴とするトリオキサンの分離 方法である。 A method for separating trioxane, characterized in that the trioxane is kept within a range satisfying the relational expression represented by:
2成分系の連続精留についてのマクケ一ブ 'チーレ (Mc c a b e—  McCube's Chile (Mc abe—
Th i e 1 e) の理論にしたがえば、 上から数えて j + 1番目の段を去る蒸気の モル分率 y , , , は、 回収部の操作線として、 下記式 ( 3 ) According to the theory of Th i e 1 e), the mole fraction y,,, of the steam leaving the j + 1st stage counted from the top is given by the following equation (3)
L + q F W L + q F W
y, = X, Xw (3)  y, = X, Xw (3)
L + q F-W L + q F-W で表される (例えば平田、 頼実編、 「蒸留工学ハンドブック」 第 1 1 1頁参照) 。 ただし、 Lは降下する液のモル流量、 Fは原料供給量、 Wは缶出液量、 qは原料 中の液体部分の割合、 X, は上から数えて j番目の段を去る液のモル分率、 X は缶出液のモル分率である。  L + q F-W L + q F-W (for example, see Hirata and Yorimi, “Distillation Engineering Handbook”, pp. 11-11). Where L is the molar flow rate of the descending liquid, F is the raw material supply amount, W is the bottom liquid amount, q is the ratio of the liquid part in the raw material, X, is the molar amount of the liquid leaving the j-th stage counted from the top X is the mole fraction of bottoms.
この式における回収部操作線の勾配 Ίは下記式 ( 4 ) L In this equation, the gradient of the recovery section operation line is given by L
+ q  + q
L + q F F  L + q F F
(4) (Four)
L + q F-W し W L + q F-W then W
+ q  + q
F F で表され、 そして、 2成分系の軽沸成分と重沸成分とが完全に分離する理想的な 条件を仮定すると、 し C  Assuming the ideal conditions, denoted by F F, and the complete separation of the light and heavy components of the binary system, then C
=R (ト- = R (to-
F 1 00 F 1 00
W C W C
F 1 0 0 の関係が成立するから、 これらを前記の式 (4) に代入すると下記式 (5)  Since the relationship of F 100 is established, when these are substituted into the above equation (4), the following equation (5) is obtained.
C C
R ( ) +Q  R () + Q
1 0 0  1 0 0
(5) (Five)
C C C C
R ( 1 - ) 一  R (1-) one
1 00 1 0 0  1 00 1 0 0
となる。 Becomes
したがって、 ァは理想的な蒸留条件を示すパラメータとして用いることができ る力く、 上記 J P-B- 6 4 (' 89 ) - 1 0 5 1 3及び US— Λ— 4 3 3 2 64 4の発明は、 このァを基本的なパラメ一夕として用い、 実験的に最適な範囲を特 定したものである。  Therefore, ァ is a power that can be used as a parameter indicating ideal distillation conditions, and the invention of JPB-64 ('89) -10513 and US-Λ-43-2644 described above. Uses this key as a basic parameter and specifies the optimal range experimentally.
すなわち、 式 ( 1 ) は、 理想的な回収部操作線の延長線上に原料供給段の液組 成を設定しつつ、 さらに、 ベンゼンとトリオキサンの気液分離が可能で、 かつ蒸 留塔底のトリォキサン中の連鎖移動剤含量を少なくすることができる蒸留塔供給 段液組成の許容範囲を実験的に示すものである。 In other words, equation (1) shows that the liquid composition of the raw material supply stage is set on an extension of the ideal recovery section operation line, and that gas-liquid separation of benzene and trioxane is possible, and that FIG. 3 shows experimentally the allowable range of the liquid composition in the feed column of the distillation column capable of reducing the content of the chain transfer agent in the trioxane at the bottom of the distillation column.
なお上記式 ( 1 ) の左辺である  Note that it is the left side of the above equation (1)
50 50
100 •2( 7 - 1 )  100 • 2 (7-1)
r 一 0. 5 は、 蒸留塔供給段液組成のトリオキサン濃度の最小値であり、 また上記式 (1 ) の右辺である  r-0.5 is the minimum value of the trioxane concentration in the liquid composition of the distillation column, and is the right-hand side of the above formula (1).
