明細書 プロ卜ぺクチナーゼ 技術分野 Description Technical field
本願発明は、 新規なブロトべクチナ一ゼ、 およびこのプロトぺクチナ一ゼの産 生方法に関する。 背景技術 TECHNICAL FIELD The present invention relates to a novel broktocutinase and a method for producing the same. Background art
プロトぺクチナーゼは、 植物繊維からぺクチンを遊離させる酵素の総称である。 ブロトべクチナーゼは大きく以下の 2つのタイプに分類される。 1つは、 酵母に よって産生され、 植物繊維からぺクチンを遊離させるとともに、 遊離のぺクチン を限定分解する活性を有する A—タイプ (発酵と工業: 37, 928-938, 1978) で ある。 もう 1つは、 Bac i l lus属細菌によって産生され、 植物繊維からぺクチンを 遊離させるが、 遊離のぺクチンを分解する活性を有さない B—夕イブ (Agr i B iol . Chem. , 52, 1091-1093, 1988 ; Agr i c. Biol . Chem., 53, 1213-1223, 198 9 ; Agric. Biol . Chem. , 54, 879-889, 1990 ; Eur. J. Bi ochem. , 226, 285-291, Prototinase is a general term for enzymes that release pectin from plant fiber. Brotobectinases are roughly classified into the following two types. One is the A-type (fermentation and industry: 37, 928-938, 1978), which is produced by yeast and has the activity of releasing pectin from plant fibers and limiting the degradation of free pectin. The other is produced by Bacillus genus bacteria and releases pectin from plant fiber, but has no activity to decompose free pectin. B-Eve (Agri Biol. Chem., 52 Agric. Biol. Chem., 53, 1213-1223, 1989; Agric. Biol. Chem., 54, 879-889, 1990; Eur. J. Biochem., 226, 285-291,
1994) である。 特に B—タイプは、 ぺクチンの製造 (特公平 6- 8322) 、 繊維の 精練 (特開平 6- 220772) 、 および非木材繊維のパルプ化 (特公昭 57-39636) など における幅広い有用性を有することが示されている。 1994). In particular, the B-type has wide utility in the production of pectin (Japanese Patent Publication No. 6-8322), the refining of fibers (JP-A-6-220772), and the pulping of non-wood fibers (Japanese Patent Publication No. 57-39636). It has been shown.
従来、 ブロトべクチナ一ゼの供給源としては、 この酵素を産生する微生物の培 養液が用いられていた。 しかし、 工業的な応用のために、 生産性を向上すること によって安価な製造方法を開発することが望まれている。 Conventionally, a culture solution of a microorganism producing this enzyme has been used as a source of brotobectinase. However, for industrial applications, it is desirable to develop an inexpensive manufacturing method by improving productivity.
従って、 本明細書に記載の本願発明は、 新規なプロトぺクチナ一ゼをコードす
る DNAを単離すること、 および遺伝子組換え技術を利用してこの酵素を産生する ことの利用を可能にする。 発明の開示 Accordingly, the invention of the present application described herein encodes a novel protease. To make use of this enzyme by isolating DNA and using genetic engineering techniques. Disclosure of the invention
本願発明によれば、 以下の性質: According to the present invention, the following properties:
(1) プロ卜べクチン分解活性を有する; (1) it has a protopectin-degrading activity;
(2) SDSポリアクリルアミド電気泳動ゲル上での分子量が約 30, 000である; (2) molecular weight on SDS polyacrylamide electrophoresis gel is about 30,000;
(3) 至適 pHが 6.0である; (3) the optimum pH is 6.0;
(4) 至適温度が 60 である;および (4) the optimum temperature is 60; and
(5) Hg、 Mnによる阻害を受ける、 (5) Inhibited by Hg and Mn,
を有するプロトぺクチナーゼが提供される。 Is provided.
1つの実施態様においては、 前記プロトぺクチナーゼはさらにァラビナーゼ活 性を有する。 In one embodiment, the proteinase has further arabinase activity.
1つの実施態様においては、 前記プロトぺクチナーゼは、 Bacillus subtil is BS株によって産生される。 In one embodiment, the protease is produced by Bacillus subtil is strain BS.
1つの実施態様においては、 前記プロトぺクチナーゼは、 配列番号 1のァミノ 酸配列を有するか、 あるいはこのアミノ酸配列において 1または数個のアミノ酸 残が欠失、 置換または挿入されたアミノ酸配列を有し、 かっこの配列番号 1のァ ミノ酸配列を有するプロトぺクチナ一ゼと同等またはそれ以上の活性を有する。 本願発明によれば、 前記プロトぺクチナ一ゼをコ一ドする DNAが提供される。 In one embodiment, the proteinase has the amino acid sequence of SEQ ID NO: 1 or the amino acid sequence in which one or several amino acid residues are deleted, substituted, or inserted in the amino acid sequence. It has an activity equal to or higher than that of a protease having the amino acid sequence of brackets SEQ ID NO: 1. According to the present invention, a DNA encoding the protease is provided.
1つの実施態様においては、 前記 DNAは、 配列番号 2のヌクレオチド配列を有 するか、 あるいはこのヌクレオチド配列において 1または数個のヌクレオチドが 欠失、 置換または付加されたヌクレオチド配列を有し、 かっこの配列番号 2のヌ クレオチド配列によりコードされるプロ卜べクチナーゼと同等かそれ以上の活性
を有するプロトぺクチナ一ゼをコ一ドする。 In one embodiment, the DNA has the nucleotide sequence of SEQ ID NO: 2, or has a nucleotide sequence in which one or several nucleotides are deleted, substituted or added in the nucleotide sequence, Activity equal to or better than that of the protectinase encoded by the nucleotide sequence of SEQ ID NO: 2 Is encoded.
本願発明によれば、 前記 DNAを含む発現ベクターが提供される。 According to the present invention, there is provided an expression vector containing the DNA.
本願発明によれば、 前記発現ベクターを含む宿主細胞が提供される。 According to the present invention, there is provided a host cell comprising the expression vector.
本願発明によれば、 Bacillus属に厲し、 以下の性質: According to the present invention, the following properties are included in the genus Bacillus:
(1) プロトぺクチン分解活性を有する (1) Has protopectin degrading activity
(2) SDSポリアクリルアミド電気泳動ゲル上での分子量が約 30, 000である; (2) the molecular weight on an SDS polyacrylamide electrophoresis gel is about 30,000;
(3) 至適 pHが 6.0である; (3) the optimum pH is 6.0;
(4) 至適温度が 60でである;および (4) the optimum temperature is 60; and
(5) Hgおよ minによる阻害を受ける、 (5) subject to inhibition by Hg and min,
を有するプロ卜べクチナ一ゼを産生する能力を有する微生物を培養する工程を含 む、 プロトぺクチナ一ゼの産生方法が提供される。 The present invention provides a method for producing protease, comprising a step of culturing a microorganism having the ability to produce protease.
