WO1998005539A1 - Brake force control device - Google Patents

Brake force control device Download PDF

Info

Publication number
WO1998005539A1
WO1998005539A1 PCT/JP1997/002509 JP9702509W WO9805539A1 WO 1998005539 A1 WO1998005539 A1 WO 1998005539A1 JP 9702509 W JP9702509 W JP 9702509W WO 9805539 A1 WO9805539 A1 WO 9805539A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
control
wheel
brake
abs
Prior art date
Application number
PCT/JP1997/002509
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Hara
Satoshi Shimizu
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP97932023A priority Critical patent/EP0918004B1/en
Priority to AU35586/97A priority patent/AU3558697A/en
Priority to US09/242,087 priority patent/US6293633B1/en
Priority to DE69718005T priority patent/DE69718005T2/en
Publication of WO1998005539A1 publication Critical patent/WO1998005539A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4836Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems wherein a booster output pressure is used for normal or anti lock braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • B60T8/17616Microprocessor-based systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/3255Systems in which the braking action is dependent on brake pedal data
    • B60T8/3275Systems with a braking assistant function, i.e. automatic full braking initiation in dependence of brake pedal velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/42Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition having expanding chambers for controlling pressure, i.e. closed systems
    • B60T8/4275Pump-back systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/44Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition co-operating with a power-assist booster means associated with a master cylinder for controlling the release and reapplication of brake pressure through an interaction with the power assist device, i.e. open systems
    • B60T8/445Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition co-operating with a power-assist booster means associated with a master cylinder for controlling the release and reapplication of brake pressure through an interaction with the power assist device, i.e. open systems replenishing the released brake fluid volume into the brake piping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4863Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems
    • B60T8/4872Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems pump-back systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/03Brake assistants

Definitions

  • the present invention relates to a braking force control device, and more particularly to a braking force control device suitable as a device for controlling a braking force generated by a vehicle braking device.
  • Japanese Patent Application Laid-Open No. 4-1212600 discloses a braking force control device having a brake assist function and an anti-lock brake function.
  • the brake assist function (hereinafter referred to as the ABS function) is provided to generate a larger brake oil pressure than usual when an emergency brake operation is performed by the driver.
  • the anti-lock brake function (hereinafter referred to as the ABS function) is used to control the wheel cylinder pressure P w / c of each wheel so that an excessive slip rate does not occur on each wheel during the braking operation. Provided.
  • the conventional braking force control device that realizes the ABS function controls the master cylinder that generates the brake fluid pressure according to the brake depression force, the conduction state between the master cylinder and each wheel, and the conduction state between the reservoir tank and each wheel. And a hydraulic circuit for performing the operation.
  • the foil cylinder that needs to increase the foil cylinder pressure P w / c is conducted to the mass cylinder, and the foil cylinder that needs to reduce the foil cylinder pressure P w / C is conducted to the reservoir tank. It is controlled to make it.
  • the wheel cylinder pressure P w / c of each wheel can be appropriately controlled in a range lower than the braking fluid pressure generated by the master cylinder.
  • the conventional braking force control device that realizes the BA function is based on a high-pressure source that generates a predetermined hydraulic pressure regardless of the brake depression force, and a hydraulic pressure generated by the high-pressure source And a hydraulic pressure control valve for reducing the pressure and supplying it to the wheel cylinder of each wheel.
  • the hydraulic pressure control valve supplies the brake fluid pressure, which is boosted at a predetermined boosting ratio to the brake depression force, to each wheel when the driver does not perform the emergency brake operation.
  • the hydraulic pressure control valve supplies the brake fluid of the maximum hydraulic pressure generated by the high pressure source to the wheel cylinder of each wheel ( according to the above processing,
  • a wheel cylinder pressure P w / C corresponding to the brake depression force can be supplied to the wheel cylinder of each wheel.
  • the wheel cylinder pressure of each wheel can be supplied with a higher wheel cylinder pressure P w, c than usual.
  • the function as a normal brake and the BA function can be appropriately realized.
  • the brake fluid pressure generated by the master cylinder and the brake fluid pressure generated by the high pressure source are selectively supplied to the upstream side of the hydraulic circuit.
  • ABS function is achieved by while supplying hydraulic pressure generated more master serial Sunda hydraulic circuit, for controlling the hydraulic circuit in the above-described method .
  • the BA function is realized by supplying the brake fluid pressure generated by the high-pressure source to the wheel cylinder of each wheel via the fluid pressure circuit while the master cylinder and the fluid pressure circuit are shut off.
  • BA control control for realizing the BA function in the above braking force control device
  • ABS control for realizing the ABS function is referred to as ABS control.
  • the wheel cylinder of the target wheel of the ABS control (hereinafter referred to as the ABS target wheel) must be increased in wheel cylinder pressure P w / C for that wheel. It needs to be disconnected from the high pressure source for a short time.
  • the high pressure source is given sufficient capacity to increase the wheel cylinder pressure Pw / c of all four wheels with an appropriate pressure gradient after the BA control is started.
  • ABS non-target wheels the change rate of the wheel cylinder pressure Pw / C with respect to the non-target wheels of the ABS control (hereinafter referred to as ABS non-target wheels) is determined by the BA control being executed independently.
  • the pressure increase gradient becomes sharper than in the case.
  • the master cylinder pressure PM / C is supplied to the wheel cylinder of the ABS target wheel.
  • the hydraulic pressure generated by the high pressure source is supplied to the wheel cylinder of the ABS target wheel.
  • the high pressure source generates a higher hydraulic pressure than the hydraulic pressure that normally occurs as the mass cylinder pressure PM / C. For this reason, the change rate of the wheel cylinder pressure P w / c of the ABS target wheel tends to have a sharp pressure increase gradient during the execution of the BA + ABS control compared to the case where the ABS control is executed alone. .
  • the wheel cylinder pressure Pw / c of the wheel subject to ABS is reduced when an excessive slip ratio occurs in the wheel, and then is increased relatively slowly. If the wheel cylinder pressure Pw / C is increased with a steep pressure gradient during this pressure increase, the wheel cylinder pressure Pw / c is immediately increased after the wheel cylinder pressure Pw / c starts increasing. It is necessary to reduce the pressure of w / C. For this reason, if the wheel cylinder pressure P w / C is increased with a steep pressure increase gradient as described above during the execution of the BA + ABS control, hunting in the control of the ABS target wheel occurs. It will be easier.
  • the BA control and the ABS control interfere with each other, and hunting in control is likely to occur on the ABS target wheel.
  • an excessive pressure increase gradient is generated on the non-target wheels (the target wheels for BA control).
  • the above-described method is not always the optimal method for realizing the BA + ABS function. Disclosure of the invention
  • a general object of the present invention is to provide an improved and useful braking force control device which solves the above-mentioned problems.
  • a more specific object of the present invention is to provide a braking force control device capable of preventing interference between BA control and ABS control and appropriately achieving both BA + ABS functions.
  • a foil cylinder pressure is reduced while a hydraulic pressure inflow path to a wheel cylinder is blocked.
  • a braking force control device that performs brake fluid pressure reduction control to control and brake assist control to generate a larger brake fluid pressure than normal when an emergency brake operation is performed by a driver.
  • a continuity detecting means for detecting a continuity state of the hydraulic pressure inflow path of the foil cylinder
  • the hydraulic pressure inflow suppression means for suppressing the inflow of the brake hydraulic pressure to another wheel cylinder
  • a braking force control device comprising:
  • the brake assist control is started in a state where the hydraulic pressure inflow path of any of the foil cylinders is interrupted, the brake fluid is excessively applied to the foil cylinder whose hydraulic pressure inflow path is not interrupted. Pressure can be prevented from being introduced. Therefore, according to the braking force control device of the present invention, excellent controllability can be maintained even in such a situation.
  • the hydraulic pressure inflow path communicating with the wheel cylinder of the wheel is cut off.
  • the brake hydraulic pressure control for executing the predetermined hydraulic pressure control for the wheel cylinder and the normal operation when an emergency brake operation is performed by the driver.
  • a continuity detecting means for detecting a continuity state of the hydraulic pressure inflow path of the foil cylinder;
  • the pressure reduction control is executed for the at least one other wheel cylinder.
  • a braking force control device comprising:
  • the brake assist control is started in a state where the hydraulic pressure inflow path of any of the foil cylinders is interrupted, the brake fluid is excessively applied to the foil cylinder whose hydraulic pressure inflow path is not interrupted. Pressure can be prevented from being introduced. Therefore, according to the braking force control device of the present invention, excellent controllability can be maintained even in such a situation.
  • the braking force control device includes:
  • the threshold value of at least the other wheel cylinder is compared with a normal state. Means for changing the threshold value to a smaller value May be provided.
  • the wheel cylinder pressures of the other wheel cylinders become transiently higher than normal. easy.
  • the threshold value changing means changes the threshold value in such a situation so that the pressure reduction control is easily started for another foil cylinder. For this reason, the foil cylinder pressure of other foil cylinders does not become an unnecessarily high fluid pressure, though it rises sharply compared to normal times.
  • the brake assist control when the driver performs an emergency braking operation, the brake assist control that generates a larger braking oil pressure than usual, and the braking oil pressure of each wheel is controlled by each wheel.
  • the anti-braking brake control which controls the pressure so as not to generate an excessive slip rate, and the braking force control device, which performs
  • Operating hydraulic pressure generating means for generating a braking hydraulic pressure according to the brake operating amount; assist pressure generating means for generating a predetermined braking hydraulic pressure irrespective of the brake operating amount;
  • a high-pressure passage communicating with both the operating hydraulic pressure generating means and the assist pressure generating means;
  • An operating hydraulic pressure shut-off mechanism that can shut off the operating hydraulic pressure generating means and the high-pressure passage
  • a low-pressure passage communicating with a predetermined low-pressure source
  • Conduction state between the wheel cylinder of each wheel and the high-pressure passage and A conduction state control mechanism for controlling a conduction state between the wheel cylinder of each wheel and the low-pressure passage;
  • BA control means for shutting off the operating hydraulic pressure cut-off mechanism when an emergency brake operation is performed by a driver, and for supplying predetermined brake hydraulic pressure to the high-pressure passage from the assist pressure generating means;
  • ABS control means for controlling the wheel cylinder pressure of each wheel by controlling the conduction state control mechanism in a predetermined control pattern so that an excessive slip rate does not occur in each wheel.
  • a braking force control device comprising:
  • ABS control antilock brake control
  • the brake assist control (hereinafter referred to as BA control) is started.
  • BA control the brake assist control
  • the operating hydraulic pressure generating mechanism is disconnected from the high pressure passage by the operating hydraulic pressure cutting mechanism, and the assist pressure generating means supplies a predetermined brake hydraulic pressure to the high pressure passage.
  • the wheel cylinder pressure of each wheel is rapidly increased by using the assist pressure generating means as a hydraulic pressure source due to the closing of the operating hydraulic pressure cutting mechanism. If the slip ratio of each wheel becomes excessive with the start of BA control, then it is necessary to execute BA control and ABS control simultaneously, that is, execute BA + ABS control.
  • the ABS control is performed under the condition that the high brake fluid pressure generated by the assist pressure generating means is guided to the high pressure passage.
  • the ABS control is executed according to the pressure increase amount suppression pattern. For this reason, despite the fact that a higher brake fluid pressure is introduced into the high-pressure passage than usual, an excessive increase in the wheel cylinder pressure of the ABS target wheel does not occur.
  • a brake assist control that generates a larger braking oil pressure than usual, and a braking oil pressure of each wheel is set to each wheel.
  • the anti-braking brake control which controls the pressure so as not to generate an excessive slip rate, and the braking force control device, which performs
  • Operating hydraulic pressure generating means for generating a brake hydraulic pressure according to the brake operating amount; assist pressure generating means for generating a predetermined brake hydraulic pressure irrespective of the brake operating amount;
  • a high-pressure passage communicating with both the operating hydraulic pressure generating means and the assist pressure generating means;
  • An operating hydraulic pressure shut-off mechanism that can shut off the operating hydraulic pressure generating means and the high-pressure passage
  • a low-pressure passage communicating with a predetermined low-pressure source
  • BA control means for shutting off the operating hydraulic pressure cut-off mechanism when an emergency brake operation is performed by a driver, and for supplying predetermined brake hydraulic pressure to the high-pressure passage from the assist pressure generating means;
  • ABS control means for controlling the wheel cylinder pressure of each wheel by controlling the conduction state control mechanism in a predetermined control pattern so that an excessive slip rate does not occur in each wheel;
  • BA pressure increase gradient suppression means for controlling the conduction state control mechanism provided
  • a braking force control device comprising:
  • the BA control when the driver performs an emergency brake operation, the BA control is started.
  • the wheel cylinder pressure of each wheel is increased using the assist pressure generating means as a hydraulic pressure source.
  • the assist pressure generating means is provided with the ability to generate an appropriate pressure increasing gradient to the wheel cylinder pressure P w / c of all the wheel cylinders communicating through the high pressure passage.
  • the BA + ABS control is started.
  • the wheel cylinder of the wheel subject to ABS is shut off from the high-pressure passage except for a short time during which the wheel cylinder pressure of the wheel needs to be increased by the ABS control. Therefore, during the execution of the BA + ABS control, almost all of the brake fluid discharged from the assist pressure generating means is supplied to the wheel cylinders of the non-ABS wheels.
  • the conduction state control mechanism is controlled such that the pressure increase gradient of the non-ABS target wheel is suppressed. Therefore, despite the excessive capacity of the assist pressure generation means, the wheel P / JP97 / 02509 The pressure increase gradient of the damper pressure is suppressed to the appropriate gradient similar to when the BA control is executed alone.
  • a brake assist control that generates a larger brake hydraulic pressure than normal when an emergency brake operation is performed by a driver;
  • the anti-braking brake control which controls the pressure so as not to generate an excessive slip rate, and the braking force control device, which performs
  • Operating hydraulic pressure generating means for generating a brake hydraulic pressure according to the brake operation amount; a low pressure passage communicating with the first low pressure source and the second low pressure source;
  • Assist pressure generating means for generating a predetermined brake fluid pressure irrespective of a brake operation amount by pumping brake fluid sucked from the low pressure passage;
  • a high-pressure passage communicating with both the operating hydraulic pressure generating means and the assist pressure generating means;
  • An operating hydraulic pressure shut-off mechanism that can shut off the operating hydraulic pressure generating means and the high-pressure passage
  • a conduction state control mechanism for controlling a conduction state between the wheel cylinder of each wheel and the high-pressure passage, and a conduction state between the wheel cylinder of each wheel and the low-pressure passage;
  • ABS control means for controlling the wheel cylinder pressure of each wheel by controlling the BA control means and the conduction state control mechanism in a predetermined control pattern so that an excessive slip rate does not occur in each wheel.
  • Low-pressure source power cut-off means for shutting off the first low-pressure source and the assist pressure generation means
  • a braking force control device comprising:
  • the BA control when the driver performs an emergency brake operation, the BA control is started.
  • the wheel cylinder pressure of each wheel is increased using the assist pressure generating means as a hydraulic pressure source.
  • the assist pressure generating means sucks the brake fluid from the first low-pressure source and supplies the brake fluid pressure to the high-pressure passage when the BA control is performed by a single insect. In this case, a large amount of brake fluid is supplied to the high-pressure passage.
  • B A + ABS control is started.
  • the ABS control is started when the wheel cylinder pressure of the -ABS target wheel is reduced, that is, the brake fluid is discharged from the wheel cylinder of the ABS target wheel to the low-pressure passage. Therefore, when the B A + A B S control is started, the brake fluid immediately flows into the second low pressure source.
  • the assist pressure generating means and the first low pressure source are shut off. Therefore, the brake fluid that can be pumped by the assist pressure generating means is limited to the brake fluid stored in the second low-pressure source thereafter. For this reason, unduly high brake fluid pressure does not occur in the high-pressure passage during the execution of the BA + ABS control.
  • the wheel cylinder pressure of the ABS target wheel does not increase excessively, and the wheel cylinder pressure F ' w / There is no excessive pressure increase gradient in C, and no excessive backflow of the brake fluid to the operating fluid pressure generation means.
  • the operation hydraulic cut mechanism is turned on. It is also possible to provide a high-pressure passage opening means for setting the state.
  • the assist pressure generating means pumps only the brake fluid stored in the second low pressure source as described above.
  • the brake fluid is discharged to the second low pressure source every time the wheel cylinder pressure of the ABS target wheel is reduced. For this reason, the assist pressure generating means sends a large amount of brake fluid to the high pressure passage in synchronization with the time when the wheel cylinder pressure is reduced at the ABS target wheel.
  • the high pressure passage is brought into conduction with the operating hydraulic pressure generating means only when a large amount of brake fluid is pumped by the assist pressure generating means.
  • the braking hydraulic pressure in the high-pressure passage becomes an appropriate pressure higher than the braking hydraulic pressure generated by the operating hydraulic pressure generating means. Controlled. Therefore, according to the present invention, the wheel cylinder pressure of the non-ABS target wheel can be increased with an appropriate pressure increase gradient without causing control hunting on the ABS target wheel.
  • a brake assist control for generating a larger brake oil pressure than usual when an emergency brake operation is performed by a driver, Excessive excess
  • the anti-lack brake control that controls to a pressure that does not generate a rip ratio, and the braking force control device that executes
  • Operating hydraulic pressure generating means for generating a braking hydraulic pressure according to the brake operating amount; assist pressure generating means for generating a predetermined braking hydraulic pressure irrespective of the brake operating amount;
  • a high-pressure passage communicating with both the operating hydraulic pressure generating means and the assist pressure generating means;
  • An operating hydraulic pressure shut-off mechanism that can shut off the operating hydraulic pressure generating means and the high-pressure passage
  • a low-pressure passage communicating with a predetermined low-pressure source
  • a conduction state control mechanism for controlling a conduction state between the wheel cylinder of each wheel and the high pressure passage, and a conduction state between the wheel cylinder of each wheel and the low pressure passage;
  • BA control means for shutting off the operating hydraulic pressure cut-off mechanism when an emergency brake operation is performed by a driver, and for supplying predetermined brake hydraulic pressure to the high-pressure passage from the assist pressure generating means;
  • An ABS control means for controlling the wheel cylinder pressure of each wheel by controlling the conduction state control mechanism according to a predetermined control pattern so that an excessive slip rate does not occur in each wheel;
  • a high-pressure passage opening unit that brings the operation hydraulic cut mechanism into a conductive state when the brake assist control and the anti-braking brake control are simultaneously performed;
  • a braking force control device comprising:
  • the discharge capacity of the assist pressure generating means becomes excessive due to the fact that the wheel cylinder of the ABS target wheel is substantially disconnected from the high pressure passage.
  • the high-pressure passage and the operating hydraulic pressure generating means are brought into conduction.
  • the brake fluid discharged by the assist pressure generating means changes the operating fluid pressure. It is possible to flow into the pressure generating means. Therefore, even if the discharge capacity of the assist pressure generating means is excessive, an unduly high brake fluid pressure is not generated in the high pressure passage.
  • FIG. 1 is a system configuration diagram of a braking force control device according to first to third embodiments of the present invention.
  • FIG. 2 is a graph showing a change in wheel cylinder pressure P w / c realized when the braking force control device shown in FIG. 1 executes ABS control.
  • FIG. 3 is a graph showing a boost characteristic realized when a hydraulic pressure source is connected to the foil cylinder provided in the braking force control device shown in FIG.
  • FIG. 4 is a graph showing the pressure increase gradient of the rear wheel wheel cylinder included in the braking force control device shown in FIG. 1 under various conditions.
  • FIG. 5 is a graph for explaining an overshoot of the wheel cylinder pressure realized in the braking force control device shown in FIG.
  • FIG. 6 is a flowchart of a control routine executed in the braking force control device according to the first embodiment of the present invention.
  • FIG. 7 is a graph showing a change in wheel cylinder pressure realized when the control routine shown in FIG. 6 is executed in the braking force control device according to the first embodiment of the present invention.
  • FIG. 8 is a flowchart of a control routine executed in the braking force control device according to the second embodiment of the present invention.
  • FIG. 9 shows the wheel cylinder pressure realized when the control routine shown in FIG. 8 is executed in the braking force control device according to the second embodiment of the present invention.
  • 6 is a graph showing a change in the graph.
  • FIG. 10 is a diagram showing changes in the hydraulic pressure source and the pressure increase characteristics due to the execution and stop of the BA control.
  • FIG. 11 is a flowchart of a control routine executed in the braking force control device according to the third embodiment of the present invention.
  • FIG. 12 is a system configuration diagram showing a normal brake state and an ABS operation state of the braking force control device according to the fourth embodiment of the present invention.
  • FIG. 13 is a diagram showing an assist pressure increasing state realized during BA control in the braking force control device shown in FIG.
  • FIG. 14 is a diagram showing an assist pressure holding state realized during BA control in the braking force control device shown in FIG.
  • FIG. 15 is a diagram showing a reduced assist pressure state realized during BA control or BA + ABS control in the braking force control device shown in FIG.
  • FIG. 16 is a diagram showing an assist pressure increasing state realized during BA + ABS control in the braking force control device shown in FIG.
  • FIG. 17 is a diagram showing an assist pressure holding state realized during BA + ABS control in the braking force control device shown in FIG.
  • FIG. 18 is a flowchart of a control routine executed to control the state of the reservoir cut solenoid in the braking force control device shown in FIG.
  • FIG. 19 is a flowchart of a control routine executed for selecting a control method of the holding solenoid and the pressure reducing solenoid in the braking force control device shown in FIG.
  • FIG. 20 is a flowchart of a control routine executed to realize the ABS control in the braking force control device shown in FIG.
  • FIG. 21 is a flowchart of a control routine executed in the braking force control device shown in FIG. 12 to control the state of the mass cut solenoid.
  • FIG. 22 is a system configuration diagram showing a normal brake state and an ABS operation state of the braking force control device according to the fifth embodiment of the present invention.
  • FIG. 23 is a diagram showing an assist pressure increasing state realized during BA control in the braking force control device shown in FIG. 22.
  • FIG. 24 is a diagram showing an assist pressure holding state realized during BA control in the braking force control device shown in FIG.
  • FIG. 25 is a diagram showing a reduced assist pressure state realized during BA control or BA + ABS control in the braking force control device shown in FIG. 22.
  • FIG. 26 is a diagram showing an assist pressure increasing state realized during B A + ABS control in the braking force control device shown in FIG. 22.
  • FIG. 27 is a diagram showing an assist pressure holding state realized during B A + ABS control in the braking force control device shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a system configuration diagram of a braking force control device according to a first embodiment of the present invention.
  • the braking force control device shown in FIG. 1 is controlled by an electronic control unit 20 (hereinafter referred to as ECU 20).
  • the braking force control device includes a pump 21.
  • the pump 21 has a motor 22 as its power source.
  • the suction port 21 a of the pump 21 communicates with the reservoir tank 23.
  • An accumulator 25 communicates with a discharge port 21 b of the pump 21 via a check valve 24.
  • the pump 21 pumps the brake fluid in the reservoir tank 23 from its discharge port 21 b so that a predetermined hydraulic pressure is always accumulated in the accumulator 25.
  • the accumulator 25 communicates with a high-pressure port 27 a of a regulator 27 and a regulator switching solenoid 28 (hereinafter referred to as STR 28) via a high-pressure passage 26.
  • the regulator 27 is a low-pressure port 2 communicating with the reservoir tank 23 via a low-pressure passage 29. 7b, and a control hydraulic pressure port 27c communicating with the STR 28 via the control hydraulic pressure passage 30.
  • the STR 28 is a two-position solenoid valve that selectively makes one of the control hydraulic passage 30 and the high-pressure passage 26 conductive, and in a normal state, makes the control hydraulic passage 30 conductive, In addition, the high-pressure circuit 26 is shut off.
  • the two-position solenoid valve means a solenoid valve that can be switched between two states.
  • the brake pedal 31 is connected to the regiré night 27, and the mass cylinder 32 is fixed.
  • the Regyuyle 27 has a hydraulic chamber inside.
  • the hydraulic chamber is always in communication with the control hydraulic port 27c, and is selectively connected to the high pressure port 27a or the low pressure port 27b depending on the operation state of the brake pedal 31. It is communicated.
  • Regiyure Isseki 2 7 the internal pressure of the hydraulic chamber is configured to be adjusted to the hydraulic pressure corresponding to the brake pressing force F P exerted on the brake pedal 3 1. Therefore, the control fluid pressure port 2 7 c of Regiyure Isseki 2 7 always hydraulic pressure appears corresponding to the brake pressing force F P.
  • this fluid pressure is referred to as a regular pressure PRE.
  • Brake pressing force F P exerted on the brake pedal 3 1 is mechanically transmitted to the master cylinder 3 2 via the Regiyure one evening 2 7. Further, the mass evening silicon Sunda 3 2, according to the hydraulic pressure of Regiyure Isseki 2 7 hydraulic chambers, i.e. Regiyure Isseki force corresponding to the pressure P RE is transmitted.
  • this force is referred to as the brake assist force F A. Therefore, when the brake pedal 31 is depressed, the mass cylinder 32 shows the brake depression force F
  • the mass cylinder 32 has a first hydraulic chamber 32a and a second hydraulic chamber 32b therein.
  • the first fluid pressure chamber 3 2 a and the second fluid pressure chamber 3 2 b, the master serial Nda ⁇ P M / C was depending on the resultant force of the brake pressing force F P and a brake assist force F a is generated.
  • the mass cylinder pressure P M / C generated in the first hydraulic chamber 32 a and the mass cylinder pressure p M / c generated in the second hydraulic chamber 32 b are both provided by the provisional valve 3. 4 (after Below, it is called P valve 34).
  • the first hydraulic passage 36 and the second hydraulic passage 38 communicate with the P valve 34.
  • P valve 3 4 in the area where the master serial Nda ⁇ P M / C is less than a predetermined value, and against the first fluid pressure passage 3 6 and the second liquid pressure passage 3 8, the master serial Nda ⁇ P M / c Supply as is.
  • the P valve 34 supplies the mass cylinder pressure P M / c to the first hydraulic passage 36 as it is in a region where the mass cylinder pressure P M / C exceeds a predetermined value.
  • the master cylinder pressure P M / c is supplied to the second hydraulic passage 38 at a predetermined ratio.
  • the second fluid pressure passage 3 8, fluid pressure sensor 4 0 for outputting an electrical signal proportional to the master serial Nda ⁇ P M / C is being Ka ⁇ .
  • the output signal of the hydraulic pressure sensor 40 is supplied to the ECU 20.
  • the ECU 20 detects the master cylinder pressure PM / C generated in the master cylinder 32 based on the output signal of the hydraulic sensor 40.
  • the third hydraulic passage 42 communicates with the STR 28 described above.
  • the third hydraulic passage 42 is in communication with one of the control hydraulic passage 30 and the high-pressure passage 26 according to the state of the STR 28.
  • the wheel cylinders 44 FL, 44 FR arranged on the left and right front wheels FL, FR are connected to the first hydraulic pressure passage 36 communicating with the P valve 34 or the STR 28.
  • the brake fluid pressure is supplied from the third fluid pressure passage 42.
  • the wheel cylinders 44 RL, 44 RR disposed on the left and right rear wheels RL, RR are connected to the second hydraulic pressure passage 38 communicating with the P valve 34 or the STR 28.
  • the brake fluid pressure is supplied from the third fluid pressure passage 42.
  • the first hydraulic passage 36 has a first assist solenoid 46 (hereinafter referred to as SA- 46) and a second assist solenoid 48 (hereinafter SA-2448). ) Are in communication.
  • the third hydraulic passage 42 includes a right front wheel holding solenoid 50 (hereinafter, referred to as SFRH 50), a left front wheel holding solenoid 52 (hereinafter, referred to as SF LH 52), and third ⁇ cis Totsurenoi de 5 4 (hereinafter, SA - 3 referred to 5 4) is communicated with
  • the solenoid means a solenoid valve.
  • SFRH50 is a two-position solenoid valve that normally keeps the valve open.
  • the SFRH 50 communicates with the SAs 1, 46 and the right front wheel decompression solenoid 58 (hereinafter, referred to as S FRR 58) through a pressure adjusting hydraulic passage 56.
  • a check valve 60 between the third hydraulic passage 42 and the pressure regulating hydraulic passage 56 allows only the flow of fluid from the pressure regulating hydraulic passage 56 to the third passage 42. Are juxtaposed.
  • S A- and 46 are two-position solenoid valves that selectively connect one of the second hydraulic passage 36 and the pressure regulating hydraulic passage 56 to the foil cylinder 44 FR, and are in a normal state (off state). In), the first hydraulic passage 36 and the foil cylinder 44 FR are brought into conduction.
  • the SF RR 58 is a two-position solenoid on-off valve for bringing the pressure regulating hydraulic passage 56 and the reservoir tank 23 into a conductive state or a cutoff state. SF RR 58 shuts off the pressure regulating hydraulic passage 56 and reservoir tank 23 in the normal state (off state) c SF LH 52 maintains the valve open state in the normal state 2-position electromagnetic It is an on-off valve.
  • SFLR 6 4 A check valve 6 6 between the third hydraulic passage 42 and the pressure regulating hydraulic passage 62 allows only the flow of fluid from the pressure regulating hydraulic passage 62 to the third passage 42. Are juxtaposed.
  • SA - 2 4 8 has a first liquid hand of pressure passage 3 6 and the pressure adjusting fluid pressure passage 6 2, a position solenoid valve which selectively conducts to the wheel cylinders 4 4 FL, normal state (OFF state In), the i-th hydraulic passage 36 and the foil cylinder 44 FL are brought into conduction.
  • the SF LR 64 is a two-position solenoid on-off valve that connects or disconnects the pressure regulating hydraulic pressure passage 62 and the reservoir tank 23. In the normal state (off state), the SFLR 64 keeps the pressure regulating hydraulic passage 62 and the reservoir tank 23 closed.
  • the second fluid pressure passage 3 8, SA described above - is communicated with the 3 5 4.
  • SA - 3 5 4 is one of the second fluid pressure passage 3 8 and a third fluid pressure passage 4 2, two-position which selectively communicates with the SR RH 6 8 Oyobi 3 shaku to 13 ⁇ 4 7 0 solenoid
  • the valve is in a normal state (off state), and the second hydraulic passage 38 communicates with the SRRH 68 and SRLR 70.
  • the wheel cylinder 44 RR and the right rear wheel decompression solenoid 74 communicate with the downstream side of the SRRH 68 via a pressure adjustment hydraulic passage 72.
  • S RR R 74 is a two-position solenoid on-off valve that connects or disconnects the pressure regulating hydraulic passage 72 and the reservoir tank 23, and in a normal state (off state), the hydraulic pressure regulating passage is closed. The road 72 and the reservoir tank 23 are shut off. Further, a check valve 7 which allows only the flow of fluid toward the S A- 35 4 side from, the pressure adjusting fluid pressure passage 7 2 side between the S A- 3 5 4 Doo pressure adjusting fluid pressure passage 7 2 6 are juxtaposed.
  • SR LR 80 is a two-position solenoid on-off valve that connects or disconnects the pressure-regulating fluid passage 78 and the reservoir tank 23. In the normal state (off state), the pressure regulating fluid passage 7 is opened. 8 and reservoir tanks 23 are shut off. Further, a check valve 82 which allows only the flow of fluid directed from the pressure adjusting fluid pressure passage 7 8 side to the SA - 3 5 4 side between S A- 35 4 Doo pressure adjusting fluid pressure passage 7 8 Are juxtaposed.
  • a play switch 8 is arranged near the brake pedal 31.
  • the brake switch 8 4 This switch generates ON output when the brake pedal 3i is depressed.
  • the output signal of the brake switch 84 is supplied to the ECU 20.
  • the ECU 20 determines whether or not the driver has performed a braking operation based on the output signal of the brake switch 84.
  • wheel speed sensors 8 6 FL, 8 6 are provided near the left and right front wheels FL, FR and the left and right rear wheels RL, RR each time each wheel rotates a predetermined rotation angle.
  • FR, 86 RL, 86 RR (hereinafter, collectively referred to with reference numeral 86 **) are provided.
  • the output signal of the wheel speed sensor 86 ** is supplied to ECU20.
  • ECU 20 detects the rotation speed of each wheel FL, FR, RL, RR, that is, the wheel speed of each wheel FL, FR, RL, RR, based on the output signal of wheel speed sensor 86.
  • the ECU 20 calculates the STR 28, SA, 46, SA- 2 48, SA- 3 5 4, SF RH 5 0, SFLH 5 2, SFRR 5 8, SF LR 6 4, S RRH 6 8, SR LH 7 0, SRRR 7 4, and, as appropriate driving signal to the SRLR 8 0 Supply.
  • Braking force control apparatus of the present embodiment when the vehicle state is stable, executes normal control for generating a braking force corresponding to the brake pressing force F P exerted on the brake Bae Da Le 3 1.
  • Normal control as shown in FIG. 1, STR 2 8, SA, 4 6, SA- 2 4 8, SA- 3 5 4, SF RH 5 0, SF LH 5 2, S FRR 5 8, SF LR 6 4 , SRRH 68, SRLH 70. This is realized by turning off all SR RR 74 and SR LR 80.
  • the foil cylinders 44 FR and 44 FL are placed in the first hydraulic passage 36 and the foil cylinder 44 4 RR and 44RL are communicated with the second hydraulic passage 38, respectively.
  • the brake fluid is represented by the master cylinder 32 and the wheel cylinders 44 FR, 44 FL, 44 RL, and 44 RR (hereinafter, these are collectively denoted by reference numeral 44 **. ) Ri Do and be exchanged between the respective wheels FL, FR, RL, in RR, braking force corresponding to the brake pressing force F P is generated.
  • ABS control the execution condition of the anti-lip brake control for the wheel is changed. It is determined that the condition has been established, and thereafter, the ABS control is started. ECU 20 calculates the wheel speed of each wheel Vw F or Vw based on the output signal of the wheel speed sensor 8 6 **.
  • VW * the estimated value V s .
  • the slip ratio S of each wheel is calculated according to the following equation, and when S exceeds a predetermined value, the wheel can shift to the licking state.
  • the ECU 20 determines that the execution condition of the ABS control is satisfied for the right front wheel FR, the ECU 20 outputs a freewheel signal to SA-, 46.
  • the ECU 20 determines that the execution condition of the ABS control is satisfied for the left front wheel FR, the ECU 20 outputs a drive signal to SA-248.
  • the ECU 20 determines that the execution condition of the ABS control is satisfied for any of the left and right rear wheels RL and RR, the ECU 20 outputs a drive signal to the SA-354.
  • Hoirushiri Sunda 4 4 ** are, corresponding retention Sorenoi de SF RH 5 0, SF LH 5 2, S RRH 68, SR LH 70 (hereinafter collectively referred to as holding solenoid S ** H) and corresponding decompression solenoid SF RR 58, SFLR 64, S RRR 7 4, SRLR 80 (hereinafter collectively referred to as depressurizing solenoids S *, R), and the holding hydraulic fluid S ** H are connected to the third hydraulic passages 42 and through S TR 2 8, regulation Yu ⁇ P RE Gashirube Charles state is formed.
  • the ECU 20 appropriately controls the pressure increase mode and the pressure retention mode as described above so that the slip ratio S of each wheel during braking falls within an appropriate value, that is, so that each wheel does not shift to the locked state.
  • Mode and 3 decompression mode Figure 2 shows that ECU 20 combines these modes. The time-dependent change of the wheel cylinder pressure P w / c realized when executing the ABS control is shown.
  • Figure 2 shows time t. Shows the case where the brake operation is started at time t1 and the execution condition of the ABS control is satisfied at time t1. Time t. After that, when the wheel cylinder pressure P w / C rises and the slip ratio S of the wheel reaches a predetermined value at time and, the ABS control is started.
  • the wheel cylinder pressure c when the slip ratio S of the wheel reaches a predetermined value is referred to as the ABS hydraulic pressure.
  • the pressure reducing mode is realized in order to reduce the wheel cylinder pressure P W / c from the ABS operating oil pressure.
  • the time during which the decompression mode is maintained after the ABS control execution condition is satisfied (hereinafter, referred to as the first decompression time) is determined according to the slip state of the wheel when the ABS control execution condition is satisfied. Specifically, if the slip rate of the wheel is increasing slowly, the initial decompression time is set relatively short, while if the slip rate of the wheel is increasing rapidly, the initial decompression time is set. Is set to a relatively long time.
  • Figure 2 shows a case where decompression mode initial is maintained until time t 2. After the time to maintain the first decompression mode elapses, 3 hold mode is realized. Thereafter, a predetermined time should maintain retention mode elapsed Then, at time t 3 is 1 pressure increasing mode is started. After the pressure increase mode is maintained for a predetermined time, the time t 4 Yuruzo ⁇ mode (hereinafter, expressed subjected 4) is started.
  • the gradual pressure increase mode is a mode realized by alternately executing 1 pressure increase mode and 3 hold mode.
  • the wheel cylinder pressure P w / C needs to be reduced immediately.
  • the wheel cylinder pressure P w / C in the hydraulic path corresponding to each of the foil cylinders 44 **, there is a check that allows the flow of fluid from the foil cylinder 44 ** side to the third hydraulic passage 42 side. Valves 60, 66, 76, 82 are provided. For this reason, according to the system of the present embodiment, the wheel cylinder pressure P w / c of all the wheel cylinders 44 ** can be immediately reduced after the depression of the brake pedal 31 is released. .
  • the wheel cylinder pressure P w / C is increased by the brake fluid being supplied from the regulator 27 to the wheel cylinder 44. That is, the pressure is increased by the brake fluid being supplied from the pump 21 to the wheel cylinders 44,. Further, the wheel cylinder pressure P w / c is reduced by the brake fluid in the wheel cylinder 44 ”flowing out to the reservoir 23.
  • the increase in the wheel cylinder pressure P w / c is Assuming that the master cylinder 32 is used as a hydraulic pressure source, if the pressure increase mode and the pressure reduction mode are repeatedly performed, the brake fluid in the master cylinder 32 gradually decreases, In some cases, so-called mass cylinders may be attached to the floor.
  • the brake pedal 3 1 is operated with the intention of emergency braking, and, when the brake pressing force F P is not sufficiently increased, forcing Ho Irushiri Nda ⁇ P w / Control to boost c is executed.
  • this control is referred to as brake assist control (BA control).
  • the brake pedal force F P is applied to the master cylinder 32.
  • the master cylinder pressure PM / C corresponding to P is generated.
  • a normal braking operation When a braking operation intended for emergency braking is performed
  • the master cylinder pressure P M / C changes more slowly compared to.
  • the master cylinder pressure P M / C generated by the normal braking operation has a lower convergence value than the master cylinder pressure P M / C generated by the braking operation intended for emergency braking.
  • the mass cylinder pressure P M / C detected by the fluid pressure sensor 40 is increased to a sufficiently large value at a rate of change exceeding a predetermined value and a sufficiently large value. In this case, it can be determined that the braking operation intended for emergency braking has been performed. Also, when the master cylinder pressure ⁇ / C shows a smaller change rate than the predetermined value after the braking operation is started, and when the convergence value of the master cylinder pressure PM / C does not reach the predetermined value. However, it can be determined that a braking operation intended for normal braking has been performed.
  • the mass cylinder pressure ⁇ / C (hereinafter, the value is referred to as a detection value S PM / C), which is the detection value of the hydraulic pressure sensor 40, and the change rate ASP M / C thereof are
  • a detection value S PM / C which is the detection value of the hydraulic pressure sensor 40
  • the change rate ASP M / C thereof are
  • execution conditions of BA control are collectively referred to as execution conditions of BA control.
  • ECU 20 determines that the BA control execution condition has been satisfied. After determining that the BA control execution conditions are satisfied, the ECU 20 uses the accumulator 25 as the hydraulic pressure source, and the wheel cylinder pressure P W / is higher than the master cylinder pressure PM / C as the hydraulic pressure source. It is determined whether or not a situation has been established that is advantageous for rapidly increasing C. As a result, if a situation is formed in which it is more advantageous to use the accumulator 25 as the hydraulic pressure source, it is determined that the ECU 20 has reached the BA control start timing.
  • ECU 20 determines that the BA control start timing has arrived If, STR 2 8, S A- 4 6. SA -! 2 4 8 and SA - 3 5 4 with respect to output a driving signal.
  • the STR 28 is turned on in response to the drive signal, the third hydraulic passage 42 and the high-pressure passage 26 are directly connected. In this case, the accumulator pressure P ACC is guided to the third hydraulic passage 42. Further, by receiving the drive signal S alpha-, 4 6 and SA - 2 4 8 When is O emissions state, Hoirushiri Sunda 4 4 FR and 4 4 FL, respectively pressure adjusting fluid pressure passage 5 6 and 6 2 Is communicated to.
  • S A- 3 5 4 receives the drive signal is turned on, the upstream side of the SR RH 6 8 and SRLH 7 0 is communicated to the third fluid pressure passage 4 2.
  • all the foil cylinders 44 "communicate with the respective holding solenoids S, * H and the respective decompression solenoids S ** R, and are upstream of all the holding solenoids S" H.
  • a state where ACC is led is formed.
  • the wheel cylinder pressure P w / C of all the wheel cylinders 44 ** is independent of the magnitude of the brake depression force FP. Can be rapidly increased. Therefore, according to the system of this embodiment, even if the driver is a beginner, a large braking force can be quickly generated after a situation in which emergency braking is required occurs.
  • the master cylinder pressure P M / C is a value corresponding to the brake depression force FP. Therefore, the ECU 20 monitors the output signal of the master cylinder pressure PM / C detected by the hydraulic pressure sensor 40 to easily determine whether or not the depression of the brake pedal 31 has been released. You can judge. When it detects the release of the brake pedal 3 1 of depression, ECU 2 0 is, S TR 2 8, SA-, 4 6, and stops supplying the drive signal to SA- 2 4 8, and S A- 3 5 4 To realize the normal control execution state. As described above, according to the system of the present embodiment, the BA control can be surely terminated with the termination of the braking operation.
  • the brake fluid is supplied from the pump 21 and the accumulator 25 to the wheel cylinder 44 by the wheel cylinder pressure P w / c.
  • the brake fluid in the wheel cylinder 44 * flows into the reservoir tank 23, and the pressure is reduced. Therefore, Even if the pressure-increasing mode and the pressure-reducing mode are repeatedly performed, the so-called master cylinder 32 does not have a floor.
  • FIG. 3 shows a pressure rise curve of the foil cylinder pressure P w / C realized when the hydraulic pressure source for storing pressure is conducted to the foil cylinder 4 4 ⁇ ⁇ .
  • Figure 3 ⁇ rather than shown, Hoirushiri Nda ⁇ P w / c of Hoirushiri Sunda 4 4 - *, after soaring after the time t 5, pressure P. while loosening the rate of increase Converges to At this time, the pressure increasing gradient dP / dt of the wheel cylinder pressure PW / C in the steep rising section is the pressure P.
  • the pressure increases as the pressure increases, and as the hydraulic pressure storage amount of the hydraulic pressure source increases, that is, as the hydraulic pressure supply capacity of the hydraulic pressure source increases.
  • FIG. 4 shows the pressure increase gradient dB / dt of the wheel cylinder pressure P w / C realized by the wheel cylinders 44 RL and 44 RR of the left and right rear wheels RL and RR.
  • the broken line shown by the broken line in FIG. 4 represents the pressure increase gradient dB / dt realized when a sudden braking operation is performed during normal control.
  • the broken line shown by a solid line, the broken line shown by a dashed line, and the broken line shown by a two-dot chain line in FIG. 4 indicate the BA control when ABS control is not performed for all foil cylinders 44, respectively.
  • Pressure increase gradient dB / dt which is realized when the control is started
  • the pressure increase gradient dB / dt which is realized when the BA control is started under the condition that the ABS control is executed for one front wheel
  • the graph also shows the pressure increase gradient dB / dt realized when BA control is started under the condition that ABS control is being performed on two front wheels.
  • the region where the slope is almost “0” corresponds to the region where the wheel cylinder pressure Pw / c is rapidly increased after the wheel cylinder pressure Pw / c starts to increase. I do.
  • the region having a negative slope indicates the region where the wheel cylinder pressure is high and the pressure is approaching and converging to the hydraulic pressure of the hydraulic pressure source.
  • the rear wheel cylinder pressure pulp / c shows a larger pressure increase gradient dB / dt during BA control than under normal control.
  • ABS control is performed by one front wheel before the BA control is started, compared to when ABS control is not performed for all wheel cylinders 44 *.
  • the foil cylinder 44 ** which is to be controlled by the ABS control, is maintained in a state substantially separated from the hydraulic pressure source. Therefore, if ABS control is started for one wheel of the front when BA control is started, accumulator pressure P reaches the wheel cylinder of one wheel after BA control is started. do not do.
  • the brake fluid flowing out of the accumulator 25 is a wheel cylinder 44 of the left and right rear wheels RL and RR, and a wheel cylinder 4 of the RL and RR and the front wheel 4 4 FL or 4 FL. 4 Supplied to FR only.
  • this case is referred to as a three-wheel pressure increase case.
  • the accumulator pressure P ACC reaches the wheel cylinder for the front two wheels after the BA control is started. do not do.
  • the brake fluid flowing out of the accumulator 25 after the BA control is started is supplied only to the wheel cylinders 44 RL, RR of the left and right rear wheels RL, RR.
  • this case is referred to as a two-wheel pressure increase case.
  • the accumulator 25 stores brake fluid sufficient to quickly raise the pressure of the four wheel cylinders 44 ". If the brake fluid can flow into the foil cylinder 4 4 of the The pressure rises more rapidly in the wheel cylinders 44 ** of the left and right rear wheels RL and RR than in the case of a four-wheel pressure booster. Similarly, in the case of two-wheel pressure boosting, a more rapid pressure rise occurs in the wheel cylinders 44 of the left and right rear wheels RL and RR receiving the supply of brake fluid than in the case of three-wheel pressure boosting.
  • Figure 5 shows the change in the wheel cylinder pressure P W / c realized in the rear wheel wheel cylinder 44 RL (same for 44 RR) as the two-wheel or three-wheel pressure is increased. Is shown.
  • the change in the wheel cylinder pressure Pw / c shown in FIG. 5 indicates that the brake operation is started at time t s , the BA control by the two-wheel or three-wheel pressure increase is started at time t 7, 8 is realized when it is determined that the ABS cylinder execution condition is satisfied for the wheel cylinder 44RL.
  • E UC 10 sets the initial depressurization time to a relatively long time when the execution condition of the ABS control is satisfied and a sudden increase in the slip rate accompanies. Therefore, when an overshoot of the wheel cylinder pressure Pw / c occurs as shown in FIG. 5, immediately after the ABS control is started, the ECU 20 enters the decompression mode for a relatively long time. Execute.
  • the wheel cylinder pressure Pw / c of the wheel cylinder 44 RL is transiently reduced to a small pressure, and the braking force generated by the rear wheel RL becomes an improperly small value.
  • the BA control is started.
  • ABS control has already been started on one of the front wheels or two of the front wheels, after the ABS control has been started on the rear wheels RL and RR following the BA control, then on the rear wheels RL and RR.
  • a phenomenon in which the generated braking force is temporarily insufficient hereinafter, this phenomenon is referred to as a G-drop phenomenon may occur.
  • the braking force control device is characterized in that such a G drop phenomenon is prevented from occurring when the BS control is started.
  • the above-described G-missing phenomenon can also occur when the ABS control is being performed on the rear wheels RL and RR at the time when the BA control is started. That is, if the ABS control is performed for one or two wheels at the rear before the BA control is started, the wheel cylinders 44 FL, FR of the front wheels FL, FR are simultaneously applied to the BA control when the BA control is started. In this case, an overshoot of the wheel cylinder pressure P w / C occurs.
  • the process for preventing the loss of G is executed only when the ABS control has been started for the front wheels FL and FR prior to the execution of the BA control.
  • Fig. 6 shows the control loop executed by the ECU 20 to realize the above functions.
  • 3 shows a flowchart of the chin.
  • the routine shown in FIG. 6 is a periodic interrupt routine that is started at predetermined time intervals. When this routine is started, the process of step 100 is executed.
  • step 100 it is determined whether or not the BA control is being executed.
  • the ECU 20 determines that the BA control is being executed when the STR 28 is in the ON state.
  • This routine is for preventing the wheel cylinder pressure Pw / c of the rear wheels RL and RR from being overshot at the start of the BA control. Therefore, if the BA control has already been started, there is no benefit to proceed with the processing of this routine. Therefore, if the above determination is made, the current routine ends without any further processing.
  • the process of step 102 is executed.
  • step 102 it is determined whether or not the BA control start timing has arrived. As a result, if it is determined that the BA control start timing has not yet arrived, the routine is terminated without any further processing. On the other hand, if it is determined that the BA control start timing has arrived, the process of step 104 is performed next.
  • step 104 it is determined whether or not the ABS control is being performed on at least one of the two front wheels. Specifically, whether one be a least one of S A- i 6 and S A- 2 4 8 it is a O emissions state is determined. If the above conditions are not satisfied, it can be determined that even if the BA control is started, the wheel cylinder pressure P w / c of the rear wheels RL and RR does not unduly sharply increase. In this case, after the normal BA control is started in step 106, the current routine ends.
  • step 104 if it is determined in step 104 above that ABS control has been executed for at least one of the two front wheels, BA After the control is started, it can be determined that there is a possibility that the wheel cylinder pressure P w / C of the rear wheels RL and RR is rapidly increased and unduly overshot. For this reason, when such a determination is made, an overshoot of the wheel cylinder pressure P w / c of the rear wheels RL, RR should be prevented, and then the processing of step 108 is executed.
  • step 108 the BA gradient suppression control is started.
  • the wheel cylinders 44 of the rear wheels RL and RR, and the SRRH 60 and SR LH 70 communicating with the RL and RR are cycled for a predetermined period This is achieved by turning off the power.
  • the wheel cylinders 44 RL, RR of the rear wheels RL, RR and the accumulator 25 become conductive. If SRRH 60 and SR LH 70 are turned on and off periodically in such a situation, the accumulation 25 and the foil cylinders 44 RL and 44 RR are intermittently shut off.
  • step 108 the current routine is completed.
  • FIG. 7 shows a change in the wheel cylinder pressure P w / C realized in the rear wheel foil cylinder 44 RL (the same applies to 44 RR) by performing the above processing. Note that the change in the wheel cylinder pressure P w / C indicated by the one-dot chain line in FIG. 7 is the same as the characteristic diagram shown in FIG. 5 above, and the wheel cylinder pressure P w realized when the BA gradient suppression control is not executed. Shows / C change.
  • the time t, after the ABS control is started change shown by the solid line, the brake operation at time t 9 is started, at least the front one wheel in FIG.
  • the BA gradient suppression control is started at time t, and at time t n , it is determined that the execution condition of the ABS control for the foil cylinder 44RL is satisfied. Is realized when
  • the BA gradient suppression control even if the ABS control is started for one or two front wheels at the time when the execution condition of the BA control is satisfied, the wheel cylinder pressure Pw of the rear wheels RL and RR is obtained. / c can be gradually increased. For this reason, when the BA gradient suppression control is executed, the wheel cylinder pressure P w / C of the rear wheels RL, RR does not overshoot significantly exceeding the ABS operating oil pressure. Further, if occurs over one chute to Hoirushiri Nda ⁇ P w / C, the rear wheels RL, after the ABS control is started for the RR, that the wheel Siri Nda ⁇ P w / C is decreased excessively Absent.
  • the braking force control device of the present embodiment if the execution condition of the BA control is satisfied after the ABS control is started for one or two wheels of the front, G escape occurs. Can be prevented. Therefore, according to the braking force control device of the present embodiment, good controllability can always be maintained.
  • the braking force control executed before the BA control is started is limited to the ABS control, but the present invention is not limited to this. That is, the present invention is also applicable to a case where another control hydraulic pressure reduction control for controlling the wheel cylinder pressure P w / C in a state where the hydraulic pressure inflow path of the foil cylinder is shut off is used instead of the ABS control. Is possible.
  • the present invention is not limited to this. It is not limited. That is, if brake fluid pressure reduction control such as ABS control is being performed on any of the wheel cylinders, BA gradient suppression control should be performed on the other wheel cylinders.
  • the hydraulic pressure control passages 56 and 62 correspond to the “hydraulic pressure inflow path”, and the ABS control corresponds to the “brake hydraulic pressure reduction control”.
  • the ECU 20 executes the processing of the above step 104, and the continuity detecting means is performed.
  • the ECU 20 executes the processing of the above step 108, so that the hydraulic pressure is detected. Inflow suppression means are realized respectively.
  • the braking force control device is realized by causing the ECU 20 to execute the routine shown in FIG. 8 instead of the routine shown in FIG. 6 in the system shown in FIG.
  • the braking force control device is configured such that, when the ABS control is performed on at least one front wheel before the execution condition of the BA control is satisfied, the wheel cylinder associated with the start of the BA control is controlled.
  • the overshoot of the wheel cylinder pressure Pw / c is suppressed by reducing the rate of increase of Pw / c.
  • the BA control is a control executed for the purpose of quickly raising the wheel cylinder pressure Pw / c when an operation requesting an emergency brake is performed.
  • a technique of the first embodiment described above is employed, c present embodiment are contradictory with BA control original purpose, one wheel of least front even prior to the execution conditions of the BA control is established
  • the feature is that when the ABS control is started, the overshoot of the wheel cylinder pressure Pw / C is prevented without reducing the rate of increase of the wheel cylinder pressure Pw / c accompanying the start of the BA control. Have.
  • FIG. 8 shows a flowchart of an example of a routine executed by the ECU 20 to realize the above functions.
  • This routine is a routine that is executed to determine when to start the ABS control for the rear wheels RL and RR.
  • This routine is a periodic interrupt routine that is started every predetermined time. When this routine is started, the processing of step 110 is executed.
  • step 110 it is determined whether the BA control is being performed. Specifically, it is determined whether or not STR 28 is on. You. As a result, when it is determined that STR 28 is in the off state, it is determined that BA control is not being performed. In this case, the process of step 120 is executed next.
  • step 120 it is determined whether or not the slip amount of the rear wheels RL, RR is greater than a predetermined value ⁇ ,. ⁇ , is the slip amount immediately before the wheel goes into the locked state. If it is determined that the slip amount of the rear wheels RL, RR exceeds ⁇ , as a result of the above determination, it is determined that the ABS control should be started for the rear wheels RL, RR. In this case, the process of step 122 is executed next. On the other hand, if it is determined in step 120 that the slip amount of the rear wheels RL and RR is equal to or smaller than ⁇ V, it is determined that it is not necessary to start the ABS control, and the current processing ends. Is done.
  • step 122 a process for starting the normal ABS control is executed. After the processing of this step 122 is executed, the above-described ABS control, that is, the processing of (2) depressurization mode— (3) hold mode (1) pressure increase mode— (4) repetition of the slow pressure increase mode starts. Is done. When the processing in step 122 is completed, the current routine is completed.
  • step 110 if it is determined that the BA control is being executed, that is, if the STR 28 is in the ON state, then the processing of step 112 is executed.
  • step 1 1 2 whether the ABS control for at least one wheel of the front 2 wheels are running, i.e., S alpha-, 4 6 and SA - 2 4 8 least also for the one is turned on Is determined.
  • the processing of step 120 is executed in order to determine the execution of the ABS control under normal conditions.
  • step 1 1 and 2 at least one of the two front wheels If it is determined that the ABS control is being performed on the wheels, the wheel cylinder pressures P and c of the rear wheels RL and RR increase sharply as compared with normal times due to the execution of the BA control. It can be determined that. In this case, the process of step 114 is performed next.
  • step 114 it is determined whether or not the slip amount of the rear wheels RL, RR is larger than a predetermined value ⁇ 2.
  • ⁇ 2 is a smaller value than the threshold value ⁇ , used in the above step 120, that is, a smaller value than the slip amount at which the wheel shifts to the licking state.
  • the rear wheels RL when the Slip amount of RR is determined to be .DELTA..nu 2 or less, yet the rear wheels RL, Hoirushiri Nda ⁇ P w / c ratio to ABS hydraulic pressure of the RR C In this case, the current routine is terminated without any further processing.
  • step 1 1 4 when the rear wheels RL, is Slip amount of RR is determined to exceed the ⁇ V 2, the rear wheels RL, is Hoirushi Li Nda ⁇ P w / C of RR ABS It can be determined that the pressure has increased to near the working oil pressure. In this case, the processing of step 116 is executed next.
  • step 116 it is determined whether or not the ABS control for the rear wheels RL, RR has already been started. If it is determined that the ABS control for the rear wheels RL and RR has not been started yet, the boosting characteristic of the wheel cylinder pressure Pw / c of the rear wheels RL and RR is controlled by the BA control. It can be determined that the pressure P w / C is rapidly increased. In this case, the process of step 118 is executed next.
  • step 1 16 if it is determined in step 1 16 that the ABS control for the rear wheels RL and RR has already been started, the boost characteristic of the wheel cylinder pressure Pw / c of the rear wheels RL and RR is changed by the ABS control. Is dominated, that is, its foil cylinder pressure Pvv / c no longer You can judge that it is not. In this case, the process of step 120 is then performed to continue the normal ABS control.
  • step 118 processing for starting the first specific ABS control is performed.
  • the execution time of the decompression mode which is executed immediately after the start of the ABS control, is longer than the execution time of the decompression mode, which is normally executed during the ABS control.
  • the wheel cylinder pressure Pw / c of the rear wheels RL and RR can be greatly reduced as compared with the normal ABS control.
  • the current routine is completed. According to the above processing, even if the ABS control has been started for at least one front wheel prior to the start of the BA control, the slip of the rear wheels RL and RR is started after the BA control is started.
  • the rear wheels RL, the Hoirushiri Nda ⁇ P w / C of the RR can be sharply boosted.
  • the wheel cylinder pressure Pw / C is increased to a value close to the ABS operating oil pressure
  • the wheel cylinder pressure Pw / c of the rear wheels RL and RR is reduced by the first specific ABS control at that time. Can be started.
  • the pressure reducing mode is maintained for a long time, so that the rapidly raised wheel cylinder pressure P w / C can be reduced appropriately. Therefore, according to the braking force control device of the present embodiment, it is possible to reliably prevent the wheel cylinder pressure Pw / c of the rear wheels RL and RR from overshooting after the BA control is started.
  • FIG. 9 shows a change in the wheel cylinder pressure P w / C realized in the rear wheel foil cylinder 44 RL (the same applies to 44 RR) by performing the above processing.
  • the change in the wheel cylinder pressure Pw / c indicated by the dashed line in FIG. 9 is similar to the characteristic diagram shown in FIG. 5 above when the normal BA control is started and then the normal ABS control is started. It shows the change in foil cylinder pressure P w / C realized in this case.
  • the braking operation is started at time t 12, After the ABS control is started for the front one wheel at least, is BA control starts at the time t 13, further time t 14, the execution condition of the first specific ABS control is established about Hoirushiri Sunda 4 RL, Sunawa Chi, Slip amount of the rear wheels RL is realized when it is determined to exceed the AV 2.
  • the wheel cylinder pressure P w / C of the wheel cylinder 44 RL can be reduced earlier and largely than in the case of the normal ABS control.
  • an overshoot that greatly exceeds the ABS operating oil pressure does not occur in the wheel cylinder pressure P w / C of the rear wheels RL and RR.
  • excellent controllability is maintained when the BA control execution condition is satisfied after the ABS control is started for one or two front wheels. can do.
  • the braking force control executed before the BA control is started is limited to the ABS control, but the present invention is not limited to this. That is, in the present invention, instead of the ABS control, first, the wheel cylinder pressure P w / C is reduced in a state where the hydraulic pressure inflow path of the foil cylinder is shut off, and then another braking fluid for executing a desired hydraulic pressure control is performed. It is also applicable when pressure control is used.
  • the present invention can be applied to a case where the brake fluid pressure control such as the ABS control is performed for any one of the wheel cylinders and the first specific ABS control is performed for the other wheel cylinder.
  • the slip amount of the wheel corresponds to the “characteristic value relating to the slip state of the wheel”
  • the hydraulic pressure control passages 56 and 62 correspond to the “hydraulic inflow path”.
  • the control corresponds to the "braking fluid pressure control”
  • the control for realizing the decompression mode for the first time during the ABS control corresponds to the "intimidation control”
  • the ECU 20 performs the processing of the above steps 112.
  • the “conduction detecting means” is realized, and the ECU 20 executes the processing of the above step 118 to realize “threshold changing means” and “pressure reduction changing means”.
  • the braking force control device is configured such that, in the system configuration shown in FIG. 1, the ECU 20 is replaced with the routine shown in FIG. 6 or FIG. 8 or the routine shown in FIG. 6 or FIG. This is realized by executing the control routine shown in FIG.
  • the pressure increase gradient of the wheel cylinder pressure P W / c due to the execution of the ABS control is determined by the hydraulic pressure of the hydraulic pressure source that supplies the hydraulic pressure to the wheel cylinder 44 ”(that is, the regulator pressure P PRE or the accumulator pressure P ACC). ) And the wheel cylinder pressure Pw / c, the effective diameter of the hydraulic passage and the solenoid valve, and the opening time of the holding solenoids S and * H, etc.
  • BA control is not executed
  • the characteristics of the hydraulic pressure source and the hydraulic passage do not change.In such a system, the contents of the ABS control are tuned on the assumption that those characteristics are fixed.
  • the braking force control device of the present embodiment is characterized in that the above functions are realized by changing the setting conditions of the ABS control according to the execution state of the BA control.
  • FIG. 10 shows changes in the hydraulic pressure source and the pressure increase characteristics due to the execution and stoppage of the BA control in the system shown in FIG.
  • the regulator 27 is a hydraulic pressure source during ABS control.
  • the hydraulic discharge capacity of the regulator 27, the characteristics of the passage connecting the regulator 27 to the third hydraulic passage 42, and the third hydraulic passage 4 (2) Pressure boosting characteristics according to the downstream characteristics (hereinafter, this pressure boosting characteristic is referred to as characteristic (2)) are realized.
  • the accumulator 25 is a hydraulic pressure source during the ABS control.
  • the hydraulic discharge capacity of the pump 21 and the accumulator 25 the characteristics of the passage from the accumulator 25 to the third hydraulic passage 42, and the third hydraulic passage 4 (2)
  • the pressure increasing characteristic according to the downstream characteristics (hereinafter, this pressure increasing characteristic is referred to as characteristic I) is realized.
  • FIG. 11 shows a flowchart of an example of a control routine executed by the ECU 20 so as to make the characteristics 1 and 2 identical.
  • This routine is a periodic interrupt routine that is started every predetermined time. When this routine is started, first, the processing of step 130 is executed.
  • step 130 it is determined whether the BA control is being executed.
  • the above determination is made based on the state of the STR 28. Specifically, when the STR 28 is in the off state, the BA control is not executed, and the STR 28 is in the on state. In this case, it is determined that the BA control is being executed. If it is determined that the BA control has not been performed, the process of step 1332 is performed next. On the other hand, if it is determined that the BA control is being performed, the process of step 13 is performed next.
  • step 132 a process is performed with the driving condition of the ABS control as condition (2).
  • the condition 1 is a condition for setting the characteristic 1 to a desired pressure increasing gradient in the case of communication with the third hydraulic passage 42 via the regulation hydraulic passage 30, the control hydraulic passage 30 and the STR 28. It is.
  • the current routine is completed.
  • the ABS control is thereafter executed according to the condition (2).
  • step 134 a process is executed in which the driving condition of the ABS control is the condition (2).
  • Condition 2 is a condition for setting the characteristic ⁇ ⁇ ⁇ to a desired pressure increasing gradient when communicating with the third hydraulic pressure passage 42 via the accumulator 25, the high-pressure passage 26, and the STR 28. is there.
  • the current routine is completed.
  • the ABS control is thereafter executed according to the condition (2).