50 50
100 2(ァ一 1 ) 0 2 + 2 R 100 2 (1) 0 2 + 2 R
r -0. 5 は、 その最大値を示す。 これから明らかなように、 還流比の大きいほど、 原料供 給段の液組成の許容範囲が広くなる。  r -0.5 indicates its maximum value. As is clear from this, the larger the reflux ratio, the wider the allowable range of the liquid composition in the raw material supply stage.
トリオキサンのベンゼン溶液を蒸留分離する従来の方法では、 蒸留塔の操作に おいて、 原料供給段の液組成を濃縮部操作線と原料線 (Q線) との交点と一致さ せるのが普通である (例えば、 東京化学同人発行、 藤田重文、 東畑平一郎著、 「化学工学 Ι Π 、 第 2版、 物質移動操作」 、 第 4 0〜4 7ページ参照) 。 すなわ ち、 原料が沸点下の液状である場合には、 原料供給段の液組成のトリオキサン濃 度を原料濃度とほぼ等しくすることが基本的操作とされていた。 しかし、 このよ うにすると連鎖移動剤の除去が不十分となる。  In the conventional method of distilling and separating a benzene solution of trioxane, in the operation of the distillation column, the liquid composition of the raw material supply stage is usually made to coincide with the intersection of the operation line of the concentration section and the raw material line (Q line). (See, for example, Tokyo Chemical Doujinshi, Shigefumi Fujita, Heiichiro Higashihata, "Chemical Engineering II, 2nd Edition, Mass Transfer Operation," pp. 40-47). That is, when the raw material is in a liquid state at a boiling point, the basic operation has been to make the trioxane concentration of the liquid composition in the raw material supply stage approximately equal to the raw material concentration. However, this will result in insufficient removal of the chain transfer agent.
これに対して、 J P— B— 6 4 (' 8 9 ) - 1 0 5 1 3及び U S— Λ— 4 3 3 2 6 4 4は、 高度に精製されたトリオキサンを与える有力な方法を開示している。 しかし、 ある特定の条件下においては、 J P— B— 6 4 (' 8 9 ) — 1 0 5 1 3 及び U S— A— 4 3 3 2 6 4 4に開示された方法を採用しても、 トリオキサンの 精製がなお不十分である場合があることが分かった。 先に述べた J P - A - 3 (' 9 1 ) - 1 2 3 7 7 7の発明はこの点を改良しょうとするものである。  On the other hand, JP-B-64 ('89) -105-13 and US- 4-4 33 32 644 disclose powerful methods for providing highly purified trioxane. ing. However, under certain conditions, employing the methods disclosed in JP-B-64 ('89) -105-133 and US-A-433-264, It has been found that the purification of the trioxane may still be insufficient. The above-mentioned invention of JP-A-3 ('91)-123, 777 aims to improve this point.
例えば、 メタノ一ルを多量に含むホルマリン水溶液を加熱して得られたトリオ キサンをベンゼンで抽出し、 得られたトリォキサンのベンゼン溶液からベンゼン を分離し、 水、 メタノール、 ギ酸等をほとんど含まないトリオキサンを得ること は困難であった。 すなわち、 J P— A— 3 (' 9 1 ) — 1 2 3 7 7 7に開示され ている精製法は、 J P— B— 6 4 (' 8 9 ) - 1 0 5 1 3及び U S— A— 4 3 3 2 6 4 4で開示された方法に対して、 ベンゼンで抽出したトリオキサンを含むベ ンゼン溶液を水で抽出するとし、う操作を付加して、 どのような場合にも対応でき るようにしたトリオキサンの精製法である。 かかる精製法を採用することにより、 トリオキサン中の水などの不純物が約 1 p p m前後にまで精製することが可能と なつた。 For example, a trio obtained by heating an aqueous solution of formalin containing a large amount of methanol It was difficult to extract the xane with benzene and separate the benzene from the resulting benzene solution of trioxane to obtain trioxane containing almost no water, methanol, or formic acid. That is, the purification methods disclosed in JP—A—3 ('91) —1237777 are described in JP—B—64 (′89) -105013 and US—A— In contrast to the method disclosed in 4 3 3 2 6 4 4, it is assumed that a benzene solution containing trioxane extracted with benzene is extracted with water. This is a method for purifying trioxane. By employing such a purification method, it has become possible to purify impurities such as water in trioxane to about 1 ppm.