1つの実施態様においては、 前記プロトぺクチナーゼはさらにァラビナーゼ活 性を有する。 In one embodiment, the proteinase has further arabinase activity.
1つの実施態様においては、 前記産生方法は、 前記微生物が Bacillus subtili s BS株である。 In one embodiment, in the method, the microorganism is a Bacillus subtilis BS strain.
本願発明によれば、 前記発現ベクターで形質転換された宿主細胞を培養するェ 程を含む、 以下の性質: According to the present invention, the following properties are included, including the step of culturing a host cell transformed with the expression vector:
(1) プロトぺクチン分解活性を有する (1) Has protopectin degrading activity
(2) SDSポリアクリルアミド電気泳動ゲル上での分子量が約 30, 000である; (3) 至適 pHが 6.0である; (2) molecular weight on SDS polyacrylamide electrophoresis gel is about 30,000; (3) optimal pH is 6.0;
(4) 至適温度が 60 である;および (4) the optimum temperature is 60; and
(5) Hgおよび Mnによる阻害を受ける、 (5) subject to inhibition by Hg and Mn,
を有するプロトぺクチナ一ゼの産生方法が提供される。 And a method for producing a protease having the formula:
1つの実施態様においては、 前記プロトぺクチナ一ゼはさらにァラビナーゼ活
性を有する。 発明を実施するための最良の形態 In one embodiment, the protease is further treated with arabinase activity. Has the property. BEST MODE FOR CARRYING OUT THE INVENTION
プロトぺクチナーゼ (以下、 PPaseと略記する) とは、 植物組織中の不溶性プ ロトべクチンから水溶性べクチンを遊離させる活性を有する酵素をいう。 PPase は、 遊離のぺクチンを限定分解する活性を有する A—タイプと、 遊離のぺクチン を分解する活性を有さない B—タイプとに分類される。 PPase活性は、 プロトぺ クチンを基質として酵素液を作用させ、 遊離するべクチンを比色的に定量するこ とにより測定し得る。 酵素の分子量は、 SDSポリアクリルアミド電気泳動ゲル上 での移動度、 またはゲル濾過カラムにおける挙動から測定し得る。 酵素の至適 pH または至適温度は、 酵素活性を種々の pHまたは温度で測定することにより決定し 得る。 酵素の作用に影響を与える物質は、 酵素反応時に各種物質を反応液中に添 加することにより特定し得る。 The term proproteininase (hereinafter abbreviated as PPase) refers to an enzyme having an activity of releasing water-soluble pectin from insoluble proto-pectin in plant tissue. PPases are classified into A-type, which has the activity of degrading free pectin, and B-type, which has no activity of degrading free pectin. The PPase activity can be measured by reacting an enzyme solution with protopectin as a substrate and colorimetrically quantifying the released pectin. The molecular weight of the enzyme can be determined from its mobility on an SDS polyacrylamide electrophoresis gel or its behavior on a gel filtration column. The optimal pH or temperature of an enzyme can be determined by measuring enzyme activity at various pHs or temperatures. Substances that affect the action of the enzyme can be specified by adding various substances to the reaction solution during the enzyme reaction.
ァラビナーゼとは、 ァラビナンに作用してァラビノースを遊離させる活性を有 する酵素をいう。 ァラビナーゼ活性は、 ァラビナンを基質として酵素液を作用さ せ、 遊離するァラビノースをネルソン—ソモジ法などで定量することにより測定 し得る。 酵素の分子量は、 SDSポリアクリルアミド電気泳動ゲル上での移動度、 またはゲル濾過カラムにおける挙動から測定し得る。 酵素の至適 pHまたは至適温 度は、 酵素活性を種々の PHまたは温度で測定することにより決定し得る。 酵素の 作用に影響を与える物質は、 酵素反応時に各種物質を反応液中に添加することに より特定し得る。 The arabinase refers to an enzyme having an activity of releasing arabinose by acting on arabinan. The arabinase activity can be measured by reacting an enzyme solution with arabinan as a substrate and quantifying the released arabinose by the Nelson-Somogy method or the like. The molecular weight of the enzyme can be determined from its mobility on an SDS polyacrylamide electrophoresis gel or from its behavior on a gel filtration column. The optimal pH or temperature of an enzyme can be determined by measuring enzyme activity at various pHs or temperatures. Substances that affect the action of the enzyme can be identified by adding various substances to the reaction solution during the enzyme reaction.
PPaseは、 この酵素を産生する微生物を培養することにより、 またはこの酵素 をコードする DNAを含む発現ベクターを組み込んだ宿主細胞を培養することによ り産生し得る。 PPaseを産生する微生物としては、 酵母、 糸状菌、 および細菌な
どが挙げられるが、 好ましくは Bacillus属細菌が用いられる。 より好ましくは Ba cillus subtilis BS株が使用される。 遺伝子組換え技術を用いて PPaseを産生す る場合には、 一般的に使用される任意の宿主細胞が使用可能であるが、 好ましく は Escherichia col iまたは Baci 1 lus subt i 1 isなどの微生物が用いられる。 PPase can be produced by culturing a microorganism that produces this enzyme or by culturing a host cell into which an expression vector containing DNA encoding this enzyme has been incorporated. Microorganisms that produce PPase include yeast, filamentous fungi, and bacteria. Bacillus bacteria are preferably used. More preferably, Bacillus subtilis BS strain is used. When the PPase is produced using a genetic recombination technique, any commonly used host cells can be used, but microorganisms such as Escherichia col i or Baci 1 lus subt i 1 is preferably used. Used.
Bacillus subtilis BS株は、 以前は Bacillus subtilis IF03134株と称してい た。 この株は、 グラム陽性である、 胞子形成能を有する、 桿菌である、 プロテア —ゼ産生能が低い、 および活性物質酵素 (すなわち PPase) の産生にリン酸ィォ ンが必要であり、 この酵素の産生はグルコースにより抑制されるという特徴を有 する。 この微生物は、 平成 9年 7月 30日付けで日本国茨城県つくば市東 1丁目 1 番 3号 (郵便番号 305) 通商産業省工業技術院生命工学工業技術研究所に、 受 託番号 FERM BP- 6031の下に寄託されている。 Bacillus subtilis BS strain was previously called Bacillus subtilis IF03134 strain. This strain is Gram-positive, has spore-forming ability, is a bacillus, has low protease-producing ability, and requires phosphate for production of the active substance enzyme (ie, PPase). Has the characteristic that its production is suppressed by glucose. This microorganism was obtained on July 30, 1997, 1-3 1-3 Higashi, Tsukuba City, Ibaraki Prefecture, Japan (zip code: 305) by the Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology, and the accession number FERM BP- Deposited under 6031.
