WO1998010438A1 - METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (SE)-Fe-B PERMANENT MAGNET - Google Patents

METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (SE)-Fe-B PERMANENT MAGNET Download PDF

Info

Publication number
WO1998010438A1
WO1998010438A1 PCT/DE1997/001787 DE9701787W WO9810438A1 WO 1998010438 A1 WO1998010438 A1 WO 1998010438A1 DE 9701787 W DE9701787 W DE 9701787W WO 9810438 A1 WO9810438 A1 WO 9810438A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
alloy
earth element
weight
binder
Prior art date
Application number
PCT/DE1997/001787
Other languages
German (de)
French (fr)
Inventor
Peter Schrey
Mircea Velicescu
Original Assignee
Vacuumschmelze Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze Gmbh filed Critical Vacuumschmelze Gmbh
Priority to EP97939966A priority Critical patent/EP0923781B1/en
Priority to JP51210498A priority patent/JP3145417B2/en
Priority to DE59705687T priority patent/DE59705687D1/en
Publication of WO1998010438A1 publication Critical patent/WO1998010438A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Definitions

  • the invention relates to a permanent magnet of the type SE-Fe-B, which has the tetragonal phase SE 2 Fe_ 4 B as the main phase, SE being at least one rare earth element including Y.
  • SE-Fe-B magnets have the highest energy densities available today.
  • SE-Fe-B magnets manufactured by powder metallurgy contain about 90% of the hard magnetic main phase SE 2 Fe 14 B.
  • a two-phase magnet is known from DE 41 35 403 C2, the second phase being an SE-Fe-Co-Ga phase.
  • a two-phase magnet is also known from EP 0 583 041 A1, the second phase consisting of an SE-Ga phase.
  • the manufacturing process generally involves composing these SE-FE-B magnets from SE-Fe-B base alloys with the composition close to the SE 2 Fe ⁇ 4 B phase and from a binder alloy with a lower melting temperature become.
  • the aim is that the structure of the SE-Fe-B sintered magnet made of SE 2 Fe- 4 B base alloys with intergranular binders is adjusted using as little binder alloy as possible.
  • this binder alloy With a proportion of this binder alloy of more than 10% by weight, the grain growth is strongly activated, but the pores are not closed. The result is the formation of a structure with abnormally large grains (> 50 ⁇ m) and with high porosity and with low sintered densities. With low proportions of binder alloy, the amount of the liquid phase is therefore not sufficient for the compression.
  • the object is achieved by a method which comprises the following steps: a :) it is a powder of a basic alloy of the general formula SE 2 T 14 B, in which SE is at least one rare earth element including Y and TFe or a combination is made of Fe and Co, the Co content not exceeding 40% by weight of the combination of Fe and Co, a 2 ) and from powders of at least two binder alloys of the general formulas
  • SE 6 Fe, Co
  • SE 2 Co 3 i3- ⁇ Ga 1 + x and SE 2 Co 3 .
  • SE is at least one rare earth element including Y, mixed in a weight ratio of 99: 1 to 70: 3, b) the mixture is compressed and then c) sintered under vacuum and / or under an inert gas atmosphere.
  • Proportion B-Leg.l B-Leg.2 B-Leg.3 B-Leg.4 B-Leg.5 G.Leg (% by weight) (% by weight) (% by weight) (% by weight) ( % By weight) (% by weight)
  • a magnet according to the prior art of a binder alloy with the composition of approximately 28 wt.% Nd, 0.5 wt.% Dy, 2.0 wt.% Pr (sum SE - 30.5 wt.%), 0.98% by weight of B, 0.3% by weight of Ga, 0.8% by weight of Co and the remainder of Fe were produced using the analog powder metallurgical method.
  • the same basic alloy as the magnet 8-1 was used as the basic alloy.
  • FIG. 2 shows the demagnetization curve of this magnet, which was produced by the conventional powder metallurgical method according to the prior art.
  • the permanent magnets according to the invention have a much more favorable demagnetization curve at room temperature than permanent magnets which have been produced according to the prior art.
  • the highest coercive field strength was achieved with the magnet 322/1 after annealing at a temperature of 630 ° C.
  • the magnet 322/1 which was sintered at a temperature of 1080 ° C., reached a coercive force of 10.4 kOe, its remanence being 1.41 T.
  • a degree of alignment of the grains of 96% was measured in this magnet and the relative density is 98%.
  • Arithmetically, a remanence of 1.415 T can be expected, i.e. a very good agreement with the measured value.
  • the present invention presents a new boron and iron-free binder alloy with the composition SEs (Co, Ga) 3 for the production of permanent magnets.
  • the melting temperature of this binder alloy is around 530 ° C.
  • binder alloy mixtures for the powder metallurgical production of permanent magnets significant advantages over the individual binder alloys.
  • proportion of binder alloy can be decisively reduced compared to the proportion of binder alloys according to the prior art, i.e. to a proportion below 7% by weight.

Abstract

Disclosed is a new mixture of binding alloys for the manufacture of SE2Fe14B permanent magnets, which are composed of SE6(Fe,Co)13-xGa1+x and SE2Co3.

Description

Verfahren zur Herstellung eines SE-FE-B-DauermagnetenProcess for manufacturing a SE-FE-B permanent magnet
Die Erfindung betrifft einen Dauermagneten des Typs SE-Fe-B, der als Hauptphase die tetragonale Phase SE2Fe_4B aufweist, wobei SE mindestens ein Seltenerd-Element einschließlich Y ist .The invention relates to a permanent magnet of the type SE-Fe-B, which has the tetragonal phase SE 2 Fe_ 4 B as the main phase, SE being at least one rare earth element including Y.
Ein solcher Magnet ist beispielsweise aus der EP 0 124 655 AI sowie der dazu korrespondierenden US 5,230,751 bekannt. Ma- gnete des Typs SE-Fe-B weisen die höchsten heute zur Verfügung stehenden Energiedichten auf. Pulvermetallurgisch herstellte SE-Fe-B-Magnete enthalten etwa 90% der hartmagnetischen Hauptphase SE2Fe14B.Such a magnet is known for example from EP 0 124 655 AI and the corresponding US Pat. No. 5,230,751. SE-Fe-B magnets have the highest energy densities available today. SE-Fe-B magnets manufactured by powder metallurgy contain about 90% of the hard magnetic main phase SE 2 Fe 14 B.
Aus der DE 41 35 403 C2 ist ein Zweiphasen-Magnet bekannt, wobei die zweite Phase eine SE-Fe-Co-Ga-Phase sein kann.A two-phase magnet is known from DE 41 35 403 C2, the second phase being an SE-Fe-Co-Ga phase.
Aus der EP 0 583 041 AI ist ebenfalls ein Zweiphasen-Magnet bekannt, wobei die zweite Phase aus einer SE-Ga-Phase be- steht.A two-phase magnet is also known from EP 0 583 041 A1, the second phase consisting of an SE-Ga phase.
Aus der US 5,447,578 ist eine SE-Übergangsmetall-Ga-Phase bekannt .An SE transition metal Ga phase is known from US Pat. No. 5,447,578.
Ferner sind aus der US 5,405,455 sowie der EP 0 651 401 AI weitere zweite Phasen bekannt .Further second phases are also known from US 5,405,455 and EP 0 651 401 AI.
Bei der Herstellung verfährt man in der Regel so, daß diese SE-FE-B-Magnete aus SE-Fe-B-Grundlegierungen mit der Zusam- mensetzung nahe der SE2Feι4B-Phase und aus einer Binderlegierung mit einer niedrigeren Schmelztemperatur komponiert werden. Ziel ist es dabei, daß das Gefüge der SE-Fe-B-Sinterma- gnete aus SE2Feι4B-Grundlegierungen mit intergranularen Bindern eingestellt wird unter Verwendung von möglichst wenig Binderlegierung. Aus der EP 0 517 179 Bl wird die Verwendung von Binderlegierungen mit der Zusammensetzung Pr20DyιoCθ4oB6Ga4Fereεt (in Gew.% sind das Pr « 35, Dy « 20, Co = 28, B = 0,77, Ga = 3,5) vorgeschlagen.The manufacturing process generally involves composing these SE-FE-B magnets from SE-Fe-B base alloys with the composition close to the SE 2 Feι 4 B phase and from a binder alloy with a lower melting temperature become. The aim is that the structure of the SE-Fe-B sintered magnet made of SE 2 Fe- 4 B base alloys with intergranular binders is adjusted using as little binder alloy as possible. From EP 0517179 Bl describes the use of binder alloys having a composition of Pr 20 Fe 4 Ga DyιoCθ4oB 6 r eεt (in wt.% Is the Pr "35, Dy," 20, Co = 28, B = 0.77, Ga = 3.5).
Es hat sich nun gezeigt, daß der Anteil dieser Binderlegierung in der Mischung mit der Grundlegierung innerhalb von 7- 10 Gew.% liegen muß. In diesem Mischungsbereich werden Sinterdichten von ungefähr p > 7,55 g/cm3 erst bei Sintertempe- raturen oberhalb 1090°C erreicht. Diese Sinterdichten entsprechen in etwa 99 % der theoretischen Dichte. Außerhalb dieses Mischungsbereichs wird die Sinterfähigkeit und damit die erzielbare Remanenz erheblich beeinflußt. Bei den Magne It has now been shown that the proportion of this binder alloy in the mixture with the base alloy must be within 7-10% by weight. In this mixing range, sintered densities of approximately p> 7.55 g / cm 3 are only reached at sintering temperatures above 1090 ° C. These sintered densities correspond to approximately 99% of the theoretical density. Outside this mixing range, the sinterability and thus the achievable remanence is significantly affected. With the Magne