しかしながら、 特に高度に精製されたトリオキサンを必要とする場合がある。 例えば、 水などの不純物が 0 . Γ) p p m以下の卜リォキサンが要求される場合が あり、 本発明はかかる高度に精製されたトリオキサンの精製方法を提供するもの である。  However, it may require a particularly highly purified trioxane. For example, there may be a case where a trioxane having an impurity such as water of 0.1 0ppm or less is required, and the present invention provides a method for purifying such highly purified trioxane.
発明の開示 Disclosure of the invention
本発明者らは、 全ての条件下においてトリオキサンをより高度に精製する方法 を見い出すべく、 蒸留方法について鋭意検討した結果、 3 0以上の段数を有する 蒸留塔を用いて、 蒸留塔の供給段より 1 0段以上離れ、 かつ塔底より 5段以上離 れた蒸留塔の下段の位置に、 蒸留塔の温度プロフィールの変曲点をつくることに より、 より高度にトリオキサンを精製し得ることを見出し、 本発明を完成した。 すなわち、 本発明は、 ホルムアルデヒド水溶液の加熱により得られるトリオキ サン含有留出物をベンゼンで抽出し、 トリオキサンを含むベンゼン溶液を原料と して蒸留塔に供給し、 塔頂部からベンゼンを留出させ、 塔底より トリオキサンを 連続的に蒸留し、 分離して取り出すことからなるトリオキサンの精製方法におい て、 該蒸留塔は 3 0以上の段数を有しており、  The present inventors have conducted intensive studies on the distillation method in order to find a method for purifying trioxane to a higher degree under all conditions, and as a result, using a distillation column having 30 or more stages, using a distillation column having a number of stages of more than 30. It has been found that trioxane can be purified to a higher degree by creating an inflection point in the temperature profile of the distillation column at the bottom of the distillation column at least 10 stages away and at least 5 stages away from the bottom of the column. The present invention has been completed. That is, in the present invention, a trioxane-containing distillate obtained by heating a formaldehyde aqueous solution is extracted with benzene, a benzene solution containing trioxane is supplied as a raw material to a distillation column, and benzene is distilled from the top of the column. In a method for purifying trioxane, which comprises continuously distilling trioxane from the bottom of a column, separating and extracting the trioxane, the distillation column has 30 or more stages,
( i ) 前記卜リォキサンを含むベンゼン溶液を水で抽出し、  (i) extracting the benzene solution containing the trioxane with water,
( U ) 次いで、 該蒸留塔の原料供給段の液組成の卜リオキサン濃度 X (重量%) を、 下記式 ( 1 ) 50 50 (U) Next, the trioxane concentration X (% by weight) of the liquid composition in the raw material supply stage of the distillation column is calculated by the following formula (1) 50 50
100 ■2(r- l ) ≤X≤100  100 2 (r-l) ≤X≤100
(r -0.5) r -0.5  (r -0.5) r -0.5
-2(r ~ 1 ) 0 2 + 2 R° s ( 1 ) -2 (r ~ 1) 0 2 + 2 R ° s (1)
(ただし、 Rは還流比であり、 ァは供給原料中の液体部分の重量比を q、 供袷原 料中の卜リオキサン濃度を C (重量%) としたとき、 下記式 (2) (However, R is the reflux ratio, and a is the weight ratio of the liquid part in the feedstock, q is the trioxane concentration in the raw material supplied, and C (wt%).
R ( 1 -C/ 1 00) +q R (1 -C / 100) + q
7= (2) 7 = (2)
R (1— C/1 00) -C/1 00 + q で定義されるパラメータである) R (1—C / 1 00)-Parameter defined by -C / 1 00 + q)
で示される関係式を満たす範囲に保持し、 かつ Is maintained within a range that satisfies the relational expression represented by, and
(iii) 横軸に温度を、 縦軸に蒸留塔の段数をとつた蒸留塔の温度プロフィールに おいて、 原料供給段より下段で原料供給段より 1 0段以上離れ、 かつ塔底より 5 段以上離れた位置に温度プロフィールの変曲点が現れるように蒸留塔の温度を調 整することを特徴とする上記トリオキサンの精製方法である。  (iii) In the temperature profile of the distillation column, where the horizontal axis represents the temperature and the vertical axis represents the number of distillation columns, the lower stage than the raw material supply stage is at least 10 stages away from the raw material supply stage and 5 stages from the bottom of the column. The above method for purifying trioxane, wherein the temperature of the distillation column is adjusted so that an inflection point of the temperature profile appears at a position apart from the above.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明においては、 トリオキサンを含むベンゼン溶液を水で抽出することによ り、 溶液中に溶解しているメタノール、 ギ酸、 ホルムアルデヒ ド等の不純物が水 相に移行し、 引き続いて行われる蒸留によるトリオキサンの精製が容易になる。 したがって、 抽出操作後に引き続いて行われる蒸留操作により得られるトリオキ サンは、 水、 メタノール、 ギ酸等の不純物の含有量が著しく少ないものとなる。 この効果の機構については定かでないが、 トリオキサンを含むベンゼン溶液中に 溶解しているホルムアルデヒドが、 水での抽出により水相に移行すること力 後 の蒸留行程での卜リオキサンの精製を容易にしているものと推定される。  In the present invention, by extracting a benzene solution containing a trioxane with water, impurities such as methanol, formic acid, and formaldehyde dissolved in the solution are transferred to an aqueous phase, and trioxane is subsequently distilled. Can be easily purified. Therefore, the content of impurities such as water, methanol, and formic acid in trioxane obtained by a distillation operation performed after the extraction operation is extremely low. The mechanism of this effect is unclear, but formaldehyde dissolved in the benzene solution containing trioxane is transferred to the aqueous phase by extraction with water, which facilitates the purification of trioxane in the subsequent distillation step. It is estimated that there is.