PPaseをコードする遣伝子のクロ一ニングは、 PPaseを産生する微生物から抽 出した染色体 DNAを含むライブラリーを作製し、 このライブラリ一をスクリ一二 ングすることにより実施し得る。 スクリーニングは、 コードされるタンパク質を 発現させ、 目的のタンパク質が示す活性またはこのタンパク質に特異的な抗体に 対する反応性を指標に行い得る。 あるいは、 スクリーニングは精製したタンパク 質のアミノ酸配列に基づいて設計した標識プローブを用いて行い得る。 好ましく は、 標識プローブは、 精製タンパク質のアミノ酸配列に基づいて設計したプライ マ一を使用したポリメラーゼ連鎖反応 (PCR) により生じたフラグメントを用い て調製される。 PPase遺伝子のクローニングは、 PCRで得られたフラグメントを組 み合わせることによつても達成し得る。 Cloning of a gene encoding PPase can be carried out by preparing a library containing chromosomal DNA extracted from a microorganism that produces PPase and screening this library. Screening can be carried out by expressing the encoded protein and using the activity of the protein of interest or the reactivity with an antibody specific to this protein as an indicator. Alternatively, screening can be performed using a labeled probe designed based on the amino acid sequence of the purified protein. Preferably, labeled probes are prepared using fragments generated by the polymerase chain reaction (PCR) using primers designed based on the amino acid sequence of the purified protein. Cloning of the PPase gene can also be achieved by combining fragments obtained by PCR.
発現ベクターとしては、 使用する宿主細胞に適合性のものを選択する。 一般的 には、 強力なプロモーターを有する多コピー数ベクターが使用される。 目的の遺 伝子が本来有するプロモーターの転写効率が高い場合は、 これを利用し得る。 目
的の遣伝子の発現が宿主細胞の増殖に悪影響を与える場合は、 誘導性のプロモー ターの使用が好ましい。 An expression vector that is compatible with the host cell used is selected. Generally, high copy number vectors with strong promoters are used. If the transcription efficiency of the promoter originally contained in the target gene is high, this can be used. Eye If expression of the target gene adversely affects the growth of the host cell, the use of an inducible promoter is preferred.
微生物の培養は使用する微生物に適切な条件下で行われる。 通常用いられる固 体培地、 液体培地のいずれもが使用可能である。 培養は、 使用する微生物によつ て、 好気的条件下または嫌気的条件下で行われる。 好気的条件下で培養する場合 には、 通気撹拌または振盪培養を行い得る。 Bac i l lus属細菌を使用する場合は、 培養は好気的な条件下で液体培地を使用して行うことが好ましい。 培地成分は限 定しないが、 微生物が資化し得る炭素源および窒素源を、 微生物の増殖および物 質の産生に適切な組み合わせおよび濃度で含有する培地が使用され得る。 好まし くは PPaseおよび またはァラビナーゼの産生誘導効果を有するダイズ粉を含有 する培地が用いられる。 培養時間は、 産生される物質の産生時期および使用され る微生物の性質によって決定されるが、 一般的には 16〜48時間程度が好ましい。 酵素の精製は、 以下のように実施し得る。 目的の酵素が菌体外に分泌される場 合は、 遠心分離または濾過などにより培養液から菌体を除去して上清を得る。 目 的の酵素が菌体内に蓄積される場合は培養液から菌体を回収した後、 これを溶解 酵素処理または超音波などで破砕し、 次いで遠心分離などを実施することにより 無細胞抽出液を得る。 これらの液から通常の手段、 例えば、 乾燥または限外濾過 などによる濃縮、 塩析または溶媒沈澱による沈澱、 透析、 ゲル濾過クロマトグラ フィ一、 あるいはイオン交換クロマトグラフィーなどの通常のタンパク質の精製 手段を組み合わせることによって、 精製酵素を取得し得る。 Cultivation of the microorganism is performed under conditions appropriate for the microorganism used. Either a commonly used solid medium or liquid medium can be used. The cultivation is performed under aerobic or anaerobic conditions, depending on the microorganism used. When culturing under aerobic conditions, aeration agitation or shaking culturing may be performed. When Bacillus genus bacteria are used, the culturing is preferably performed using a liquid medium under aerobic conditions. Although the medium components are not limited, a medium containing a carbon source and a nitrogen source that can be assimilated by the microorganism in a suitable combination and concentration for the growth of the microorganism and the production of the substance can be used. Preferably, a medium containing soybean powder having an effect of inducing the production of PPase and / or arabinase is used. The cultivation time is determined depending on the timing of the production of the substance to be produced and the properties of the microorganism used, but is generally preferably about 16 to 48 hours. Purification of the enzyme can be performed as follows. When the target enzyme is secreted out of the cells, the cells are removed from the culture by centrifugation or filtration to obtain a supernatant. If the target enzyme accumulates in the cells, collect the cells from the culture solution, lyse them by dissolving them with an enzyme, or crush them with ultrasonic waves, and then centrifuge to obtain a cell-free extract. obtain. From these solutions, conventional means for protein purification such as concentration by drying or ultrafiltration, precipitation by salting out or solvent precipitation, dialysis, gel filtration chromatography, or ion exchange chromatography can be used. By combining them, a purified enzyme can be obtained.
以下、 本願発明を、 実施例で詳細に説明する。 しかし、 本願発明はこれらの実 施例に限定されない。
(実施例 l :酵素の精製) Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to these embodiments. (Example l: Purification of enzyme)
PPaseの活性は、 シュガービートパルプのプロトぺクチンを基質として以下の ように Sakaiらの方法 (Methods in Enzymology, 161, 335-350, 1988、 W.A.Wood および Τ· Kellogg編、 Academic Press) に従って測定した;基質 10 mgを含有する 990 1の酢酸緩衝液 (100 ιιιΜ, pH6.0) に酵素液 10 z!加え、 これを 37°Cで 1時間 インキュベートした後、 反応液を濾過する:濾液 125 1、 水 125 1、 0.2%力ルバ ゾ一ルを含有するエタノール 250 I、 および 3 5N硫酸 3mlを混合して 75 で 20 分間インキュベートする。 反応液を氷冷した後、 525 nmの吸光度を測定する。 PP ase活性は、 1分間当たり 1 molのガラクチュロン酸に相当するべクチンを生成 する活性を 1単位として、 ガラクチュロン酸量と発色度の関係式から算出して表 示した。 PPase activity was measured according to the method of Sakai et al. (Methods in Enzymology, 161, 335-350, 1988, edited by WA Wood and Τ · Kellogg, Academic Press) using sugar beet pulp protopectin as a substrate as follows. Add 10 z! Of the enzyme solution to 990 1 acetate buffer (100 ιιιΜ, pH 6.0) containing 10 mg of the substrate, incubate this at 37 ° C for 1 hour, and filter the reaction solution: filtrate 125 1 Mix water, 1251, water, 250 I ethanol containing 0.2% strength rubazole, and 3 ml of 35N sulfuric acid and incubate at 75 for 20 minutes. After cooling the reaction mixture on ice, measure the absorbance at 525 nm. The PPase activity was calculated from the relationship between the amount of galacturonic acid and the degree of color development, with the activity of producing pectin corresponding to 1 mol of galacturonic acid per minute as one unit.