ten mit einem Anteil dieser Binderlegierung von mehr als 10 Gew.% wird das Kornwachstum stark aktiviert, die Poren werden aber nicht geschlossen. Die Folge ist die Bildung eines Gefü- ges mit anomal großen Körnern (> 50μm) und mit hoher Porösi- t t sowie mit niedrigen Sinterdichten. Bei niedrigen Anteilen an Binderlegierung ist die Menge der flüssigen Phase für die Verdichtung demnach nicht ausreichend.With a proportion of this binder alloy of more than 10% by weight, the grain growth is strongly activated, but the pores are not closed. The result is the formation of a structure with abnormally large grains (> 50 μm) and with high porosity and with low sintered densities. With low proportions of binder alloy, the amount of the liquid phase is therefore not sufficient for the compression.
Aufgabe der vorliegenden Erfindung ist es daher, einen pul- vermetallurgisches Verfahren zur Herstellung eines Dauermagneten des Typs SE-Fe-B anzugeben, das gegenüber den bekannten Verfahren eine erhöhte Sinterfähigkeit unter Reduktion des Binderlegierungsanteils sowie eine sehr gute Remanenz erzielt .It is therefore an object of the present invention to provide a powder metallurgical process for producing a permanent magnet of the SE-Fe-B type which, compared to the known processes, achieves increased sinterability while reducing the proportion of binder alloy and very good remanence.
Erfindungsgemäß wird die Aufgabe durch ein Verfahren gelöst, das die folgenden Schritte umfaßt: a:) es wird ein Pulver aus einer Grundlegierung der allgemeinen Formel SE2T14B, worin SE mindestens ein Seltenerd-Ele ent einschließlich Y ist und TFe oder eine Kombination aus Fe und Co ist, wobei der Co-Anteil 40 Gew.% der Kombination von Fe und Co nicht überschreitet , a2) und aus Pulvern von zumindest zwei Binderlegierungen der allgemeinen FormelnAccording to the invention the object is achieved by a method which comprises the following steps: a :) it is a powder of a basic alloy of the general formula SE 2 T 14 B, in which SE is at least one rare earth element including Y and TFe or a combination is made of Fe and Co, the Co content not exceeding 40% by weight of the combination of Fe and Co, a 2 ) and from powders of at least two binder alloys of the general formulas
SE6(Fe, Co)i3-χGa1+x und SE2Co3. worin SE mindestens ein Seltenerd-Element einschließlich Y ist, in einem Gewichtsverhältnis von 99:1 bis 70:3 gemischt, b) die Mischung wird verdichtet und anschließend c) unter Vakuum und/oder unter einer Inertgasatmosphäre gesintert .SE 6 (Fe, Co) i3-χGa 1 + x and SE 2 Co 3 . wherein SE is at least one rare earth element including Y, mixed in a weight ratio of 99: 1 to 70: 3, b) the mixture is compressed and then c) sintered under vacuum and / or under an inert gas atmosphere.
Es hat sich gezeigt, daß solch hergestellte Dauermagnete sehr hohe Remanenzen aufweisen und daß der Anteil an Binderlegie- rung gegenüber dem Anteil der Grundlegierung auf unter 7 Gew.% reduziert werden kann.It has been shown that permanent magnets produced in this way have very high remanences and that the proportion of binder alloys Compared to the proportion of the basic alloy can be reduced to less than 7% by weight.
Im folgenden wird die Erfindung anhand der Ausführungsbei- spiele und der Figur näher erläutert. Für die Untersuchungen wurden eine Nd2FeιB-Grundlegierung und fünf ;Binderlegierungen mit den folgenden Zusammensetzungen verwendet:The invention is explained in more detail below on the basis of the exemplary embodiments and the figure. An Nd 2 FeιB base alloy and five binder alloys with the following compositions were used for the investigations:
Tabelle 1:Table 1:
Figure imgf000006_0001
Figure imgf000006_0001
Aus Grobpulvern dieser Legierungen wurden die folgenden Mischungen vorbereitet. The following mixtures were prepared from coarse powders of these alloys.
Tabelle 2 :Table 2:
Anteil B-Leg.l B-Leg.2 B-Leg.3 B-Leg.4 B-Leg.5 G.Leg (Gew.%) (Gew.%) (Gew.%) (Gew.%) (Gew.%) (Gew.%)Proportion B-Leg.l B-Leg.2 B-Leg.3 B-Leg.4 B-Leg.5 G.Leg (% by weight) (% by weight) (% by weight) (% by weight) ( % By weight) (% by weight)
Mischung 1 5 5 1 89Mix 1 5 5 1 89
Mischung 2 0 5 0 5 0 90Mixture 2 0 5 0 5 0 90