  • the wheel cylinder pressure P w / c is always increased with the desired pressure increasing characteristic in accordance with the execution of the ABS control. Becomes possible. For this reason, according to the braking force control device of the present embodiment, it is possible to avoid the inconvenience that the controllability of the ABS control deteriorates with the execution of the BA control.
  • the driving pattern of the holding solenoid S ** H is determined by the conditions (1) and (2). More specifically, two types of maps that determine the driving pattern of the holding solenoid S ** H are prepared, and which of the maps is used under the conditions 1 and 2 is determined.
  • the method of switching the driving pattern of the holding solenoid S ** H is not limited to this, but depends on whether or not to correct the reference map. Alternatively, the drive pattern may be switched.
  • the contents to be determined by the conditions (1) and (2) are limited to the driving pattern of the holding solenoid S ** H.
  • the present invention is not limited to this.
  • the same pressure increase gradient may be realized during execution of the BA control and during non-execution of the BA control by changing the characteristics of the hydraulic pressure source.
  • the fourth exemplary pump-up type brake force control apparatus according to an example of the present invention (hereinafter, simply referred to as a brake force control apparatus) c braking force control apparatus of the present embodiment showing a system configuration diagram of front
  • This device is suitable as a braking force control device for engines and rear drive type vehicles (FR vehicles).
  • the braking force control device of the present embodiment is controlled by an electronic control unit 210 (hereinafter, referred to as ECU 210).
  • the braking force control device includes a brake pedal 2 1 2. In the vicinity of the brake pedal 211, a brake switch 214 is provided. The brake switch 2 14 outputs an ON signal when the brake pedal 2 12 is depressed. The output signal of the brake switch 2 14 is supplied to the ECU 210. The ECU 210 determines whether or not the brake pedal 2 12 is depressed based on the output signal of the brake switch 2 14.
  • the brake pedal 2 12 is connected to the vacuum booster 2 16.
  • the vacuum booster 216 is fixed to the master cylinder 218.
  • the vacuum booster 2 16 When the brake pedal 2 12 is depressed, the vacuum booster 2 16 generates an assist force Fa having a predetermined boosting ratio with respect to the brake depression force F.
  • the mass cylinder 218 is a conventional master cylinder of a central valve type, and has a first hydraulic chamber 220 and a second hydraulic chamber 222 inside thereof.
  • the first hydraulic chamber 222 and the second hydraulic chamber 222 have the brake depression force F
  • the master cylinder pressure P M / C is generated according to the resultant force with the assist force Fa.o
  • a reservoir tank 224 is provided above the master cylinder 218.
  • a front reservoir passage 226 and a reservoir reservoir 228 communicate with the reservoir tank 224.
  • a front reservoir cut solenoid 230 (hereinafter referred to as SRCF 230) communicates with the front reservoir passage 226.
  • SRCR 232 a reservoir reservoir solenoid 2 32 (hereinafter referred to as SRCR 232) communicates with the reservoir reservoir passage 228.
  • a front pump passage 234 communicates with the SRCF 230.
  • a rear pump passage 236 communicates with the SRCR 232.
  • the SRCF 230 shuts off the front reservoir passage 226 and the front pump passage 234 when turned off, and conducts them when turned on. It is a solenoid valve.
  • the SRCR 232 is a two-position solenoid valve that shuts off the rear reservoir passage 228 and the rear pump passage 236 when turned off and conducts them when turned on. It is.
  • a first hydraulic passage 238 and a second hydraulic passage 240 communicate with the first hydraulic chamber 220 and the second hydraulic chamber 222 of the master cylinder 218, respectively.
  • the first hydraulic pressure passage 238 has a right front mass cutoff nozzle 242 (hereinafter referred to as SMF R 242) and a left front master cut solenoid 244 (hereinafter SMF L 224). 4).
  • the second hydraulic passage 240 communicates with a rear mass cut solenoid 246 (hereinafter referred to as SMR 246).
  • the SMF R 242 communicates with a hydraulic passage 248 provided corresponding to the right front wheel FR. Similarly, a hydraulic passage 250 provided in correspondence with the left front wheel FL communicates with the SMF L 244. Further, the SMR 246 communicates with hydraulic passages 252 provided corresponding to the left and right rear wheels RL, RR. SMF R 244 2. Inside the SMF L 244 and SMR 246, constant pressure release valves 254, 258 and 258 are provided, respectively. The S MF R 242 makes the first hydraulic passage 238 and the hydraulic passage 248 conductive when turned off, and the constant pressure release valve 2 when turned on. This is a two-position solenoid valve that communicates the first hydraulic pressure passage 238 and the hydraulic pressure passage 248 via 54.
  • the SMF L 242 puts the first hydraulic passage 238 and the hydraulic passage 250 in a conductive state when the state is turned off, and a constant pressure release valve when the state is turned on.
  • This is a two-position solenoid valve that connects the first hydraulic passage 2 388 and the hydraulic passage 250 via the second and fifth hydraulic passages.
  • the SMR 246 is turned off, the second hydraulic passage 240 and the hydraulic passage 252 are connected to each other, and when the SMR 246 is turned on, the constant pressure release valve 2 is connected.
  • first hydraulic passage 238 and the hydraulic passage 248 Between the first hydraulic passage 238 and the hydraulic passage 248, only fluid flowing from the first hydraulic passage 238 to the hydraulic passage 248 is allowed.
  • a check valve 260 is provided between the first hydraulic passage 238 and the hydraulic passage 250 and between the second hydraulic passage 240 and the hydraulic passage 252, the first hydraulic passage is provided.
  • Check valve 2 62 that allows only fluid flow from passage 2 380 to hydraulic passage 250, and second hydraulic passage 240 to hydraulic passage 252
  • a check valve 26 4 is provided to allow only the flow of the fluid to flow.
  • a hydraulic passageway 248 corresponding to the right front wheel FR communicates with a right front wheel holding solenoid 2666 (hereinafter referred to as SF RH266).
  • the hydraulic passage 250 corresponding to the left front wheel FL has a left front wheel holding solenoid 268 (hereinafter referred to as SF LH 268).
  • the hydraulic passages 25 2 have a right rear wheel holding solenoid 270 (hereinafter, S RRH 270) and a left rear wheel holding solenoid 272 (hereinafter, SRLH 272). Power, each communicates.
  • S RRH 270 right rear wheel holding solenoid 270
  • SRLH 272 left rear wheel holding solenoid 272
  • the right front wheel decompression solenoid 274 (hereinafter referred to as SFRR 274) communicates with the SF RH 266.
  • SFLH 268, SRRH 270 and SRLH 272 have left front wheel decompression solenoids 276 (hereinafter referred to as SF LR 276) and right rear wheel decompression solenoids 2 respectively.
  • 780 (hereinafter referred to as SRRR 278) and left rear wheel decompression solenoid 280 (hereinafter referred to as SRLR 280) communicate with each other.
  • SRLR 280 left rear wheel decompression solenoid S ** R”.
  • the wheel cylinder 282 of the right front wheel FR communicates with the SFR H266.
  • the wheel cylinder 284 of the left front wheel FL is on the SFLH 268,
  • the wheel cylinder 286 of the right rear wheel RR is on the SR RH270, and the left is the wheel cylinder 268 on the right rear wheel RR.
  • the wheel cylinders 288 of the rear wheel RL communicate with each other.
  • the hydraulic passage 2 48 and the foil cylinder 28 2 are bypassed from the foil cylinder 28 2 by bypassing the SFRH 266.
  • a check valve 290 is provided to allow fluid flow to 4.8. Similarly, between the hydraulic passage 250 and the foil cylinder 2884, between the hydraulic passage 25 and the foil cylinder 2886, and the hydraulic passage 2
  • Non-return valves 292, 2 permit flow of fluid that bypasses SFLH 268, SRRH 270 and SR LH 272, respectively, between 52 and foil cylinder 288. 9 4 and 2 9 6 are provided.
  • the SFRH 266 makes the hydraulic passage 248 and the foil cylinder 282 conductive when turned off, and the hydraulic passage 248 and the foil cylinder when turned on.
  • This is a 2-position solenoid valve that shuts off 282.
  • SF LH 268 and S RRH 270 and 31 3 ⁇ 4 1 ⁇ 272 are respectively turned on so that the paths connecting the hydraulic pressure passage 250 and the wheel synthesizer 284 are formed.
  • a front pressure reducing passageway 298 communicates with the pressure reducing solenoids SFR R274 and SFLR274 of the left and right front wheels.
  • a rear decompression passageway 300 communicates with decompression solenoids SRRRR278 and SRLR280 of the left and right rear wheels.
  • the front pressure reducing passageway 298 and the rear pressure reducing passageway 300 communicate with a front reservoir 302 and a rear reservoir 304, respectively.
  • the front pressure reducing passageway 298 and the rear pressure reducing passageway 300 are respectively connected to the suction side of the front pump 310 and the rear pump 3 via check valves 306 and 308, respectively. It communicates with the suction side of 12.
  • the discharge side of the front pump 310 and the discharge side of the rear pump 31 are in communication with dampers 31 and 316 for absorbing the pulsation of the discharge pressure.
  • the dambar 3 14 is in communication with a right front pump passage 3 18 provided corresponding to the right front wheel FR and a left front pump passage 3 20 provided corresponding to the left front wheel FL.
  • the dambar 316 communicates with the hydraulic passage 252.
  • the right front pump passage 318 communicates with the hydraulic passage 248 via a right front pump solenoid 322 (hereinafter referred to as SPFL 322). Further, the left front pump passage 320 communicates with the hydraulic passage 250 through a left front pump solenoid 324 (hereinafter, referred to as SPFR 324).
  • the SPFL 322 is in a position where the right front pump passage 318 and the hydraulic pressure passage 248 are brought into conduction when turned off, and shut off when turned on. Solenoid valve.
  • the SPFR 324 is turned off, the left front pump passage 320 and the hydraulic passage 250 are brought into conduction, and when turned on, the SPFR 324 turns them off.
  • a 2-position solenoid valve is used to control the SPFR 324.
  • a constant pressure release valve 326 that allows only the flow of fluid from the hydraulic passage 248 to the right front pump passage 318 is provided. It is arranged.
  • hydraulic passage 2 50 A constant pressure release valve 328 that allows only the flow of the fluid from the hydraulic pressure passage 250 to the left front pump passage 320 is provided between the hydraulic pump 250 and the left front pump passage 320. .
  • Wheel speed sensors 330, 332, 334, 336 are arranged near each wheel.
  • ECU 2 1 0 detects the rotational speed V W of each wheel based on the output signal of the wheel speed sensor 3 3 0-3 3 6.
  • a hydraulic sensor 338 is provided in the second hydraulic passage 240 communicating with the master cylinder 2 18.
  • the ECU 210 detects the mass cylinder pressure PM / C based on the output signal of the fluid pressure sensor 338.
  • the braking force control device of this embodiment realizes (1) the normal braking function, (2) the ABS function, and (3) the BA function by switching the state of various solenoid valves disposed in the hydraulic circuit.
  • the normal braking function is realized by turning off all the solenoid valves provided in the braking force control device as shown in Fig. 12.
  • the state shown in FIG. 12 is referred to as a normal brake state.
  • the control for realizing the normal brake function in the braking force control device is called normal brake control.
  • the wheel cylinders 282 and 284 of the left and right front wheels FL and FR are both connected to the first hydraulic pressure of the mass cylinder 218 via the first hydraulic pressure passage 238. It communicates with room 220.
  • the wheel cylinders 286 and 288 of the left and right rear wheels RL and RR communicate with the second hydraulic chamber 222 of the mass cylinder 218 via the second hydraulic pressure passage 240.
  • the foil cylinder pressure P W / C of the foil cylinders 282 to 288 is always controlled to be equal to the master cylinder pressure PM / C. Therefore, according to the state shown in FIG. 12, the normal braking function is realized.
  • ABS control the control for realizing the ABS function in the braking force control device.
  • the ECU 210 starts ABS control when the vehicle is in a braking state and an excessive slip rate is detected for any of the wheels.
  • the ABS control is started under the condition that the brake pedal 211 is depressed, that is, under the condition that the mass cylinder 218 generates the high mass cylinder pressure PM / C.
  • the master cylinder pressure P M / C is supplied via the first hydraulic passage 238 and the second hydraulic passage 240 to the hydraulic pressures respectively provided for the left and right front wheels. It is guided to passages 248 and 250 and to hydraulic passages 252 provided corresponding to the left and right rear wheels. Accordingly, when the holding solenoid S ** H is opened and the pressure reducing solenoid S ** R is closed under such a condition, the wheel cylinder pressure P w / c of each wheel is increased. be able to.
  • this state is referred to as (i) pressure increase mode.
  • the ECU 210 controls each wheel during the ABS control so that the above-described (i) boosting mode, (ii) holding mode, and (iii) depressurizing mode are appropriately realized for each wheel.
  • the holding solenoid S ** H and the pressure reducing solenoid S ** R are controlled according to the slip state.
  • the wheel cylinder pressure P w / C of all wheels is excessively large for the corresponding wheels. It is controlled to an appropriate pressure without generating a rate.
  • the braking force control device can realize the ABS function.
  • the brake fluid in the wheel cylinders 28 2 to 28 88, the front decompression passage 298 and the rear decompression passage 300 Through the front reservoir 302 and the rear reservoir 304.
  • the brake fluid flowing into the front reservoirs 302 and the rear reservoirs 30 is pumped by the front pumps 310 and the rear pumps 310 and supplied to the hydraulic passages 248, 250, 252. You.
  • a part of the brake fluid supplied to the hydraulic passages 248, 250, and 252 flows into the wheel cylinders 282 to 288 when the pressure increasing mode is performed in each wheel.
  • the remainder of the brake fluid flows into the mass cylinder 218 to compensate for the outflow of the brake fluid. Therefore, according to the present embodiment, an excessive stroke does not occur on the brake pedal 2 12 during execution of the ABS control.
  • FIGS. 13 to 15 show the state of the braking force control device for realizing the 3BA function.
  • the ECU 210 implements the BA function by appropriately realizing the states shown in FIGS. 13 to 15 after the driver performs a braking operation that requests a quick rise of the braking force, that is, an emergency braking operation.
  • BA control the control for realizing the BA function in the braking force control device.
  • FIG. 13 shows an assist pressure increasing state realized during the execution of the BA control.
  • the assist pressure increasing state is realized when it is necessary to increase the wheel cylinder pressure P w / C of each wheel during execution of the BA control.
  • the assist pressure increasing state during the BA control includes the reservoir cut solenoids SRCF 230, SR CR 232, and the mass cut solenoid SMF R 2. 4 2, SMF L 2 4 4, S MR 2 4 6 are turned on, and the front This is realized by turning on the pump 310 and the rear pump 312.
  • the brake fluid stored in the reservoir 224 is pumped up by the front pump 310 and the rear pump 312, and the hydraulic pressure is increased. It is supplied to passages 248, 250, 252.
  • the internal pressure of the hydraulic pressure passages 248, 250, and 252 exceeds the valve opening pressure of the constant pressure release valves 254, 255, and 258, and the master cylinder pressure increases. ⁇ ⁇ ⁇ ⁇ Until the pressure becomes higher than ⁇ / C, the flow of the brake fluid from the hydraulic passages 248, 250, 252 to the mass cylinder 218 will be SMF R 242, Blocked by SMF L 2 4 4 and SMR 2 4 6.
  • FIG. 14 shows the assist pressure holding state realized during the execution of the BA control.
  • the assist pressure holding state is realized when the wheel cylinder pressure Pw / c of each wheel needs to be held during the execution of the BA control.
  • the SRCF 230 and SRCR 232 are turned off, and the master cut solenoids SMF R2 42, SMF L 2 4 4 and SMR 2 4 6 are turned on as shown in Fig. 14. This can be realized by setting the front pump 310 and the rear pump 312 to the ON state.
  • the front pump 3 10 and the reservoir tank 2 24 and the rear pump 3 12 and the reservoir tank 2 24 4 power are applied to the SRCF 230 and SRCR 232, respectively. Therefore, it is shut off. Therefore, in the assist pressure holding state, no fluid is discharged from the front pump 310 and the rear pump 312 to the hydraulic passages 2488, 250, and 252.
  • the hydraulic pressure passages 248, 250, 250 force, SMF R 242, SMF L 244, and SMR 246 cause mass flow. Substantially decoupled from cylinder 218. For this reason, according to the assist pressure holding state shown in FIG. 14, the wheel cylinder pressures Pw / c of all the wheels can be held at a constant value.
  • FIG. 15 shows a reduced assist pressure state realized during the execution of the BA control.
  • the assist pressure reduction state is realized when it is necessary to reduce the wheel cylinder pressure Pw / c of each wheel during the execution of the BA control.
  • the assist pressure reduction state is realized by turning on the front pump 3 10 and the rear pump 3 2 as shown in FIG.
  • the front pump 310 and the rear pump 312 are separated from the reservoir tank 224. Therefore, no fluid is discharged from the front pump 310 and the rear pump 312 into the hydraulic passages 2488, 250, and 252. Further, in the assist pressure reduced state, the wheel cylinders 282-288 of each wheel and the master cylinder 2188 are in a conductive state. For this reason, if the axle pressure reduction state is realized, the wheel cylinder pressure P w / c of all wheels can be reduced using the master cylinder pressure PM as the lower limit. I
  • a start pressure increasing mode is executed.
  • the start pressure increase mode is realized by maintaining the assist pressure increase state shown in FIG. 13 during the predetermined pressure increase time T STA .
  • the wheel cylinder pressure P w / C of each wheel is set to the master cylinder pressure P M using the front pump 310 or the rear pump 312 as a hydraulic pressure source.
  • the pressure is increased to a pressure exceeding / C. Therefore, the wheel cylinder pressure Pw / c of each wheel is immediately increased to a pressure exceeding the mass cylinder pressure PM / C after the execution of the BA control.
  • the wheel cylinder pressure P w / c of each wheel can be quickly increased using the front pump 310 and the rear pump 312 as a hydraulic pressure source. Therefore, according to the above processing, the intention of the driver can be accurately reflected on the wheel cylinder pressure Pw / c.
  • the assist pressure reduction mode is executed.
  • the UU) assist pressure reduction mode is realized by maintaining the assist pressure reduction state shown in FIG. 15 described above. According to Assist pressure decreasing state, as described above, it is possible to quickly reduced pressure towards the Hoirushiri emissions Da pressure P w / C of each wheel to the mass evening Siri Nda ⁇ P M / C. Therefore, according to the above processing, the driver's intention can be accurately reflected on the wheel cylinder pressure P w / C.
  • the assist pressure holding mode is executed.
  • the assist pressure holding mode is realized by maintaining the assist pressure holding state shown in FIG. 14 described above. According to the assist pressure holding state, the wheel cylinder pressure Pw / c of each wheel can be maintained at a constant value as described above. Therefore, according to the above processing, the driver's intention can be accurately reflected on the wheel cylinder pressure Pw / c.
  • the assist pressure reduction mode is executed.
  • the assist pressure gradual increase mode is realized by repeating the assist pressure increasing state shown in FIG. 13 and the assist pressure holding state shown in FIG. 14 above.
  • the wheel cylinder pressure P w / C of each wheel can be increased stepwise using the front pump 310 and the rear pump 312 as a hydraulic pressure source. Therefore, according to the above processing, the driver's intention can be accurately reflected on the wheel cylinder pressure P w / C.
  • the (VI) assist pressure gradual decrease mode is executed.
  • the assist pressure moderation mode is realized by repeating the assist pressure reduction state shown in FIG. 15 and the assist pressure holding state shown in FIG. 14 described above.
  • Assist pressure moderation mode Then, the wheel cylinder pressure P w / C of each wheel can be reduced stepwise toward the master cylinder pressure PM / C. Therefore, according to the above processing, the driver's intention can be accurately reflected on the wheel cylinder pressure P w / C.
  • the wheel cylinder pressure Pw / c can be increased to a pressure higher than the mass cylinder EP M / c immediately after the driver performs the emergency braking operation, and
  • the boosted wheel cylinder pressure P w / C can be increased according to the driver's brake operation.
  • the braking force control device when the above-described BA control is started, the wheel cylinder pressure P w / C of each wheel is immediately increased, so that an excessive slip on any one of the wheels is achieved. In some cases, the rate may increase. In such a case, the ECU 210 starts control (BA + ABS control) for realizing both the BA function and the ABS function.
  • BA + ABS control control for realizing both the BA function and the ABS function.
  • the wheel cylinder pressure Pw / c of the ABS target wheel is increased by the ABS. It is necessary to reduce the wheel cylinder pressure P w / C of the non-ABS wheels toward the master cylinder pressure P M / C while controlling the pressure according to the control requirements.
  • this request is referred to as the assist pressure reduction ABS request.
  • the assist pressure decompression ABS request is executed for the ABS target wheel of the holding solenoid S ** H and the decompression solenoid S ** R while realizing the assist E decompression state shown in Fig. 15 above. This is realized by appropriately controlling the components corresponding to the requirements according to the ABS control requirements.
  • a state in which the above control is performed in the braking force control device is referred to as an assist pressure reduction ABS state.
  • the ABS pressure request is generated when the driver intends to reduce the braking force, that is, when it is not necessary to increase the wheel cylinder pressure Pw / c of any of the wheels.
  • the wheel cylinder pressure Pw / c of the ABS target wheel is increased by the ABS. It is necessary to increase the wheel cylinder pressure Pw / c of the non-ABS wheels in the region exceeding the master cylinder pressure P M / C while controlling the pressure according to the control requirements.
  • this requirement is referred to as an assist pressure increase ABS requirement.
  • the APS request for the assist pressure increase ABS applies to the ABS target of the holding solenoid S ** H and the pressure reduction solenoid S ** R while realizing the assist pressure increase state shown in Fig. 13 above. It can also be realized by controlling the wheel corresponding to the ABS control request. That is, for example, when the left front wheel FL is an ABS target wheel, the SFLH 268 and SF LR 276 are controlled according to the ABS control request while achieving the assist pressure increasing state shown in FIG.
  • the left front wheel FL wheel While controlling the Rushiri Nda ⁇ P w / C pressure corresponding to the requirements of the ABS control, the other wheels FR, RL, the Hoirushiri Nda ⁇ P w / C of RR mass evening than in silicon Nda ⁇ P M / C Pressure can be increased in a high region.
  • the holding solenoid SFLH 268 corresponding to the left front wheel FL is thereafter operated for the left front wheel FL except for a short time when the pressure increase mode is executed.
  • the valve is closed. For this reason, after the ABS control is started for the left front wheel FL, most of the brake fluid discharged from the front pump 310 flows into the wheel cylinder 282 of the right front wheel FR which is a non-ABS wheel.
  • the discharge capacity of the front pump 310 is set so that the wheel cylinder pressures Pw / c of the left and right front wheels FL and FR can be simultaneously increased with an appropriate pressure increasing gradient. For this reason, under the condition that most of the brake fluid discharged from the front pump 310 flows into the wheel cylinder 282 of the right front wheel FR, which is a wheel not subject to ABS, the wheel cylinder pressure Pw of the right front wheel FR An excessive pressure gradient occurs at / c.
  • Fig. 16 shows the state realized by the braking force control device when the ABS request is made with the left front wheel FL as the ABS target wheel (hereinafter referred to as the assist pressure boost ABS state).
  • the assist pressure increase ABS state in which the front left wheel FL is set as the ABS target wheel is realized by controlling the braking force control device so that the following conditions (a) to (d) are satisfied.
  • the front reservoir cut solenoid SRCF 230 which is turned on in the assist pressure increasing state shown in FIG. 13 is turned off. Specifically, (a-1) the reservoir cut solenoid SRCR 232, and the mass cut solenoid SMFR 242, SMF L 244 and SMR 246 are turned on, and (A-2) Turn on the front pump 310 and the rear pump 312.
  • the holding solenoid SF LH 268 and the pressure reducing solenoid SFLR 276 of the left front wheel FL, which is the ABS target wheel, are controlled as follows in accordance with the ABS control request.
  • B-1 When (ii) holding mode and (iii) decompression mode are required by ABS control, control is performed in the same manner as when ABS control is executed alone.
  • B-2 When the ABS control requires execution of (i) the pressure increase mode, the pressure increase mode is executed for a predetermined time shorter than when the ABS control is executed alone. I do.
  • the front pump 310 that belongs to the system including the ABS target wheel is simultaneously operated.
  • the reservoir tank 222 can be shut off.
  • the brake fluid sucked into the front pump 310 is limited to only the fluid flowing out of the foil cylinder 284, the hydraulic pressure generated on the discharge side of the front pump 310 is compared. It is suppressed to extremely low pressure. As a result, a state is formed which is advantageous in preventing hunting of the ABS control and in suppressing the pressure gradient of the wheel cylinder pressure P w / C of the right front wheel FR which is a non-ABS target wheel.
  • the time during which (i) the pressure increase mode is executed with the left front wheel F, which is the ABS target wheel, is reduced as compared with the case where the ABS control is executed alone.
  • the execution time of (i) the pressure increase mode is shortened, (i) the pressure increase amount generated in the wheel cylinder pressure P w / C of the left front wheel FL due to the execution of the pressure increase mode is suppressed. In such a situation, even if a higher hydraulic pressure is generated upstream of the SFLH 268 than usual, hunting hardly occurs in the ABS control.
  • the state in which the brake fluid flows into the wheel cylinder 282 and the state in which the brake fluid is blocked are determined to be a predetermined value. Repeated at duty ratio.
  • the wheel cylinder pressure P w / C of the right front wheel FR increases with an appropriate pressure increasing gradient even if a higher hydraulic pressure is generated upstream than the SF RH 266 as compared with normal times.
  • the discharge side of the front pump 310 and the master cylinder 211 are synchronized with the time when the brake fluid flowing out of the wheel cylinder 284 is pumped by the front pump 310. 8 is made conductive.
  • the brake fluid can flow into the master cylinder 2 18, the hydraulic pressure generated on the discharge side of the front pump 310 is suppressed to a relatively low pressure.
  • a state is formed which is advantageous in preventing hunting of the ABS control and in suppressing the pressure increase gradient of the wheel cylinder pressure Pw / c of the right front wheel FR which is a non-ABS target wheel.
  • the wheel cylinder pressure P W / C of the ABS target wheel can be controlled in the same manner as when the ABS control is executed alone,
  • the wheel cylinder pressure Pw / c of the wheel not subject to ABS is increased with the same pressure gradient as when the wheel cylinder pressure P * / C is required to be increased under the condition that BA control is executed alone. be able to.
  • the function to be realized when the assist pressure increase ABS request occurs can be appropriately realized.
  • the wheel cylinder pressure P w / C of the ABS target wheel is increased.
  • this request is referred to as an assist pressure holding ABS request.
  • the holding pressure S S * * H and the pressure reduction solenoid S * * R are realized while maintaining the assist pressure holding state shown in Fig. 14 above.
  • the wheel cylinder pressure P w / C of the ABS target wheel is controlled to a pressure corresponding to the request of the ABS control, and It is possible to maintain the wheel cylinder pressure Pw / c of the ABS non-target wheels belonging to the system that does not include the ABS target wheels in the same system.
  • Fig. 17 shows an example of the state realized by the braking force control system when the request for maintaining the assist pressure ABS with the left front wheel FL as the ABS target wheel (hereinafter referred to as the assist pressure holding ABS state). Show.
  • the assist pressure holding ABS state in which the front left wheel FL is the ABS target wheel is realized by controlling the braking force control device so that the following conditions (e) to (g) are satisfied.
  • the SMF R 242 and SMF L 244 belonging to the system including the left front wheel FL, which is the ABS target wheel, are subjected to the same method as the condition (c) above, that is, the left front wheel FL (iii) Control so as to be in the OFF state (valve open state) in synchronization with the time when the pressure reduction mode is executed.
  • the wheel cylinder 282 of the right front wheel FR which is a non-ABS target wheel belonging to the system including the ABS target wheel, is connected to the front pump. It can be separated from 310. In this case, since the brake fluid discharged from the front pump 310 does not flow into the wheel cylinder 282, the wheel cylinder pressure Pw / c of the right front wheel FR is appropriately maintained according to the request of the BA control.
  • condition (f) as in the case where the condition (b) is realized, (i) when the pressure increase mode is executed on the left front wheel FL, which is the ABS target wheel, The amount of pressure increase generated in the wheel cylinder pressure Pw / c can be suppressed.
  • the time when the brake fluid flowing out of the wheel cylinder 284 is pumped by the front pump 310 is determined. Synchronously, the discharge side of the front pump 310 and the master cylinder 218 can be brought into conduction.
  • the wheel cylinder pressure P w / C of the ABS target wheel can be controlled in the same manner as in the case where the ABS control is executed alone, and all ABS S
  • the wheel cylinder pressure P w / C of the target wheel can be appropriately maintained as in the case where the BA control is executed alone.
  • the function to be realized when the assist pressure holding ABS request is generated can be appropriately realized.
  • the braking force control device After the BA control is started, the braking force control device according to the present embodiment appropriately controls the above-described assist pressure increase ABS state and assist pressure when any of the wheels has an excessive slip rate.
  • FIG. 18 shows a flow chart of an example of a reservoir cut-off noise control routine executed by the ECU 210 to realize both the BA control and the BA + ABS control described above.
  • the ECU 210 executes the routine shown in FIG. 18 for each of the front wheel system to which the left and right front wheels FL, FR belong, and the rear wheel system to which the left and right rear wheels RL, RR belong.
  • the ECU 210 executes the routine shown in FIG. 18 to generate the reservoir cut solenoid SRCF 230 and SRCR 232 (hereinafter collectively referred to as the reservoir cut solenoid SRC *). ) Control the state of.
  • the routine shown in FIG. 18 is a periodic interrupt routine that is started every predetermined time. When the routine shown in FIG. 18 is started, first, the processing of step 400 is executed.
  • step 400 it is determined whether or not BA control is being performed in the braking force control device. As a result, if it is determined that the BA control is not being executed, the current routine is terminated without any further processing. On the other hand, when it is determined that the BA control is being executed, the process of step 402 is next executed.
  • step 402 it is determined whether or not one or more ABS target wheels exist in the system to be controlled by this routine. As a result, if it is determined that one or more ABS target wheels exist, the process of step 404 is executed next. On the other hand, if it is determined that the ABS target wheel does not exist in the system to be controlled, the process of step 406 is executed next. In step 404, the reservoir SRC * belonging to the system to be controlled is set to the off state (valve closed state). When the process of step 404 is completed, the current routine is completed.
  • step 406 the reservoir cut solenoid SRC * belonging to the system to be controlled is controlled as usual in response to the BA control request.
  • the current routine ends.
  • the reservoir cut solenoid SRC * is turned on when the assist pressure increasing state shown in FIG. 13 is required (valve open state). Is required.
  • the reservoir cut solenoid SRC * While BA + ABS control is being executed, of the reservoir cut solenoid SRC *, those belonging to the system in which no ABS target wheels exist are under BA control. It is necessary to control in the same way as described above, and to always keep at least one wheel belonging to the system including the ABS target wheel in the off state (valve closed state). According to the control routine shown in FIG. 18 described above, such a request can be appropriately satisfied.
  • the amount of brake fluid flowing out of the reservoir tank 224 during execution of the BA control can be suppressed. If a large amount of brake fluid flows out of the reservoir tank 224 during BA control, the amount of brake fluid that flows back to the cylinder 218 will increase, causing damage to the cup that constitutes the check valve Occurs, and the brake pedal 2 1 2 is incorrectly returned toward the home position. On the other hand, according to the control routine shown in FIG. 18 described above, it is possible to prevent such a problem from occurring.
  • FIG. 19 shows a flowchart of an example of a control method selection routine executed by the ECU 210 to implement both the above-described BA control and BA-10 ABS control.
  • the ECU 210 is equipped with a routine shown in Fig. 19 for each wheel. Run. By executing the routine shown in FIG. 19, the ECU 210 selects the control method of the holding solenoid S * H and the pressure reducing solenoid S * R for each wheel.
  • the routine shown in FIG. 19 is a periodic interrupt routine started at a predetermined time interval.
  • the processing of step 410 is executed.
  • step 410 it is determined whether or not BA control is being performed in the braking force control device. As a result, if it is determined that the BA control is not being executed, the current routine is terminated without any further processing. On the other hand, if it is determined that the BA control is being executed, the process of step 412 is performed next.
  • step 412 it is determined whether or not a wheel to be controlled by this routine (hereinafter, this wheel is denoted by a reference numeral) is an ABS target wheel. As a result, if it is determined that the control target wheel ** is the ABS target wheel, then the processing of steps 414 is executed. On the other hand, if it is determined that the control target wheel ** is not the ABS target wheel, then the process of step 416 is executed.
  • step 414 the control method of the holding solenoid S ** H and the pressure reducing solenoid S ** R provided corresponding to the control target wheel ** is determined to be ABS control.
  • S ** H * S ** R whose control method is ABS control, will be appropriately changed according to the slip state of the wheel to be controlled (i) the pressure increase mode, (ii) the hold mode and (Iii) Control is performed so that the decompression mode is realized.
  • the current routine is completed.
  • step 416 it is determined whether or not another wheel belonging to the same system as the control target wheel is an ABS target wheel. As a result, when it is determined that the other wheel is not the ABS target wheel, the process of step 18 is executed next. On the other hand, if it is determined that the other wheel is the ABS target wheel, the process of step 420 is executed next.
  • the control wheels ** The control method of the holding solenoid S ** H and the pressure reducing solenoid S ** R is determined by BA control. S * H and S ** R for which the control method is BA control in this step 418 will be described later in detail as shown in FIGS. 13 to 15 according to the BA control request. Is always turned off. When the processing of this step 418 is completed, this routine is completed.
  • step 420 the control method of the holding solenoid S ** H and the pressure reducing solenoid S ** R provided corresponding to the control target wheel ** is determined as the BA pressure increase gradient suppression control.
  • S ** H and S ** R for which the control method is set to BA control in step 420 are thereafter appropriately controlled according to the requirement of BA + ABS control.
  • the holding solenoid S ** H is maintained while the pressure reducing solenoid S ** R is maintained in the off state. Is turned on / off at a predetermined duty ratio.
  • the holding solenoid S ** H is kept on and the pressure reducing solenoid S ** R is kept off.
  • both the holding solenoid S ** H and the pressure reduction solenoid S ** R are maintained in the off state.
  • Fig. 20 shows the (a) pressure increase generated in the wheel cylinder pressure Pw / c of the ABS target wheel when the pressure increase mode is executed during BA + ABS control, and the ABS control is executed independently.
  • the ECU 210 is executed to make the pressure increase amount generated in the wheel cylinder pressure PW / C of the ABS target wheel substantially equal to the pressure increase amount.
  • 5 shows a flowchart of an example of an ABS control method selection routine.
  • the ECU 210 executes the routine shown in FIG. 20 for each wheel.
  • the ECU 210 drives the holding solenoid S ** H and the pressure reducing solenoid S ** R provided corresponding to the ABS target wheel by executing the routine shown in FIG.
  • the routine shown in FIG. 20 is a periodic interrupt routine that is started every predetermined time.
  • Step 4 3 c Step 4 3 0 processing is executed zero, flag XABS * * is "1" is determined whether or not being Bok set .
  • step 43 it is determined whether or not the execution condition of the ABS control has been satisfied for the control target wheel **. As a result, if it is determined that the execution condition of the ABS control is not satisfied, the current routine is terminated without any further processing. Meanwhile, ABS control If it is determined that the execution condition is satisfied, then the process of step 434 is performed.
  • step 4 3 4 the flag XABS ** is set to "1" to indicate that the control target wheel ** has become the ABS target wheel.
  • step 436 it is determined whether or not the BA control is being executed. As a result, when the BA control is not being executed, it can be determined that the ABS control is executed independently after the execution condition of the ABS control is satisfied for the wheel to be controlled. In this case, the process of step 438 is performed next. On the other hand, if it is determined in step 436 that BA control is being executed, it is determined that BA + ABS control is executed after the ABS control execution condition is satisfied for the control target wheel **. be able to. In this case, the process of step 450 is performed next.
  • step 438 processing for setting a normal map to the ABS map is executed.
  • the ABS map is a map that is referred to when the holding solenoid S ** H and the pressure reducing solenoid S ** R are driven according to the ABS control request.
  • the normal map which is set as the ABS map in step 438, an appropriate pressure increasing gradient is generated in the wheel cylinder pressure P w / C of the ABS target wheel when the ABS control is executed alone.
  • the drive pattern has been set.
  • step 440 processing for setting the pressure increase suppression map in the ABS map is executed.
  • the boost pressure suppression map is a drive pattern that generates an appropriate pressure gradient in the wheel cylinder pressure P W / C of the ABS target wheel during the execution of the BA + ABS control. ⁇ ) A drive pattern has been set in which the maintenance time of the pressure increase mode is shortened. When the processing of this step 44 is completed, the processing of step 44 Is executed.
  • step 4442 the holding solenoid S ** H and the decompression solenoid S * are determined based on the ABS map selected in the above step 438 or 4400 and the slip state of the controlled wheel **. * R is controlled.
  • step 442 (i) the low pressure mode, (ii) the holding mode, and (iii) the decompression mode are realized as appropriate for the ABS target wheel.
  • the current routine ends.
  • step 44 it is determined whether the condition for terminating the ABS control is satisfied. As a result, if it is determined that the condition for terminating the ABS control is not satisfied, then the above-described processing of step 442 is executed. In step 44, the holding solenoid S ** H and the decompression solenoid S ** R are driven according to the ABS map set before the previous processing cycle. On the other hand, if it is determined in step 444 that the condition for terminating the ABS control is satisfied, then the process of step 446 is executed.
  • step 446 a process of setting the flag XABS ** to "0" is executed. After the process of this step 446 is executed, the ABS control is not executed for the wheel ** until the execution condition of the ABS control is satisfied again for the controlled wheel **. When the processing of this step 446 ends, the current routine ends.
  • the ABS control when the ABS control is executed independently, the ABS control can be executed for each wheel in the drive pattern according to the normal map.
  • the BA + ABS control when executed, the ABS control can be executed for each wheel in a drive pattern according to the pressure increase suppression map. Therefore, according to the braking force control device of the present embodiment, when the ABS control is executed independently, and when BA + A In both cases where the BS control is executed, the wheel cylinder pressure P w / C of the ABS target wheel can be appropriately controlled without hunting in control.
  • Fig. 21 shows that the ECU 210 executes the 88 + 88 control to prevent an unreasonably high hydraulic pressure from being generated on the discharge side of the pump belonging to the system including the target wheel.
  • 5 is a flowchart showing an example of a master power solenoid control routine to be performed.
  • the ECU 210 executes the routine shown in FIG. 21 for each system of the front and rear wheels.
  • the ECU 210 executes the routine shown in FIG. 21 so that the mass cut solenoids SMF R242, SMF L244 and SMR246 belonging to the system having the wheels to be subjected to the ABS are provided. (Hereinafter, these are collectively referred to as mass cut solenoid SM **).
  • the routine shown in FIG. 21 is a periodic interrupt routine that is started every predetermined time. When the routine shown in FIG. 21 is started, first, the processing of step 450 is executed.
  • step 450 it is determined whether or not the BA control is being executed. As a result, if it is determined that the BA control is being executed, the process of step 452 is next performed. On the other hand, if it is determined that the BA control is not being executed, the process of step 454 is next performed. In step 452, processing is performed to turn off the mass cut solenoid SM ** belonging to the system to be controlled by this routine, in the off state (valve open state). When the processing of step 452 is completed, the current routine is completed.
  • step 454 it is determined whether or not there is a wheel in which (iii) the decompression mode is realized in the system to be controlled by the routine according to the ABS control request. As a result, (iii) when it is determined that there is no wheel in which the decompression mode is realized, the process of step 456 is next performed.
  • step 4 56 the system that is controlled by this routine
  • the mass cut solenoid SM ** to which it belongs is controlled in the same way as during BA control. Specifically, when the boosting or holding of the wheel cylinder pressure Pw / c is requested by the BA control, the wheel cylinder pressure is turned on (valve closed state), and the reduction of the wheel cylinder pressure Pw / c is requested by the BA control. If it is set, it is controlled to the off state (valve open state) (see SM ** in FIGS. 13 to 15 above and SMR 246 in FIGS. 16 and 17 above). When the processing of this step 456 is completed, the current routine ends.
  • step 454 determines that there is (ii i) a wheel in decompression mode in the system to be controlled.
  • the process in step 452 that is, The process of turning off the master cut SM ** belonging to the system is executed.
  • the pump belonging to the same system as the ABS target wheel is activated.
  • the discharge side of the pump and the mass cylinder 218 are always in a conductive state. In this case, since the brake fluid discharged from the pump can flow into the master cylinder 218, the brake fluid discharged from the pump cannot flow into the wheel cylinder of the ABS target wheel.
  • the braking force control device of the present embodiment hunting does not occur in the ABS target wheel during the BA + ABS control, and the same control as the ABS target wheel is performed. It is possible to reliably prevent the wheel cylinder pressure Pw / c of the ABS non-target wheels belonging to the system from being increased by an excessive pressure increase gradient.
  • the master cylinder 218 is used as the “operating hydraulic pressure generating means”
  • the front pump 310 and the rear pump 318 are used as the “assist pressure generating means”
  • the hydraulic pressure passages 248 are used.
  • 250, 252 force (high pressure passage) master cut solenoid SM * * force " ⁇ " operating fluid pressure cut-off mechanism "
  • front pressure reduction passage 298 and rear pressure reduction passage 300 force In the "low pressure passage”
  • the front reservoir 302 and the rear reservoir 304 are connected to the "low pressure source” and
  • the “second low pressure source” corresponds to the “second low pressure source”
  • the reservoir tank 224 corresponds to the “first low pressure source”.
  • the ECU 210 executes the routine shown in FIG. 20 so that the “ABS control means” and the “ABS pattern selecting means” can be used.
  • the “BA pressure increase gradient suppression means” is realized, and by the ECU 210 executing the routine shown in FIG. 18 above, “the low pressure source cutting means” is realized. ing.
  • FIG. 22 shows a system configuration diagram of a pump-up type braking force control device (hereinafter, simply referred to as a braking force control device) corresponding to the fifth embodiment of the present invention.
  • a pump-up type braking force control device hereinafter, simply referred to as a braking force control device
  • the braking force control device of the present embodiment is a device suitable as a braking force control device for a front engine type front drive type vehicle (FF vehicle). You.
  • the braking force control device of the present embodiment is controlled by the ECU 210.
  • the ECU 210 uses the recover cut solenoids SRC and SRC- 2 to be described later as the SRC * of the above steps 404 and 406, and the mass cut solenoids SMC- and 511 to be described later. and SMC-2 5 1 4 a by executing the control routine shown in FIG. 1 8 to 2 1 with a SM * * in step 4 5 2 and 4 5 6, a fourth embodiment described above O Control the operation of the braking force control device in the same way as
  • the braking force control device includes a brake pedal 2 1 2.
  • a brake switch 214 is provided in the vicinity of the brake pedal 211.
  • the ECU 210 determines whether or not the brake pedal 2 12 is depressed based on the output signal of the brake switch 21.
  • the brake pedal 2 12 is connected to the vacuum booster 2 16.
  • the vacuum booster 216 is fixed to the mass cylinder 218.
  • a first hydraulic chamber 220 and a second hydraulic chamber 222 are formed inside the master cylinder 218. Inside the first hydraulic chamber 222 and the second hydraulic chamber 222, the master cylinder pressure P corresponding to the resultant force of the brake depression force F and the assist force Fa generated by the back-up booth 2 16 M / C occurs.
  • a reservoir tank 224 is provided above the master cylinder 218.
  • a first reservoir passage 500 and a second reservoir passage 502 communicate with the reservoir tank 224.
  • a first reservoir cut solenoid 504 (hereinafter referred to as SRC-, 504) communicates with the first reservoir passage 504.
  • the second reservoir passage 5 0 2 the second reservoir forces Tsu Tosorenoi de 5 0 6 (hereinafter, referred to as SRC one 2 5 0 6) is communicated.
  • a first pump passage 508 communicates with the SRC—, 504. Similarly, the SR C-2 5 0 6, the second pump passage 5 1 0 are communicated. SR C-, 504 is turned off, causing the first reservoir This is a two-position solenoid valve that shuts off the passage 500 and the first pump passage 508 and turns them on when turned on. Further, SR C-2 5 0 6 intercepts a second reservoir passage 5 0 2 and the second pump passage 5 1 0 by being turned off and connects them to each other by being turned on It is a two-position solenoid valve.
  • the first hydraulic chamber 220 and the second hydraulic chamber 222 of the master cylinder 218 have a first hydraulic passage 238 and a second hydraulic passage, respectively.
  • the first hydraulic pressure passage 238 communicates with a first mass cut solenoid 512 (hereinafter, referred to as SMC—, 512).
  • SMC—, 512 a first mass cut solenoid 512
  • SMC-251 a second master cut solenoid 51 (hereinafter referred to as SMC-251) communicates with the second hydraulic passage 240.
  • SMV—, 520 a first pump solenoid 520
  • a constant pressure release valve 524 is provided inside the SMV-, 520.
  • 520 is connected to the first pump pressure passage 5 16 and the fluid pressure passage 5 22 when turned off, and through the constant pressure release valve 5 24 when turned on. It is a two-position solenoid valve that allows them to communicate with each other. Between the first pump pressure passage 5 16 and the hydraulic pressure passage 5 22, only the flow of the fluid from the first pump pressure passage 5 16 to the hydraulic pressure passage 5 22 is restricted. Allowable check valves 5 2 6 are provided.
  • the second pump pressure passage 5 2 8 has a second pump solenoid 5 3 2 (hereinafter referred to as SMV— 2 5
  • the SMV-2532 further communicates with a hydraulic passage 5334 provided for the left front wheel FL.
  • a constant pressure release valve 536 is provided inside the SMV-25325.
  • SMV— 2 532 when turned off, makes the second pump pressure passage 528 and the fluid pressure passage 5334 conductive, and when turned on, through the constant pressure release valve 536. It is a two-position solenoid valve that allows them to communicate with each other. Between the first pump pressure passage 528 and the hydraulic pressure passage 534, only the flow of the fluid flowing from the second pump pressure passage 528 to the hydraulic pressure passage 336 is restricted. Allowable check valves 5 3 8 are provided.
  • SMC- inside the 5 1 2 and SMC-2 5 1 4 are each constant pressure relief valves 5 4 0, 5 4 2 are provided.
  • SMC-, 5 12 When the SMC-, 5 12 is turned off, the first hydraulic passage 2 38 and the hydraulic passage 5 18 (and the first pump pressure passage 5 16) are electrically connected to each other, and A two-position solenoid valve that connects them via a constant-pressure release valve 540 when turned on.
  • SMC-2 5 1 4 is a second fluid pressure passage 2 4 0 and the fluid pressure passage 5 3 0 (and the second pump pressure passage 5 2 8) and a conducting state when it is turned off, and A two-position solenoid valve that connects them via a constant-pressure release valve 542 when turned on.
  • a stop valve 5 4 4 is provided. Similarly, only the flow of the fluid from the second hydraulic passage 240 to the hydraulic passage 530 is allowed between the second hydraulic passage 240 and the hydraulic passage 530.
  • a check valve 5 4 6 is provided.
  • a first decompression passage 548 communicates with decompression solenoids SF RR 274 and SRLR 280 of the right front wheel FR and the left rear wheel RL.
  • a second decompression passage 550 is provided in the decompression solenoids SFLR 276 and S RRR 278 of the left front wheel FL and the right rear wheel RR. 539 C 9 5 Communication.
  • a first reservoir 552 and a second reservoir 55 communicate with the first decompression passage 548 and the second decompression passage 550, respectively. Further, the first reservoir 55 2 and the second reservoir 55 4 are connected to the suction side of the first pump 56 0 and the second pump 56 2 via check valves 55 6 and 55 58, respectively. It communicates with the suction side.
  • the discharge side of the first pump 560 and the discharge side of the second pump 562 are in communication with dampers 564 and 566 for absorbing the pulsation of the discharge pressure.
  • the dampers 564 and 566 communicate with the hydraulic passages 522 and 534, respectively.
  • Wheel speed sensors 330, 332, 334, 336 are arranged near each wheel.
  • the ECU 210 detects the rotation speeds V and v of each wheel based on the output signals of the wheel speed sensors 330 to 336.
  • a hydraulic sensor 338 is provided in the second hydraulic passage 240 communicating with the master cylinder 2 18.
  • the ECU 210 detects the mass cylinder pressure P M / C based on the output signal of the fluid pressure sensor 338.
  • the braking force control device of this embodiment realizes (1) the normal braking function, (2) the ABS function, and (3) the BA function by switching the state of various solenoid valves disposed in the hydraulic circuit.
  • the normal braking function is realized by turning off all solenoid valves of the braking force control device as shown in Fig. 22.
  • the state shown in FIG. 22 is referred to as a normal brake state.
  • the control for realizing the normal brake function in the braking force control device is called normal brake control.
  • both the wheel cylinder 288 of the right front wheel FR and the wheel cylinder 288 of the left rear wheel RL are connected via the first hydraulic passage 238 to the master cylinder 218.
  • the first hydraulic chamber 220 communicates with the first hydraulic chamber 220.
  • the wheel cylinder 284 of the front left wheel FL and the wheel cylinder 286 of the rear right wheel RR are both in the second hydraulic passage 240.
  • the master cylinder pressure P w / c of the wheel cylinders 282 to 288 always communicates with the master cylinder pressure P. It is controlled to equal pressure with M / C. Therefore, according to the state shown in FIG. 22, the normal braking function is realized.
  • ABS control the control for realizing the ABS function in the braking force control device.
  • this state is referred to as (ii) holding mode. Further, when the holding solenoid S ** H is closed and the pressure reducing solenoid S ** R is opened during the execution of the ABS control, the wheel cylinder pressure P w / C can be decompressed. Hereinafter, this state is referred to as (iii) decompression mode.
  • the ECU 210 During execution of the ABS control, the ECU 210 appropriately sets (i) the pressure increasing mode, (ii) the holding mode, and (iii) the pressure reducing mode as described above for each wheel. Holding solenoid S according to slip condition of each wheel
  • the brake fluid in the wheel cylinders 282 to 288 will cause the first decompression passage 548 and the second decompression passage 5 It flows into the first reservoir 55 2 and the second reservoir 55 4 through 50.
  • the brake fluid flowing into the first reservoir 552 and the second reservoir 554 is pumped by the first pump 560 and the second pump 562 to the hydraulic passages 522, 534. Supplied.
  • Part of the brake fluid supplied to the hydraulic passages 52 2 and 5 3 4 flows into the wheel cylinders 282 to 288 when (i) the pressure increase mode is performed on each wheel. .
  • the remainder of the brake fluid flows into the master cylinder 218 to compensate for the outflow of the brake fluid. Therefore, according to the system of the present embodiment, an excessive stroke does not occur on the brake pedal 2 12 during execution of the ABS control.
  • the BA function is appropriately set to (I) start pressure increase mode, (1 I) assist pressure increase mode, (1 1 [] Assist pressure reduction mode, GV) Assist pressure holding mode, (V) Assist pressure gradual increase mode, and (VI) Assist pressure gradual decrease mode are realized.
  • This is realized by the ECU 210 controlling the braking force control device as described above.
  • the control for realizing the BA function in the braking force control device is referred to as BA control.
  • FIG. 23 shows an assist pressure increasing state realized during execution of the BA control.
  • the assist pressure increase state is set when the wheel cylinder pressure P w / C of each vehicle needs to be increased during the execution of the BA control, that is, during the execution of the BA control, the (I) start pressure increase mode is set. And (II) assist pressure increasing mode and ( ⁇ ⁇ ) assist pressure gradual increasing mode.
  • the assist pressure is increased during BA control.
  • the pressure state is
  • the second pump 56 2 pumps it up and supplies it to the hydraulic passages 52 2, 5 3 4.
  • the fluid pressure passage 522, the wheel cylinder 282 of the right front wheel FR and the wheel cylinder 288 of the left rear wheel RL are maintained in a conductive state.
  • the pressure in the hydraulic pressure passage 52 2 exceeds the valve opening pressure of the constant pressure release valve 5 40 until the pressure becomes higher than the master cylinder pressure PM / C. In this case, the flow of fluid from the hydraulic pressure passage 5222 to the mass cylinder 2118 is blocked by the SMC- and 512.
  • the hydraulic pressure passage 534 and the foil cylinder 2884 of the left front wheel FL and the foil cylinder 2886 of the right rear wheel RR are maintained in a conductive state, and the hydraulic pressure is maintained.
  • the internal pressure of passage 5334 exceeds the opening pressure of constant pressure release valve 542, and becomes higher than the mass cylinder pressure P M / C , the master cylinder is The flow of fluid toward the 2nd 18 side is blocked by the SMC-25 14.
  • the wheel cylinder pressure Pw / c of each wheel increases the hydraulic pressure of the first pump 560 or the second pump 562.
  • the pressure is immediately increased to a pressure exceeding the mass cylinder pressure PM / c.
  • the braking force can be quickly raised.
  • the hydraulic passages 5 18, 5 2 2, 5 3 4, 5 3 0 are connected to the master cylinder via check valves 5 4 4, 5 4 6. It communicates with 2 1 8. Therefore, when the master cylinder pressure P M / C is higher than the wheel cylinder pressure P w / C of each wheel In the BA operation state, the wheel cylinder pressure Pw / C can be increased using the master cylinder 218 as a hydraulic pressure source.
  • FIG. 24 shows an assist pressure holding state realized during execution of the BA control.
  • the assist pressure holding state is set when the wheel cylinder pressure P W / C of each wheel needs to be held during the execution of the BA control, that is, the (IV) assist pressure holding mode is required during the BA control.
  • the master pressure holding state is such that the mass cut solenoids SMC-, 5 12 and SMC 2 5 14 are turned on and the first pump 56 is turned on. This is realized by turning on the 0 and the second pump 562.
  • the first pump 560 and the reservoir tank 224, and the second pump 562 and the reservoir tank 224 force, the SRC-1504 and the SRC— It is cut-off state by 2 5 0 6. Therefore, in the assist pressure holding state, the fluid is not discharged from the first pump 560 and the second pump 562 to the hydraulic pressure passages 522, 534. Further, Assist in pressure holding state, hydraulic pressure passage 5 1 8, 5 2 2 and 5 3 0, 5 3 4 forces ,, respectively S MC-, 5 1 2 and SMC-2 5 1 shown in FIG. 2 4 It is virtually separated from the mass cylinder 2 18 by 4. Therefore, according to the assist pressure holding state shown in FIG. 24, the wheel cylinder pressure P w / C of all the wheels can be held at a constant value.
  • FIG. 25 shows a reduced assist pressure state realized during the execution of the BA control.
  • the assist pressure reduction state is required when it is necessary to reduce the wheel cylinder pressure Pw / c of each wheel during execution of the BA control, that is, during the BA control, the ( ⁇ [) assist pressure reduction mode and (Vi) This is realized when execution of the assist pressure mode is requested.
  • the assist pressure reduction state is realized by turning on the first pump 560 and the second pump 562 as shown in FIG.
  • the first pump 560 and the The second pump 562 is disconnected from the reservoir tank 224. Therefore, fluid is not discharged from the first pump 562 and the second pump 562 to the hydraulic pressure passages 522, 534.
  • the wheel cylinders 282-288 of each wheel and the mass cylinder 2188 are in a conductive state. Therefore, if the assist pressure reduction state is realized, the wheel cylinder pressure Pw / c of all wheels can be reduced using the mass cylinder pressure PM / C as the lower limit.
  • the wheel cylinder pressure can be appropriately adjusted according to the BA control request. It is possible to increase, maintain, and reduce the pressure of P w / C. For this reason, the BA function can also be realized by the braking force control device of the present embodiment, similarly to the case of the above-described fourth embodiment.
  • the wheel cylinder pressure P w / C of each wheel is immediately increased, so that an excessive slip is applied to any of the wheels. In some cases, the rate may increase. In such a case, the ECU 210 starts the BA + ABS control.
  • the operation of the braking force control device associated with the execution of the BA + ABS control will be described with reference to FIGS. 23 to 25 as well as FIGS. 26 and 27.
  • the wheel cylinder pressure Pw / c of the ABS target wheel is increased by the ABS. It is necessary to reduce the wheel cylinder pressure P w / C of the non-ABS wheels toward the cylinder pressure P M / C while controlling the pressure according to the control requirements.
  • this request is referred to as the assist pressure reduction ABS request.
  • the assist pressure reduction ABS request is generated when the driver intends to reduce the braking force, that is, when it is not necessary to increase the wheel cylinder pressure P w / C of any of the wheels.
  • Assist pressure reducing AB S request has occurred, while depressurizing the Hoirushiri emissions Da pressure Pw / c of the ABS non-subject wheel, holding and pressure reduction the Hoirushiri Nda ⁇ P w / c of the ABS subject wheel You need to be able to do it.
  • the wheel cylinder pressure Pw / c of the ABS target wheel is changed to AB It is necessary to increase the wheel cylinder pressure Pw / c of the non-ABS wheels in a region exceeding the master cylinder pressure P M / c while controlling the pressure according to the S control request.
  • this requirement is referred to as an assist pressure increase ABS requirement.
  • ABS requirements are to increase the assist pressure increase state shown in Fig. 23 above, and to use the holding solenoid S ** H and the pressure reduction solenoid S ** R that correspond to the ABS target wheel. It can also be realized by controlling according to control requirements. That is, for example, if the left rear wheel RL is a wheel to be subjected to ABS, the SRLH 27 2 and 3 measuring length 280 are required for ABS control while achieving the assist pressure increasing state shown in Fig. 23 above. if according to the control, while controlling the wheel Rushiri Nda ⁇ Pw / c of the left rear wheel RL in pressure in response to a request AB S control. other wheels FL, FR, the Hoirushiri Nda ⁇ P w / C of RL The pressure can be increased in a region higher than the master cylinder pressure PM / C.
  • the holding solenoid SR LH272 corresponding to the left rear wheel RL thereafter executes (i) the pressure increase mode for the left rear wheel RL.
  • the valve is closed except for a short time. For this reason, after the ABS control is started for the left rear wheel RL, most of the brake fluid discharged from the first pump 560 is applied to the wheel cylinder 282 of the right front wheel FR, which is a wheel not subject to ABS. Inflow.
  • the discharge capacity of the first pump 560 is such that the wheel cylinder pressure Pw / c of the right front wheel FR and the wheel cylinder pressure Pw / c of the left rear wheel RL can be simultaneously increased with an appropriate pressure increase gradient. Is set to For this reason, under the condition that most of the brake fluid discharged from the first pump 560 flows into the wheel cylinder 282 of the right front wheel FR, which is a non-ABS target wheel, the wheel cylinder pressure P of the right front wheel FR Excessive pressure gradient occurs in w / C.
  • the holding solenoid S ** H and the depressurizing solenoid S ** R that correspond to the ABS target wheel are required for the ABS control.
  • the method of satisfying the ABS demand by increasing the assist pressure by controlling according to This is not necessarily the optimal method for achieving BA + ABS control in a force control device.
  • Fig. 26 shows the state realized by the braking force control device when an assist pressure boost ABS request is made with the left rear wheel RL as the ABS target wheel (hereinafter referred to as the assist pressure boost ABS state).
  • the assist pressure increase ABS state in which the left rear wheel RL is the ABS target wheel is realized by controlling the braking force control device so that the following conditions (a) to (d) are satisfied.
  • the first reservoir cut solenoid SR504 which is turned on in the assist pressure increasing state shown in FIG. 23, is turned off. Specifically, (a- 1) second reservoir one Baka' Totsurenoi de SRC - 2 5 0 6, and the mass evening mosquito Tsu preparative source Reno I de SMC, 5 1 2, SMC - 25 1 4 The O emissions state And (a-2) the front pump 310 and the rear pump 312 are turned on.
  • the holding solenoid SRLH272 and the decompression solenoid SRLR280 of the left rear wheel RL, which is the ABS target wheel, are controlled as follows in accordance with the request of the ABS control.
  • B-1 When (ii) holding mode and (iii) depressurization mode are required by ABS control, control is performed in the same manner as when ABS control is executed alone.
  • B-2) When the pressure increase mode is requested by the ABS control (i) When the pressure increase mode is requested, the pressure increase mode is executed for a predetermined time shorter than when the ABS control is executed alone. I do.
  • the state where the brake fluid flows into the wheel cylinder 282 and the state where the brake fluid is blocked are determined. It is repeated at the duty ratio of.
  • the wheel cylinder pressure Pw / c of the right front wheel FR increases with an appropriate pressure increase gradient even if a higher hydraulic pressure is generated upstream of the SFRH 266 than usual.
  • the brake fluid flowing out of the foil cylinder 288 and the discharge side of the first pump 560 are mass-synchronized with the time when the brake fluid is pumped by the first pump 560.
  • the evening cylinder 218 is brought into conduction.
  • the brake fluid can flow into the mass cylinder 218, the hydraulic pressure generated on the discharge side of the first pump 560 is suppressed to a relatively low pressure.
  • an advantageous state is formed to prevent hunting of the ABS control and to suppress the pressure increase gradient of the wheel cylinder pressure Pw / c of the right front wheel FR, which is a non-ABS target wheel.
  • the wheel cylinder pressure Pw / c of the ABS target wheel can be controlled in the same manner as when the ABS control is executed alone,
  • the wheel cylinder pressure P w / C of the wheel not subject to ABS is increased with the same pressure increase gradient as when the wheel cylinder pressure P w / C is required to be increased under the condition that BA control is executed alone.
  • the function to be realized when the assist pressure increasing ABS request is generated can be appropriately realized.
  • the wheel cylinder pressure P w / C of the ABS target wheel is controlled. It is necessary to maintain the wheel cylinder pressure P w / C of the non-ABS wheels while controlling the pressure to the pressure according to the ABS control requirements.
  • this request is referred to as an assist pressure holding ABS request.
  • the holding solenoid S ** H and the decompression solenoid S ** R By controlling the corresponding components according to the ABS control requirement, the wheel cylinder pressure P w / C of the ABS target wheel can be controlled to the pressure required by the ABS control, and the same system Thus, the wheel cylinder pressure Pw / c of the ABS non-target wheels belonging to the system that does not include the ABS target wheels can be maintained.
  • the SRLH272 and SRLR 280 are controlled by the ABS control while realizing the assist pressure holding state shown in FIG. If controlled as required, for the left rear wheel RL, (ii) holding mode and (iii) depressurizing mode, and (i) increasing pressure mode using the first pump 560 as the hydraulic pressure source can do. Therefore, the left rear wheel The RL wheel cylinder pressure Pw / c can be controlled according to the ABS control requirements. In the above situation, the rear wheel system not including the ABS target wheel is maintained in the same manner as the state shown in FIG. Therefore, the wheel cylinder pressure P w / c can be maintained for the front left wheel FL and the rear right wheel RR, as in the case where the BA control is performed alone.
  • the brake fluid flowing out of the wheel cylinder 288 is pumped by the first pump 560 after the pressure reduction mode is executed for the left rear wheel RL, and the right front wheel It flows into the FR foil cylinder 282.
  • the right front wheel FR belonging to the front wheel system having an ABS target wheel in the same system cannot meet the requirements of the BA control, that is, cannot maintain the wheel cylinder pressure P w / C.
  • Fig. 27 shows an example of a state (hereinafter referred to as an assist pressure holding ABS state) realized in the braking force control device when an assist pressure holding ABS request is made with the left rear wheel RL as an ABS target wheel. Is shown.
  • the assist pressure holding ABS state in which the left rear wheel RL is the ABS target wheel is realized by controlling the braking force control device so that the following conditions (e) to (g) are satisfied.
  • the first mastercut solenoid 521 belonging to the system including the left rear wheel RL, which is the ABS target wheel, is subjected to the same method as the above condition (c), that is, for the left rear wheel RL, Control so that it is turned off (opened) in synchronization with the time when the pressure reduction mode is executed.
  • the wheel cylinder 282 of the right front wheel FR which is a non-ABS target wheel, is connected to the system including the ABS target wheel at the same time when the assist pressure increase ABS request is generated. Can be disconnected from pump 560.
  • the wheel cylinder pressure P w / c of the right front wheel FR is appropriately maintained according to the BA control request. .
  • condition (O) as in the case where the condition (b) is realized, (i) when the pressure increase mode is executed on the left rear wheel RL, which is the ABS target wheel, The amount of pressure increase that occurs in the foil cylinder pressure PW / C can be suppressed.
  • the brake fluid flowing out of the wheel cylinder 288 is pumped by the first pump 560 as in the case where the condition (d) is realized.
  • the discharge side of the first pump 560 and the master cylinder 218 can be brought into conduction.
  • the wheel cylinder pressure P w / C of the ABS target wheel can be controlled in the same manner as in the case where the ABS control is executed alone, and all the ABS non-control operations are performed.
  • the wheel cylinder pressure P w / C of the target wheel can be appropriately maintained as in the case where the BA control is executed alone.
  • the function to be realized when the assist pressure holding ABS request is generated can be appropriately realized.
  • the ABS control is executed independently. In this case, the states shown in FIGS. 22 to 27 are realized as appropriate in accordance with the case where the BA control is executed independently and the case where the BA + ABS control is executed. You.
  • the wheel cylinder pressure P w / C is controlled to an appropriate hydraulic pressure according to those requirements.
  • the wheel cylinder pressure Pw / c of the ABS target wheel is changed to the pressure required by the ABS control, and the wheel cylinder pressure of the ABS non-target wheel is changed.
  • the pressure P w / C can be precisely controlled to the pressure required by BA control.
  • the first pump 560 and the second pump 562 serve as the “assist pressure generating means” in the hydraulic pressure passages 5 18, 5 2 2, 5 3 0, 5 3 4 to but “high pressure passage”
  • first Masutakatsu Tosorenoi de S MC 5 1 2 and the second Masutakatsu Totsurenoi de SMC-2 5 1 4 forces the "operation liquid Atsuryoku' preparative mechanism”
  • the decompression circuit 550 corresponds to the “low pressure passage”
  • the first reservoir 552 and the second reservoir 554 correspond to the “low pressure source” and the “second low pressure source”, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Regulating Braking Force (AREA)

