WO1998004893A1 - Anordnung zur erfassung der temperatur des ankers eines gleichstrommotors - Google Patents

Anordnung zur erfassung der temperatur des ankers eines gleichstrommotors Download PDF

Info

Publication number
WO1998004893A1
WO1998004893A1 PCT/DE1997/001166 DE9701166W WO9804893A1 WO 1998004893 A1 WO1998004893 A1 WO 1998004893A1 DE 9701166 W DE9701166 W DE 9701166W WO 9804893 A1 WO9804893 A1 WO 9804893A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
current
motor
temperature
voltage
Prior art date
Application number
PCT/DE1997/001166
Other languages
English (en)
French (fr)
Inventor
Gunnar Lochmahr
Volker Aab
Gerhard Knecht
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP97926996A priority Critical patent/EP0852710A1/de
Priority to JP10508358A priority patent/JPH11514094A/ja
Priority to US09/043,718 priority patent/US6111330A/en
Publication of WO1998004893A1 publication Critical patent/WO1998004893A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/346Testing of armature or field windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit

Definitions

  • the invention is based on an arrangement for detecting the
  • the arrangement according to the invention takes a very advantageous path, which is different in principle.
  • the temperature is recognized indirectly from the temperature-dependent armature resistance, the armature resistance as the quotient of the voltage currently present at the terminals of the motor and the blocking current the anchor is determined, and is set in relation to the respective temperature.
  • the blocking current is determined by extrapolation of the armature current measured at a specific point in time.
  • An embodiment of the invention that is particularly expedient for the simple and reliable implementation of the invention provides that the current flowing in the armature is measured via a shunt resistor and, if necessary, amplified and digitized into a current signal by means of an analog-digital converter.
  • the current signal determined from the current flowing in the armature is averaged with adaptable, calculated integration times with the aid of an integrator which can be controlled by a microcontroller.
  • the current signal determined from the current flowing in the armature is integrated over several commutation periods.
  • this embodiment of the invention it is provided that the integration of the current signal determined from the current flowing in the armature is interrupted when a threshold value is exceeded, the determined value is digitized and stored, the integration is started again and this process is continued until the total adjusted and planned integration time has expired.
  • Possibility of application of the invention is very useful for indirect determination of the speed of the motor and / or critical or interesting changes in the speed of the motor.
  • the speed is proportional to the im, taking into account a motor-specific proportionality constant
  • Fig. 1 shows the course of the Motorstro s together with superimposed commutation fluctuations
  • Fig. 2 shows schematically a block diagram of the arrangement according to the invention.
  • the temperature occurring in the DC motor or in the armature of the DC motor is determined in an indirect manner.
  • the temperature is recognized indirectly from the temperature-dependent armature resistance R A.
  • the armature resistance R A itself is determined as the quotient of the voltage U l currently present at the terminals of the motor, which corresponds to the battery voltage U bat when connected to a battery, in particular a motor vehicle battery, and the blocking current I b ⁇ ock of the armature and in Relation to the respective temperature set.
  • the generally known assignment of measured resistance and associated temperature is not discussed in more detail in the following description.
  • the armature current is limited by the armature inductance. Therefore, flows to the switch-on time is not the blocking current I ⁇ ock, but it results in an exponentially increasing armature current to the electric time constant ⁇ elektr ⁇ sch, which is substantially smaller than x mech •
  • the start-up current spike does not reach the full stall current I b ⁇ ock, since the armature the motor starts to rotate, while the electrical time constant ⁇ elektr ⁇ sch elapses.
  • the ratio of The blocking current at the start current peak only depends on the two time constants ⁇ mech and "-e lektr i sch a b, and is therefore constant.
  • the current signal is averaged over a period of a suitable number of commutation ripples.
  • 1 denotes a direct current motor which, via a double relay 2, either to the voltage U Bat of a motor vehicle battery, not shown, which in the example shown shows the terminal voltage U kl present at the terminals of the motor represents, or for measuring the motor current to a measuring resistor 3, a shunt, can be connected.
  • One side of the shunt 3 is connected to ground potential GND, while the other connection is led via a resistor 4 to the inverting input - of an operational amplifier 5.
  • the measured armature current value of the motor 1 which is tapped at the shunt 3 and converted into a current signal VI, is amplified.
  • the output 6 of the operational amplifier 5 is fed back to its inverting input - via a capacitor 7.
  • the operational amplifier 5 forms together with the
  • Capacitor 7 an integrator.
  • a reference voltage U re £ is present at the non-inverting input + of the operational amplifier 5, which is selected such that it is always greater than the maximum amplitude of the current signal VI, which corresponds to the blocking current I B i ock .
  • the capacitor 7 can be bridged by a transistor 8, in particular in the form of a MOSFET.
  • the transistor 8 is controlled by a resistor 9 from the input 10 with an erase pulse. As a result, the capacitor 7 is short-circuited and discharged in a controlled manner when the erase pulse occurs.
  • the initial condition for an integration is redetermined and the integration can start again.
  • the integrated and amplified current signal VI present at the output 6 of the operational amplifier 5 is fed to an analog-to-digital converter (not shown) and to a microcontroller (also not shown) for evaluation.
  • the microcontroller generates the erase pulse supplied at input 10 to control the integration. With each extinguishing pulse supplied, the capacitor 7 is discharged and the voltage at the output 6 and at the capacitor 7 can build up again immediately thereafter.
  • the integration is carried out as long as it is specified by the microcontroller. Here, by interrupting the integration when a certain voltage value is reached and adding up the respective digitized accumulated values, until the voltage value of the integrator is reached at the end of the expired predetermined integration time.
  • the integration time constant of the integrator formed in the core from operational amplifier 5 and capacitor 7, is set in such a way that the modulation range of the integrator is almost fully utilized when the engine 1 is idling.
  • the integration time constant increases and the armature current and thus the voltage signal to be integrated also.
  • the integration is interrupted when a certain threshold value is reached, as already explained above. At this point the voltage value is
  • Digitized converter and the elapsed integration time is subtracted from the total integration time adapted to the speed.
  • the capacitor 7 is now discharged by means of the erase pulse supplied by the microcontroller via the input 10 via the transistor 8 which has been switched on for about 1 ms, and the integration is started again. This procedure is continued until the entire integration time has elapsed, the last integration, as already described above, not being terminated by exceeding a voltage level at the integrator output, but rather by the elapsed integration time.
  • the arrangement described above is suitable for the indirect determination of the current speed N of the engine 1.
  • critical or other interesting changes in the speed N of the engine 1 can also be determined indirectly.
  • a measure of the speed N is the voltage U ⁇ nd induced in the armature. This voltage U ⁇ nd is, taking into account a measurement which can be easily determined empirically beforehand for each motor type
  • This described method offers the possibility, controlled by the microcontroller, over a fixed number of
  • the value range of an 8-bit analog-to-digital converter can be increased by interrupting the integration several times and adding the individual integration results. This is particularly valuable and advantageous because the dynamic range of the measurement is very large due to the possible fluctuations in the electrical system of a motor vehicle between 9 and 15 V and the considerable speed variations of the engine.
  • a microcontroller is advantageously used for the sequence and control of the measurement and evaluation method.
  • the armature current measured values are expediently stored in a memory, which is preferably a ring buffer memory. The oldest measured value in the ring buffer is overwritten with the current measured value. The averaging is done by summing all
  • the current averaged in this way and the current vehicle electrical system voltage are measured at times specified by the microcontroller.
  • the temperature values of the motor or the armature of the motor are determined from the measured values, in particular with the aid of the microcontroller which is expediently used, from its temperature-dependent armature resistance R A. Furthermore, the particular use of the invention are in vorteilhaf it way from the measured current and voltage values induced in the armature voltage U ⁇ nd as the difference between the signals present at the motor terminals voltage U bat and the product according to of Armature current I A and armature resistance R A are determined, the current speed is determined therefrom and / or the speed change that has occurred is determined.
  • the invention thus provides an advantageous solution both for the indirect detection of the temperature of a direct current motor and for the indirect determination of the speed of the motor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Direct Current Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Bei einer Anordnung zur Erfassung der Temperatur des Ankers eines Gleichstrommotors (1) wird die Temperatur in indirekter Weise aus den temperaturabhängigen Ankerwiderstand (RA) erkannt, wobei der Ankerwiderstand als Quotient der aktuell an den Klemmen des Motors (1) anstehenden und meßbaren Spannung (Ubat) und dem Blockierstrom (Iblock) des Ankers ermittelt wird, und in Relation zur jeweiligen Temperatur gesetzt wird. Das aus dem im Anker fließenden Strom (IA) ermittelte Stromsignal (V1) wird vorteilhafterweise mit Hilfe eines Integrators (5, 7), der von einem Mikrokontroller steuerbar ist, mit anpaßbaren, berechneten Integrationszeiten gemittelt. Die Anordnung ist gemäß einer sehr zweckmäßigen Anwendungsmöglichkeit zur indirekten Ermittlung der Drehzahl (N) und/oder kritischer oder interessierender Änderungen der Drehzahl des Motors einsetzbar. Die Drehzahl ist, bei Beachtung einer motortypischen Proportionalitätskonstanten (λ), proportional der im Anker induzierten Spannung (Uind), gemäß der Gleichung N = λ . Uind, und die im Anker induzierte Spannung wird als Differenz aus der an den Motorklemmen anstehenden Spannung (Ubat) und dem Produkt aus Ankerstrom und Ankerwiderstand ermittelt.

Description

Anordnung zur Erfassung der Temperatur des Ankers eines Gleichstrommotors
Stand der Technik
Die Erfindung geht aus von einer Anordnung zur Erfassung der
Temperatur des Ankers eines Gleichstrommotors der im Oberbegriff des Anspruchs 1 definierten Gattung.
Bei einer aus der US-PS 4 307 325 bekannten Schutzschaltung für einen Gleichstrommotor, der insbesondere als Antriebsmotor in
Werkzeugen eingesetzt ist, wird der Motor gegen Übertemperatur dadurch geschützt, daß die Motortemperatur anhand einer Berechnung geschätzt wird. Die Berechnung berücksichtigt dabei sowohl die
Drehzahl als auch den Motorstrom bzw. den Stromleitflußwinkel einer Phasenabschnittεsteuerung . Vorteile der Erfindung
Die erfindungsgemäße Anordnung geht demgegenüber einen vom Prinzip her anderen, sehr vorteilhaften Weg. Zur Erfassung der Temperatur des Ankers eines Gleichstrommotors wird bei der erfindungsgemäßen Anordnung mit den kennzeichnenden Merkmalen des Anspruchs l die Temperatur in indirekter Weise aus dem temperaturabhängigen Ankerwiderstand erkannt, wobei der Ankerwiderstand als Quotient der aktuell an den Klemmen des Motors anstehenden und meßbaren Spannung und dem Blockierstrom des Ankers ermittelt wird, und in Relation zur "jeweiligen Temperatur gesetzt wird.
Durch die in den weiteren Ansprüchen niedergelegten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Anordnung zur Erfassung der Temperatur des Ankers eines Gleichstrommotors möglich.
In vorteilhaf er Ausgestaltung der Erfindung wird entsprechend einer besonders zweckmäßigen Ausführungsform der Erfindung der Blockierstrom durch Extrapolation des zu einem bestimmten Zeitpunkt gemessenen Ankerstromes ermittelt.
Eine für die einfache und zuverlässige Realisierung der Erfindung besonders zweckmäßige Ausgestaltung der Erfindung sieht vor, daß der im Anker fließende Strom über einen Shunt -Widerstand gemessen und gegebenenfalls verstärkt und mittels eines Analog-Digital- Wandlers zu einem Stromsignal digitalisiert wird.
In weiterer vorteilhafter und besonders zweckmäßiger Ausgestaltung der Erfindung wird das aus dem im Anker fließenden Strom ermittelte Stromsignal mit Hilfe eines Integrators, der von einem Mikrokontroller steuerbar ist, mit anpaßbaren, berechneten Integrationszeiten gemittelt. Gemäß einer sehr zweckmäßigen Ausführungsform dieser Ausgestaltung der Erfindung wird das aus dem m Anker fließenden Strom ermittelte Stromsignal über mehrere Kommutierungsperioden aufintegriert .
In vorteilhafter Weiterbildung dieser Ausführungsform der Erfindung ist vorgesehen, daß die Integration des aus dem im Anker fließenden Strom ermittelten Stromsignals bei Überschreiten eines Schwellwertes unterbrochen, der ermittelte Wert digitalisiert und gespeichert wird, die Integration erneut begonnen wird und dieser Vorgang solange fortgesetzt wird, bis die gesamte angepaßte und vorgesehene Integrationszeit abgelaufen ist.
Entsprechend einer vorteilhaf en und realistischen
Anwendungsmöglichkeit der Erfindung ist sie zur indirekten Ermittlung der Drehzahl des Motors und/oder kritischer oder interessierender Änderungen der Drehzahl des Motors sehr zweckmäßig einsetzbar.
Gemäß einer besonders vorteilhaften Weiterbildung dieser Anwendungsmöglichkeit, ist die Drehzahl, bei Beachtung einer motortypischen Proportionalitätskonstanten, proportional der im
Anker induzierten Spannung, gemäß der Gleichung N = K . Uιnd, und die im Anker induzierte Spannung wird dabei als Differenz aus der an den Motorklemmen anstehenden Spannung und dem Produkt aus Ankerεtrom und Ankerwiderstand ermittelt.
Zeichnung
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeisp elε m der nachfolgenden Beεchreibung näher erläutert. Es zeigen: Fig. 1 den Verlauf des Motorstro s zusammen mit überlagerten Kommutierungsschwankungen, und
Fig. 2 schematisch ein Blockschaltbild der erfindungsgemäßen Anordnung .
Beschreibung des Ausführungsbeispiels
Gemäß der Erfindung wird die im Gleichstrommotor bzw. im Anker des Gleichstrommotors auftretende Temperatur auf indirekte Weise ermittelt. Dabei wird die Temperatur in indirekter Weise aus dem temperaturabhängigen Ankerwiderstand RA erkannt. Der Ankerwiderstand RA selbst wird dabei als Quotient der aktuell an den Klemmen des Motors anstehenden und meßbaren Spannung Ul, die bei Anschluß an eine Batterie, insbesondere Kraftfahrzeugbatterie der Batteriespannung Ubat entspricht, und dem Blockierstrom Ibιock des Ankers ermittelt und in Relation zur jeweiligen Temperatur gesetzt. In der nachfolgenden Beschreibung ist auf die allgemein bekannte Zuordnung von gemessenem Widerstand und zugehöriger Temperatur nicht näher eingegangen.
In Fig. 1 ist der typische Verlauf des Motorstroms I zusammen mit überlagerten KommutierungsSchwankungen über der Zeitachse t aufgetragen. Der Ankerstrom wird durch die Ankerinduktivität begrenzt. Daher fließt zum Einschaltzeitpunkt nicht der Blockierstrom I ιock, sondern es ergibt sich ein exponentiell ansteigender Ankerstrom mit der elektrischen Zeitkonstanten τelektrιsch, die wesentlich kleiner ist als xmech • Die AnlaufStromspitze erreicht nicht den vollen Blockierstrom Ibιock, da sich der Anker des Motors bereits zu drehen beginnt, während die elektrische Zeitkonstante τelektrιsch verstreicht . Das Verhältnis von Blockierstrom zu AnlaufStromspitze hängt nur von den beiden Zeitkonstanten τmech und "-elektrisch ab, und ist damit konstant.
Der Ankerwiderstand RA wird zu jedem gewünschten und zweckmäßig erscheinenden Zeitpunkt und zu Vergleichszwecken jeweils insbesondere zu Beginn jeden Motorstarts aus der am Motor anliegenden Klemmenspannung Ukl bzw. Ubac, wenn als Spannungsquelle eine Batterie verwendet wird, und dem Blockierstrom IbιOCk' jeweils zum Zeitpunkt t0 nach dem Start, ermittelt nach der Beziehung: RA = Ukl /Ibloc<.
Wie in der Darstellung des Motorstroms in Fig. 1 gezeigt, sind dem eigentlich in einer Exponentialform verlaufenden Motorεtrom IA, bzw. dem daraus resultierenden Motorstromsignal, Kommutierungsεchwankungen überlagert. Die Amplitude dieεer sogenannten Ripples liegt bei manchen Anwendungen in einer Größenordnung der interessierenden Signaländerungen. Aus diesem Grund müssen diese Kommutierungsripples in solchen Fällen eliminiert werden. Entsprechend einer besonders vorteilhaften Ausführungsform der Erfindung wird dazu das Stromsignal über einen Zeitraum einer geeigneten Anzahl von Kommutierungsripples ge ittelt .
In dem in Fig. 2 dargestellten, schematischen Blockschaltbild der erfindungsgemäßen Anordnung ist mit 1 ein Gleichstrommotor dargestellt, der über ein Doppelrelaiε 2 entweder an die Spannung UBat einer nicht dargestellten Kraftfahrzeugbatterie, die im dargestellten Beispiel die an den Klemmen des Motors anstehende Klemmenspannung Ukl darstellt, oder zur Messung des Motorstroms an einen Meßwiderstand 3, einen Shunt, anschließbar ist. Die eine Seite des Shunts 3 ist an Erdpotential GND gelegt, während der andere Anschluß über einen Widerstand 4 auf den invertierenden Eingang - eines Operationsverstärkers 5 geführt ist. Somit wird der gemessene Ankerstromwert des Motors 1, welcher am Shunt 3 abgegriffen und in ein Stromsignal VI gewandelt ist, verstärkt. Der Ausgang 6 des Operationsverstärkers 5 ist auf dessen invertierenden Eingang - über einen Kondensator 7 rückgekoppelt. Somit bildet der Operationsverstärker 5 zusammen mit dem
Kondensator 7 einen Integrator. Am nichtinvertierenden Eingang + deε Operationsverstärkers 5 liegt eine Referenzspannung Ure£ an, welche so gewählt ist, daß sie immer größer ist als die maximale Amplitude des Stromsignals VI, die dem Blockierstrom IBiock entspricht. Der Kondensator 7 ist durch einen Transistor 8, insbesondere in Form eines MOSFET, überbrückbar. Der Transistor 8 wird über einen Widerstand 9 vom Eingang 10 her mit einem Löschimpuls gesteuert. Dadurch wird der Kondensator 7 bei Auftreten des Löschimpulses gesteuert kurzgeschlossen und entladen. Die Anfangsbedingung für eine Integration wird neu bestimmt und die Integration kann von neuem beginnen.
