WO1998008076A1 - Procede pour l'examen d'un tissu biologique au moyen d'un rayonnement non ionisant - Google Patents

Procede pour l'examen d'un tissu biologique au moyen d'un rayonnement non ionisant Download PDF

Info

Publication number
WO1998008076A1
WO1998008076A1 PCT/DE1997/001662 DE9701662W WO9808076A1 WO 1998008076 A1 WO1998008076 A1 WO 1998008076A1 DE 9701662 W DE9701662 W DE 9701662W WO 9808076 A1 WO9808076 A1 WO 9808076A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
radiation
photons
doppler
scattering
Prior art date
Application number
PCT/DE1997/001662
Other languages
German (de)
English (en)
Inventor
Gerhard Mitic
Gerald SÖLKNER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1998008076A1 publication Critical patent/WO1998008076A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light

Definitions

  • macarcinoma today is mainly based on the imaging method of X-ray mammography.
  • parts of the public and the medical community are increasingly critical of this examination method, since damage to the irradiated tissue cannot be ruled out with certainty.
  • Clinical trials include light tomographic methods in which the tissue to be examined is illuminated with visible or infrared light and the reflected or transmitted radiation is detected. Since the measured intensities depend on the optical properties of the volume irradiated in each case, it is hoped that tissue types can be distinguished and physiological or pathological changes in the tissue can be determined and localized.
  • Possible applications of light tomography range from the detection of breast cancer to the registration of the oxygenation of the brain and extremities. Due to the multiple scattering of light in the tissue, the spatial resolution that can be achieved with these methods is usually only about 10-15 mm, while the established methods of medical diagnostics (X-ray computed tomography, nuclear magnetic resonance / NMR) still have structures as small as 1 mm depict. Improving the spatial resolution both in the lateral direction and in depth is therefore the primary goal of research and development [1]. 2. State of the art
  • the rotation and the translation speed of a body illuminated by a laser beam can be determined by analyzing the intensity fluctuations that occur in a speckle pattern.
  • these optical methods based on the speckle phenomenon have also been used in the field of medical diagnostics, for example to measure the average flow velocity of the blood in near-surface layers of tissue in vivo [2], [3].
  • FIG. 1 shows the arrangement of the arrangement normally used as a photon source or in a laser Doppler measuring device.
  • the lateral spatial resolution of light tomographic methods can be improved by using a gating technique [4-6].
  • the tissue is irradiated with short light pulses and only those photons are detected which reach the detector within a time window of typically 100-200 ps width that limits the photon transit time.
  • the mean width w of the tissue volume contributing to the measurement result decreases, see above that you can also map smaller structures.
  • the distance d between the transmitting and receiving fibers is reduced and the position of the time window is adjusted accordingly with respect to the trigger signal that triggers the short-term radiation.
  • the method known from [7] allows the localization of an object which absorbs IR radiation and is embedded in a strongly scattering medium.
  • the positional dependence of the phase shift between the injected and the injected optical signal is measured. It is a direct measure of the mean path length of the photons in the tissue and thus also a measure of their mean penetration depth.
  • the object of the invention is a method for the optical measurement of a characteristic (mean flow rate of the blood, degree of blood circulation, absorption capacity, etc.) of a biological tissue.
  • a characteristic mean flow rate of the blood, degree of blood circulation, absorption capacity, etc.
  • the method should make it possible to separate the photons originating from the depth range of interest from the photons scattered in higher or lower layers.
  • a method with the features specified in claim 1 has these properties.
  • the dependent claims relate to refinements and advantageous developments of the method according to the invention.
  • the degree of blood flow to the outer cerebral cortex can be optically determined without having to open the skull. Since essentially only the photons scattered in the deeper layers of the skull are evaluated 4 are taken into account, the blood flow in the scalp does not interfere with the measurement signal.
  • Photons which spread in a living and thus perfused tissue, are subject to both elastic and inelastic scattering processes.
  • the photon exchanges energy with the scattering object and thereby changes its wavelength or frequency.
  • This process known as the Doppler scattering of light, essentially takes place only in the areas of the tissue that are supplied with blood, the erythrocytes moving in the vessels with the blood stream acting in particular as scattering centers.
  • the mean number of Doppler scattering processes per photon increases with the mean length of the distance covered by the photons in the tissue and thus also with the mean penetration depth t.
  • v D the frequency change of the scattering particle
  • k f and ki the wave vectors of the incident and the scattered photon.
  • the Doppler scattering of the photons in the tissue results in a broadening of the frequency spectrum of the detected scattered light compared to the injected light, the extent of the broadening depending on the average number of Doppler scattering processes and therefore also depends on the average penetration depth of the photons.