Abstract

A brake force control device realizes both BA control, in which a great brake force is generated when an emergency braking operation is performed, and ABS control for controlling a slip rate of wheels, and prevents interference between BA control and ABS control. When BA control is judged to be started (step 100, 102), whether ABS control is executed for one or more front wheels (step 104) is judged. In the case where ABS control is executed for one or more front wheels, it is judged that a large amount of liquid pressure will be supplied to wheel cylinders of rear wheels simultaneously with starting of BA control, and BA gradient suppression control for inhibiting inflow of the liquid pressure is started (step 108). In the case where ABS control is not executed on the front wheels, a normal BA control is started (step 106).

Description

明細書 制動力制御装置 技術分野  Description Braking force control device Technical field
本発明は、 制動力制御装置に係り、 特に、 自動車用制動装置に よって発生される制動力を制御する装置として好適な制動力制御装 置に関する。 背景技術  The present invention relates to a braking force control device, and more particularly to a braking force control device suitable as a device for controlling a braking force generated by a vehicle braking device. Background art
特開平 4 — 1 2 1 2 6 0号は、 ブレーキアシスト機能及びアンチ 口ックブレーキ機能を有する制動力制御装置を開示している。 ブ レーキアシス ト機能 (以下、 A B S機能と称す) は、 運転者によつ て緊急ブレーキ操作が行われた際に通常時に比して大きな制動油圧 を発生させるために設けられる。 アンチロックブレーキ機能 (以下、 A B S機能と称す) は、 ブレーキ操作の実行中に各車輪に過剰なス リ ップ率が生じないように各車輪のホイルシリ ンダ圧 P w/c を制御 するために設けられる。  Japanese Patent Application Laid-Open No. 4-1212600 discloses a braking force control device having a brake assist function and an anti-lock brake function. The brake assist function (hereinafter referred to as the ABS function) is provided to generate a larger brake oil pressure than usual when an emergency brake operation is performed by the driver. The anti-lock brake function (hereinafter referred to as the ABS function) is used to control the wheel cylinder pressure P w / c of each wheel so that an excessive slip rate does not occur on each wheel during the braking operation. Provided.
A B S機能を実現する従来の制動力制御装置は、 ブレーキ踏力に 応じた制動液圧を発生するマスタシリ ンダと、 マス夕シリ ンダと各 車輪との導通状態およびリザーバタンクと各車輪の導通状態を制御 する液圧回路とを備えている。 液圧回路は、 ホイルシリ ンダ圧 P w/ c を増圧する必要のあるホイルシリンダをマス夕シリ ンダに導通さ せ、 ホイルシリ ンダ圧 P w/ C を減圧する必要のあるホイルシリ ンダ をリザーバタンクに導通させるように制御される。 上記の制御によ れば、 各車輪のホイルシリンダ圧 P w/c をマスタシリ ンダの発する 制動液圧に比して低い領域で適当に制御することができる。 The conventional braking force control device that realizes the ABS function controls the master cylinder that generates the brake fluid pressure according to the brake depression force, the conduction state between the master cylinder and each wheel, and the conduction state between the reservoir tank and each wheel. And a hydraulic circuit for performing the operation. In the hydraulic circuit, the foil cylinder that needs to increase the foil cylinder pressure P w / c is conducted to the mass cylinder, and the foil cylinder that needs to reduce the foil cylinder pressure P w / C is conducted to the reservoir tank. It is controlled to make it. According to the above control, the wheel cylinder pressure P w / c of each wheel can be appropriately controlled in a range lower than the braking fluid pressure generated by the master cylinder.
B A機能を実現する従来の制動力制御装置は、 ブレーキ踏力と無 関係に所定の液圧を発生する高圧源と、 高圧源の発する液圧を適当 に減圧制御して各車輪のホイルシリ ンダに供給する液圧制御弁とを 備えている。 液圧制御弁は、 運転者によって緊急ブレーキ操作が実 行されていない場合は、 ブレーキ踏力に対して所定の倍力比で昇圧 された制動液圧を各車輪に対して供給する。 また、 液圧制御弁は、 運転者によって緊急ブレーキ操作が実行された場合は、 高圧源の発 する最大の液圧のブレーキ液を各車輪のホイルシリ ンダに供給する ( 上記の処理によれば、 運転者によって通常のブレーキ操作が実行 されている場合は、 各車輪のホイルシリ ンダに、 ブレーキ踏力に応 じたホイルシリ ンダ圧 P w/ C を供給することができる。 また、 運転 者によって緊急ブレーキ操作が実行された場合は、 各車輪のホイル シリ ンダに、 通常時に比して高圧のホイルシリ ンダ圧 P w,c を供給 することができる。 このように、 上記従来の制動力制御装置によれ ば、 通常ブレーキとしての機能と B A機能とを適切に実現すること ができる。 The conventional braking force control device that realizes the BA function is based on a high-pressure source that generates a predetermined hydraulic pressure regardless of the brake depression force, and a hydraulic pressure generated by the high-pressure source And a hydraulic pressure control valve for reducing the pressure and supplying it to the wheel cylinder of each wheel. The hydraulic pressure control valve supplies the brake fluid pressure, which is boosted at a predetermined boosting ratio to the brake depression force, to each wheel when the driver does not perform the emergency brake operation. Further, when the driver performs an emergency braking operation, the hydraulic pressure control valve supplies the brake fluid of the maximum hydraulic pressure generated by the high pressure source to the wheel cylinder of each wheel ( according to the above processing, When a normal brake operation is performed by the driver, a wheel cylinder pressure P w / C corresponding to the brake depression force can be supplied to the wheel cylinder of each wheel. Is executed, the wheel cylinder pressure of each wheel can be supplied with a higher wheel cylinder pressure P w, c than usual. However, the function as a normal brake and the BA function can be appropriately realized.
B A機能と A B S機能とを共に実現する制動力制御装置としては、 例えば、 液圧回路の上流側に、 マスタシリ ンダの発する制動液圧と、 高圧源の発する制動液圧とを選択的に供給し得る装置が考えられる c かかる制動力制御装置において、 A B S機能は、 マスタシリ ンダに より発生する液圧を液圧回路に供給しつつ、 上述した手法で液圧回 路を制御することにより実現される。 また、 B A機能は、 マスタシ リ ンダと液圧回路とを遮断した状態で、 液圧回路を介して、 高圧源 により発生する制動液圧を各車輪のホイルシリ ンダに供給すること により実現される。 以下、 上記の制動力制御装置において B A機能 を実現するための制御を B A制御と、 また、 A B S機能を実現する ための制御を A B S制御と称す。 As a braking force control device that realizes both the BA function and the ABS function, for example, the brake fluid pressure generated by the master cylinder and the brake fluid pressure generated by the high pressure source are selectively supplied to the upstream side of the hydraulic circuit. in obtaining device c according braking force control device considered, ABS function is achieved by while supplying hydraulic pressure generated more master serial Sunda hydraulic circuit, for controlling the hydraulic circuit in the above-described method . The BA function is realized by supplying the brake fluid pressure generated by the high-pressure source to the wheel cylinder of each wheel via the fluid pressure circuit while the master cylinder and the fluid pressure circuit are shut off. Hereinafter, control for realizing the BA function in the above braking force control device is referred to as BA control, and control for realizing the ABS function is referred to as ABS control.
B A機能と A B S機能とを共に実現する上記の制動力制御装置に おいて、 B A制御が開始されると、 何れかの車輪に過剰なスリ ップ 率が生ずることがある。 この場合、 その車輪について A B S制御を 実行すれば、 B A機能と A B S機能とを同時に実現することができ る。 かかる機能は、 液圧回路に対して高圧源により発生する制動液 圧を供給しつつ、 過剰なスリ ップ率の発生した車輪のホイルシリ ン ダが適宜リザ一バタンク側へ接続されるように液圧回路を制御する ことで実現できる。 以下、 上記の機能を BA + AB S機能と、 また、 B A + A B S機能を実現するための制御を B A + A B S制御と称す《 上述した BA + A B S制御によれば、 運転者によって緊急ブレー キ操作が実行された後に、 過剰なスリ ップ率の発生した車輪のホイ ルシリ ンダ圧 Pw/C を A B S制御の要求に応じて増減しつつ、 他の 車輪のホイルシリ ンダ圧 Pw/C を B A制御の要求に応じて増圧する ことができる。 In the above-described braking force control device that realizes both the BA function and the ABS function, when the BA control is started, an excessive slip rate may occur on any of the wheels. In this case, if the ABS control is executed for the wheel, the BA function and the ABS function can be realized at the same time. You. This function is to supply the hydraulic circuit with the brake fluid pressure generated by the high-pressure source and to connect the wheel cylinder of the wheel with the excessive slip ratio to the reservoir tank side as appropriate. This can be achieved by controlling the voltage circuit. Hereinafter, the above function is referred to as the BA + ABS function, and the control for realizing the BA + ABS function is referred to as the BA + ABS control. << According to the BA + ABS control described above, the driver performs emergency brake operation. after but executed while increased or decreased according to Hui Rushiri Nda圧Pw / C of the wheel caused excessive Slip rate requirements of the ABS control, BA control Hoirushiri Nda圧P w / C of other wheels The pressure can be increased as required.
しかし、 BA + A B S制御の実行中は、 BA制御と A B S制御と に干渉が生ずる。 すなわち、 BA + A B S制御の実行中は、 BA制 御が単独で実行される場合、 および、 AB S制御が単独で実行され る場合と異なる環境が形成される。 このため、 BA + A B S制御を 実行するにあたり、 B A制御および AB S制御が、 それらが単独で 実行される場合と同様に実行されると、 ホイルシリ ンダ圧 Pw/c を 適正に制御できない事態が生じ得る。  However, during execution of BA + ABS control, interference occurs between BA control and ABS control. That is, during the execution of the BA + ABS control, an environment different from the case where the BA control is executed alone and the environment where the ABS control is executed alone is formed. For this reason, when performing BA + ABS control, if BA control and ABS control are executed in the same way as when they are executed independently, a situation may occur where the wheel cylinder pressure Pw / c cannot be properly controlled. obtain.
つまり、 B A + AB S制御の実行中は、 AB S制御の対象車輪 (以下、 A B S対象車輪と称す) のホイルシリンダを、 その車輪に ついてホイルシリ ンダ圧 Pw/C の増圧が要求される僅かな時間を除 き、 高圧源から切り離す必要がある。 一方、 高圧源には、 BA制御 が開始された後、 4つの車輪全てのホイルシリンダ圧 Pw/c を適切 な増圧勾配で増圧させるに足る能力が与えられている。 このため、 B A + AB S制御の実行中は、 AB S制御の非対象車輪 (以下、 A B S非対象車輪と称す) に対するホイルシリ ンダ圧 Pw/C の変化率 は、 B A制御が単独で実行される場合に比して急激な増圧勾配とな 。 In other words, during the execution of BA + ABS control, the wheel cylinder of the target wheel of the ABS control (hereinafter referred to as the ABS target wheel) must be increased in wheel cylinder pressure P w / C for that wheel. It needs to be disconnected from the high pressure source for a short time. On the other hand, the high pressure source is given sufficient capacity to increase the wheel cylinder pressure Pw / c of all four wheels with an appropriate pressure gradient after the BA control is started. For this reason, during the execution of the BA + ABS control, the change rate of the wheel cylinder pressure Pw / C with respect to the non-target wheels of the ABS control (hereinafter referred to as ABS non-target wheels) is determined by the BA control being executed independently. The pressure increase gradient becomes sharper than in the case.
また、 A B S制御が単独で実行されている場合は、 AB S対象車 輪のホイルシリンダに、 マス夕シリ ンダ圧 PM/C が供給される。 こ れに対して、 B A + A B S制御の実行中は、 AB S対象車輪のホイ ルシリ ンダに、 高圧源の発する液圧が供給される。 高圧源は、 マス 夕シリ ンダ圧 PM/C として通常生ずる液圧に比して高い液圧を発生 する。 このため、 BA + A B S制御の実行中は、 AB S制御が単独 で実行される場合に比して、 A B S対象車輪のホイルシリ ンダ圧 P w/c の変化率が急激な増圧勾配になり易い。 When the ABS control is executed independently, the master cylinder pressure PM / C is supplied to the wheel cylinder of the ABS target wheel. This On the other hand, during the execution of the BA + ABS control, the hydraulic pressure generated by the high pressure source is supplied to the wheel cylinder of the ABS target wheel. The high pressure source generates a higher hydraulic pressure than the hydraulic pressure that normally occurs as the mass cylinder pressure PM / C. For this reason, the change rate of the wheel cylinder pressure P w / c of the ABS target wheel tends to have a sharp pressure increase gradient during the execution of the BA + ABS control compared to the case where the ABS control is executed alone. .
A B S対象車輪のホイルシリ ンダ圧 Pw/c は、 その車輪に過剰な スリ ッブ率が発生した時点で減圧され、 その後、 比較的緩やかに増 圧される。 この増圧の際に、 ホイルシリ ンダ圧 Pw/C が急激な増圧 勾配で増加されるとすれば、 ホイルシリ ンダ圧 Pw/c の増圧が開始 された後、 即座にそのホイルシリ ンダ圧 Pw/C を減圧する必要が生 ずる。 このため、 B A + AB S制御の実行中に、 上記の如くホイル シリ ンダ圧 Pw/C が急激な増圧勾配で増圧されるとすれば、 AB S 対象車輪について制御上のハンチングが生じ易くなる。 The wheel cylinder pressure Pw / c of the wheel subject to ABS is reduced when an excessive slip ratio occurs in the wheel, and then is increased relatively slowly. If the wheel cylinder pressure Pw / C is increased with a steep pressure gradient during this pressure increase, the wheel cylinder pressure Pw / c is immediately increased after the wheel cylinder pressure Pw / c starts increasing. It is necessary to reduce the pressure of w / C. For this reason, if the wheel cylinder pressure P w / C is increased with a steep pressure increase gradient as described above during the execution of the BA + ABS control, hunting in the control of the ABS target wheel occurs. It will be easier.
このように、 上述した手法によって B A + AB S機能を実現しよ うとした場合、 B A制御と AB S制御とが互いに干渉し合い、 AB S対象車輪に制御上のハンチングが生じ易く、 また、 AB S非対象 車輪に (B A制御の対象車輪に) 過剰な増圧勾配が発生するという 問題がある。 この点、 上述した手法は、 BA + A B S機能を実現す るうえで、 必ずしも最適な手法ではない。 発明の開示  As described above, when the BA + ABS function is to be realized by the above-described method, the BA control and the ABS control interfere with each other, and hunting in control is likely to occur on the ABS target wheel. There is a problem that an excessive pressure increase gradient is generated on the non-target wheels (the target wheels for BA control). In this regard, the above-described method is not always the optimal method for realizing the BA + ABS function. Disclosure of the invention
本発明の総括的な目的は、 上述の問題を解決した改良された有用 な制動力制御装置を提供することである。  A general object of the present invention is to provide an improved and useful braking force control device which solves the above-mentioned problems.
本発明のより具体的な目的は、 B A制御と A B S制御との干渉を 防止して、 適切に BA + A B S機能の両方を実現することのできる 制動力制御装置を提供することである。  A more specific object of the present invention is to provide a braking force control device capable of preventing interference between BA control and ABS control and appropriately achieving both BA + ABS functions.
上記の目的を達成するために、 本発明の一^ ^の面によれば、 ホイ ルシリ ンダへの液圧流入経路を遮断した状態でホイルシリ ンダ圧を 制御する制動液圧滅圧制御と、 運転者によって緊急ブレーキ操作が 実行された際に通常時に比して大きな制動液圧を発生させるブレー キアシスト制御とを実行する制動力制御装置において、 In order to achieve the above object, according to one aspect of the present invention, a foil cylinder pressure is reduced while a hydraulic pressure inflow path to a wheel cylinder is blocked. A braking force control device that performs brake fluid pressure reduction control to control and brake assist control to generate a larger brake fluid pressure than normal when an emergency brake operation is performed by a driver.
ホイルシリ ンダの液圧流入経路の導通状態を検出する導通検出手 段と、  A continuity detecting means for detecting a continuity state of the hydraulic pressure inflow path of the foil cylinder;
前記ブレーキアシスト制御の開始時に、 何れかのホイルシリ ンダ の液圧流入経路が実質的に遮断されている場合には、 他のホイルシ リ ンダへの制動液圧の流入を抑制する液圧流入抑制手段と、  At the start of the brake assist control, if the hydraulic pressure inflow path of any one of the wheel cylinders is substantially blocked, the hydraulic pressure inflow suppression means for suppressing the inflow of the brake hydraulic pressure to another wheel cylinder When,
を備える制動力制御装置が提供される。  A braking force control device comprising:
上述の発明において、 何れかのホイルシリ ンダについて制動液圧 減圧制御が実行されている場合は、 そのホイルシリ ンダへの制動液 圧の流入が阻止される。 このため、 かかる状況下でブレーキアシス ト制御が開始されると、 液圧流入経路の遮断されているホイルシリ ンダに供給されるべき制動液圧が、 他のホイルシリ ンダに分配され る事態が生ずる。 液圧流入抑制手段は、 かかる状況下で、 他のホイ ルシリ ンダに過剰に制動液圧が導かれるのを防止する。  In the above-described invention, when the brake fluid pressure reduction control is executed for any of the wheel cylinders, the flow of the brake fluid pressure into the foil cylinder is prevented. For this reason, when the brake assist control is started in such a situation, a situation occurs in which the brake fluid pressure to be supplied to the foil cylinder whose fluid pressure inflow path is shut off is distributed to other foil cylinders. The hydraulic pressure inflow suppressing means prevents the brake hydraulic pressure from being excessively guided to another wheel cylinder in such a situation.
したがって、 上述の発明によれば、 何れかのホイルシリ ンダの液 圧流入経路が遮断された状態でブレーキアシスト制御が開始されて も、 液圧流入経路の遮断されていないホイルシリ ンダに過剰に制動 液圧が導かれるのを防止することができる。 このため、 本発明に係 る制動力制御装置によれば、 かかる状況下においても優れた制御性 を維持することができる。  Therefore, according to the above-described invention, even if the brake assist control is started in a state where the hydraulic pressure inflow path of any of the foil cylinders is interrupted, the brake fluid is excessively applied to the foil cylinder whose hydraulic pressure inflow path is not interrupted. Pressure can be prevented from being introduced. Therefore, according to the braking force control device of the present invention, excellent controllability can be maintained even in such a situation.
また、 本発明の他の面によれば、 車輪のスリ ップ状態に関する特 性値が所定のしきい値を超える場合に、 該車輪のホイルシリ ンダに 連通する液圧流入経路を遮断した状態でホイルシリ ンダ圧を所定期 間減圧する減圧制御を実行した後に、 該ホイルシリ ンダについて所 定の液圧制御を実行する制動液圧制御と、 運転者によって緊急ブ レーキ操作が実行された際に通常時に比して大きな制動液圧を発生 させるブレーキアシスト制御とを実行する制動力制御装置において、 ホイルシリ ンダの液圧流入経路の導通状態を検出する導通検出手 段と、 Further, according to another aspect of the present invention, when the characteristic value related to the slip state of the wheel exceeds a predetermined threshold, the hydraulic pressure inflow path communicating with the wheel cylinder of the wheel is cut off. After executing the pressure reduction control for reducing the wheel cylinder pressure for a predetermined period, the brake hydraulic pressure control for executing the predetermined hydraulic pressure control for the wheel cylinder and the normal operation when an emergency brake operation is performed by the driver. In a braking force control device that performs a brake assist control that generates a relatively large braking fluid pressure, A continuity detecting means for detecting a continuity state of the hydraulic pressure inflow path of the foil cylinder;
何れかのホイルシリ ンダの液圧流入経路が実質的に遮断された状 態で前記ブレーキアシスト制御が開始された場合には、 前記少なく とも他の一のホイルシリ ンダについて前記減圧制御が実行されるこ とにより生ずる減圧傾向を、 通常時に比して強める減圧傾向変更手 段と、  When the brake assist control is started in a state where the hydraulic pressure inflow path of any one of the foil cylinders is substantially blocked, the pressure reduction control is executed for the at least one other wheel cylinder. Means for changing the decompression tendency, which increases the decompression tendency caused by
を備える制動力制御装置が提供される。  A braking force control device comprising:
上述の発明において、 何れかのホイルシリ ンダについて液圧流入 経路が遮断されている場合は、 そのホイルシリ ンダへの制動液圧の 流入が阻止される。 このため、 かかる状況下でブレーキアシス ト制 御が開始されると、 他のホイルシリ ンダには、 全てのホイルシリ ン ダの液圧流入経路が導通状態である場合に比して急激な液圧上昇が 生じ易い。 本発明において、 他の一のホイルシリ ンダのホイルシリ ンダ圧は、 減圧制御が開始された後、 通常時に比して大きく減圧さ れる。 このため、 他の一のホイルシリ ンダのホイルシリ ンダ圧は、 何れかのホイルシリ ンダの液圧流入経路が遮断されている状況下で あっても不必要に高圧にならない。  In the above-mentioned invention, when the hydraulic pressure inflow path is shut off for any of the wheel cylinders, the inflow of the brake hydraulic pressure into the wheel cylinder is prevented. For this reason, when the brake assist control is started in such a situation, the fluid pressure in the other wheel cylinders rises more sharply than when the fluid pressure inflow paths of all the wheel cylinders are conducting. Tends to occur. In the present invention, after the pressure reduction control is started, the pressure of the foil cylinder of the other one of the foil cylinders is greatly reduced as compared with the normal state. For this reason, the foil cylinder pressure of the other foil cylinder does not unnecessarily increase even if the hydraulic pressure inflow path of any one of the foil cylinders is blocked.
したがって、 上述の発明によれば、 何れかのホイルシリ ンダの液 圧流入経路が遮断された状態でブレーキアシスト制御が開始されて も、 液圧流入経路の遮断されていないホイルシリ ンダに過剰に制動 液圧が導かれるのを防止することができる。 このため、 本発明に係 る制動力制御装置によれば、 かかる状況下においても優れた制御性 を維持することができる。  Therefore, according to the above-described invention, even if the brake assist control is started in a state where the hydraulic pressure inflow path of any of the foil cylinders is interrupted, the brake fluid is excessively applied to the foil cylinder whose hydraulic pressure inflow path is not interrupted. Pressure can be prevented from being introduced. Therefore, according to the braking force control device of the present invention, excellent controllability can be maintained even in such a situation.
また、 本発明による制動力制御装置は、  Further, the braking force control device according to the present invention includes:
何れかのホイルシリ ンダの液圧流入経路が実質的に遮断された状 態で前記ブレーキアシスト制御が開始された際に、 少なく とも他の —のホイルシリンダについての前記しきい値を通常時に比して小さ な値にするしきい値変更手段、 を備えることとしてもよい。 When the brake assist control is started in a state where the hydraulic pressure inflow path of any one of the wheel cylinders is substantially blocked, the threshold value of at least the other wheel cylinder is compared with a normal state. Means for changing the threshold value to a smaller value May be provided.
本発明において、 何れかのホイルシリ ンダについて液圧流入経路 が遮断された状態でブレーキアシスト制御が開始されると、 他のホ ィルシリ ンダのホイルシリ ンダ圧は通常時に比して過渡に高圧とな り易い。 しきい値変更手段は、 このような状況が生じた場合に、 他 のホイルシリ ンダについて減圧制御が開始され易いようにしきい値 を変更する。 このため、 他のホイルシリ ンダのホイルシリ ンダ圧は、 通常時に比して急上昇するにも関わらず、 不必要に高い液圧にはな らない。  In the present invention, when the brake assist control is started in a state where the hydraulic pressure inflow path is shut off for any of the wheel cylinders, the wheel cylinder pressures of the other wheel cylinders become transiently higher than normal. easy. The threshold value changing means changes the threshold value in such a situation so that the pressure reduction control is easily started for another foil cylinder. For this reason, the foil cylinder pressure of other foil cylinders does not become an unnecessarily high fluid pressure, though it rises sharply compared to normal times.
したがって、 上述の発明によれば、 何れかのホイルシリンダの液 圧流入経路が遮断された状態でブレーキアシスト制御が開始されて も、 液圧流入経路の遮断されていないホイルシリ ンダに過剰に制動 液圧が導かれるのを防止することができる。 このため、 本発明に係 る制動力制御装置によれば、 かかる状況下においても優れた制御性 を維持することができる。  Therefore, according to the above-mentioned invention, even if the brake assist control is started in a state where the hydraulic pressure inflow path of any of the wheel cylinders is interrupted, excessive braking fluid is applied to the foil cylinder whose hydraulic pressure inflow path is not interrupted. Pressure can be prevented from being introduced. Therefore, according to the braking force control device of the present invention, excellent controllability can be maintained even in such a situation.
また、 本発明の他の面によれば、 運転者によって緊急ブレーキ操 作が行われた際に通常時に比して大きな制動油圧を発生させるブ レーキアシス ト制御と、 各車輪の制動油圧を各車輪に過剰なスリ ッ プ率を発生させない圧力に制御するアンチ口ックブレーキ制御と、 を実行する制動力制御装置において、  According to another aspect of the present invention, when the driver performs an emergency braking operation, the brake assist control that generates a larger braking oil pressure than usual, and the braking oil pressure of each wheel is controlled by each wheel. The anti-braking brake control, which controls the pressure so as not to generate an excessive slip rate, and the braking force control device, which performs
ブレーキ操作量に応じた制動液圧を発生する操作液圧発生手段と、 ブレーキ操作量と無関係に所定の制動液圧を発生するアシスト圧 発生手段と、  Operating hydraulic pressure generating means for generating a braking hydraulic pressure according to the brake operating amount; assist pressure generating means for generating a predetermined braking hydraulic pressure irrespective of the brake operating amount;
前記操作液圧発生手段および前記アシスト圧発生手段の双方に連 通する高圧通路と、  A high-pressure passage communicating with both the operating hydraulic pressure generating means and the assist pressure generating means;
前記操作液圧発生手段と前記高圧通路とを遮断状態とし得る操作 液圧力ッ ト機構と、  An operating hydraulic pressure shut-off mechanism that can shut off the operating hydraulic pressure generating means and the high-pressure passage;
所定の低圧源に連通する低圧通路と、  A low-pressure passage communicating with a predetermined low-pressure source;
各車輪のホイルシリンダと前記高圧通路との導通状態、 および、 各車輪のホイルシリ ンダと前記低圧通路との導通状態を制御する導 通状態制御機構と、 Conduction state between the wheel cylinder of each wheel and the high-pressure passage, and A conduction state control mechanism for controlling a conduction state between the wheel cylinder of each wheel and the low-pressure passage;
運転者によって緊急ブレーキ操作が行われた場合に、 前記操作液 圧カッ ト機構を遮断状態とし、 かつ、 前記アシス ト圧発生手段から 前記高圧通路に所定の制動液圧を供給させる B A制御手段と、 前記導通状態制御機構を所定の制御パターンで制御することによ り、 各車餘に過剰なスリ ップ率が生じないように各車輪のホイルシ リ ンダ圧を制御する A B S制御手段と、  BA control means for shutting off the operating hydraulic pressure cut-off mechanism when an emergency brake operation is performed by a driver, and for supplying predetermined brake hydraulic pressure to the high-pressure passage from the assist pressure generating means; ABS control means for controlling the wheel cylinder pressure of each wheel by controlling the conduction state control mechanism in a predetermined control pattern so that an excessive slip rate does not occur in each wheel.
アンチロックブレーキ制御が単独で実行されている場合に前記制 御パターンを通常パターンとし、 アンチロックブレーキ制御とブ レーキアシスト制御とが同時に実行されている場合に、 前記制御パ ターンをホイルシリ ンダ圧の増圧量を抑制するための増圧量抑制パ 夕一ンとする A B S制御パターン選択手段と、  When the anti-lock brake control is executed independently, the control pattern is set to the normal pattern, and when the anti-lock brake control and the brake assist control are simultaneously executed, the control pattern is set to the wheel cylinder pressure. ABS control pattern selecting means for setting the pressure increase amount suppression panel for suppressing the pressure increase amount;
を備える制動力制御装置が提供される。  A braking force control device comprising:
上述の発明において、 運転者によって緊急ブレーキ操作が実行さ れることなく何れかの車輪に過剰なスリ ップ率が生じた場合は、 ァ ンチロックブレーキ制御 (以下、 A B S制御) が単独で開始される。 この場合、 各車輪のホイルシリ ンダ圧は、 ホイルシリ ンダと操作液 圧発生手段とが導通状態とされた場合に増圧される。 A B S制御の 通常パターンは、 かかる状況下でホイルシリ ンダ圧の増圧が図られ た場合に、 ホイルシリ ンダ圧に適当な増圧量が生ずるように設定さ れている。  In the above invention, when an excessive slip ratio occurs in any of the wheels without the driver performing the emergency braking operation, the antilock brake control (hereinafter, ABS control) is started independently. You. In this case, the wheel cylinder pressure of each wheel is increased when the wheel cylinder and the operating fluid pressure generating means are brought into conduction. The normal pattern of the ABS control is set such that when the wheel cylinder pressure is increased in such a situation, an appropriate pressure increase is generated in the wheel cylinder pressure.
A B S制御が開始される以前に運転者によって緊急ブレーキ操作 が実行されると、 ブレーキアシス ト制御 (以下、 B A制御と称す) が開始される。 B A制御の実行中は、 操作液圧カツ ト機構によって 操作液圧発生手段が高圧通路から切り離され、 かつ、 アシス ト圧発 生手段が高圧通路に所定の制動液圧を供給する。 この場合、 各車輪 のホイルシリ ンダ圧は、 操作液圧カツ 卜機構が閉じていることに起 因して、 アシスト圧発生手段を液圧源として速やかに増圧される。 B A制御の開始に伴って各車輪のスリ ップ率が過大となった場合 は、 以後、 B A制御と A B S制御とを同時に実行すること、 すなわ ち、 B A + A B S制御を実行することが必要となる。 A B S制御の 実行に先立って B A制御が開始されている場合、 A B S制御は、 高 圧通路にアシスト圧発生手段の発する高圧の制動液圧が導かれた状 況下で実行される。 本発明においては、 かかる状況下では、 増圧量 抑制パターンにより A B S制御が実行される。 このため、 高圧通路 に通常時に比して高圧の制動液圧が導かれているにも関わらず、 A B S対象車輪のホイルシリ ンダ圧に過大な増圧量が生ずることがな い。 If an emergency brake operation is performed by the driver before the ABS control is started, the brake assist control (hereinafter referred to as BA control) is started. During the execution of the BA control, the operating hydraulic pressure generating mechanism is disconnected from the high pressure passage by the operating hydraulic pressure cutting mechanism, and the assist pressure generating means supplies a predetermined brake hydraulic pressure to the high pressure passage. In this case, the wheel cylinder pressure of each wheel is rapidly increased by using the assist pressure generating means as a hydraulic pressure source due to the closing of the operating hydraulic pressure cutting mechanism. If the slip ratio of each wheel becomes excessive with the start of BA control, then it is necessary to execute BA control and ABS control simultaneously, that is, execute BA + ABS control. Becomes If the BA control is started prior to the execution of the ABS control, the ABS control is performed under the condition that the high brake fluid pressure generated by the assist pressure generating means is guided to the high pressure passage. In the present invention, in such a situation, the ABS control is executed according to the pressure increase amount suppression pattern. For this reason, despite the fact that a higher brake fluid pressure is introduced into the high-pressure passage than usual, an excessive increase in the wheel cylinder pressure of the ABS target wheel does not occur.
したがって、 上述の発明によれば、 A B S制御と B A制御とが同 時に実行されている場合に、 A B S対象車輪のホイルシリ ンダ圧に 過剰な増圧量が付与されるのを、 すなわち、 A B S制御のハンチン グが生じ易い状況が形成されるのを防止することができる。  Therefore, according to the above-described invention, when the ABS control and the BA control are performed simultaneously, the fact that an excessive pressure increase is applied to the wheel cylinder pressure of the ABS target wheel, that is, the ABS control It is possible to prevent a situation where hunting easily occurs from being formed.
更に、 本発明の他の面によれば、 運転者によって緊急ブレーキ操 作が行われた際に通常時に比して大きな制動油圧を発生させるブ レーキアシス ト制御と、 各車輪の制動油圧を各車輪に過剰なスリ ッ プ率を発生させない圧力に制御するアンチ口ックブレーキ制御と、 を実行する制動力制御装置において、  Further, according to another aspect of the present invention, when an emergency braking operation is performed by a driver, a brake assist control that generates a larger braking oil pressure than usual, and a braking oil pressure of each wheel is set to each wheel. The anti-braking brake control, which controls the pressure so as not to generate an excessive slip rate, and the braking force control device, which performs
ブレーキ操作量に応じた制動液圧を発生する操作液圧発生手段と、 ブレーキ操作量と無関係に所定の制動液圧を発生するァシスト圧 発生手段と、  Operating hydraulic pressure generating means for generating a brake hydraulic pressure according to the brake operating amount; assist pressure generating means for generating a predetermined brake hydraulic pressure irrespective of the brake operating amount;
前記操作液圧発生手段および前記アシスト圧発生手段の双方に連 通する高圧通路と、  A high-pressure passage communicating with both the operating hydraulic pressure generating means and the assist pressure generating means;
前記操作液圧発生手段と前記高圧通路とを遮断状態とし得る操作 液圧力ッ ト機構と、  An operating hydraulic pressure shut-off mechanism that can shut off the operating hydraulic pressure generating means and the high-pressure passage;
所定の低圧源に連通する低圧通路と、  A low-pressure passage communicating with a predetermined low-pressure source;
各車輪のホイルシリンダと前記高圧通路との導通状態、 および、 各車輪のホイルシリ ンダと前記低圧通路との導通状態を制御する導 通状態制御機構と、 The conduction state between the wheel cylinder of each wheel and the high pressure passage and the conduction state between the wheel cylinder of each wheel and the low pressure passage are controlled. Communication state control mechanism,
運転者によって緊急ブレーキ操作が行われた場合に、 前記操作液 圧カッ ト機構を遮断状態とし、 かつ、 前記アシス ト圧発生手段から 前記高圧通路に所定の制動液圧を供給させる B A制御手段と、 前記導通状態制御機構を所定の制御パターンで制御することによ り、 各車輪に過剰なスリ ップ率が生じないように各車輪のホイルシ リ ンダ圧を制御する A B S制御手段と、  BA control means for shutting off the operating hydraulic pressure cut-off mechanism when an emergency brake operation is performed by a driver, and for supplying predetermined brake hydraulic pressure to the high-pressure passage from the assist pressure generating means; ABS control means for controlling the wheel cylinder pressure of each wheel by controlling the conduction state control mechanism in a predetermined control pattern so that an excessive slip rate does not occur in each wheel;
ブレーキアシスト制御とアンチロックブレーキ制御とが同時に実 行されている場合に、 アンチロックブレーキ制御の非対象車輪のホ ィルシリ ンダ圧の増圧勾配が抑制されるように、 前記非対象車輪に 対応して設けられている前記導通状態制御機構を制御する B A増圧 勾配抑制手段と、  When the brake assist control and the anti-lock brake control are simultaneously executed, the pressure increase gradient of the wheel cylinder pressure of the non-target wheel of the anti-lock brake control is suppressed so as to suppress the gradient. BA pressure increase gradient suppression means for controlling the conduction state control mechanism provided
を備える制動力制御装置が提供される。  A braking force control device comprising:
上述の発明において、 運転者によって緊急ブレーキ操作が実行さ れると、 B A制御が開始される。 B A制御の実行中は、 各車輪のホ イルンリ ンダ圧がアシスト圧発生手段を液圧源として増圧される。 アシスト圧発生手段には、 高圧通路を介して連通する全てのホイル シリ ンダのホイルシリ ンダ圧 P w/ c に、 適当な増圧勾配を発生させ るための能力が付与されている。  In the above invention, when the driver performs an emergency brake operation, the BA control is started. During the execution of the BA control, the wheel cylinder pressure of each wheel is increased using the assist pressure generating means as a hydraulic pressure source. The assist pressure generating means is provided with the ability to generate an appropriate pressure increasing gradient to the wheel cylinder pressure P w / c of all the wheel cylinders communicating through the high pressure passage.
B A制御が開始された後、 何れかの車輪について過剰なスリ ップ 率が検出されると、 B A + A B S制御が開始される。 A B S対象車 輪のホイルシリンダは、 A B S制御によってその車輪のホイルシリ ンダ圧の増圧が要求される僅かな時間を除いて高圧通路から遮断さ れる。 このため、 B A + A B S制御の実行中は、 アシスト圧発生手 段から吐出されるブレーキフルー ドのほぼ全量が、 A B S非対象車 輪のホイルシリンダに供給される。 本発明においては、 かかる状況 が形成されると、 A B S非対象車輪の増圧勾配が抑制されるように 導通状態制御機構が制御される。 このため、 アシス ト圧発生手段の 能力が過剰であるにも関わらず、 A B S非対象車輪のホイルシリ ン P /JP97/02509 ダ圧の増圧勾配が、 B A制御が単独で実行されている場合と同様の 適正な勾配に抑制される。 After the BA control is started, if an excessive slip ratio is detected for any of the wheels, the BA + ABS control is started. The wheel cylinder of the wheel subject to ABS is shut off from the high-pressure passage except for a short time during which the wheel cylinder pressure of the wheel needs to be increased by the ABS control. Therefore, during the execution of the BA + ABS control, almost all of the brake fluid discharged from the assist pressure generating means is supplied to the wheel cylinders of the non-ABS wheels. In the present invention, when such a situation is formed, the conduction state control mechanism is controlled such that the pressure increase gradient of the non-ABS target wheel is suppressed. Therefore, despite the excessive capacity of the assist pressure generation means, the wheel P / JP97 / 02509 The pressure increase gradient of the damper pressure is suppressed to the appropriate gradient similar to when the BA control is executed alone.
したがって、 上述の発明によれば、 B A制御が A B S制御と同時 に実行されている場合に、 A B S非対象車輪のホイルシリ ンダ圧に 過剰な増圧勾配が生ずるのを防止することができる。  Therefore, according to the above-described invention, when the BA control is being executed simultaneously with the ABS control, it is possible to prevent an excessive pressure increase gradient from occurring in the wheel cylinder pressure of the ABS non-target wheels.
また、 本発明の他の面によれば、 運転者によって緊急ブレーキ操 作が行われた際に通常時に比して大きな制動油圧を発生させるブ レーキアシスト制御と、 各車輪の制動油圧を各車輪に過剰なスリ ッ プ率を発生させない圧力に制御するアンチ口ックブレーキ制御と、 を実行する制動力制御装置において、  According to another aspect of the present invention, a brake assist control that generates a larger brake hydraulic pressure than normal when an emergency brake operation is performed by a driver; The anti-braking brake control, which controls the pressure so as not to generate an excessive slip rate, and the braking force control device, which performs
ブレーキ操作量に応じた制動液圧を発生する操作液圧発生手段と、 第 1低圧源および第 2低圧源に連通する低圧通路と、  Operating hydraulic pressure generating means for generating a brake hydraulic pressure according to the brake operation amount; a low pressure passage communicating with the first low pressure source and the second low pressure source;
前記低圧通路から吸入したブレーキフルードを圧送することによ りブレーキ操作量と無関係に所定の制動液圧を発生するアシスト圧 発生手段と、  Assist pressure generating means for generating a predetermined brake fluid pressure irrespective of a brake operation amount by pumping brake fluid sucked from the low pressure passage;
前記操作液圧発生手段および前記アシスト圧発生手段の双方に連 通する高圧通路と、  A high-pressure passage communicating with both the operating hydraulic pressure generating means and the assist pressure generating means;
前記操作液圧発生手段と前記高圧通路とを遮断状態とし得る操作 液圧力ッ ト機構と、  An operating hydraulic pressure shut-off mechanism that can shut off the operating hydraulic pressure generating means and the high-pressure passage;
各車輪のホイルシリ ンダと前記高圧通路との導通状態、 および、 各車輪のホィルシリ ンダと前記低圧通路との導通状態を制御する導 通状態制御機構と、  A conduction state control mechanism for controlling a conduction state between the wheel cylinder of each wheel and the high-pressure passage, and a conduction state between the wheel cylinder of each wheel and the low-pressure passage;
運転者によつて緊急ブレ—キ操作が行われた場合に、 前記操作液 圧カッ ト機構を遮断状態とし、 かつ、 前記アシス ト圧発生手段から 前記高圧通路に所定の制動液圧を供給させる B A制御手段と、 前記導通状態制御機構を所定の制御パターンで制御することによ り、 各車輪に過剰なスリ ップ率が生じないように各車輪のホィルシ リ ンダ圧を制御する A B S制御手段と、  When an emergency brake operation is performed by a driver, the operating hydraulic pressure cut-off mechanism is shut off, and a predetermined brake hydraulic pressure is supplied from the assist pressure generating means to the high-pressure passage. ABS control means for controlling the wheel cylinder pressure of each wheel by controlling the BA control means and the conduction state control mechanism in a predetermined control pattern so that an excessive slip rate does not occur in each wheel. When,
ブレーキアシスト制御とアンチ口ックブレーキ制御とが同時に実 行されている場合に、 前記第 1低圧源と前記アシス ト圧発生手段と を遮断状態とする低圧源力ッ ト手段と、 The brake assist control and the anti-braking brake control are performed simultaneously. Low-pressure source power cut-off means for shutting off the first low-pressure source and the assist pressure generation means,
を備える制動力制御装置が提供される。  A braking force control device comprising:
上述の発明において、 運転者によって緊急ブレーキ操作が実行さ れると、 B A制御が開始される。 B A制御の実行中は、 各車輪のホ ィルシリ ンダ圧がアシス卜圧発生手段を液圧源として増圧される。 アシスト圧発生手段は、 B A制御が単 ί虫で実行されている場合は第 1低圧源からブレーキフルードを吸入して高圧通路に制動液圧を供 給する。 この場合、 高圧通路には多量のブレーキフルードが供給さ れる。  In the above invention, when the driver performs an emergency brake operation, the BA control is started. During the execution of the BA control, the wheel cylinder pressure of each wheel is increased using the assist pressure generating means as a hydraulic pressure source. The assist pressure generating means sucks the brake fluid from the first low-pressure source and supplies the brake fluid pressure to the high-pressure passage when the BA control is performed by a single insect. In this case, a large amount of brake fluid is supplied to the high-pressure passage.
Β Α制御が開始された後、 何れかの車輪について過剰なスリ ップ 率が検出されると、 B A + A B S制御が開始される。 A B S制御は- A B S対象車輪のホイルシリンダ圧が減圧されることにより、 すな わち、 A B S対象車輪のホイルシリ ンダから低圧通路にブレーキフ ルードが放出されることにより開始される。 このため、 B A + A B S制御が開始されると、 即座に第 2低圧源にブレーキフルー ドが流 入する。  Β After the control is started, if an excessive slip rate is detected for any of the wheels, B A + ABS control is started. The ABS control is started when the wheel cylinder pressure of the -ABS target wheel is reduced, that is, the brake fluid is discharged from the wheel cylinder of the ABS target wheel to the low-pressure passage. Therefore, when the B A + A B S control is started, the brake fluid immediately flows into the second low pressure source.
本発明において、 B A + A B S制御が開始されると、 アシス卜圧 発生手段と第 1低圧源とが遮断状態とされる。 従って、 アシス ト圧 発生手段が圧送できるブレーキフルー ドは、 以後第 2低圧源に貯留 されているブレーキフルードだけに限定される。 このため、 B A + A B S制御の実行中に高圧通路に不当に高圧の制動液圧が発生する ことはない。 高圧通路に不当に高圧の制動液圧が発生しない状況下 では、 A B S対象車輪のホイルシリ ンダ圧に過剰な増圧量が生ずる ことがなく、 かつ、 A B S非対象車輪のホイルシリ ンダ圧 F' w/ C に 過剰な増圧勾配が生ずることがないと共に、 操作液圧発生手段にブ レーキフル一ドが過剰に逆流することがない。 In the present invention, when the BA + ABS control is started, the assist pressure generating means and the first low pressure source are shut off. Therefore, the brake fluid that can be pumped by the assist pressure generating means is limited to the brake fluid stored in the second low-pressure source thereafter. For this reason, unduly high brake fluid pressure does not occur in the high-pressure passage during the execution of the BA + ABS control. In a situation where unduly high brake fluid pressure is not generated in the high-pressure passage, the wheel cylinder pressure of the ABS target wheel does not increase excessively, and the wheel cylinder pressure F ' w / There is no excessive pressure increase gradient in C, and no excessive backflow of the brake fluid to the operating fluid pressure generation means.
したがって、 B A制御と A B S制御とが同時に実行される場合に、 高圧通路に不当に高圧の制動液圧が発生するのを防止することがで きる。 Therefore, when the BA control and the ABS control are executed simultaneously, it is possible to prevent the generation of an unduly high brake fluid pressure in the high pressure passage. Wear.
また、 上術の発明による制動力制御装置において、  Further, in the braking force control device according to the above-mentioned invention,
ブレーキアシスト制御とアンチ口ックブレーキ制御とが同時に実 行されており、 かつ、 アンチロックブレーキ制御の対象車輪におい てホイルシリ ンダ圧の減圧が図られている場合に、 前記操作液圧 カツ ト機構を導通状態とする高圧通路開放手段を備えることとして もよい。  When the brake assist control and the anti-lock brake control are performed simultaneously and the wheel cylinder pressure is reduced at the target wheel for the anti-lock brake control, the operation hydraulic cut mechanism is turned on. It is also possible to provide a high-pressure passage opening means for setting the state.
B A + A B S制御が実行されている場合、 アシスト圧発生手段は、 上述の如く第 2低圧源に貯留されているブレーキフルー ドのみを圧 送する。 第 2低圧源には、 A B S対象車輪のホイルシリ ンダ圧の減 圧が図られる毎にブレーキフルー ドが放出される。 このため、 ァシ スト圧発生手段は、 A B S対象車輪でホイルシリ ンダ圧の減圧が図 られる時期と同期して、 高圧通路に多量のブレーキフル一 ドを圧送 する。  When the B A + A B S control is being executed, the assist pressure generating means pumps only the brake fluid stored in the second low pressure source as described above. The brake fluid is discharged to the second low pressure source every time the wheel cylinder pressure of the ABS target wheel is reduced. For this reason, the assist pressure generating means sends a large amount of brake fluid to the high pressure passage in synchronization with the time when the wheel cylinder pressure is reduced at the ABS target wheel.
高圧通路は、 アシスト圧発生手段によって多量のブレーキフル一 ドが圧送される時期のみ操作液圧発生手段と導通状態とされる。 高 圧通路と操作液圧発生手段との導通状態が上記の如く制御されると、 高圧通路内の制動液圧は、 操作液圧発生手段が発する制動液圧に比 して高い適当な圧力に制御される。 このため、 本発明によれば、 A B S対象車輪に制御上のハンチングを発生させることなく、 A B S 非対象車輪のホイルシリ ンダ圧を適当な増圧勾配で増圧することが できる。  The high pressure passage is brought into conduction with the operating hydraulic pressure generating means only when a large amount of brake fluid is pumped by the assist pressure generating means. When the state of conduction between the high-pressure passage and the operating hydraulic pressure generating means is controlled as described above, the braking hydraulic pressure in the high-pressure passage becomes an appropriate pressure higher than the braking hydraulic pressure generated by the operating hydraulic pressure generating means. Controlled. Therefore, according to the present invention, the wheel cylinder pressure of the non-ABS target wheel can be increased with an appropriate pressure increase gradient without causing control hunting on the ABS target wheel.
したがって、 B A制御と A B S制御とが同時に実行される場合に、 A B S対象車輪に制御上のハンチングが生ずるのを防止することが できると共に、 A B S非対象車輪のホイルシリンダ圧に過剰な増圧 勾配が生ずるのを防止することができる。  Therefore, when the BA control and the ABS control are executed simultaneously, it is possible to prevent the occurrence of control hunting on the ABS target wheel, and the wheel cylinder pressure of the non-ABS target wheel has an excessive pressure increase gradient. Can be prevented.
また、 本発明の更に他の面によれば、 運転者によって緊急ブレー キ操作が行われた際に通常時に比して大きな制動油圧を発生させる ブレーキアシスト制御と、 各車輪の制動油圧を各車輪に過剰なス リ ップ率を発生させない圧力に制御するアンチ口ックブレーキ制御 と、 を実行する制動力制御装置において、 Further, according to still another aspect of the present invention, a brake assist control for generating a larger brake oil pressure than usual when an emergency brake operation is performed by a driver, Excessive excess The anti-lack brake control that controls to a pressure that does not generate a rip ratio, and the braking force control device that executes
ブレーキ操作量に応じた制動液圧を発生する操作液圧発生手段と. ブレーキ操作量と無関係に所定の制動液圧を発生するアシスト圧 発生手段と、  Operating hydraulic pressure generating means for generating a braking hydraulic pressure according to the brake operating amount; assist pressure generating means for generating a predetermined braking hydraulic pressure irrespective of the brake operating amount;
前記操作液圧発生手段および前記アシスト圧発生手段の双方に連 通する高圧通路と、  A high-pressure passage communicating with both the operating hydraulic pressure generating means and the assist pressure generating means;
前記操作液圧発生手段と前記高圧通路とを遮断状態とし得る操作 液圧力ッ ト機構と、  An operating hydraulic pressure shut-off mechanism that can shut off the operating hydraulic pressure generating means and the high-pressure passage;
所定の低圧源に連通する低圧通路と、  A low-pressure passage communicating with a predetermined low-pressure source;
各車輪のホイルシリ ンダと前記高圧通路との導通状態、 および、 各車輪のホイルシリ ンダと前記低圧通路との導通状態を制御する導 通状態制御機構と、  A conduction state control mechanism for controlling a conduction state between the wheel cylinder of each wheel and the high pressure passage, and a conduction state between the wheel cylinder of each wheel and the low pressure passage;
運転者によって緊急ブレーキ操作が行われた場合に、 前記操作液 圧カッ ト機構を遮断状態とし、 かつ、 前記アシス ト圧発生手段から 前記高圧通路に所定の制動液圧を供給させる B A制御手段と、 前記導通状態制御機構を所定の制御パターンで制御するこ とによ り、 各車輪に過剰なスリ ップ率が生じないように各車輪のホイルシ リ ンダ圧を制御する A B S制御手段と、  BA control means for shutting off the operating hydraulic pressure cut-off mechanism when an emergency brake operation is performed by a driver, and for supplying predetermined brake hydraulic pressure to the high-pressure passage from the assist pressure generating means; An ABS control means for controlling the wheel cylinder pressure of each wheel by controlling the conduction state control mechanism according to a predetermined control pattern so that an excessive slip rate does not occur in each wheel;
ブレーキアシスト制御とアンチ口ックブレーキ制御とが同時に実 行されている場合に、 前記操作液圧カツ ト機構を導通状態とする高 圧通路開放手段と、  A high-pressure passage opening unit that brings the operation hydraulic cut mechanism into a conductive state when the brake assist control and the anti-braking brake control are simultaneously performed;
を備える制動力制御装置が提供される。  A braking force control device comprising:
上述の発明において、 B A + A B S制御の実行中は、 A B S対象 車輪のホイルシリ ンダがほぼ高圧通路と切り離された状態とされる ことに起因して、 アシスト圧発生手段の吐出能力が過剰となる。 こ の際、 本発明においては、 高圧通路と操作液圧発生手段とが導通状 態とされる。 高圧通路と操作液圧発生手段とが導通状態とされると、 アシスト圧発生手段によって吐出されるブレーキフルードが操作液 圧発生手段に流入することが可能となる。 従って、 アシス卜圧発生 手段の吐出能力が過剰であっても、 高圧通路に不当に高圧の制動液 圧が生ずることがない。 In the above invention, during execution of the BA + ABS control, the discharge capacity of the assist pressure generating means becomes excessive due to the fact that the wheel cylinder of the ABS target wheel is substantially disconnected from the high pressure passage. At this time, in the present invention, the high-pressure passage and the operating hydraulic pressure generating means are brought into conduction. When the high-pressure passage and the operating fluid pressure generating means are brought into conduction, the brake fluid discharged by the assist pressure generating means changes the operating fluid pressure. It is possible to flow into the pressure generating means. Therefore, even if the discharge capacity of the assist pressure generating means is excessive, an unduly high brake fluid pressure is not generated in the high pressure passage.
したがって、 B A制御と A B S制御とが同時に実行される場合に、 高圧通路に不当に高圧の制動液圧が発生するのを防止することがで きる。  Therefore, when the BA control and the ABS control are performed simultaneously, it is possible to prevent the generation of an unduly high brake fluid pressure in the high-pressure passage.
本発明の他の目的、 特徴及び利点は添付の図面を参照しながら以 下の詳細な説明を読むことにより一層明瞭となるであろう。 図面の簡単な説明  Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の第 1乃至第 3実施例による制動力制御装置のシ ステ厶構成図である。  FIG. 1 is a system configuration diagram of a braking force control device according to first to third embodiments of the present invention.
図 2は、 図 1 に示す制動力制御装置が A B S制御を実行する際に 実現されるホイルシリ ンダ圧 P w/ c の変化を示すグラフである。 図 3は、 図 1 に示す制動力制御装置が備えるホイルシリ ンダに液 圧源を接続した場合に実現される昇圧特性を示すグラフである。 図 4は、 図 1 に示す制動力制御装置が備える後輪のホイルシリ ン ダが種々の状況下で示す増圧勾配を表すグラフである。  FIG. 2 is a graph showing a change in wheel cylinder pressure P w / c realized when the braking force control device shown in FIG. 1 executes ABS control. FIG. 3 is a graph showing a boost characteristic realized when a hydraulic pressure source is connected to the foil cylinder provided in the braking force control device shown in FIG. FIG. 4 is a graph showing the pressure increase gradient of the rear wheel wheel cylinder included in the braking force control device shown in FIG. 1 under various conditions.
図 5は、 図 1 に示す制動力制御装置において実現されるホイルシ リ ンダ圧のオーバーシユートを説明するためのグラフである。  FIG. 5 is a graph for explaining an overshoot of the wheel cylinder pressure realized in the braking force control device shown in FIG.
図 6は、 本発明の第 1実施例による制動力制御装置において実行 される制御ルーチンのフローチャー トである。  FIG. 6 is a flowchart of a control routine executed in the braking force control device according to the first embodiment of the present invention.
図 7は、 本発明の第 1実施例による制動力制御装置において図 6 に示す制御ルーチンが実行された際に実現されるホイルシリ ンダ圧 の変化を示すグラフである。  FIG. 7 is a graph showing a change in wheel cylinder pressure realized when the control routine shown in FIG. 6 is executed in the braking force control device according to the first embodiment of the present invention.
図 8は、 本発明の第 2実施例による制動力制御装置において実行 される制御ルーチンのフローチヤ一トである。  FIG. 8 is a flowchart of a control routine executed in the braking force control device according to the second embodiment of the present invention.
図 9は、 本発明の第 2実施例による制動力制御装置において図 8 に示す制御ルーチンが実行された際に実現されるホイルシリ ンダ圧 の変化を示すグラフである。 FIG. 9 shows the wheel cylinder pressure realized when the control routine shown in FIG. 8 is executed in the braking force control device according to the second embodiment of the present invention. 6 is a graph showing a change in the graph.
図 1 0は、 B A制御の実行 ·停止に伴う液圧源および増圧特性の 変化を示す図である。  FIG. 10 is a diagram showing changes in the hydraulic pressure source and the pressure increase characteristics due to the execution and stop of the BA control.
図 1 1 は、 本発明の第 3実施例による制動力制御装置において実 行される制御ルーチンのフローチャートである。  FIG. 11 is a flowchart of a control routine executed in the braking force control device according to the third embodiment of the present invention.
図 1 2は、 本発明の第 4実施例による制動力制御装置の通常ブ レーキ状態および A B S作動状態を示すシステム構成図である。 図 1 3は、 図 1 2に示す制動力制御装置において B A制御中に実 現されるアシスト圧増圧状態を示す図である。  FIG. 12 is a system configuration diagram showing a normal brake state and an ABS operation state of the braking force control device according to the fourth embodiment of the present invention. FIG. 13 is a diagram showing an assist pressure increasing state realized during BA control in the braking force control device shown in FIG.
図 1 4は、 図 1 2に示す制動力制御装置において B A制御中に実 現されるアシスト圧保持状態を示す図である。  FIG. 14 is a diagram showing an assist pressure holding state realized during BA control in the braking force control device shown in FIG.
図 1 5は、 図 1 2に示す制動力制御装置において B A制御中また は B A + A B S制御中に実現されるアシスト圧減圧状態を示す図で め 。  FIG. 15 is a diagram showing a reduced assist pressure state realized during BA control or BA + ABS control in the braking force control device shown in FIG.
図 1 6は、 図 1 2に示す制動力制御装置において B A + A B S制 御中に実現されるアシスト圧増圧状態を示す図である。  FIG. 16 is a diagram showing an assist pressure increasing state realized during BA + ABS control in the braking force control device shown in FIG.
図 1 7は、 図 1 2に示す制動力制御装置において B A + A B S制 御中に実現されるアシスト圧保持状態を示す図である。  FIG. 17 is a diagram showing an assist pressure holding state realized during BA + ABS control in the braking force control device shown in FIG.
図 1 8は、 図 1 2に示す制動力制御装置においてリザーバカッ ト ソレノィ ドの状態を制御するために実行される制御ルーチンのフ ローチャートである。  FIG. 18 is a flowchart of a control routine executed to control the state of the reservoir cut solenoid in the braking force control device shown in FIG.
図 1 9は、 図 1 2に示す制動力制御装置において保持ソレノイ ド および減圧ソレノィ ドの制御手法を選択するために実行される制御 ルーチンのフローチヤ一トである。  FIG. 19 is a flowchart of a control routine executed for selecting a control method of the holding solenoid and the pressure reducing solenoid in the braking force control device shown in FIG.
図 2 0は、 図 1 2に示す制動力制御装置において A B S制御を実 現するために実行される制御ルーチンのフローチヤ一トである。 図 2 1 は、 図 1 2に示す制動力制御装置においてマス夕力ッ トソ レノィ ドの状態を制御するために実行される制御ルーチンのフロー チヤ一トである。 図 2 2は、 本発明の第 5実施例による制動力制御装置の通常ブ レーキ状態および A B S作動状態を示すシステム構成図である。 図 2 3は、 図 2 2に示す制動力制御装置において B A制御中に実 現されるアシスト圧増圧状態を示す図である。 FIG. 20 is a flowchart of a control routine executed to realize the ABS control in the braking force control device shown in FIG. FIG. 21 is a flowchart of a control routine executed in the braking force control device shown in FIG. 12 to control the state of the mass cut solenoid. FIG. 22 is a system configuration diagram showing a normal brake state and an ABS operation state of the braking force control device according to the fifth embodiment of the present invention. FIG. 23 is a diagram showing an assist pressure increasing state realized during BA control in the braking force control device shown in FIG. 22.
図 2 4は、 図 2 2に示す制動力制御装置において B A制御中に実 現されるアシスト圧保持状態を示す図である。  FIG. 24 is a diagram showing an assist pressure holding state realized during BA control in the braking force control device shown in FIG.
図 2 5は、 図 2 2に示す制動力制御装置において B A制御中また は B A + A B S制御中に実現されるアシスト圧減圧状態を示す図で あ O ο  FIG. 25 is a diagram showing a reduced assist pressure state realized during BA control or BA + ABS control in the braking force control device shown in FIG. 22.
図 2 6は、 図 2 2に示す制動力制御装置において B A + A B S制 御中に実現されるアシスト圧増圧状態を示す図である。  FIG. 26 is a diagram showing an assist pressure increasing state realized during B A + ABS control in the braking force control device shown in FIG. 22.
図 2 7は、 図 2 2に示す制動力制御装置において B A + A B S制 御中に実現されるアシス ト圧保持状態を示す図である。 発明を実施するための最良の形態  FIG. 27 is a diagram showing an assist pressure holding state realized during B A + ABS control in the braking force control device shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
図 1 は、 本発明の第 1実施例による制動力制御装置のシステム構 成図である。 図 1 に示す制動力制御装置は、 電子制御ュニッ ト 2 0 (以下、 E C U 2 0 と称す) により制御されている。 制動力制御装 置は、 ポンプ 2 1 を備えている。 ポンプ 2 1 は、 その動力源として モータ 2 2を備えている。 ポンプ 2 1 の吸入口 2 1 aはリ ザーバ タンク 2 3に連通している。 また、 ポンプ 2 1の吐出口 2 1 bには、 逆止弁 2 4を介してアキュムレータ 2 5が連通している。 ポンプ 2 1は、 アキュムレータ 2 5内に、 常に所定の液圧が蓄圧されるよう に、 リザ一バタンク 2 3内のブレーキフルードを、 その吐出口 2 1 bから圧送する。  FIG. 1 is a system configuration diagram of a braking force control device according to a first embodiment of the present invention. The braking force control device shown in FIG. 1 is controlled by an electronic control unit 20 (hereinafter referred to as ECU 20). The braking force control device includes a pump 21. The pump 21 has a motor 22 as its power source. The suction port 21 a of the pump 21 communicates with the reservoir tank 23. An accumulator 25 communicates with a discharge port 21 b of the pump 21 via a check valve 24. The pump 21 pumps the brake fluid in the reservoir tank 23 from its discharge port 21 b so that a predetermined hydraulic pressure is always accumulated in the accumulator 25.
アキュムレータ 2 5は、 高圧通路 2 6を介してレギユレ一夕 2 7 の高圧ポー ト 2 7 a、 およびレギュレー夕切り換えソレノイ ド 2 8 (以下、 S T R 2 8 と称す) に連通している。 レギユレ一タ 2 7は、 低圧通路 2 9を介してリザーバタンク 2 3に連通する低圧ポ一ト 2 7 bと、 制御液圧通路 3 0を介して S T R 2 8に連通する制御液圧 ポート 2 7 cを備えている。 S T R 2 8は、 制御液圧通路 3 0およ び高圧通路 2 6の一方を選択的に導通状態とする 2位置の電磁弁で あり、 常態では、 制御液圧通路 3 0を導通状態とし、 かつ、 高圧通 路 2 6を遮断状態とする。 ここで、 2位置の電磁弁とは 2つの状態 に切り替えることができる電磁弁を意味する。 The accumulator 25 communicates with a high-pressure port 27 a of a regulator 27 and a regulator switching solenoid 28 (hereinafter referred to as STR 28) via a high-pressure passage 26. The regulator 27 is a low-pressure port 2 communicating with the reservoir tank 23 via a low-pressure passage 29. 7b, and a control hydraulic pressure port 27c communicating with the STR 28 via the control hydraulic pressure passage 30. The STR 28 is a two-position solenoid valve that selectively makes one of the control hydraulic passage 30 and the high-pressure passage 26 conductive, and in a normal state, makes the control hydraulic passage 30 conductive, In addition, the high-pressure circuit 26 is shut off. Here, the two-position solenoid valve means a solenoid valve that can be switched between two states.
レギユレ一夕 2 7には、 ブレーキペダル 3 1が連結されていると 共に、 マス夕シリ ンダ 3 2が固定されている。 レギユレ一夕 2 7は、 その内部に液圧室を備えている。 液圧室は、 常に制御液圧ボー ト 2 7 cに連通されていると共に、 ブレーキペダル 3 1 の操作状態に応 じて、 選択的に高圧ポー ト 2 7 aまたは低圧ポー ト 2 7 bに連通さ れる。 レギユレ一夕 2 7は、 液圧室の内圧が、 ブレーキペダル 3 1 に作用するブレーキ踏力 F P に応じた液圧に調整されるように構成 されている。 このため、 レギユレ一夕 2 7の制御液圧ポー ト 2 7 c には、 常に、 ブレーキ踏力 F P に応じた液圧が表れる。 以下、 この 液圧をレギュレ一夕圧 P R Eと称す。 The brake pedal 31 is connected to the regiré night 27, and the mass cylinder 32 is fixed. The Regyuyle 27 has a hydraulic chamber inside. The hydraulic chamber is always in communication with the control hydraulic port 27c, and is selectively connected to the high pressure port 27a or the low pressure port 27b depending on the operation state of the brake pedal 31. It is communicated. Regiyure Isseki 2 7, the internal pressure of the hydraulic chamber is configured to be adjusted to the hydraulic pressure corresponding to the brake pressing force F P exerted on the brake pedal 3 1. Therefore, the control fluid pressure port 2 7 c of Regiyure Isseki 2 7 always hydraulic pressure appears corresponding to the brake pressing force F P. Hereinafter, this fluid pressure is referred to as a regular pressure PRE.
ブレーキペダル 3 1 に作用するブレーキ踏力 F P は、 レギユレ一 夕 2 7を介して機械的にマスタシリンダ 3 2に伝達される。 また、 マス夕シリ ンダ 3 2には、 レギユレ一夕 2 7の液圧室の液圧に応じ た、 すなわちレギユレ一夕圧 P R Eに応じた力が伝達される。 以下、 この力をブレーキアシスト力 F A と称す。 従って、 ブレーキペダル 3 1が踏み込まれると、 マス夕シリ ンダ 3 2には、 ブレーキ踏力 FBrake pressing force F P exerted on the brake pedal 3 1 is mechanically transmitted to the master cylinder 3 2 via the Regiyure one evening 2 7. Further, the mass evening silicon Sunda 3 2, according to the hydraulic pressure of Regiyure Isseki 2 7 hydraulic chambers, i.e. Regiyure Isseki force corresponding to the pressure P RE is transmitted. Hereinafter, this force is referred to as the brake assist force F A. Therefore, when the brake pedal 31 is depressed, the mass cylinder 32 shows the brake depression force F
P とブレーキアシス ト力 F A との合力が伝達される。 The resultant force of P and brake assist force F A is transmitted.
マス夕シリ ンダ 3 2は、 その内部に第 1液圧室 3 2 aと第 2液圧 室 3 2 bとを備えている。 第 1液圧室 3 2 aおよび第 2液圧室 3 2 bには、 ブレーキ踏力 F P とブレーキアシスト力 F a との合力に応 じたマスタシリ ンダ圧 P M / C が発生する。 第 1液圧室 3 2 aに発生 するマス夕シリ ンダ圧 P M/C および第 2液圧室 3 2 bに発生するマ ス夕シリ ンダ圧 p M/ c は、 共にプロボーショニングバルブ 3 4 (以 下、 Pバルブ 3 4 と称す) に連通している。 The mass cylinder 32 has a first hydraulic chamber 32a and a second hydraulic chamber 32b therein. The first fluid pressure chamber 3 2 a and the second fluid pressure chamber 3 2 b, the master serial Nda圧P M / C was depending on the resultant force of the brake pressing force F P and a brake assist force F a is generated. The mass cylinder pressure P M / C generated in the first hydraulic chamber 32 a and the mass cylinder pressure p M / c generated in the second hydraulic chamber 32 b are both provided by the provisional valve 3. 4 (after Below, it is called P valve 34).
Pバルブ 3 4には、 第 1液圧通路 3 6 と第 2液圧通路 3 8 とが連 通している。 Pバルブ 3 4は、 マスタシリ ンダ圧 PM/C が所定値に 満たない領域では、 第 1液圧通路 3 6および第 2液圧通路 3 8に対 して、 マスタシリ ンダ圧 PM/c をそのまま供給する。 また、 Pバル ブ 3 4は、 マス夕シリ ンダ圧 PM/C が所定値を超える領域では、 第 1液圧通路 3 6に対してマス夕シリ ンダ圧 PM/c をそのまま供給す ると共に、 第 2液圧通路 3 8に対してマスタシリ ンダ圧 PM/c を所 定の比率で減圧した液圧を供給する。 The first hydraulic passage 36 and the second hydraulic passage 38 communicate with the P valve 34. P valve 3 4, in the area where the master serial Nda圧P M / C is less than a predetermined value, and against the first fluid pressure passage 3 6 and the second liquid pressure passage 3 8, the master serial Nda圧P M / c Supply as is. Further, the P valve 34 supplies the mass cylinder pressure P M / c to the first hydraulic passage 36 as it is in a region where the mass cylinder pressure P M / C exceeds a predetermined value. At the same time, the master cylinder pressure P M / c is supplied to the second hydraulic passage 38 at a predetermined ratio.
第 2液圧通路 3 8には、 マスタシリ ンダ圧 PM/C に比例した電気 信号を出力する液圧センサ 4 0が加設されている。 液圧センサ 4 0 の出力信号は E CU 2 0に供給されている。 E C U 2 0は、 液圧セ ンサ 4 0の出力信号に基づいて、 マス夕シリ ンダ 3 2に生じている マスタシリ ンダ圧 PM/C を検出する。 The second fluid pressure passage 3 8, fluid pressure sensor 4 0 for outputting an electrical signal proportional to the master serial Nda圧P M / C is being Ka設. The output signal of the hydraulic pressure sensor 40 is supplied to the ECU 20. The ECU 20 detects the master cylinder pressure PM / C generated in the master cylinder 32 based on the output signal of the hydraulic sensor 40.