Bacillus subiilis BS株を、 SP培地 (1.5%ダイズ粉 (不二製油社製) 、 1.2¾ K H2P04、 2.8¾K2HP04, pH7.0) に接種し、 37 で 22時間振盪培養した。 培養液を遠 心分離して上清を得た。 上清をロータリ一エバポレー夕一で濃縮した後 20mM酢酸 緩衝液 (PH6.0) に対して 4 で一晩透析した。 透析した酵素液から硫酸アンモ ニゥム 0〜60%飽和画分を回収し、 沈殿を 20 mM Tris- HCi (pH7.5) に溶解後、 同 じ緩衝液に対して 4 X:で一晩透析した。 The Bacillus subiilis BS strain, SP medium (1.5% soy flour (manufactured by Fuji Oil Co., Ltd.), 1.2¾ KH 2 P0 4, 2.8¾K 2 HP0 4, pH7.0) was inoculated into and cultured with shaking 37 for 22 hours. The culture was centrifuged to obtain a supernatant. The supernatant was concentrated on a rotary evaporator and dialyzed against 20 mM acetate buffer (PH6.0) at 4 overnight. An ammonium sulfate 0-60% saturated fraction was recovered from the dialyzed enzyme solution, and the precipitate was dissolved in 20 mM Tris-HCi (pH 7.5) and dialyzed against the same buffer at 4X: overnight. .
透析した酵素液に硫酸アンモニゥムを最終濃度 30 こなるように加え、 30%硫酸 アンモニゥムを含有する 20 mM Tris-HCl (ρΗ7.5) で平衡化した Buty卜 Toyopearl 650Mカラム (東ソ一製) にかけた。 同じ緩衝液で十分に洗浄した後、 硫酸アン モニゥム 30〜10%飽和の直線濃度勾配により溶出して、 PPase活性を有する画分を 分取し集めた。 次に、 この画分を 100 mM NaClを含む 20mM酢酸緩衝液 (pH5.0) で 平衡化した Superdex 75 (フアルマシアバイオテック社製) カラムにかけた。 100 mM NaClを含む 20mM酢酸緩衝液 (ρΗ5.0) で溶出して、 PPase活性を有する画分を
分取し集めた。 得られた酵素液は SDS—ポリアクリルアミド電気泳動 (以下、 SDS -PAGEと略記する) ゲル上で単一のバンドを示したので、 これを精製酵素サンプ ルとして以下の操作に使用した。 精製のまとめを表 1に示す。 表 1 PPaseの精製 Ammonium sulfate is added to the dialyzed enzyme solution to a final concentration of 30, and the solution is applied to a Buty Toyopearl 650M column (manufactured by Tosoichi) equilibrated with 20 mM Tris-HCl (ρΗ7.5) containing 30% ammonium sulfate. Was. After thorough washing with the same buffer, elution was performed with a linear concentration gradient of ammonium sulfate 30 to 10% saturation, and fractions having PPase activity were collected and collected. Next, this fraction was applied to a Superdex 75 (Pharmacia Biotech) column equilibrated with 20 mM acetate buffer (pH 5.0) containing 100 mM NaCl. Elution with a 20 mM acetate buffer (ρΗ5.0) containing 100 mM NaCl, fractions with PPase activity Collected and collected. The obtained enzyme solution showed a single band on an SDS-polyacrylamide gel (hereinafter abbreviated as SDS-PAGE) gel, and this was used as a purified enzyme sample in the following procedure. A summary of the purification is shown in Table 1. Table 1 Purification of PPase
手順 全タンパク質 全活性 比活性 精製度 収率 Procedure Total protein Total activity Specific activity Purity Yield
(mg) (単位) (単位/ mg) (倍) (¾) 培養液 47,880 277, 200 5.8 100 硫酸アンモニゥム沈澱 1,900 151,900 79.9 13.8 54.8 (mg) (unit) (unit / mg) (fold) (¾) Culture solution 47,880 277, 200 5.8 100 Ammonium sulfate precipitation 1,900 151,900 79.9 13.8 54.8
Butyl-Toyopearl 650M 40.0 2, 620 65.5 11.3 0.95Butyl-Toyopearl 650M 40.0 2,620 65.5 11.3 0.95
Superdex 75 15.3 1,950 127 21.9 0.70 Superdex 75 15.3 1,950 127 21.9 0.70
(実施例 2 :酵素の特徴付け) (Example 2: Characterization of enzyme)
2.1 分子量 2.1 Molecular weight
PPaseの分子量を 10 SDS-PAGEゲル上の移動度から推定したところ、 約 30, 000で あった。 またこの酵素を 100 mM NaClを含む 20mM酢酸緩衝液 (pH7.0) で平衡化し た Superdex 75ゲル濾過カラムにかけてその分子量を推定したところ、 約 27、 000 であった。 The molecular weight of PPase estimated from the mobility on a 10 SDS-PAGE gel was about 30,000. The molecular weight was estimated to be about 27,000 when this enzyme was applied to a Superdex 75 gel filtration column equilibrated with 20 mM acetate buffer (pH 7.0) containing 100 mM NaCl.
2.2 pHおよび温度安定性 2.2 pH and temperature stability
PPaseを 50 g/mlのゥシ血清アルブミンを含む 100 mM酢酸緩衝液 (pH6.0) 中で 5単位 /mlの濃度で各種 pHで 37 で 1時間インキュベートした後、 実施例 1に記 載の方法で酵素活性を測定したところ、 pH6〜9で 80%以上残存していた。 また P Paseを 50 zg/mlのゥシ血清アルブミンを含む 20 mM齚酸緩衝液 (pH6.0) 中で 5単
位/ mlの濃度で各種温度で 30分間インキュベートした後、 酵素活性を測定したと ころ、 50で以下の温度で 以上残存していた。 After incubating PPase in 100 mM acetate buffer (pH 6.0) containing 50 g / ml pepsin serum albumin at a concentration of 5 units / ml at various pHs for 1 hour at 37, the procedure described in Example 1 was followed. When the enzyme activity was measured by the method, 80% or more remained at pH 6-9. P-Pase was also added to a 20 mM phosphate buffer (pH 6.0) containing 50 zg / ml of serum albumin. After incubation at various temperatures for 30 minutes at a concentration of about 10 ml / ml, the enzyme activity was measured.
2. 3 至適 pHおよび至適温度 2.3 Optimum pH and temperature
PPase活性を反応 pHまたは反応温度を変化させた以外は実施例 1に記載の方法 で測定したところ、 PH6. 0およびおよび 60 で最高の活性を示した。 When the PPase activity was measured by the method described in Example 1 except that the reaction pH or reaction temperature was changed, PH6.0 and 60 showed the highest activity.