水による抽出操作は、 槽を使用するバッチ抽出方式又は塔を利用する連続抽出 方式等により行われる。 好ましい方式としては、 塔の上部から水を流し、 塔の下 部から卜リオキサンを含むベンゼン溶液を流し、 塔の中には段又は充塡剤等の、 水と卜リオキサンを含むベンゼン溶液との界面接触を良くするための補助物が入 れられている、 いわゆる向流接触方式が採用される。 使用される水と、 トリオキ サンを含むベンゼン溶液の比率は、 0 . 0 1 : 1から 1 : 1、 好ましくは 0 . 0 3 : 1から 0 . 3 : 1、 さらに好ましくは 0 . 0 5 : 1から 0 . 2 : 1である。 使用される水の量が少ないと抽出効果が不充分であり、 また、 多すぎるとトリオ キサン等の損失が大きく不経済である。 The extraction operation with water is performed by a batch extraction method using a tank or a continuous extraction method using a tower. As a preferable method, water is flowed from the upper part of the tower, a benzene solution containing trioxane is flowed from the lower part of the tower, and a step or a filler such as a filler is placed in the tower. A so-called counter-current contact method is employed, in which an auxiliary substance for improving the interfacial contact between water and a benzene solution containing trioxane is contained. The ratio of the water used and the benzene solution containing trioxane is from 0.01: 1 to 1: 1, preferably from 0.03: 1 to 0.3: 1, more preferably 0.05: From 1 to 0.2: 1. If the amount of water used is small, the extraction effect is insufficient, and if it is too large, loss of trioxane and the like is large and uneconomical.
水での抽出処理を施した後の卜リオキサンを含むベンゼン溶液のホルムアルデ ヒ ド濃度は、 目標とする精製の程度により異なるが、 通常は 1 %以下、 好ましく は 0 . 2 %以下、 特に好ましくは 0 . 0 5 %以下である。  The formaldehyde concentration of the benzene solution containing trioxane after the water extraction treatment varies depending on the target degree of purification, but is usually 1% or less, preferably 0.2% or less, and particularly preferably. 0.05% or less.
このようにして水での抽出処理を施した卜リオキサンを含むベンゼン溶液から、 次いで蒸留塔でベンゼンが分離され、 塔底から、 水等の不純物の含有量が少ない トリオキサンが得られる。  From the benzene solution containing trioxane subjected to the extraction treatment with water in this way, benzene is then separated in a distillation column, and trioxane with a low content of impurities such as water is obtained from the bottom of the column.
この際の蒸留塔の操作条件は、 前記の式 (1 ) で示されるように、 蒸留塔の原 料供給段の液組成を調整することが必要である。 原料供給液中の液組成の卜リォ キサン濃度を式 (1 ) で示される範囲の下限より低く保持すると、 トリオキサン とベンゼンとの分離が難かしくなり、 一方、 上限よりも高く保持すると連鎖移動 剤の含量を下げること力《難かしくなる。  At this time, as for the operating conditions of the distillation column, it is necessary to adjust the liquid composition of the raw material supply stage of the distillation column as shown by the above formula (1). If the trioxane concentration of the liquid composition in the raw material supply liquid is kept lower than the lower limit of the range represented by the formula (1), it becomes difficult to separate trioxane and benzene, while if it is kept higher than the upper limit, the chain transfer agent The power to lower the content of << becomes difficult.