Mischung 3 5 2,5 1 1,5 1 89Mix 3 5 2.5 1 1.5 1 89
Mischung 4 6 0 1,5 2,5 0 90Mixture 4 6 0 1.5 2.5 0 90
Mischung 5 6,5 1 1,5 1 1 89Mix 5 6.5 1 1.5 1 1 89
Mischung 6 5,5 0 1,5 3 0 90Mix 6 5.5 0 1.5 3 0 90
Mischung 7 5 1 1,5 2,5 1 90Mix 7 5 1 1.5 2.5 1 90
Mischung 8 3,5 2 1 3,5 0 90Mix 8 3.5 2 1 3.5 0 90
Die errechneten Zusammensetzung der hergestellten Magnete ergeben dan :The calculated composition of the magnets produced gives:
Tabelle 3 :Table 3:
Magnet Nr.l Nr.2 Nr.3 Nr.4 Nr.5 Nr.6 Nr.7 Nr.8 Ref.Magnet No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 Ref.
SE 30,1 30,3 30,35 30,35 30,4 30,7 30,5 30,6 30-31SE 30.1 30.3 30.35 30.35 30.4 30.7 30.5 30.6 30-31
Nd 25,2 24,9 25,2 25,2 25,2 24,9 25,2 24,9 27-28Nd 25.2 24.9 25.2 25.2 25.2 24.9 25.2 24.9 27-28
Pr 4,13 4,6 4,1 4,1 4,14 4,85 4,15 4,7 1,7-2,2Pr 4.13 4.6 4.1 4.1 4.14 4.85 4.15 4.7 1.7-2.2
Dy 0,79 0,79 1,04 1,05 1,2 0,97 1,3 0,96 0,6-1,4Dy 0.79 0.79 1.04 1.05 1.2 0.97 1.3 0.96 0.6-1.4
Co 2,4 1,7 2,1 2,1 2,25 2,25 1,9 2,1 0,8-2Co 2.4 1.7 2.1 2.1 2.25 2.25 1.9 2.1 0.8-2
Ga 0,435 0,48 0,38 0,38 0,36 0,4 0,36 0,43 0,1-0,4Ga 0.435 0.48 0.38 0.38 0.36 0.4 0.36 0.43 0.1-0.4
B 0,93 0,92 0,93 0,92 0,93 0,92 0,92 0,92 0,95- 0,98B 0.93 0.92 0.93 0.92 0.93 0.92 0.92 0.92 0.95-0.98
Fe Rest Rest Rest Rest Rest Rest Rest Rest RestFe rest rest rest rest rest rest rest rest rest
Die Mischungen wurden in einer Planeten-Kugelmühle 90 Minuten lang feingemahlen, die mittlere Teilchengröße des Feinpulvers erreichte 2 , 9 bis 3 , 0 um. Aus den Feinpulvern wurden anisotrope, isostatisch-gepreßte Magnete hergestellt . Sie wurden auf Dichten von p > 7 , 50 g/cm3 gesintert und anschließend ge- tempert . Die Figur 1 zeigt die Entmagnetisierungskurve bei Raumtemperatur des Magneten 1-8.The mixtures were finely ground in a planetary ball mill for 90 minutes, the average particle size of the fine powder reached 2.9 to 3.0 µm. Anisotropic, isostatically pressed magnets were produced from the fine powders. They were sintered to densities of p> 7.5 g / cm 3 and then tempered. Figure 1 shows the demagnetization curve at room temperature of the magnet 1-8.
Zum Vergleich wurde ein Magnet gemäß dem Stand der Technik einer Binderlegierung mit der Zusammensetzung von ungefähr 28 Gew.% Nd, 0,5 Gew.% Dy, 2,0 Gew.% Pr (Summe SE - 30,5 Gew.%), 0,98 Gew.% B, 0,3 Gew.% Ga, 0,8 Gew.% Co und Rest Fe mit dem analogen pulvermetallurgischen Verfahren hergestellt. Dabei wurde als Grundlegierung die selbe Grundlegierung wie beim Magneten 8-1 verwendet.For comparison, a magnet according to the prior art of a binder alloy with the composition of approximately 28 wt.% Nd, 0.5 wt.% Dy, 2.0 wt.% Pr (sum SE - 30.5 wt.%), 0.98% by weight of B, 0.3% by weight of Ga, 0.8% by weight of Co and the remainder of Fe were produced using the analog powder metallurgical method. The same basic alloy as the magnet 8-1 was used as the basic alloy.
Die Figur 2 zeigt die Entmagnetisierungskurve dieses Magneten, welcher nach dem herkömmlichen pulvermetallurgischem Verfahren gemäß dem Stand der Technik hergestellt worden ist.FIG. 2 shows the demagnetization curve of this magnet, which was produced by the conventional powder metallurgical method according to the prior art.
Es ist deutlich zu erkennen, daß die erfindungsgemäßen Dauermagnete eine wesentlich günstigere Entmagnetisierungskurve bei Raumtemperatur aufweisen als Dauermagnete, die nach dem Stand der Technik hergestellt worden sind.It can be clearly seen that the permanent magnets according to the invention have a much more favorable demagnetization curve at room temperature than permanent magnets which have been produced according to the prior art.
Die höchsten Koerzitivfeldstärke wurde bei dem Magneten 322/1 nach einer Temperung bei einer Temperatur von 630°C erreicht. Der Magnet 322/1, der bei einer Temperatur von 1080°C gesintert wurde, erreichte eine Koerzitivfeldstärke von 10,4 kOe, wobei seine Remanenz 1,41 T beträgt. In diesem Magneten wurde ein Ausrichtungsgrad der Körner von 96 % gemessen und die relative Dichte beträgt 98%. Rechnerisch ist dadurch eine Remanenz von 1,415 T zu erwarten, d.h. eine sehr gute Übereinstimmung mit dem gemessenen Wert.The highest coercive field strength was achieved with the magnet 322/1 after annealing at a temperature of 630 ° C. The magnet 322/1, which was sintered at a temperature of 1080 ° C., reached a coercive force of 10.4 kOe, its remanence being 1.41 T. A degree of alignment of the grains of 96% was measured in this magnet and the relative density is 98%. Arithmetically, a remanence of 1.415 T can be expected, i.e. a very good agreement with the measured value.