Das am Ausgang 6 des Operationsverstärkers 5 anstehende integrierte und verstärkte Stromsignal VI wird einem nicht dargestellten Analog-Digital-Wandler sowie einem ebenfalls nicht dargestellten Mikrokontroller zur Auswertung zugeführt. Der Mikrokontroller generiert beispielsweise den am Eingang 10 zugeführten Löschimpulε zur Steuerung der Integration. Bei jedem zugeführten Löschimpuls wird der Kondensator 7 entladen und damit kann sich unmittelbar anschließend die Spannung am Ausgang 6 und am Kondensator 7 wieder aufbauen. Die Integration wird solange durchgeführt, wie es vom Mikrokontroller vorgegeben ist. Dabei wird durch Unterbrechung der Integration bei Erreichen eines bestimmten Spannungswertes und Aufaddieren der jeweiligen digitalisierten aufgelaufenen Werte, bis zum erreichten Spannungswert des Integrators am Ende der abgelaufenen vorgegebenen Integrationszeit. Generell ist festzuhalten, daß die Integrationszeitkonstante des Integrators, gebildet im Kern aus Operationsverstärker 5 und Kondensator 7, so eingestellt wird, daß bei der Leerlaufdrehzahl des Motors 1 der Aussteuerbereich des Integrators fast ausgenutzt wird. Bei niedrigerer Drehzahl wird die Integrationszeitkonstante größer und der Ankerstrom und damit das zu integrierende Spannungssignal ebenfalls. Um die damit verbundene Übersteuerung zu vermeiden, wird wie bereits oben erläutert, die Integration bei Erreichen eines bestimmten Schwellwertes unterbrochen. Zu diesem Zeitpunkt wird der Spannungswert mittel des Analog-Digital -
Wandlers digitalisiert und die abgelaufene Integrationszeit wird von der an die Drehzahl angepaßten gesamten Integrationszeit subtrahiert. Nunmehr wird der Kondensator 7 mittels des über den Eingang 10 vom Mikrokontroller gelieferten Löschimpulses über den für ca. 1 ms leitend geschalteten Transistor 8 entladen und die Integration wird erneut gestartet. Diese Vorgehensweise wird solange fortgesetzt, bis die gesamte Integrationszeit abgelaufen ist, wobei die letzte Integration, wie bereits oben dargestellt, nicht durch Überschreiten eines Spannungspegels am Integratorausgang, sondern durch die abgelaufene Integrationszeit abgebrochen wird.
Die vorstehend beschriebene Anordnung eignet sich gemäß einer besonders vorteilhaf en Anwendung zur indirekten Ermittlung der aktuellen Drehzahl N des Motors 1. Es können damit auch zusätzlich oder alternativ kritische oder sonstwie interessierende Änderungen der Drehzahl N des Motors 1 indirekt ermittelt werden. Ein Maß für die Drehzahl N ist die im Anker induzierte Spannung Uιnd. Dieser Spannung Uλnd ist, bei Beachtung einer empirisch für jeden Motortyp vorab meßtechnisch leicht ermittelbaren
Proportionalitätskonstanten K, die Drehzahl N proportional. Es gilt: N = . Ulnd und
Uir,d = Ukl - ( RA . IA) .
Dieses beschriebene Verfahren bietet die Möglichkeit, gesteuert vom Mikrokontroller, über eine feste Anzahl von
Kommutierungsripples zu mittein. Außerdem kann der Wertebereich eines 8 -Bit Analog-Digital -Wandlers vergrößert werden, indem durch die Integration mehrmals unterbrochen wird und die einzelnen Integrationsergebnisse addiert werden. Dies ist besonders deshalb so wertvoll und vorteilhaft, weil der Dynamikbereich der Messung wegen der möglichen Schwankungen des Bordnetzes eineε Kraftfahrzeuges zwischen 9 und 15V sowie der erheblichen Geschwindigkeitsvariationen des Motors sehr groß ist.
Für Ablauf und Steuerung des Meß- und Auswerteverfahrens wird in vorteilhafter Weise ein Mikrokontroller verwendet. Die Ankerstrommeßwerte werden zweckmäßigerweise in einem Speicher, der bevorzugt ein Ringpufferspeicher ist, gespeichert. Mit dem aktuellen Meßwert wird der älteste Meßwert im Ringpuffer überschrieben. Die Mittelung erfolgt durch Summation aller
Meßwerte im Ringpuffer und Division der erhaltenen Summe durch die Anzahl der Meßwerte. Zu von dem Mikrokontroller vorgegebenen Zeitpunkten werden der so gemittelte Strom und die aktuelle Bordnetzspannung gemessen.
Aus den gemessenen Werten werden, insbesondere mit Hilfe des zweckmäßig verwendeten Mikrokontrollers , die Temperaturwerte des Motors bzw. des Ankers des Motors aus dessen ermitteltem temperaturabhängigen Ankerwiderstand RA ermittelt. Weiterhin werden gemäß der besonderen Verwendungsform der Erfindung in vorteilhaf er Weise aus den gemessenen Strom- und Spannungswerten die im Anker induzierte Spannung Uιnd als Differenz aus der an den Motorklemmen anstehenden Spannung Ubat und dem Produkt aus Ankerstrom IA und Ankerwiderstand RA ermittelt, sowie daraus die aktuelle Drehzahl bestimmt und/oder die eingetretene DrehzahlVeränderung festgestellt .
Somit stellt die Erfindung sowohl für die indirekte Erfassung der Temperatur eines Gleichstromotors als auch für die indirekte Ermittlung der Drehzahl des Motors eine vorteilhafte Lösung zur Verfügung.