供給段中のトリオキサン濃度は、 塔底の上昇蒸気量の増減、 塔内温度プロフィ ールの変更、 その他の方法によりコントロールすることができる。 本発明におい ては、 蒸留塔内温度プロフィールが特に重要である。  The concentration of trioxane in the feed stage can be controlled by increasing or decreasing the amount of rising steam at the bottom of the column, changing the temperature profile in the column, and other methods. In the present invention, the temperature profile in the distillation column is particularly important.
横軸に温度を、 縦軸に蒸留塔の段数をとつた蒸留塔の温度プロフィールにおい て、 原料供給段より下段の温度プロフィールの変曲点を、 原料供給段より 1 0段 以上離れ、 力、つ塔底より 5段以上離れた位置に設けることにより、 高度に精製さ れたトリオキサンが得られる。 変曲点の位置は原料供給段より i 0段以上離れて いるが、 好ましくは 1 5段以上離れている。 変曲点の位置が原料供給段より 1 0 段以上離れていることが必要である理由は定かでないが、 蒸留塔内の温度プロフ ィ一ルと微量不純物の蒸留分離挙動との関係によるものと推測される。  In the temperature profile of the distillation column with the temperature on the horizontal axis and the number of distillation columns on the vertical axis, the inflection point of the temperature profile below the raw material supply stage is separated by more than 10 stages from the raw material supply stage. By providing the column at least five steps away from the bottom of the column, highly purified trioxane can be obtained. The position of the inflection point is located at least i0 step from the raw material supply step, but preferably at least 15 step. The reason why it is necessary that the position of the inflection point be at least 10 stages away from the raw material supply stage is not clear, but it is due to the relationship between the temperature profile in the distillation column and the distillation separation behavior of trace impurities. Guessed.
温度プロフィールの変曲点が、 原料供給段より下段で、 原料供給段より 1 0段 以上離れ、 かつ塔底より 5段以上離れた位置に現れるようにするためには、 蒸留 塔の原料供給量、 還流比、 加熱源として用いる水蒸気の供給量等を適宜変化させ ることにより変曲点の位置を調整すればよい。 In order for the inflection point of the temperature profile to appear at a position below the raw material supply stage, at least 10 stages away from the raw material supply stage, and at least 5 stages away from the bottom of the column, distillation The position of the inflection point may be adjusted by appropriately changing the supply amount of the raw material, the reflux ratio, the supply amount of steam used as a heating source, and the like.
トリオキサンとベンゼンとの蒸留分離において、 還流比は供給液の卜リオキサ ン濃度により異なるが、 通常 1 . 1〜8の範囲である。 8より高い還流比も使用 し得る力く、 いたずらに高い還流比を用いてもエネルギーの損失を招くだけであり 不利である。 好ましい還流比は、 1 . 2〜6、 さらに好ましくは 1 . 5 ~ 4であ る。  In the distillation separation of trioxane and benzene, the reflux ratio varies depending on the trioxane concentration of the feed solution, but is usually in the range of 1.1 to 8. Reflux ratios higher than 8 can be used, and use of an unnecessarily high reflux ratio only results in energy loss and is disadvantageous. A preferred reflux ratio is from 1.2 to 6, more preferably from 1.5 to 4.
連続蒸留には、 通常、 多段式の蒸留塔が用いられる。 本発明においては、 蒸留 塔の段数は 3 0段以上であるが、 実際に用いられる段数は、 目的とする分離精度、 使用する供給原料、 還流比などにより異なる。  Usually, a multi-stage distillation column is used for continuous distillation. In the present invention, the number of stages of the distillation column is 30 or more, but the number of stages actually used varies depending on the intended separation accuracy, the feed material used, the reflux ratio, and the like.
以下、 実施例及び比較例により本発明をより具体的に説明するが、 本発明はか 力、る実施例により何ら限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to these Examples.