Durch die vorliegende Erfindung wird eine neue bor- und eisenfreie Binderlegierung mit der Zusammensetzung SEs(Co, Ga)3 zur Herstellung von Dauermagneten vorgestellt. Die Schmelztemperatur dieser Binderlegierung liegt bei etwa 530°C.The present invention presents a new boron and iron-free binder alloy with the composition SEs (Co, Ga) 3 for the production of permanent magnets. The melting temperature of this binder alloy is around 530 ° C.
Die Verwendung dieser Binderlegierungsgemische für die pulvermetallurgischen Herstellung von Dauermagneten weist ge- genüber den einzelnen Binderlegierungen erhebliche Vorteile auf .The use of these binder alloy mixtures for the powder metallurgical production of permanent magnets significant advantages over the individual binder alloys.
So kann der Anteil an Binderlegierung gegenüber dem Anteil Binderlegierungen nach dem Stand der Technik entschieden verringert werden, d.h. auf einen Anteil unter 7 Gew.%. Thus the proportion of binder alloy can be decisively reduced compared to the proportion of binder alloys according to the prior art, i.e. to a proportion below 7% by weight.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung eines Dauermagneten nach Anspruch 1 mit folgenden Schritten: ai) Es wird ein Pulver aus einer magnetischen Grundlegierung der allgemeinen Formel
Figure imgf000010_0001
worin SE mindestens ein Seltenerd-Element einschließlich Y ist und TFe oder eine Kombination aus Fe und Co ist, wobei der Co-Anteil 40 Gew.% der Kombination Fe und Co nicht überschreitet und aus Pulvern von zumindest zwei Binderlegierungen der allgemeinen Formeln
1. A method for producing a permanent magnet according to claim 1 with the following steps: ai) It is a powder of a magnetic base alloy of the general formula
Figure imgf000010_0001
wherein SE is at least one rare earth element including Y and TFe or a combination of Fe and Co, the Co content not exceeding 40% by weight of the combination Fe and Co and from powders of at least two binder alloys of the general formulas
SE6(Fe, Co)13-xGaι+x und SE2Co3. worin SE mindestens ein Seltenerd-Element einschließlich Y ist, in einem Gewichtsverhältnis von 99:1 bis 70:3 gemischt,^ die Mischung wird verdichtet und anschließend c) unter Vakuum und/oder unter einer Inertgasatmosphäre gesintert.SE 6 (Fe, Co) 13 - x Gaι + x and SE 2 Co 3 . wherein SE is at least one rare earth element including Y, mixed in a weight ratio of 99: 1 to 70: 3, ^ the mixture is compressed and then c) sintered under vacuum and / or under an inert gas atmosphere.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das Ge- wichtsverhältniε von Grundlegierung zu Binderlegierung zwi- sehen 99:1 und 93:7 beträgt. 2. The method according to claim 1, which also means that the weight ratio of basic alloy to binder alloy is between 99: 1 and 93: 7.
PCT/DE1997/001787 1996-09-06 1997-08-19 METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (SE)-Fe-B PERMANENT MAGNET WO1998010438A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97939966A EP0923781B1 (en) 1996-09-06 1997-08-19 METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (RE)-Fe-B PERMANENT MAGNET
JP51210498A JP3145417B2 (en) 1996-09-06 1997-08-19 Method for producing SE-Fe-B permanent magnet
DE59705687T DE59705687D1 (en) 1996-09-06 1997-08-19 METHOD FOR PRODUCING A SE-FE-B PERMANENT MAGNET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19636283.0 1996-09-06
DE19636283A DE19636283A1 (en) 1996-09-06 1996-09-06 Process for manufacturing a SE-FE-B permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/771,806 Continuation-In-Part US6464934B2 (en) 1996-09-06 2001-01-29 Method for manufacturing a rare earth element—iron—boron permanent magnet