2. 4 各種イオンの影響 2.4 Effects of various ions
PPase活性を、 表 2に記載の各種物質を 1 mMの濃度で含有する反応液中で pH6. 0, 50でで測定したところ、 活性は ¾C12存在下で完全に阻害され、 また MnCl 2でも 7 5%阻害された。
The PPase activity was measured at at pH 6. 0, 50 in a reaction solution of various substances in a concentration of 1 mM in Table 2, the activity was completely inhibited in the presence ¾C1 2, Even MnCl 2 It was inhibited by 7 5%.
活性に対するイオンの影響 Effect of ions on activity
物質名 相対活性 (X) なし 100Substance name Relative activity (X) None 100
AgN03 60AgN0 3 60
BaCl2 100BaCl 2 100
CaCI2 95CaCI 2 95
CdCl2 85CdCl 2 85
CoCl2 105CoCl 2 105
CuS04 90CuS0 4 90
FeCl2 105FeCl 2 105
HgCl2 0HgCl 2 0
KC1 100KC1 100
MgCI2 100MgCI 2 100
MnCl 2 25MnCl 2 25
NaCl 100NaCl 100
Ni Cl2 95Ni Cl 2 95
ZnCl2 90ZnCl 2 90
NaF 95NaF 95
NaN3 105NaN 3 105
NaN02 80 p -クロ口安息香酸第二水銀 110 EDTA 90
2. 5 基質特異性 NaN0 2 80 p-Mercuric benzoate 110 EDTA 90 2.5 Substrate specificity
PPaseを各種基質に作用させたところ、 表 3に示すようにプロトぺクチン (シ ュガービート由来) および L-ァラビナン (シュガービート由来) に対する PPase 活性ならびにァラビノガラクタン (ダイズ由来) に対するァラビナーゼ活性を示 した。 ァラビナーゼの活性は、 以下のとおり測定した: L-ァラビナン 0. 5%を含有 する 100 mM酢酸緩衝液 (PH7. 0) 190 1に酵素液 10 i 1を加え、 50^で 10分間イン キュべ一卜する; 200 1のソモジ試薬を添加し、 10分間煮沸した後、 氷中で 10分 問冷却する; 200 1のネルソン試薬を添加し、 室温で 20分間放置した後、 660 run での吸光度を測定する。 ァラビナーゼ活性は、 1分間当たり 1 mo lのァラビノ —スに相当する還元糖量を遊離する活性を 1単位として、 ァラビノース量と発色 度の関係式から算出して表示した。 基質として使用する L-ァラビナンを以下のと おり調製した:シュガービートパルプを 0. 1 NaOH中で lOOt 1時間処理する; 処理後、 濾過および遠心分離で得た液を 3倍容量のエタノールと混合し、 生じる 沈澱を遠心分離で集める;沈澱を水に溶解し、 遠心分離で不溶物を除去した後、 ガラクタナーゼ (100単位/ ml ) を作用させながら 50 mM酢酸緩衝液 (pH5. 0) に対 して 37 で 24時間透析する;透析した液を 50 mM酢酸緩衝液 (pH5. 0) で平衡化し た DEAE- Cel l ul of ine AHカラム (東ソ一製) にかけ、 非吸着画分をプールし、 こ れを水に対して透析し、 3倍容量のエタノールと混合して生じた沈澱をェ夕ノー ルで 2回洗浄した後凍結乾燥する。 When PPase was allowed to act on various substrates, as shown in Table 3, the PPase activity on protopectin (derived from sugar beet) and L-arabinan (derived from sugar beet) and the arabinase activity on arabinogalactan (derived from soybean) were shown. did. The activity of arabinase was measured as follows: To a 100 mM acetate buffer (PH 7.0) 1901 containing 0.5% L-arabinane, add 10i1 of the enzyme solution, and incubate at 50 ^ for 10 minutes. Add 2001 Somogyi reagent, boil for 10 minutes, then cool in ice for 10 minutes; add 2001 Nelson's reagent, leave at room temperature for 20 minutes, absorbance at 660 runs Is measured. The arabinase activity was calculated from the relational expression between the amount of arabinose and the chromaticity, with the activity of releasing the amount of reducing sugar corresponding to 1 mol of arabinose per minute as one unit, and displayed. L-arabinane to be used as a substrate was prepared as follows: Sugar beet pulp was treated in 0.1 NaOH for lOOt for 1 hour; after treatment, the liquid obtained by filtration and centrifugation was mixed with 3 volumes of ethanol The resulting precipitate is collected by centrifugation; the precipitate is dissolved in water, and the insoluble matter is removed by centrifugation. Then, the precipitate is dissolved in 50 mM acetate buffer (pH 5.0) with the action of galactanase (100 units / ml). Dialyze at 37 for 24 hours; apply the dialyzed solution to a DEAE-Celluline ine AH column (Tosoichi) equilibrated with 50 mM acetate buffer (pH 5.0) to collect the non-adsorbed fraction. The solution is pooled, dialyzed against water, mixed with 3 volumes of ethanol, and the resulting precipitate is washed twice with ethanol and lyophilized.
その他の基質には作用しなかった。 他の活性の測定は、 F. M. Rombout sら 「Carb ohydrate Po lymersj 9卷、 25-47頁 (1988) の方法に準じて pH7. 0で行った。
表 3 種々の基質に対する PPaseの活性 It did not act on other substrates. Other activities were measured at pH 7.0 according to the method of FM Rombouts et al., "Carbohydrate Polymers 9 Vol. 9, pp. 25-47 (1988)". Table 3 PPase activity for various substrates
活性 基質 (起源) 活性の有無 ブロトぺクチナーゼ ブロトべクチン (シュガービート) 有 Activity Substrate (Origin) Activity Presence Brodactinase Brotopectin (sugar beet) Yes
L-ァラビナン (シュガービート) 有 ァラビナーゼ ァラビノガラクタン (ダイズ) 有 L-arabinan (sugar beet) yes arabinase arabinogalactan (soybean) yes
ァラビノガラクタン (カラマツ) Arabinogalactan (larch)
ガラクタナーゼ /3-1.4-ガラクタン (ダイス') 無 キシラナーゼ /3-1,4-キシラン (スペルトコムギ) Galactanase /3-1.4-galactan (Dice ') No xylanase / 3-1,4-xylan (spelled wheat)
セルラーゼ CM-セルロース Cellulase CM-cellulose
ぺクチンリアーゼ 髙メトキシ化ポリガラクチュロン酸 (オレンジ) 無 ぺクテートリア一ゼ ポリガラクチュロン酸 (オレンジ) 無 ェンド-ポリガラクチュロナーゼ ポリガラクチュロン酸 (オレンジ) 無 ェキソ -ポリガラクチュロナ ゼ ポリガラクチュロン酸 (オレンジ) 無 Pectin lyase 髙 Methoxylated polygalacturonic acid (orange) None ぺ Pectate enzyme Polygalacturonic acid (Orange) None Polygalacturonic acid (orange)
i3-D-ガラクトシダーゼ 0 -二トロフエニル -iS-D-ガラクトシド 無 i3-D-galactosidase 0 -ditrophenyl -iS-D-galactoside None
a -L-ァラビノフラノシダーゼ P-ニトロフエニル -α-L-ァラビノフラノシド 無 a -L-arabinofuranosidase P-nitrophenyl -α-L-arabinofuranoside None
a- L-ァラピノビラノシダ一ゼ p -二トロフエニル- α -レアラビノビラノシド 無 a-L-Alappinoviranosidase p-Ditrophenyl-α-rearabinoviranoside None
以上の結果から、 本願発明の PPaseは、 従来から知られていた PPaseとは異なる, 新規な PPaseであることが確認された。 From the above results, it was confirmed that the PPase of the present invention is a novel PPase different from the conventionally known PPase.