実施例 1  Example 1
メタノールを 6 %含む 6 5 %ホルマリン水溶液を硫酸の存在下で加熱蒸留し、 トリオキサン 4 5 %を含み、 残分がホルムアルデヒド、 メタノール、 水である水 溶性留出物 (水溶液) を得た。 この水溶液にベンゼンで向流抽出を施し、 4 2 % の卜リオキサンを含むベンゼン溶液を得た。 この卜リオキサンを含むベンゼン溶 液をラシヒリングを詰めた充塡塔の下部から供給し、 上部から水を供給した。 こ こでの水と、 卜リオキサンを含むベンゼン溶液との比率は 0 . 2 : 1 (重量比) とした。 ここで水で抽出洗浄を施されたトリオキサンを含むベンゼン溶液中のホ ルムアルデヒドは 0 . 0 5 %であった。 また、 トリオキサン濃度は 3 8 %であつ た。  A 65% aqueous solution of formalin containing 6% of methanol was heated and distilled in the presence of sulfuric acid to obtain a water-soluble distillate (aqueous solution) containing 45% of trioxane and the balance being formaldehyde, methanol and water. This aqueous solution was subjected to countercurrent extraction with benzene to obtain a benzene solution containing 42% of trioxane. The benzene solution containing the trioxane was supplied from the lower part of the packed tower packed with Raschig rings, and water was supplied from the upper part. The ratio of the water to the benzene solution containing trioxane was 0.2: 1 (weight ratio). Here, the formaldehyde in the benzene solution containing trioxane that was extracted and washed with water was 0.055%. The trioxane concentration was 38%.
この卜リオキサンを含むベンゼン溶液を 6 5段の蒸留塔に、 上から 2 0段目を 原料供給段として連続的に沸点下の液体として供給し、 還流比 3の条件下で精留 を行い、 蒸留塔内の原料供給段より下の温度プロフィールにおいて、 原料供給段 から 1 5段目に変曲点が現れるように蒸留操作を行い、 塔頂よりベンゼン、 塔底 より トリオキサンを連続的に分離した。 この際の操作条件として、 供給段中の卜 リオキサン濃度を、 前記の式 ( 1 ) にしたがい 2 5 %に維持した。  The benzene solution containing the trioxane is continuously supplied as a liquid having a boiling point of 20 from the top to a distillation column of 65 stages as a raw material supply stage, and rectification is performed under a reflux ratio of 3; Distillation was performed so that the inflection point appeared at the 15th stage from the raw material supply stage in the temperature profile below the raw material supply stage in the distillation column, and benzene was continuously separated from the top of the column, and trioxane was continuously separated from the bottom of the column. . As the operating conditions at this time, the trioxane concentration in the supply stage was maintained at 25% according to the above formula (1).
得られたトリォキサン中の連鎖移動剤は、 水分 0 . 1 p p m、 ギ酸 0 . 1 p p mであつす乙。 The chain transfer agent in the obtained trioxane contained 0.1 ppm of water and 0.1 part of formic acid. Otsu, ppm.
比較例 1  Comparative Example 1
実施例 1において、 卜リオキサンを含むベンゼン溶液に水で抽出洗浄を施さな いほかは、 実施例 1と同様の操作を行った。 得られたトリオキサン中の水分は 9 0 p p m、 ギ酸 6 0 p p mであつた。  The same operation as in Example 1 was performed, except that the benzene solution containing trioxane was not subjected to extraction and washing with water. The water content in the obtained trioxane was 90 ppm and formic acid was 60 ppm.
比較例 2  Comparative Example 2
実施例 1において、 蒸留塔の操作条件として、 蒸留塔原料供給段より下段の温 度プロフィールの変曲点を供給段より 7段目としたほかは、 実施例 1と全く同様 の操作を行った。 得られたトリオキサン中の水分は 1 p pm、 ギ酸 1 p pmであ つた。  In Example 1, the same operation as in Example 1 was performed except that the inflection point of the temperature profile below the distillation column raw material supply stage was changed to the seventh stage from the supply stage as the operation conditions of the distillation column. . The water content in the obtained trioxane was 1 ppm and formic acid was 1 ppm.