Claims

Ansprüche
1. Anordnung zur Erfassung der Temperatur des Ankers eines
Gleichstrommotors, dadurch gekennzeichnet, daß die Temperatur in indirekter Weise aus dem temperaturabhängigen Ankerwiders and (RA) erkannt wird, wobei der Ankerwiderstand (RA) als Quotient der aktuell an den Klemmen des Motors anstehenden und meßbaren Spannung (Ubat) und dem Blockierstrom (Ibiock) des Ankers ermittelt wird, und m Relation zur jeweiligen Temperatur setzbar ist.
2 Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Blockierstrom (Ibι0Ck) durch Extrapolation des zu einem bestimmten Zeitpunkt (t0) gemessenen Ankerstromeε (IA) ermittelt wird.
3 Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der im Anker fließende Strom (IA) über einen Shunt-Widerstand
(3) gemeεsen und gegebenenfalls verstärkt (5) und mittels eines Analog-Digital -Wandlers zu einem Stromsignal digitalisiert w rd
4. Anordnung nach einem der vorigen Ansprüche, dadurch gekennzeichnet, daß das aus dem im Anker fließenden Strom (IA) ermittelte Stromsignal (VI) mit Hilfe eines Integrators (5, 7), der von einem Mikrokontroller steuerbar ist, mit anpaßbaren, berechneten Integrationszeiten gemittelt wird.
5. Anordnung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß das aus dem im Anker fließenden Strom (IA) ermittelte Stromsignal (VI) über mehrere Kommutierungsperioden aufintegriert wird.
6. Anordnung nach einem Ansprüche 3, 4 oder 5, dadurch gekennzeichnet, daß die Integration des aus dem im Anker fließenden Strom (IA) ermittelten Stromsignals (VI) bei Überschreiten eines Schwellwertes unterbrochen, der ermittelte Wert digitalisiert und gespeichert wird, die Integration erneut begonnen wird und dieser Vorgang solange fortgesetzt wird, bis die gesamte angepaßte und vorgesehene Integrationszeit abgelaufen ist.
7. Anordnung nach einem der vorigen Ansprüche, dadurch gekennzeichnet, daß sie zur indirekten Ermittlung der Drehzahl (N) des Motors (1) und/oder kritischer oder interessierender Änderungen der Drehzahl (N) des Motors ( 1 ) einsetzbar ist.
8. Anordnung nach Anspruch 7, dadurch gekennzeichnet, daß die Drehzahl (N) proportional der im Anker induzierten Spannung (Umd) - bei Beachtung einer motortypischen Proportionalitätskonstanten (K) , ist, gemäß der Gleichung N = K . Uιnd - und die im Anker induzierte Spannung (Uιnd) als Differenz aus der an den Motorklemmen anstehenden Spannung (Ubac) und dem Produkt aus Ankerstrom (IA) und Ankerwiderstand (RA) ermittelt wird.
PCT/DE1997/001166 1996-07-25 1997-06-10 Anordnung zur erfassung der temperatur des ankers eines gleichstrommotors WO1998004893A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97926996A EP0852710A1 (de) 1996-07-25 1997-06-10 Anordnung zur erfassung der temperatur des ankers eines gleichstrommotors
JP10508358A JPH11514094A (ja) 1996-07-25 1997-06-10 直流モータの電機子の温度の検出装置
US09/043,718 US6111330A (en) 1996-07-25 1997-06-10 Arrangement for sensing the temperature of the armature of a direct current motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19630027A DE19630027A1 (de) 1996-07-25 1996-07-25 Anordnung zur Erfassung der Temperatur des Ankers eines Gleichstrommotors
DE19630027.4 1996-07-25