  • S (v) of the detected scattered light higher frequencies are consequently to be attributed to those photons that penetrated deeper into the perfused tissue and were exposed to the conditions prevailing there (flow velocity of the blood, density and number of red blood cells, etc.) were.
  • Depth discrimination can therefore be achieved by subjecting the detected frequency spectrum S (v) to frequency filtering, in particular high-pass filtering ( ⁇ . The upper part of FIG. 2) or low-pass filtering. Then only those photons contribute to the measurement signal whose Doppler shift lies above or below the filter threshold, whose mean penetration depth is greater or less than a minimum value predetermined by the filter threshold. Band-pass filtering of the power spectrum S (v) ensures that only the photons scattered Doppler in a certain depth range of the tissue are evaluated.
  • FIG. 3 shows the schematic structure of a laser double measuring device, which is particularly suitable for determining the degree of blood circulation in deeper layers of a biological tissue 3.
  • the intensity of the primary radiation on the tissue surface is typically around 120 mW.
  • the diameter of their respective end faces is comparatively small at 2r ⁇ 10-20 ⁇ m (the diameter dspeckie «• * ⁇ / NA one
  • the scattered light which is frequency-shifted due to the Doppler effect, is coherently superimposed with the light not Doppler-scattered (heterodyne overlay).
  • Doppler-scattered light is also mixed with Doppler-scattered light (coherent ho odyne superimposition), the beat produced in both cases containing the Doppler frequencies which are approximately proportional to the blood flow.
  • the intensity of the scattered light emerging at the tissue surface and detected by the detector-side monomode glass fibers 10/11 drops considerably.
  • the source-side glass fiber 8 consequently emits about 10 15 photons per second into the tissue 3.
  • This value lies in the range of the maximum count rates still to be processed by single photon detectors, so that the coherent reception of the scattered light does not represent a major restriction with regard to the signal intensity and the measuring time.
  • Photo ultipliers and so-called “avalanche” photodiodes are used in particular as photon detectors 12/13.
  • the detector 12 (avalanche photodiode) of the first evaluation electronics is a digital correlator 14 (Brookhaven Instruments, BI 9000) AT), which determines the temporal photon autocorrelation function ⁇ I ( ⁇ ) -I (t + ⁇ )> / ⁇ I> 2.
  • a computer 15 converts the temporal autocorrelation function by a
  • a spectrum analyzer 16 Hewlett Packard, HP 35665 A
  • the detector 13 avalanche photodiode
  • the size R is the blood flow, i.e. H. the product of
  • the range of functions of the average speed of the red blood cells is approximately proportional.
  • Results of a Monte Carlo simulation confirm the assumption that the frequency shift of the scattered versus the incident light caused by Doppler scattering depends on the mean penetration depth of the photons in a homogeneously perfused tissue.
  • Figure 4 shows the results of the simulation calculation.
  • the curves are very noisy due to the small number (10 6 ) of simulated photons (in the experiment, tissue 3 is irradiated with about 10 le photons / second). Below approximately 10 kHz, the mean penetration depth t increases approximately linearly with the Doppler shift.
  • differential absorption measurements can also be carried out, for example to determine the blood volume or the local degree of oxygenation of the blood.
  • the tissue is illuminated with at least two radiation probes, the wavelengths of which are matched to the absorption maxima of oxyhemoglobin or deoxyhemoglobin.
  • Each of the stray light components is then subjected to the evaluation process described above.
  • a component with the modulation frequency (typically 70-200 MHz) is also observed in the power spectrum of the detected scattered light (see the upper part of FIG. 5).
  • the Doppler shifts occur as sidebands around the signal component at the modulation frequency and can be determined and evaluated by overlay reception.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Par suite de la dispersion multiple des photons dans les tissus, la résolution locale pouvant être obtenue par phototomographie n'est actuellement que de l'ordre de 10-15 mm. Or, les procédés connus de diagnostic médical fournissent des images de fines structures atteignant 1 mm. La dispersion Doppler des photons dans des domaines tissulaires irrigués par le sang entraîne un élargissement du spectre de fréquence de la lumière détectée par rapport à la lumière du rayonnement incident, l'importance de l'élargissement dépendant du nombre moyen de processus de dispersion Doppler par photon et, par conséquent, également de la profondeur moyenne de pénétration des photons. On peut donc obtenir une discrimination en profondeur en soumettant le spectre de puissance du rayonnement de dispersion détecté à un filtrage passe-haut. Seuls les photons dont le déplacement Doppler se situe au-dessus du seuil de filtrage, ou dont la profondeur de pénétration moyenne est supérieure à une valeur minimale prédéterminée par le seuil de filtrage, contribuent alors au signal de mesure. On mentionne, comme applications, la tomographie optique, la mesure transcrânienne de la fonction cérébrale, la mesure du degré d'irrigation sanguine dans les couches tissulaires profondes.
PCT/DE1997/001662 1996-08-23 1997-08-06 Procede pour l'examen d'un tissu biologique au moyen d'un rayonnement non ionisant WO1998008076A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1996134152 DE19634152A1 (de) 1996-08-23 1996-08-23 Verfahren zur Untersuchung eines biologischen Gewebes mit nichtionisierender Strahlung
DE19634152.3 1996-08-23