実施例 2  Example 2
実施例 1において、 向流抽出する水の量とトリオキサンを含むベンゼン溶液と の比率を 0. 1 5 : 1 (重量比) としたほかは、 実施例 1と同様の操作を行った。 ここで水で抽出洗浄を施したトリオキサンを含むベンゼン溶液中のホルムアルデ ヒドは 0. 1 1 %であった。 また、 トリオキサン濃度は 3 9 %であった。 蒸留精 製後のトリオキサン中の水分は 0. 2 ppm、 ギ酸も 0. 2 p pmであった。 実施例 3  The same operation as in Example 1 was performed, except that the ratio of the amount of water to be subjected to the countercurrent extraction to the benzene solution containing trioxane was 0.15: 1 (weight ratio). Here, the formaldehyde in the benzene solution containing trioxane that had been extracted and washed with water was 0.11%. The trioxane concentration was 39%. Moisture in trioxane after distillation and purification was 0.2 ppm, and formic acid was 0.2 ppm. Example 3
実施例 1において、 蒸留塔下段の温度プロフィールの変曲点の位置を原料供給 段から 1 0段目としたほかは、 実施例 2と同様の操作を行った。 得られたトリオ キサン中の水分は、 0. 3 p pm、 ギ酸も 0. 3 p pmであった。  In Example 1, the same operation as in Example 2 was performed except that the position of the inflection point of the temperature profile in the lower stage of the distillation column was set at the 10th stage from the raw material supply stage. The water content in the obtained trioxane was 0.3 ppm, and that of formic acid was 0.3 ppm.
産業上の利用の可能性 Industrial applicability
本発明は、 より高度に精製された、 高品質の、 ポリアセタール樹脂用重合グレ ―ドのトリオキサンを提供し、 ポリアセタールの製造産業において有用である。  The present invention provides trioxane, a highly purified, high quality, polymerized grade for polyacetal resins, which is useful in the polyacetal manufacturing industry.

Claims

請求の範囲 The scope of the claims
1. ホルムアルデヒ ド水溶液の加熱により得られる卜リオキサン含有留出物を ベンゼンで抽出し、 トリオキサンを含むベンゼン溶液を原料として、 蒸留塔に供 給し、 塔頂部からベンゼンを留出させ、 塔底より トリオキサンを連続的に蒸留し、 分離して取り出すことからなるトリオキサンの精製方法において、 該蒸留塔は 3 0以上の段数を有しており、 1. A trioxane-containing distillate obtained by heating a formaldehyde aqueous solution is extracted with benzene, and a benzene solution containing trioxane is supplied as a raw material to a distillation column, and benzene is distilled from the top of the column, and the benzene is distilled from the bottom. A method for purifying trioxane, comprising continuously distilling trioxane, separating and extracting the trioxane, wherein the distillation column has 30 or more plates,
( i ) 前記卜リオキサンを含むベンゼン溶液を水で抽出し、  (i) extracting the benzene solution containing the trioxane with water,
(ii) 次いで、 該蒸留塔の原料供給段の液組成のトリオキサン濃度 X (重量%) を、 下記式 ( 1 )  (ii) Next, the trioxane concentration X (% by weight) of the liquid composition in the raw material supply stage of the distillation column is calculated by the following equation
50 50 50 50
100 2(r- 1) X≤100  100 2 (r-1) X≤100
7 -0.5 r -0.5  7 -0.5 r -0.5
-2(r - 1) 。 2 +2R0 5 (1) -2 (r-1). 2 + 2R 0 5 (1)
(ただし、 Rは還流比であり、 ァは供給原料中の液体部分の重量比を q、 供給原 料中のトリオキサン濃度を C (重量%) としたとき、 下記式 (2) (Where R is the reflux ratio, and a is the weight ratio of the liquid part in the feedstock, q, and the trioxane concentration in the feedstock, C (% by weight).
R (1 -C/1 00) +q R (1 -C / 1 00) + q
(2) (2)
R ( l— CZ1 00) — CZl 00+q で定義される/、'ラメータである) R (l— CZ1 00) — defined by CZl 00 + q, 'is a parameter)
で示される関係式を満たす範囲に保持し、 かつ Is maintained within a range that satisfies the relational expression represented by, and
(iii) 横軸に温度を、 縦軸に蒸留塔の段数をとつた蒸留塔の温度プロフィールに おいて、 原料供給段より下段で、 原料供給段より 1 0段以上離れ、 かつ塔底より 5段以上離れた位置に温度プロフィールの変曲点が現れるように蒸留塔の温度を 調整することを特徴とする卜リオキサンの精製方法。  (iii) In the temperature profile of the distillation column, where the horizontal axis represents temperature and the vertical axis represents the number of distillation columns, the temperature profile is lower than the raw material supply stage, at least 10 stages away from the raw material supply stage, and 5 mm from the bottom of the column. A method for purifying trioxane, comprising adjusting the temperature of a distillation column so that an inflection point of a temperature profile appears at a position separated by more than one step.