上述した STR 2 8には、 第 3液圧通路 4 2が連通している。 第 3液圧通路 4 2は、 STR 2 8の状態に応じて、 制御液圧通路 3 0 または高圧通路 2 6の一方と連通状態とされる。 本実施例において、 左右前輪 F L, F Rに配設されるホイルシリ ンダ 4 4 F L, 4 4 F Rには、 Pバルブ 3 4に連通する第 1液圧通路 3 6、 または、 S T R 2 8に連通する第 3液圧通路 4 2から制動液圧が供給される。 ま た、 左右後輪 R L, RRに配設されるホイルシリ ンダ 4 4 R L, 4 4 RRには、 Pバルブ 3 4に連通する第 2液圧通路 3 8、 または、 S TR 2 8に連通する第 3液圧通路 4 2から制動液圧が供給される。 第 1液圧通路 3 6には、 第 1アシス ト ソ レノイ ド 4 6 (以下、 S A-, 4 6 と称す) 、 および第 2アシス ト ソ レノイ ド 4 8 (以下、 S A- 24 8 と称す) が連通している。 一方、 第 3液圧通路 4 2には、 右前輪保持ソ レノィ ド 5 0 (以下、 S FRH 5 0と称す) 、 左前輪 保持ソレノイ ド 5 2 (以下、 S F LH 5 2と称す) 、 および第 3ァ シス トツレノイ ド 5 4 (以下、 S A -35 4 と称す) が連通している こ こで、 本明細書においてソ レノィ ドとはソ レノィ ドバルブを意味 する。 The third hydraulic passage 42 communicates with the STR 28 described above. The third hydraulic passage 42 is in communication with one of the control hydraulic passage 30 and the high-pressure passage 26 according to the state of the STR 28. In the present embodiment, the wheel cylinders 44 FL, 44 FR arranged on the left and right front wheels FL, FR are connected to the first hydraulic pressure passage 36 communicating with the P valve 34 or the STR 28. The brake fluid pressure is supplied from the third fluid pressure passage 42. In addition, the wheel cylinders 44 RL, 44 RR disposed on the left and right rear wheels RL, RR are connected to the second hydraulic pressure passage 38 communicating with the P valve 34 or the STR 28. The brake fluid pressure is supplied from the third fluid pressure passage 42. The first hydraulic passage 36 has a first assist solenoid 46 (hereinafter referred to as SA- 46) and a second assist solenoid 48 (hereinafter SA-2448). ) Are in communication. On the other hand, the third hydraulic passage 42 includes a right front wheel holding solenoid 50 (hereinafter, referred to as SFRH 50), a left front wheel holding solenoid 52 (hereinafter, referred to as SF LH 52), and third § cis Totsurenoi de 5 4 (hereinafter, SA - 3 referred to 5 4) is communicated with Here, in this specification, the solenoid means a solenoid valve.
S F RH 5 0は、 常態では開弁状態を維持する 2位置の電磁開閉 弁である。 S FRH 5 0は、 調圧用液圧通路 5 6を介して、 SA一 , 4 6および右前輪減圧ソ レノイ ド 5 8 (以下、 S FRR 5 8 と称 す) に連通している。 第 3液圧通路 4 2と調圧用液圧通路 5 6 との 間には、 調圧用液圧通路 5 6側から第 3通路 4 2側へ向かう流体の 流れのみを許容する逆止弁 6 0が並設されている。  SFRH50 is a two-position solenoid valve that normally keeps the valve open. The SFRH 50 communicates with the SAs 1, 46 and the right front wheel decompression solenoid 58 (hereinafter, referred to as S FRR 58) through a pressure adjusting hydraulic passage 56. A check valve 60 between the third hydraulic passage 42 and the pressure regulating hydraulic passage 56 allows only the flow of fluid from the pressure regulating hydraulic passage 56 to the third passage 42. Are juxtaposed.
S A-, 4 6は、 第〗液圧通路 3 6および調圧用液圧通路 5 6の一 方を選択的にホイルシリ ンダ 4 4 F Rに導通させる 2位置の電磁弁 であり、 常態 (オフ状態) では、 第 1液圧通路 3 6 とホイルシリ ン ダ 4 4 F Rとを導通状態とする。 一方、 S F RR 5 8は、 調圧用液 圧通路 5 6 とリザ一バタンク 2 3 とを導通状態または遮断状態とす る 2位置の電磁開閉弁である。 S F RR 5 8は、 常態 (オフ状態) では調圧用液圧通路 5 6とリザ一バタンク 2 3とを遮断状態とする c S F LH 5 2は、 常態では開弁状態を維持する 2位置の電磁開閉 弁である。 S F LH 5 2は、 調圧用液圧通路 6 2を介して、 SA-2 4 8および左前輪減圧ソ レノイ ド 6 4 (以下、 S F L R 6 4 と称 す) に連通している。 第 3液圧通路 4 2と調圧用液圧通路 6 2との 間には、 調圧用液圧通路 6 2側から第 3通路 4 2側へ向かう流体の 流れのみを許容する逆止弁 6 6が並設されている。 S A- and 46 are two-position solenoid valves that selectively connect one of the second hydraulic passage 36 and the pressure regulating hydraulic passage 56 to the foil cylinder 44 FR, and are in a normal state (off state). In), the first hydraulic passage 36 and the foil cylinder 44 FR are brought into conduction. On the other hand, the SF RR 58 is a two-position solenoid on-off valve for bringing the pressure regulating hydraulic passage 56 and the reservoir tank 23 into a conductive state or a cutoff state. SF RR 58 shuts off the pressure regulating hydraulic passage 56 and reservoir tank 23 in the normal state (off state) c SF LH 52 maintains the valve open state in the normal state 2-position electromagnetic It is an on-off valve. SF LH 5 2 via a pressure adjusting fluid pressure passage 6 2, SA - 2 4 8 and the left front wheel pressure-reducing source Renoi de 6 4 communicates with (hereinafter to referred as SFLR 6 4). A check valve 6 6 between the third hydraulic passage 42 and the pressure regulating hydraulic passage 62 allows only the flow of fluid from the pressure regulating hydraulic passage 62 to the third passage 42. Are juxtaposed.
S A -24 8は、 第 1液圧通路 3 6および調圧用液圧通路 6 2の一 方を、 選択的にホイルシリンダ 4 4 F Lに導通させる 2位置の電磁 弁であり、 常態 (オフ状態) では、 第 i液圧通路 3 6 とホイルシリ ンダ 4 4 F Lとを導通状態とする。 一方、 S F LR 6 4は、 調圧用 液圧通路 6 2とリザーバタ ンク 2 3とを導通状態または遮断状態と する 2位置の電磁開閉弁である。 S F L R 6 4は、 常態 (オフ状 態) では調圧用液圧通路 6 2とリザ一バタンク 2 3とを遮断状態と する。 第 2液圧通路 3 8は、 上述した S A -35 4に連通している。 S A - a 5 4の下流側には、 右後輪 RRのホイルシリンダ 4 4 RRに対応 して設けられた右後輪保持ソ レノイ ド 6 8 (以下、 S RRH 6 8 と 称す) 、 および、 左後輪 RLのホイルシリ ンダ 4 4 R Lに対応して 設けられた左後輪保持ソ レノィ ド 7 0 (以下、 SR LR 7 0 ) が連 通している。 S A— 35 4は、 第 2液圧通路 3 8および第 3液圧通路 4 2の一方を、 選択的に S R RH 6 8ぉょび3尺し1¾ 7 0に連通さ せる 2位置の電磁弁であり、 常態 (オフ状態) では、 第 2液圧通路 3 8 と S RRH 6 8および S R L R 7 0 とを連通状態とする。 SA - 2 4 8 has a first liquid hand of pressure passage 3 6 and the pressure adjusting fluid pressure passage 6 2, a position solenoid valve which selectively conducts to the wheel cylinders 4 4 FL, normal state (OFF state In), the i-th hydraulic passage 36 and the foil cylinder 44 FL are brought into conduction. On the other hand, the SF LR 64 is a two-position solenoid on-off valve that connects or disconnects the pressure regulating hydraulic pressure passage 62 and the reservoir tank 23. In the normal state (off state), the SFLR 64 keeps the pressure regulating hydraulic passage 62 and the reservoir tank 23 closed. The second fluid pressure passage 3 8, SA described above - is communicated with the 3 5 4. Downstream of SA-a54, right rear wheel holding solenoid 68 (hereinafter referred to as SRRH68) provided corresponding to wheel cylinder 44RR of right rear wheel RR, and A left rear wheel holding solenoid 70 (hereinafter, SR LR 70) provided corresponding to the wheel cylinder 44 RL of the left rear wheel RL is in communication. SA - 3 5 4 is one of the second fluid pressure passage 3 8 and a third fluid pressure passage 4 2, two-position which selectively communicates with the SR RH 6 8 Oyobi 3 shaku to 1¾ 7 0 solenoid The valve is in a normal state (off state), and the second hydraulic passage 38 communicates with the SRRH 68 and SRLR 70.
S R R H 6 8の下流側には、 調圧用液圧通路 7 2を介して、 ホイ ルシリ ンダ 4 4 RR、 および、 右後輪減圧ソレノイ ド 7 4 (以下、 S RRR 7 4 と称す) が連通している。 S RR R 7 4は、 調圧用液 圧通路 7 2とリザ一バタンク 2 3とを導通状態または遮断状態とす る 2位置の電磁開閉弁であり、 常態 (オフ状態) では調圧用液圧通 路 7 2とリザーバタンク 2 3とを遮断状態とする。 また、 S A-35 4 と調圧用液圧通路 7 2との間には、 調圧用液圧通路 7 2側から S A- 35 4側へ向かう流体の流れのみを許容する逆止弁 7 6が並設さ れている。 The wheel cylinder 44 RR and the right rear wheel decompression solenoid 74 (hereinafter referred to as S RRR 74) communicate with the downstream side of the SRRH 68 via a pressure adjustment hydraulic passage 72. ing. S RR R 74 is a two-position solenoid on-off valve that connects or disconnects the pressure regulating hydraulic passage 72 and the reservoir tank 23, and in a normal state (off state), the hydraulic pressure regulating passage is closed. The road 72 and the reservoir tank 23 are shut off. Further, a check valve 7 which allows only the flow of fluid toward the S A- 35 4 side from, the pressure adjusting fluid pressure passage 7 2 side between the S A- 3 5 4 Doo pressure adjusting fluid pressure passage 7 2 6 are juxtaposed.
同様に、 S R LH 7 0の下流側には、 調圧用液圧通路 7 8を介し て、 ホイルシ リ ンダ 4 4 R L、 および、 左後輪減圧ソ レノ イ ド 8 0 (以下、 S R L R 8 0 と称す) が連通している。 S R LR 8 0は、 調圧用液圧通路 7 8 とリザ一バタンク 2 3 とを導通状態または遮断 状態とする 2位置の電磁開閉弁であり、 常態 (オフ状態) では調圧 用液圧通路 7 8 とリザ一バタンク 2 3とを遮断状態とする。 また、 S A- 35 4 と調圧用液圧通路 7 8との間には、 調圧用液圧通路 7 8 側から SA-35 4側へ向かう流体の流れのみを許容する逆止弁 8 2 が並設されている。 Similarly, on the downstream side of the SR LH 70, a wheel cylinder 44 RL and a left rear wheel decompression solenoid 80 (hereinafter referred to as SRLR 80) are provided via a pressure regulating hydraulic passage 78. Communication). SR LR 80 is a two-position solenoid on-off valve that connects or disconnects the pressure-regulating fluid passage 78 and the reservoir tank 23. In the normal state (off state), the pressure regulating fluid passage 7 is opened. 8 and reservoir tanks 23 are shut off. Further, a check valve 82 which allows only the flow of fluid directed from the pressure adjusting fluid pressure passage 7 8 side to the SA - 3 5 4 side between S A- 35 4 Doo pressure adjusting fluid pressure passage 7 8 Are juxtaposed.
本実施例のシステムにおいて、 ブレーキペダル 3 1 の近傍には、 プレーキスィツチ 8 が配設されている。 ブレーキスィッチ 8 4は、 ブレーキペダル 3 iが踏み込まれている場合にオン出力を発するス イッチである。 ブレーキスィッチ 8 4の出力信号は E CU 2 0に供 給されている。 E CU 2 0は、 ブレーキスィッチ 8 4の出力信号に 基づいて、 運転者によって制動操作がなされているか否かを判別す る。 In the system of the present embodiment, a play switch 8 is arranged near the brake pedal 31. The brake switch 8 4 This switch generates ON output when the brake pedal 3i is depressed. The output signal of the brake switch 84 is supplied to the ECU 20. The ECU 20 determines whether or not the driver has performed a braking operation based on the output signal of the brake switch 84.
また、 本実施例のシステムにおいて、 左右前輪 F L, F Rおよび 左右後輪 R L, RRの近傍には、 それぞれ各車輪が所定回転角回転 する毎にパルス信号を発する車輪速センサ 8 6 F L, 8 6 F R, 8 6 R L, 8 6 R R (以下、 これらを総称する場合は符号 8 6 **を付 して表す) が配設されている。 車輪速センサ 8 6 **の出力信号は E C U 2 0に供給されている。 E C U 2 0は、 車輪速センサ 8 6 の 出力信号に基づいて、 各車輪 F L, F R, R L, RRの回転速度、 すなわち、 各車輪 F L, FR, R L, RRの車輪速度を検出する。  Further, in the system of this embodiment, wheel speed sensors 8 6 FL, 8 6 are provided near the left and right front wheels FL, FR and the left and right rear wheels RL, RR each time each wheel rotates a predetermined rotation angle. FR, 86 RL, 86 RR (hereinafter, collectively referred to with reference numeral 86 **) are provided. The output signal of the wheel speed sensor 86 ** is supplied to ECU20. ECU 20 detects the rotation speed of each wheel FL, FR, RL, RR, that is, the wheel speed of each wheel FL, FR, RL, RR, based on the output signal of wheel speed sensor 86.
E C U 2 0は、 液圧センサ 4 0、 車輪速センサ 8 6 **、 および、 ブレーキスィッチ 8 4の出力信号に基づいて、 上述した S TR 2 8、 S A , 4 6、 SA— 24 8、 S A— 35 4、 S F RH 5 0、 S F L H 5 2、 S F R R 5 8、 S F LR 6 4、 S RRH 6 8、 S R LH 7 0、 S R R R 7 4、 および、 S R L R 8 0に対して適宜駆動信号を供給 する。 Based on the output signals of the hydraulic pressure sensor 40, the wheel speed sensor 86 **, and the brake switch 84, the ECU 20 calculates the STR 28, SA, 46, SA- 2 48, SA- 3 5 4, SF RH 5 0, SFLH 5 2, SFRR 5 8, SF LR 6 4, S RRH 6 8, SR LH 7 0, SRRR 7 4, and, as appropriate driving signal to the SRLR 8 0 Supply.
次に、 本実施例の制動力制御装置の動作を説明する。 本実施例の 制動力制御装置は、 車両状態が安定している場合は、 ブレーキぺダ ル 3 1 に作用するブレーキ踏力 FP に応じた制動力を発生させる通 常制御を実行する。 通常制御は、 図 1 に示す如く、 STR 2 8、 S A , 4 6、 SA-24 8、 SA— 35 4、 S F RH 5 0、 S F LH 5 2、 S FRR 5 8、 S F LR 6 4、 S RRH 6 8、 S R L H 7 0. SR RR 7 4、 および、 SR L R 8 0を全てオフ状態とすることで実現 される。 Next, the operation of the braking force control device according to the present embodiment will be described. Braking force control apparatus of the present embodiment, when the vehicle state is stable, executes normal control for generating a braking force corresponding to the brake pressing force F P exerted on the brake Bae Da Le 3 1. Normal control, as shown in FIG. 1, STR 2 8, SA, 4 6, SA- 2 4 8, SA- 3 5 4, SF RH 5 0, SF LH 5 2, S FRR 5 8, SF LR 6 4 , SRRH 68, SRLH 70. This is realized by turning off all SR RR 74 and SR LR 80.
すなわち、 図 1 に示す状態においては、 ホイルシリ ンダ 4 4 F R および 4 4 F Lは第 1液圧通路 3 6に、 また、 ホイルシリ ンダ 4 4 RRおよび 4 4 R Lは第 2液圧通路 3 8にそれぞれ連通される。 こ の場合、 ブレーキフルードは、 マスタシリンダ 3 2とホイルシリ ン ダ 4 4 F R, 4 4 F L, 4 4 RL, 4 4 RR (以下、 これらを総称 する場合は符号 4 4 **を付して表す) との間で授受されることとな り、 各車輪 F L, F R, R L, RRにおいて、 ブレーキ踏力 FP に 応じた制動力が発生される。 That is, in the state shown in FIG. 1, the foil cylinders 44 FR and 44 FL are placed in the first hydraulic passage 36 and the foil cylinder 44 4 RR and 44RL are communicated with the second hydraulic passage 38, respectively. In this case, the brake fluid is represented by the master cylinder 32 and the wheel cylinders 44 FR, 44 FL, 44 RL, and 44 RR (hereinafter, these are collectively denoted by reference numeral 44 **. ) Ri Do and be exchanged between the respective wheels FL, FR, RL, in RR, braking force corresponding to the brake pressing force F P is generated.
本実施例において、 何れかの車輪について口ック状態へ移行する 可能性があることが検出されると、 その車輪についてアンチ口ック ブレーキ制御 (以後、 AB S制御と称す) の実行条件が成立したと 判定され、 以後、 A B S制御が開始される。 E CU 2 0は、 車輪速 センサ 8 6 **の出力信号に基づいて各車輪の車輪速度 VwFい VwIn this embodiment, when it is detected that there is a possibility that any of the wheels may shift to the lip-lock state, the execution condition of the anti-lip brake control (hereinafter, referred to as ABS control) for the wheel is changed. It is determined that the condition has been established, and thereafter, the ABS control is started. ECU 20 calculates the wheel speed of each wheel Vw F or Vw based on the output signal of the wheel speed sensor 8 6 **.
FR, V W RL, VWRR (以下、 これらを総称する場合は符号 VW*,を 付して表す) を演算し、 それらの車輪速度 Vw**に基づいて、 公知 の手法により車体速度の推定値 Vs。 (以下、 推定車体速度 Vs。と称 す) を演算する。 そして、 車両が制動状態にある場合に、 次式に 従って個々の車輪のスリ ップ率 Sを演算し、 Sが所定値を超えてい る場合に、 その車輪が口ック状態に移行する可能性があると判断す る o FR, VW RL, and VWRR (hereinafter collectively referred to by the symbol VW *) are calculated, and based on those wheel speeds Vw **, the estimated value V s . (Hereinafter referred to as the estimated vehicle speed V s ). Then, when the vehicle is in the braking state, the slip ratio S of each wheel is calculated according to the following equation, and when S exceeds a predetermined value, the wheel can shift to the licking state. Judge that
S = (VSo-Vw»») · 1 0 0 /Vso · · · ( 1 ) S = (V S o-Vw »») 100 / Vso (1)
E CU 2 0は、 右前輪 F Rについて A B S制御の実行条件が成立 すると判断した場合は S A-, 4 6に対して驟動信号を出力する。 ま た、 E CU 2 0は、 左前輪 FRについて A B S制御の実行条件が成 立すると判断した場合は S A -24 8に対して駆動信号を出力する。 そして、 E C U 2 0は、 左右後輪 R L, RRの何れかについて A B S制御の実行条件が成立すると判断した場合は SA-35 4に対して 駆動信号を出力する。 If the ECU 20 determines that the execution condition of the ABS control is satisfied for the right front wheel FR, the ECU 20 outputs a freewheel signal to SA-, 46. When the ECU 20 determines that the execution condition of the ABS control is satisfied for the left front wheel FR, the ECU 20 outputs a drive signal to SA-248. When the ECU 20 determines that the execution condition of the ABS control is satisfied for any of the left and right rear wheels RL and RR, the ECU 20 outputs a drive signal to the SA-354.
S A-, 4 6がォン状態とされると、 ホイルシリ ンダ 4 4 F尺が、 第 1液圧通路 3 6から遮断されて調圧用液圧通路 5 6に連通される。 また、 SA_24 8がオン状態とされると、 ホイルシリンダ 4 4 F L P T/JP97/02509 が、 第 1液圧通路 3 6から遮断されて調圧用液圧通路 6 2に連通さ れる。 更に、 S A— 35 4がオン状態とされると、 S RRH 6 8およ び S R LH 7 0が第 2液圧通路 3 8から遮断されて第 3液圧通路 4 2に連通される。 When SA-, 46 are turned on, the foil cylinder 44 F is cut off from the first hydraulic passage 36 and communicated with the pressure adjusting hydraulic passage 56. Further, when SA_ 2 4 8 is turned on, the wheel cylinder 4 4 FL PT / JP97 / 02509 is shut off from the first hydraulic passage 36 and communicates with the pressure adjusting hydraulic passage 62. Moreover, SA - 3 5 4 is when it is turned on, S RRH 6 8 and SR LH 7 0 is communicated to the third fluid pressure passage 4 2 is blocked from the second fluid pressure passage 3 8.
上記の如く SA— , 4 6、 S A-24 8および SA-35 4がオン状態 とされると、 ホイルシリ ンダ 4 4 **が、 対応する保持ソレノィ ド S F RH 5 0 , S F LH 5 2, S RRH 6 8 , S R LH 7 0 (以下、 これらを総称する場合は、 保持ソレノィ ド S**Hと称す) 、 および、 対応する減圧ソレノイ ド S F RR 5 8 , S F L R 6 4 , S RRR 7 4 , S R L R 8 0 (以下、 これらを総称する場合は、 滅圧ソレノィ ド S *,Rと称す) に連通し、 かつ、 保持ソレノィ ド S **Hに、 第 3 液圧通路 4 2および S TR 2 8を介して、 レギュレー夕圧 PREが導 かれる状態が形成される。 As described above SA-, 4 6, S A- 2 when 4 8 and SA - 3 5 4 is turned on, Hoirushiri Sunda 4 4 ** are, corresponding retention Sorenoi de SF RH 5 0, SF LH 5 2, S RRH 68, SR LH 70 (hereinafter collectively referred to as holding solenoid S ** H) and corresponding decompression solenoid SF RR 58, SFLR 64, S RRR 7 4, SRLR 80 (hereinafter collectively referred to as depressurizing solenoids S *, R), and the holding hydraulic fluid S ** H are connected to the third hydraulic passages 42 and through S TR 2 8, regulation Yu圧P RE Gashirube Charles state is formed.
上記の状況下で、 保持ソレノイ ド S**Hが開弁状態とされ、 かつ、 減圧ソレノィ ド S**Rが閉弁状態とされると、 対応するホイルシリ ンダ 4 4 **のホイルシリンダ圧 Pw/c が、 レギュレー夕圧 PReを上 限値として増圧される。 以下、 この状態を①増圧モー ドと称す。 ま た、 上記の状況下で保持ソレノイ ド S**Hが閉弁状態とされ、 かつ、 減圧ソレノィ ド S**Rが閉弁状態とされると、 対応するホイルシリ ンダ 4 4 **のホイルシリ ンダ圧 PW/C が増減されることなく保持さ れる。 以下、 この状態を②保持モードと称す。 更に、 上記の状況下 で保持ソレノィ ド S**Hが閉弁状態とされ、 かつ、 滅圧ソレノィ ド S**Rが開弁状態とされると、 対応するホイルシリ ンダ 4 4 "のホ イルンリ ンダ圧 Pw/C が減圧される。 以下、 この状態を③減圧モー ドと称す。 Under the above conditions, when the holding solenoid S ** H is opened and the pressure reducing solenoid S ** R is closed, the wheel cylinder pressure of the corresponding wheel cylinder 44 ** is set. Pw / c is increased with the regulation evening pressure P Re as the upper limit. Hereinafter, this state is referred to as a pressure increase mode. In addition, when the holding solenoid S ** H is closed and the pressure reducing solenoid S ** R is closed under the above-described conditions, the foil cylinder of the corresponding foil cylinder 44 ** is closed. The pressure P W / C is maintained without increasing or decreasing. Hereinafter, this state is referred to as “② holding mode”. Further, when the holding solenoid S ** H is closed and the decompression solenoid S ** R is opened under the above conditions, the corresponding foil cylinder 44 " The pressure P w / C is reduced, which is referred to as ③ pressure reduction mode.
E CU 2 0は、 制動時における各車輪のスリ ップ率 Sが適当な値 に収まるように、 すなわち、 各車輪がロック状態に移行しないよう に、 適宜上述した①増圧モー ド、 ②保持モードおよび③減圧モー ド を実現する。 図 2は、 E CU 2 0がこれらのモードを組み合わせて A B S制御を実行する際に実現されるホイルシリ ンダ圧 P w/c の経 時的変化を示す。 The ECU 20 appropriately controls the pressure increase mode and the pressure retention mode as described above so that the slip ratio S of each wheel during braking falls within an appropriate value, that is, so that each wheel does not shift to the locked state. Mode and ③ decompression mode. Figure 2 shows that ECU 20 combines these modes. The time-dependent change of the wheel cylinder pressure P w / c realized when executing the ABS control is shown.
図 2は、 時刻 t。 にブレーキ操作が開始され、 時刻 t 1 に A B S 制御の実行条件が成立した場合を示す。 時刻 t。 の後、 ホイルシリ ンダ圧 P w/ C が上昇し、 時刻 , に車輪のスリ ップ率 Sが所定値に 達すると、 A B S制御が開始される。 尚、 以下の記載においては、 車輪のスリ ップ率 Sが所定値に到達した際のホイルシリ ンダ圧 c を A B S作動油圧と称す。 Figure 2 shows time t. Shows the case where the brake operation is started at time t1 and the execution condition of the ABS control is satisfied at time t1. Time t. After that, when the wheel cylinder pressure P w / C rises and the slip ratio S of the wheel reaches a predetermined value at time and, the ABS control is started. In the following description, the wheel cylinder pressure c when the slip ratio S of the wheel reaches a predetermined value is referred to as the ABS hydraulic pressure.
A B S制御の実行条件が成立すると、 先ずホイルシリ ンダ圧 P W/ c を A B S作動油圧から減圧すべく②減圧モードが実現される。 A B S制御の実行条件が成立した後に減圧モードが維持される時間 (以下、 初回減圧時間と称す) は A B S制御の実行条件が成立した 際の車輪のスリ ップ状態に応じて決定される。 具体的には、 車輪の スリ ップ率が緩やかに増加している場合は、 初回減圧時間が比較的 短く設定され、 一方、 車輪のスリップ率が急激に増加している場合 は、 初回減圧時間が比較的長時間に設定される。 When the execution condition of the ABS control is satisfied, first, the pressure reducing mode is realized in order to reduce the wheel cylinder pressure P W / c from the ABS operating oil pressure. The time during which the decompression mode is maintained after the ABS control execution condition is satisfied (hereinafter, referred to as the first decompression time) is determined according to the slip state of the wheel when the ABS control execution condition is satisfied. Specifically, if the slip rate of the wheel is increasing slowly, the initial decompression time is set relatively short, while if the slip rate of the wheel is increasing rapidly, the initial decompression time is set. Is set to a relatively long time.
図 2は、 初回の減圧モードが時刻 t 2 まで維持された場合を示す。 初回の減圧モードを維持すべき時間が経過すると、 次に③保持モー ドが実現される。 その後、 保持モードを維持すべき所定時間が経過 すると、 時刻 t 3 に①増圧モードが開始される。 そして、 増圧モー ドが所定時間維持された後、 時刻 t 4 に緩増圧モー ド (以下、 ④を 付して表す) が開始される。 緩増圧モードは、 ①増圧モー ドと③保 持モ一ドとが交互に実行されることで実現されるモー ドである。 以 後、 ホイルシリ ンダ圧 P w/c が再び A B S作動圧に到達すると、 再 び上述した一連の制御、 すなわち、 ②減圧モード—③保持モ一ド→ ①増圧モード—④緩増圧モードを順次実現する処理が実行される。 Figure 2 shows a case where decompression mode initial is maintained until time t 2. After the time to maintain the first decompression mode elapses, ③ hold mode is realized. Thereafter, a predetermined time should maintain retention mode elapsed Then, at time t 3 is ① pressure increasing mode is started. After the pressure increase mode is maintained for a predetermined time, the time t 4 Yuruzo圧mode (hereinafter, expressed subjected ④) is started. The gradual pressure increase mode is a mode realized by alternately executing ① pressure increase mode and ③ hold mode. Thereafter, when the wheel cylinder pressure P w / c reaches the ABS operating pressure again, the above-described series of control is performed again, ie, (2) pressure reduction mode— (3) hold mode → (1) pressure increase mode— (4) pressure increase mode. Processes to be realized sequentially are executed.
A B S制御の実行中、 ②減圧モードが実行される期間中、 ③保持 モードが実行される期間中、 および、 ④緩増圧が実行される期間の 殆どは、 A B S制御の対象とされているホイルシリ ンダ 4 4 * *が、 対応する保持ソレノィ ド S**Hによって液圧源 (マスタシリ ンダ 3 2およびレギユレ一夕 2 7 ) から遮断された状態となる。 このよう に、 A B S制御の対象であるホイルシリ ンダは、 A B S制御の実行 期間中、 ほぼ液圧源から切り離された状態とされる。 During the execution of the ABS control, (2) during the period in which the pressure reduction mode is executed, (3) during the period in which the hold mode is executed, and (4) most of the period in which the slow pressure increase is executed, 4 4 ** The corresponding holding solenoid S ** H shuts off the hydraulic pressure source (master cylinder 32 and the regulator 27). In this way, the foil cylinder to be subjected to the ABS control is substantially disconnected from the hydraulic pressure source during the execution of the ABS control.
A B S制御の実行中に、 運転者によってブレーキペダル 3 1 の踏 み込みが解除された後は、 速やかにホイルシリ ンダ圧 Pw/C が滅圧 される必要がある。 本実施例のシステムにおいて、 各ホイルシリ ン ダ 4 4 **に対応する油圧経路中には、 ホイルシリ ンダ 4 4 **側から 第 3液圧通路 4 2側へ向かう流体の流れを許容する逆止弁 6 0 , 6 6, 7 6, 8 2が配設されている。 このため、 本実施例のシステム によれば、 ブレーキペダル 3 1 の踏み込みが解除された後に、 速や かに全てのホイルシリ ンダ 4 4 **のホイルシリ ンダ圧 P w/c を減圧 させることができる。 After the driver depresses the brake pedal 31 during the execution of the ABS control, the wheel cylinder pressure P w / C needs to be reduced immediately. In the system of the present embodiment, in the hydraulic path corresponding to each of the foil cylinders 44 **, there is a check that allows the flow of fluid from the foil cylinder 44 ** side to the third hydraulic passage 42 side. Valves 60, 66, 76, 82 are provided. For this reason, according to the system of the present embodiment, the wheel cylinder pressure P w / c of all the wheel cylinders 44 ** can be immediately reduced after the depression of the brake pedal 31 is released. .
本実施例のシステムにおいて A B S制御が実行されている場合、 ホイルシリ ンダ圧 Pw/C は、 ホイルシリ ンダ 4 4 に対してレギュ レ一タ 2 7からブレーキフルー ドが供給されることにより、 すなわ ち、 ホイルシリ ンダ 4 4 ,,に対してポンプ 2 1 からブレーキフルー ドが供給されることにより増圧される。 また、 ホイルシリ ンダ圧 P w/c は、 ホイルシリ ンダ 4 4 "内のブレーキフルー ドがリザ一バタ ンク 2 3に流出されることにより減圧される。 ホイルシリ ンダ圧 P w/c の増圧が、 マスタシリ ンダ 3 2を液圧源として行われるとすれ ば、 増圧モー ドと減圧モー ドとが操り返し行われた場合に、 マス夕 シリ ンダ 3 2内のブレーキフルー ドが徐々に減少し、 いわゆるマス 夕シリ ンダの床付きが生ずる場合がある。 When the ABS control is executed in the system of the present embodiment, the wheel cylinder pressure P w / C is increased by the brake fluid being supplied from the regulator 27 to the wheel cylinder 44. That is, the pressure is increased by the brake fluid being supplied from the pump 21 to the wheel cylinders 44,. Further, the wheel cylinder pressure P w / c is reduced by the brake fluid in the wheel cylinder 44 ”flowing out to the reservoir 23. The increase in the wheel cylinder pressure P w / c is Assuming that the master cylinder 32 is used as a hydraulic pressure source, if the pressure increase mode and the pressure reduction mode are repeatedly performed, the brake fluid in the master cylinder 32 gradually decreases, In some cases, so-called mass cylinders may be attached to the floor.
これに対して、 本実施例のシステムの如く、 ポンプ 2 1 を液圧源 としてホイルシリ ンダ圧 Pw/c の昇圧を図ることとすれば、 かかる 床付きを防止することができる。 このため、 本実施例のシステムに よれば、 長期間にわたって A B S制御が続行される場合においても、 安定した作動状態を維持することができる。 CT/ P97/02509 ところで、 本実施例のシステムにおいて、 A B S制御は、 何れか の車輪について、 口ック状態に移行する可能性が検出された場合に 開始される。 従って、 A B S制御が開始させるためには、 その前提 として、 何れかの車輪に大きなスリ ップ率 Sが生ずる程度の制動操 作がなされる必要がある。 On the other hand, if the foil cylinder pressure Pw / c is increased by using the pump 21 as a hydraulic pressure source as in the system of the present embodiment, such flooring can be prevented. Therefore, according to the system of the present embodiment, a stable operation state can be maintained even when the ABS control is continued for a long time. CT / P97 / 02509 By the way, in the system of the present embodiment, the ABS control is started when the possibility of shifting to the whipping state is detected for any of the wheels. Therefore, in order to start the ABS control, it is necessary to perform a braking operation to such an extent that a large slip ratio S occurs on any of the wheels as a prerequisite.
車両の運転者が上級者である場合は、 緊急ブレーキが必要とされ る状況が生じた後、 速やかにブレーキ踏力 F P を急上昇させ、 かつ、 大きなブレーキ踏力 F P を長期間にわたって維持することができる。 ブレーキペダル 3 1に対してかかるブレーキ踏力 F P が作用すれば、 マスタシリ ンダ 3 2から各ホイルシリ ンダ 4 4 に対して十分に高 圧の制動液圧を供給することができ、 A B S制御を開始させること ができる。 If the driver of the vehicle is advanced, after the situation in which an emergency braking is Ru is the need arises, immediately to soar brake pressing force F P, and it is possible to maintain a large brake pressing force FP over a long period of time . If action is applied the brake pressing force F P against the brake pedal 3 1, it can supply the brake fluid pressure sufficiently high pressure to each Hoirushiri Sunda 4 4 master serial Sunda 3 2, to start the ABS control be able to.
しかしながら、 車両の運転者が初級者である場合は、 緊急ブレー キが必要とされる状況が生じた後、 ブレーキ踏力 F P が十分に大き な値にまで上昇されない場合がある。 ブレーキペダル 3 1 に作用す るブレーキ踏力 F P 力、 緊急ブレーキが必要となった後十分に上昇 されない場合には、 各ホイルシリ ンダ 4 4 * *のホイルシリ ンダ圧 P w/ c が十分に昇圧されず、 A B S制御が開始されない可能性がある。 However, if the driver of the vehicle is a beginner, after situation the emergency brake is a need arises, there is a case where the brake pressing force F P is not increased to a sufficiently large value. If the brake pedal force F P acting on the brake pedal 31 is not sufficiently increased after the emergency braking is required, the wheel cylinder pressure P w / c of each wheel cylinder 44 * * is sufficiently increased. The ABS control may not be started.
このように、 車両の運転者が初級者であると、 車両が優れた制動 能力を有しているにも関わらず、 緊急制動操作時でさえ、 その能力 が十分に発揮されない場合がある。 そこで、 本実施例のシステムに おいては、 ブレーキペダル 3 1が緊急ブレーキを意図して操作され、 かつ、 ブレーキ踏力 F P が十分に上昇されない場合に、 強制的にホ ィルシリ ンダ圧 P w/ c を昇圧させる制御を実行することとしている。 以下、 この制御をブレーキアシス ト制御 (B A制御) と称す。 Thus, if the driver of the vehicle is a beginner, even though the vehicle has an excellent braking capability, the capability may not be fully exerted even during an emergency braking operation. Therefore, Oite to the system of the present embodiment, the brake pedal 3 1 is operated with the intention of emergency braking, and, when the brake pressing force F P is not sufficiently increased, forcing Ho Irushiri Nda圧P w / Control to boost c is executed. Hereinafter, this control is referred to as brake assist control (BA control).
本実施例のシステムにおいて、 ブレーキペダル 3 1 にブレーキ踏 力 F P が付与されると、 マスタシリ ンダ 3 2には、 ブレーキ踏力 FIn the system according to the present embodiment, when the brake pedal force FP is applied to the brake pedal 31, the brake pedal force F P is applied to the master cylinder 32.
P に応じたマスタシリ ンダ圧 P M/C が発生する。 通常の制動操作が 行われた場合は、 緊急ブレーキを意図する制動操作が行われた場合 に比してマスタシリ ンダ圧 PM/C が緩やかに変化する。 また、 通常 の制動操作に伴って生ずるマスタシリ ンダ圧 PM/C は、 緊急ブレー キを意図する制動操作に伴って生ずるマスタシリ ンダ圧 PM/C に比 してその収束値が低圧である。 The master cylinder pressure PM / C corresponding to P is generated. When a normal braking operation is performed When a braking operation intended for emergency braking is performed The master cylinder pressure P M / C changes more slowly compared to. Also, the master cylinder pressure P M / C generated by the normal braking operation has a lower convergence value than the master cylinder pressure P M / C generated by the braking operation intended for emergency braking.
このため、 制動操作が開始された後、 液圧センサ 4 0に検出され るマス夕シリ ンダ圧 PM/C が、 所定値を超える変化率で、 かつ、 十 分に大きな値にまで上昇された場合は、 緊急ブレーキを意図する制 動操作が行われたと判断することができる。 また、 制動操作が開始 された後、 マスタシリ ンダ圧 ΡΜ/C が所定値に比して小さな変化率 を示す場合、 および、 マスタシリ ンダ圧 PM/C の収束値が所定値に 到達しない場合は、 通常ブレーキを意図する制動操作が行われたと 判断することができる。 For this reason, after the braking operation is started, the mass cylinder pressure P M / C detected by the fluid pressure sensor 40 is increased to a sufficiently large value at a rate of change exceeding a predetermined value and a sufficiently large value. In this case, it can be determined that the braking operation intended for emergency braking has been performed. Also, when the master cylinder pressure ΡΜ / C shows a smaller change rate than the predetermined value after the braking operation is started, and when the convergence value of the master cylinder pressure PM / C does not reach the predetermined value. However, it can be determined that a braking operation intended for normal braking has been performed.
本実施例においては、 液圧センサ 4 0の検出値であるマス夕シリ ンダ圧 ΡΜ/C (以下、 その値を検出値 S PM/C と称す) 、 および、 その変化率 A S PM/C が所定の緊急ブレーキ条件を満たし、 かつ、 検出値 S PM/C が十分に昇圧されない場合に (以下、 これらの条件 を総称して B A制御の実行条件と称す) B A制御の実行を開始する こととしている。 In the present embodiment, the mass cylinder pressure ΡΜ / C (hereinafter, the value is referred to as a detection value S PM / C), which is the detection value of the hydraulic pressure sensor 40, and the change rate ASP M / C thereof are When the predetermined emergency braking condition is satisfied and the detected value SP M / C is not sufficiently increased (hereinafter, these conditions are collectively referred to as execution conditions of BA control). I have.
以下、 B A制御の実行に伴う本実施例のシステムの動作について 説明する。 運転者によって緊急ブレーキ条件を満たす制動操作が実 行されると、 E C U 2 0において B A制御の実行条件が成立したと 判断される。 E C U 2 0は、 B A制御の実行条件が成立すると判断 した後、 アキュムレータ 2 5を液圧源とする方が、 マスタシリ ンダ 圧 PM/C が液圧源とするよりもホイルシリ ンダ圧 PW/C を急昇圧す るうえで有利となる状況が形成されているか否かを判断する。 その 結果、 アキュムレータ 2 5を液圧源とする方が有利な状況が形成さ れていると、 E C U 2 0において B A制御の開始タイ ミ ングが到来 したと判断される。 Hereinafter, the operation of the system according to the present embodiment accompanying the execution of the BA control will be described. When the driver performs a braking operation that satisfies the emergency braking condition, ECU 20 determines that the BA control execution condition has been satisfied. After determining that the BA control execution conditions are satisfied, the ECU 20 uses the accumulator 25 as the hydraulic pressure source, and the wheel cylinder pressure P W / is higher than the master cylinder pressure PM / C as the hydraulic pressure source. It is determined whether or not a situation has been established that is advantageous for rapidly increasing C. As a result, if a situation is formed in which it is more advantageous to use the accumulator 25 as the hydraulic pressure source, it is determined that the ECU 20 has reached the BA control start timing.
E C U 2 0は、 B A制御の開始タイミ ングが到来したと判断する と、 STR 2 8、 S A-! 4 6. S A -24 8および S A—35 4に対し て駆動信号を出力する。 上記の駆動信号を受けて S TR 2 8がオン 状態となると、 第 3液圧通路 4 2と高圧通路 2 6 とが直結状態とな る。 この場合、 第 3液圧通路 4 2には、 アキュムレータ圧 PACC 力 導かれる。 また、 上記の駆動信号を受けて S Α— , 4 6および SA-2 4 8がォン状態となると、 ホイルシリ ンダ 4 4 F Rおよび 4 4 F L が、 それぞれ調圧用液圧通路 5 6および 6 2に連通される。 更に、 上記の駆動信号を受けて S A-35 4がオン状態となると、 S R RH 6 8および S R L H 7 0の上流側が第 3液圧通路 4 2に連通される。 この場合、 全てのホイルシリ ンダ 4 4 "が、 それぞれの保持ソレノ イ ド S ,*H、 および、 それぞれの減圧ソレノイ ド S**Rに連通し、 かつ、 全ての保持ソレノィ ド S"Hの上流に、 アキュムレータ圧 PECU 20 determines that the BA control start timing has arrived If, STR 2 8, S A- 4 6. SA -! 2 4 8 and SA - 3 5 4 with respect to output a driving signal. When the STR 28 is turned on in response to the drive signal, the third hydraulic passage 42 and the high-pressure passage 26 are directly connected. In this case, the accumulator pressure P ACC is guided to the third hydraulic passage 42. Further, by receiving the drive signal S alpha-, 4 6 and SA - 2 4 8 When is O emissions state, Hoirushiri Sunda 4 4 FR and 4 4 FL, respectively pressure adjusting fluid pressure passage 5 6 and 6 2 Is communicated to. Furthermore, S A- 3 5 4 receives the drive signal is turned on, the upstream side of the SR RH 6 8 and SRLH 7 0 is communicated to the third fluid pressure passage 4 2. In this case, all the foil cylinders 44 "communicate with the respective holding solenoids S, * H and the respective decompression solenoids S ** R, and are upstream of all the holding solenoids S" H. And the accumulator pressure P
ACC が導かれる状態が形成される。 A state where ACC is led is formed.
B A制御の開始タイ ミ ングが到来したと判断される時点で、 A B S制御等の他の制動力制御が実行されていない場合は、 その時点で 全ての保持ソレノィ ド S**H、 および、 全ての減圧ソレノィ ド S** Rがオフ状態に維持されている。 従って、 上記の如く、 保持ソレノ ィ ド S**Hの上流にアキュムレータ圧 PACC が導かれると、 その液 圧はそのままホイルシリ ンダ 4 4 に供給される。 その結果、 全て のホイルシリ ンダ 4 4 **のホイルシリ ンダ圧 Pw/c は、 アキュム レー夕圧 PACC に向けて昇圧される。 If other braking force control such as ABS control is not being executed at the time when it is determined that the BA control start timing has arrived, all holding solenoids S ** H and all The decompression solenoid S ** R is kept off. Therefore, as described above, when the accumulator pressure P ACC is led upstream of the holding solenoid S ** H, the fluid pressure is supplied to the foil cylinder 44 as it is. As a result, Hoirushiri Nda圧Pw / c of all Hoirushiri Sunda 4 4 ** is boosted towards the accumulator array Yu圧P ACC.
このように、 本実施例のシステムによれば、 緊急制動操作が実行 された場合に、 ブレーキ踏力 FP の大きさとは無関係に、 全てのホ ィルシリ ンダ 4 4 **のホイルシリ ンダ圧 Pw/C を速やかに急昇圧さ せることができる。 従って、 本実施例のシステムによれば、 運転者 が初級者であっても、 緊急ブレーキが必要とされる状況が生じた後 に、 速やかに大きな制動力を発生させることができる。 As described above, according to the system of the present embodiment, when the emergency braking operation is performed, the wheel cylinder pressure P w / C of all the wheel cylinders 44 ** is independent of the magnitude of the brake depression force FP. Can be rapidly increased. Therefore, according to the system of this embodiment, even if the driver is a beginner, a large braking force can be quickly generated after a situation in which emergency braking is required occurs.
緊急制動操作が行われることにより、 上記の如く B A制御が開始 された場合、 ブレーキペダル 3 1の踏み込みが解除された時点で、 B A制御を終了させる必要がある。 本実施例のシステムにおいて、 B A制御が実行されている間は、 上述の如く S TR 2 8、 S A-, 4 6、 S A— 24 8、 および S A— 35 4がォン状態に維持される。 S T R 2 8、 S A- , 4 6、 SA— 24 8、 および SA-35 4がオン状態で ある場合、 レギユレ一夕 2 7内部の液圧室、 およびマスタシリ ンダ 3 2が備える第 1 および第 2液圧室 3 2 a , 3 2 b力 実質的には 何れも閉空間となる。 When the BA control is started as described above by performing the emergency braking operation, when the depression of the brake pedal 31 is released, It is necessary to end BA control. Maintained in the system of the present embodiment, while the BA control is being executed, as described above S TR 2 8, S A-, 4 6, SA- 2 4 8, and SA - 3 5 4 within O emissions state Is done. STR 2 8, S A-, 4 6, SA- 2 4 8, and SA - 3 5 If 4 is in the on state, the first comprising Regiyure Isseki 2 7 inside the hydraulic chamber, and the master serial Sunda 3 2 And the second hydraulic chambers 32a and 32b are substantially closed spaces.
かかる状況下では、 マスタシリ ンダ圧 PM/C は、 ブレーキ踏力 F P に応じた値となる。 従って、 E C U 2 0は、 液圧センサ 4 0によ り検出されるマスタシリ ンダ圧 PM/C の出力信号を監視することに より、 容易にブレーキペダル 3 1の踏み込みが解除されたか否かを 判断することができる。 ブレーキペダル 3 1 の踏み込みの解除を検 出すると、 E C U 2 0は、 S TR 2 8、 S A— , 4 6、 SA-24 8、 および S A-35 4に対する駆動信号の供給を停止して、 通常制御の 実行状態を実現する。 このように、 本実施例のシステムによれば、 制動操作の終了と共に確実に B A制御を終了させることができる。 ホイルシリ ンダ 4 4 に対して、 上記の如くアキュムレータ圧 P AC C が供給され始めると、 その後、 各車輪 F L, F R, R L, RR のスリ ップ率 Sが急激に増大され、 やがて A B S制御の実行条件が 成立する。 A B S制御の実行条件が成立すると、 E C U 2 0は、 全 ての車輪のスリ ップ率 Sが適当な値に収まるように、 すなわち、 各 車輪が口ック状態に移行しないように、 適宜上述した①増圧モード、 ②保持モー ド、 および、 ③減圧モー ドを組み合わせてなる A B S制 御を実行する。 Under such circumstances, the master cylinder pressure P M / C is a value corresponding to the brake depression force FP. Therefore, the ECU 20 monitors the output signal of the master cylinder pressure PM / C detected by the hydraulic pressure sensor 40 to easily determine whether or not the depression of the brake pedal 31 has been released. You can judge. When it detects the release of the brake pedal 3 1 of depression, ECU 2 0 is, S TR 2 8, SA-, 4 6, and stops supplying the drive signal to SA- 2 4 8, and S A- 3 5 4 To realize the normal control execution state. As described above, according to the system of the present embodiment, the BA control can be surely terminated with the termination of the braking operation. When the accumulator pressure P AC C starts to be supplied to the wheel cylinder 44 as described above, thereafter, the slip ratio S of each of the wheels FL, FR, RL, RR is rapidly increased, and the ABS control is eventually performed. The condition holds. When the execution condition of the ABS control is satisfied, the ECU 20 appropriately adjusts the slip rates S of all the wheels so as to be within an appropriate value, that is, so that each wheel does not shift to the licking state. Execute ABS control that combines (1) pressure increase mode, (2) hold mode, and (3) pressure reduction mode.
尚、 BA制御が開始された後に AB S制御が実行される場合、 ホ ィルシリ ンダ圧 P w/c は、 ポンプ 2 1およびアキュムレータ 2 5か らホイルシリ ンダ 4 4 にブレーキフル一ドが供給されることによ り増圧されると共に、 ホイルシリ ンダ 4 4 ·*内のブレーキフルード がリザーバタンク 2 3に流出することにより減圧される。 従って、 増圧モー ドと減圧モ一 ドとが繰り返し行われても、 いわゆるマスタ シリ ンダ 3 2の床付きが生ずることはない。 When the ABS control is executed after the BA control is started, the brake fluid is supplied from the pump 21 and the accumulator 25 to the wheel cylinder 44 by the wheel cylinder pressure P w / c. As a result, the brake fluid in the wheel cylinder 44 * flows into the reservoir tank 23, and the pressure is reduced. Therefore, Even if the pressure-increasing mode and the pressure-reducing mode are repeatedly performed, the so-called master cylinder 32 does not have a floor.
次に、 B A制御が実行されることにより実現されるホイルシリ ン ダ圧 Pw/c の増圧勾配について説明する。 図 3は、 時刻 t 5 に圧力 P。 を蓄える液圧源をホイルシリ ンダ 4 4 ·♦に導通させた場合に実 現されるホイルシリ ンダ圧 Pw/C の昇圧曲線を示す。 図 3に示す如 く、 ホイルシリ ンダ 4 4 ·*のホィルシリ ンダ圧 P w/c は、 時刻 t 5 の後に急上昇した後、 上昇率を緩めながら圧力 P。 に収束する。 こ の際、 急上昇区間におけるホイルシリンダ圧 PW/C の増圧勾配 dP /dt は、 圧力 P。 が高圧であるほど大きくなると共に、 液圧源の液 圧貯留量が高いほど、 すなわち、 液圧源の液圧供給能力が高いほど 大きくなる。 Next, the pressure increase gradient of the wheel cylinder pressure Pw / c realized by performing the BA control will be described. 3, pressure P. to time t 5 Fig. 3 shows a pressure rise curve of the foil cylinder pressure P w / C realized when the hydraulic pressure source for storing pressure is conducted to the foil cylinder 4 4 · ♦. Figure 3如rather than shown, Hoirushiri Nda圧P w / c of Hoirushiri Sunda 4 4 - *, after soaring after the time t 5, pressure P. while loosening the rate of increase Converges to At this time, the pressure increasing gradient dP / dt of the wheel cylinder pressure PW / C in the steep rising section is the pressure P. The pressure increases as the pressure increases, and as the hydraulic pressure storage amount of the hydraulic pressure source increases, that is, as the hydraulic pressure supply capacity of the hydraulic pressure source increases.
図 4は、 左右後輪 R L, R Rのホイルシリ ンダ 4 4 R L, 4 4 R Rで実現されるホイルシリ ンダ圧 Pw/C の増圧勾配 dB/dt を示す。 図 4中に破線で示される折れ線は通常制御時に急ブレーキ操作が行 われた際に実現される増圧勾配 dB/dt を表している。 また、 図 4 中に実線で示される折れ線、 一点鎖線で示される折れ線、 および、 二点鎖線で示される折れ線は、 それぞれ全てのホイルシリ ンダ 4 4 について A B S制御が実行されていない状況下で B A制御が開始 された場合に実現される増圧勾配 dB/dt 、 フロン トの 1輪につき A B S制御が実行されている状況下で B A制御が開始された場合に 実現される増圧勾配 dB/dt 、 および、 フロン トの 2輪につき A B S制御が実行されている状況下で B A制御が開始された場合に実現 される増圧勾配 dB/dt を表している。 FIG. 4 shows the pressure increase gradient dB / dt of the wheel cylinder pressure P w / C realized by the wheel cylinders 44 RL and 44 RR of the left and right rear wheels RL and RR. The broken line shown by the broken line in FIG. 4 represents the pressure increase gradient dB / dt realized when a sudden braking operation is performed during normal control. In addition, the broken line shown by a solid line, the broken line shown by a dashed line, and the broken line shown by a two-dot chain line in FIG. 4 indicate the BA control when ABS control is not performed for all foil cylinders 44, respectively. Pressure increase gradient dB / dt, which is realized when the control is started, the pressure increase gradient dB / dt, which is realized when the BA control is started under the condition that the ABS control is executed for one front wheel, The graph also shows the pressure increase gradient dB / dt realized when BA control is started under the condition that ABS control is being performed on two front wheels.
尚、 図 4に示される折れ線のうち、 ほぼ傾きが " 0 " の領域は、 ホイルシリ ンダ圧 Pw/c の昇圧が開始された後、 ホイルシリ ンダ圧 Pw/c が急昇圧されている領域に相当する。 また、 図 4に示される 折れ線のうち、 負の傾きを有する領域は、 ホイルシリ ンダ圧 Pw/c 力く、 液圧源の液圧に近づいて収束しつつある領域を示す。 図 4に示す如く、 リアのホイルシリ ンダ圧卩 w/c は、 通常制御時 に比して B A制御時に大きな増圧勾配 dB/dt を示す。 また、 BA 制御時においては、 B A制御が開始されるに先立って、 全てのホイ ルシリ ンダ 4 4 *·について A B S制御が実行されていない場合に比 して、 フロン トの 1輪で A B S制御が開始されている場合の方が大 きな増圧勾配 dB/dt を示す。 更に、 BA制御が開始されるに先 立って、 フロントの 1輪で A B S制御が開始されている場合に比し て、 フロン ト 2輪で A B S制御が実行されているとき場合に、 より 大きな増圧勾配 dB/dt を示す。 In the polygonal line shown in FIG. 4, the region where the slope is almost “0” corresponds to the region where the wheel cylinder pressure Pw / c is rapidly increased after the wheel cylinder pressure Pw / c starts to increase. I do. In the polygonal line shown in FIG. 4, the region having a negative slope indicates the region where the wheel cylinder pressure is high and the pressure is approaching and converging to the hydraulic pressure of the hydraulic pressure source. As shown in FIG. 4, the rear wheel cylinder pressure pulp / c shows a larger pressure increase gradient dB / dt during BA control than under normal control. Also, at the time of BA control, ABS control is performed by one front wheel before the BA control is started, compared to when ABS control is not performed for all wheel cylinders 44 *. When it is started, it shows a larger pressure increase gradient dB / dt. Further, when the ABS control is being performed on the front two wheels before the BA control is started, the increase is greater than when the ABS control is being performed on the front two wheels. Indicates the pressure gradient dB / dt.
上述の如く、 A B S制御の制御対象とされているホイルシリ ンダ 4 4 **は、 実質的に液圧源から切り離された状態に維持される。 こ のため、 B A制御が開始される時点でフロン 卜の 1輪について AB S制御が開始されている場合は、 B A制御が開始された後に、 その 1輪のホイルシリ ンダにはアキュムレータ圧 P が到達しない。 この場合、 BA制御が開始された後アキュムレータ 2 5から流出す るブレーキフルー ドは、 左右後輪 RL, RRのホイルシリ ンダ 4 4 R L, RRとフロン トの 1輪のホイルシリ ンダ 4 4 F Lまたは 4 4 FRにのみ供給される。 以下、 この場合を 3輪増圧の場合と称す。 また、 B A制御が開始される時点でフロ ン トの 2輪について A B S制御が開始されている場合は、 B A制御が開始された後に、 フロ ント 2輪のホイルシリ ンダにはアキュムレータ圧 PACC が到達しな い。 この場合、 BA制御が開始された後アキュムレータ 2 5から流 出するブレーキフルードは、 左右後輪 R L, RRのホイルシリ ンダ 4 4 R L, RRのみに供給される。 尚、 以下、 この場合を 2輪増圧 の場合と称す。 As described above, the foil cylinder 44 **, which is to be controlled by the ABS control, is maintained in a state substantially separated from the hydraulic pressure source. Therefore, if ABS control is started for one wheel of the front when BA control is started, accumulator pressure P reaches the wheel cylinder of one wheel after BA control is started. do not do. In this case, after the BA control is started, the brake fluid flowing out of the accumulator 25 is a wheel cylinder 44 of the left and right rear wheels RL and RR, and a wheel cylinder 4 of the RL and RR and the front wheel 4 4 FL or 4 FL. 4 Supplied to FR only. Hereinafter, this case is referred to as a three-wheel pressure increase case. Also, if the ABS control has been started for the front two wheels at the time when the BA control is started, the accumulator pressure P ACC reaches the wheel cylinder for the front two wheels after the BA control is started. do not do. In this case, the brake fluid flowing out of the accumulator 25 after the BA control is started is supplied only to the wheel cylinders 44 RL, RR of the left and right rear wheels RL, RR. Hereinafter, this case is referred to as a two-wheel pressure increase case.
アキュムレータ 2 5には、 BA制御が開始された後、 4つの車輪 のホイルシリ ンダ 4 4 "を迅速に昇圧するに足るブレーキフルード が貯留されている。 このため、 3輪増圧の場合は、 全てのホイルシ リ ンダ 4 4 にブレーキフル一ドが流入し得る場合 (以下、 この場 合と 4輪増圧の場合と称す) に比して、 左右後輪 R L, RRのホイ ルシリ ンダ 4 4 **に、 より急激な圧力上昇が生ずる。 同様に、 2輪 増圧の場合は、 ブレーキフルードの供給を受ける左右後輪 R L, R Rのホイルシリ ンダ 4 4 に、 3輪増圧の場合に比して更に急激な 圧力上昇が生ずる。 After the BA control is started, the accumulator 25 stores brake fluid sufficient to quickly raise the pressure of the four wheel cylinders 44 ". If the brake fluid can flow into the foil cylinder 4 4 of the The pressure rises more rapidly in the wheel cylinders 44 ** of the left and right rear wheels RL and RR than in the case of a four-wheel pressure booster. Similarly, in the case of two-wheel pressure boosting, a more rapid pressure rise occurs in the wheel cylinders 44 of the left and right rear wheels RL and RR receiving the supply of brake fluid than in the case of three-wheel pressure boosting.
図 5は、 2輪増圧または 3輪増圧が実行されることにより、 後輪 のホイルシリ ンダ 4 4 R L ( 4 4 RRについても同様) において実 現されるホイルシリ ンダ圧 PW/c の変化を示す。 図 5に示すホイル シリ ンダ圧 Pw/c の変化は、 時刻 t s にブレーキ操作が開始され、 時刻 t 7 に 2輪増圧または 3輪増圧による B A制御が開始され、 更 に、 時刻 t 8 に、 ホイルシリ ンダ 4 4 R Lについて A B S制御の実 行条件が成立すると判別された場合に実現される。 Figure 5 shows the change in the wheel cylinder pressure P W / c realized in the rear wheel wheel cylinder 44 RL (same for 44 RR) as the two-wheel or three-wheel pressure is increased. Is shown. The change in the wheel cylinder pressure Pw / c shown in FIG. 5 indicates that the brake operation is started at time t s , the BA control by the two-wheel or three-wheel pressure increase is started at time t 7, 8 is realized when it is determined that the ABS cylinder execution condition is satisfied for the wheel cylinder 44RL.
上述の如く、 B A制御によって 2輪増圧または 3輪増圧が行われ る場合は、 4輪増圧が行われる場合に比してホイルシリ ンダ 4 4 R Lに急激なホイルシリンダ圧 Pw/c 上昇が生ずる。 このため、 この ような場合は、 時刻 t 8 に AB S制御の実行条件の成立が判別され た後に、 ホイルシリ ンダ圧 Pw/C が A B S制動油圧を大きく超える 現象、 すなわち、 ホイルシリ ンダ圧 Pw/c のオーバーシュー トが生 ずる。 As described above, when two-wheel or three-wheel pressure is increased by BA control, the wheel cylinder pressure Pw / c sharply increases in the wheel cylinder 44 RL compared to when four-wheel pressure is increased. Occurs. Therefore, such a case, after the establishment of the execution conditions of the AB S control is determined at time t 8, Hoirushiri Nda圧P w / C phenomenon greatly exceed ABS braking hydraulic, i.e., Hoirushiri Nda圧Pw / Overshoot of c occurs.
上述の如く、 E UC 1 0は、 A B S制御の実行条件が成立した際 に急激なスリ ッブ率の増加が伴っているときには、 初回の減圧時間 を比較的長い時間に設定する。 このため、 図 5に示すようなホイル シリ ンダ圧 Pw/c のオーバ一シユー卜が生ずると、 A B S制御が開 始された直後に、 E CU 2 0は、 比較的長期間にわたって減圧モー ドを実行する。  As described above, E UC 10 sets the initial depressurization time to a relatively long time when the execution condition of the ABS control is satisfied and a sudden increase in the slip rate accompanies. Therefore, when an overshoot of the wheel cylinder pressure Pw / c occurs as shown in FIG. 5, immediately after the ABS control is started, the ECU 20 enters the decompression mode for a relatively long time. Execute.
上記の如く減圧モードが長時間維持されると、 ホイルシリ ンダ 4 4 R Lのホイルシリンダ圧 Pw/c は過渡に小さな圧力に減圧されて、 後輪 R Lが発生する制動力が不当に小さな値となることがある。 こ のように、 図 1に示すシステムにおいては、 BA制御が開始される 時点でフロン トの 1輪若しくはフロン 卜の 2輪で既に A B S制御が 開始されていると、 B A制御に続いて後輪 R L, RRについて AB S制御が開始された後に、 後輪 RL, RRで発生される制動力が一 時的に過少となる現象 (以下、 この現象を G抜け現象と称す) が生 ずる場合がある。 If the decompression mode is maintained for a long time as described above, the wheel cylinder pressure Pw / c of the wheel cylinder 44 RL is transiently reduced to a small pressure, and the braking force generated by the rear wheel RL becomes an improperly small value. Sometimes. Thus, in the system shown in FIG. 1, the BA control is started. At this point, if ABS control has already been started on one of the front wheels or two of the front wheels, after the ABS control has been started on the rear wheels RL and RR following the BA control, then on the rear wheels RL and RR In some cases, a phenomenon in which the generated braking force is temporarily insufficient (hereinafter, this phenomenon is referred to as a G-drop phenomenon) may occur.
本実施例の制動力制御装置は、 B S制御が開始される時点で、 こ のような G抜け現象が生ずるのを防止する点に特徴を有している。 ところで、 上述した G抜け現象は、 B A制御が開始される時点で後 輪 RL, RRについて AB S制御が実行されている場合にも生じ得 る。 すなわち、 B A制御が開始されるに先立ってリアの 1輪または 2輪について A B S制御が実行されている場合は、 B A制御が開始 されると同時に前輪 FL, FRのホイルシリ ンダ 4 4 FL, FRに おいてホイルシリ ンダ圧 Pw/C のオーバーシユートが発生する。 こ のように前輪 F L, F Rのホイルシリ ンダ圧 Pw/C がオーバ一シ ユー トを示せば、 その後開始される AB S制御によって、 前輪 FL, F Rのホイルシリ ンダ圧 Pw/c が大きく減圧されることになる。 しかしながら、 前輪 FL, FRのホイルシリ ンダ 4 4 FL, 4 4 FRには、 後輪 RL, RRのホイルシリ ンダ 4 4 RL, 4 4 RRに 比して大きな容量が与えられている。 このため、 BA制御に先立つ て後輪 RL, RRの ABS制御が実行されていても、 BA制御の開 始後に前輪 FL, FRのホイルシリ ンダ圧 Pw/c は、 さほど大きく オーバーシュー トすることがない。 ホイルシリ ンダ圧 Pw/c のォー バーシュ一ト量がさほど大きくない場合は、 その後開始される AB S制御によって前輪 F L, FRのホイルシリンダ圧 Pw/c が不当に 大きく減圧されること、 すなわち、 大きな G抜けが生ずることがな い。 このため、 本実施例においては、 B A制御の実行に先立って前 輪 FL, FRについて ABS制御が開始されている場合にのみ、 G 抜けを防止するための処理を実行している。 The braking force control device according to the present embodiment is characterized in that such a G drop phenomenon is prevented from occurring when the BS control is started. Incidentally, the above-described G-missing phenomenon can also occur when the ABS control is being performed on the rear wheels RL and RR at the time when the BA control is started. That is, if the ABS control is performed for one or two wheels at the rear before the BA control is started, the wheel cylinders 44 FL, FR of the front wheels FL, FR are simultaneously applied to the BA control when the BA control is started. In this case, an overshoot of the wheel cylinder pressure P w / C occurs. If Shimese front wheels FL, Hoirushiri Nda圧P w / C is over one sheet Yu bets FR like this, the AB S control is then started, the front wheel FL, is Hoirushiri Nda圧Pw / c of the FR is largely reduced pressure Will be. However, the wheel cylinders 44 FL, 44 FR of the front wheels FL, FR are given a larger capacity than the wheel cylinders 44 RL, 44 RR of the rear wheels RL, RR. For this reason, even if the ABS control of the rear wheels RL and RR is executed before the BA control, the wheel cylinder pressure Pw / c of the front wheels FL and FR may overshoot so much after the BA control is started. Absent. If the overshoot amount of the wheel cylinder pressure Pw / c is not so large, the wheel cylinder pressure Pw / c of the front wheels FL and FR is unduly greatly reduced by the ABS control started thereafter, that is, No large G dropouts occur. For this reason, in the present embodiment, the process for preventing the loss of G is executed only when the ABS control has been started for the front wheels FL and FR prior to the execution of the BA control.
図 6は、 上記の機能を実現すベく E C U 20が実行する制御ルー チンのフローチャートを示す。 図 6に示されるルーチンは、 所定時 間毎に起動される定時割り込みルーチンである。 本ルーチンが起動 されると、 ステップ 1 0 0の処理が実行される。 Fig. 6 shows the control loop executed by the ECU 20 to realize the above functions. 3 shows a flowchart of the chin. The routine shown in FIG. 6 is a periodic interrupt routine that is started at predetermined time intervals. When this routine is started, the process of step 100 is executed.
ステップ 1 0 0では、 B A制御が実行中であるか否かが判別され る。 E CU 2 0は、 STR 2 8がオン状態である場合に、 BA制御 の実行中であると判別する。 本ルーチンは、 B A制御の開始時に後 輪 R L, R Rのホイルシリ ンダ圧 Pw/c にオーバ一シュ トが生ずる のを防止するためのルーチンである。 従って、 既に BA制御が開始 されている場合は、 本ルーチンの処理を進める実益がない。 このた め、 上記の判別がなされた場合は、 以後何ら処理が進められること なく今回のルーチンが終了される。 一方、 本ステップにおいて BA 制御が非実行中である、 すなわち、 S TR 2 8がオフ状態であると 判別された場合は、 次にステップ 1 0 2の処理が実行される。  In step 100, it is determined whether or not the BA control is being executed. The ECU 20 determines that the BA control is being executed when the STR 28 is in the ON state. This routine is for preventing the wheel cylinder pressure Pw / c of the rear wheels RL and RR from being overshot at the start of the BA control. Therefore, if the BA control has already been started, there is no benefit to proceed with the processing of this routine. Therefore, if the above determination is made, the current routine ends without any further processing. On the other hand, if it is determined in this step that the BA control is not being executed, that is, that the STR 28 is in the off state, then the process of step 102 is executed.
ステップ 1 0 2では、 B A制御の開始タイ ミ ングが到来している か否かが判別される。 その結果、 未だ BA制御の開始タイ ミ ングが 到来していないと判別された場合は、 以後、 何ら処理が進められる ことなく今回のル一チンが終了される。 一方、 BA制御の開始タイ ミ ングが到来していると判別された場合は、 次にステップ 1 0 4の 処理が実行される。  In step 102, it is determined whether or not the BA control start timing has arrived. As a result, if it is determined that the BA control start timing has not yet arrived, the routine is terminated without any further processing. On the other hand, if it is determined that the BA control start timing has arrived, the process of step 104 is performed next.
ステップ 1 0 4では、 フロント 2輪のうち少なく とも 1輪につい て A B S制御が実行されているか否かが判別される。 具体的には、 S A- i 6および S A-24 8のうち少なく とも一方がォン状態とさ れているか否かが判別される。 上記の条件が不成立である場合は、 BA制御が開始されても、 後輪 R L, RRのホイルシリンダ圧 Pw/ c に不当な急昇圧は生じないと判断することができる。 この場合、 次にステップ 1 0 6において通常の B A制御が開始された後、 今回 のルーチンが終了される。 In step 104, it is determined whether or not the ABS control is being performed on at least one of the two front wheels. Specifically, whether one be a least one of S A- i 6 and S A- 2 4 8 it is a O emissions state is determined. If the above conditions are not satisfied, it can be determined that even if the BA control is started, the wheel cylinder pressure P w / c of the rear wheels RL and RR does not unduly sharply increase. In this case, after the normal BA control is started in step 106, the current routine ends.
—方、 上記ステップ 1 0 4で、 フロン ト 2輪のうち少なく とも 1 輪について AB S制御が実行されていると判別された場合は、 B A 制御が開始された後、 後輪 R L, RRのホイルシリ ンダ圧 Pw/C が 急昇圧されて不当にオーバ一シユー 卜する可能性があると判断でき る。 このため、 かかる判別がなされた場合は、 後輪 R L, RRのホ ィルシリ ンダ圧 P w/c のオーバーシュ トを防止すベく、 次にステツ プ 1 0 8の処理が実行される。 On the other hand, if it is determined in step 104 above that ABS control has been executed for at least one of the two front wheels, BA After the control is started, it can be determined that there is a possibility that the wheel cylinder pressure P w / C of the rear wheels RL and RR is rapidly increased and unduly overshot. For this reason, when such a determination is made, an overshoot of the wheel cylinder pressure P w / c of the rear wheels RL, RR should be prevented, and then the processing of step 108 is executed.
ステップ 1 0 8では、 B A勾配抑制制御が開始される。 BA勾配 抑制制御は、 通常の B A制御を実現するために実行すべき処理に加 え、 後輪 R L, RRのホイルシリ ンダ 4 4 R L, R Rに連通する S R R H 6 0および S R LH 7 0を所定周期でォン · オフすることに より実現される。 通常の B A制御を実現するための処理が実行され ると、 後輪 R L, RRのホイルシリ ンダ 4 4 R L, RRとアキュ厶 レー夕 2 5 とが導通状態となる。 かかる状況下で S RRH 6 0およ び S R LH 7 0が周期的にオン · オフされると、 アキュムレ一夕 2 5 とホイルシリ ンダ 4 4 R L, 4 4 R Rとが断続的に遮断状態とさ れ、 ホイルシリ ンダ 4 4 R L, 4 4 RRへ流入するブレーキフル一 ドの量が抑制される。 このため、 BA勾配 dB/dt 抑制制御によれ ば、 後輪 R L, RRのホイルシリ ンダ圧 Pw/c が不当に急昇圧され るのを防止することができる。 本ステップ 1 0 8の処理が終了する と、 今回のルーチンが終了される。  In step 108, the BA gradient suppression control is started. In the BA gradient suppression control, in addition to the processing to be executed for realizing the normal BA control, the wheel cylinders 44 of the rear wheels RL and RR, and the SRRH 60 and SR LH 70 communicating with the RL and RR are cycled for a predetermined period This is achieved by turning off the power. When the process for realizing the normal BA control is executed, the wheel cylinders 44 RL, RR of the rear wheels RL, RR and the accumulator 25 become conductive. If SRRH 60 and SR LH 70 are turned on and off periodically in such a situation, the accumulation 25 and the foil cylinders 44 RL and 44 RR are intermittently shut off. As a result, the amount of brake fluid flowing into the wheel cylinders 44RL and 44RR is suppressed. Therefore, according to the BA gradient dB / dt suppression control, it is possible to prevent the wheel cylinder pressure Pw / c of the rear wheels RL, RR from being unduly sharply increased. When the processing of step 108 is completed, the current routine is completed.
図 7は、 上記の処理が実行されることにより、 後輪のホイルシリ ンダ 4 4 R L ( 4 4 RRについても同様) において実現されるホイ ルシリンダ圧 Pw/C の変化を示す。 尚、 図 7中に一点鎖線で示すホ ィルシリ ンダ圧 Pw/C の変化は、 上記図 5に示す特性図と同様に、 B A勾配抑制制御が実行されない場合に実現されるホイルシリ ンダ 圧 Pw/C 変化を示す。 FIG. 7 shows a change in the wheel cylinder pressure P w / C realized in the rear wheel foil cylinder 44 RL (the same applies to 44 RR) by performing the above processing. Note that the change in the wheel cylinder pressure P w / C indicated by the one-dot chain line in FIG. 7 is the same as the characteristic diagram shown in FIG. 5 above, and the wheel cylinder pressure P w realized when the BA gradient suppression control is not executed. Shows / C change.
図 7中に実線で示す変化は、 時刻 t 9 にブレーキ操作が開始され、 少なく ともフロン ト 1輪について A B S制御が開始された後、 時刻 t ,。に B A勾配抑制制御が開始され、 更に、 時刻 t nに、 ホイルシ リ ンダ 4 4 R Lについて AB S制御の実行条件が成立すると判別さ れた場合に実現される。 , The time t, after the ABS control is started change shown by the solid line, the brake operation at time t 9 is started, at least the front one wheel in FIG. The BA gradient suppression control is started at time t, and at time t n , it is determined that the execution condition of the ABS control for the foil cylinder 44RL is satisfied. Is realized when
上述の如く、 B A勾配抑制制御によれば、 B A制御の実行条件が 成立する時点でフロン トの 1輪若しくは 2輪について A B S制御が 開始されていても、 後輪 R L, RRのホイルシリ ンダ圧 Pw/c を緩 やかに昇圧させることができる。 このため、 B A勾配抑制制御が実 行される場合は、 後輪 R L, RRのホイルシリ ンダ圧 Pw/C に、 A B S作動油圧を大きく超えるオーバーシユー 卜が生ずることがない。 また、 ホイルシリ ンダ圧 Pw/C にオーバ一シュー トが生じなければ、 後輪 R L, R Rについて A B S制御が開始された後に、 そのホイル シリ ンダ圧 Pw/C が過剰に減少されることがない。 このため、 本実 施例の制動力制御装置によれば、 フロン トの 1輪若しくは 2輪につ いて A B S制御が開始された後に B A制御の実行条件が成立した場 合に、 G抜けが生ずるのを防止することができる。 従って、 本実施 例の制動力制御装置によれば常に良好な制御性を維持することがで きる。 As described above, according to the BA gradient suppression control, even if the ABS control is started for one or two front wheels at the time when the execution condition of the BA control is satisfied, the wheel cylinder pressure Pw of the rear wheels RL and RR is obtained. / c can be gradually increased. For this reason, when the BA gradient suppression control is executed, the wheel cylinder pressure P w / C of the rear wheels RL, RR does not overshoot significantly exceeding the ABS operating oil pressure. Further, if occurs over one chute to Hoirushiri Nda圧P w / C, the rear wheels RL, after the ABS control is started for the RR, that the wheel Siri Nda圧P w / C is decreased excessively Absent. For this reason, according to the braking force control device of the present embodiment, if the execution condition of the BA control is satisfied after the ABS control is started for one or two wheels of the front, G escape occurs. Can be prevented. Therefore, according to the braking force control device of the present embodiment, good controllability can always be maintained.
ところで、 上記の実施例においては、 BA制御が開始されるに先 立って実行される制動力制御を A B S制御に限定しているが、 本発 明はこれに限定されるものではない。 すなわち、 本発明は、 A B S 制御に代えて、 ホイルシリ ンダの液圧流入経路を遮断した状態でホ ィルシリ ンダ圧 Pw/C を制御する他の制御液圧減圧制御が用いられ る場合にも適用が可能である。 In the above embodiment, the braking force control executed before the BA control is started is limited to the ABS control, but the present invention is not limited to this. That is, the present invention is also applicable to a case where another control hydraulic pressure reduction control for controlling the wheel cylinder pressure P w / C in a state where the hydraulic pressure inflow path of the foil cylinder is shut off is used instead of the ABS control. Is possible.
また、 上記の実施例においては、 "前輪 F L, F Rについて" A B S制御が実行されている場合に "後輪 R L, RRについて" BA 勾配抑制制御を実行することとしているが、 本発明はこれに限定さ れるものではない。 すなわち、 何れかのホイルシリ ンダについて A B S制御等の制動液圧滅圧制御が実行されている場合に、 他のホイ ルシリンダについて B A勾配抑制制御を実行するものであればよレ、。 尚、 上記の実施例においては、 調圧用液圧通路 5 6, 6 2が 「液 圧流入経路」 に、 AB S制御が 「制動液圧減圧制御」 に、 それぞれ 相当していると共に、 E CU 2 0が上記ステップ 1 0 4の処理を実 行することにより導通検出手段が、 また、 E C U 2 0が上記ステツ プ 1 0 8の処理を実行することにより液圧流入抑制手段が、 それぞ れ実現されている。 Further, in the above embodiment, when the "front wheel FL, FR" ABS control is executed, the "back wheel RL, RR" BA gradient suppression control is executed, but the present invention is not limited to this. It is not limited. That is, if brake fluid pressure reduction control such as ABS control is being performed on any of the wheel cylinders, BA gradient suppression control should be performed on the other wheel cylinders. In the above embodiment, the hydraulic pressure control passages 56 and 62 correspond to the “hydraulic pressure inflow path”, and the ABS control corresponds to the “brake hydraulic pressure reduction control”. The ECU 20 executes the processing of the above step 104, and the continuity detecting means is performed. The ECU 20 executes the processing of the above step 108, so that the hydraulic pressure is detected. Inflow suppression means are realized respectively.
次に、 図 8および図 9を参照して、 本発明の第 2実施例について 説明する。 本実施例の制動力制御装置は、 上記図 1 に示すシステム において、 E C U 2 0に、 上記図 6に示すルーチンに代えて、 図 8 に示すルーチンを実行させることにより実現される。  Next, a second embodiment of the present invention will be described with reference to FIGS. The braking force control device according to the present embodiment is realized by causing the ECU 20 to execute the routine shown in FIG. 8 instead of the routine shown in FIG. 6 in the system shown in FIG.
上述した第 1実施例の制動力制御装置は、 B A制御の実行条件が 成立するに先立って少なく ともフロン トの 1輪について A B S制御 が実行されている場合に、 B A制御の開始に伴うホイルシリ ンダ圧 The braking force control device according to the first embodiment described above is configured such that, when the ABS control is performed on at least one front wheel before the execution condition of the BA control is satisfied, the wheel cylinder associated with the start of the BA control is controlled. Pressure
Pw/c の上昇率を下げることでホイルシリ ンダ圧 Pw/c のオーバー シュー トを抑制している。 しかし、 BA制御は、 緊急ブレーキを要 求する操作が行われた際に、 速やかにホイルシリ ンダ圧 Pw/c を立 ち上げることを目的として実行される制御である。 この点、 上述し た第 1実施例が用いる手法は、 B A制御本来の目的と背反している c 本実施例は、 B A制御の実行条件が成立するに先立って少なく と もフロン トの 1輪について A B S制御が開始されている場合に、 B A制御の開始に伴うホイルシリ ンダ圧 Pw/c の上昇率を低下させる ことなく、 ホイルシリ ンダ圧 Pw/C のオーバ一シュートを防止する 点に特徴を有している。 The overshoot of the wheel cylinder pressure Pw / c is suppressed by reducing the rate of increase of Pw / c. However, the BA control is a control executed for the purpose of quickly raising the wheel cylinder pressure Pw / c when an operation requesting an emergency brake is performed. In this regard, a technique of the first embodiment described above is employed, c present embodiment are contradictory with BA control original purpose, one wheel of least front even prior to the execution conditions of the BA control is established The feature is that when the ABS control is started, the overshoot of the wheel cylinder pressure Pw / C is prevented without reducing the rate of increase of the wheel cylinder pressure Pw / c accompanying the start of the BA control. Have.
図 8は、 上記の機能を実現すべく E C U 2 0が実行するルーチン の一例のフローチャー トを示す。 本ルーチンは、 後輪 R L, RRに ついて A B S制御を開始するタイ ミ ングを判断するために実行され るル一チンである。 本ルーチンは、 所定時間毎に起動される定時割 り込みルーチンである。 本ルーチンが起動されると、 ステップ 1 1 0の処理が実行される。  FIG. 8 shows a flowchart of an example of a routine executed by the ECU 20 to realize the above functions. This routine is a routine that is executed to determine when to start the ABS control for the rear wheels RL and RR. This routine is a periodic interrupt routine that is started every predetermined time. When this routine is started, the processing of step 110 is executed.
ステップ 1 1 0では、 B A制御が実行されているか否かが判別さ れる。 具体的には、 S TR 2 8がオン状態であるか否かが判別され る。 その結果、 STR 2 8がオフ状態であると判別された場合は、 B A制御が実行されていないと判断される。 この場合、 次にステツ プ 1 2 0の処理が実行される。 In step 110, it is determined whether the BA control is being performed. Specifically, it is determined whether or not STR 28 is on. You. As a result, when it is determined that STR 28 is in the off state, it is determined that BA control is not being performed. In this case, the process of step 120 is executed next.
ステップ 1 2 0では、 後輪 R L, RRのスリ ッブ量が所定値 Δν , に比して大きいか否かが判別される。 Δν, は、 車輪がロック状 態に以降する直前のスリ ップ量である。 上記の判別の結果、 後輪 R L, RRのスリ ップ量が Δν, を超えていると判別された場合は、 後輪 R L, R Rについて A B S制御を開始すべきであると判断され る。 この場合、 次にステップ 1 2 2の処理が実行される。 一方、 本 ステップ 1 2 0で後輪 R L, RRのスリ ップ量が Δ V, 以下である と判別された場合は、 A B S制御を開始する必要がないと判断され、 そのまま今回の処理が終了される。  In step 120, it is determined whether or not the slip amount of the rear wheels RL, RR is greater than a predetermined value Δν ,. Δν, is the slip amount immediately before the wheel goes into the locked state. If it is determined that the slip amount of the rear wheels RL, RR exceeds Δν, as a result of the above determination, it is determined that the ABS control should be started for the rear wheels RL, RR. In this case, the process of step 122 is executed next. On the other hand, if it is determined in step 120 that the slip amount of the rear wheels RL and RR is equal to or smaller than ΔV, it is determined that it is not necessary to start the ABS control, and the current processing ends. Is done.
ステップ 1 2 2では、 通常 A B S制御を開始するための処理が実 行される。 本ステップ 1 2 2の処理が実行されると、 以後、 上述し た AB S制御、 すなわち、 ②減圧モー ド—③保持モー ド ①増圧 モー ド—④緩増圧モー ドを繰り返す処理が開始される。 本ステップ 1 2 2の処理が終了すると、 今回のルーチンが終了される。  In step 122, a process for starting the normal ABS control is executed. After the processing of this step 122 is executed, the above-described ABS control, that is, the processing of (2) depressurization mode— (3) hold mode (1) pressure increase mode— (4) repetition of the slow pressure increase mode starts. Is done. When the processing in step 122 is completed, the current routine is completed.
上記ステップ 1 1 0において、 B A制御が実行されている、 すな わち、 STR 2 8がオン状態であると判別された場合は、 次にス テツプ 1 1 2の処理が実行される。 ステップ 1 1 2では、 フロン ト 2輪のうち少なく とも 1輪について A B S制御が実行されているか 否か、 すなわち、 S Α— , 4 6および S A— 24 8の少なく とも一方が オン状態とされているか否かが判別される。 その結果、 上記の条件 が不成立であると判別される場合は、 B A制御の実行に伴って後輪 R L, RRのホイルシリ ンダ圧 Pw/c に通常時と異なる急昇圧は生 じていないと判断することができる。 この場合、 通常の条件で AB S制御の実行判定を行うべく、 次にステップ 1 2 0の処理が実行さ れる。 In the above step 110, if it is determined that the BA control is being executed, that is, if the STR 28 is in the ON state, then the processing of step 112 is executed. In step 1 1 2, whether the ABS control for at least one wheel of the front 2 wheels are running, i.e., S alpha-, 4 6 and SA - 2 4 8 least also for the one is turned on Is determined. As a result, if it is determined that the above condition is not satisfied, it is determined that the wheel cylinder pressure Pw / c of the rear wheels RL and RR has not undergone a sudden pressure increase different from the normal state due to the execution of the BA control. can do. In this case, next, the processing of step 120 is executed in order to determine the execution of the ABS control under normal conditions.
一方、 上記ステツプ 1 1 2で、 フロン ト 2輪のうち少なく とも 1 輪について AB S制御が実行されていると判別された場合は、, B A 制御の実行に伴って、 後輪 R L, R Rのホイルシリ ンダ圧 P、 c に、 通常時に比して急激な昇圧が生じていると判断することができる。 この場合、 次にステップ 1 1 4の処理が実行される。 On the other hand, in step 1 1 and 2 above, at least one of the two front wheels If it is determined that the ABS control is being performed on the wheels, the wheel cylinder pressures P and c of the rear wheels RL and RR increase sharply as compared with normal times due to the execution of the BA control. It can be determined that. In this case, the process of step 114 is performed next.
ステップ 1 1 4では、 後輪 R L, RRのスリ ップ量が所定値 Δν 2 に比して大きいか否かが判別される。 Δν2 は、 上記ステップ 1 2 0で用いられるしきい値 Δν, に比して小さな値、 すなわち、 車 輪が口ック状態に移行するスリ ップ量に比して小さな値である。 上 記の判別の結果、 後輪 RL, RRのスリ ップ量が Δν2 以下である と判別された場合は、 未だ後輪 RL, RRのホイルシリ ンダ圧 Pw/ c が A B S作動油圧に比して十分に小さいと判断することができる c この場合、 以後、 何ら処理が進められることなく今回のルーチンが 終了される。 In step 114, it is determined whether or not the slip amount of the rear wheels RL, RR is larger than a predetermined value Δν 2. Δν 2 is a smaller value than the threshold value Δν, used in the above step 120, that is, a smaller value than the slip amount at which the wheel shifts to the licking state. Above results SL discrimination, the rear wheels RL, when the Slip amount of RR is determined to be .DELTA..nu 2 or less, yet the rear wheels RL, Hoirushiri Nda圧P w / c ratio to ABS hydraulic pressure of the RR C In this case, the current routine is terminated without any further processing.
一方、 上記ステップ 1 1 4で、 後輪 RL, RRのスリ ップ量が厶 V2 を超えていると判別された場合は、 後輪 R L, RRのホイルシ リ ンダ圧 Pw/C が A B S作動油圧の近傍にまで昇圧されていると判 断することができる。 この場合、 次にステップ 1 1 6の処理が実行 される。 On the other hand, in step 1 1 4, when the rear wheels RL, is Slip amount of RR is determined to exceed the厶V 2, the rear wheels RL, is Hoirushi Li Nda圧P w / C of RR ABS It can be determined that the pressure has increased to near the working oil pressure. In this case, the processing of step 116 is executed next.
ステップ 1 1 6では、 後輪 RL, R Rについての A B S制御が既 に開始されているか否かが判別される。 後輪 R L, RRについての A B S制御が未だ開始されていないと判別される場合は、 後輪 R L, RRのホイルシリ ンダ圧 Pw/c の昇圧特性が B A制御によって支配 されている、 すなわち、 そのホイルシリ ンダ圧 Pw/C が急激に昇圧 されていると判断することができる。 この場合、 次にステップ 1 1 8の処理が実行される。 In step 116, it is determined whether or not the ABS control for the rear wheels RL, RR has already been started. If it is determined that the ABS control for the rear wheels RL and RR has not been started yet, the boosting characteristic of the wheel cylinder pressure Pw / c of the rear wheels RL and RR is controlled by the BA control. It can be determined that the pressure P w / C is rapidly increased. In this case, the process of step 118 is executed next.
一方、 上記ステップ 1 1 6で、 後輪 RL, RRについての ABS 制御が既に開始されていると判別される場合は、 後輪 R L, RRの ホイルシリ ンダ圧 Pw/c の昇圧特性が A B S制御によって支配され ている、 すなわち、 そのホイルシリ ンダ圧 Pvv/c はもはや急昇圧し ていないと判断することができる。 この場合、 以後、 通常の A B S 制御を続行すべく、 次にステップ 1 2 0の処理が実行される。 On the other hand, if it is determined in step 1 16 that the ABS control for the rear wheels RL and RR has already been started, the boost characteristic of the wheel cylinder pressure Pw / c of the rear wheels RL and RR is changed by the ABS control. Is dominated, that is, its foil cylinder pressure Pvv / c no longer You can judge that it is not. In this case, the process of step 120 is then performed to continue the normal ABS control.
ステップ 1 1 8では、 初回特定 A B S制御を開始するための処理 が実行される。 初回特定 A B S制御は、 AB S制御の開始直後に実 行される②減圧モー ドの実行時間を、 通常 AB S制御中で実行され る②減圧モ一ドの実行時間に比して長期化した制御である。 初回特 定 A B S制御によれば、 通常 A B S制御に比して、 後輪 R L, RR のホイルシリ ンダ圧 Pw/c を大きく減圧することができる。 本ス テツプ 1 1 8の処理が終了すると、 今回のルーチンが終了される。 上記の処理によれば、 BA制御の開始に先立って少なく ともフ α ン ト 1輪について A B S制御が開始されている場合においても、 B A制御が開始された後、 後輪 R L, RRのスリ ップ量が AV2 を超 えるまでは、 後輪 R L, RRのホイルシリ ンダ圧 Pw/C を急昇圧さ せることができる。 また、 急昇圧されたホイルシリ ンダ圧 Pw/C が A B S作動油圧の近傍にまで昇圧されると、 その時点で、 初回特定 A B S制御によって後輪 R L, RRのホイルシリ ンダ圧 Pw/c の減 圧を開始することができる。 更に、 初回特定 A B S制御によれば、 ②減圧モー ドが長時間維持されるため、 急昇圧されていたホイルシ リ ンダ圧 Pw/C を適切に減圧することができる。 このため、 本実施 例の制動力制御装置によれば、 B A制御が開始された後に後輪 R L, RRのホイルシリ ンダ圧 Pw/c がオーバーシユー 卜するのを確実に 防止することができる。 In step 118, processing for starting the first specific ABS control is performed. In the first specified ABS control, the execution time of the decompression mode, which is executed immediately after the start of the ABS control, is longer than the execution time of the decompression mode, which is normally executed during the ABS control. Control. According to the first specified ABS control, the wheel cylinder pressure Pw / c of the rear wheels RL and RR can be greatly reduced as compared with the normal ABS control. When the process of step 1 18 is completed, the current routine is completed. According to the above processing, even if the ABS control has been started for at least one front wheel prior to the start of the BA control, the slip of the rear wheels RL and RR is started after the BA control is started. until flop weight obtain ultra the AV 2, the rear wheels RL, the Hoirushiri Nda圧P w / C of the RR can be sharply boosted. Also, when the rapidly increased wheel cylinder pressure P w / C is increased to a value close to the ABS operating oil pressure, the wheel cylinder pressure Pw / c of the rear wheels RL and RR is reduced by the first specific ABS control at that time. Can be started. Furthermore, according to the first specified ABS control, (2) the pressure reducing mode is maintained for a long time, so that the rapidly raised wheel cylinder pressure P w / C can be reduced appropriately. Therefore, according to the braking force control device of the present embodiment, it is possible to reliably prevent the wheel cylinder pressure Pw / c of the rear wheels RL and RR from overshooting after the BA control is started.
図 9は、 上記の処理が実行されることにより、 後輪のホイルシリ ンダ 4 4 R L ( 4 4 RRについても同様) において実現されるホイ ルシリンダ圧 Pw/C の変化を示す。 尚、 図 9中に一点鎖線で示すホ ィルシリ ンダ圧 Pw/c の変化は、 上記図 5に示す特性図と同様に、 通常の B A制御が開始された後に通常の A B S制御が開始された場 合に実現されるホイルシリ ンダ圧 Pw/C 変化を示す。 FIG. 9 shows a change in the wheel cylinder pressure P w / C realized in the rear wheel foil cylinder 44 RL (the same applies to 44 RR) by performing the above processing. Note that the change in the wheel cylinder pressure Pw / c indicated by the dashed line in FIG. 9 is similar to the characteristic diagram shown in FIG. 5 above when the normal BA control is started and then the normal ABS control is started. It shows the change in foil cylinder pressure P w / C realized in this case.
図 9中に実線で示す変化は、 時刻 t 12にブレーキ操作が開始され、 少なく ともフロン ト 1輪について A B S制御が開始された後、 時刻 t 13に B A制御が開始され、 更に、 時刻 t 14に、 ホイルシリ ンダ 4 R Lについて初回特定 A B S制御の実行条件が成立する、 すなわ ち、 後輪 R Lのスリ ップ量が AV2 を超えていると判別された場合 に実現される。 Change shown by a solid line in FIG. 9, the braking operation is started at time t 12, After the ABS control is started for the front one wheel at least, is BA control starts at the time t 13, further time t 14, the execution condition of the first specific ABS control is established about Hoirushiri Sunda 4 RL, Sunawa Chi, Slip amount of the rear wheels RL is realized when it is determined to exceed the AV 2.
少なく ともフロン 卜 1輪について A B S制御が開始された状態で BA制御が開始されると、 その後、 後輪 R Lのホイルシリ ンダ圧 P w/c は急激に上昇する。 一方、 初回特定 A B S制御によれば、 通常 AB S制御の場合に比して早期に、 かつ、 大きくホイルシリ ンダ 4 4 R Lのホイルシリ ンダ圧 Pw/C を減圧させることができる。 この ため、 本実施例の制動力制御装置においては、 後輪 R L, R Rのホ ィルシリ ンダ圧 Pw/C に、 AB S作動油圧を大きく超えるォ一バー シュートが生ずることがない。 このため、 本実施例の制動力制御装 置によれば、 フロン トの 1輪若しくは 2輪について A B S制御が開 始された後に B A制御の実行条件が成立した場合に、 優れた制御性 を維持することができる。 When the BA control is started with the ABS control started for at least one front wheel, thereafter, the wheel cylinder pressure P w / c of the rear wheel RL rapidly increases. On the other hand, according to the first specific ABS control, the wheel cylinder pressure Pw / C of the wheel cylinder 44 RL can be reduced earlier and largely than in the case of the normal ABS control. For this reason, in the braking force control device of the present embodiment, an overshoot that greatly exceeds the ABS operating oil pressure does not occur in the wheel cylinder pressure P w / C of the rear wheels RL and RR. For this reason, according to the braking force control device of the present embodiment, excellent controllability is maintained when the BA control execution condition is satisfied after the ABS control is started for one or two front wheels. can do.
ところで、 上記の実施例においては、 BA制御が開始されるに先 立って実行される制動力制御を A B S制御に限定しているが、 本発 明はこれに限定されるものではない。 すなわち、 本発明は、 A B S 制御に代えて、 先ずホイルシリ ンダの液圧流入経路を遮断した状態 でホイルシリ ンダ圧 Pw/C の減圧を図り、 次いで所望の液圧制御を 実行する他の制動液圧制御が用いられる場合にも適用が可能である。 In the above embodiment, the braking force control executed before the BA control is started is limited to the ABS control, but the present invention is not limited to this. That is, in the present invention, instead of the ABS control, first, the wheel cylinder pressure P w / C is reduced in a state where the hydraulic pressure inflow path of the foil cylinder is shut off, and then another braking fluid for executing a desired hydraulic pressure control is performed. It is also applicable when pressure control is used.
また、 上記の実施例においては、 "前輪 F L, FRについて" A B S制御が実行されている場合に "後輪 R L, RRについて" 初回 特定 AB S制御を実行することとしているが、 本発明はこれに限定 されるものではない。 すなわち、 何れかのホイルシリ ンダについて AB S制御等の制動液圧制御が実行されている場合に、 他のホイル シリ ンダについて初回特定 AB S制御を実行する場合にも適用が可 能である。 尚、 上記の実施例においては、 車輪のスリ ップ量が 「車輪のス リ ップ状態に関する特性値」 に、 調圧用液圧通路 5 6, 6 2が 「液 圧流入経路」 に、 A B S制御が 「制動液圧制御」 に、 AB S制御中 で始めて減圧モー ドを実現する制御が 「威圧制御」 に、 それぞれ相 当していると共に、 E C U 2 0が上記ステツプ 1 1 2の処理を実行 することにより 「導通検出手段」 、 E C U 2 0が上記ステツプ 1 1 8の処理を実行することにより 「しきい値変更手段」 および 「減 圧傾向変更手段」 力べ、 それぞれ実現されている。 Further, in the above-described embodiment, when the "front wheel FL, FR" ABS control is performed, the "rear wheel RL, RR" first specific ABS control is performed. It is not limited to. In other words, the present invention can be applied to a case where the brake fluid pressure control such as the ABS control is performed for any one of the wheel cylinders and the first specific ABS control is performed for the other wheel cylinder. In the above-described embodiment, the slip amount of the wheel corresponds to the “characteristic value relating to the slip state of the wheel”, and the hydraulic pressure control passages 56 and 62 correspond to the “hydraulic inflow path”. The control corresponds to the "braking fluid pressure control", the control for realizing the decompression mode for the first time during the ABS control corresponds to the "intimidation control", and the ECU 20 performs the processing of the above steps 112. By executing, the “conduction detecting means” is realized, and the ECU 20 executes the processing of the above step 118 to realize “threshold changing means” and “pressure reduction changing means”.
次に、 図 1 0および図】 1 を参照して、 本発明の第 3実施例につ いて説明する。 本実施例の制動力制御装置は、 上記図 1 に示すシス テム構成において、 E C U 2 0に、 上記図 6または図 8に示すルー チンと共に、 または、 上記図 6または図 8に示すルーチンに代えて、 図 1 1 に示す制御ルーチンを実行させることにより実現される。  Next, a third embodiment of the present invention will be described with reference to FIG. 10 and FIG. The braking force control device according to the present embodiment is configured such that, in the system configuration shown in FIG. 1, the ECU 20 is replaced with the routine shown in FIG. 6 or FIG. 8 or the routine shown in FIG. 6 or FIG. This is realized by executing the control routine shown in FIG.
A B S制御の実行に伴うホイルシリンダ圧 PW/c の増圧勾配は、 ホイルシリ ンダ 4 4 "に液圧を供給する液圧源の液圧 (すなわち、 レギユレ一夕圧 P REまたはアキュムレータ圧 PACC ) とホイルシリ ンダ圧 Pw/c との差圧、 液圧通路やソレノイ ドバルブの有効径、 お よび、 保持ソレノイ ド S,*Hの開弁時間等により決定される。 BA 制御が実行されないシステムにおいては、 液圧源や液圧通路の特性 に変化が生ずることはない。 かかるシステムでは、 A B S制御の内 容は、 それらの特性が固定されていることを前提としてチューニン グされる。 The pressure increase gradient of the wheel cylinder pressure P W / c due to the execution of the ABS control is determined by the hydraulic pressure of the hydraulic pressure source that supplies the hydraulic pressure to the wheel cylinder 44 ”(that is, the regulator pressure P PRE or the accumulator pressure P ACC). ) And the wheel cylinder pressure Pw / c, the effective diameter of the hydraulic passage and the solenoid valve, and the opening time of the holding solenoids S and * H, etc. In a system where BA control is not executed In this system, the characteristics of the hydraulic pressure source and the hydraulic passage do not change.In such a system, the contents of the ABS control are tuned on the assumption that those characteristics are fixed.
しかし、 B A制御が実行されるシステムにおいては、 BA制御の 実行に伴って液圧源や液圧通路が変更される。 このため、 かかるシ ステムにおいては、 A B S制御が単独で実行されている場合と、 A B S制御が B A制御と共に実行されている場合とで、 ホイルシリ ン ダ圧 Pw/c に異なる増圧勾配が与えられる。 AB S制御に伴うホイ ルシリ ンダ圧 Pw/c の増圧勾配が変化すると、 A B S制御の制御特 性に変化が生じ、 常に同様の制動特性を得ることができなくなる。 ところで、 B A制御が実行されるシステムにおいても、 B A制御 が実行されているか否かに対応して A B S制御の内容を切り換えれ ば、 B A制御が実行中か否かに関わらず、 A B S制御の実行中に同 様の増圧勾配を得ることが可能である。 本実施例の制動力制御装置 は、 B A制御の実行状態に応じて、 A B S制御の設定条件を変更す ることで、 上記の機能を実現する点に特徴を有している。 However, in a system in which the BA control is executed, the hydraulic pressure source and the hydraulic passage are changed with the execution of the BA control. For this reason, in such a system, a different pressure increasing gradient is given to the wheel cylinder pressure Pw / c depending on whether the ABS control is executed independently or when the ABS control is executed together with the BA control. . If the pressure increase gradient of the wheel cylinder pressure Pw / c changes due to the ABS control, the control characteristics of the ABS control change, and the same braking characteristics cannot always be obtained. By the way, even in a system in which the BA control is executed, if the content of the ABS control is switched according to whether or not the BA control is executed, the execution of the ABS control is performed regardless of whether the BA control is being executed. It is possible to obtain a similar pressure increase gradient inside. The braking force control device of the present embodiment is characterized in that the above functions are realized by changing the setting conditions of the ABS control according to the execution state of the BA control.
図 1 0は、 図 1 に示すシステムにおいて B A制御の実行 ·停止に 伴う液圧源および増圧特性の変化を示す。 図 1 0に示す如く、 本実 施例のシステムにおいて B A制御が実行されていない間は、 レギュ レータ 2 7が A B S制御時の液圧源となる。 この際、 本実施例のシ ステムでは、 レギユレ一夕 2 7の液圧吐出能力、 レギユレ一夕 2 7 と第 3液圧通路 4 2とを結ぶ通路の特性、 および、 第 3液圧通路 4 2下流の特性に応じた増圧特性 (以下、 この増圧特性を特性①と称 す) が実現される。  FIG. 10 shows changes in the hydraulic pressure source and the pressure increase characteristics due to the execution and stoppage of the BA control in the system shown in FIG. As shown in FIG. 10, while BA control is not being performed in the system of the present embodiment, the regulator 27 is a hydraulic pressure source during ABS control. At this time, in the system of the present embodiment, the hydraulic discharge capacity of the regulator 27, the characteristics of the passage connecting the regulator 27 to the third hydraulic passage 42, and the third hydraulic passage 4 (2) Pressure boosting characteristics according to the downstream characteristics (hereinafter, this pressure boosting characteristic is referred to as characteristic (2)) are realized.
また、 図 1 0に示す如く、 本実施例のシステムにおいて B A制御 が実行されている間は、 アキュムレータ 2 5が A B S制御時の液圧 源となる。 この際、 本実施例のシステムでは、 ポンプ 2 1およびァ キュムレー夕 2 5の液圧吐出能力、 アキュムレータ 2 5から第 3液 圧通路 4 2に至る通路の特性、 および、 第 3液圧通路 4 2下流の特 性に応じた増圧特性 (以下、 この増圧特性を特性②と称す) が実現 される。  As shown in FIG. 10, while the BA control is being performed in the system of the present embodiment, the accumulator 25 is a hydraulic pressure source during the ABS control. At this time, in the system of the present embodiment, the hydraulic discharge capacity of the pump 21 and the accumulator 25, the characteristics of the passage from the accumulator 25 to the third hydraulic passage 42, and the third hydraulic passage 4 (2) The pressure increasing characteristic according to the downstream characteristics (hereinafter, this pressure increasing characteristic is referred to as characteristic I) is realized.
図 1 1 は、 特性①と特性②とを同一にすべく E C U 2 0が実行す る制御ルーチンの一例のフローチャートを示す。 本ルーチンは、 所 定時間毎に起動される定時割り込みルーチンである。 本ルーチンが 起動されると、 先ずステップ 1 3 0の処理が実行される。  FIG. 11 shows a flowchart of an example of a control routine executed by the ECU 20 so as to make the characteristics ① and ② identical. This routine is a periodic interrupt routine that is started every predetermined time. When this routine is started, first, the processing of step 130 is executed.
ステップ 1 3 0では、 B A制御が実行中であるか否かが判別され る。 本ステップ 1 3 0では、 S T R 2 8の状態に基づいて上記の判 別がなされる。 具体的には、 S T R 2 8がオフ状態である場合は B A制御が実行されていないと、 また、 S T R 2 8がオン状態である 場合は B A制御が実行されていると判断される。 B A制御が実行さ れていないと判断された場合は、 次にステップ 1 3 2の処理が実行 される。 一方、 B A制御が実行されていると判断された場合は、 次 にステップ 1 3 の処理が実行される。 In step 130, it is determined whether the BA control is being executed. In step 130, the above determination is made based on the state of the STR 28. Specifically, when the STR 28 is in the off state, the BA control is not executed, and the STR 28 is in the on state. In this case, it is determined that the BA control is being executed. If it is determined that the BA control has not been performed, the process of step 1332 is performed next. On the other hand, if it is determined that the BA control is being performed, the process of step 13 is performed next.
ステップ 1 3 2では、 A B S制御の駆動条件を条件①とする処理 が実行される。 条件①は、 レギュレー夕 2 Ί 、 制御液圧通路 3 0 および S T R 2 8を介して第 3液圧通路 4 2に連通されている場合 に、 特性①を所望の増圧勾配とするための条件である。 本ステップ 1 3 2の処理が終了すると、 今回のル一チンが終了される。 上記ス テツプ 1 3 2の処理が実行されると、 以後、 A B S制御は、 条件① に従って実行される。  In step 132, a process is performed with the driving condition of the ABS control as condition (2). The condition ① is a condition for setting the characteristic ① to a desired pressure increasing gradient in the case of communication with the third hydraulic passage 42 via the regulation hydraulic passage 30, the control hydraulic passage 30 and the STR 28. It is. When the processing of this step 13 is completed, the current routine is completed. After the processing of the above steps 1 32 is executed, the ABS control is thereafter executed according to the condition (2).
ステップ 1 3 4では、 A B S制御の駆動条件を条件②とする処理 が実行される。 条件②は、 アキュムレータ 2 5カ、 高圧通路 2 6お よび S T R 2 8を介して第 3液圧通路 4 2に連通されている場合に、 特性②を所望の増圧勾配とするための条件である。 本ステップ 1 3 4の処理が終了すると、 今回のルーチンが終了される。 上記ステツ プ 1 3 4の処理が実行されると、 以後、 A B S制御は、 条件②に 従って実行される。  In step 134, a process is executed in which the driving condition of the ABS control is the condition (2). Condition ② is a condition for setting the characteristic と す る to a desired pressure increasing gradient when communicating with the third hydraulic pressure passage 42 via the accumulator 25, the high-pressure passage 26, and the STR 28. is there. When the processing of the present step 1 34 is completed, the current routine is completed. After the processing of the above step 1 34 is executed, the ABS control is thereafter executed according to the condition (2).
上記の処理によれば、 B A制御が実行中であると否とに関わらず、 A B S制御の実行に伴って、 常に同様に所望の増圧特性でホイルシ リ ンダ圧 P w/ c を昇圧させることが可能となる。 このため、 本実施 例の制動力制御装置によれば、 B A制御の実行に伴って A B S制御 の制御性が悪化するという不都合を回避することができる。  According to the above processing, regardless of whether the BA control is being executed or not, the wheel cylinder pressure P w / c is always increased with the desired pressure increasing characteristic in accordance with the execution of the ABS control. Becomes possible. For this reason, according to the braking force control device of the present embodiment, it is possible to avoid the inconvenience that the controllability of the ABS control deteriorates with the execution of the BA control.
本実施例では、 条件①および②により、 保持ソレノイ ド S * * Hの 駆動パターンを決めることとしている。 より具体的には、 保持ソレ ノィ ド S * * Hの駆動パターンを決めるマップを 2種類準備し、 条件 ①および②で何れのマップを用いるかを決定することとしている。 尚、 保持ソレノィ ド S * * Hの駆動パターンを切り換える手法はこれ に限定されるものではなく、 基準のマップに補正を施すか否かによ り、 その駆動パターンを切り換えることとしてもよい。 In the present embodiment, the driving pattern of the holding solenoid S ** H is determined by the conditions (1) and (2). More specifically, two types of maps that determine the driving pattern of the holding solenoid S ** H are prepared, and which of the maps is used under the conditions 1 and 2 is determined. The method of switching the driving pattern of the holding solenoid S ** H is not limited to this, but depends on whether or not to correct the reference map. Alternatively, the drive pattern may be switched.
更に、 上記の実施例においては、 条件①および②で決定すべき内 容が保持ソレノィ ド S * * Hの駆動パターンに限定されているが、 条 件①および②で決定すべき内容はこれに限定されるものではなく、 例えば、 液圧源の特性を変更することで、 B A制御の実行中と非実 行中とで同一の増圧勾配を実現することとしてもよい。  Further, in the above embodiment, the contents to be determined by the conditions (1) and (2) are limited to the driving pattern of the holding solenoid S ** H. The present invention is not limited to this. For example, the same pressure increase gradient may be realized during execution of the BA control and during non-execution of the BA control by changing the characteristics of the hydraulic pressure source.
次に、 図 1 2乃至図 2 2を参照して、 本発明の第 4実施例による 制動力制御装置について説明する。  Next, a braking force control device according to a fourth embodiment of the present invention will be described with reference to FIGS.
図 1 2は、 本発明の第 4実施例によるポンプアップ式制動力制御 装置 (以下、 単に制動力制御装置と称す) のシステム構成図を示す c 本実施例の制動力制御装置は、 フロン トエンジン · リア ドライブ式 車両 (F R車両) 用の制動力制御装置として好適な装置である。 本 実施例の制動力制御装置は、 電子制御ュニッ ト 2 1 0 (以下、 E C U 2 1 0 と称す) により制御されている。 1 2, the fourth exemplary pump-up type brake force control apparatus according to an example of the present invention (hereinafter, simply referred to as a brake force control apparatus) c braking force control apparatus of the present embodiment showing a system configuration diagram of front This device is suitable as a braking force control device for engines and rear drive type vehicles (FR vehicles). The braking force control device of the present embodiment is controlled by an electronic control unit 210 (hereinafter, referred to as ECU 210).
制動力制御装置は、 ブレーキペダル 2 1 2を備えている。 ブレー キペダル 2 1 2の近傍には、 ブレーキスィッチ 2 1 4が配設されて いる。 ブレーキスィッチ 2 1 4は、 ブレーキペダル 2 1 2が踏み込 まれることによりォン信号を出力する。 ブレーキスィッチ 2 1 4の 出力信号は E C U 2 1 0に供給されている。 E C U 2 1 0は、 ブ レーキスィッチ 2 1 4の出力信号に基づいてブレーキペダル 2 1 2 が踏み込まれているか否かを判別する。  The braking force control device includes a brake pedal 2 1 2. In the vicinity of the brake pedal 211, a brake switch 214 is provided. The brake switch 2 14 outputs an ON signal when the brake pedal 2 12 is depressed. The output signal of the brake switch 2 14 is supplied to the ECU 210. The ECU 210 determines whether or not the brake pedal 2 12 is depressed based on the output signal of the brake switch 2 14.
ブレーキペダル 2 1 2は、 バキュームブースタ 2 1 6に連結され ている。 バキュームブースタ 2 1 6は、 マスタシリ ンダ 2 1 8に固 定されている。 バキュームブースタ 2 1 6は、 ブレーキペダル 2 1 2が踏み込まれた場合に、 ブレーキ踏力 Fに対して所定の倍力比を 有するアシストカ F aを発生する。 マス夕シリ ンダ 2 1 8は、 セン 夕一バルブ . コンベンショナルタイプのマスタシリ ンダであり、 そ の内部に第 1油圧室 2 2 0および第 2油圧室 2 2 2を備えている。 第 1油圧室 2 2 0および第 2油圧室 2 2 2には、 ブレーキ踏力 Fと アシス ト力 F a との合力に応じたマスタシリ ンダ圧 PM/C が発生す る o The brake pedal 2 12 is connected to the vacuum booster 2 16. The vacuum booster 216 is fixed to the master cylinder 218. When the brake pedal 2 12 is depressed, the vacuum booster 2 16 generates an assist force Fa having a predetermined boosting ratio with respect to the brake depression force F. The mass cylinder 218 is a conventional master cylinder of a central valve type, and has a first hydraulic chamber 220 and a second hydraulic chamber 222 inside thereof. The first hydraulic chamber 222 and the second hydraulic chamber 222 have the brake depression force F The master cylinder pressure P M / C is generated according to the resultant force with the assist force Fa.o
マスタシリ ンダ 2 1 8の上部にはリザ一バタンク 2 2 4が配設さ れている。 リザーバタンク 2 2 4には、 フロン ト リザーバ通路 2 2 6、 および、 リアリザーバ通路 2 2 8が連通している。 フロン ト リ ザーバ通路 2 2 6には、 フロン ト リザーバカッ トソレノイ ド 2 3 0 (以下、 S R C F 2 3 0 と称す) が連通している。 同様に、 リアリ ザ一バ通路 2 2 8には、 リァリザーバカッ トソレノイ ド 2 3 2 (以 下、 S R C R 2 3 2 と称す) が連通している。  A reservoir tank 224 is provided above the master cylinder 218. A front reservoir passage 226 and a reservoir reservoir 228 communicate with the reservoir tank 224. A front reservoir cut solenoid 230 (hereinafter referred to as SRCF 230) communicates with the front reservoir passage 226. Similarly, a reservoir reservoir solenoid 2 32 (hereinafter referred to as SRCR 232) communicates with the reservoir reservoir passage 228.
S R C F 2 3 0には、 更に、 フロン トポンプ通路 2 3 4が連通し ている。 同様に、 S R C R 2 3 2には、 リアポンプ通路 2 3 6が連 通している。 S R C F 2 3 0は、 オフ状態とされることでフロン ト リザ一バ通路 2 2 6 とフロン トポンプ通路 2 3 4 とを遮断し、 かつ、 オン状態とされることでそれらを導通させる 2位置の電磁弁である。 また、 S R C R 2 3 2は、 オフ状態とされることでリアリザーバ通 路 2 2 8 とリアポンプ通路 2 3 6 とを遮断し、 かつ、 オン状態とさ れることでそれらを導通させる 2位置の電磁弁である。  Further, a front pump passage 234 communicates with the SRCF 230. Similarly, a rear pump passage 236 communicates with the SRCR 232. The SRCF 230 shuts off the front reservoir passage 226 and the front pump passage 234 when turned off, and conducts them when turned on. It is a solenoid valve. The SRCR 232 is a two-position solenoid valve that shuts off the rear reservoir passage 228 and the rear pump passage 236 when turned off and conducts them when turned on. It is.
マスタシリ ンダ 2 1 8の第 1油圧室 2 2 0、 および、 第 2油圧室 2 2 2には、 それぞれ第 1液圧通路 2 3 8、 および、 第 2液圧通路 2 4 0が連通している。 第 1液圧通路 2 3 8には、 右前マス夕力ッ トツレノイ ド 2 4 2 (以下、 SMF R 2 4 2 と称す) 、 および、 左 前マスタカッ トソレノイ ド 2 4 4 (以下、 SMF L 2 4 4 と称す) が連通している。 一方、 第 2液圧通路 2 4 0には、 リアマス夕カツ トソレノイ ド 2 4 6 (以下、 SMR 2 4 6 と称す) が連通している。  A first hydraulic passage 238 and a second hydraulic passage 240 communicate with the first hydraulic chamber 220 and the second hydraulic chamber 222 of the master cylinder 218, respectively. I have. The first hydraulic pressure passage 238 has a right front mass cutoff nozzle 242 (hereinafter referred to as SMF R 242) and a left front master cut solenoid 244 (hereinafter SMF L 224). 4). On the other hand, the second hydraulic passage 240 communicates with a rear mass cut solenoid 246 (hereinafter referred to as SMR 246).
SMF R 2 4 2には、 右前輪 F Rに対応して設けられた液圧通路 2 4 8が連通している。 同様に、 SMF L 2 4 4には、 左前輪 F L に対応して設けられた液圧通路 2 5 0が連通している。 更に、 SM R 2 4 6には、 左右後輪 R L, RRに対応して設けられた液圧通路 2 5 2が連通している。 SMF R 2 4 2. SMF L 2 4 4および SMR 2 4 6の内部には、 それぞれ定圧開放弁 2 5 4 , 2 5 6 , 2 5 8が設けられている。 S MF R 2 4 2は、 オフ状態とされた場合に第 1液圧通路 2 3 8 と液 圧通路 2 4 8 とを導通状態とし、 かつ、 オン状態とされた場合に定 圧開放弁 2 5 4を介して第 1液圧通路 2 3 8 と液圧通路 2 4 8とを 連通させる 2位置の電磁弁である。 また、 SMF L 2 4 2は、 オフ 状態とされた場合に第 1液圧通路 2 3 8 と液圧通路 2 5 0 とを導通 伏態とし、 かつ、 オン状態とされた場合に定圧開放弁 2 5 6を介し て第 1液圧通路 2 3 8 と液圧通路 2 5 0 とを連通させる 2位置の電 磁弁である。 同様に、 SMR 2 4 6は、 オフ状態とされた場合に第 2液圧通路 2 4 0 と液圧通路 2 5 2とを導通状態とし、 かつ、 オン 状態とされた場合に定圧開放弁 2 5 8を介して第 2液圧通路 2 4 0 と液圧通路 2 5 2とを連通させる 2位置の電磁弁である。 The SMF R 242 communicates with a hydraulic passage 248 provided corresponding to the right front wheel FR. Similarly, a hydraulic passage 250 provided in correspondence with the left front wheel FL communicates with the SMF L 244. Further, the SMR 246 communicates with hydraulic passages 252 provided corresponding to the left and right rear wheels RL, RR. SMF R 244 2. Inside the SMF L 244 and SMR 246, constant pressure release valves 254, 258 and 258 are provided, respectively. The S MF R 242 makes the first hydraulic passage 238 and the hydraulic passage 248 conductive when turned off, and the constant pressure release valve 2 when turned on. This is a two-position solenoid valve that communicates the first hydraulic pressure passage 238 and the hydraulic pressure passage 248 via 54. In addition, the SMF L 242 puts the first hydraulic passage 238 and the hydraulic passage 250 in a conductive state when the state is turned off, and a constant pressure release valve when the state is turned on. This is a two-position solenoid valve that connects the first hydraulic passage 2 388 and the hydraulic passage 250 via the second and fifth hydraulic passages. Similarly, when the SMR 246 is turned off, the second hydraulic passage 240 and the hydraulic passage 252 are connected to each other, and when the SMR 246 is turned on, the constant pressure release valve 2 is connected. This is a two-position solenoid valve that communicates the second hydraulic passageway 240 and the hydraulic passageway 252 through 58.
第 1液圧通路 2 3 8 と液圧通路 2 4 8 との間には、 また、 第 1液 圧通路 2 3 8側から液圧通路 2 4 8側へ向かうフルー ドの流れのみ を許容する逆止弁 2 6 0が配設されている。 同様に、 第 1液圧通路 2 3 8と液圧通路 2 5 0 との間、 および、 第 2液圧通路 2 4 0と液 圧通路 2 5 2との間には、 それぞれ第 1液圧通路 2 3 8側から液圧 通路 2 5 0側へ向かう流体の流れのみを許容する逆止弁 2 6 2、 お よび、 第 2液圧通路 2 4 0側から液圧通路 2 5 2側へ向かう流体の 流れのみを許容する逆止弁 2 6 4が配設されている。  Between the first hydraulic passage 238 and the hydraulic passage 248, only fluid flowing from the first hydraulic passage 238 to the hydraulic passage 248 is allowed. A check valve 260 is provided. Similarly, between the first hydraulic passage 238 and the hydraulic passage 250 and between the second hydraulic passage 240 and the hydraulic passage 252, the first hydraulic passage is provided. Check valve 2 62 that allows only fluid flow from passage 2 380 to hydraulic passage 250, and second hydraulic passage 240 to hydraulic passage 252 A check valve 26 4 is provided to allow only the flow of the fluid to flow.
右前輪 F Rに対応する液圧通路 2 4 8には、 右前輪保持ソ レノ ィ ド 2 6 6 (以下、 S F RH 2 6 6 と称す) が連通している。 同様に、 左前輪 F Lに対応する液圧通路 2 5 0には左前輪保持ソ レノ ィ ド 2 6 8 (以下、 S F LH 2 6 8と称す) カ^ 左右後輪 R L, RRに対 応する液圧通路 2 5 2には右後輪保持ソ レノイ ド 2 7 0 (以下、 S RRH 2 7 0 と称す) および左後輪保持ソ レノイ ド 2 7 2 (以下、 S R L H 2 7 2と称す) 力、 それぞれ連通している。 以下、 これら のソ レノィ ドを総称する場合は 「保持ソ レノ ィ ド S * * H」 と称す。 S F RH 2 6 6には、 右前輪減圧ソ レノィ ド 2 7 4 (以下、 S F R R 2 7 4 と称す) が連通している。 同様に、 S F L H 2 6 8、 S R R H 2 7 0および S R L H 2 7 2には、 それぞれ左前輪減圧ソレ ノイ ド 2 7 6 (以下、 S F LR 2 7 6 と称す) 、 右後輪減圧ソレノ イ ド 2 7 8 (以下、 S R R R 2 7 8 と称す) および左後輪減圧ソ レ ノイ ド 2 8 0 (以下、 S R L R 2 8 0 と称す) が、 それぞれ連通し ている。 以下、 これらのソレノィ ドを総称する場合には 「減圧ソレ ノィ ド S * * R」 と称す。 A hydraulic passageway 248 corresponding to the right front wheel FR communicates with a right front wheel holding solenoid 2666 (hereinafter referred to as SF RH266). Similarly, the hydraulic passage 250 corresponding to the left front wheel FL has a left front wheel holding solenoid 268 (hereinafter referred to as SF LH 268). The hydraulic passages 25 2 have a right rear wheel holding solenoid 270 (hereinafter, S RRH 270) and a left rear wheel holding solenoid 272 (hereinafter, SRLH 272). Power, each communicates. Hereinafter, when these solenoids are collectively referred to, they will be referred to as “holding solenoid S ** H”. The right front wheel decompression solenoid 274 (hereinafter referred to as SFRR 274) communicates with the SF RH 266. Similarly, SFLH 268, SRRH 270 and SRLH 272 have left front wheel decompression solenoids 276 (hereinafter referred to as SF LR 276) and right rear wheel decompression solenoids 2 respectively. 780 (hereinafter referred to as SRRR 278) and left rear wheel decompression solenoid 280 (hereinafter referred to as SRLR 280) communicate with each other. Hereinafter, when these solenoids are collectively referred to as “decompression solenoid S ** R”.
S F R H 2 6 6には、 また、 右前輪 F Rのホイルシリ ンダ 2 8 2 が連通している。 同様に、 S F L H 2 6 8には左前輪 F Lのホイル シリ ンダ 2 8 4力、 S R RH 2 7 0には右後輪 R Rのホイルシリ ン ダ 2 8 6力 、 また、 S R L H 2 7 2には左後輪 R Lのホイルシリ ン ダ 2 8 8がそれぞれ連通している。  The wheel cylinder 282 of the right front wheel FR communicates with the SFR H266. Similarly, the wheel cylinder 284 of the left front wheel FL is on the SFLH 268, the wheel cylinder 286 of the right rear wheel RR is on the SR RH270, and the left is the wheel cylinder 268 on the right rear wheel RR. The wheel cylinders 288 of the rear wheel RL communicate with each other.
更に、 液圧通路 2 4 8 とホイルシリ ンダ 2 8 2 との間には、 S F RH 2 6 6をバイパスしてホイルシ リ ンダ 2 8 2側から液圧通路 2 Further, between the hydraulic passage 2 48 and the foil cylinder 28 2, the hydraulic passage 2 is bypassed from the foil cylinder 28 2 by bypassing the SFRH 266.
4 8へ向かうフル一 ドの流れを許容する逆止弁 2 9 0が配設されて いる。 同様に、 液圧通路 2 5 0 とホイルシリ ンダ 2 8 4 との間、 液 圧通路 2 5 2とホイルシリ ンダ 2 8 6との間、 および、 液圧通路 2A check valve 290 is provided to allow fluid flow to 4.8. Similarly, between the hydraulic passage 250 and the foil cylinder 2884, between the hydraulic passage 25 and the foil cylinder 2886, and the hydraulic passage 2
5 2とホイルシリ ンダ 2 8 8 との間には、 それぞれ S F L H 2 6 8、 S RRH 2 7 0および S R LH 2 7 2をバイパスするフルー ドの流 れを許容する逆止弁 2 9 2, 2 9 4 , 2 9 6が配設されている。 Non-return valves 292, 2 permit flow of fluid that bypasses SFLH 268, SRRH 270 and SR LH 272, respectively, between 52 and foil cylinder 288. 9 4 and 2 9 6 are provided.
S FRH 2 6 6は、 オフ状態とされることにより液圧通路 2 4 8 とホイルシリ ンダ 2 8 2 とを導通状態とし、 かつ、 オン状態とされ ることにより液圧通路 2 4 8 とホイルシリ ンダ 2 8 2とを遮断状態 とする 2位置の電磁弁である。 同様に、 S F LH 2 6 8、 S RRH 2 7 0ぉょび31¾ 1^^ 2 7 2は、 それぞれオン状態とされることに より液圧通路 2 5 0とホイルシンダ 2 8 4 とを結ぶ経路、 液圧通路 2 5 2とホイルシンダ 2 8 6 とを結ぶ経路、 および、 液圧通路 2 5 2 とホイルシンダ 2 8 8 とを結ぶ経路を遮断する 2位置の電磁弁で め o The SFRH 266 makes the hydraulic passage 248 and the foil cylinder 282 conductive when turned off, and the hydraulic passage 248 and the foil cylinder when turned on. This is a 2-position solenoid valve that shuts off 282. Similarly, SF LH 268 and S RRH 270 and 31 ¾ 1 ^^ 272 are respectively turned on so that the paths connecting the hydraulic pressure passage 250 and the wheel synthesizer 284 are formed. A two-position solenoid valve that shuts off the path connecting the hydraulic passageway 252 and the wheel cylinder 2886 and the path connecting the hydraulic passageway 252 and the wheel cylinder 2888 O
左右前輪の減圧ソレノィ ド S F R R 2 7 4および S F L R 2 7 6 には、 フロン ト減圧通路 2 9 8が連通している。 また、 左右後輪の 減圧ソレノィ ド S R R R 2 7 8および S R L R 2 8 0にはリア減圧 通路 3 0 0が連通している。 フロ ン ト減圧通路 2 9 8およびリア減 圧通路 3 0 0には、 それぞれフロン ト リザ一バ 3 0 2およびリアリ ザーバ 3 0 4が連通している。  A front pressure reducing passageway 298 communicates with the pressure reducing solenoids SFR R274 and SFLR274 of the left and right front wheels. In addition, a rear decompression passageway 300 communicates with decompression solenoids SRRRR278 and SRLR280 of the left and right rear wheels. The front pressure reducing passageway 298 and the rear pressure reducing passageway 300 communicate with a front reservoir 302 and a rear reservoir 304, respectively.
また、 フロン ト減圧通路 2 9 8およびリァ滅圧通路 3 0 0は、 そ れぞれ逆止弁 3 0 6 , 3 0 8を介してフロ ン トポンプ 3 1 0 の吸入 側、 および、 リアポンプ 3 1 2の吸入側に連通している。 フロ ン ト ポンプ 3 1 0の吐出側、 および、 リアポンプ 3 1 2の吐出側は、 吐 出圧の脈動を吸収するためのダンバ 3 1 , 3 1 6に連通している。 ダンバ 3 1 4は、 右前輪 F Rに対応して設けられた右前ポンプ通路 3 1 8および左前輪 F Lに対応して設けられた左前ポンプ通路 3 2 0に連通している。 一方、 ダンバ 3 1 6は、 液圧通路 2 5 2に連通 している。  In addition, the front pressure reducing passageway 298 and the rear pressure reducing passageway 300 are respectively connected to the suction side of the front pump 310 and the rear pump 3 via check valves 306 and 308, respectively. It communicates with the suction side of 12. The discharge side of the front pump 310 and the discharge side of the rear pump 31 are in communication with dampers 31 and 316 for absorbing the pulsation of the discharge pressure. The dambar 3 14 is in communication with a right front pump passage 3 18 provided corresponding to the right front wheel FR and a left front pump passage 3 20 provided corresponding to the left front wheel FL. On the other hand, the dambar 316 communicates with the hydraulic passage 252.
右前ポンプ通路 3 1 8は、 右前ポンプソレノイ ド 3 2 2 (以下、 S P F L 3 2 2 と称す) を介して液圧通路 2 4 8に連通している。 また、 左前ポンプ通路 3 2 0は、 左前ポンプソレノイ ド 3 2 4 (以 下、 S P F R 3 2 4 と称す) を介して液圧通路 2 5 0に連通してい る。 S P F L 3 2 2は、 オフ状態とされることにより右前ポンプ通 路 3 1 8 と液圧通路 2 4 8 とを導通状態とし、 かつ、 オン状態とさ れることによりそれらを遮断状態とする 2位置の電磁弁である。 同 様に、 S P F R 3 2 4は、 オフ状態とされることにより左前ポンプ 通路 3 2 0 と液圧通路 2 5 0 とを導通状態とし、 かつ、 オン状態と されることによりそれらを遮断状態とする 2位置の電磁弁である。 液圧通路 2 4 8 と右前ポンプ通路 3 1 8 との間には、 液圧通路 2 4 8側から右前ポンプ通路 3 1 8側へ向かう流体の流れのみを許容 する定圧開放弁 3 2 6が配設されている。 同様に、 液圧通路 2 5 0 と左前ポンプ通路 3 2 0 との間には、 液圧通路 2 5 0側から左前ボ ンブ通路 3 2 0側へ向かう流体の流れのみを許容する定圧開放弁 3 2 8が配設されている。 The right front pump passage 318 communicates with the hydraulic passage 248 via a right front pump solenoid 322 (hereinafter referred to as SPFL 322). Further, the left front pump passage 320 communicates with the hydraulic passage 250 through a left front pump solenoid 324 (hereinafter, referred to as SPFR 324). The SPFL 322 is in a position where the right front pump passage 318 and the hydraulic pressure passage 248 are brought into conduction when turned off, and shut off when turned on. Solenoid valve. Similarly, when the SPFR 324 is turned off, the left front pump passage 320 and the hydraulic passage 250 are brought into conduction, and when turned on, the SPFR 324 turns them off. A 2-position solenoid valve. Between the hydraulic passage 248 and the right front pump passage 318, a constant pressure release valve 326 that allows only the flow of fluid from the hydraulic passage 248 to the right front pump passage 318 is provided. It is arranged. Similarly, hydraulic passage 2 50 A constant pressure release valve 328 that allows only the flow of the fluid from the hydraulic pressure passage 250 to the left front pump passage 320 is provided between the hydraulic pump 250 and the left front pump passage 320. .
各車輪の近傍には、 車輪速センサ 3 3 0 , 3 3 2 , 3 3 4 , 3 3 6が配設されている。 E C U 2 1 0は、 車輪速センサ 3 3 0〜 3 3 6の出力信号に基づいて各車輪の回転速度 VW を検出する。 また、 マスタシリ ンダ 2 1 8に連通する第 2液圧通路 2 4 0には、 液圧セ ンサ 3 3 8が配設されている。 E C U 2 1 0は、 液圧センサ 3 3 8 の出力信号に基づいてマス夕シリ ンダ圧 P M/C を検出する。 Wheel speed sensors 330, 332, 334, 336 are arranged near each wheel. ECU 2 1 0 detects the rotational speed V W of each wheel based on the output signal of the wheel speed sensor 3 3 0-3 3 6. Further, a hydraulic sensor 338 is provided in the second hydraulic passage 240 communicating with the master cylinder 2 18. The ECU 210 detects the mass cylinder pressure PM / C based on the output signal of the fluid pressure sensor 338.
次に、 本実施例の制動力制御装置の動作を説明する。 本実施例の 制動力制御装置は、 油圧回路内に配設された各種の電磁弁の状態を 切り換えることにより、 ①通常ブレーキ機能、 ② A B S機能、 およ び、 ③ B A機能を実現する。  Next, the operation of the braking force control device according to the present embodiment will be described. The braking force control device of this embodiment realizes (1) the normal braking function, (2) the ABS function, and (3) the BA function by switching the state of various solenoid valves disposed in the hydraulic circuit.
①通常ブレーキ機能は、 図 1 2に示す如く、 制動力制御装置が備 える全ての電磁弁をオフ状態とすることにより実現される。 以下、 図 1 2に示す状態を通常ブレーキ状態と称す。 また、 制動力制御装 置において通常ブレーキ機能を実現するための制御を通常ブレーキ 制御と称す。  (1) The normal braking function is realized by turning off all the solenoid valves provided in the braking force control device as shown in Fig. 12. Hereinafter, the state shown in FIG. 12 is referred to as a normal brake state. The control for realizing the normal brake function in the braking force control device is called normal brake control.
図 1 2に示す通常ブレーキ状態において、 左右前輪 F L , F Rの ホイルシリ ンダ 2 8 2 , 2 8 4は、 共に第 1液圧通路 2 3 8を介し てマス夕シリ ンダ 2 1 8の第 1油圧室 2 2 0に連通している。 また、 左右後輪 R L, R Rのホイルシリ ンダ 2 8 6 , 2 8 8は、 第 2液圧 通路 2 4 0を介してマス夕シリンダ 2 1 8の第 2油圧室 2 2 2に連 通している。 この場合、 ホイルシリ ンダ 2 8 2〜 2 8 8のホイルシ リ ンダ圧 PW/C は、 常にマスタシリ ンダ圧 PM/C と等圧に制御され る。 従って、 図 1 2示す状態によれば、 通常ブレーキ機能が実現さ れる。 In the normal braking state shown in FIG. 12, the wheel cylinders 282 and 284 of the left and right front wheels FL and FR are both connected to the first hydraulic pressure of the mass cylinder 218 via the first hydraulic pressure passage 238. It communicates with room 220. The wheel cylinders 286 and 288 of the left and right rear wheels RL and RR communicate with the second hydraulic chamber 222 of the mass cylinder 218 via the second hydraulic pressure passage 240. . In this case, the foil cylinder pressure P W / C of the foil cylinders 282 to 288 is always controlled to be equal to the master cylinder pressure PM / C. Therefore, according to the state shown in FIG. 12, the normal braking function is realized.
② A B S機能は、 図 1 2に示す状態において、 フロ ン トポンプ 3 1 0およびリアポンプ 3 1 2をオン状態とし、 かつ、 保持ソ レノィ ド S * * Hおよび減圧ソレノィ ド S * * Rを A B Sの要求に応じて 適当に駆動することにより実現される。 以下、 制動力制御装置にお いて A B S機能を実現するための制御を A B S制御と称す。 2) In the state shown in Fig. 12, the ABS function turns on the front pump 310 and the rear pump 312, and turns on the holding solenoid. This is realized by appropriately driving the depressurizing solenoid S ** H and the depressurizing solenoid S ** R according to the requirements of the ABS. Hereinafter, the control for realizing the ABS function in the braking force control device is referred to as ABS control.
E C U 2 1 0は、 車両が制動状態にあり、 かつ、 何れかの車輪に ついて過剰なスリ ップ率が検出された場合に A B S制御を開始する。  The ECU 210 starts ABS control when the vehicle is in a braking state and an excessive slip rate is detected for any of the wheels.
A B S制御は、 ブレーキペダル 2 1 2が踏み込まれている状況下、 すなわち、 マス夕シリ ンダ 2 1 8が高圧のマス夕シリ ンダ圧 P M/C を発生している状況下で開始される。 The ABS control is started under the condition that the brake pedal 211 is depressed, that is, under the condition that the mass cylinder 218 generates the high mass cylinder pressure PM / C.
A B S制御の実行中は、 マスタシリ ンダ圧 PM/C が、 第 1液圧通 路 2 3 8および第 2液圧通路 2 4 0を介して、 それぞれ左右前輪に 対応して設けられた液圧通路 2 4 8 , 2 5 0、 および、 左右後輪に 対応して設けられた液圧通路 2 5 2に導かれる。 従って、 かかる状 況下で保持ソレノィ ド S * * Hを開弁状態とし、 かつ、 減圧ソレノ イ ド S * *Rを閉弁状態とすると、 各車輪のホイルシリ ンダ圧 Pw/ c を増圧することができる。 以下、 この状態を(i) 増圧モードと称 す。 During the execution of the ABS control, the master cylinder pressure P M / C is supplied via the first hydraulic passage 238 and the second hydraulic passage 240 to the hydraulic pressures respectively provided for the left and right front wheels. It is guided to passages 248 and 250 and to hydraulic passages 252 provided corresponding to the left and right rear wheels. Accordingly, when the holding solenoid S ** H is opened and the pressure reducing solenoid S ** R is closed under such a condition, the wheel cylinder pressure P w / c of each wheel is increased. be able to. Hereinafter, this state is referred to as (i) pressure increase mode.
また、 A B S制御の実行中に、 保持ソ レノィ ド S * * Hおよび減 圧ソレノィ ド S * * Rの双方を閉弁伏態とすると、 各車輪のホイル シリ ンダ圧 Pw/c を保持することができる。 以下、 この状態を(ii) 保持モードと称す。 更に、 A B S制御の実行中に、 保持ソレノイ ド S * *Hを閉弁状態とし、 かつ、 減圧ソ レノ ィ ド S * * Rを開弁状 態とすると、 各車輪のホイルシリ ンダ圧 Pw/c を減圧することがで きる。 以下、 この状態を(iii) 減圧モードと称す。  If both the holding solenoid S ** H and the depressurizing solenoid S ** R are closed during the execution of the ABS control, the wheel cylinder pressure Pw / c of each wheel must be maintained. Can be. Hereinafter, this state is referred to as (ii) holding mode. Further, if the holding solenoid S ** H is closed and the pressure reducing solenoid S ** R is opened during the execution of the ABS control, the wheel cylinder pressure Pw / c of each wheel is set. Can be reduced in pressure. Hereinafter, this state is referred to as (iii) decompression mode.
E CU 2 1 0は、 AB S制御中に、 各車輪毎に適宜上記の(i) 増 圧モード、 (ii)保持モード、 および、 (iii) 減圧モードが実現され るように、 各車輪のスリ ップ状態に応じて保持ソレノィ ド S * *H および減圧ソレノイ ド S * * Rを制御する。 保持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * * Rが上記の如く制御されると、 全て の車輪のホイルシリ ンダ圧 Pw/C が対応する車輪に過大なスリ ッブ 率を発生させることのない適当な圧力に制御される。 このように、 上記の制御によれば、 制動力制御装置において A B S機能を実現す ることができる。 The ECU 210 controls each wheel during the ABS control so that the above-described (i) boosting mode, (ii) holding mode, and (iii) depressurizing mode are appropriately realized for each wheel. The holding solenoid S ** H and the pressure reducing solenoid S ** R are controlled according to the slip state. When the holding solenoid S ** H and the depressurizing solenoid S ** R are controlled as described above, the wheel cylinder pressure P w / C of all wheels is excessively large for the corresponding wheels. It is controlled to an appropriate pressure without generating a rate. As described above, according to the above control, the braking force control device can realize the ABS function.
AB S制御の実行中に、 各車輪で減圧モー ドが行われる際にはホ ィルシリ ンダ 2 8 2〜 2 8 8内のブレーキフルードカ、 フロント減 圧通路 2 9 8およびリア減圧通路 3 0 0を通ってフロン ト リザーバ 3 0 2およびリアリザーバ 3 0 4に流入する。 フロント リザ一バ 3 0 2およびリアリザーバ 3 0 に流入したブレーキフルー ドは、 フ ロントポンプ 3 1 0およびリアポンプ 3 1 2に汲み上げられて液圧 通路 2 4 8 , 2 5 0 , 2 5 2へ供給される。  When the decompression mode is performed on each wheel during the execution of ABS control, the brake fluid in the wheel cylinders 28 2 to 28 88, the front decompression passage 298 and the rear decompression passage 300 Through the front reservoir 302 and the rear reservoir 304. The brake fluid flowing into the front reservoirs 302 and the rear reservoirs 30 is pumped by the front pumps 310 and the rear pumps 310 and supplied to the hydraulic passages 248, 250, 252. You.
液圧通路 2 4 8, 2 5 0, 2 5 2に供給されたブレーキフルー ド の一部は、 各車輪で増圧モードが行われる際にホイルシリ ンダ 2 8 2〜 2 8 8に流入する。 また、 そのブレーキフルードの残部は、 ブ レーキフルードの流出分を補うべくマス夕シリ ンダ 2 1 8に流入す る。 このため、 本実施例によれば、 A B S制御の実行中にブレーキ ペダル 2 1 2に過大なストロークが生ずることはない。  A part of the brake fluid supplied to the hydraulic passages 248, 250, and 252 flows into the wheel cylinders 282 to 288 when the pressure increasing mode is performed in each wheel. The remainder of the brake fluid flows into the mass cylinder 218 to compensate for the outflow of the brake fluid. Therefore, according to the present embodiment, an excessive stroke does not occur on the brake pedal 2 12 during execution of the ABS control.
図 1 3乃至図 1 5は、 ③ B A機能を実現するための制動力制御装 置の状態を示す。 E C U 2 1 0は、 運転者によって制動力の速やか な立ち上がりを要求するブレ一キ操作すなわち緊急ブレーキ操作が 実行された後に、 図 1 3乃至図 1 5に示す状態を適宜実現すること で BA機能を実現する。 以下、 制動力制御装置において、 B A機能 を実現させるための制御を B A制御と称す。  FIGS. 13 to 15 show the state of the braking force control device for realizing the ③BA function. The ECU 210 implements the BA function by appropriately realizing the states shown in FIGS. 13 to 15 after the driver performs a braking operation that requests a quick rise of the braking force, that is, an emergency braking operation. To achieve. Hereinafter, the control for realizing the BA function in the braking force control device is referred to as BA control.
図 1 3は、 B A制御の実行中に実現されるアシス ト圧増圧状態を 示す。 アシスト圧増圧状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 Pw/C を増圧させる必要がある場合に実現される。 本実 施例のシステムにおいて、 BA制御中におけるアシスト圧増圧状態 は、 図 1 3に示す如く、 リザーバカッ トソレノイ ド S R C F 2 3 0 , S R CR 2 3 2、 および、 マス夕カッ トソレノイ ド SMF R 2 4 2, SMF L 2 4 4 , S MR 2 4 6をオン状態とし、 かつ、 フロン トポ ンプ 3 1 0およびリアポンプ 3 1 2をオン状態とすることで実現さ れる。 FIG. 13 shows an assist pressure increasing state realized during the execution of the BA control. The assist pressure increasing state is realized when it is necessary to increase the wheel cylinder pressure P w / C of each wheel during execution of the BA control. In the system of the present embodiment, as shown in FIG. 13, the assist pressure increasing state during the BA control includes the reservoir cut solenoids SRCF 230, SR CR 232, and the mass cut solenoid SMF R 2. 4 2, SMF L 2 4 4, S MR 2 4 6 are turned on, and the front This is realized by turning on the pump 310 and the rear pump 312.
図 1 3に示すアシス ト圧増圧状態が実現されると、 リサーバ夕ン ク 2 2 4に貯留されているブレーキフル一 ドがフロン トポンプ 3 1 0およびリアポンプ 3 1 2に汲み上げられて液圧通路 2 4 8, 2 5 0 , 2 5 2に供給される。 アシス ト圧増圧状態では、 液圧通路 2 4 8 , 2 5 0 , 2 5 2の内圧が、 定圧開放弁 2 5 4, 2 5 6 , 2 5 8 の開弁圧を超えてマスタシリ ンダ圧 Ρ Μ/C に比して高圧となるまで は、 液圧通路 2 4 8, 2 5 0 , 2 5 2からマス夕シリ ンダ 2 1 8へ 向かうブレーキフルー ドの流れが SMF R 2 4 2 , S MF L 2 4 4 , SMR 2 4 6によって阻止される。  When the assist pressure increase state shown in Fig. 13 is realized, the brake fluid stored in the reservoir 224 is pumped up by the front pump 310 and the rear pump 312, and the hydraulic pressure is increased. It is supplied to passages 248, 250, 252. In the assist pressure increasing state, the internal pressure of the hydraulic pressure passages 248, 250, and 252 exceeds the valve opening pressure of the constant pressure release valves 254, 255, and 258, and the master cylinder pressure increases.ブ レ ー キ Until the pressure becomes higher than Μ / C, the flow of the brake fluid from the hydraulic passages 248, 250, 252 to the mass cylinder 218 will be SMF R 242, Blocked by SMF L 2 4 4 and SMR 2 4 6.
このため、 図 1 3に示すアシス ト圧増圧状態が実現されると、 そ の後、 液圧通路 2 4 8 , 2 5 0 , 2 5 2には、 マス夕 シリ ンダ圧 P For this reason, when the assist pressure increasing state shown in FIG. 13 is realized, thereafter, the hydraulic pressure passages 2488, 250, and 252 are connected to the mass cylinder pressure P
M/C に比して高圧の液圧が発生する。 アシス ト圧増圧状態では、 ホ ィルシリ ンダ 2 8 2〜2 8 8 と、 それらに対応する液圧通路 2 4 8 , 2 5 0 , 2 5 2 とが導通状態に維持されている。 従って、 アシス ト 圧増圧状態が実現されると、 その後、 全ての車輪のホイルシリ ンダ 圧 Pw/c は、 フロ ン トポンプ 3 1 0 またはリアポンプ 3 1 2を液圧 源として、 速やかにマスタシリ ンダ圧 P M/C を超える圧力に昇圧さ れる。 Higher hydraulic pressure is generated compared to M / C. In the assist pressure increasing state, the wheel cylinders 282 to 288 and the corresponding hydraulic passages 248, 250, and 252 are maintained in a conductive state. Therefore, when the assist pressure increase state is realized, thereafter, the wheel cylinder pressure Pw / c of all the wheels is quickly increased using the front pump 310 or the rear pump 312 as a hydraulic pressure source. The pressure is raised to a pressure exceeding PM / C.
ところで、 図 1 3に示すアシス ト圧増圧状態において、 液圧通路 2 4 8 , 2 5 0 , 2 5 2は、 それぞれ逆止弁 2 6 0, 2 6 2, 2 6 4を介してマス夕シリ ンダ 2 1 8に連通している。 このため、 マス 夕シリ ンダ圧 PM/C が各車輪のホイルシリ ンダ圧 Pw/C に比して大 きい場合は、 アシス ト圧増圧状態においても、 マスタシリ ンダ 2 1 8を液圧源としてホイルシリ ンダ圧 Pw/C を昇圧することができる。 図 1 4は、 B A制御の実行中に実現されるアシス ト圧保持状態を 示す。 アシス ト圧保持状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 Pw/c を保持する必要がある場合に実現される。 アシス ト圧保持状態は、 図 1 4に示す如く、 S R C F 2 3 0 , S R C R 2 3 2をオフ状態とし、 マスタカッ トソレノイ ド SMF R 2 4 2, S MF L 2 4 4 , SMR 2 4 6をォン状態とし、 かつ、 フロン 卜ボン プ 3 1 0およびリアポンプ 3 1 2をオン状態とすることで実現され る。 By the way, in the assist pressure increasing state shown in FIG. 13, the hydraulic pressure passages 248, 250, and 252 are respectively connected to the mass through check valves 260, 262, 264. It communicates with evening cylinder 218. Therefore, when the master cylinder pressure P M / C is larger than the wheel cylinder pressure P w / C of each wheel, the master cylinder 218 is connected to the hydraulic pressure source even in the assist pressure increasing state. As a result, the wheel cylinder pressure P w / C can be increased. FIG. 14 shows the assist pressure holding state realized during the execution of the BA control. The assist pressure holding state is realized when the wheel cylinder pressure Pw / c of each wheel needs to be held during the execution of the BA control. Assis As shown in Figure 14, the SRCF 230 and SRCR 232 are turned off, and the master cut solenoids SMF R2 42, SMF L 2 4 4 and SMR 2 4 6 are turned on as shown in Fig. 14. This can be realized by setting the front pump 310 and the rear pump 312 to the ON state.
図 1 4に示すアシス ト圧保持状態では、 フロン トポンプ 3 1 0 と リザ—バタンク 2 2 4、 および、 リアポンプ 3 1 2 とリザーバタン ク 2 2 4力、 それぞれ S R C F 2 3 0および S R C R 2 3 2によつ て遮断状態とされる。 このため、 アシス ト圧保持状態では、 フロン トポンプ 3 1 0およびリアポンプ 3 1 2から液圧通路 2 4 8, 2 5 0, 2 5 2にフルー ドが吐出されることはない。 また、 図 1 4に示 すアシス ト圧保持状態では、 液圧通路 2 4 8, 2 5 0 , 2 5 2力、 SMF R 2 4 2, SMF L 2 4 4 , SMR 2 4 6によってマス夕シ リ ンダ 2 1 8から実質的に切り離されている。 このため、 図 1 4に 示すアシス ト圧保持状態によれば、 全ての車輪のホイルシリ ンダ圧 Pw/c を一定値に保持することができる。 In the assist pressure holding state shown in Fig. 14, the front pump 3 10 and the reservoir tank 2 24 and the rear pump 3 12 and the reservoir tank 2 24 4 power are applied to the SRCF 230 and SRCR 232, respectively. Therefore, it is shut off. Therefore, in the assist pressure holding state, no fluid is discharged from the front pump 310 and the rear pump 312 to the hydraulic passages 2488, 250, and 252. In addition, in the assist pressure holding state shown in FIG. 14, the hydraulic pressure passages 248, 250, 250 force, SMF R 242, SMF L 244, and SMR 246 cause mass flow. Substantially decoupled from cylinder 218. For this reason, according to the assist pressure holding state shown in FIG. 14, the wheel cylinder pressures Pw / c of all the wheels can be held at a constant value.
図 1 5は、 B A制御の実行中に実現されるアシス ト圧減圧状態を 示す。 アシス ト圧減圧状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 Pw/c を減圧する必要がある場合に実現される。 アシス ト圧減圧状態は、 図 1 5に示す如く、 フロ ン トポンプ 3 1 0および リアポンプ 3 】 2をオン状態とすることで実現される。  FIG. 15 shows a reduced assist pressure state realized during the execution of the BA control. The assist pressure reduction state is realized when it is necessary to reduce the wheel cylinder pressure Pw / c of each wheel during the execution of the BA control. The assist pressure reduction state is realized by turning on the front pump 3 10 and the rear pump 3 2 as shown in FIG.
図 1 5に示すァシス ト圧減圧状態では、 フロン トポンプ 3 1 0お よびリアポンプ 3 1 2がリザ一バタンク 2 2 4から切り離される。 このため、 フロン トポンプ 3 1 0およびリアポンプ 3 1 2から液圧 通路 2 4 8 , 2 5 0 , 2 5 2にフルー ドが吐出されることはない。 また、 アシス ト圧減圧状態では、 各車輪のホイルシリ ンダ 2 8 2〜 2 8 8 とマスタシリ ンダ 2 1 8 とが導通状態となる。 このため、 ァ シス ト圧減圧状態を実現すると、 全ての車輪のホイルシリ ンダ圧 P w/c を、 マスタシリ ンダ圧 PM を下限値として減圧することがで き 。 In the reduced state of the assist pressure shown in FIG. 15, the front pump 310 and the rear pump 312 are separated from the reservoir tank 224. Therefore, no fluid is discharged from the front pump 310 and the rear pump 312 into the hydraulic passages 2488, 250, and 252. Further, in the assist pressure reduced state, the wheel cylinders 282-288 of each wheel and the master cylinder 2188 are in a conductive state. For this reason, if the axle pressure reduction state is realized, the wheel cylinder pressure P w / c of all wheels can be reduced using the master cylinder pressure PM as the lower limit. I
本実施例の制動力制御装置において、 B A制御が開始されると、 先ず (I)開始増圧モー ドが実行される。 (I)開始増圧モ一ドは、 所 定の増圧時間 TSTA の間、 上記図 1 3に示すアシス ト圧増圧状態を 維持することにより実現される。 上述の如く、 アシス ト圧増圧状態 が実現されると、 各車輪のホイルシリ ンダ圧 Pw/C は、 フロ ン トポ ンプ 3 1 0またはリアポンプ 3 1 2を液圧源としてマスタシリ ンダ 圧 PM/C を超える圧力に昇圧される。 従って、 各車輪のホイルシリ ンダ圧 Pw/c は、 B A制御の実行が開始された後、 速やかにマス夕 シリ ンダ圧 PM/C を超える圧力に昇圧される。 In the braking force control device of the present embodiment, when the BA control is started, first, (I) a start pressure increasing mode is executed. (I) The start pressure increase mode is realized by maintaining the assist pressure increase state shown in FIG. 13 during the predetermined pressure increase time T STA . As described above, when the assist pressure increasing state is realized, the wheel cylinder pressure P w / C of each wheel is set to the master cylinder pressure P M using the front pump 310 or the rear pump 312 as a hydraulic pressure source. The pressure is increased to a pressure exceeding / C. Therefore, the wheel cylinder pressure Pw / c of each wheel is immediately increased to a pressure exceeding the mass cylinder pressure PM / C after the execution of the BA control.
上述した (I)開始増圧モードが終了すると、 以後、 運転者のブ レーキ操作に対応して、 (II)アシス ト圧増圧モー ド、 (ΠΙ)アシス ト圧減圧モー ド、 (IV)アシス ト圧保持モー ド、 (V)アシス ト圧緩増 モード、 および、 (VI)アシスト圧緩減モードの何れかが実行される c BA制御の実行中に、 マスタシリ ンダ圧 PM/c が急激に増圧され ている場合は、 運転者が更に大きな制動力を要求していると判断で きる。 本実施例の制動力制御装置では、 この場合、 (Π)アシス ト圧 増圧モー ドが実行される。 (II)アシス ト圧増圧モー ドは、 上述した (I)開始増圧モードと同様に、 上記図 1 3に示すアシス ト圧増圧状 態を維持することにより実現される。 アシス ト圧増圧状態によれば、 各車輪のホィルシリ ンダ圧 P w/c を、 フロ ン トポンプ 3 1 0および リアポンプ 3 1 2を液圧源として速やかに昇圧させることができる。 従って、 上記の処理によれば、 運転者の意図を正確にホイルシリ ン ダ圧 Pw/c に反映させることができる。 After the above-mentioned (I) start pressure increase mode ends, in response to the driver's brake operation, (II) assist pressure increase mode, (ΠΙ) assist pressure decrease mode, (IV) Any of the assist pressure holding mode, (V) assist pressure gradual increase mode, and (VI) assist pressure gradual decrease mode is executed. C During the BA control, the master cylinder pressure P M / c If the pressure is rapidly increased, it can be determined that the driver is requesting a larger braking force. In this case, in the braking force control device of the present embodiment, (Π) the assist pressure increasing mode is executed. The (II) assist pressure increasing mode is realized by maintaining the assist pressure increasing state shown in FIG. 13 as in the above (I) starting pressure increasing mode. According to the assist pressure increasing state, the wheel cylinder pressure P w / c of each wheel can be quickly increased using the front pump 310 and the rear pump 312 as a hydraulic pressure source. Therefore, according to the above processing, the intention of the driver can be accurately reflected on the wheel cylinder pressure Pw / c.
B A制御の実行中に、 マスタシリ ンダ圧 PM/C が急激に減圧され ている場合は、 運転者が制動力を速やかに低下させることを意図し ていると判断できる。 本実施例では、 この場合、 (III)アシス ト圧 減圧モードが実行される。 UU)アシス ト圧減圧モー ドは、 上記図 1 5に示すアシスト圧減圧状態を維持することにより実現される。 アシス ト圧減圧状態によれば、 上述の如く、 各車輪のホイルシリ ン ダ圧 Pw/C をマス夕シリ ンダ圧 PM/C に向けて速やかに減圧させる ことができる。 従って、 上記の処理によれば、 運転者の意図を正確 にホイルシリ ンダ圧 Pw/C に反映させることができる。 If the master cylinder pressure PM / C is rapidly reduced during the execution of the BA control, it can be determined that the driver intends to reduce the braking force quickly. In this embodiment, in this case, (III) the assist pressure reduction mode is executed. The UU) assist pressure reduction mode is realized by maintaining the assist pressure reduction state shown in FIG. 15 described above. According to Assist pressure decreasing state, as described above, it is possible to quickly reduced pressure towards the Hoirushiri emissions Da pressure P w / C of each wheel to the mass evening Siri Nda圧P M / C. Therefore, according to the above processing, the driver's intention can be accurately reflected on the wheel cylinder pressure P w / C.
B A制御の実行中にマスタシリ ンダ圧 PM/c がほぼ一定値に維持 されている場合は、 運転者が制動力を保持することを意図している と判断できる。 本実施例では、 この場合、 (IV)アシス ト圧保持モ一 ドが実行される。 (IV)アシス ト圧保持モー ドは、 上記図 1 4に示す アシスト圧保持状態を維持することにより実現される。 アシスト圧 保持状態によれば、 上述の如く、 各車輪のホイルシリ ンダ圧 Pw/c を一定値に維持することができる。 従って、 上記の処理によれば、 運転者の意図を正確にホイルシリ ンダ圧 Pw/c に反映させることが できる。 If the master cylinder pressure P M / c is maintained at a substantially constant value during the execution of the BA control, it can be determined that the driver intends to maintain the braking force. In this embodiment, in this case, (IV) the assist pressure holding mode is executed. (IV) The assist pressure holding mode is realized by maintaining the assist pressure holding state shown in FIG. 14 described above. According to the assist pressure holding state, the wheel cylinder pressure Pw / c of each wheel can be maintained at a constant value as described above. Therefore, according to the above processing, the driver's intention can be accurately reflected on the wheel cylinder pressure Pw / c.
B A制御の実行中にマスタシリ ンダ圧 PM/C が緩やかに増圧され ている場合は、 運転者が制動力を緩やかに立ち上げることを意図し ていると判断できる。 本実施例では、 この場合、 (V)アシス ト圧緩 増モードが実行される。 (V)アシス ト圧緩増モードは、 上記図 1 3 に示すアシスト圧増圧状態と上記図 1 4に示すアシスト圧保持状態 とを繰り返すことにより実現される。 (V)アシスト圧緩増モー ドに よれば、 各車輪のホイルシリ ンダ圧 Pw/C をフロン トポンプ 3 1 0 およびリアポンプ 3 1 2を液圧源として段階的に昇圧させることが できる。 従って、 上記の処理によれば、 運転者の意図を正確にホイ ルシリ ンダ圧 Pw/C に反映させることができる。 If the master cylinder pressure PM / C is gradually increased during execution of the BA control, it can be determined that the driver intends to gradually increase the braking force. In this embodiment, in this case, (V) the assist pressure reduction mode is executed. (V) The assist pressure gradual increase mode is realized by repeating the assist pressure increasing state shown in FIG. 13 and the assist pressure holding state shown in FIG. 14 above. (V) According to the assist pressure gradual increase mode, the wheel cylinder pressure P w / C of each wheel can be increased stepwise using the front pump 310 and the rear pump 312 as a hydraulic pressure source. Therefore, according to the above processing, the driver's intention can be accurately reflected on the wheel cylinder pressure P w / C.
B A制御の実行中にマス夕シリ ンダ圧 PM/c が緩やかに減圧され ている場合は、 運転者が制動力を緩やかに低下させることを意図し ていると判断できる。 本実施例では、 この場合(VI)アシス ト圧緩減 モードが実行される。 (VI)アシスト圧緩減モードは、 上記図 1 5に 示すアシス ト圧減圧伏態と上記図 1 4に示すアシス ト圧保持状態と を繰り返すことにより実現される。 (VI)アシスト圧緩減モードによ れば、 各車輪のホイルシリ ンダ圧 Pw/C をマスタシリ ンダ圧 PM/C に向けて段階的に減圧させることができる。 従って、 上記の処理に よれば、 運転者の意図を正確にホイルシリ ンダ圧 Pw/C に反映させ ることができる。 If mass evening Siri Nda圧P M / c during execution of the BA control is slowly reduced pressure, it can be determined that the driver is intended to reduce gradually the brake force. In this embodiment, in this case, the (VI) assist pressure gradual decrease mode is executed. (VI) The assist pressure moderation mode is realized by repeating the assist pressure reduction state shown in FIG. 15 and the assist pressure holding state shown in FIG. 14 described above. (VI) Assist pressure moderation mode Then, the wheel cylinder pressure P w / C of each wheel can be reduced stepwise toward the master cylinder pressure PM / C. Therefore, according to the above processing, the driver's intention can be accurately reflected on the wheel cylinder pressure P w / C.
上記の処理によれば、 運転者によって緊急ブレーキ操作が実行さ れた後速やかに、 ホイルシリ ンダ圧 Pw/c をマス夕シリ ンダ EPM/ c に比して高い圧力に昇圧することができると共に、 昇圧されたホ ィルシリ ンダ圧 Pw/C を、 運転者のブレーキ操作に応じて増威させ ることができる。 According to the above-described processing, the wheel cylinder pressure Pw / c can be increased to a pressure higher than the mass cylinder EP M / c immediately after the driver performs the emergency braking operation, and In addition, the boosted wheel cylinder pressure P w / C can be increased according to the driver's brake operation.
本実施例の制動力制御装置において、 上述した B A制御が開始さ れると、 その後、 各車輪のホイルシリ ンダ圧 Pw/C が速やかに昇圧 されることにより、 何れかの車輪について過剰なスリ ップ率が生ず る場合がある。 E CU 2 1 0は、 このような場合には、 BA機能と AB S機能とを共に実現するための制御 (BA + A B S制御) を開 始する。 以下、 上記図 1 3乃至図 1 5 と共に図 1 6乃至図 2 1 を参 照して、 BA + A B S制御の実行に伴う制動力制御装置の動作を説 明する。 In the braking force control device according to the present embodiment, when the above-described BA control is started, the wheel cylinder pressure P w / C of each wheel is immediately increased, so that an excessive slip on any one of the wheels is achieved. In some cases, the rate may increase. In such a case, the ECU 210 starts control (BA + ABS control) for realizing both the BA function and the ABS function. Hereinafter, the operation of the braking force control device accompanying the execution of the BA + ABS control will be described with reference to FIGS. 16 to 21 together with FIGS. 13 to 15 described above.
本実施例の制動力制御装置において、 B A + A B S制御の実行中 に、 運転者によって制動力の減圧を意図するブレーキ操作が行われ た場合は、 A B S対象車輪のホイルシリ ンダ圧 Pw/c を A B S制御 の要求に応じた圧力に制御しつつ、 A B S非対象車輪のホイルシリ ンダ圧 Pw/C をマスタシリ ンダ圧 PM/C に向けて減圧する必要が生 ずる。 以下、 この要求をアシス ト圧減圧 A B S要求と称す。 In the braking force control device of the present embodiment, when the driver performs a braking operation intended to reduce the braking force during the execution of the BA + ABS control, the wheel cylinder pressure Pw / c of the ABS target wheel is increased by the ABS. It is necessary to reduce the wheel cylinder pressure P w / C of the non-ABS wheels toward the master cylinder pressure P M / C while controlling the pressure according to the control requirements. Hereinafter, this request is referred to as the assist pressure reduction ABS request.
アシス ト圧減圧 AB S要求は、 上記図 1 5に示すアシス ト E減圧 状態を実現しつつ、 保持ソレノ ィ ド S * *Hおよび減圧ソ レノ ィ ド S * * Rのうち、 AB S対象車輪に対応するものを A B S制御の要 求に応じて適宜制御することで実現される。 以下、 制動力制御装置 において上記の制御が実行されている状態をアシス ト圧減圧 A B S 状態と称す。 ァシス ト圧減圧 A B S要求は、 運転者が制動力の減少を意図して いる場合に、 すなわち、 何れの車輪のホイルシリ ンダ圧 Pw/c も増 圧する必要がない場合に発生する。 従って、 アシス ト圧'减圧 AB S 要求が発生している状況下では、 A BS非対象車輪のホイルシリ ン ダ圧 Pw/c を減圧しつつ、 ABS対象車輪のホイルシリ ンダ圧 Pw/ c を保持および減圧できることが必要である。 The assist pressure decompression ABS request is executed for the ABS target wheel of the holding solenoid S ** H and the decompression solenoid S ** R while realizing the assist E decompression state shown in Fig. 15 above. This is realized by appropriately controlling the components corresponding to the requirements according to the ABS control requirements. Hereinafter, a state in which the above control is performed in the braking force control device is referred to as an assist pressure reduction ABS state. The ABS pressure request is generated when the driver intends to reduce the braking force, that is, when it is not necessary to increase the wheel cylinder pressure Pw / c of any of the wheels. Thus, in a situation where Assist pressure '减圧AB S request has occurred, while depressurizing the Hoirushiri emissions Da pressure Pw / c of the A BS asymmetrical wheel, the Hoirushiri Nda圧P w / c of the ABS subject wheel It must be able to hold and depressurize.
上述したアシスト圧減圧 A B S状態においては、 全ての保持ソレ ノ イ ド S * * Hがマスタシリ ンダ 2 1 8に連通している。 このため、 アシスト圧減圧 AB S状態によれば、 AB S非対象車輪のホイルシ リ ンダ圧 Pw/C を適正にマス夕シリ ンダ圧 PM/C に向かって滅圧す ることができる。 また、 かかる状況下で A B S対象車輪について(i i)保持モー ドまたは (iii)減圧モー ドが実現されると、 AB S対象 車輪のホイルシリ ンダ圧 Pw/C を保持または減圧することができる。 このように、 上述したアシス ト圧減圧 ABS伏態によれば、 アシス ト圧減圧 ABS要求が発生した際に実現すべき機能を、 適切に実現 することができる。 In the above-described assist pressure reduction ABS state, all the holding solenoids S ** H are in communication with the master cylinder 218. Therefore, according to the assist pressure decreasing AB S state may Rukoto the male proper flashing towards the mass evening Siri Nda圧P M / C to Hoirushi Li Nda圧P w / C of AB S non-target wheels. Further, in this situation, when the (ii) holding mode or the (iii) decompression mode is realized for the ABS target wheel, the wheel cylinder pressure P w / C of the ABS target wheel can be held or reduced. As described above, according to the assist pressure decompression ABS described above, the function to be realized when the assist pressure decompression ABS request is generated can be appropriately realized.
本実施例の制動力制御装置において、 B A + AB S制御の実行中 に運転者によって制動力の増加を意図するブレーキ操作が行われた 場合は、 ABS対象車輪のホイルシリ ンダ圧 Pw/c を ABS制御の 要求に応じた圧力に制御しつつ、 ABS非対象車輪のホイルシリ ン ダ圧 Pw/c を、 マスタシリ ンダ圧 PM/C を超える領域で増圧する必 要が生ずる。 以下、 この要求をアシス ト増圧 ABS要求と称す。 In the braking force control device according to the present embodiment, when the driver performs a braking operation intended to increase the braking force during the execution of the BA + ABS control, the wheel cylinder pressure Pw / c of the ABS target wheel is increased by the ABS. It is necessary to increase the wheel cylinder pressure Pw / c of the non-ABS wheels in the region exceeding the master cylinder pressure P M / C while controlling the pressure according to the control requirements. Hereinafter, this requirement is referred to as an assist pressure increase ABS requirement.
アシス ト圧増圧 AB S要求は、 上記図 1 3に示すアシス ト圧増圧 状態を実現しつつ、 保持ソ レノィ ド S * *Hおよび減圧ソ レノ ィ ド S **Rのうち AB S対象車輪に対応するものを A B S制御の要求 に応じて制御することによっても実現することができる。 すなわち、 例えば左前輪 F Lが A B S対象車輪である場合に、 上記図 1 3に示 すアシスト圧増圧状態を実現しつつ S F L H 2 6 8および S F LR 2 7 6を AB S制御の要求に応じて制御すれば、 左前輪 FLのホイ ルシリ ンダ圧 Pw/C を A B S制御の要求に応じた圧力に制御しつつ、 他の車輪 F R, R L, RRのホイルシリ ンダ圧 Pw/C をマス夕シリ ンダ圧 PM/C に比して高い領域で増圧することができる。 The APS request for the assist pressure increase ABS applies to the ABS target of the holding solenoid S ** H and the pressure reduction solenoid S ** R while realizing the assist pressure increase state shown in Fig. 13 above. It can also be realized by controlling the wheel corresponding to the ABS control request. That is, for example, when the left front wheel FL is an ABS target wheel, the SFLH 268 and SF LR 276 are controlled according to the ABS control request while achieving the assist pressure increasing state shown in FIG. If controlled, the left front wheel FL wheel While controlling the Rushiri Nda圧P w / C pressure corresponding to the requirements of the ABS control, the other wheels FR, RL, the Hoirushiri Nda圧P w / C of RR mass evening than in silicon Nda圧P M / C Pressure can be increased in a high region.
しかし、 左前輪 F Lについて A B S制御が開始されると、 左前輪 F Lに対応する保持ソレノイ ド S F L H 2 6 8は、 その後、 左前輪 F Lについて (i)増圧モードが実行される僅かな時間を除き閉弁状 態とされる。 このため、 左前輪 F Lについて A B S制御が開始され た後は、 フロン トポンプ 3 1 0から吐出されるブレーキフルードの 殆どが、 A B S非対象車輪である右前輪 F Rのホイルシリ ンダ 2 8 2に流入する。  However, when the ABS control is started for the left front wheel FL, the holding solenoid SFLH 268 corresponding to the left front wheel FL is thereafter operated for the left front wheel FL except for a short time when the pressure increase mode is executed. The valve is closed. For this reason, after the ABS control is started for the left front wheel FL, most of the brake fluid discharged from the front pump 310 flows into the wheel cylinder 282 of the right front wheel FR which is a non-ABS wheel.
フロン トポンプ 3 1 0の吐出能力は、 左右前輪 F L, F Rのホイ ルシリ ンダ圧 Pw/c を、 同時に適当な増圧勾配で昇圧させることが できるように設定されている。 このため、 フロントポンプ 3 1 0か ら吐出されるブレーキフルー ドの殆どが、 A B S非対象車輪である 右前輪 F Rのホイルシリ ンダ 2 8 2に流入する状況下では、 右前輪 F Rのホイルシリ ンダ圧 Pw/c に過剰な増圧勾配が生ずる。  The discharge capacity of the front pump 310 is set so that the wheel cylinder pressures Pw / c of the left and right front wheels FL and FR can be simultaneously increased with an appropriate pressure increasing gradient. For this reason, under the condition that most of the brake fluid discharged from the front pump 310 flows into the wheel cylinder 282 of the right front wheel FR, which is a wheel not subject to ABS, the wheel cylinder pressure Pw of the right front wheel FR An excessive pressure gradient occurs at / c.
更に、 上記の如く右前輪 F Rのホイルシリ ンダ圧 Pw/C に過剰な 増圧勾配が発生する状況下では、 左前輪 F Lについて (i)増圧モー ドが実行された際に、 左前輪 F Lのホイルシリ ンダ圧 Pw/C が過度 に増圧される事態が生じ得る。 A B S対象車輪のホイルシリ ンダ圧 Pw/c が (i)増圧モードの実行に伴って過度に増圧されると、 その 車輪について再び(ii)減圧モー ドの実行が必要となり、 A B S制御 にハンチングが生じ易くなるという不都合が生ずる。 Furthermore, as described above, in a situation where an excessive pressure increase gradient occurs in the wheel cylinder pressure P w / C of the right front wheel FR, when the pressure increase mode is executed for the left front wheel FL, the left front wheel FL The wheel cylinder pressure P w / C of this case may be excessively increased. If the wheel cylinder pressure Pw / c of the ABS target wheel is excessively increased due to (i) execution of the pressure increase mode, it is necessary to execute (ii) pressure reduction mode again for that wheel, and hunting for the ABS control is performed. Disadvantageously easily occurs.
この点、 上記図 1 3に示すアシスト圧増圧状態を実現しつつ、 保 持ソレノイ ド S * * Hおよび減圧ソレノィ ド S * * Rのうち A B S 対象車輪に対応するものを A B S制御の要求に応じて制御すること によりアシス ト圧増圧 A B S要求を満たす手法は、 本実施例の制動 力制御装置において B A + A B S制御を実現するための手法として 必ずしも最適な手法ではない。 図 1 6は、 左前輪 F Lを ABS対象車輪とするアシス ト圧増圧 A B S要求が発生した場合に制動力制御装置において実現される状態 (以下、 アシス ト圧増圧 AB S状態と称す) の一形態を示す。 左前 輪 F Lを A B S対象車輪とするアシスト圧増圧 A B S状態は、 下記 (a) 〜(d) の条件が満たされるように制動力制御装置を制御するこ とにより実現される。 In this regard, while realizing the assist pressure increasing state shown in Fig. 13 above, the holding solenoid S ** H and the depressurizing solenoid S ** R that correspond to the ABS target wheel are required for ABS control. The method that satisfies the assist pressure increase ABS requirement by performing control in accordance with the above is not necessarily the optimal method for realizing BA + ABS control in the braking force control device of the present embodiment. Fig. 16 shows the state realized by the braking force control device when the ABS request is made with the left front wheel FL as the ABS target wheel (hereinafter referred to as the assist pressure boost ABS state). One form is shown. The assist pressure increase ABS state in which the front left wheel FL is set as the ABS target wheel is realized by controlling the braking force control device so that the following conditions (a) to (d) are satisfied.
(a) 上記図 1 3に示すアシスト圧増圧状態でオン状態とされてい るフロン トリザーバカッ トソレノイ ド SRCF 2 3 0をオフ状態と する。 具体的には、 (a - 1) リァリザーバカッ トソレノィ ド S R C R 2 3 2、 および、 マス夕カ ッ ト ソ レノ イ ド SMFR 2 4 2, S MF L 24 4 , SMR 24 6をオン状態とし、 かつ、 (a- 2) フロン トポ ンプ 3 1 0およびリアポンプ 3 1 2をオン状態とする。  (a) The front reservoir cut solenoid SRCF 230 which is turned on in the assist pressure increasing state shown in FIG. 13 is turned off. Specifically, (a-1) the reservoir cut solenoid SRCR 232, and the mass cut solenoid SMFR 242, SMF L 244 and SMR 246 are turned on, and (A-2) Turn on the front pump 310 and the rear pump 312.
(b) ABS対象車輪である左前輪 FLの保持ソ レノ ィ ド S F LH 2 6 8および減圧ソレノイ ド SFLR 2 7 6を AB S制御の要求に 応じて下記の如く制御する。 (b- 1) AB S制御によって(ii)保持 モードおよび (iii)減圧モードが要求される場合は、 ABS制御が 単独で実行される場合と同様の手法により制御する。 (b- 2) ABS 制御によって (i)増圧モー ドの実行が要求される場合は、 ABS制 御が単独で実行される場合に比して短縮された所定時間だけ増圧 モー ドを実行する。  (b) The holding solenoid SF LH 268 and the pressure reducing solenoid SFLR 276 of the left front wheel FL, which is the ABS target wheel, are controlled as follows in accordance with the ABS control request. (B-1) When (ii) holding mode and (iii) decompression mode are required by ABS control, control is performed in the same manner as when ABS control is executed alone. (B-2) When the ABS control requires execution of (i) the pressure increase mode, the pressure increase mode is executed for a predetermined time shorter than when the ABS control is executed alone. I do.
(c) A B S対象車輪と同一の系統に属する右前輪 F Rの保持ソレ ノィ ド SFRH 2 6 6を所定のデューティ比で繰り返しオン ·オフ せる。  (c) The holding solenoid SFRH266 of the right front wheel FR belonging to the same system as the ABS target wheel is repeatedly turned on / off at a predetermined duty ratio.
(d) A B S対象車輪である左前輪 F Lを含む系統に属するマスタ カツ トソ レノイ ド SMFR 24 2および SMFL 2 4 4を、 左前輪 (d) The master cut solenoids SMFR 242 and SMFL 244 belonging to the system including the left front wheel FL, which is the A B S target wheel, are
F Lについて (iii)減圧モードが実行される時期と同期してオフ状 態 (開弁状態) とする。 FL (iii) Turn off (valve open) in synchronization with the execution of the pressure reduction mode.
上記(a) の条件によれば、 アシス ト圧増圧 ABS要求が生ずると 同時に ABS対象車輪を含む系統に属するフロ ントポンプ 3 1 0と リザーバタンク 2 2 4 とを遮断状態とすることができる。 この場合、 フロン トポンプ 3 1 0に吸入されるブレーキフル一 ドがホイルシリ ンダ 2 8 4から流出するフルー ドのみに限定されるため、 フロン ト ポンプ 3 1 0の吐出側に発生する液圧が比較的低圧に抑制される。 その結果、 A B S制御のハンチングを防止するうえで、 また、 A B S非対象車輪である右前輪 FRのホイルシリ ンダ圧 Pw/C の増圧勾 配を抑制するうえで有利な状態が形成される。 According to the above condition (a), when the assist pressure increase ABS request is generated, the front pump 310 that belongs to the system including the ABS target wheel is simultaneously operated. The reservoir tank 222 can be shut off. In this case, since the brake fluid sucked into the front pump 310 is limited to only the fluid flowing out of the foil cylinder 284, the hydraulic pressure generated on the discharge side of the front pump 310 is compared. It is suppressed to extremely low pressure. As a result, a state is formed which is advantageous in preventing hunting of the ABS control and in suppressing the pressure gradient of the wheel cylinder pressure P w / C of the right front wheel FR which is a non-ABS target wheel.
上記(b) の条件によれば、 AB S対象車輪である左前輪 Fしで (i) 増圧モー ドが実行される時間が、 A B S制御が単独で実行され る場合に比して短縮される。 (i)増圧モー ドの実行時間が短縮され ると、 (i)増圧モー ドの実行に伴って左前輪 F Lのホイルシリ ンダ 圧 Pw/C に生ずる増圧量が抑制される。 かかる状況下では、 S F L H 2 6 8の上流側に通常時に比して高圧の液圧が発生していても、 AB S制御にハンチングは生じ難い。 According to the condition (b) above, the time during which (i) the pressure increase mode is executed with the left front wheel F, which is the ABS target wheel, is reduced as compared with the case where the ABS control is executed alone. You. When the execution time of (i) the pressure increase mode is shortened, (i) the pressure increase amount generated in the wheel cylinder pressure P w / C of the left front wheel FL due to the execution of the pressure increase mode is suppressed. In such a situation, even if a higher hydraulic pressure is generated upstream of the SFLH 268 than usual, hunting hardly occurs in the ABS control.
上記(c) の条件によれば、 A B S対象車輪と同一の系統に属する 右前輪 F Rについて、 ブレーキフルー ドがホイルシリ ンダ 2 8 2に 流入する状態と、 その流入が阻止される状態とが所定のデューティ 比で繰り返される。 この場合、 S F RH 2 6 6の上流側に通常時に 比して高圧の液圧が発生していても、 右前輪 F Rのホイルシリ ンダ 圧 Pw/C は適正な増圧勾配で増圧する。 According to the condition (c) above, for the right front wheel FR belonging to the same system as the ABS target wheel, the state in which the brake fluid flows into the wheel cylinder 282 and the state in which the brake fluid is blocked are determined to be a predetermined value. Repeated at duty ratio. In this case, the wheel cylinder pressure P w / C of the right front wheel FR increases with an appropriate pressure increasing gradient even if a higher hydraulic pressure is generated upstream than the SF RH 266 as compared with normal times.
上記(d) の条件によれば、 ホイルシリ ンダ 2 8 4から流出したブ レーキフルー ドがフロン トポンプ 3 1 0によって圧送される時期と 同期して、 フロン トポンプ 3 1 0の吐出側とマスタシリ ンダ 2 1 8 とが導通状態とされる。 この場合、 ブレーキフルー ドがマスタシリ ンダ 2 1 8に流入し得るため、 フロン トポンプ 3 1 0の吐出側に発 生する液圧が比較的低圧に抑制される。 その結果、 A B S制御のハ ンチングを防止するうえで、 また、 AB S非対象車輪である右前輪 FRのホイルシリ ンダ圧 Pw/c の増圧勾配を抑制するうえで有利な 状態が形成される。 このため、 上述したアシス ト圧増圧 A B S状態によれば、 AB S 対象車輪のホイルシリ ンダ圧 PW/C を A B S制御が単独で実行され る場合と同様に制御することができると共に、 全ての A B S非対象 車輪のホイルシリ ンダ圧 Pw/c を、 B A制御が単独で実行されてい る状況下でホイルシリ ンダ圧 P*/C の増圧が要求された場合と同様 の増圧勾配で増圧させることができる。 このように、 上述したアン スト圧増圧 ABS状態によれば、 アシスト圧増圧 AB S要求が発生 した際に実現すべき機能を、 適切に実現することができる。 According to the above condition (d), the discharge side of the front pump 310 and the master cylinder 211 are synchronized with the time when the brake fluid flowing out of the wheel cylinder 284 is pumped by the front pump 310. 8 is made conductive. In this case, since the brake fluid can flow into the master cylinder 2 18, the hydraulic pressure generated on the discharge side of the front pump 310 is suppressed to a relatively low pressure. As a result, a state is formed which is advantageous in preventing hunting of the ABS control and in suppressing the pressure increase gradient of the wheel cylinder pressure Pw / c of the right front wheel FR which is a non-ABS target wheel. For this reason, according to the above-described assist pressure increase ABS state, the wheel cylinder pressure P W / C of the ABS target wheel can be controlled in the same manner as when the ABS control is executed alone, The wheel cylinder pressure Pw / c of the wheel not subject to ABS is increased with the same pressure gradient as when the wheel cylinder pressure P * / C is required to be increased under the condition that BA control is executed alone. be able to. As described above, according to the above-described astride pressure increase ABS state, the function to be realized when the assist pressure increase ABS request occurs can be appropriately realized.
本実施例の制動力制御装置において、 B A + A B S制御の実行中 に、 運転者によって制動力の保持を意図するブレーキ操作が行われ た場合は、 A B S対象車輪のホイルシリ ンダ圧 Pw/C を ABS制御 の要求に応じた圧力に制御しつつ、 A B S非対象車輪のホイルシリ ンダ圧 Pw/C の保持を図る必要が生ずる。 以下、 この要求をアシス ト圧保持 ABS要求と称す。 In the braking force control device of the present embodiment, if the driver performs a braking operation intended to maintain the braking force during the execution of the BA + ABS control, the wheel cylinder pressure P w / C of the ABS target wheel is increased. There is a need to maintain the wheel cylinder pressure P w / C of the ABS non-target wheels while controlling the pressure to meet the ABS control requirements. Hereinafter, this request is referred to as an assist pressure holding ABS request.
アシス ト圧保持 ABS要求が生じた場合に、 上記図 1 4に示すァ シスト圧保持状態を実現しつつ、 保持ソ レノ ィ ド S * * Hおよび減 圧ソレノィ ド S * *Rのうち AB S対象車輪に対応するものを AB S制御の要求に応じて制御することによれば、 A B S対象車輪のホ ィルシリ ンダ圧 Pw/C を A B S制御の要求に応じた圧力に制御する こと、 および、 同一の系統内に A B S対象車輪が含まれない系統に 属する A BS非対象車輪のホイルシリ ンダ圧 Pw/c を保持すること ができる。 Assist pressure holding When an ABS request occurs, the holding pressure S S * * H and the pressure reduction solenoid S * * R are realized while maintaining the assist pressure holding state shown in Fig. 14 above. By controlling the wheel corresponding to the target wheel in accordance with the request of the ABS control, the wheel cylinder pressure P w / C of the ABS target wheel is controlled to a pressure corresponding to the request of the ABS control, and It is possible to maintain the wheel cylinder pressure Pw / c of the ABS non-target wheels belonging to the system that does not include the ABS target wheels in the same system.
すなわち、 例えば左前輪 FLを ABS対象車輪とするアシスト圧 保持 ABS要求が発生した場合に、 上記図 1 4に示すアシス ト圧保 持状態を実現しつつ S FLH 2 6 8および S FLR 2 7 6を ABS 制御の要求に応じて制御すれば、 左前輪 FLについては、 (ii)保持 モードおよび (iii)減圧モ一ド、 および、 フロ ン トポンプ 3 1 0を 液圧源とする (i)増圧モードを実現することができる。 従って、 左 前輪 F Lのホイルシリンダ圧 Pw/c は、 ABS制御の要求に応じて 制御することができる。 また、 上記の状況下では、 ABS対象車輪 を含まない後輪の系統については、 上記図 1 4に示す状態と同様に 維持される。 従って、 左右後輪 RL, RRについては、 BA制御が 単独で実行される場合と同様に、 それらのホイルシリ ンダ圧 Pw/c を保持することができる。 That is, for example, when an assist pressure holding ABS request is made with the left front wheel FL as an ABS target wheel, S FLH 268 and S FLR 276 while realizing the assist pressure holding state shown in FIG. If the front left wheel FL is controlled according to the ABS control request, the (ii) holding mode and (iii) the pressure reduction mode and the front pump 310 are used as the hydraulic pressure source for the left front wheel FL. Pressure mode can be realized. Therefore, the wheel cylinder pressure Pw / c of the left front wheel FL is increased according to the ABS control requirements. Can be controlled. In the above situation, the rear wheel system that does not include the ABS target wheel is maintained in the same manner as the state shown in FIG. Therefore, for the left and right rear wheels RL and RR, their wheel cylinder pressures Pw / c can be maintained as in the case where the BA control is executed alone.
しかし、 上記の手法によると、 左前輪 FLについて (iii)減圧 モー ドが実行された後、 ホイルシリンダ 2 8 4から流出したブレー キフルードがフロン トポンプ 3 1 0によって圧送され、 右前輪 FR のホイルシリ ンダ 2 8 2に流入する。 このため、 同一の系統内に A B S対象車輪を備える前輪の系統に属する右前輪 F Rについては、 B A制御の要求に応えること、 すなわち、 ホイルシリ ンダ圧 Pw/C を保持することができない。 However, according to the above-described method, (iii) after the decompression mode is executed for the left front wheel FL, the brake fluid flowing out of the wheel cylinder 284 is pumped by the front pump 310, and the wheel cylinder of the right front wheel FR is driven. It flows into 2 82. For this reason, the right front wheel FR belonging to the front wheel system having the ABS target wheel in the same system cannot meet the requirement of the BA control, that is, cannot maintain the wheel cylinder pressure P w / C.
図 1 7は、 左前輪 F Lを A B S対象車輪とするアシス ト圧保持 A B S要求が発生した場合に制動力制御装置において実現される状態 (以下、 アシス ト圧保持 ABS状態と称す) の一形態を示す。 左前 輪 F Lを A B S対象車輪とするアシスト圧保持 A BS状態は、 下記 (e) 〜(g) の条件が満たされるように制動力制御装置を制御するこ とにより実現される。  Fig. 17 shows an example of the state realized by the braking force control system when the request for maintaining the assist pressure ABS with the left front wheel FL as the ABS target wheel (hereinafter referred to as the assist pressure holding ABS state). Show. The assist pressure holding ABS state in which the front left wheel FL is the ABS target wheel is realized by controlling the braking force control device so that the following conditions (e) to (g) are satisfied.
(e) 上記図 1 4に示すアシス ト圧保持状態でオフ状態とされてい る保持ソレノイ ド S * * Hのうち、 同一の系統内に A B S対象車輪 を有する A B S非対象車輪である右前輪 F Rの保持ソレノィ ド S F RH 2 6 6をオン状態 (閉弁状態) とする。 具体的には、 (e-1) マ ス夕カッ トソレノイ ド SMFR 24 2, S MF L 24 4 , SMR 2 4 6をォン状態とし、 (e-2) フロン トポンプ 3 1 0およびリアボン プ 3 1 2をォン状態とし、 かつ、 (e-3) S F R H 2 6 6をォン状態 とする。  (e) Among the holding solenoids S ** H that are turned off in the assist pressure holding state shown in Fig. 14 above, the right front wheel FR that is an ABS non-target wheel that has an ABS target wheel in the same system Turn the holding solenoid SFRH266 of the ON state (closed state). Specifically, (e-1) the mass cut solenoid SMFR 242, SMF L 244, and SMR 246 are turned on, and (e-2) the front pump 310 and the rear pump 3 1 2 is turned on, and (e-3) SFRH 266 is turned on.
(f) ABS対象車輪である左前輪 FLの保持ソレノィ ド S FLH 2 6 8および減圧ソレノイ ド S FLR 2 7 6を A B S制御の要求に 応じて、 上記(b) の条件と同様の手法で、 すなわち、 (0増圧モー 9 5 ドの維持時間を通常時に比して短縮したパターンで制御する。 (f) The holding solenoid S FLH 268 and the depressurizing solenoid S FLR 276 of the left front wheel FL, which is the target wheel for ABS, are responded to the ABS control request by the same method as the condition (b) above. That is, (0 The control time is controlled by a pattern in which the maintenance time of 95 is shorter than usual.
(g) A B S対象車輪である左前輪 F Lを含む系統に属するマス夕 カツ トソレノィ ド SMF R 2 4 2および SMF L 2 4 4を、 上記( c)の条件と同様の手法で、 すなわち、 左前輪 FLについて (iii)減 圧モードが実行される時期と同期してオフ状態 (開弁状態) となる ように制御する。  (g) The SMF R 242 and SMF L 244 belonging to the system including the left front wheel FL, which is the ABS target wheel, are subjected to the same method as the condition (c) above, that is, the left front wheel FL (iii) Control so as to be in the OFF state (valve open state) in synchronization with the time when the pressure reduction mode is executed.
上記(e) の条件によれば、 アシスト圧増圧 A BS要求が生ずると 同時に、 A B S対象車輪を含む系統に属する A B S非対象車輪であ る右前輪 F Rのホイルシリ ンダ 2 8 2を、 フロン トポンプ 3 1 0か ら切り離すことができる。 この場合、 フロン トポンプ 3 1 0から吐 出されるブレーキフルー ドがホィルシリ ンダ 28 2に流入しないた め、 右前輪 F Rのホイルシリ ンダ圧 Pw/c が B A制御の要求に応じ て適正に保持される。  According to the above condition (e), when the assist pressure increasing ABS request is generated, the wheel cylinder 282 of the right front wheel FR, which is a non-ABS target wheel belonging to the system including the ABS target wheel, is connected to the front pump. It can be separated from 310. In this case, since the brake fluid discharged from the front pump 310 does not flow into the wheel cylinder 282, the wheel cylinder pressure Pw / c of the right front wheel FR is appropriately maintained according to the request of the BA control.
上記(f) の条件によれば、 上記(b) の条件が実現された場合と同 様に、 ABS対象車輪である左前輪 F Lで (i)増圧モー ドが実行さ れる際に、 そのホイルシリ ンダ圧 Pw/c に生ずる増圧量を抑制する ことができる。  According to the condition (f), as in the case where the condition (b) is realized, (i) when the pressure increase mode is executed on the left front wheel FL, which is the ABS target wheel, The amount of pressure increase generated in the wheel cylinder pressure Pw / c can be suppressed.
更に、 上記(g) の条件によれば、 上記(d) の条件が実現された場 合と同様に、 ホイルシリ ンダ 2 8 4から流出したブレーキフルード がフロン トポンプ 3 1 0によって圧送される時期と同期して、 フロ ン トポンプ 3 1 0の吐出側とマスタシリ ンダ 2 1 8とを導通状態と することができる。  Further, according to the condition (g), similarly to the case where the condition (d) is realized, the time when the brake fluid flowing out of the wheel cylinder 284 is pumped by the front pump 310 is determined. Synchronously, the discharge side of the front pump 310 and the master cylinder 218 can be brought into conduction.
従って、 上述したアシスト圧保持 A B S状態によれば、 ABS対 象車輪のホイルシリ ンダ圧 Pw/C を A B S制御が単独で実行される 場合と同様に制御することができると共に、 全ての AB S非対象車 輪のホイルシリンダ圧 Pw/C を、 B A制御が単独で実行されている 場合と同様に適正に保持することができる。 このように、 上述した 了シス ト圧保持 A B S状態によれば、 アシスト圧保持 A B S要求が 発生した際に実現すべき機能を、 適切に実現することができる。 本実施例の制動力制御装置は、 BA制御が開始された後、 何れか の車輪に過大なスリ ップ率が発生した場合に、 適宜上述したアシス ト圧増圧 AB S状態、 アシス ト圧保持 A B S状態、 および、 アシス ト圧減圧 A B S状態を実現することにより、 ① A B S対象車輪のホ ィルシリ ンダ圧 PW/c を A B S制御によって要求される圧力に抑制 しつつ、 ② A B S非対象車輪のホイルシリ ンダ圧 Pw/C を BA制御 によつて要求される圧力に制御する。 Therefore, according to the assist pressure holding ABS state described above, the wheel cylinder pressure P w / C of the ABS target wheel can be controlled in the same manner as in the case where the ABS control is executed alone, and all ABS S The wheel cylinder pressure P w / C of the target wheel can be appropriately maintained as in the case where the BA control is executed alone. As described above, according to the above-described assist system pressure holding ABS state, the function to be realized when the assist pressure holding ABS request is generated can be appropriately realized. After the BA control is started, the braking force control device according to the present embodiment appropriately controls the above-described assist pressure increase ABS state and assist pressure when any of the wheels has an excessive slip rate. By realizing the holding ABS state and the assist pressure reduction ABS state, ① While suppressing the wheel cylinder pressure P W / c of the ABS target wheel to the pressure required by the ABS control, ② The wheel cylinder pressure P w / C is controlled to the pressure required by BA control.
図 1 8は、 上述した B A制御と B A + A B S制御の双方を実現す ベく E C U 2 1 0が実行するリザ一バカッ トツレノィ ド制御ルーチ ンの一例のフローチャー トを示す。 E C U 2 1 0は、 左右前輪 F L, F Rが属する前輪系統、 および、 左右後輪 R L, RRが属する後輪 系統のそれぞれについて図 1 8に示すルーチンを実行する。 E CU 2 1 0は、 図 1 8に示すルーチンを実行することで、 リザーバカツ ト ソレノイ ド SR C F 2 3 0および S R C R 2 3 2 (以下、 これら を総称する場合はリザーバカッ トソ レノイ ド S R C *と称す) の状 態を制御する。 図 1 8に示すルーチンは、 所定時間毎に起動される 定時割り込みルーチンである。 図 1 8に示すルーチンが起動される と、 先ずステップ 4 0 0の処理が実行される。  FIG. 18 shows a flow chart of an example of a reservoir cut-off noise control routine executed by the ECU 210 to realize both the BA control and the BA + ABS control described above. The ECU 210 executes the routine shown in FIG. 18 for each of the front wheel system to which the left and right front wheels FL, FR belong, and the rear wheel system to which the left and right rear wheels RL, RR belong. The ECU 210 executes the routine shown in FIG. 18 to generate the reservoir cut solenoid SRCF 230 and SRCR 232 (hereinafter collectively referred to as the reservoir cut solenoid SRC *). ) Control the state of. The routine shown in FIG. 18 is a periodic interrupt routine that is started every predetermined time. When the routine shown in FIG. 18 is started, first, the processing of step 400 is executed.
ステップ 4 0 0では、 制動力制御装置において B A制御が実行さ れているか否かが判別される。 その結果、 BA制御が実行中でない と判別される場合は、 以後、 何ら処理が進められることなく今回の ルーチンが終了される。 一方、 B A制御が実行中であると判別され る場合は次にステップ 4 0 2の処理が実行される。  In step 400, it is determined whether or not BA control is being performed in the braking force control device. As a result, if it is determined that the BA control is not being executed, the current routine is terminated without any further processing. On the other hand, when it is determined that the BA control is being executed, the process of step 402 is next executed.
ステップ 4 0 2では、 本ルーチンの制御対象とされている系統内 に 1輪以上 A B S対象車輪が存在するか否かが判別される。 その結 果、 1輪以上 AB S対象車輪が存在すると判別された場合は、 次に ステップ 4 0 4の処理が実行される。 一方、 制御対象とされている 系統内に A B S対象車輪が存在しないと判別された場合は、 次にス テツプ 4 0 6の処理が実行される。 ステップ 4 0 4では、 リザ一バカッ トツレノィ ド S R C *のうち. 制御対象とされている系統に属するものがオフ状態 (閉弁状態) と される。 本ステップ 4 0 4の処理が終了すると、 今回のルーチンが 終了される。 In step 402, it is determined whether or not one or more ABS target wheels exist in the system to be controlled by this routine. As a result, if it is determined that one or more ABS target wheels exist, the process of step 404 is executed next. On the other hand, if it is determined that the ABS target wheel does not exist in the system to be controlled, the process of step 406 is executed next. In step 404, the reservoir SRC * belonging to the system to be controlled is set to the off state (valve closed state). When the process of step 404 is completed, the current routine is completed.
ステップ 4 0 6では、 リザーバカッ トソレノイ ド S R C *のうち- 制御対象とされている系統に属するものが、 B A制御の要求に応じ て通常通り制御される。 本ステップ 4 0 6の処理が終了すると、 今 回のルーチンが終了される。  In step 406, the reservoir cut solenoid SRC * belonging to the system to be controlled is controlled as usual in response to the BA control request. When the processing of step 406 ends, the current routine ends.
上記図 1 3乃至図 1 5に示す如く、 B A制御の実行中は、 上記図 1 3に示すアシスト圧増圧状態が要求される場合にリザーバカッ ト ソレノィ ド S R C *をオン状態 (開弁状態) とする必要が生ずる。 —方、 上記図 1 5乃至図 1 7に示す如く、 B A + A B S制御の実行 中は、 リザーバカッ トソ レノイ ド S R C *のうち、 A B S対象車輪 が 1輪も存在しない系統に属するものを B A制御中と同様に制御し、 かつ、 少なく とも 1輪の A B S対象車輪を含む系統に属するものを 常にオフ状態 (閉弁状態) とする必要が生ずる。 上記図 1 8に示す 制御ルーチンによれば、 かかる要求を適切に満たすことができる。  As shown in FIGS. 13 to 15 above, during execution of the BA control, the reservoir cut solenoid SRC * is turned on when the assist pressure increasing state shown in FIG. 13 is required (valve open state). Is required. On the other hand, as shown in Fig. 15 to Fig. 17 above, while BA + ABS control is being executed, of the reservoir cut solenoid SRC *, those belonging to the system in which no ABS target wheels exist are under BA control. It is necessary to control in the same way as described above, and to always keep at least one wheel belonging to the system including the ABS target wheel in the off state (valve closed state). According to the control routine shown in FIG. 18 described above, such a request can be appropriately satisfied.
また、 上記図 1 8に示す制御ルーチンによれば、 B A制御の実行 中にリザ一バタンク 2 2 4から流出するブレーキフル一ドの量を抑 制することができる。 B A制御の実行中にリザーバタンク 2 2 4か ら多量のブレーキフルードが流出すると、 マス夕シリ ンダ 2 1 8へ 逆流するブレーキフル一ドの量が多量となり、 逆止弁を構成する カップに損傷が生ずる、 ブレーキペダル 2 1 2が原位置に向けて不 当に戻される等の不都合が生ずる。 これに対して、 上記図 1 8に示 す制御ルーチンによれば、 このような不都合が生ずるのを防止する ことができる。  Further, according to the control routine shown in FIG. 18 described above, the amount of brake fluid flowing out of the reservoir tank 224 during execution of the BA control can be suppressed. If a large amount of brake fluid flows out of the reservoir tank 224 during BA control, the amount of brake fluid that flows back to the cylinder 218 will increase, causing damage to the cup that constitutes the check valve Occurs, and the brake pedal 2 1 2 is incorrectly returned toward the home position. On the other hand, according to the control routine shown in FIG. 18 described above, it is possible to prevent such a problem from occurring.
図 1 9は、 上述した B A制御と B A十 A B S制御の双方を実現す ベく E C U 2 1 0が実行する制御手法選択ルーチンの一例のフロー チヤ一トを示す。 E C U 2 1 0は、 各車輪毎に図 1 9に示すルーチ ンを実行する。 E C U 2 1 0は、 図 1 9に示すルーチンを実行する ことで、 保持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * * Rの 制御手法を各車輪毎に選択する。 図 1 9に示すルーチンは、 所定時 間毎に起動される定時割り込みルーチンである。 図 1 9に示すルー チンが起動されると、 先ずステップ 4 1 0の処理が実行される。 ステップ 4 1 0では、 制動力制御装置において B A制御が実行さ れているか否かが判別される。 その結果、 B A制御が実行中でない と判別される場合は、 以後、 何ら処理が進められることなく今回の ルーチンが終了される。 一方、 B A制御が実行中であると判別され る場合は次にステップ 4 1 2の処理が実行される。 FIG. 19 shows a flowchart of an example of a control method selection routine executed by the ECU 210 to implement both the above-described BA control and BA-10 ABS control. The ECU 210 is equipped with a routine shown in Fig. 19 for each wheel. Run. By executing the routine shown in FIG. 19, the ECU 210 selects the control method of the holding solenoid S * H and the pressure reducing solenoid S * R for each wheel. The routine shown in FIG. 19 is a periodic interrupt routine started at a predetermined time interval. When the routine shown in FIG. 19 is started, first, the processing of step 410 is executed. In step 410, it is determined whether or not BA control is being performed in the braking force control device. As a result, if it is determined that the BA control is not being executed, the current routine is terminated without any further processing. On the other hand, if it is determined that the BA control is being executed, the process of step 412 is performed next.
ステップ 4 1 2では、 本ル一チンの制御対象とされている車輪 (以下、 この車輪を符号 を付して表す) が A B S対象車輪であ るか否かが判別される。 その結果、 制御対象車輪 * *が A B S対象 車輪であると判別された場合は、 次にステップ 4 1 4の処理が実行 される。 一方、 制御対象車輪 * *が A B S対象車輪でないと判別さ れた場合は、 次にステップ 4 1 6の処理が実行される。  In step 412, it is determined whether or not a wheel to be controlled by this routine (hereinafter, this wheel is denoted by a reference numeral) is an ABS target wheel. As a result, if it is determined that the control target wheel ** is the ABS target wheel, then the processing of steps 414 is executed. On the other hand, if it is determined that the control target wheel ** is not the ABS target wheel, then the process of step 416 is executed.
ステップ 4 1 4では、 制御対象車輪 * *に対応して設けられてい る保持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * * Rの制御手 法が A B S制御に決定される。 制御手法が A B S制御とされた S * * HぉょぴS * * Rは、 以後、 制御対象車輪のスリ ップ状態に応じ て適宜 (i )増圧モー ド、 (i i )保持モー ドおよび (i i i )減圧モー ドが 実現されるように制御される。 本ステップ 4 1 4の処理が終了する と、 今回のル一チンが終了される。  In step 414, the control method of the holding solenoid S ** H and the pressure reducing solenoid S ** R provided corresponding to the control target wheel ** is determined to be ABS control. After that, S ** H * S ** R, whose control method is ABS control, will be appropriately changed according to the slip state of the wheel to be controlled (i) the pressure increase mode, (ii) the hold mode and (Iii) Control is performed so that the decompression mode is realized. When the processing of this step 4 14 is completed, the current routine is completed.
ステップ 4 1 6では、 制御対象車輪 と同一の系統に属する他 の車輪が A B S対象車輪であるか否かが判別される。 その結果、 他 の車輪が A B S対象車輪でないと判別された場合は、 次にステップ 1 8の処理が実行される。 一方、 他の車輪が A B S対象車輪であ ると判別された場合は、 次にステップ 4 2 0の処理が実行される。 ステップ 4 1 8では、 制御対象車輪 * *に対応して設けられてい る保持ソレノイ ド S * * Hおよび減圧ソレノィ ド S * * Rの制御手 法が B A制御に決定される。 本ステップ 4 1 8で制御手法が BA制 御とされた S * * Hおよび S * * Rは、 以後、 BA制御の要求に応 じて上記図 1 3乃至図 1 5に示す如く、 具体的には常時オフ状態に、 制御される。 本ステップ 4 1 8の処理が終了すると、 今回のル一チ ンが終了される。 In step 416, it is determined whether or not another wheel belonging to the same system as the control target wheel is an ABS target wheel. As a result, when it is determined that the other wheel is not the ABS target wheel, the process of step 18 is executed next. On the other hand, if it is determined that the other wheel is the ABS target wheel, the process of step 420 is executed next. In Steps 4 and 8, the control wheels ** The control method of the holding solenoid S ** H and the pressure reducing solenoid S ** R is determined by BA control. S * H and S ** R for which the control method is BA control in this step 418 will be described later in detail as shown in FIGS. 13 to 15 according to the BA control request. Is always turned off. When the processing of this step 418 is completed, this routine is completed.
ステップ 4 2 0では、 制御対象車輪 * *に対応して設けられてい る保持ソレノイ ド S * * Hおよび減圧ソレノィ ド S * * Rの制御手 法が B A増圧勾配抑制制御に決定される。 本ステップ 4 2 0で制御 手法が B A制御とされた S * * Hおよび S * * Rは、 以後、 BA + A B S制御の要求に応じて適宜制御される。  In step 420, the control method of the holding solenoid S ** H and the pressure reducing solenoid S ** R provided corresponding to the control target wheel ** is determined as the BA pressure increase gradient suppression control. S ** H and S ** R for which the control method is set to BA control in step 420 are thereafter appropriately controlled according to the requirement of BA + ABS control.
具体的には、 B A + A B S制御によってアシス ト圧増圧 A B S要 求が発生している場合は、 減圧ソレノィ ド S * * Rがオフ状態に維 持されたまま、 保持ソレノイ ド S * *Hが所定のデューティ比でォ ン * オフされる。 また、 B A + A B S制御によってアシス ト圧保持 A B S要求が発生している場合は、 保持ソレノィ ド S * * Hがオン 状態に、 かつ、 減圧ソレノィ ド S * * Rがオフ状態に維持される。 更に、 B A + AB S制御によってアシス ト圧減圧要求が発生してい る場合は、 保持ソレノイ ド S * * Hおよび減圧ソレノィ ド S * * R の双方がオフ状態に維持される。 本ステップ 4 2 0の処理が終了す ると、 今回のルーチンが終了される。  Specifically, when the assist pressure increase ABS request is generated by BA + ABS control, the holding solenoid S ** H is maintained while the pressure reducing solenoid S ** R is maintained in the off state. Is turned on / off at a predetermined duty ratio. When the assist pressure holding ABS request is generated by the BA + ABS control, the holding solenoid S ** H is kept on and the pressure reducing solenoid S ** R is kept off. Further, when the assist pressure reduction request is generated by the BA + ABS control, both the holding solenoid S ** H and the pressure reduction solenoid S ** R are maintained in the off state. When the process of step 420 ends, the current routine ends.
上記図 1 3乃至図 1 5に示す如く、 B A制御が単独で実行されて いる場合、 すなわち、 前後何れの系統にも AB S対象車輪が存在し ない場合は、 全ての保持ソレノィ ド S * * Hおよび減圧ソレノイ ド S * *Rを、 常時オフ状態とする必要がある。 また、 上記図 1 5乃 至図 1 7に示す如く、 B A + AB S制御の実行中は、 保持ソ レノィ ド S * * Hおよび滅圧ソレノイ ド S * * Rのうち、 A B S対象車輪 に対応して設けられたものを A B Sの要求に応じて制御し、 A B S 対象車輪が 1輪も存在しない系統に属する A B S非対象車輪に対応 して設けられたものを常時オフ状態とし、 かつ、 A B S対象車輪と 同一の系統に属する A B S非対象車輪に対応して設けられたものを、 アシス ト圧増圧 A B S要求が生じた際に上記(c) の条件が満たされ るように、 アシス ト圧保持 A B S要求が生じた際に上記(e) の条件 が満たされるように、 アシス卜圧減圧 A B S要求が生じた際にオフ 状態となるように制御する必要がある。 上記図 1 9に示す制御ルー チンによれば、 かかる要求を適切に満たすことができる。 As shown in FIGS. 13 to 15 above, when the BA control is executed independently, that is, when there is no ABS target wheel in any of the front and rear systems, all the holding solenoids S ** are held. H and the decompression solenoid S ** R must be kept off at all times. Also, as shown in Fig. 15 to Fig. 17, during BA + ABS control, the holding solenoid S ** H and the depressurizing solenoid S ** R correspond to the ABS target wheels. Are controlled according to the ABS requirements, and are compatible with ABS non-target wheels belonging to a system where there is no ABS target wheel When the ABS pressure request is raised, the one provided for the ABS non-target wheels belonging to the same system as the ABS target wheels is turned off. It is turned off when the assist pressure depressing ABS request is made so that the condition (e) is satisfied so that the condition (c) is satisfied when the assist pressure holding ABS request is made Need to be controlled. According to the control routine shown in FIG. 19 above, such a demand can be satisfied appropriately.
図 2 0は、 BA + A B S制御の実行中に (i)増圧モードが実行さ れた際に A B S対象車輪のホイルシリ ンダ圧 Pw/c に生ずる増圧量 と、 A B S制御が単独で実行されている場合に (i)増圧モードが実 行された際に A B S対象車輪のホイルシリ ンダ圧 PW/C に生ずる増 圧量とをほぼ同量とするために E CU 2 1 0が実行する A B S制御 手法選択ルーチンの一例のフローチヤ一トを示す。 Fig. 20 shows the (a) pressure increase generated in the wheel cylinder pressure Pw / c of the ABS target wheel when the pressure increase mode is executed during BA + ABS control, and the ABS control is executed independently. (I) When the pressure increase mode is executed, the ECU 210 is executed to make the pressure increase amount generated in the wheel cylinder pressure PW / C of the ABS target wheel substantially equal to the pressure increase amount. 5 shows a flowchart of an example of an ABS control method selection routine.
E CU 2 1 0は、 図 2 0に示すルーチンを各車輪毎に実行する。 E C U 2 1 0は、 図 2 0に示すルーチンを実行することで、 A B S 対象車輪に対応して設けられている保持ソレノィ ド S * * Hおよび 減圧ソレノィ ド S * * Rを駆動する。 図 2 0に示すルーチンは、 所 定時間毎に起動される定時割り込みルーチンである。 図 2 0に示す ルーチンが起動されると、 先ずステップ 4 3 0の処理が実行される c ステップ 4 3 0では、 フラグ X A B S * *に " 1 " がセッ 卜され ているか否かが判別される。 フラグ XA B S * *は、 本ルーチンの 制御対象車輪 * *が AB S対象車輪である場合に " 1 " とされるフ ラグである。 従って、 制御対象車輪 * *が A B S対象車輪でない場 合は、 本ステップ 4 3 0で XAB S * * = 1が成立しないと判別さ れる。 この場合、 次にステップ 4 3 2の処理が実行される。 The ECU 210 executes the routine shown in FIG. 20 for each wheel. The ECU 210 drives the holding solenoid S ** H and the pressure reducing solenoid S ** R provided corresponding to the ABS target wheel by executing the routine shown in FIG. The routine shown in FIG. 20 is a periodic interrupt routine that is started every predetermined time. When the routine shown in FIG. 2 0 is started, first, in Step 4 3 c Step 4 3 0 processing is executed zero, flag XABS * * is "1" is determined whether or not being Bok set . The flag XABS ** is a flag that is set to "1" when the wheel to be controlled in this routine is an ABS target wheel. Therefore, if the control target wheel ** is not the ABS target wheel, it is determined in this step 430 that XAB S * = 1 is not established. In this case, the process of step 432 is executed next.
ステップ 4 3 2では、 制御対象車輪 * *について AB S制御の実 行条件が成立したか否かが判別される。 その結果、 A B S制御の実 行条件が成立していないと判別される場合は、 以後、 何ら処理が進 められることなく今回のルーチンが終了される。 一方、 A B S制御 の実行条件が成立していると判別される場合は、 次にステップ 4 3 4の処理が実行される。 In step 43, it is determined whether or not the execution condition of the ABS control has been satisfied for the control target wheel **. As a result, if it is determined that the execution condition of the ABS control is not satisfied, the current routine is terminated without any further processing. Meanwhile, ABS control If it is determined that the execution condition is satisfied, then the process of step 434 is performed.
ステップ 4 3 4では、 制御対象車輪 * *が A B S対象車輪となつ たことを表すべく、 フラグ X A B S * *に " 1 " がセッ トされる。 本ステップ 4 3 4の処理が終了すると、 次にステップ 4 3 6の処理 が実行される。  In step 4 3 4, the flag XABS ** is set to "1" to indicate that the control target wheel ** has become the ABS target wheel. Upon completion of the process of step 434, the process of step 436 is executed.
ステップ 4 3 6では、 B A制御が実行中であるか否かが判別され る。 その結果、 B A制御が実行中でない場合は、 制御対象車輪 について A B S制御の実行条件が成立した後、 A B S制御が単独で 実行されると判断することができる。 この場合、 次にステップ 4 3 8の処理が実行される。 一方、 本ステップ 4 3 6で B A制御が実行 中であると判別される場合は、 制御対象車輪 * *について A B S制 御の実行条件が成立した後、 B A + A B S制御が実行されると判断 することができる。 この場合、 次にステップ 4 4 0の処理が実行さ れる。  In step 436, it is determined whether or not the BA control is being executed. As a result, when the BA control is not being executed, it can be determined that the ABS control is executed independently after the execution condition of the ABS control is satisfied for the wheel to be controlled. In this case, the process of step 438 is performed next. On the other hand, if it is determined in step 436 that BA control is being executed, it is determined that BA + ABS control is executed after the ABS control execution condition is satisfied for the control target wheel **. be able to. In this case, the process of step 450 is performed next.
ステップ 4 3 8では、 A B Sマップに通常マップを設定する処理 が実行される。 AB Sマップは、 保持ソレノイ ド S * * Hおよび減 圧ソレノィ ド S * * Rを A B S制御の要求に応じて駆動する際に参 照されるマップである。 本ステップ 4 3 8で AB Sマップとされる 通常マップには、 A B S制御が単独で実行される場合に、 AB S対 象車輪のホイルシリ ンダ圧 Pw/C に適正な増圧勾配を発生させる駆 動パターンが設定されている。 本ステップ 4 3 8の処理が終了する と、 次にステップ 4 4 2の処理が実行される。 In step 438, processing for setting a normal map to the ABS map is executed. The ABS map is a map that is referred to when the holding solenoid S ** H and the pressure reducing solenoid S ** R are driven according to the ABS control request. In the normal map, which is set as the ABS map in step 438, an appropriate pressure increasing gradient is generated in the wheel cylinder pressure P w / C of the ABS target wheel when the ABS control is executed alone. The drive pattern has been set. When the process of step 438 is completed, the process of step 4422 is next performed.
ステップ 4 4 0では、 A B Sマップに増圧量抑制マップを設定す る処理が実行される。 増圧量抑制マップは、 BA + A B S制御の実 行中に、 AB S対象車輪のホイルシリ ンダ圧 PW/C に適正な増圧勾 配を発生させる駆動パターン、 すなわち、 通常マップに比して ϋ) 増圧モー ドの維持時間が短縮された駆動パターンが設定されている。 本ステップ 4 4 0の処理が終了すると、 次にステップ 4 4 2の処理 が実行される。 In step 440, processing for setting the pressure increase suppression map in the ABS map is executed. The boost pressure suppression map is a drive pattern that generates an appropriate pressure gradient in the wheel cylinder pressure P W / C of the ABS target wheel during the execution of the BA + ABS control. ϋ) A drive pattern has been set in which the maintenance time of the pressure increase mode is shortened. When the processing of this step 44 is completed, the processing of step 44 Is executed.
ステップ 4 4 2では、 上記ステツプ 4 3 8または 4 4 0によって 選択された A B Sマップと、 制御対象車輪 * *のスリ ップ状態とに 基づいて保持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * * Rが 制御される。 本ステップ 4 4 2の処理が実行されることにより、 A B S対象車輪について適宜 (i)增圧モー ド、 (ii)保持モー ドおよび (iii)減圧モー ドが実現される。 本ステップ 4 4 2の処理が終了す ると、 今回のルーチンが終了される。  In step 4442, the holding solenoid S ** H and the decompression solenoid S * are determined based on the ABS map selected in the above step 438 or 4400 and the slip state of the controlled wheel **. * R is controlled. By executing the processing of this step 442, (i) the low pressure mode, (ii) the holding mode, and (iii) the decompression mode are realized as appropriate for the ABS target wheel. When the processing of this step 4 42 is completed, the current routine ends.
上記ステップ 4 3 0で、 X S B S * * = 1が成立すると判別され る場合は、 次にステップ 4 4 4の処理が実行される。  If it is determined in step 430 that XSBS ** = 1 is satisfied, then the process of step 444 is executed.
ステップ 4 4 4では、 A B S制御の終了条件が成立しているか否 かが判別される。 その結果、 A B S制御の終了条件が成立していな いと判別される場合は、 次に上述したステップ 4 4 2の処理が実行 される。 ステップ 4 4 2では、 前回の処理サイクル時以前に設定さ れた A B Sマップに従って、 保持ソレノィ ド S * * Hおよび減圧ソ レノィ ド S * * Rが駆動される。 一方、 本ステップ 4 4 4で A B S 制御の終了条件が成立していると判別される場合は、 次にステップ 4 4 6の処理が実行される。  In step 44, it is determined whether the condition for terminating the ABS control is satisfied. As a result, if it is determined that the condition for terminating the ABS control is not satisfied, then the above-described processing of step 442 is executed. In step 44, the holding solenoid S ** H and the decompression solenoid S ** R are driven according to the ABS map set before the previous processing cycle. On the other hand, if it is determined in step 444 that the condition for terminating the ABS control is satisfied, then the process of step 446 is executed.
ステップ 4 4 6では、 フラグ X A B S * *を " 0 " とする処理が 実行される。 本ステップ 4 4 6の処理が実行されると、 以後、 制御 対象車輪 * *について再び A B S制御の実行条件が成立するまで、 その車輪 * *について A B S制御は実行されない。 本ステップ 4 4 6の処理が終了すると、 今回のルーチンが終了される。  In step 446, a process of setting the flag XABS ** to "0" is executed. After the process of this step 446 is executed, the ABS control is not executed for the wheel ** until the execution condition of the ABS control is satisfied again for the controlled wheel **. When the processing of this step 446 ends, the current routine ends.
上記の処理によれば、 AB S制御が単独で実行される場合には、 各車輪について通常マップに従った駆動パターンで A B S制御を実 行することができる。 また、 B A + A B S制御が実行される場合は、 各車輪について増圧量抑制マップに従った駆動パターンで A B S制 御を実行することができる。 このため、 本実施例の制動力制御装置 によれば、 A B S制御が単独で実行される場合、 および、 B A + A B S制御が実行される場合の双方において、 制御上のハンチングを 伴うことなく A B S対象車輪のホイルシリ ンダ圧 Pw/C を適正に制 御することができる。 According to the above processing, when the ABS control is executed independently, the ABS control can be executed for each wheel in the drive pattern according to the normal map. When the BA + ABS control is executed, the ABS control can be executed for each wheel in a drive pattern according to the pressure increase suppression map. Therefore, according to the braking force control device of the present embodiment, when the ABS control is executed independently, and when BA + A In both cases where the BS control is executed, the wheel cylinder pressure P w / C of the ABS target wheel can be appropriately controlled without hunting in control.
図 2 1 は、 8八+八 83制御の実行中に八 83対象車輪を含む系 統に属するポンプの吐出側に不当に高い液圧が発生するのを防止す ベく E C U 2 1 0が実行するマスタ力ッ トソレノィ ド制御ルーチン の一例のフローチャー 卜を示す。 E C U 2 1 0は、 図 2 1 に示す ルーチンを前後輪の各系統毎に実行する。 E CU 2 1 0は、 図 2 1 に示すルーチンを実行することで、 A B S対象車輪を有する系統に 属するマス夕カッ トソレノイ ド S MF R 2 4 2, SMF L 2 4 4お よび SMR 2 4 6 (以下、 これらを総称する場合はマス夕カッ トソ レノィ ド SM* *と称す) を駆動する。 図 2 1 に示すルーチンは、 所定時間毎に起動される定時割り込みルーチンである。 図 2 1 に示 すル一チンが起動されると、 先ずステップ 4 5 0の処理が実行され る。  Fig. 21 shows that the ECU 210 executes the 88 + 88 control to prevent an unreasonably high hydraulic pressure from being generated on the discharge side of the pump belonging to the system including the target wheel. 5 is a flowchart showing an example of a master power solenoid control routine to be performed. The ECU 210 executes the routine shown in FIG. 21 for each system of the front and rear wheels. The ECU 210 executes the routine shown in FIG. 21 so that the mass cut solenoids SMF R242, SMF L244 and SMR246 belonging to the system having the wheels to be subjected to the ABS are provided. (Hereinafter, these are collectively referred to as mass cut solenoid SM **). The routine shown in FIG. 21 is a periodic interrupt routine that is started every predetermined time. When the routine shown in FIG. 21 is started, first, the processing of step 450 is executed.
ステップ 4 5 0では、 B A制御が実行中であるか否かが判別され る。 その結果、 B A制御が実行中であると判別される場合は、 次に ステップ 4 5 2の処理が実行される。 一方、 BA制御が実行中でな いと判別される場合は、 次にステップ 4 5 4の処理が実行される。 ステップ 4 5 2では、 本ル一チンの制御対象とされている系統に 属するマス夕カツ トソレノィ ド SM* *をオフ状態 (開弁状態) と する処理が実行される。 本ステップ 4 5 2の処理が終了すると、 今 回のルーチンが終了される。  In step 450, it is determined whether or not the BA control is being executed. As a result, if it is determined that the BA control is being executed, the process of step 452 is next performed. On the other hand, if it is determined that the BA control is not being executed, the process of step 454 is next performed. In step 452, processing is performed to turn off the mass cut solenoid SM ** belonging to the system to be controlled by this routine, in the off state (valve open state). When the processing of step 452 is completed, the current routine is completed.
ステップ 4 5 4では、 本ル一チンの制御対象とされている系統に、 A B S制御の要求により (iii)減圧モー ドが実現されている車輪が 存在するか否かが判別される。 その結果、 (iii)減圧モー ドが実現 されている車輪が存在しないと判別された場合は、 次にステツプ 4 5 6の処理が実行される。  In step 454, it is determined whether or not there is a wheel in which (iii) the decompression mode is realized in the system to be controlled by the routine according to the ABS control request. As a result, (iii) when it is determined that there is no wheel in which the decompression mode is realized, the process of step 456 is next performed.
ステップ 4 5 6では、 本ルーチンの制御対象とされている系統に 属するマス夕カツ トソレノィ ド SM* *が B A制御時と同様に制御 される。 具体的には、 B A制御によってホイルシリ ンダ圧 Pw/c の 増圧または保持が要求されている場合はオン状態 (閉弁状態) に、 また、 BA制御によってホイルシリ ンダ圧 Pw/c の減圧が要求され ている場合はオフ状態 (開弁状態) に制御される (上記図 1 3乃至 図 1 5の SM* *および上記図 1 6および図 1 7の SMR 24 6参 照) 。 本ステップ 4 5 6の処理が終了すると、 今回のルーチンが終 了される。 In step 4 56, the system that is controlled by this routine The mass cut solenoid SM ** to which it belongs is controlled in the same way as during BA control. Specifically, when the boosting or holding of the wheel cylinder pressure Pw / c is requested by the BA control, the wheel cylinder pressure is turned on (valve closed state), and the reduction of the wheel cylinder pressure Pw / c is requested by the BA control. If it is set, it is controlled to the off state (valve open state) (see SM ** in FIGS. 13 to 15 above and SMR 246 in FIGS. 16 and 17 above). When the processing of this step 456 is completed, the current routine ends.
一方、 上記ステップ 4 5 4で、 制御対象とされている系統に (ii i)減圧モー ドとされている車輪が存在すると判別された場合は、 次 に上記ステップ 4 5 2の処理、 すなわち、 その系統に属するマスタ カツ トツレノィ ド SM* *をオフ状態とする処理が実行される。 上記の処理によれば、 B A + A B S制御の実行中、 AB S対象車 輪で (iii)減圧モー ドが実行される場合には、 すなわち、 AB S対 象車輪と同一の系統に属するポンプがブレーキフルー ドの圧送を行 う場合には、 常にそのポンプの吐出側とマス夕シリ ンダ 2 1 8とが 導通状態とされる。 この場合、 ポンプから吐出されたブレーキフ ルー ドがマスタシリ ンダ 2 1 8に流入し得るため、 ポンプから吐出 されるブレーキフル一 ドが A B S対象車輪のホイルシリ ンダに流入 することができないにも関わらず、 ポンプの吐出側に不当に高い液 圧が生ずることがない。 このため、 本実施例の制動力制御装置によ れば、 B A + AB S制御の実行中に、 A B S対象車輪に制御上のハ ンチングを生じさせることがなく、 かつ、 ABS対象車輪と同一の 系統に属する A BS非対象車輪のホイルシリ ンダ圧 Pw/c が過剰な 増圧勾配で増圧されるのを確実に防止することができる。  On the other hand, if it is determined in step 454 that there is (ii i) a wheel in decompression mode in the system to be controlled, then the process in step 452, that is, The process of turning off the master cut SM ** belonging to the system is executed. According to the above processing, when the (iii) decompression mode is executed on the ABS target wheel during the execution of the BA + ABS control, the pump belonging to the same system as the ABS target wheel is activated. When pumping the brake fluid, the discharge side of the pump and the mass cylinder 218 are always in a conductive state. In this case, since the brake fluid discharged from the pump can flow into the master cylinder 218, the brake fluid discharged from the pump cannot flow into the wheel cylinder of the ABS target wheel. There is no unreasonably high hydraulic pressure on the discharge side of the pump. For this reason, according to the braking force control device of the present embodiment, hunting does not occur in the ABS target wheel during the BA + ABS control, and the same control as the ABS target wheel is performed. It is possible to reliably prevent the wheel cylinder pressure Pw / c of the ABS non-target wheels belonging to the system from being increased by an excessive pressure increase gradient.
ところで、 上記の実施例においては、 BA + AB S制御の実行中 に、 ABS対象車輪で (iii)減圧モー ドが実行される場合にのみ、 その車輪と同一の系統に属するマスタ力ッ トソレノィ ド SM**を 開弁状態とすることとしているが、 本発明はこれに限定されるもの ではなく、 B A + A B S制御の実行中、 常にマスタカツ トツレノィ ド SM* *を開弁状態とすることとしてもよい。 By the way, in the above-mentioned embodiment, only when the (iii) decompression mode is executed on the ABS target wheel during the execution of the BA + ABS control, the master power solenoid belonging to the same system as the wheel is operated. SM ** is to be opened, but the present invention is not limited to this. Instead, the master cutter SM ** may be kept open during the execution of the BA + ABS control.
尚、 上記の実施例においては、 マスタシリ ンダ 2 1 8が 「操作液 圧発生手段」 に、 フロン トポンプ 3 1 0およびリアポンプ 3 1 2が 「アシス ト圧発生手段」 に、 液圧通路 2 4 8 , 2 5 0 , 2 5 2力 Γ高圧通路」 に、 マスタカッ トソレノイ ド SM* *力"^ 「操作液圧 力ッ 卜機構」 に、 フロン ト減圧通路 2 9 8およびリァ減圧通路 3 0 0力 「低圧通路」 に、 保持ソレノィ ド S * *Hおよび減圧ソレノィ ド S * * R力 「導通状態制御機構」 に、 フロン ト リザ一バ 3 0 2お よびリアリザーバ 3 0 4が 「低圧源」 および 「第 2低圧源」 に、 ま た、 リザ一バタンク 2 2 4が 「第 1低圧源」 に、 それぞれ相当して いる。  In the above embodiment, the master cylinder 218 is used as the “operating hydraulic pressure generating means”, the front pump 310 and the rear pump 318 are used as the “assist pressure generating means”, and the hydraulic pressure passages 248 are used. , 250, 252 force (high pressure passage), master cut solenoid SM * * force "^" operating fluid pressure cut-off mechanism ", front pressure reduction passage 298 and rear pressure reduction passage 300 force In the "low pressure passage", the holding solenoid S ** H and the pressure reducing solenoid S ** R force In the "conduction state control mechanism", the front reservoir 302 and the rear reservoir 304 are connected to the "low pressure source" and The “second low pressure source” corresponds to the “second low pressure source”, and the reservoir tank 224 corresponds to the “first low pressure source”.
また、 上記の実施例においては、 E C U 2 1 0が上記図 2 0に示 すルーチンを実行することにより 「A B S制御手段」 および 「AB Sパターン選択手段」 力、 E CU 2 1 0が上記図 1 9に示すルーチ ンを実行することにより 「B A増圧勾配抑制手段」 が、 E C U 2 1 0が上記図 1 8に示すルーチンを実行することにより 「低圧源カツ ト手段」 が、 それぞれ実現されている。  Further, in the above embodiment, the ECU 210 executes the routine shown in FIG. 20 so that the “ABS control means” and the “ABS pattern selecting means” can be used. By executing the routine shown in FIG. 19, the “BA pressure increase gradient suppression means” is realized, and by the ECU 210 executing the routine shown in FIG. 18 above, “the low pressure source cutting means” is realized. ing.
更に、 上記の実施例においては、 BA + A B S制御の実行中常に、 E CU 2 1 0がマスタカッ トソレノイ ド SM* *をオフ状態 (開弁 状態) とすることにより、 「高圧通路開放手段」 が実現される。 次に、 図 2 2乃至図 2 7を参照して、 本発明の第 5実施例につい て説明する。 図 2 2は、 本発明の第 5実施例に対応するポンプアツ プ式制動力制御装置 (以下、 単に制動力制御装置と称す) のシステ ム構成図を示す。 尚、 図 2 2において、 上記図 1 2に示す構成部分 と同一の部分については、 同一の符号を付してその説明を省略また は簡略する。  Further, in the above embodiment, the ECU 210 always sets the master cut solenoid SM ** to the OFF state (valve open state) during the execution of the BA + ABS control, so that the "high-pressure passage opening means" is provided. Is achieved. Next, a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 22 shows a system configuration diagram of a pump-up type braking force control device (hereinafter, simply referred to as a braking force control device) corresponding to the fifth embodiment of the present invention. In FIG. 22, the same components as those shown in FIG. 12 are denoted by the same reference numerals, and description thereof will be omitted or simplified.
本実施例の制動力制御装置は、 フロン トエンジン ' フロン ト ドラ イブ式車両 (F F車両) 用の制動力制御装置として好適な装置であ る。 本実施例の制動力制御装置は、 E C U 2 1 0により制御されて いる。 E CU 2 1 0は、 後述する リサーバカツ トフレノィ ド S R C および S R C—2を上記ステツプ 4 0 4および 4 0 6の S R C *と して、 また、 後述するマス夕力ッ トソレノイ ド SMC - , 5 1 2およ び S M C— 25 1 4を上記ステップ 4 5 2および 4 5 6の SM* *と して上記図 1 8乃至図 2 1 に示す制御ルーチンを実行することで、 上述した第 4実施例の場合と同様に制動力制御装置の動作を制御す る o The braking force control device of the present embodiment is a device suitable as a braking force control device for a front engine type front drive type vehicle (FF vehicle). You. The braking force control device of the present embodiment is controlled by the ECU 210. The ECU 210 uses the recover cut solenoids SRC and SRC- 2 to be described later as the SRC * of the above steps 404 and 406, and the mass cut solenoids SMC- and 511 to be described later. and SMC-2 5 1 4 a by executing the control routine shown in FIG. 1 8 to 2 1 with a SM * * in step 4 5 2 and 4 5 6, a fourth embodiment described above O Control the operation of the braking force control device in the same way as
制動力制御装置は、 ブレーキペダル 2 1 2を備えている。 ブレー キペダル 2 1 2の近傍には、 ブレーキスィ ッチ 2 1 4が配設されて いる。 E C U 2 1 0は、 ブレーキスィ ッチ 2 1 の出力信号に基づ いてブレーキペダル 2 1 2が踏み込まれているか否かを判別する。 ブレーキペダル 2 1 2は、 バキュームブースタ 2 1 6に連結され ている。 また、 バキュームブースタ 2 1 6は、 マス夕シリ ンダ 2 1 8に固定されている。 マスタシリ ンダ 2 1 8の内部には第 1油圧室 2 2 0および第 2油圧室 2 2 2が形成されている。 第 1油圧室 2 2 0および第 2油圧室 2 2 2の内部には、 ブレーキ踏力 Fと、 バキ ユ ームブース夕 2 1 6が発生するアシス ト力 F aとの合力に応じた マスタシリ ンダ圧 PM/C が発生する。 The braking force control device includes a brake pedal 2 1 2. A brake switch 214 is provided in the vicinity of the brake pedal 211. The ECU 210 determines whether or not the brake pedal 2 12 is depressed based on the output signal of the brake switch 21. The brake pedal 2 12 is connected to the vacuum booster 2 16. The vacuum booster 216 is fixed to the mass cylinder 218. A first hydraulic chamber 220 and a second hydraulic chamber 222 are formed inside the master cylinder 218. Inside the first hydraulic chamber 222 and the second hydraulic chamber 222, the master cylinder pressure P corresponding to the resultant force of the brake depression force F and the assist force Fa generated by the back-up booth 2 16 M / C occurs.
マスタシリ ンダ 2 1 8の上部にはリザ一バタンク 2 2 4が配設さ れている。 リザ一バタンク 2 2 4には、 第 1 リサーバ通路 5 0 0、 および、 第 2 リザーバ通路 5 0 2が連通している。 第 1 リザ一バ通 路 5 0 0には、 第 1 リザーバカッ トソ レノイ ド 5 0 4 (以下、 S R C-, 5 0 4 と称す) が連通している。 同様に、 第 2 リザーバ通路 5 0 2には、 第 2 リザーバ力ッ トソレノイ ド 5 0 6 (以下、 S R C一 2 5 0 6 と称す) が連通している。 A reservoir tank 224 is provided above the master cylinder 218. A first reservoir passage 500 and a second reservoir passage 502 communicate with the reservoir tank 224. A first reservoir cut solenoid 504 (hereinafter referred to as SRC-, 504) communicates with the first reservoir passage 504. Similarly, the second reservoir passage 5 0 2, the second reservoir forces Tsu Tosorenoi de 5 0 6 (hereinafter, referred to as SRC one 2 5 0 6) is communicated.
S R C— , 5 0 4には、 更に、 第 1 ポンプ通路 5 0 8が連通してい る。 同様に、 S R C-25 0 6には、 第 2ポンプ通路 5 1 0が連通し ている。 S R C-, 5 0 4は、 オフ状態とされることで第 1 リザーバ 通路 5 0 0 と第 1 ポンプ通路 5 0 8 とを遮断し、 かつ、 オン状態と されることでそれらを導通させる 2位置の電磁弁である。 また、 S R C-25 0 6は、 オフ状態とされることで第 2 リザーバ通路 5 0 2 と第 2ポンプ通路 5 1 0 とを遮断し、 かつ、 オン状態とされること でそれらを導通させる 2位置の電磁弁である。 A first pump passage 508 communicates with the SRC—, 504. Similarly, the SR C-2 5 0 6, the second pump passage 5 1 0 are communicated. SR C-, 504 is turned off, causing the first reservoir This is a two-position solenoid valve that shuts off the passage 500 and the first pump passage 508 and turns them on when turned on. Further, SR C-2 5 0 6 intercepts a second reservoir passage 5 0 2 and the second pump passage 5 1 0 by being turned off and connects them to each other by being turned on It is a two-position solenoid valve.
マスタシリ ンダ 2 1 8の第 1油圧室 2 2 0、 および、 第 2油圧室 2 2 2には、 それぞれ第 1液圧通路 2 3 8、 および、 第 2液圧通路 The first hydraulic chamber 220 and the second hydraulic chamber 222 of the master cylinder 218 have a first hydraulic passage 238 and a second hydraulic passage, respectively.
2 4 0が連通している。 第 1液圧通路 2 3 8には、 第 1 マス夕カツ トソレノイ ド 5 1 2 (以下、 SMC— , 5 1 2 と称す) が連通してい る。 一方、 第 2液圧通路 2 4 0には、 第 2マスタカッ トソレノイ ド 5 1 (以下、 SMC-25 1 と称す) が連通している。 240 are in communication. The first hydraulic pressure passage 238 communicates with a first mass cut solenoid 512 (hereinafter, referred to as SMC—, 512). On the other hand, a second master cut solenoid 51 (hereinafter referred to as SMC-251) communicates with the second hydraulic passage 240.
SMC-, 5 1 2には、 第 1 ポンプ圧通路 5 1 6 と左後輪 R Lに対 応して設けられた液圧通路 5 1 8 とが連通している。 第 1 ポンプ圧 通路 5 1 6には、 第 1 ポンプソレノイ ド 5 2 0 (以下、 SMV— , 5 2 0 と称す) が連通している。 SMV— , 5 2 0には、 更に、 右前輪 F Rに対応して設けられた液圧通路 5 2 2が連通している。 SMV -, 5 2 0の内部には定圧開放弁 5 2 4が設けられている。  The first pump pressure passage 5 16 and the hydraulic pressure passage 5 18 provided corresponding to the left rear wheel RL communicate with the SMC- 5 12. The first pump pressure passage 516 communicates with a first pump solenoid 520 (hereinafter, referred to as SMV—, 520). Further, a hydraulic passage 522 provided corresponding to the right front wheel FR is communicated with the SMV,, 520. A constant pressure release valve 524 is provided inside the SMV-, 520.
5 2 0は、 オフ状態とされた場合に第 1 ポンプ圧通路 5 1 6 と液圧 通路 5 2 2 とを導通状態とし、 かつ、 オン状態とされた場合に定圧 開放弁 5 2 4を介してそれらを連通させる 2位置の電磁弁である。 第 1 ポンプ圧通路 5 1 6 と液圧通路 5 2 2 との間には、 また、 第 1 ポンプ圧通路 5 1 6側から液圧通路 5 2 2側へ向かうフル一 ドの流 れのみを許容する逆止弁 5 2 6が配設されている。  520 is connected to the first pump pressure passage 5 16 and the fluid pressure passage 5 22 when turned off, and through the constant pressure release valve 5 24 when turned on. It is a two-position solenoid valve that allows them to communicate with each other. Between the first pump pressure passage 5 16 and the hydraulic pressure passage 5 22, only the flow of the fluid from the first pump pressure passage 5 16 to the hydraulic pressure passage 5 22 is restricted. Allowable check valves 5 2 6 are provided.
SMC- 25 1 4には、 第 2ポンプ圧通路 5 2 8 と右後輪 R Rに対 応して設けられた液圧通路 5 3 0 とが連通している。 第 2ポンプ圧 通路 5 2 8には、 第 2ポンプソレノイ ド 5 3 2 (以下、 SMV— 25The second pump pressure passage 5 28 and the hydraulic pressure passage 5 30 provided corresponding to the right rear wheel RR communicate with the SMC-25 14. The second pump pressure passage 5 2 8 has a second pump solenoid 5 3 2 (hereinafter referred to as SMV— 2 5
3 2 と称す) が連通している。 SMV— 25 3 2には、 更に、 左前輪 F Lに対応して設けられた液圧通路 5 3 4が連通している。 SMV - 25 3 2の内部には定圧開放弁 5 3 6が設けられている。 SMV— 2 5 3 2は、 オフ状態とされた場合に第 2ポンプ圧通路 5 2 8と液圧 通路 5 3 4 とを導通状態とし、 かつ、 オン状態とされた場合に定圧 開放弁 5 3 6を介してそれらを連通させる 2位置の電磁弁である。 第 1 ポンプ圧通路 5 2 8 と液圧通路 5 3 4 との間には、 また、 第 2 ポンプ圧通路 5 2 8側から液圧通路 5 3 6側へ向かうフル一 ドの流 れのみを許容する逆止弁 5 3 8が配設されている。 3 2) are in communication. The SMV-2532 further communicates with a hydraulic passage 5334 provided for the left front wheel FL. A constant pressure release valve 536 is provided inside the SMV-25325. SMV— 2 532, when turned off, makes the second pump pressure passage 528 and the fluid pressure passage 5334 conductive, and when turned on, through the constant pressure release valve 536. It is a two-position solenoid valve that allows them to communicate with each other. Between the first pump pressure passage 528 and the hydraulic pressure passage 534, only the flow of the fluid flowing from the second pump pressure passage 528 to the hydraulic pressure passage 336 is restricted. Allowable check valves 5 3 8 are provided.
SMC-, 5 1 2および SMC-25 1 4の内部には、 それぞれ定圧 開放弁 5 4 0 , 5 4 2が設けられている。 SMC-, 5 1 2は、 オフ 伏態とされた場合に第 1液圧通路 2 3 8 と液圧通路 5 1 8 (および 第 1 ポンプ圧通路 5 1 6 ) とを導通状態とし、 かつ、 オン状態とさ れた場合に定圧開放弁 5 4 0を介してそれらを連通させる 2位置の 電磁弁である。 また、 SMC-25 1 4は、 オフ状態とされた場合に 第 2液圧通路 2 4 0 と液圧通路 5 3 0 (および第 2ポンプ圧通路 5 2 8 ) とを導通状態とし、 かつ、 オン状態とされた場合に定圧開放 弁 5 4 2を介してそれらを連通させる 2位置の電磁弁である。 SMC-, inside the 5 1 2 and SMC-2 5 1 4 are each constant pressure relief valves 5 4 0, 5 4 2 are provided. When the SMC-, 5 12 is turned off, the first hydraulic passage 2 38 and the hydraulic passage 5 18 (and the first pump pressure passage 5 16) are electrically connected to each other, and A two-position solenoid valve that connects them via a constant-pressure release valve 540 when turned on. Further, SMC-2 5 1 4 is a second fluid pressure passage 2 4 0 and the fluid pressure passage 5 3 0 (and the second pump pressure passage 5 2 8) and a conducting state when it is turned off, and A two-position solenoid valve that connects them via a constant-pressure release valve 542 when turned on.
第 1液圧通路 2 3 8 と液圧通路 5 1 8 との間には、 第 1液 E通路 2 3 8側から液圧通路 5 1 8側へ向かうフル一 ドの流れのみを許容 する逆止弁 5 4 4が配設されている。 同様に、 第 2液圧通路 2 4 0 と液圧通路 5 3 0 との間には、 第 2液圧通路 2 4 0側から液圧通路 5 3 0側へ向かう流体の流れのみを許容する逆止弁 5 4 6が配設さ れている。  An inverse between the first hydraulic passage 238 and the hydraulic passage 518 allowing only a fluid flow from the first hydraulic E passage 238 to the hydraulic passage 518 A stop valve 5 4 4 is provided. Similarly, only the flow of the fluid from the second hydraulic passage 240 to the hydraulic passage 530 is allowed between the second hydraulic passage 240 and the hydraulic passage 530. A check valve 5 4 6 is provided.
左右前輪および左右後輪に対応して設けられた 4本の液圧通路 5 1 6 , 5 2 2, 5 2 8 , 5 3 4には、 第 4実施例および第 5実施例 の場合と同様に保持ソレノィ ド S * * H、 減圧ソレノィ ド S * * R、 ホイルシリンダ 2 8 2〜 2 8 8およぴ逆止弁 2 9 0〜 2 9 6が連通 している。 また、 右前輪 F Rおよび左後輪 R Lの減圧ソレノイ ド S F RR 2 7 4および S R L R 2 8 0には、 第 1減圧通路 5 4 8が連 通している。 更に、 左前輪 F Lおよび右後輪 RRの減圧ソレノイ ド S F L R 2 7 6および S RRR 2 7 8には、 第 2減圧通路 5 5 0が 539 C 9 5 連通している。 Four hydraulic passages 5 16, 5 2 2, 5 2 8, 5 3 4 provided for the left and right front wheels and the left and right rear wheels are the same as in the fourth and fifth embodiments. The holding solenoid S ** H, the pressure reducing solenoid S ** R, the wheel cylinders 282 to 288 and the check valves 290 to 296 are connected to each other. Further, a first decompression passage 548 communicates with decompression solenoids SF RR 274 and SRLR 280 of the right front wheel FR and the left rear wheel RL. Further, a second decompression passage 550 is provided in the decompression solenoids SFLR 276 and S RRR 278 of the left front wheel FL and the right rear wheel RR. 539 C 9 5 Communication.
第 1減圧通路 5 4 8および第 2減圧通路 5 5 0には、 それぞれ第 1 リザーバ 5 5 2および第 2 リザーバ 5 5 が連通している。 また、 第 1 リザーバ 5 5 2および第 2 リザーバ 5 5 4は、 それぞれ逆止弁 5 5 6 , 5 5 8を介して第 1 ポンプ 5 6 0の吸入側、 および、 第 2 ポンプ 5 6 2の吸入側に連通している。 第 1 ポンプ 5 6 0の吐出側、 および、 第 2ポンプ 5 6 2の吐出側は、 吐出圧の脈動を吸収するた めのダンバ 5 6 4 , 5 6 6に連通している。 ダンバ 5 6 4 , 5 6 6 は、 それぞれ液圧通路 5 2 2 , 5 3 4に連通している。  A first reservoir 552 and a second reservoir 55 communicate with the first decompression passage 548 and the second decompression passage 550, respectively. Further, the first reservoir 55 2 and the second reservoir 55 4 are connected to the suction side of the first pump 56 0 and the second pump 56 2 via check valves 55 6 and 55 58, respectively. It communicates with the suction side. The discharge side of the first pump 560 and the discharge side of the second pump 562 are in communication with dampers 564 and 566 for absorbing the pulsation of the discharge pressure. The dampers 564 and 566 communicate with the hydraulic passages 522 and 534, respectively.
各車輪の近傍には、 車輪速センサ 3 3 0 , 3 3 2 , 3 3 4 , 3 3 6が配設されている。 E C U 2 1 0は、 車輪速センサ 3 3 0〜 3 3 6の出力信号に基づいて各車輪の回転速度 V、v を検出する。 また、 マスタシリ ンダ 2 1 8に連通する第 2液圧通路 2 4 0には、 液圧セ ンサ 3 3 8が配設されている。 E C U 2 1 0は、 液圧センサ 3 3 8 の出力信号に基づいてマス夕シリ ンダ圧 P M / C を検出する。 Wheel speed sensors 330, 332, 334, 336 are arranged near each wheel. The ECU 210 detects the rotation speeds V and v of each wheel based on the output signals of the wheel speed sensors 330 to 336. Further, a hydraulic sensor 338 is provided in the second hydraulic passage 240 communicating with the master cylinder 2 18. The ECU 210 detects the mass cylinder pressure P M / C based on the output signal of the fluid pressure sensor 338.
次に、 本実施例の制動力制御装置の動作を説明する。 本実施例の 制動力制御装置は、 油圧回路内に配設された各種の電磁弁の状態を 切り換えることにより、 ①通常ブレーキ機能、 ② A B S機能、 およ び、 ③ B A機能を実現する。  Next, the operation of the braking force control device according to the present embodiment will be described. The braking force control device of this embodiment realizes (1) the normal braking function, (2) the ABS function, and (3) the BA function by switching the state of various solenoid valves disposed in the hydraulic circuit.
①通常ブレーキ機能は、 図 2 2に示す如く、 制動力制御装置が備 える全ての電磁弁をオフ状態とすることにより実現される。 以下、 図 2 2に示す状態を通常ブレーキ状態と称す。 また、 制動力制御装 置において通常ブレーキ機能を実現するための制御を通常ブレーキ 制御と称す。  (1) The normal braking function is realized by turning off all solenoid valves of the braking force control device as shown in Fig. 22. Hereinafter, the state shown in FIG. 22 is referred to as a normal brake state. The control for realizing the normal brake function in the braking force control device is called normal brake control.
図 2 2に示す通常ブレーキ状態において、 右前輪 F Rのホイルシ リ ンダ 2 8 2および左後輪 R Lのホイルシリ ンダ 2 8 8は、 共に第 1液圧通路 2 3 8を介してマスタシリンダ 2 1 8の第 1油圧室 2 2 0に連通している。 また、 左前輪 F Lのホイルシリ ンダ 2 8 4およ び右後輪 R Rのホイルシリンダ 2 8 6は、 共に第 2液圧通路 2 4 0 を介してマス夕シリ ンダ 2 1 8の第 2油圧室 222に連通している, この場合、 ホイルシリ ンダ 2 8 2〜 2 8 8のホイルシ リ ンダ圧 P w/ c は、 常にマスタシリ ンダ圧 PM/C と等圧に制御される。 従って、 図 22示す状態によれば、 通常ブレーキ機能が実現される。 In the normal brake state shown in FIG. 22, both the wheel cylinder 288 of the right front wheel FR and the wheel cylinder 288 of the left rear wheel RL are connected via the first hydraulic passage 238 to the master cylinder 218. The first hydraulic chamber 220 communicates with the first hydraulic chamber 220. The wheel cylinder 284 of the front left wheel FL and the wheel cylinder 286 of the rear right wheel RR are both in the second hydraulic passage 240. In this case, the master cylinder pressure P w / c of the wheel cylinders 282 to 288 always communicates with the master cylinder pressure P. It is controlled to equal pressure with M / C. Therefore, according to the state shown in FIG. 22, the normal braking function is realized.
② ABS機能は、 図 2 2に示す状態において、 第 1ポンプ 5 6 0 および第 2ポンプ 5 6 2をオン状態とし、 かつ、 保持ソレノィ ド S ② In the ABS function, in the state shown in Fig. 22, the first pump 560 and the second pump 562 are turned on, and the holding solenoid S
* * Hおよび減圧ソレノィ ド S * *Rを AB Sの要求に応じて適当 に駆動することにより実現される。 以下、 制動力制御装置において A B S機能を実現するための制御を A B S制御と称す。 This is realized by appropriately driving ** H and the decompression solenoid S ** R as required by the ABS. Hereinafter, the control for realizing the ABS function in the braking force control device is referred to as ABS control.
AB S制御の実行中は、 左右前輪および左右後輪に対応して設け られた 4本の液圧通路 5 1 8, 5 22, 5 2 8, 5 3 4の全てに高 圧のマスタシリ ンダ圧 PM/C が導かれている。 従って、 かかる状況 下で保持ソレノイ ド S * * Hを開弁状態とし、 かつ、 減圧ソレノ ィ ド S * * Rを閉弁状態とすると、 各車輪のホイルシリ ンダ圧 Pw/C を増圧することができる。 以下、 この状態を(i) 増圧モードと称す c また、 A B S制御の実行中に、 保持ソ レノ ィ ド S * * Hおよび減 圧ソレノィ ド S * * Rの双方を閉弁状態とすると、 各車輪のホイル シリ ンダ圧 Pw/c を保持することができる。 以下、 この状態を(ii) 保持モードと称す。 更に、 ABS制御の実行中に、 保持ソレノ ィ ド S * *Hを閉弁状態とし、 かつ、 減圧ソ レノィ ド S * *Rを開弁状 態とすると、 各車輪のホイルシリ ンダ圧 Pw/C を減圧することがで きる。 以下、 この状態を(iii) 減圧モー ドと称す。 During the execution of the ABS control, the high hydraulic master cylinder pressure is applied to all four hydraulic passages 5 18, 5 22, 5 2 8, 5 3 4 provided for the left and right front wheels and the left and right rear wheels. P M / C is derived. Therefore, if the holding solenoid S ** H is opened and the pressure reducing solenoid S ** R is closed under such circumstances, the wheel cylinder pressure P w / C of each wheel must be increased. Can be. Hereinafter, also c this state is referred to as (i) pressure increasing mode, during execution of the ABS control, both the holding Seo Leno I de S * * H and reduced pressure Sorenoi de S * * R When closed, The wheel cylinder pressure Pw / c of each wheel can be maintained. Hereinafter, this state is referred to as (ii) holding mode. Further, when the holding solenoid S ** H is closed and the pressure reducing solenoid S ** R is opened during the execution of the ABS control, the wheel cylinder pressure P w / C can be decompressed. Hereinafter, this state is referred to as (iii) decompression mode.
E CU 2 1 0は、 ABS制御の実行中に、 各車輪毎に適宜上記の (i) 増圧モード、 (ii)保持モード、 および、 (iii) 減圧モー ドが実 現されるように、 各車輪のスリ ップ状態に応じて保持ソレノィ ド S During execution of the ABS control, the ECU 210 appropriately sets (i) the pressure increasing mode, (ii) the holding mode, and (iii) the pressure reducing mode as described above for each wheel. Holding solenoid S according to slip condition of each wheel
* * Hおよび減圧ソレノィ ド S * *Rを制御する。 保持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * *Rが上記の如く制御されると、 全ての車輪のホイルシリ ンダ圧 Pw/C が対応する車輪に過大なス リ ップ率を発生させることのない適当な圧力に制御される。 このよ うに、 上記の制御によれば、 制動力制御装置において A B S機能を 実現することができる。 ** H and decompression solenoid S ** R are controlled. When the holding solenoid S ** H and the depressurizing solenoid S ** R are controlled as described above, the wheel cylinder pressure P w / C of all the wheels causes an excessive slip rate on the corresponding wheels. It is controlled to an appropriate pressure without any problem. This As described above, according to the above control, the ABS function can be realized in the braking force control device.
A B S制御の実行中に、 各車輪で減圧モードが行われる際にはホ ィルシリ ンダ 2 8 2〜 2 8 8内のブレーキフル一 ドが、 第 1減圧通 路 5 4 8および第 2減圧通路 5 5 0を通って第 1 リザ—バ 5 5 2お よび第 2 リザーバ 5 5 4 に流入する。 第 1 リザーバ 5 5 2および第 2 リザ一バ 5 5 4に流入したブレーキフルードは、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2に汲み上げられて液圧通路 5 2 2, 5 3 4へ供給される。  When the decompression mode is performed on each wheel during the execution of the ABS control, the brake fluid in the wheel cylinders 282 to 288 will cause the first decompression passage 548 and the second decompression passage 5 It flows into the first reservoir 55 2 and the second reservoir 55 4 through 50. The brake fluid flowing into the first reservoir 552 and the second reservoir 554 is pumped by the first pump 560 and the second pump 562 to the hydraulic passages 522, 534. Supplied.
液圧通路 5 2 2 , 5 3 4 に供給されたブレーキフル一 ドの一部は、 各車輪で (i )増圧モー ドが行われる際にホイルシリ ンダ 2 8 2〜 2 8 8に流入する。 また、 そのブレーキフルー ドの残部は、 ブレーキ フルー ドの流出分を補うべくマスタシリ ンダ 2 1 8に流入する。 こ のため、 本実施例のシステムによれば、 A B S制御の実行中にブ レーキペダル 2 1 2に過大なストロークが生ずることはない。  Part of the brake fluid supplied to the hydraulic passages 52 2 and 5 3 4 flows into the wheel cylinders 282 to 288 when (i) the pressure increase mode is performed on each wheel. . The remainder of the brake fluid flows into the master cylinder 218 to compensate for the outflow of the brake fluid. Therefore, according to the system of the present embodiment, an excessive stroke does not occur on the brake pedal 2 12 during execution of the ABS control.
③ B A機能は、 上記第 4実施例の場合と同様に、 運転者によって 緊急ブレーキ操作が実行された後に、 適宜 (I )開始増圧モー ド、 (1 I )アシス ト圧増圧モー ド、 (1 1【)アシス ト圧減圧モー ド、 G V)ァシ ス ト圧保持モー ド、 (V)アシス ト圧緩増モー ド、 および、 (V I )ァシ スト圧緩減乇一 ドが実現されるように E C U 2 1 0が制動力制御装 置を制御することにより実現される。 以下、 制動力制御装置におい て、 B A機能を実現させるための制御を B A制御と称す。  (3) As in the case of the fourth embodiment, after the driver performs the emergency braking operation, the BA function is appropriately set to (I) start pressure increase mode, (1 I) assist pressure increase mode, (1 1 [] Assist pressure reduction mode, GV) Assist pressure holding mode, (V) Assist pressure gradual increase mode, and (VI) Assist pressure gradual decrease mode are realized. This is realized by the ECU 210 controlling the braking force control device as described above. Hereinafter, the control for realizing the BA function in the braking force control device is referred to as BA control.
図 2 3は、 B A制御の実行中に実現されるアシスト圧増圧状態を 示す。 アシスト圧増圧状態は、 B A制御の実行中に各車耠のホイル シリ ンダ圧 P w / C を増圧させる必要がある場合に、 すなわち、 B A 制御の実行中に (I)開始増圧モー ド、 (I I )アシス ト圧増圧モー ド、 および、 (Ι Π )アシスト圧緩増モードの実行が要求された場合に実 現される。 FIG. 23 shows an assist pressure increasing state realized during execution of the BA control. The assist pressure increase state is set when the wheel cylinder pressure P w / C of each vehicle needs to be increased during the execution of the BA control, that is, during the execution of the BA control, the (I) start pressure increase mode is set. And (II) assist pressure increasing mode and (Ι Π) assist pressure gradual increasing mode.
本実施例のシステムにおいて、 B A制御中におけるアシスト圧増 圧状態は、 図 2 3に示す如く、 リザ一バカツ トツレノィ ド S R C一,In the system of the present embodiment, the assist pressure is increased during BA control. As shown in Fig. 23, the pressure state is
5 0 4 , S R C - 25 0 6 , および、 マス夕カッ トソレノイ ド SMC -, 5 1 2, SMC-25 1 4をォン状態とし、 かつ、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2をォン状態とすることで実現される。 5 0 4, SRC-2 500, and mass cut solenoid SMC-, 5 1 2, SMC- 2 5 1 4 are turned on, and the first pump 5 60 and the second pump 5 6 This is realized by setting 2 to the ON state.
B A制御の実行中にアシス ト圧増圧状態が実現されると、 リザー バタンク 2 2 4に貯留されているブレーキフルー ドが第 1 ポンプ 5 If the assist pressure increase state is realized during execution of the B A control, the brake fluid stored in the reservoir tank 2
6 0および第 2ポンプ 5 6 2に汲み上げられて液圧通路 5 2 2, 5 3 4に供給される。 アシス ト圧増圧状態では、 液圧通路 5 2 2 と右 前輪 F Rのホイルシリ ンダ 2 8 2および左後輪 R Lのホイルシリ ン ダ 2 8 8が導通状態に維持される。 また、 アシス ト圧増圧状態では、 液圧通路 5 2 2側の圧力が定圧開放弁 5 4 0の開弁圧を超えてマス 夕シリ ンダ圧 PM/C に比して高圧となるまでは、 液圧通路 5 2 2側 からマス夕シリ ンダ 2 1 8側へ向かうフル一 ドの流れが S MC - , 5 1 2によって阻止される。 60 and the second pump 56 2 pumps it up and supplies it to the hydraulic passages 52 2, 5 3 4. In the assist pressure increasing state, the fluid pressure passage 522, the wheel cylinder 282 of the right front wheel FR and the wheel cylinder 288 of the left rear wheel RL are maintained in a conductive state. In addition, in the assist pressure increasing state, the pressure in the hydraulic pressure passage 52 2 exceeds the valve opening pressure of the constant pressure release valve 5 40 until the pressure becomes higher than the master cylinder pressure PM / C. In this case, the flow of fluid from the hydraulic pressure passage 5222 to the mass cylinder 2118 is blocked by the SMC- and 512.
同様に、 アシス ト圧増圧状態では、 液圧通路 5 3 4 と左前輪 F L のホイルシリ ンダ 2 8 4および右後輪 R Rのホイルシリ ンダ 2 8 6 とが導通状態に維持されると共に、 液圧通路 5 3 4側の内圧が定圧 開放弁 5 4 2の開弁圧を超えてマス夕シリ ンダ圧 PM/C に比して高 圧となるまでは、 液圧通路 5 3 4側からマスタシリ ンダ 2 1 8側へ 向かうフルー ドの流れが SMC— 25 1 4によって阻止される。 Similarly, in the assist pressure increasing state, the hydraulic pressure passage 534 and the foil cylinder 2884 of the left front wheel FL and the foil cylinder 2886 of the right rear wheel RR are maintained in a conductive state, and the hydraulic pressure is maintained. Until the internal pressure of passage 5334 exceeds the opening pressure of constant pressure release valve 542, and becomes higher than the mass cylinder pressure P M / C , the master cylinder is The flow of fluid toward the 2nd 18 side is blocked by the SMC-25 14.
このため、 図 2 3に示すアシスト圧増圧状態が実現されると、 そ の後、 各車輪のホイルシリ ンダ圧 Pw/c は、 第 1 ポンプ 5 6 0 また は第 2ポンプ 5 6 2を液圧源として、 速やかにマス夕シリ ンダ圧 P M/c を超える圧力に昇圧される。 このように、 図 2 3に示すアシス ト圧増圧状態によれば、 制動力を速やかに立ち上げることができる。 ところで、 図 2 3に示すアシス ト圧増圧状態において、 液圧通路 5 1 8 , 5 2 2, 5 3 4 , 5 3 0は、 逆止弁 5 4 4 , 5 4 6を介し てマスタシリ ンダ 2 1 8に連通している。 このため、 マスタシリ ン ダ圧 PM/C が各車輪のホイルシリ ンダ圧 Pw/C に比して大きい場合 は、 B A作動状態においてもマスタシリ ンダ 2 1 8を液圧源として ホイルシリ ンダ圧 Pw/C を昇圧することができる。 For this reason, when the assist pressure increasing state shown in FIG. 23 is realized, thereafter, the wheel cylinder pressure Pw / c of each wheel increases the hydraulic pressure of the first pump 560 or the second pump 562. As a pressure source, the pressure is immediately increased to a pressure exceeding the mass cylinder pressure PM / c. As described above, according to the assist pressure increasing state shown in FIG. 23, the braking force can be quickly raised. By the way, in the assist pressure increasing state shown in FIG. 23, the hydraulic passages 5 18, 5 2 2, 5 3 4, 5 3 0 are connected to the master cylinder via check valves 5 4 4, 5 4 6. It communicates with 2 1 8. Therefore, when the master cylinder pressure P M / C is higher than the wheel cylinder pressure P w / C of each wheel In the BA operation state, the wheel cylinder pressure Pw / C can be increased using the master cylinder 218 as a hydraulic pressure source.
図 2 4は、 B A制御の実行中に実現されるアシス ト圧保持状態を 示す。 アシス ト圧保持状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 PW/C を保持する必要がある場合、 すなわち、 B A制御 中に(IV)アシス ト圧保持モー ドが要求される場合に実現される。 ァ シス ト圧保持状態は、 図 2 4に示す如く、 マス夕カ ッ ト ソ レ ノイ ド SMC-, 5 1 2, SMC— 25 1 4をオン状態とし、 かつ、 第 1 ボン プ 5 6 0および第 2ポンプ 5 6 2をオン状態とすることで実現され る。 FIG. 24 shows an assist pressure holding state realized during execution of the BA control. The assist pressure holding state is set when the wheel cylinder pressure P W / C of each wheel needs to be held during the execution of the BA control, that is, the (IV) assist pressure holding mode is required during the BA control. Is realized when As shown in Fig. 24, the master pressure holding state is such that the mass cut solenoids SMC-, 5 12 and SMC 2 5 14 are turned on and the first pump 56 is turned on. This is realized by turning on the 0 and the second pump 562.
図 2 4に示すアシス ト圧保持状態では、 第 1 ポンプ 5 6 0 と リ ザーバタンク 2 2 4、 および、 第 2ポンプ 5 6 2 と リザーバタンク 2 2 4力 、 それぞれ S R C - 15 0 4および S R C— 25 0 6によって 遮断状態とされる。 このため、 アシス ト圧保持状態では、 第 1 ボン プ 5 6 0および第 2ポンプ 5 6 2から液圧通路 5 2 2, 5 3 4 にフ ルー ドが吐出されない。 また、 図 2 4に示すアシス ト圧保持状態で は、 液圧通路 5 1 8 , 5 2 2および 5 3 0 , 5 3 4力、、 それぞれ S MC-, 5 1 2および SMC-25 1 4によってマス夕シリ ンダ 2 1 8 から実質的に切り離されている。 このため、 図 2 4に示すアシス ト 圧保持状態によれば、 全ての車輪のホイルシリ ンダ圧 Pw/C を一定 値に保持することができる。 In the assist pressure holding state shown in FIG. 24, the first pump 560 and the reservoir tank 224, and the second pump 562 and the reservoir tank 224 force, the SRC-1504 and the SRC— It is cut-off state by 2 5 0 6. Therefore, in the assist pressure holding state, the fluid is not discharged from the first pump 560 and the second pump 562 to the hydraulic pressure passages 522, 534. Further, Assist in pressure holding state, hydraulic pressure passage 5 1 8, 5 2 2 and 5 3 0, 5 3 4 forces ,, respectively S MC-, 5 1 2 and SMC-2 5 1 shown in FIG. 2 4 It is virtually separated from the mass cylinder 2 18 by 4. Therefore, according to the assist pressure holding state shown in FIG. 24, the wheel cylinder pressure P w / C of all the wheels can be held at a constant value.
図 2 5は、 B A制御の実行中に実現されるアシス ト圧減圧状態を 示す。 アシス ト圧減圧状態は、 B A制御の実行中に各車輪のホイル シリ ンダ圧 Pw/c を減圧する必要がある場合、 すなわち、 B A制御 中に (Π[)アシス ト圧減圧モー ド、 および、 (Vi)アシス ト圧緩減 モー ドの実行が要求された場合に実現される。 アシス ト圧減圧状態 は、 図 2 5に示す如く、 第 1 ポンプ 5 6 0および第 2ポンプ 5 6 2 をオン状態とすることで実現される。  FIG. 25 shows a reduced assist pressure state realized during the execution of the BA control. The assist pressure reduction state is required when it is necessary to reduce the wheel cylinder pressure Pw / c of each wheel during execution of the BA control, that is, during the BA control, the (Π [) assist pressure reduction mode and (Vi) This is realized when execution of the assist pressure mode is requested. The assist pressure reduction state is realized by turning on the first pump 560 and the second pump 562 as shown in FIG.
図 2 5に示すアシス ト圧減圧状態では、 第 1 ポンプ 5 6 0および 第 2ポンプ 5 6 2がリザーバタンク 2 2 4から切り離される。 この ため、 第 1 ポンプ 5 6 2および第 2ポンプ 5 6 2から液圧通路 5 2 2, 5 3 4にフルードが吐出されない。 また、 アシス ト圧減圧状態 では、 各車輪のホィルシリ ンダ 2 8 2〜 2 8 8 とマス夕シリ ンダ 2 1 8 とが導通状態となる。 このため、 アシス ト圧減圧状態を実現す ると、 全ての車輪のホイルシリ ンダ圧 Pw/c を、 マス夕シリ ンダ圧 PM/C を下限値として減圧することができる。 In the assist pressure reduced state shown in FIG. 25, the first pump 560 and the The second pump 562 is disconnected from the reservoir tank 224. Therefore, fluid is not discharged from the first pump 562 and the second pump 562 to the hydraulic pressure passages 522, 534. Further, in the assist pressure reduced state, the wheel cylinders 282-288 of each wheel and the mass cylinder 2188 are in a conductive state. Therefore, if the assist pressure reduction state is realized, the wheel cylinder pressure Pw / c of all wheels can be reduced using the mass cylinder pressure PM / C as the lower limit.
上述の如く、 図 2 3乃至図 2 5に示すアシスト圧増圧状態、 ァシ ス ト圧保持状態、 および、 アシス ト圧減圧状態によれば、 適切に B A制御の要求に応じてホイルシリ ンダ圧 Pw/C の増圧、 保持、 およ び、 減圧を図ることができる。 このため、 本実施例の制動力制御装 置によっても、 上述した第 4実施例の場合と同様に、 BA機能を実 現することができる。 As described above, according to the assist pressure increasing state, the assist pressure holding state, and the assist pressure decreasing state shown in FIGS. 23 to 25, the wheel cylinder pressure can be appropriately adjusted according to the BA control request. It is possible to increase, maintain, and reduce the pressure of P w / C. For this reason, the BA function can also be realized by the braking force control device of the present embodiment, similarly to the case of the above-described fourth embodiment.
本実施例の制動力制御装置において、 上述した B A制御が開始さ れると、 その後、 各車輪のホイルシリンダ圧 Pw/C が速やかに昇圧 されることにより、 何れかの車輪について過剰なスリ ップ率が生ず る場合がある。 E CU 2 1 0は、 このような場合には、 BA + A B S制御を開始する。 以下、 上記図 2 3乃至図 2 5 と共に図 2 6およ び図 2 7を参照して、 BA + AB S制御の実行に伴う制動力制御装 置の動作を説明する。 In the braking force control device according to the present embodiment, when the above-described BA control is started, the wheel cylinder pressure P w / C of each wheel is immediately increased, so that an excessive slip is applied to any of the wheels. In some cases, the rate may increase. In such a case, the ECU 210 starts the BA + ABS control. Hereinafter, the operation of the braking force control device associated with the execution of the BA + ABS control will be described with reference to FIGS. 23 to 25 as well as FIGS. 26 and 27.
本実施例の制動力制御装置において、 B A + A B S制御の実行中 に、 運転者によって制動力の減圧を意図するブレーキ操作が行われ た場合は、 A B S対象車輪のホイルシリ ンダ圧 Pw/c を A B S制御 の要求に応じた圧力に制御しつつ、 A B S非対象車輪のホイルシリ ンダ圧 Pw/C をマス夕シリンダ圧 PM/C に向けて減圧する必要が生 ずる。 以下、 この要求をアシス ト圧減圧 A B S要求と称す。 In the braking force control device of the present embodiment, when the driver performs a braking operation intended to reduce the braking force during the execution of the BA + ABS control, the wheel cylinder pressure Pw / c of the ABS target wheel is increased by the ABS. It is necessary to reduce the wheel cylinder pressure P w / C of the non-ABS wheels toward the cylinder pressure P M / C while controlling the pressure according to the control requirements. Hereinafter, this request is referred to as the assist pressure reduction ABS request.
アシスト圧減圧 A B S要求は、 上記図 2 5に示すアシスト圧減圧 状態を実現しつつ、 保持ソレノィ ド S * * Hおよび減圧ソレノイ ド S * * Rのうち、 AB S対象車輪に対応するものを A B S制御の要 求に応じて適宜制御することで実現される。 以下、 制動力制御装置 において上記の制御が実行されている状態をァシスト圧減圧 A B S 状態と称す。 Assist pressure depressurizing ABS request, while realizing the assist pressure depressing state shown in Fig. 25 above, of the holding solenoid S ** H and depressurizing solenoid S ** R, the ABS Key to control It is realized by appropriately controlling according to the demand. Hereinafter, a state in which the above control is performed in the braking force control device is referred to as an assist pressure reduction ABS state.
アシスト圧減圧 A B S要求は、 運転者が制動力の減少を意図して いる場合に、 すなわち、 何れの車輪のホイルシリ ンダ圧 Pw/C も増 圧する必要がない場合に発生する。 従って、 アシス ト圧減圧 AB S 要求が発生している状況下では、 A B S非対象車輪のホイルシリ ン ダ圧 Pw/c を減圧しつつ、 A B S対象車輪のホイルシリ ンダ圧 Pw/ c を保持および減圧できることが必要である。 The assist pressure reduction ABS request is generated when the driver intends to reduce the braking force, that is, when it is not necessary to increase the wheel cylinder pressure P w / C of any of the wheels. Thus, in a situation where Assist pressure reducing AB S request has occurred, while depressurizing the Hoirushiri emissions Da pressure Pw / c of the ABS non-subject wheel, holding and pressure reduction the Hoirushiri Nda圧P w / c of the ABS subject wheel You need to be able to do it.
上述したアシスト圧減圧 A B S状態においては、 全ての保持ソレ ノィ ド S * * Hがマスタシリ ンダ 2 1 8に連通している。 このため、 アシス ト圧減圧 A B S状態によれば、 A B S非対象車輪のホイルシ リ ンダ圧 Pw/c を適正にマスタシリ ンダ圧 PM/C に向かって減圧す ることができる。 また、 かかる状況下で A B S対象車輪について(i i)保持モードまたは (iii)減圧モー ドが実現されると、 AB S対象 車輪のホイルシリ ンダ圧 Pw/c を保持または減圧することができる。 このように、 上述したアシスト圧減圧 A B S状態によれば、 アシス ト圧減圧 AB S要求が発生した際に実現すべき機能を、 適切に実現 することができる。  In the above assist pressure reduction ABS state, all the holding solenoids S ** H communicate with the master cylinder 218. For this reason, according to the assist pressure reduction ABS state, the wheel cylinder pressure Pw / c of the ABS non-target wheel can be appropriately reduced toward the master cylinder pressure PM / C. Further, in this situation, when the (ii) holding mode or the (iii) decompression mode is realized for the ABS target wheel, the wheel cylinder pressure Pw / c of the ABS target wheel can be held or reduced. As described above, according to the assist pressure reduction ABS state described above, the function to be realized when the assist pressure reduction ABS request occurs can be appropriately realized.
本実施例の制動力制御装置において、 BA + AB S制御の実行中 に運転者によって制動力の増加を意図するブレーキ操作が行われた 場合は、 A B S対象車輪のホイルシリ ンダ圧 Pw/c を AB S制御の 要求に応じた圧力に制御しつつ、 A B S非対象車輪のホイルシリン ダ圧 Pw/c を、 マスタシリ ンダ圧 PM/c を超える領域で増圧する必 要が生ずる。 以下、 この要求をアシス ト増圧 A B S要求と称す。 In the braking force control device of the present embodiment, when the driver performs a braking operation intended to increase the braking force during execution of the BA + AB S control, the wheel cylinder pressure Pw / c of the ABS target wheel is changed to AB It is necessary to increase the wheel cylinder pressure Pw / c of the non-ABS wheels in a region exceeding the master cylinder pressure P M / c while controlling the pressure according to the S control request. Hereinafter, this requirement is referred to as an assist pressure increase ABS requirement.
アシスト圧増圧 A B S要求は、 上記図 2 3に示すアシスト 増圧 状態を実現しつつ、 保持ソ レノィ ド S * * Hおよび減圧ソレノイ ド S * * Rのうち A B S対象車輪に対応するものを A B S制御の要求 に応じて制御することによっても実現することができる。 すなわち、 例えば左後輪 R Lが A B S対象車輪である場合に、 上記図 2 3に示 すアシスト圧増圧状態を実現しつつ S R L H 2 7 2ぉょび3尺し尺 2 8 0を A B S制御の要求に応じて制御すれば、 左後輪 R Lのホイ ルシリ ンダ圧 Pw/c を AB S制御の要求に応じた圧力に制御しつつ. 他の車輪 F L, F R, R Lのホイルシリ ンダ圧 Pw/C をマスタシリ ンダ圧 PM/C に比して高い領域で増圧することができる。 Assist pressure boost ABS requirements are to increase the assist pressure increase state shown in Fig. 23 above, and to use the holding solenoid S ** H and the pressure reduction solenoid S ** R that correspond to the ABS target wheel. It can also be realized by controlling according to control requirements. That is, For example, if the left rear wheel RL is a wheel to be subjected to ABS, the SRLH 27 2 and 3 measuring length 280 are required for ABS control while achieving the assist pressure increasing state shown in Fig. 23 above. if according to the control, while controlling the wheel Rushiri Nda圧Pw / c of the left rear wheel RL in pressure in response to a request AB S control. other wheels FL, FR, the Hoirushiri Nda圧P w / C of RL The pressure can be increased in a region higher than the master cylinder pressure PM / C.
しかし、 左後輪 R Lについて A B S制御が開始されると、 左後輪 R Lに対応する保持ソレノィ ド S R LH 2 7 2は、 その後、 左後輪 R Lについて (i)増圧モー ドが実行される僅かな時間を除き閉弁状 態とされる。 このため、 左後輪 R Lについて A B S制御が開始され た後は、 第 1 ポンプ 5 6 0から吐出されるブレーキフルー ドの殆ど 力、 A B S非対象車輪である右前輪 F Rのホイルシリ ンダ 2 8 2に 流入 る。  However, when the ABS control is started for the left rear wheel RL, the holding solenoid SR LH272 corresponding to the left rear wheel RL thereafter executes (i) the pressure increase mode for the left rear wheel RL. The valve is closed except for a short time. For this reason, after the ABS control is started for the left rear wheel RL, most of the brake fluid discharged from the first pump 560 is applied to the wheel cylinder 282 of the right front wheel FR, which is a wheel not subject to ABS. Inflow.
第 1 ポンプ 5 6 0の吐出能力は、 右前輪 F Rのホイルシリ ンダ圧 Pw/c と左後輪 R Lのホイルシリ ンダ圧 P w/c とを、 同時に適当な 増圧勾配で昇圧させることができるように設定されている。 このた め、 第 1 ポンプ 5 6 0から吐出されるブレーキフルードの殆どが、 A B S非対象車輪である右前輪 FRのホイルシリ ンダ 2 8 2に流入 する状況下では、 右前輪 F Rのホイルシリ ンダ圧 Pw/C に過剰な増 圧勾配が生ずる。 The discharge capacity of the first pump 560 is such that the wheel cylinder pressure Pw / c of the right front wheel FR and the wheel cylinder pressure Pw / c of the left rear wheel RL can be simultaneously increased with an appropriate pressure increase gradient. Is set to For this reason, under the condition that most of the brake fluid discharged from the first pump 560 flows into the wheel cylinder 282 of the right front wheel FR, which is a non-ABS target wheel, the wheel cylinder pressure P of the right front wheel FR Excessive pressure gradient occurs in w / C.
更に、 上記の如く右前輪 F Rのホイルシリ ンダ圧 Pw/c に過剰な 増圧勾配が発生する状況下では、 左後輪 R Lについて (i)増圧モー ドが実行された際に、 左後輪 R Lのホイルシリ ンダ圧 Pw/c が過度 に増圧される事態、 すなわち、 AB S制御にハンチングを生じさせ 易い事態が形成される。  Further, as described above, in a situation where an excessive pressure increase gradient is generated in the wheel cylinder pressure Pw / c of the right front wheel FR, when (i) the pressure increase mode is executed for the left rear wheel RL, the left rear wheel A situation in which the foil cylinder pressure Pw / c of the RL is excessively increased, that is, a situation in which hunting easily occurs in the ABS control is formed.
この点、 上記図 2 3に示すアシスト圧増圧状態を実現しつつ、 保 持ソレノィ ド S * * Hおよび減圧ソレノィ ド S * * Rのうち A B S 対象車輪に対応するものを A B S制御の要求に応じて制御すること によりアシスト圧増圧 A B S要求を満たす手法は、 本実施例の制動 力制御装置において B A + A B S制御を実現するための手法として 必ずしも最適な手法ではない。 In this regard, while realizing the assist pressure increasing state shown in Fig. 23 above, the holding solenoid S ** H and the depressurizing solenoid S ** R that correspond to the ABS target wheel are required for the ABS control. The method of satisfying the ABS demand by increasing the assist pressure by controlling according to This is not necessarily the optimal method for achieving BA + ABS control in a force control device.
図 2 6は、 左後輪 RLを A BS対象車輪とするアシスト圧増圧 A B S要求が発生した場合に制動力制御装置において実現される状態 (以下、 アシス ト圧増圧 A BS状態と称す) の一形態を示す。 左後 輪 RLを A BS対象車輪とするアシスト圧増圧 A BS状態は、 下記 (a) 〜(d) の条件が満たされるように制動力制御装置を制御するこ とにより実現される。  Fig. 26 shows the state realized by the braking force control device when an assist pressure boost ABS request is made with the left rear wheel RL as the ABS target wheel (hereinafter referred to as the assist pressure boost ABS state). 1 shows an embodiment. The assist pressure increase ABS state in which the left rear wheel RL is the ABS target wheel is realized by controlling the braking force control device so that the following conditions (a) to (d) are satisfied.
(a) 上記図 2 3に示すアシスト圧増圧状態でオン状態とされてい る第 1 リザーバカツ トソレノィ ド S R 5 0 4をオフ状態とする。 具体的には、 (a- 1) 第 2リザ一バカッ トツレノィ ド S R C -25 0 6、 および、 マス夕カ ツ ト ソ レノ ィ ド SMC , 5 1 2, S M C - 25 1 4 をォン状態とし、 かつ、 (a- 2) フロン トポンプ 3 1 0およびリアポ ンプ 3 1 2をオン状態とする。 (a) The first reservoir cut solenoid SR504, which is turned on in the assist pressure increasing state shown in FIG. 23, is turned off. Specifically, (a- 1) second reservoir one Baka' Totsurenoi de SRC - 2 5 0 6, and the mass evening mosquito Tsu preparative source Reno I de SMC, 5 1 2, SMC - 25 1 4 The O emissions state And (a-2) the front pump 310 and the rear pump 312 are turned on.
(b) A B S対象車輪である左後輪 R Lの保持ソレノィ ド SRLH 2 7 2および減圧ソレノイ ド SRLR 2 8 0を AB S制御の要求に 応じて下記の如く制御する。 (b- 1) A B S制御によって(ii)保持 モー ドおよび (iii)減圧モードが要求される場合は、 A B S制御が 単独で実行される場合と同様の手法により制御する。 (b- 2) ABS 制御によって (i)増圧モー ドの実行が要求される場合は、 AB S制 御が単独で実行される場合に比して短縮された所定時間だけ増圧 モードを実行する。  (b) The holding solenoid SRLH272 and the decompression solenoid SRLR280 of the left rear wheel RL, which is the ABS target wheel, are controlled as follows in accordance with the request of the ABS control. (B-1) When (ii) holding mode and (iii) depressurization mode are required by ABS control, control is performed in the same manner as when ABS control is executed alone. (B-2) When the pressure increase mode is requested by the ABS control (i) When the pressure increase mode is requested, the pressure increase mode is executed for a predetermined time shorter than when the ABS control is executed alone. I do.
(c) A BS対象車輪と同一の系統に属する右前輪 FRの保持ソレ ノイ ド SFRH 2 6 6を所定のデューティ比で繰り返しオン · オフ させる。  (c) The holding solenoid SFRH266 of the right front wheel FR belonging to the same system as the ABS target wheel is repeatedly turned on / off at a predetermined duty ratio.
(d) A B S対象車輪である左後輪 R Lを含む系統に属するマスタ カッ トソレノイ ド SMC-, 5 1 2を、 左後輪 R Lについて (iii)減 圧モードが実行される時期と同期してオフ状態 (開弁状態) とする。 上記(a) の条件によれば、 アシス ト圧増圧 A BS要求が生ずると 同時に AB S対象車輪を含む系統に属する第 1 ポンプ 5 6 0 とリ ザーバタンク 2 2 4 とを遮断状態とすることができる。 この場合、 第 1 ポンプ 5 6 0に吸入されるブレーキフル一ドがホィルシリ ンダ 2 8 8から流出するフルードのみに限定されるため、 第 1 ポンプ 5 6 0の吐出側に発生する液圧が比較的低圧に抑制される。 その結果、 A B S制御のハンチングを防止するうえで、 また、 A B S非対象車 輪である右前輪 F Rのホイルシリ ンダ圧 Pw/C の増圧勾配を抑制す るうえで有利な状態が形成される。 (d) Turn off the master cut solenoid SMC-, 512 belonging to the system including the left rear wheel RL, which is the ABS target wheel, for the left rear wheel RL (iii) In synchronization with the time when the decompression mode is executed State (valve open state). According to the above condition (a), when an assist pressure increase ABS request occurs, At the same time, the first pump 560 and the reservoir tank 224 belonging to the system including the ABS target wheel can be shut off. In this case, since the brake fluid sucked into the first pump 560 is limited to the fluid flowing out of the wheel cylinder 288, the hydraulic pressure generated on the discharge side of the first pump 560 is compared. It is suppressed to extremely low pressure. As a result, an advantageous state is formed to prevent hunting of the ABS control and to suppress the pressure increase gradient of the wheel cylinder pressure P w / C of the right front wheel FR, which is a wheel not subject to ABS. .
上記(b) の条件によれば、 A B S対象車輪である左後輪 R Lで (i) 増圧モードが実行される時間が、 A B S制御が単独で実行され る場合に比して短縮される。 (i)増圧モー ドの実行時間が短縮され ると、 (i)増圧モ一ドの実行に伴って左後輪 R Lのホイルシリ ンダ 圧 PW/c に生ずる増圧量が抑制される。 かかる状況下では、 S R L H 2 7 2の上流側に通常時に比して高圧の液圧が発生していても、 A B S制御にハンチングは生じ難い。 According to the above condition (b), the time during which (i) the pressure increase mode is executed in the left rear wheel RL, which is the ABS target wheel, is reduced as compared with the case where the ABS control is executed alone. (I) When the execution time of the pressure increase mode is shortened, (i) the pressure increase amount generated in the wheel cylinder pressure P W / c of the left rear wheel RL due to the execution of the pressure increase mode is suppressed. . In such a situation, hunting is unlikely to occur in the ABS control even if a higher hydraulic pressure is generated upstream of the SRLH 272 than normal.
上記(c) の条件によれば、 AB S対象車輪と同一の系統に属する 右前輪 FRについて、 ブレーキフルードがホイルシリ ンダ 2 8 2に 流入する伏態と、 その流入が阻止される状態とが所定のデューティ 比で繰り返される。 この場合、 S FRH 2 6 6の上流側に通常時に 比して高圧の液圧が発生していても、 右前輪 F Rのホイルシリ ンダ 圧 Pw/c は適正な増圧勾配で増圧する。  According to the condition (c) above, for the right front wheel FR belonging to the same system as the ABS target wheel, the state where the brake fluid flows into the wheel cylinder 282 and the state where the brake fluid is blocked are determined. It is repeated at the duty ratio of. In this case, the wheel cylinder pressure Pw / c of the right front wheel FR increases with an appropriate pressure increase gradient even if a higher hydraulic pressure is generated upstream of the SFRH 266 than usual.
上記(d) の条件によれば、 ホイルシリ ンダ 2 8 8から流出したブ レーキフル一ドが第 1 ポンプ 5 6 0によって圧送される時期と同期 して、 第 1 ポンプ 5 6 0の吐出側とマス夕シリ ンダ 2 1 8 とが導通 状態とされる。 この場合、 ブレーキフル一ドがマス夕シリ ンダ 2 1 8に流入し得るため、 第 1 ポンプ 5 6 0の吐出側に発生する液圧が 比較的低圧に抑制される。 その結果、 A B S制御のハンチングを防 止するうえで、 また、 A B S非対象車輪である右前輪 F Rのホイル シリ ンダ圧 Pw/c の増圧勾配を抑制するうえで有利な状態が形成さ このため、 上述したアシス ト圧増圧 AB S状態によれば、 AB S 対象車輪のホイルシリ ンダ圧 Pw/c を A B S制御が単独で実行され る場合と同様に制御することができると共に、 全ての A B S非対象 車輪のホイルシリ ンダ圧 Pw/C を、 B A制御が単独で実行されてい る状況下でホイルシリ ンダ圧 Pw/C の増圧が要求された場合と同様 の増圧勾配で増圧させることができる。 このように、 上述したァシ スト圧増圧 A B S状態によれば、 アシスト圧増圧 AB S要求が発生 した際に実現すべき機能を、 適切に実現することができる。 According to the condition (d), the brake fluid flowing out of the foil cylinder 288 and the discharge side of the first pump 560 are mass-synchronized with the time when the brake fluid is pumped by the first pump 560. The evening cylinder 218 is brought into conduction. In this case, since the brake fluid can flow into the mass cylinder 218, the hydraulic pressure generated on the discharge side of the first pump 560 is suppressed to a relatively low pressure. As a result, an advantageous state is formed to prevent hunting of the ABS control and to suppress the pressure increase gradient of the wheel cylinder pressure Pw / c of the right front wheel FR, which is a non-ABS target wheel. For this reason, according to the above assist pressure increase ABS state, the wheel cylinder pressure Pw / c of the ABS target wheel can be controlled in the same manner as when the ABS control is executed alone, The wheel cylinder pressure P w / C of the wheel not subject to ABS is increased with the same pressure increase gradient as when the wheel cylinder pressure P w / C is required to be increased under the condition that BA control is executed alone. Can be done. As described above, according to the above-described assist pressure increasing ABS state, the function to be realized when the assist pressure increasing ABS request is generated can be appropriately realized.
本実施例の制動力制御装置において、 BA + ABS制御の実行中 に、 運転者によって制動力の保持を意図するブレーキ操作が行われ た場合は、 A BS対象車輪のホイルシリ ンダ圧 Pw/C を ABS制御 の要求に応じた圧力に制御しつつ、 A B S非対象車輪のホイルシリ ンダ圧 Pw/C の保持を図る必要が生ずる。 以下、 この要求をアシス ト圧保持 ABS要求と称す。 In the braking force control device of the present embodiment, when the driver performs a braking operation intended to maintain the braking force during the execution of the BA + ABS control, the wheel cylinder pressure P w / C of the ABS target wheel is controlled. It is necessary to maintain the wheel cylinder pressure P w / C of the non-ABS wheels while controlling the pressure to the pressure according to the ABS control requirements. Hereinafter, this request is referred to as an assist pressure holding ABS request.
アシスト圧保持 AB S要求が生じた場合に、 上記図 2 に示すァ シスト圧保持状態を実現しつつ、 保持ソレノィ ド S * * Hおよび減 圧ソレノィ ド S**Rのうち AB S対象車輪に対応するものを A B S制御の要求に応じて制御することによれば、 A B S対象車輪のホ イルンリ ンダ圧 Pw/C を ABS制御の要求に応じた圧力に制御する こと、 および、 同一の系統内に AB S対象車輪が含まれない系統に 属する A B S非対象車輪のホイルシリ ンダ圧 Pw/c を保持すること ができる。 When the assist pressure holding ABS request is generated, while maintaining the assist pressure holding state shown in Fig. 2 above, the holding solenoid S ** H and the decompression solenoid S ** R By controlling the corresponding components according to the ABS control requirement, the wheel cylinder pressure P w / C of the ABS target wheel can be controlled to the pressure required by the ABS control, and the same system Thus, the wheel cylinder pressure Pw / c of the ABS non-target wheels belonging to the system that does not include the ABS target wheels can be maintained.
すなわち、 例えば左後輪 RLを A BS対象車輪とするアシスト圧 保持 ABS要求が発生した場合に、 上記図 24に示すアシス ト圧保 持状態を実現しつつ SRLH272および SRLR 2 8 0を ABS 制御の要求に応じて制御すれば、 左後輪 RLについては、 (ii)保持 モードおよび (iii)減圧モード、 および、 第 1ポンプ 5 6 0を液圧 源とする (i)増圧モー ドを実現することができる。 従って、 左後輪 RLのホイルシリ ンダ圧 Pw/c は、 A B S制御の要求に応じて制御 することができる。 また、 上記の状況下では、 ABS対象車輪を含 まない後輪の系統については、 上記図 2 4に示す状態と同様に維持 される。 従って、 左前輪 F Lおよび右後輪 RRについては、 BA制 御が単独で実行される場合と同様に、 それらのホイルシリ ンダ圧 P w/c を保持することができる。 That is, for example, when an assist pressure holding ABS request is made for the left rear wheel RL as an ABS target wheel, the SRLH272 and SRLR 280 are controlled by the ABS control while realizing the assist pressure holding state shown in FIG. If controlled as required, for the left rear wheel RL, (ii) holding mode and (iii) depressurizing mode, and (i) increasing pressure mode using the first pump 560 as the hydraulic pressure source can do. Therefore, the left rear wheel The RL wheel cylinder pressure Pw / c can be controlled according to the ABS control requirements. In the above situation, the rear wheel system not including the ABS target wheel is maintained in the same manner as the state shown in FIG. Therefore, the wheel cylinder pressure P w / c can be maintained for the front left wheel FL and the rear right wheel RR, as in the case where the BA control is performed alone.
しかし、 上記の手法によると、 左後輪 RLについて (iii)減圧 モードが実行された後、 ホイルシリ ンダ 2 8 8から流出したブレー キフル一 ドが第 1ポンプ 5 6 0にによって圧送され、 右前輪 FRの ホイルシリ ンダ 2 8 2に流入する。 このため、 同一の系統内に A B S対象車輪を備える前輪の系統に属する右前輪 F Rについては、 B A制御の要求に応えること、 すなわち、 ホイルシリ ンダ圧 Pw/C を 保持することができない。 However, according to the above method, the brake fluid flowing out of the wheel cylinder 288 is pumped by the first pump 560 after the pressure reduction mode is executed for the left rear wheel RL, and the right front wheel It flows into the FR foil cylinder 282. For this reason, the right front wheel FR belonging to the front wheel system having an ABS target wheel in the same system cannot meet the requirements of the BA control, that is, cannot maintain the wheel cylinder pressure P w / C.
図 27は、 左後輪 RLを A BS対象車輪とするアシスト圧保持 A B S要求が発生した場合に制動力制御装置において実現される状態 (以下、 アシス ト圧保持 A BS状態と称す) の一形態を示す。 左後 輪 RLを A BS対象車輪とするアシスト圧保持 A BS状態は、 下記 (e) 〜(g) の条件が満たされるように制動力制御装置を制御するこ とにより実現される。  Fig. 27 shows an example of a state (hereinafter referred to as an assist pressure holding ABS state) realized in the braking force control device when an assist pressure holding ABS request is made with the left rear wheel RL as an ABS target wheel. Is shown. The assist pressure holding ABS state in which the left rear wheel RL is the ABS target wheel is realized by controlling the braking force control device so that the following conditions (e) to (g) are satisfied.
(e) 上記図 24に示すアシスト圧保持状態でオフ状態とされてい る保持ソレノイ ド S * * Hのうち、 同一の系統内に A B S対象車輪 を有する A BS非対象車輪である右前輪 FRの保持ソレノィ ド SF RH 2 6 6をオン状態 (閉弁状態) とする。 具体的には、 (e- 1) マ ス夕カッ トソレノイ ド SMC- , 5 1 2, SMC-25 1 4をオン状態 とし、 (e-2) 第 1ポンプ 5 6 0および第 2ポンプ 5 6 2をォン状態 とし、 かつ、 (e- 3) SFRH 2 6 6をオン状態とする。 ( e ) Of the holding solenoids S ** H that are off in the assist pressure holding state shown in Fig. 24 above, the right front wheel FR, which is an ABS non-target wheel that has ABS target wheels in the same system, Turn the holding solenoid SF RH266 on (closed). Specifically, (e- 1) Ma scan evening cut Tosorenoi de SMC-, 5 1 2, SMC-2 5 1 4 a is turned on, (e -2) first pump 5 6 0 and a second pump 5 62 is turned on, and (e-3) SFRH 266 is turned on.
(0 A B S対象車輪である左後輪 R Lの保持ソレノィ ド SRLH 2 72および減圧ソレノイ ド SRLR 2 8 0を A B S制御の要求に 応じて、 上記 ) の条件と同様の手法で、 すなわち、 (i)増圧モー ドの維持時間を通常時に比して短縮したパターンで制御する。(0 The holding solenoid SRLH 272 and the depressurizing solenoid SRLR 280 of the left rear wheel RL, which is the ABS target wheel, are subjected to the ABS control request in the same manner as in the above condition), that is, (i) Booster mode Is controlled by a pattern in which the maintenance time of the node is shortened compared to the normal time.
(g) A B S対象車輪である左後輪 R Lを含む系統に属する第 1マ スタカッ トソレノイ ド 5 1 2を、 上記(c) の条件と同様の 手法で、 すなわち、 左後輪 R Lについて (i i i )減圧モードが実行さ れる時期と同期してオフ状態 (開弁状態) となるように制御する。 上記(e) の条件によれば、 アシスト圧増圧 A B S要求が生ずると 同時に、 A B S対象車輪を含む系統に厲する A B S非対象車輪であ る右前輪 F Rのホイルシリンダ 2 8 2を、 第 1 ポンプ 5 6 0から切 り離すことができる。 この場合、 第 1 ポンプ 5 6 0から吐出される ブレーキフルードがホイルシリ ンダ 2 8 2に流入しないため、 右前 輪 F Rのホイルシリ ンダ圧 P w/ c が B A制御の要求に応じて適正に 保持される。 (g) The first mastercut solenoid 521 belonging to the system including the left rear wheel RL, which is the ABS target wheel, is subjected to the same method as the above condition (c), that is, for the left rear wheel RL, Control so that it is turned off (opened) in synchronization with the time when the pressure reduction mode is executed. According to the above condition (e), the wheel cylinder 282 of the right front wheel FR, which is a non-ABS target wheel, is connected to the system including the ABS target wheel at the same time when the assist pressure increase ABS request is generated. Can be disconnected from pump 560. In this case, since the brake fluid discharged from the first pump 560 does not flow into the wheel cylinder 282, the wheel cylinder pressure P w / c of the right front wheel FR is appropriately maintained according to the BA control request. .
上記(O の条件によれば、 上記(b) の条件が実現された場合と同 様に、 A B S対象車輪である左後輪 R Lで (i )増圧モー ドが実行さ れる際に、 そのホイルシリ ンダ圧 P W/C に生ずる増圧量を抑制する ことができる。 According to the condition (O), as in the case where the condition (b) is realized, (i) when the pressure increase mode is executed on the left rear wheel RL, which is the ABS target wheel, The amount of pressure increase that occurs in the foil cylinder pressure PW / C can be suppressed.
更に、 上記(g) の条件によれば、 上記(d) の条件が実現された場 合と同様に、 ホイルシリ ンダ 2 8 8から流出したブレーキフルー ド が第 1 ポンプ 5 6 0によって圧送される時期と同期して、 第 1 ボン プ 5 6 0の吐出側とマスタシリ ンダ 2 1 8 とを導通状態とすること ができる。  Further, according to the condition (g), the brake fluid flowing out of the wheel cylinder 288 is pumped by the first pump 560 as in the case where the condition (d) is realized. In synchronization with the timing, the discharge side of the first pump 560 and the master cylinder 218 can be brought into conduction.
従って、 上述したアシス ト圧保持 A B S状態によれば、 A B S対 象車輪のホイルシリ ンダ圧 P w/ C を A B S制御が単独で実行される 場合と同様に制御することができると共に、 全ての A B S非対象車 輪のホイルシリンダ圧 P w/ C を、 B A制御が単独で実行されている 場合と同様に適正に保持することができる。 このように、 上述した アシス ト圧保持 A B S状態によれば、 アシスト圧保持 A B S要求が 発生した際に実現すべき機能を、 適切に実現することができる。 本実施例の制動力制御装置によれば、 A B S制御が単独で実行さ れている場合、 B A制御が単独で実行されている場合、 および、 B A + A B S制御が実行されている場合のそれぞれに対応して、 適宜 上記図 2 2乃至図 2 7に示す状態が実現される。 このため、 本実施 例の制動力制御装置によれば、 A B S制御または B A制御が単独で 実行されている場合に、 ホイルシリ ンダ圧 Pw/C をそれらの要求に 応じた適切な液圧に制御することができると共に、 B A + A B S制 御が実行されている場合に、 ① A B S対象車輪のホイルシリ ンダ圧 Pw/c を AB S制御によって要求される圧力に、 また、 ② A B S非 対象車輪のホイルシリ ンダ圧 Pw/C を B A制御によって要求される 圧力に、 それぞれ精度良く制御することができる。 Therefore, according to the above-described assist pressure holding ABS state, the wheel cylinder pressure P w / C of the ABS target wheel can be controlled in the same manner as in the case where the ABS control is executed alone, and all the ABS non-control operations are performed. The wheel cylinder pressure P w / C of the target wheel can be appropriately maintained as in the case where the BA control is executed alone. As described above, according to the assist pressure holding ABS state described above, the function to be realized when the assist pressure holding ABS request is generated can be appropriately realized. According to the braking force control device of the present embodiment, the ABS control is executed independently. In this case, the states shown in FIGS. 22 to 27 are realized as appropriate in accordance with the case where the BA control is executed independently and the case where the BA + ABS control is executed. You. Therefore, according to the braking force control device of the present embodiment, when the ABS control or the BA control is executed independently, the wheel cylinder pressure P w / C is controlled to an appropriate hydraulic pressure according to those requirements. When the BA + ABS control is executed, the wheel cylinder pressure Pw / c of the ABS target wheel is changed to the pressure required by the ABS control, and the wheel cylinder pressure of the ABS non-target wheel is changed. The pressure P w / C can be precisely controlled to the pressure required by BA control.
ところで、 上記の実施例においては、 B A + AB S制御の実行中 に、 A B S対象車輪で (iii)減圧モー ドが実行される場合にのみ、 その車輪と同一の系統に属するマスタ力ッ トツレノィ ド SMC-, 5 1 2, SMC-25 1 4開弁状態とすることとしているが、 本発明は これに限定されるものではなく、 BA + A B S制御の実行中、 常に それらを開弁状態とすることとしてもよい。 By the way, in the above embodiment, only when the (iii) decompression mode is executed on the ABS target wheel during the execution of the BA + ABS control, the master power train belonging to the same system as that wheel is used. SMC-, 5 1 2, although the fact that the SMC-2 5 1 4 open state, the present invention is not limited to this, during execution of the BA + ABS control, and always open state thereof You may do it.
尚、 上記の実施例においては、 第 1 ポンプ 5 6 0および第 2ボン プ 5 6 2が 「アシスト圧発生手段」 に、 液圧通路 5 1 8 , 5 2 2, 5 3 0 , 5 3 4が 「高圧通路」 に、 第 1マスタカツ トソレノィ ド S MC 5 1 2および第 2マスタカツ トツレノィ ド SMC-25 1 4力 「操作液圧力ッ ト機構」 に、 第 1減圧通路 5 4 8および第 2減圧通 路 5 5 0力 「低圧通路」 に、 また、 第 1 リザーバ 5 5 2および第 2 リサーバ 5 5 4が 「低圧源」 および 「第 低圧源」 に、 それぞれ相 当している。 Note that, in the above embodiment, the first pump 560 and the second pump 562 serve as the “assist pressure generating means” in the hydraulic pressure passages 5 18, 5 2 2, 5 3 0, 5 3 4 to but "high pressure passage", first Masutakatsu Tosorenoi de S MC 5 1 2 and the second Masutakatsu Totsurenoi de SMC-2 5 1 4 forces the "operation liquid Atsuryoku' preparative mechanism", the first pressure decreasing passage 5 4 8 and the second The decompression circuit 550 corresponds to the “low pressure passage”, and the first reservoir 552 and the second reservoir 554 correspond to the “low pressure source” and the “second low pressure source”, respectively.

Claims

請求の範囲 The scope of the claims
1 . ホイルシリ ンダに連通する液圧流入経路を遮断した状態でホ ィルシリ ンダ圧を制御する制動液圧減圧制御と、 運転者によって緊 急ブレーキ操作が実行された際に通常時に比して大きな制動液圧を 発生させるブレーキアシスト制御とを実行する制動力制御装置にお いて、 1. Hydraulic pressure reduction control that controls the wheel cylinder pressure while the hydraulic pressure inflow path communicating with the wheel cylinder is blocked, and braking that is greater than normal when emergency braking is performed by the driver In a braking force control device that executes a brake assist control that generates hydraulic pressure,
ホイルシリ ンダの液圧流入経路 ( 5 6 , 6 2 ) の導通状態を検出 する導通検出手段 (ステップ 1 0 4 ) と、  Continuity detecting means (step 104) for detecting the continuity of the hydraulic pressure flow path (56, 62) of the foil cylinder;
前記ブレーキアシス ト制御の開始時に、 何れかのホイルシリ ンダ の液圧流入経路が実質的に遮断されている場合には、 他のホイルシ リ ンダへの制動液圧の流入を抑制する液圧流入抑制手段 (ステップ 1 0 8 ) と、  If the hydraulic pressure inflow path of any one of the wheel cylinders is substantially blocked at the start of the brake assist control, the hydraulic pressure inflow is suppressed to suppress the inflow of the brake hydraulic pressure to another wheel cylinder. Means (step 108) and
を備えることを特徴とする制動力制御装置。  A braking force control device comprising:
2 . 車輪のスリ ップ状態に関する特性値が所定のしきい値を超え る場合に、 該車餘のホイルシリ ンダに連通する液圧流入経路を遮断 した状態でホイルシリ ンダ圧を減圧する減圧制御を実行した後に、 該ホイルシリ ンダについて所定の液圧制御を実行する制動液圧制御 と、 運転者によって緊急ブレーキ操作が実行された際に通常時に比 して大きな制動液圧を発生させるブレーキアシスト制御とを実行す る制動力制御装置において、 2. When the characteristic value related to the slip state of the wheel exceeds a predetermined threshold value, pressure reduction control for reducing the wheel cylinder pressure while the hydraulic pressure inflow path communicating with the wheel cylinder of the wheel is cut off is performed. After execution, a brake fluid pressure control for executing a predetermined fluid pressure control on the wheel cylinder, and a brake assist control for generating a larger brake fluid pressure than usual when an emergency brake operation is performed by the driver. In the braking force control device that executes
ホイルシリ ンダの液圧流入経路 ( 5 6、 6 2 ) の導通状態を検出 する導通検出手段 (ステップ 1 1 2 ) と、  A continuity detecting means (step 11) for detecting the continuity of the hydraulic pressure inflow path (56, 62) of the foil cylinder;
何れかのホイルシリ ンダの液圧流入経路が実質的に遮断された状 態で前記ブレーキアシスト制御が開始された場合には、 前記少なく とも他の一のホイルシリ ンダについて前記減圧制御が実行されるこ とにより生ずる減圧傾向を、 通常時に比して強める減圧傾向変更手 段 (ステップ 1 1 8 ) と、 を備えることを特徴とする制動力制御装置。 When the brake assist control is started in a state where the hydraulic pressure inflow path of any one of the foil cylinders is substantially blocked, the pressure reduction control is executed for the at least one other wheel cylinder. Means for changing the depressurization tendency (step 1 18), in which the decompression tendency caused by A braking force control device comprising:
3. 請求項 2記載の制動力制御装置において、 3. The braking force control device according to claim 2,
何れかのホイルシリ ンダの液圧流入経路 ( 5 6、 6 2 ) が実質的 に遮断された状態で前記ブレーキアシスト制御が開始された際に、 前記少なく とも他の一のホイルシリ ンダについての前記しきい値を 通常時に比して小さな値にするしきい値変更手段 (ステップ 1 1 8 ) を備えることを特徴とする制動力制御装置。  When the brake assist control is started in a state in which the hydraulic pressure inflow path (56, 62) of any one of the foil cylinders is substantially interrupted, the above-described operation of the at least one other foil cylinder is performed. A braking force control device comprising threshold value changing means (step 118) for setting a threshold value smaller than a normal value.
4. 運転者によって緊急ブレーキ操作が行われた際に通常時に比 して大きな制動油圧を発生させるブレーキアシスト制御と、 各車輪 の制動油圧を各車輪に過剰なスリ ップ率を発生させない圧力に制御 するアンチロックブレーキ制御と、 を実行する制動力制御装置にお いて、 4. Brake assist control, which generates a larger braking oil pressure than usual when an emergency braking operation is performed by the driver, and reduces the braking oil pressure of each wheel to a pressure that does not generate an excessive slip rate on each wheel. In the anti-lock brake control to control and the braking force control device to execute
ブレーキ操作量に応じた制動液圧を発生する操作液圧発生手段 ( 2 1 8 ) と、  Operating hydraulic pressure generating means (2 18) for generating brake hydraulic pressure according to the brake operation amount;
ブレーキ操作量と無関係に所定の制動液圧を発生するアシス卜圧 発生手段 ( 3 1 0、 3 1 2 ; 5 6 0 , 5 6 2 ) と、  Assist pressure generating means (310, 312; 560, 562) for generating a predetermined brake fluid pressure irrespective of the brake operation amount;
前記操作液圧発生手段および前記アシスト圧発生手段の双方に連 通する高圧通路 ( 2 4 8 , 2 5 0 , 2 5 2 ; 5 1 8 , 5 2 2 , 5 3 0 , 5 3 4 ) と、  A high-pressure passage (248, 250, 252; 518, 522, 530, 534) communicating with both the operating fluid pressure generating means and the assist pressure generating means; ,
前記操作液圧発生手段と前記高圧通路とを遮断状態とし得る操作 液圧力ッ ト機構 ( 2 4 2, 2 4 4 : 5 1 2 , 5 1 4 ) と、  An operating fluid pressure cut-off mechanism (242, 244: 512, 514) capable of shutting off the operating fluid pressure generating means and the high-pressure passage;
所定の低圧源 ( 3 0 2, 3 0 4 : 5 5 2, 5 5 4 ) に連通する低 圧通路 ( 2 9 8 , 3 0 0 : 5 4 8, 5 5 0 ) と、  A low-pressure passage (298, 300: 548, 550) communicating with a predetermined low-pressure source (302, 304: 552, 554);
各車輪のホイルシリ ンダと前記高圧通路との導通状態、 および、 各車輪のホィルシリ ンダと前記低圧通路との導通状態を制御する導 通状態制御機構 ( 2 6 6 — 2 8 0 ) と、  A conduction state control mechanism (266-280) for controlling a conduction state between the wheel cylinder of each wheel and the high-pressure passage and a conduction state between the wheel cylinder of each wheel and the low-pressure passage;
運転者によって緊急ブレーキ操作が行われた場合に、 前記操作液 圧カッ ト機構を遮断状態とし、 かつ、 前記アシス ト圧発生手段から 前記高圧通路に所定の制動液圧を供給させる B A制御手段と、 前記導通状態制御機構を所定の制御パターンで制御することによ り、 各車輪に過剰なスリ ップ率が生じないように各車輪のホイルシ リ ンダ圧を制御する A B S制御手段 (F I G. 2 0のルーチン) と、 アンチ口ックブレーキ制御が単独で実行されている場合に前記制 御パターンを通常パターンとし、 アンチロックブレーキ制御とブ レーキアシスト制御とが同時に実行されている場合に、 前記制御パ ターンをホイルシリ ンダ圧の増圧量を抑制するための増圧量抑制パ ターンとする A B S制御パターン選択手段 (F I G. 2 0のル一チ ン) と、 When an emergency brake operation is performed by the driver, the operation fluid BA control means for causing the pressure cut mechanism to be in a cutoff state, and for supplying a predetermined brake fluid pressure to the high-pressure passage from the assist pressure generation means, and controlling the conduction state control mechanism in a predetermined control pattern. Thus, the ABS control means (FIG. 20 routine) for controlling the wheel cylinder pressure of each wheel so that an excessive slip ratio does not occur on each wheel, and the anti-lock brake control are executed independently. When the anti-lock brake control and the brake assist control are being executed simultaneously, the control pattern is increased to suppress the increase in the wheel cylinder pressure. ABS control pattern selection means (FI G. 20 routine) for pressure suppression pattern;
を備えることを特徴とする制動力制御装置。  A braking force control device comprising:
5. 運転者によって緊急ブレーキ操作が行われた際に通常時に比 して大きな制動油圧を発生させるブレーキアシス ト制御と、 各車輪 の制動油圧を各車輪に過剰なスリ ップ率を発生させない圧力に制御 するアンチロックブレーキ制御と、 を実行する制動力制御装置にお いて、 5. Brake assist control that generates a larger brake oil pressure than usual when an emergency brake operation is performed by the driver, and a pressure at which the brake oil pressure of each wheel does not generate an excessive slip rate on each wheel In the anti-lock brake control that controls the pressure and the braking force control device that performs the pressure,
ブレーキ操作量に応じた制動液圧を発生する操作液圧発生手段 ( 2 1 8 ) と、  Operating hydraulic pressure generating means (2 18) for generating brake hydraulic pressure according to the brake operation amount;
ブレーキ操作量と無関係に所定の制動液圧を発生するアシスト圧 発生手段 ( 3 1 0、 3 1 2 ; 5 6 0 , 5 6 2 ) と、  Means for generating an assist pressure (310, 312; 560, 562) for generating a predetermined brake fluid pressure regardless of the brake operation amount;
前記操作液圧発生手段および前記アシス 卜圧発生手段の双方に連 通する高圧通路 ( 2 4 8 , 2 5 0 , 2 5 2 : 5 1 8 , 5 2 2, 5 3 0 , 5 3 4 ) と、  High pressure passages (248, 250, 25: 518, 522, 5330, 5334) communicating with both the operating hydraulic pressure generating means and the assist pressure generating means When,
前記操作液圧発生手段と前記高圧通路とを遮断状態とし得る操作 液圧力ッ ト機構 ( 2 4 2, 2 4 4 ; 5 1 2 , 5 1 4 ) と、  An operating hydraulic pressure cut-off mechanism (24, 24, 4; 512, 514) that can shut off the operating hydraulic pressure generating means and the high-pressure passage;
所定の低圧源 ( 3 0 2, 3 0 4 : 5 5 2 , 5 5 4 ) に連通する低 圧通路 ( 2 9 8, 3 0 0 : 5 4 8 , 5 5 0 ) と、 各車輪のホイルシリ ンダと前記高圧通路との導通状態、 および、 各車輪のホイルシリ ンダと前記低圧通路との導通状態を制御する導 通状態制御機構 ( 2 6 6— 2 8 0 ) と、 A low pressure passage (298, 300: 548, 550) communicating with a predetermined low pressure source (302, 304: 552, 554); A conduction state control mechanism (266-280) for controlling a conduction state between the wheel cylinder of each wheel and the high-pressure passage, and a conduction state between the wheel cylinder of each wheel and the low-pressure passage;
運転者によって緊急ブレーキ操作が行われた場合に、 前記操作液 圧カッ ト機構を遮断状態とし、 かつ、 前記アシス ト圧発生手段から 前記高圧通路に所定の制動液圧を供給させる B A制御手段と、 前記導通状態制御機構を所定の制御パターンで制御することによ り、 各車輪に過剰なスリ ップ率が生じないように各車輪のホイルシ リ ンダ圧を制御する A B S制御手段 (F I G. 2 0のルーチン) と、 ブレーキアシスト制御とアンチ口ックブレーキ制御とが同時に実 行されている場合に、 アンチ口ックブレーキ制御の非対象車輪のホ ィルシリ ンダ圧の増圧勾配が抑制されるように、 前記非対象車輪に 対応して設けられている前記導通状態制御機構を制御する B A増圧 勾配抑制手段 (F I G. 1 9のルーチン) と、  BA control means for shutting off the operating hydraulic pressure cut-off mechanism when an emergency brake operation is performed by a driver, and for supplying predetermined brake hydraulic pressure to the high-pressure passage from the assist pressure generating means; By controlling the conduction state control mechanism according to a predetermined control pattern, ABS control means (FIG. 1) for controlling the wheel cylinder pressure of each wheel so that an excessive slip ratio does not occur in each wheel. 20 routine), and when the brake assist control and the anti-braking brake control are executed simultaneously, the increasing gradient of the wheel cylinder pressure of the wheels not to be subjected to the anti-braking brake control is suppressed. BA pressure increase gradient suppression means (a routine of FIG. 19) for controlling the conduction state control mechanism provided corresponding to the non-target wheel;
を備えることを特徴とする制動力制御装置。  A braking force control device comprising:
6. 運転者によって緊急ブレーキ操作が行われた際に通常時に比 して大きな制動油圧を発生させるブレーキアシスト制御と、 各車輪 の制動油圧を各車輪に過剰なスリ ップ率を発生させない圧力に制御 するアンチロックブレーキ制御と、 を実行する制動力制御装置にお いて、 6. Brake assist control, which generates a larger brake oil pressure than usual when an emergency brake operation is performed by the driver, and reduces the brake oil pressure of each wheel to a pressure that does not generate an excessive slip rate on each wheel. In the anti-lock brake control to control and the braking force control device to execute
ブレーキ操作量に応じた制動液圧を発生する操作液圧発生手段 ( 2 1 8 ) と、  Operating hydraulic pressure generating means (2 18) for generating brake hydraulic pressure according to the brake operation amount;
第 1低圧源 ( 2 2 4 ) および第 2低圧源 ( 3 0 2, 3 0 4 ; 5 5 2, 5 5 4 ) に連通する低圧通路 ( 2 9 8 , 3 0 0 : 5 4 8 , 5 5 0 ) と、  Low-pressure passages (298, 300: 548, 5) communicating with the first low-pressure source (224) and the second low-pressure source (302, 304; 552, 554). 5 0)
前記低圧通路から吸入したブレーキフルードを圧送することによ りブレーキ操作量と無関係に所定の制動液圧を発生するアシスト圧 発生手段 ( 3 1 0, 3 1 2 : 5 6 0 , 5 6 2) と、 前記操作液圧発生手段および前記アシスト圧発生手段の双方に連 通する高圧通路 ( 2 4 8 , 2 5 0 , 2 5 2 : 5 1 8 , 5 2 2, 5 3 0, 5 3 4 ) と、 Assist pressure generating means (310, 316: 560, 562) for generating a predetermined brake fluid pressure irrespective of the brake operation amount by pumping the brake fluid sucked from the low-pressure passage. When, A high-pressure passage (248, 250, 252: 518, 522, 530, 534) communicating with both the operating fluid pressure generating means and the assist pressure generating means; ,
前記操作液圧発生手段と前記高圧通路とを遮断状態とし得る操作 液圧カッ ト機構 ( 2 4 2, 2 4 4 : 5 1 2, 5 1 4 ) と、  An operation hydraulic pressure cut mechanism (24, 2, 24, 4: 5, 12, 14) that can shut off the operation hydraulic pressure generation means and the high pressure passage;
各車輪のホイルシリ ンダと前記高圧通路との導通状態、 および、 各車輪のホイルシリ ンダと前記低圧通路との導通状態を制御する導 通状態制御機構 ( 2 6 6 - 2 8 0 ) と、  A conduction state control mechanism (266-280) for controlling a conduction state between the wheel cylinder of each wheel and the high-pressure passage and a conduction state between the wheel cylinder of each wheel and the low-pressure passage;
運転者によって緊急ブレーキ操作が行われた場合に、 前記操作液 圧カッ ト機構を遮断状態とし、 かつ、 前記アシス ト圧発生手段から 前記高圧通路に所定の制動液圧を供給させる B A制御手段と、 前記導通状態制御機構を所定の制御パターンで制御することによ り、 各車輪に過剰なスリ ッブ率が生じないように各車輪のホイルシ リ ンダ圧を制御する A B S制御手段 (F I G. 2 0のルーチン) と、 ブレーキアシス ト制御とアンチロックブレーキ制御とが同時に実 行されている場合に、 前記第 1低圧源と前記アシス 卜圧発生手段と を遮断状態とする低圧源カツ ト手段 (F I G. 1 8のルーチン) と、 を備えることを特徵とする制動力制御装置。  BA control means for shutting off the operating hydraulic pressure cut-off mechanism when an emergency brake operation is performed by a driver, and for supplying predetermined brake hydraulic pressure to the high-pressure passage from the assist pressure generating means; By controlling the conduction state control mechanism according to a predetermined control pattern, ABS control means (FIG. 1) for controlling the wheel cylinder pressure of each wheel so that an excessive slip ratio does not occur in each wheel. 20) and the low pressure source cutting means for shutting off the first low pressure source and the assist pressure generating means when the brake assist control and the antilock brake control are simultaneously executed. (A routine of FIG. 18) A braking force control device comprising:
7. 運転者によって緊急ブレーキ操作が行われた際に通常時に比 して大きな制動油圧を発生させるブレーキアシス卜制御と、 各車輪 の制動油圧を各車輪に過剰なスリ ップ率を発生させない圧力に制御 するアンチロックブレーキ制御と、 を実行する制動力制御装置にお いて、 7. Brake assist control that generates a larger brake oil pressure than normal when an emergency brake operation is performed by the driver, and a pressure at which the brake oil pressure of each wheel does not generate an excessive slip rate on each wheel In the anti-lock brake control that controls the pressure and the braking force control device that performs the pressure,
ブレーキ操作量に応じた制動液圧を発生する操作液圧発生手段 ( 2 1 8 ) と、  Operating hydraulic pressure generating means (2 18) for generating brake hydraulic pressure according to the brake operation amount;
ブレーキ操作量と無関係に所定の制動液圧を発生するアシスト圧 発生手段 ( 3 1 0, 3 1 2 : 5 6 0, 5 6 2 ) と、  Assist pressure generating means (310, 312: 560, 562) for generating a predetermined braking fluid pressure regardless of the brake operation amount;
前記操作液圧発生手段および前記ァシス ト圧発生手段の双方に連 通する高圧通路 ( 2 4 8 , 2 5 0 , 2 5 2 ; 5 1 8 , 5 2 2, 5 3 0 , 5 3 4 ) と、 Linked to both the operating fluid pressure generating means and the assist pressure generating means. High-pressure passages (248, 250, 252; 518, 52, 52, 53, 53)
前記操作液圧発生手段と前記高圧通路とを遮断状態とし得る操作 液圧カッ ト機構 ( 2 4 2, 2 4 4 : 5 1 2 , 5 1 4 ) と、  An operating hydraulic pressure cut mechanism (24, 24, 24: 51, 24) that can shut off the operating hydraulic pressure generating means and the high-pressure passage;
所定の低圧源 ( 3 0 2, 3 0 4 : 5 5 2 , 5 5 4 ) に連通する低 圧通路 ( 2 9 8 , 3 0 0 : 5 4 8 , 5 5 0 ) と、  A low-pressure passage (298, 300: 548, 550) communicating with a predetermined low-pressure source (302, 304: 552, 554);
各車輪のホイルシリ ンダと前記高圧通路との導通状態、 および、 各車輪のホイルシリ ンダと前記低圧通路との導通状態を制御する導 通状態制御機構 ( 2 6 6 — 2 8 0 ) と、  A conduction state control mechanism (266-280) for controlling a conduction state between the wheel cylinder of each wheel and the high-pressure passage, and a conduction state between the wheel cylinder of each wheel and the low-pressure passage;
運転者によって緊急ブレーキ操作が行われた場合に、 前記操作液 圧カッ ト機構を遮断状態とし、 かつ、 前記アシスト圧発生手段から 前記高圧通路に所定の制動液圧を供給させる B A制御手段と、 前記導通状態制御機構を所定の制御パターンで制御することによ り、 各車輪に過剰なスリ ップ率が生じないように各車輪のホイルシ リ ンダ圧を制御する A B S制御手段 (F I G. 2 0のルーチン) と、 ブレーキアシスト制御とアンチ口ックブレーキ制御とが同時に実 行されている場合に、 前記操作液圧カツ ト機構を導通状態とする高 圧通路開放手段と、  BA control means for shutting off the operating hydraulic pressure cutoff mechanism when an emergency brake operation is performed by a driver, and for supplying predetermined brake hydraulic pressure to the high-pressure passage from the assist pressure generating means; By controlling the conduction state control mechanism according to a predetermined control pattern, an ABS control means (FIG. 2) for controlling the wheel cylinder pressure of each wheel so as not to generate an excessive slip rate on each wheel. 0 routine), and high-pressure passage opening means for turning on the operating hydraulic pressure cutting mechanism when the brake assist control and the anti-braking brake control are simultaneously executed;
を備えることを特徴とする制動力制御装置。  A braking force control device comprising:
8. 請求項 6記載の制動力制御装置において、 8. The braking force control device according to claim 6,
ブレーキアシスト制御とアンチ口ックブレーキ制御とが同時に実 行されており、 かつ、 アンチロックブレーキ制御の対象車輪におい てホイルシリ ンダ圧の減圧が図られている場合に、 前記操作液圧 カツ ト機構を導通状態とする高圧通路開放手段を備えることを特徴 とする制動力制御装置。  When the brake assist control and the anti-lock brake control are performed simultaneously and the wheel cylinder pressure is reduced at the target wheel for the anti-lock brake control, the operation hydraulic cut mechanism is turned on. A braking force control device comprising high-pressure passage opening means for setting a state.
PCT/JP1997/002509 1996-08-02 1997-07-18 Brake force control device WO1998005539A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97932023A EP0918004B1 (en) 1996-08-02 1997-07-18 Brake force control device
AU35586/97A AU3558697A (en) 1996-08-02 1997-07-18 Brake force control device
US09/242,087 US6293633B1 (en) 1996-08-02 1997-07-18 Braking force control apparatus
DE69718005T DE69718005T2 (en) 1996-08-02 1997-07-18 BRAKE DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP20481996 1996-08-02
JP8/204819 1996-08-02
JP05207897A JP3287259B2 (en) 1996-08-02 1997-03-06 Braking force control device
JP9/52078 1997-03-06

Publications (1)

Publication Number Publication Date
WO1998005539A1 true WO1998005539A1 (en) 1998-02-12

Family

ID=26392687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002509 WO1998005539A1 (en) 1996-08-02 1997-07-18 Brake force control device

Country Status (6)

Country Link
US (1) US6293633B1 (en)
EP (2) EP0918004B1 (en)
JP (1) JP3287259B2 (en)
AU (1) AU3558697A (en)
DE (2) DE69726472T2 (en)
WO (1) WO1998005539A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137016B4 (en) * 2000-08-11 2021-06-24 Continental Teves Ag & Co. Ohg Procedure for brake pressure regulation
WO2002014130A1 (en) * 2000-08-11 2002-02-21 Continental Teves Ag & Co.Ohg Method and device for regulating braking pressure
JP2002264787A (en) * 2001-03-07 2002-09-18 Bosch Braking Systems Co Ltd Electric brake controller
US20040124700A1 (en) * 2001-03-15 2004-07-01 Steffen Luh Method for controlling and/or regulating the build-up of brake pressure when full braking at a high friction coefficient
JP4367051B2 (en) * 2003-08-25 2009-11-18 株式会社アドヴィックス Electric brake system
DE102004027508A1 (en) * 2004-06-04 2005-12-22 Robert Bosch Gmbh Hydraulic brake system and method for influencing a hydraulic brake system
WO2006006453A1 (en) * 2004-07-08 2006-01-19 Toyota Jidosha Kabushiki Kaisha Braking force controller of vehicle
JP4697436B2 (en) * 2005-05-17 2011-06-08 株式会社アドヴィックス Vehicle motion control device
DE102006025327A1 (en) * 2006-03-04 2007-09-20 Continental Teves Ag & Co. Ohg motorcycle brake system
JP4972575B2 (en) * 2008-02-08 2012-07-11 日信工業株式会社 Brake hydraulic pressure control device for vehicles
JP4790744B2 (en) * 2008-03-27 2011-10-12 日信工業株式会社 Brake hydraulic pressure control device for vehicles
JP5125944B2 (en) * 2008-09-25 2013-01-23 トヨタ自動車株式会社 Brake control device
US8544964B2 (en) * 2010-06-29 2013-10-01 Deere & Company Brake control system for dual mode vehicle
JP5839440B2 (en) * 2011-04-01 2016-01-06 本田技研工業株式会社 Braking force control device
DE102013011556B4 (en) 2013-07-11 2019-05-29 Audi Ag Brake device for hydraulic brake system
JP6281263B2 (en) * 2013-11-29 2018-02-21 株式会社アドヴィックス Brake device
JP6415304B2 (en) * 2014-12-24 2018-10-31 ヴィオニア日信ブレーキシステムジャパン株式会社 Vehicle control device
JP6415305B2 (en) * 2014-12-24 2018-10-31 ヴィオニア日信ブレーキシステムジャパン株式会社 Vehicle control device
JP6241448B2 (en) * 2015-04-28 2017-12-06 株式会社アドヴィックス Braking device for vehicle
DE102017206250A1 (en) * 2017-04-11 2018-10-11 Audi Ag Brake system for a motor vehicle and method for operating a brake system for a motor vehicle
JP6694036B2 (en) * 2018-10-10 2020-05-13 株式会社シマノ Bicycle equipment
CN114148304B (en) * 2022-02-07 2022-04-26 深圳佑驾创新科技有限公司 Vehicle anti-lock optimization control method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121260A (en) 1990-09-11 1992-04-22 Toyota Motor Corp Hydraulic brake device
JPH0550908A (en) * 1991-08-15 1993-03-02 Akebono Brake Res & Dev Center Ltd Automatic brake device
JPH07315187A (en) * 1994-05-27 1995-12-05 Fuji Heavy Ind Ltd Control of automatic brake control system
JPH0986372A (en) * 1995-09-26 1997-03-31 Jidosha Kiki Co Ltd Brake system

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268560A (en) 1985-05-22 1986-11-28 Nissan Motor Co Ltd Brake booster
JPH0676045B2 (en) * 1985-09-27 1994-09-28 株式会社曙ブレ−キ中央技術研究所 Vehicle anti-lock controller
JP2811105B2 (en) 1990-01-31 1998-10-15 トキコ株式会社 Pneumatic booster
DE4028290C1 (en) 1990-09-06 1992-01-02 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
DE4037468A1 (en) * 1990-11-24 1992-05-27 Daimler Benz Ag METHOD FOR ACTIVATING THE HYDRAULIC SERVICE BRAKE SYSTEM OF A ROAD VEHICLE
DE4102497C1 (en) 1991-01-29 1992-05-07 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
JPH0597022A (en) 1991-06-14 1993-04-20 Nisshinbo Ind Inc Method and device for controlling brake
DE4132469A1 (en) * 1991-09-30 1993-04-01 Bosch Gmbh Robert HYDRAULIC BRAKE SYSTEM, ESPECIALLY FOR MOTOR VEHICLES, WITH A DIFFERENTIAL LOCK
DE4208496C1 (en) 1992-03-17 1993-08-05 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
DE4234041C1 (en) 1992-10-09 1994-03-17 Daimler Benz Ag Brake pressure control device for a road vehicle
DE4309850C2 (en) 1993-03-26 1996-12-12 Lucas Ind Plc Brake booster system for regulating a brake pressure with a brake booster
US5772290A (en) 1993-07-27 1998-06-30 Lucas Industries Public Limited Company Vehicle brake system having an electronically controlled booster
DE4325940C1 (en) 1993-08-03 1994-12-01 Daimler Benz Ag Method for determining the start and end of an automatic braking process
DE4329140C1 (en) * 1993-08-30 1994-12-01 Daimler Benz Ag Brake pressure control device
EP0644093B1 (en) * 1993-09-22 2002-12-11 Aisin Seiki Kabushiki Kaisha Apparatus for controlling brake pressure to wheels
DE4332838C1 (en) 1993-09-27 1994-12-15 Telefunken Microelectron Method for brake-pressure control for a servobrake system of a motor vehicle
DE4338070C1 (en) 1993-11-08 1995-02-16 Daimler Benz Ag Device for the terminating of an automatic braking sequence in motor vehicles
DE4338068C1 (en) 1993-11-08 1995-03-16 Daimler Benz Ag Method for the driver-dependent determining of the triggering sensitivity of an automatic braking sequence for a motor vehicle
DE4338066C1 (en) 1993-11-08 1995-04-06 Daimler Benz Ag Method for performing an automatic braking process for motor vehicles with an anti-lock braking system
DE4338067C1 (en) 1993-11-08 1995-03-16 Daimler Benz Ag Method for the termination of an automatic braking sequence for motor vehicles
DE4338069C1 (en) 1993-11-08 1995-03-16 Daimler Benz Ag Method for determining the triggering sensitivity of an automatic braking sequence for motor vehicles
DE4338064C1 (en) 1993-11-08 1995-03-16 Daimler Benz Ag Method for monitoring the functioning of a device for the performance of an automatic braking sequence
DE4338065C2 (en) 1993-11-08 1995-08-10 Daimler Benz Ag Method for performing an automatic braking process for motor vehicles with an anti-lock braking system
DE4343314A1 (en) 1993-12-18 1995-06-22 Bosch Gmbh Robert External brake system
DE4413172C1 (en) 1994-04-15 1995-03-30 Daimler Benz Ag Method for determining the triggering sensitivity of an automatic braking sequence in a motor vehicle according to the driving situation
DE4415613C1 (en) 1994-05-04 1995-04-27 Daimler Benz Ag Hydraulic dual-circuit brake system for a road vehicle
DE4418043C1 (en) 1994-05-24 1995-07-06 Daimler Benz Ag Determining sensitivity of motor vehicle automatic braking process
JP3144218B2 (en) 1994-06-06 2001-03-12 三菱自動車工業株式会社 Vehicle braking system
JP3246204B2 (en) 1994-07-25 2002-01-15 トヨタ自動車株式会社 Automatic vehicle braking system
ES2092365T3 (en) 1994-07-27 1996-11-16 Lucas Ind Plc VEHICLE BRAKE SYSTEM THAT HAS AN ELECTRONICALLY CONTROLLED SERVO BRAKE.
JP3384125B2 (en) * 1994-08-11 2003-03-10 株式会社デンソー Vehicle brake pressure control device
DE4430461A1 (en) 1994-08-27 1996-02-29 Teves Gmbh Alfred Method for controlling the brake pressure as a function of the pedal actuation speed
DE4436819C2 (en) 1994-10-14 1998-09-24 Lucas Ind Plc Electronically controlled vehicle brake system and method for its operation
DE4438966C1 (en) 1994-10-31 1995-12-21 Daimler Benz Ag Determining start of automatic braking process for motor vehicle
DE4440291C1 (en) 1994-11-11 1995-12-21 Telefunken Microelectron Control of vehicle braking
DE4440290C1 (en) 1994-11-11 1995-12-07 Daimler Benz Ag Release threshold determination system for vehicle automatic braking
DE19501760B4 (en) * 1995-01-21 2005-11-03 Robert Bosch Gmbh Method and device for controlling an ABS / ASR system
DE19503202C1 (en) 1995-02-02 1996-04-04 Daimler Benz Ag Method to end automatic braking stage in vehicle
JP3438401B2 (en) 1995-04-28 2003-08-18 トヨタ自動車株式会社 Vehicle braking pressure control device
DE19537439B4 (en) * 1995-10-07 2004-02-26 Robert Bosch Gmbh Method and device for controlling the brake system of a vehicle
JPH09142279A (en) * 1995-11-24 1997-06-03 Aisin Seiki Co Ltd Brake hydraulic pressure control device
DE19619985A1 (en) * 1995-11-25 1997-05-28 Bosch Gmbh Robert Hydraulic vehicle brake system
EP0850813B1 (en) * 1996-12-24 2006-02-08 Denso Corporation Brake system
JPH1191530A (en) * 1997-09-17 1999-04-06 Aisin Seiki Co Ltd Vehicular hydraulic brake device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121260A (en) 1990-09-11 1992-04-22 Toyota Motor Corp Hydraulic brake device
JPH0550908A (en) * 1991-08-15 1993-03-02 Akebono Brake Res & Dev Center Ltd Automatic brake device
JPH07315187A (en) * 1994-05-27 1995-12-05 Fuji Heavy Ind Ltd Control of automatic brake control system
JPH0986372A (en) * 1995-09-26 1997-03-31 Jidosha Kiki Co Ltd Brake system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0918004A4

Also Published As

Publication number Publication date
DE69718005T2 (en) 2003-11-06
JPH1095327A (en) 1998-04-14
AU3558697A (en) 1998-02-25
US6293633B1 (en) 2001-09-25
DE69726472D1 (en) 2004-01-08
EP0918004B1 (en) 2002-12-18
JP3287259B2 (en) 2002-06-04
DE69726472T2 (en) 2004-09-09
EP1182107B1 (en) 2003-11-26
DE69718005D1 (en) 2003-01-30
EP0918004A1 (en) 1999-05-26
EP0918004A4 (en) 1999-08-04
EP1182107A1 (en) 2002-02-27

Similar Documents

Publication Publication Date Title
WO1998005539A1 (en) Brake force control device
JP3716493B2 (en) Braking force control device
JP3055097B2 (en) Operating device for braking system of road vehicles
US20120190500A1 (en) Vehicle controller system
WO1998006609A1 (en) Brake force control device
JP3454092B2 (en) Braking force control device
WO1997039926A1 (en) Brake force control device
WO1997039932A1 (en) Braking force controller
JP3724053B2 (en) Braking force control device
JP3716494B2 (en) Braking force control device
WO1997041013A1 (en) Braking force control apparatus
JP5125944B2 (en) Brake control device
JPH10310041A (en) Braking force controller
JP3617180B2 (en) Braking force control device
JPH07304440A (en) Slip control device for vehicle
US20200282963A1 (en) Braking force control apparatus for a vehcile
WO1998039185A1 (en) Braking force controller
JP3451874B2 (en) Braking force control device
JPH1035450A (en) Brake apparatus for vehicle
JP3296236B2 (en) Braking force control device
JPH10236296A (en) Braking device
JPH0872688A (en) Brake pressure controller for vehicle
JP3451876B2 (en) Braking force control device
JP3716484B2 (en) Brake device for vehicle
JP2000255407A (en) Hydraulic brake device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997932023

Country of ref document: EP

Ref document number: 09242087

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997932023

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1997932023

Country of ref document: EP