Publications (1)

Publication Number Publication Date
WO1998004893A1 true WO1998004893A1 (de) 1998-02-05

Family

ID=7800808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/001166 WO1998004893A1 (de) 1996-07-25 1997-06-10 Anordnung zur erfassung der temperatur des ankers eines gleichstrommotors

Country Status (5)

Country Link
US (1) US6111330A (de)
EP (1) EP0852710A1 (de)
JP (1) JPH11514094A (de)
DE (1) DE19630027A1 (de)
WO (1) WO1998004893A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10119201A1 (de) * 2001-04-19 2002-10-24 Bsh Bosch Siemens Hausgeraete Verfahren und Vorrichtung zum Messen der Wicklungstemperatur eines Antriebsmotors
US6851765B1 (en) * 2003-08-28 2005-02-08 Delphi Technologies, Inc. System and method for controlling a brake motor
DE102004046275B4 (de) * 2003-09-23 2006-12-21 Saxotec Gmbh & Co.Kg Vorrichtung zur Überwachung der Temperatur von Hochspannung führenden Baugruppen
DE102004050898B4 (de) * 2004-10-19 2007-04-12 Siemens Ag Verfahren und Einrichtung zur Überwachung einer Temperatur eines Lagers einer rotierend umlaufenden Welle
US7898203B2 (en) * 2008-07-11 2011-03-01 Curtis Instruments, Inc. Systems and methods for dynamically compensating motor resistance in electric motors
CA2794210C (en) * 2010-03-25 2017-08-22 Gerald K. Langreck High acceleration rotary actuator
DE102010063950A1 (de) * 2010-12-22 2012-06-28 BSH Bosch und Siemens Hausgeräte GmbH Haushaltsgerät mit einem Antriebsmotor und Verfahren zum Betreiben eines solchen Haushaltsgerät
CN106558871A (zh) * 2015-09-25 2017-04-05 光宝电子(广州)有限公司 侦测输出欠相的马达驱动电路与方法
CN106707160B (zh) * 2016-11-14 2019-02-15 哈尔滨电机厂有限责任公司 转子绕组温升测试的修正方法
DE102021124678A1 (de) 2021-09-23 2023-03-23 Ebm-Papst Mulfingen Gmbh & Co. Kg Messanordnung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895960A (ja) * 1981-12-02 1983-06-07 Hitachi Ltd 直流機の電機子巻線の過熱防止法
EP0284711A2 (de) * 1987-03-02 1988-10-05 Heidelberger Druckmaschinen Aktiengesellschaft Einrichtung zum Erfassen der Wicklungstemperatur eines bürstenlosen Gleichstrommotors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281919A (en) * 1988-10-14 1994-01-25 Alliedsignal Inc. Automotive battery status monitor
DE4132881A1 (de) * 1991-10-03 1993-07-29 Papst Motoren Gmbh & Co Kg Ansteuerschaltung fuer buerstenlose gleichstrommotoren
US5291115A (en) * 1992-09-25 1994-03-01 The Texas A&M University System Method and apparatus for sensing the rotor position of a switched reluctance motor without a shaft position sensor
US5672948A (en) * 1993-06-14 1997-09-30 Cambridge Aeroflo, Inc. Digital, Back EMF, single coil sampling, sensorless commutator system for a D.C. motor
US5497218A (en) * 1994-08-24 1996-03-05 Xerox Corporation Three point thermistor temperature set up