2. 前記蒸留塔の温度プロフィールにおいて、 原料供給段より下段で、 原料供 給段より I 5段以上離れ、 かつ塔底より 5段以上離れた位置に温度プロフィール の変曲点が現れるように蒸留塔の温度を調整する請求項1記載の方法。 2. In the temperature profile of the distillation column, the temperature profile is lower than the raw material supply stage, at least 5 stages away from the raw material supply stage and at least 5 stages away from the bottom of the column. 2. The method according to claim 1 , wherein the temperature of the distillation column is adjusted so that the inflection point of appears.
PCT/JP1997/003390 1996-09-25 1997-09-24 Process for the purification of trioxane WO1998013362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10515492A JP3101326B2 (en) 1996-09-25 1997-09-24 Trioxane purification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27286296 1996-09-25
JP8/272862 1996-09-25

Publications (1)

Publication Number Publication Date
WO1998013362A1 true WO1998013362A1 (en) 1998-04-02

Family

ID=17519812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003390 WO1998013362A1 (en) 1996-09-25 1997-09-24 Process for the purification of trioxane

Country Status (2)

Country Link
JP (1) JP3101326B2 (en)
WO (1) WO1998013362A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281166A (en) * 2005-04-04 2006-10-19 Mitsui Chemicals Polyurethanes Inc Chemical treatment apparatus
JP2012224584A (en) * 2011-04-20 2012-11-15 Asahi Kasei Chemicals Corp Method for purifying cyclic formal
CN103328464A (en) * 2010-10-29 2013-09-25 Ktp有限公司 Method for preparing 1,3,5-trioxane

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503758A (en) * 2011-11-02 2012-06-20 天津渤海化工有限责任公司天津碱厂 Method for reducing benzene consumption in production process of polyformaldehyde
CN107382955B (en) * 2017-08-24 2023-06-16 开封龙宇化工有限公司 Benzene vapour recovery unit in trioxymethylene production process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123777A (en) * 1989-10-05 1991-05-27 Asahi Chem Ind Co Ltd Purification of trioxane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123777A (en) * 1989-10-05 1991-05-27 Asahi Chem Ind Co Ltd Purification of trioxane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281166A (en) * 2005-04-04 2006-10-19 Mitsui Chemicals Polyurethanes Inc Chemical treatment apparatus
CN103328464A (en) * 2010-10-29 2013-09-25 Ktp有限公司 Method for preparing 1,3,5-trioxane
CN103328464B (en) * 2010-10-29 2015-03-18 Ktp有限公司 Method for preparing 1,3,5-trioxane
JP2012224584A (en) * 2011-04-20 2012-11-15 Asahi Kasei Chemicals Corp Method for purifying cyclic formal

Also Published As

Publication number Publication date
JP3101326B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
KR101546464B1 (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
TW201204699A (en) Removal of permanganate reducing compounds from methanol carbonylation process stream
CN109071403B (en) Method for continuously recovering (meth) acrylic acid and apparatus for the same
KR840001899B1 (en) Process for purifying methyl methacrylate
KR100670881B1 (en) Method for Producing Highly Pure Monoethylene Glycol
WO1998013362A1 (en) Process for the purification of trioxane
RU2235710C2 (en) High-purity monoethylene glycol production process
EP3424898B1 (en) Method and apparatus for continuously recovering (meth)acrylic acid
KR20170047030A (en) Method for purification of phenol
KR100551461B1 (en) Process for working up crude, liquid vinyl acetate
JPS6232182B2 (en)
JP2651622B2 (en) Trioxane purification method
CA1236469A (en) Recovery of sulfolane
JPH0273040A (en) Receovery of alkyl glyoxylate
TWI312774B (en) Method for inhibiting polymerization during the recovery and purification of unsaturated mononitriles
KR20220002970A (en) Method for Purification of Aqueous-Alcoholic Feedstock Containing Ethanol and Acetaldehyde
US3395157A (en) Plural stage distillation of trioxane in the presence of a water-immiscible solvent
JP5094148B2 (en) Method for producing allyl alcohol
US4514261A (en) Refining of tertiary butylstyrene
JP2007269647A (en) METHOD FOR PURIFYING alpha-METHYLSTYRENE
JPS5872535A (en) Removal of methanol from aqueous formaldehyde
JPS6348857B2 (en)
KR20010097592A (en) A process of preparing for the trioctane
JPH06228127A (en) Production of trioxane
JPS6331458B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP KR SG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642