2.6 アミノ酸配列 2.6 Amino acid sequence
精製した PPaseのアミノ酸配列を、 成熟タンパク質の N末端および V8プロテア —ゼで処理して生成したペプチドの N末端について解析した。 N末端の配列は、 Xaa-Phe-Trp-Gly-Al -Ser-Asn-Glu-Leu-Leu-His-Asp-Xaa-Thr-Met-I le - (Lys)-GI u - Gly- Ser-Ser-(Trp)- Tyr- Ala- Leu- Gly-Thr- Xaa- Leu- Asnであった (ここで Xaaは
解析し得なかったアミノ酸残基を示し、 括弧内のアミノ酸は不確かなアミノ酸残 基を示す) 。 V8プロテア一ゼ消化で生成したペプチドの解析の結果得られたアミ ノ酸配列には、 Gly-Ser-Ser-Trp-Tyr-Ala-Leu-Gly-Thr-Gly, Gly-Leu-Val-I le-A rg-Ser, Leu- Thr- Phe-Asp- Lys-Asp- Gly-Asn-Proなどがあった。 The amino acid sequence of the purified PPase was analyzed for the N-terminus of the mature protein and the N-terminus of the peptide generated by treatment with V8 protease. The N-terminal sequence is Xaa-Phe-Trp-Gly-Al-Ser-Asn-Glu-Leu-Leu-His-Asp-Xaa-Thr-Met-Ile- (Lys) -GIu-Gly-Ser- Ser- (Trp) -Tyr-Ala-Leu-Gly-Thr-Xaa-Leu-Asn (where Xaa is Amino acid residues that could not be analyzed are shown, and amino acids in parentheses indicate uncertain amino acid residues.) Gly-Ser-Ser-Trp-Tyr-Ala-Leu-Gly-Thr-Gly, Gly-Leu-Val-I include the amino acid sequence obtained as a result of analysis of the peptide generated by V8 protease digestion. le-A rg-Ser, Leu-Thr-Phe-Asp-Lys-Asp-Gly-Asn-Pro and the like.
(実施例 3 :遺伝子クローニング) (Example 3: Gene cloning)
3.1 PCR 3.1 PCR
Bacillus subtilis BS株のゲノム DMを、 Molecular Cloning 3rd Edition (19 93) に従い、 CTABを用いて調製した。 これを制限酵素 HincHIIおよび PsUで消化 した後、 その末端に HindlUカセット (品番 3870、 宝酒造製) および Pstlカセッ ト (品番 387し 宝酒造製) を結合して PCRの铸型とした。 実施例 2で得られたァ ミノ酸配列をもとに 2種の逆向きプライマ一 1-1 (配列番号 3〉 および II- 1 (配 列番号 4) を設計し、 DNA合成装置を用いて合成した。 上記のカセット結合ゲノ ム DNAを铸型に、 プライマ一 1-1および 11-1ならびに Ex Taq DNAポリメラーゼを使 用して、 94"C30秒、 60°C2分、 72で 2分を 30サイクルの条件で PCRを実施した。 生じたフラグメントの DNA配列をもとにさらなるプライマー 1-2 (配列番号 5) を 設計して合成した。 上記のカセット結合ゲノム DNAを铸型として、 C1プライマ一 (HindlUカセットおよび Pstlカセッ卜の共通配列に対するプライマー、 品番 387 5、 宝酒造製) と 1-1または II- 1プライマーを用いて 94 30秒、 6(TC2分、 W 2 分を 30サイクルの条件で第 1回目の PCRを実施した後、 この PCR反応で生じた産物 を铸型として C2プライマー (Hindlllカセッ卜および Pstlカセッ卜の共通配列に 対するプライマー、 品番 3876、 宝酒造製) と 1-2プライマーを用いて第 2回目の P Genomic DM of Bacillus subtilis BS strain was prepared using CTAB according to Molecular Cloning 3rd Edition (1993). This was digested with the restriction enzymes HincHII and PsU, and the ends were ligated with a HindlU cassette (product number 3870, manufactured by Takara Shuzo) and a Pstl cassette (product number 387, manufactured by Takara Shuzo) to form a type II PCR. Based on the amino acid sequence obtained in Example 2, two kinds of reverse primers 1-1 (SEQ ID NO: 3) and II-1 (SEQ ID NO: 4) were designed, and were designed using a DNA synthesizer. The above cassette-bound genomic DNA was converted to type I using Primer 1-1 and 11-1 and Ex Taq DNA polymerase for 94 minutes at 30 seconds, 60 ° C for 2 minutes, and 72 minutes for 2 minutes. PCR was performed under the conditions of 30 cycles, and further primer 1-2 (SEQ ID NO: 5) was designed and synthesized based on the DNA sequence of the resulting fragment. Using 1 (primer for common sequence of HindlU cassette and Pstl cassette, product number 3875, manufactured by Takara Shuzo) and 1-1 or II-1 primer, 94 30 seconds, 6 (30 cycles of TC2 min. After performing the first PCR in step 2, the product generated in this PCR reaction is Chromatography (Hindlll cassette Bok and Pstl cassette primers against the consensus sequence Bok, No. 3876, Takara Shuzo) using a 1-2 primers second round of P
CRを 94 30秒、 60で2分、 72で 2分を 30サイクルの条件で実施した。 生じたフラ グメン卜の DNA配列を決定したところ、 プライマーの設計に使用していない部分
の上記のァミノ酸配列解析で得られた配列をコードしていたので、 このフラグメ ントが目的の PPaseをコードするフラグメントであると判断して以下で使用した。 3.2 クローンの解析 CR was performed under the conditions of 30 cycles of 94 30 seconds, 60 minutes 2 minutes, and 72 minutes 2 minutes. When the DNA sequence of the generated fragment was determined, the portion not used for primer design was determined. Since this fragment encoded the sequence obtained by the above amino acid sequence analysis, this fragment was determined to be a fragment encoding the desired PPase, and was used below. 3.2 Analysis of clones
得られたフラグメントの DNA配列を決定し、 その一部を配列番号 2に示す。 こ の DNA配列はタンパク質をコ一ドし得るオープンリ一ディングフレームを有して いた。 DNA配列から推定されるアミノ酸配列の中には、 精製タンパク質のァミノ 酸配列解析で得られた N末端配列が見出されたので、 このクローンが目的の PPas eをコードすることが確認された。 また GenBankデ一夕ベースを使用して相同性の ある遺伝子を検索したところ、 Aspergillus nigerのエンド- 1, 5-ァラビナーゼの 配列 (Flipphi, M.J. A.ら、 Ap l. Microbiol. Biotechnol. 40, 318-326, 199 3) のみに低い相同性を示したことから (23%以下) 、 ここで得られた PPaseが新 規であることがアミノ酸配列からも確認され、 これをプロトぺクチナ一ゼ Cと命 名した。 The DNA sequence of the obtained fragment was determined, and a part thereof is shown in SEQ ID NO: 2. This DNA sequence had an open reading frame that could code for a protein. Since the N-terminal sequence obtained by amino acid sequence analysis of the purified protein was found in the amino acid sequence deduced from the DNA sequence, it was confirmed that this clone encodes the target PPase. When a homologous gene was searched using GenBank database, the sequence of endo-1,5-arabinase of Aspergillus niger (Flipphi, MJA et al., ApI. Microbiol. Biotechnol. 40, 318-326) , 1993) showed only low homology (23% or less), and it was confirmed from the amino acid sequence that the PPase obtained here was new, and was identified as protokinase C. Named.