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895960A (ja) * 1981-12-02 1983-06-07 Hitachi Ltd 直流機の電機子巻線の過熱防止法
EP0284711A2 (de) * 1987-03-02 1988-10-05 Heidelberger Druckmaschinen Aktiengesellschaft Einrichtung zum Erfassen der Wicklungstemperatur eines bürstenlosen Gleichstrommotors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHMIDT H C: "MESURE INDIRECTE D'ECHAUFFEMENT D'ACTIONNEURS", REVUE GENERALE DE L'ELECTRICITE, no. 7, July 1989 (1989-07-01), pages 47 - 50, XP000035987 *

Also Published As

Publication number Publication date
DE19630027A1 (de) 1998-01-29
US6111330A (en) 2000-08-29
JPH11514094A (ja) 1999-11-30
EP0852710A1 (de) 1998-07-15

Similar Documents

Publication Publication Date Title
EP0861514B1 (de) Anordnung zur erkennung von einklemmsituationen bei elektrischen antrieben
EP0890841B1 (de) Verfahren zum Ermitteln der Drehzahl bei mechanisch kommutierten Gleichstrommotoren
DE4125302C2 (de) Einrichtung zur Überwachung eines elektrischen Verbrauchers in einem Fahrzeug
DE19956104A1 (de) Sensorlose Erfassung eines festgestellten Rotors eines Motors mit geschalteter Reluktanz
EP1191676B1 (de) Verfahren zum Ermitteln der Drehzahl eines Wechselstrom-Motors sowie Motor-Steuersystem
DE102006048576A1 (de) Motorsteuervorrichtung
CH615538A5 (de)
EP0852710A1 (de) Anordnung zur erfassung der temperatur des ankers eines gleichstrommotors
DE102009003295A1 (de) Gerät zum Schätzen einer Rotorposition von bürstenlosen Motoren sowie System und Verfahren zur Steuerung des Startens von bürstenlosen Motoren
DE10147616B4 (de) Spannungsreglersystem für einen Fahrzeugwechselstromgenerator
EP0890211B1 (de) Anschlags- und blockiererkennung bei einem elektromotor
EP1092867A2 (de) Elektrostarter für einen Verbrennungsmotor mit einer Schutzvorrichtung
DE102016106431A1 (de) Temperaturüberwachung
DE2509199C3 (de) Schaltungsanordnung zur Messung und Anzeige der relativen Kompressionsdrucke eines Verbrennungsmotors
DE102004050691B4 (de) Antriebsvorrichtung für ein elektrisch betätigtes Fenster
DE4444361A1 (de) Verfahren zur Überwachung der Drehzahl eines Induktionsmotors
DE4437750C2 (de) Schaltungsanordnung zur Messung der Drehzahl eines Elektromotors
DE19858697A1 (de) Verfahren und Schaltungsanordnung zur Überwachung des Betriebszustandes einer Last
DE3832561C2 (de)
EP3544173B1 (de) Verfahren und vorrichtung zum ermitteln einer läuferlage eines läufers einer elektronisch kommutierten elektrischen maschine
WO2018095482A1 (de) Verfahren und schaltungsanordnung zur ermittlung der stellung eines rotors eines elektromotors
DE19911036C1 (de) Regler für Heizungs- und Klimageräte in Kraftfahrzeugen
DE102015216848A1 (de) Verfahren zum Betreiben eines piezoelektrischen Elements, Vorrichtung zur Durchführung des Verfahrens, Steuergerät-Programm und Steuergerät-Programmprodukt
EP1429151A1 (de) Batteriezustandserkennung
WO2019154567A1 (de) Bremsvorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997926996

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 508358

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09043718

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997926996

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1997926996

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997926996

Country of ref document: EP