Publications (1)

Publication Number Publication Date
WO1998008076A1 true WO1998008076A1 (fr) 1998-02-26

Family

ID=7803538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/001662 WO1998008076A1 (fr) 1996-08-23 1997-08-06 Procede pour l'examen d'un tissu biologique au moyen d'un rayonnement non ionisant

Country Status (2)

Country Link
DE (1) DE19634152A1 (fr)
WO (1) WO1998008076A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7251518B2 (en) 2003-03-13 2007-07-31 Nirlus Engineering Ag Blood optode

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526298B1 (en) 1998-05-18 2003-02-25 Abbott Laboratories Method for the non-invasive determination of analytes in a selected volume of tissue
US7043287B1 (en) 1998-05-18 2006-05-09 Abbott Laboratories Method for modulating light penetration depth in tissue and diagnostic applications using same
US6241663B1 (en) 1998-05-18 2001-06-05 Abbott Laboratories Method for improving non-invasive determination of the concentration of analytes in a biological sample
US6662031B1 (en) 1998-05-18 2003-12-09 Abbott Laboratoies Method and device for the noninvasive determination of hemoglobin and hematocrit
US6662030B2 (en) * 1998-05-18 2003-12-09 Abbott Laboratories Non-invasive sensor having controllable temperature feature
EP1130998B1 (fr) * 1998-11-18 2008-08-13 LEA Medizintechnik GmbH Dispositif pour la determination non invasive du metabolisme de l'oxygene dans des tissus
GB9923347D0 (en) * 1999-10-05 1999-12-08 Univ Manchester Processing apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109647A (en) * 1977-03-16 1978-08-29 The United States Of America As Represented By The Secretary Of The Department Of Health, Education And Welfare Method of and apparatus for measurement of blood flow using coherent light
FR2441161A1 (fr) * 1978-10-31 1980-06-06 Nilsson Gert Procede et dispositif pour determiner des mouvements de circulation dans un liquide
US4223680A (en) * 1977-06-28 1980-09-23 Duke University, Inc. Method and apparatus for monitoring metabolism in body organs in vivo
GB2132483A (en) * 1982-04-07 1984-07-11 Univ Manchester A device for measuring blood flow
EP0284248A1 (fr) * 1987-03-27 1988-09-28 Kowa Co. Ltd. Procédé et dispositif de diagnostic ophtalmologique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3838396A1 (de) * 1988-11-12 1990-05-17 Poesl Hans Dr Med Verfahren zur lokalisation von gefaessen und zur prognose von blutungen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109647A (en) * 1977-03-16 1978-08-29 The United States Of America As Represented By The Secretary Of The Department Of Health, Education And Welfare Method of and apparatus for measurement of blood flow using coherent light
US4223680A (en) * 1977-06-28 1980-09-23 Duke University, Inc. Method and apparatus for monitoring metabolism in body organs in vivo
FR2441161A1 (fr) * 1978-10-31 1980-06-06 Nilsson Gert Procede et dispositif pour determiner des mouvements de circulation dans un liquide
GB2132483A (en) * 1982-04-07 1984-07-11 Univ Manchester A device for measuring blood flow
EP0284248A1 (fr) * 1987-03-27 1988-09-28 Kowa Co. Ltd. Procédé et dispositif de diagnostic ophtalmologique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHMITT H J ET AL: "SYSTEM CONCEPTS FOR HIGH RESOLUTION OPTICAL TOMOGRAPHY SYSTEMKONZEPTE FUR HOCHAUFLOSENDE OPTISCHE TOMOGRAPHIE", LASER UND OPTOELEKTRONIK, vol. 27, no. 1, 1 February 1995 (1995-02-01), pages 43 - 47, XP000482883 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7251518B2 (en) 2003-03-13 2007-07-31 Nirlus Engineering Ag Blood optode