3.3 発現 3.3 Expression
オープンリーディングフレーム全体を含む 1.05 kbsの Pstl-EcoRVフラグメント を E. col i用の多コピー数ベクター pUC19に挿入してプラスミド pUC-Ppcを構築し、 これを用いて E. coli DH5a株を形質転換した。 出現したアンピシリン耐性形質 転換株を、 実施例 1で使用した産生培地中で 37Tで 22時間培養したところ、 培養 物中には 15単位/ mlの活性が検出され、 クローン化された DNAが目的の PPaseをコ ードするフラグメントであることが確認された。
産業上の利用の可能性 A 1.05 kb Pstl-EcoRV fragment containing the entire open reading frame was inserted into a multicopy vector pUC19 for E. coli to construct a plasmid pUC-Ppc, which was used to transform E. coli DH5a strain. . The resulting ampicillin-resistant transformant was cultured for 22 hours at 37T in the production medium used in Example 1, and an activity of 15 units / ml was detected in the culture. The fragment was confirmed to encode PPase. Industrial applicability
本願発明のプロトぺクチナ一ゼををコードする遺伝子をクローニングすること により、 この酵素を遺伝子組換え技術を使用して高度に発現することができた。 本願発明のプロ卜べクチナーゼは、 繊維の精練、 ぺクチンの製造、 およびパル プの製造などに有用であり、 発現効率を改善して安価に製造することにより、 こ の酵素を工業的に利用することができる。
By cloning the gene encoding the protease of the present invention, the enzyme could be highly expressed using gene recombination technology. The protein vectorase of the present invention is useful for fiber refining, pectin production, pulp production, and the like. By improving expression efficiency and producing at low cost, this enzyme can be used industrially. can do.
配列表 Sequence listing
配列番号 1 SEQ ID NO: 1
配列の長さ : 291 Sequence length: 291
配列の型:アミノ酸 Sequence type: amino acid
トポロジー:直鎖状 Topology: linear
配列の種類: タンパク質 Sequence type: protein
配列 Array
Ala Phe Trp Gly Ala Ser Asn Glu Leu Leu His Asp Pro Thr Met lie 1 5 10 15 Lys Glu Gly Ser Ser Trp Tyr Ala Leu Gly Thr Gly Leu Asn Glu Glu Ala Phe Trp Gly Ala Ser Asn Glu Leu Leu His Asp Pro Thr Met lie 1 5 10 15 Lys Glu Gly Ser Ser Trp Tyr Ala Leu Gly Thr Gly Leu Asn Glu Glu
20 25 30 20 25 30
Arg Gly Leu Arg Val Leu Lys Ser Ser Asp Ala Lys Asn Trp Thr Val Arg Gly Leu Arg Val Leu Lys Ser Ser Asp Ala Lys Asn Trp Thr Val
35 40 45 35 40 45
Gin Lys Ser lie Phe Ser Thr Pro Leu Ser Trp Trp Ser Asn Tyr Val 50 55 60 Gin Lys Ser lie Phe Ser Thr Pro Leu Ser Trp Trp Ser Asn Tyr Val 50 55 60
Pro Asn Tyr Glu Lys Asn Gin Trp Ala Pro Asp lie Gin Tyr Tyr Asn 65 70 75 80 Pro Asn Tyr Glu Lys Asn Gin Trp Ala Pro Asplie Gin Tyr Tyr Asn 65 70 75 80
Gly Lys Tyr Trp Leu Tyr Tyr Ser Val Ser Ser Phe Gly Asn Asn Thr Gly Lys Tyr Trp Leu Tyr Tyr Ser Val Ser Ser Phe Gly Asn Asn Thr
85 90 95 Ser Ala He Gly Leu Ala Ser Ser Thr Ser lie Ser Ser Gly Asn Trp 85 90 95 Ser Ala He Gly Leu Ala Ser Ser Thr Ser lie Ser Ser Gly Asn Trp
100 105 110 100 105 110
Lys Asp Glu Gly Leu Val lie Arg Ser Thr Ser Ser Asn Asn Tyr Asn Lys Asp Glu Gly Leu Val lie Arg Ser Thr Ser Ser Asn Asn Tyr Asn
115 120 125 115 120 125
Ala lie Asp Pro Glu Leu Thr Phe Asp Lys Asp Gly Asn Pro Trp Leu
130 135 140Ala lie Asp Pro Glu Leu Thr Phe Asp Lys Asp Gly Asn Pro Trp Leu 130 135 140
Ala Phe Gly Ser Phe Trp Ser Gly He Lys Leu Thr Lys Leu Asp Lys 145 150 155 160Ala Phe Gly Ser Phe Trp Ser Gly He Lys Leu Thr Lys Leu Asp Lys 145 150 155 160
Ser Thr Met Lys Pro Thr Gly Ser Leu Tyr Ser He Ala Ala Arg Pro Ser Thr Met Lys Pro Thr Gly Ser Leu Tyr Ser He Ala Ala Arg Pro
165 170 175 165 170 175
Asn Asn Asn Gly Ala Leu Glu Ala Pro Thr Leu Thr Tyr Gin Asn Gly Asn Asn Asn Gly Ala Leu Glu Ala Pro Thr Leu Thr Tyr Gin Asn Gly
180 185 190 180 185 190
Tyr Tyr Tyr Leu Met Val Ser Phe Asp Lys Cys Cys Asn Gly Val Asn Tyr Tyr Tyr Leu Met Val Ser Phe Asp Lys Cys Cys Asn Gly Val Asn
195 200 205 195 200 205
Ser Thr Tyr Lys lie Ala Tyr Gly Arg Ser Lys Ser He Thr Gly Pro 210 215 220 Ser Thr Tyr Lys lie Ala Tyr Gly Arg Ser Lys Ser He Thr Gly Pro 210 215 220
Tyr Leu Asp Lys Ser Gly Lys Ser Met Leu Asp Gly Gly Gly Thr lie 225 230 235 240 Tyr Leu Asp Lys Ser Gly Lys Ser Met Leu Asp Gly Gly Gly Thr lie 225 230 235 240