Publications (1)

Publication Number Publication Date
WO1998010438A1 true WO1998010438A1 (en) 1998-03-12

Family

ID=7804873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/001787 WO1998010438A1 (en) 1996-09-06 1997-08-19 METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (SE)-Fe-B PERMANENT MAGNET

Country Status (5)

Country Link
EP (1) EP0923781B1 (en)
JP (1) JP3145417B2 (en)
KR (1) KR20000068481A (en)
DE (2) DE19636283A1 (en)
WO (1) WO1998010438A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782357C2 (en) * 2017-12-26 2022-10-26 Пуратос Нв Methods for heating compositions containing edible inclusions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379574B (en) * 2006-11-30 2012-05-23 日立金属株式会社 R-Fe-B microcrystalline high-density magnet and process for production thereof
JP6443757B2 (en) * 2015-03-26 2018-12-26 日立金属株式会社 Method for producing RTB-based sintered magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517179A1 (en) * 1991-06-04 1992-12-09 Shin-Etsu Chemical Co., Ltd. Method of making two phase Rare Earth permanent magnets
EP0651401A1 (en) * 1993-11-02 1995-05-03 TDK Corporation Preparation of permanent magnet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0124655B1 (en) * 1983-05-06 1989-09-20 Sumitomo Special Metals Co., Ltd. Isotropic permanent magnets and process for producing same
US5230751A (en) * 1986-07-23 1993-07-27 Hitachi Metals, Ltd. Permanent magnet with good thermal stability
US5447578A (en) * 1989-10-12 1995-09-05 Kawasaki Steel Corporation Corrosion-resistant rare earth metal-transition metal series magnets and method of producing the same
US5405455A (en) * 1991-06-04 1995-04-11 Shin-Etsu Chemical Co. Ltd. Rare earth-based permanent magnet
DE4135403C2 (en) * 1991-10-26 1994-06-16 Vacuumschmelze Gmbh SE-Fe-B permanent magnet and process for its manufacture
EP0583041B1 (en) * 1992-08-13 1997-02-05 Koninklijke Philips Electronics N.V. Method of manufacturing a permanent magnet on the basis of NdFeB