Also Published As

Publication number Publication date
DE19634152A1 (de) 1998-03-05

Similar Documents

Publication Publication Date Title
DE69936333T2 (de) Photo Ultraschall Streuwellen Tumorfühler
DE69430791T2 (de) Lichtsensor mit mehreren Lichtquellen
DE19506484C2 (de) Verfahren und Vorrichtung zur selektiven nichtinvasiven Lasermyographie (LMG)
EP0758211B1 (fr) Procede et dispositif d'analyse de glucose dans un echantillon biologique
DE10311408B3 (de) Verfahren zur nichtinvasiven Messung der Konzentration von Blutbestandteilen
DE4337570A1 (de) Verfahren zur Analyse von Glucose in einer biologischen Matrix
DE60310286T2 (de) Vorrichtung und Verfahren zur nicht-invasiven Bestimmung der Konzentrationen von biologischen Flüssigkeiten mittels photoakustischer Spektroskopie
DE69414482T2 (de) Tumorgewebe - Charakterisierungs-Instrument
EP0876596B1 (fr) Procede et dispositif de determination d'un analyte contenu dans une matrice de diffusion
DE69637244T2 (de) Verfahren zur nicht-invasiven messung eines blutwertes mit hilfe einer verbesserten optischen schnittstelle
DE69432218T2 (de) Quantitative und qualitative gewebeuntersuchung mittels zeitaufgelöster spektroskopie
DE69431497T2 (de) Verfahren und Vorrichtung zur Messung eines streuenden Mediums
CN110693457B (zh) 一种基于光学相干技术的组织活性检测的方法与系统
EP0718620A1 (fr) Procédé pour examiner un milieu diffusant avec de la lumière modulée en intensité
WO1996004545A1 (fr) Procede et appareil permettant de caracteriser de maniere optique la structure et la composition d'un echantillon dispersif
EP3145412B1 (fr) Procédé de mesure optique non invasive de propriétés de sang en circulation
WO1996024836A1 (fr) Procede pour l'examen spectroscopique d'un tissu biologique
DE69728105T2 (de) Auffindung eines objekts in einem trüben medium mittels strahlung verschiedener wellenlänge
DE69230065T2 (de) Spektroskopie nach zeit- und frequenz-parametern zur bestimmung des sauerstoffmangels
DE68925728T2 (de) Verfahren zur bildformung eines unbestimmten mediums
WO1998008076A1 (fr) Procede pour l'examen d'un tissu biologique au moyen d'un rayonnement non ionisant
DE69632437T2 (de) Verfahren und Vorrichtung zur Messung optischer Werte
DE4322043C2 (de) Verfahren und Gerät zur Messung der Fließgeschwindigkeit, insbesondere des Blutes
DE69333010T2 (de) Nicht-invasives verfahren und instrument zur messung des blutzuckerspiegels
DE19630381C2 (de) Verfahren, Vorrichtung und Verwendung einer Vorrichtung zur Detektion des Blutflusses und/oder des Flusses intrakorporal fließender Flüssigkeiten in menschlichem oder tierischem Gewebe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998510246

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase