WO1998003212A1 - Biomechanical heart for extra-aortic diastolic balloon pumping - Google Patents

Biomechanical heart for extra-aortic diastolic balloon pumping Download PDF

Info

Publication number
WO1998003212A1
WO1998003212A1 PCT/FR1997/001385 FR9701385W WO9803212A1 WO 1998003212 A1 WO1998003212 A1 WO 1998003212A1 FR 9701385 W FR9701385 W FR 9701385W WO 9803212 A1 WO9803212 A1 WO 9803212A1
Authority
WO
WIPO (PCT)
Prior art keywords
aortic
balloon
muscle
heart
extra
Prior art date
Application number
PCT/FR1997/001385
Other languages
French (fr)
Inventor
Norbert Guldner
Sylvain Thuaudet
Jens Hutzenlaub
Original Assignee
Ist Cardiology S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ist Cardiology S.A. filed Critical Ist Cardiology S.A.
Priority to JP10506666A priority Critical patent/JP2000514687A/en
Priority to CA002261846A priority patent/CA2261846A1/en
Priority to EP97935620A priority patent/EP0925079A1/en
Priority to AU38541/97A priority patent/AU3854197A/en
Publication of WO1998003212A1 publication Critical patent/WO1998003212A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/871Energy supply devices; Converters therefor
    • A61M60/882Devices powered by the patient, e.g. skeletal muscle powered devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/152Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel branching on and drawing blood from a blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/161Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel mechanically acting upon the outside of the patient's blood vessel structure, e.g. compressive structures placed around a vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/289Devices for mechanical circulatory actuation assisting the residual heart function by means mechanically acting upon the patient's native heart or blood vessel structure, e.g. direct cardiac compression [DCC] devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/427Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/427Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic
    • A61M60/43Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic using vacuum at the blood pump, e.g. to accelerate filling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/835Constructional details other than related to driving of positive displacement blood pumps
    • A61M60/837Aspects of flexible displacement members, e.g. shapes or materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/857Implantable blood tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • A61M60/274Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders the inlet and outlet being the same, e.g. para-aortic counter-pulsation blood pumps