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517179A1 (en) * 1991-06-04 1992-12-09 Shin-Etsu Chemical Co., Ltd. Method of making two phase Rare Earth permanent magnets
EP0651401A1 (en) * 1993-11-02 1995-05-03 TDK Corporation Preparation of permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782357C2 (en) * 2017-12-26 2022-10-26 Пуратос Нв Methods for heating compositions containing edible inclusions

Also Published As

Publication number Publication date
EP0923781A1 (en) 1999-06-23
DE19636283A1 (en) 1998-03-12
JP2000503811A (en) 2000-03-28
EP0923781B1 (en) 2001-12-05
JP3145417B2 (en) 2001-03-12
DE59705687D1 (en) 2002-01-17
KR20000068481A (en) 2000-11-25

Similar Documents

Publication Publication Date Title
DE602004009979T2 (en) R-T-B rare earth permanent magnet
DE69911138T2 (en) Sintered R-T-B permanent magnet
DE60309120T2 (en) Sintered R-Fe-B magnet
DE60118982T2 (en) Rare earth permanent magnet material
DE60319339T2 (en) METHOD FOR THE PRODUCTION OF R-T-B BASED RARE-ELEMENT PERMANENT MAGNETS
DE60311421T2 (en) RARE TERMINAL PERMANENT MAGNET ON R-T-B BASE
DE4402783B4 (en) Nd-Fe-B system permanent magnet
CH630665A5 (en) PERMANENT MAGNETIC ALLOY.
DE19626049A1 (en) Magnetic material and bonded magnet
EP1214720B1 (en) METHOD FOR PRODUCING PERMANENT MAGNETS ON THE BASIS OF BORON-LOW Nd-Fe-B ALLOY
CH638566A5 (en) MATERIAL FOR PERMANENT MAGNETS AND METHOD FOR THE PRODUCTION THEREOF.
DE60317460T2 (en) RARE TERMINAL PERMANENT MAGNET ON R-T-B BASE
DE2321368A1 (en) NEW SINTER PRODUCT MADE FROM AN INTERMETALLIC COBALT-NEODYME-SAMARIUM COMPOUND AND PERMANENT MAGNETS MANUFACTURED FROM IT
EP0923780B1 (en) RARE EARTH ELEMENT (SE)-Fe-B PERMANENT MAGNET AND METHOD FOR THE MANUFACTURE THEREOF
DE19636285C2 (en) Process for producing an SE-Fe-B permanent magnet
DE2705384C3 (en) Permanent magnet alloy and process for heat treatment of sintered permanent magnets
DE2121453A1 (en) Process for the production of sintered intermetallic compounds from cobalt and rare earth metal using a solid sintering additive
DE60010385T2 (en) PERMANENT MAGNETIC MATERIALS OF TYPE R-FE-B AND MANUFACTURING METHOD THEREFOR
EP0923781B1 (en) METHOD FOR THE MANUFACTURE OF A RARE EARTH ELEMENT (RE)-Fe-B PERMANENT MAGNET
WO2001024202A1 (en) Boron-low nd-fe-b alloy and method for producing the same
DE3928389C2 (en)
EP1313680A1 (en) Method for producing a ceramic silver niobium tantalate body
WO1989002156A1 (en) OPTIMIZATION OF THE MICROSTRUCTURE OF SINTERED Fe-Nd-B MAGNETS
DE4027598C2 (en) Permanent magnet of type SE-Fe-B and process for its production
DE2142368B2 (en) Sintered inermetallic compound made of cobalt and samarium for permanent magnets

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997939966

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997001878

Country of ref document: KR

Ref document number: 09254409

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997939966

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997001878

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997939966

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019997001878

Country of ref document: KR