Leu Asp Ser Gly Asn As Gin Trp Lys Gly Pro Gly Gly Gin Asp He Leu Asp Ser Gly Asn As Gin Trp Lys Gly Pro Gly Gly Gin Asp He
245 250 255 245 250 255
Val Asn Gly Asn lie Leu Val Arg His Ala Tyr Asp Ala Asn Asp Asn Val Asn Gly Asn lie Leu Val Arg His Ala Tyr Asp Ala Asn Asp Asn
260 265 270 260 265 270
Gly Thr Pro Lys Leu Leu lie Asn Asp Leu Asn Trp Ser Ser Gly Trp Gly Thr Pro Lys Leu Leu lie Asn Asp Leu Asn Trp Ser Ser Gly Trp
275 280 285 275 280 285
Pro Ser Tyr Pro Ser Tyr
290 配列番号 2 290 SEQ ID NO: 2
配列の長さ: 876
配列の型:核酸 Sequence Length: 876 Sequence type: nucleic acid
鎖の数:二本鎖 Number of chains: double strand
トポロジー:直鎖状 Topology: linear
配列の種類: genomi c DNA Sequence type: genomi c DNA
起源 Origin
生物名: Bac i 1 lus subt i l i s Organism name: Bac i 1 lus subt i l i s
株名: BS Stock Name: BS
配列 Array
GCATTTTGGG GTGCATCTAA CGAGCTGCTT CACGACCCGA CTATGATCAA AGAGGGGAGC 60 TCATGGTATG CGTTAGGAAC AGGGCTTAAT GAAGAACGGG GACTGCGGGT TTTGAAGTCT 120 TCGGATGCTA AAAACTGGAC CGTCCAAAAA TCTATTTTCA GCACACCGCT ATCGTGGTGG 180 GCATTTTGGG GTGCATCTAA CGAGCTGCTT CACGACCCGA CTATGATCAA AGAGGGGAGC 60 TCATGGTATG CGTTAGGAAC AGGGCTTAAT GAAGAACGGG GACTGCGGGT TTTGAAGTCT 120 TCGGATGCTA AAAACTGGAC CGTCCAAAAA TCTATTTTCA GCACACCGCT ATCGTGGTGG 180
TCCAATTATG TGCCGAATTA CGAGAAAAAC CAGTGGGCGC CGGATATCCA ATACTATAAC 240TCCAATTATG TGCCGAATTA CGAGAAAAAC CAGTGGGCGC CGGATATCCA ATACTATAAC 240
GGAAAGTACT GGCTGTATTA TTCAGTTTCC TCTTTTGGAA ACAATACATC TGCCATCGGA 300GGAAAGTACT GGCTGTATTA TTCAGTTTCC TCTTTTGGAA ACAATACATC TGCCATCGGA 300
CTGGCATCCT CAACGAGCAT CAGTTCGGGG AACTGGAAAG ACGAAGGCTT GGTCATCCGT 360 TCGACAAGCT CCAATAATTA TAACGCGATT GATCCGGAGT TGACATTTGA CAAGGATGGC 420CTGGCATCCT CAACGAGCAT CAGTTCGGGG AACTGGAAAG ACGAAGGCTT GGTCATCCGT 360 TCGACAAGCT CCAATAATTA TAACGCGATT GATCCGGAGT TGACATTTGA CAAGGATGGC 420
AACCCGTGGC TTGCATTCGG CTCGTTTTGG AGCGGAATTA AGCTGACAAA GCTTGATAAA 480AACCCGTGGC TTGCATTCGG CTCGTTTTGG AGCGGAATTA AGCTGACAAA GCTTGATAAA 480
AGTACGATGA AGCCTACAGG CTCGCTCTAT TCGATTGCAG CCAGGCCGAA TAATAACGGG 540AGTACGATGA AGCCTACAGG CTCGCTCTAT TCGATTGCAG CCAGGCCGAA TAATAACGGG 540
GCGCTGGAAG CTCCTACTCT TACGTATCAA AATGGCTATT ACTATTTAAT GGTTTCATTT 600GCGCTGGAAG CTCCTACTCT TACGTATCAA AATGGCTATT ACTATTTAAT GGTTTCATTT 600
GATAAATGTT GTAACGGGGT AAACAGTACG TACAAAATTG CTTATGGAAG ATCTAAAAGC 660 ATTACAGGGC CTTATCTTGA TAAAAGCGGG AAAAGCATGC TTGATGGCGG GGGCACCATT 720GATAAATGTT GTAACGGGGT AAACAGTACG TACAAAATTG CTTATGGAAG ATCTAAAAGC 660 ATTACAGGGC CTTATCTTGA TAAAAGCGGG AAAAGCATGC TTGATGGCGG GGGCACCATT 720
TTGGATTCCG GCAACGACCA ATGGAAAGGC CCTGGCGGTC AGGATATTGT AAACGGAAAC 780TTGGATTCCG GCAACGACCA ATGGAAAGGC CCTGGCGGTC AGGATATTGT AAACGGAAAC 780
ATTCTTGTTC GTCATGCCTA TGACGCCAAT GACAACGGCA CTCCGAAGCT TCTCATCAAT 840ATTCTTGTTC GTCATGCCTA TGACGCCAAT GACAACGGCA CTCCGAAGCT TCTCATCAAT 840
GATTTGAATT GGAGTTCGGG CTGGCCGTCC TATTAA 876
配列番号 3 GATTTGAATT GGAGTTCGGG CTGGCCGTCC TATTAA 876 SEQ ID NO: 3
配列の長さ : 30 Array length: 30
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状 Topology: linear
配列の種類:他の核酸 合成 DNA Sequence type: other nucleic acid synthetic DNA
配列 Array
GGGAGCTCAT GGTATGCGTT AGGAACAGGG 30 配列番号 4 GGGAGCTCAT GGTATGCGTT AGGAACAGGG 30 SEQ ID NO: 4
配列の長さ : 31 Array length: 31
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状 Topology: linear
配列の種類:他の核酸 合成 DNA Sequence type: other nucleic acid synthetic DNA
配列 Array
GCCATCGGAC TGGCATCCTC AACGAGCATC A 31 配列番号 5 GCCATCGGAC TGGCATCCTC AACGAGCATC A 31 SEQ ID NO: 5
配列の長さ : 31 Array length: 31
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状 Topology: linear
配列の種類:他の核酸 合成 DNA
Sequence type: other nucleic acid synthetic DNA
ιε 319ID3D0W3 m m ιε 319ID3D0W3 mm
6LZO/L6dSH10d 890/86 OAV
6LZO / L6dSH10d 890/86 OAV