Definitions

  • the present invention relates to improvements in bio-mechanical hearts of the type using, as a motor element, a skeletal muscle, and more particularly an extra-aortic diastolic counter-pulse system included in such a heart.
  • Biomechanical hearts which take the form of a circulatory pump capable of being completely implanted in the rib cage of a patient, in particular in cases of terminal heart failure.
  • This pump is actuated by a skeletal muscle, for example the dorsal muscle, which is subjected to electrostimulation in such a way that all the pulsating energy of the pump comes from the metabolism of the muscle which in a way constitutes its motor.
  • a major drawback of this system is that, in order to be fully effective, the skeletal muscle must first be subjected to the training mentioned above, so that it is effective only after a delay of the order of 8 at 12 weeks, so it can only be used on patients with pre-terminal heart failure. It cannot therefore be used on patients with very advanced heart failure requiring immediate treatment.
  • intra-aortic diastolic counter-pulse systems which have the effect of increasing the coronary flow at the time of diastole and decreasing the afterload by aspirating blood from the heart at the time of systole.
  • a balloon is introduced into the patient's aorta, from the femoral artery, which is inflated at the time of diastole and which is deflated at the time of systole.
  • the introduction of this balloon into the arterial system of the patient has the disadvantage of causing, when its use is prolonged in time, hemorrhages, infections of the ischaemias of the lower limb and femoro-iliac thromboses.
  • the present invention proposes to remedy the drawbacks of the two abovementioned intervention techniques by proposing a bio-mechanical heart able to be operational as soon as its implantation is carried out, so that it is able to be used on patients who have very advanced heart failure, requiring immediate mechanical treatment.
  • the present invention thus relates to a bio-mechanical heart of the type comprising means of extra-aortic diastolic counterpulsation constituted by a pumping cage, disposed between two conduits of an aortic bypass, the actuation of which is controlled by a muscle excited by electrical pulses, characterized in that the internal walls of the pumping cage receive a balloon, of substantially annular cross section, so as to provide an axial channel in communication with the two conduits of the aortic bypass, which is connected by a flexible tube to means making it possible to inject a gas flow capable of inflating it, so as to reduce the passage section of the axial channel and to deflate it so as to increase said passage section.
  • the gas flow consists of helium.
  • the present invention is particularly advantageous in that it makes it possible to make a bio-mechanical heart immediately effective, without waiting for a delay in training the muscle 8. Furthermore, the extra-aortic diastolic counter-pulse system according to the invention does not require interrupting the muscular training phase of muscle 8 and can even help improve its training.
  • Figure 1 is a schematic view of a bio-mechanical heart according to the prior art, used in an aorto-aortic application.
  • Figure 2 is a longitudinal sectional view of a bio-mechanical core according to the invention.
  • Figure 3 is a schematic view of a bio-mechanical heart according to the invention, of the type of that shown in Figure 2, and which is implemented in an aorto-aortic application of the type of that shown in Figure 1 .
  • FIG. 4 is a schematic view of an embodiment, in an apico-aortic application, of the bio-mechanical heart shown in FIG. 2.
  • the pumping cage 7 is generally made up of a deformable enclosure forming a pump which is actuated by a muscle 8, in particular by a muscle skeletal type of great dorsal, which for this is wrapped around the pumping cage 7.
  • the contractions of the muscle 8 are triggered by a myostimulator 11, itself synchronized with the cardiac movements by a sensor 13 fixed on the heart 1 to which it is connected.
  • a myostimulator 11 When the muscle 8 is not excited, that is to say when it is released, the cage 7 then has a large diameter and when the muscle 8 is excited, it is then contracted so that the passage section in cage 7 is reduced.
  • the aortic valve 10 is closed (which is detected by the sensor 13, and which corresponds to the diastole) the myostimulator 11 sends an electrical pulse to the muscle 8, which is in synchronism with the diastole.
  • the muscle 8 is then excited and compresses the pumping cage 7, so that the blood which passes through it is forced back both upstream and downstream.
  • FIG. 2 a bio-mechanical heart with a diastolic counterpulse which can be used in aorto-aortic applications, ( Figure 3) as well as apico-aortic ( Figure 4).
  • This heart was placed in a bypass 6 created on the aorta 3 by two conduits 5 and 9, a pumping cage 7 around which was wound a skeletal muscle intended, as mentioned previously, to compress the pumping cage 7 when 'he is electrically excited.
  • the pumping cage 7 comprises on its internal surface 12, a balloon 15 of substantially annular cross section, so as to provide an axial channel 17 which is connected to the upstream 5 and downstream 9 conduit of the bypass 6.
  • the balloon 15 is connected by a flexible tube 19 which leaves the skin after a long subcutaneous journey, to an external pressure and vacuum generator 20 able to successively create in the balloon 15 a pressure, in particular by injection of a gas such as helium, and a vacuum by suction, so, in synchronism with the diastole and the cardiac systole, to inflate and deflate the balloon 15.
  • the pressure and vacuum generator 20 is in communication with the native heart 1 by a link 22 and a listening or implantable listening electrode 24.
  • the operation of the device is of the same type as that described in FIG. 1, with the difference that, instead of exciting the muscle 8 by an electric discharge in order to compress the pumping cage 7 so as to expel the blood contained in the bypass 6, the balloon 15 is inflated, by blowing helium through the line 19. Likewise, instead of leaving the muscle 8 relax, which had the effect of allowing the pumping cage to regain its volume thus creating suction through the pipe 5, a vacuum is created in the balloon 15 to retract it.
  • the present invention has a certain number of advantages and first of all that of making a bio-mechanical heart immediately effective, without waiting for a delay in training the muscle 8.
  • the extra-aortic diastolic counter-pulse system according to the invention does not require interrupting the muscular training phase of muscle 8 and can even contribute to improving the training thereof.
  • the training phase of muscle 8 it is possible either to eliminate the tube 19 through the cutaneous orifice, or to leave it in place by cutting it flush with the skin and burying it in the sub-tissues. skin.
  • the diastolic counter-pulse system according to the invention can also be implemented in bio-mechanical hearts with inlet and outlet valves as well as those used in the so-called apico-aortic arrangements.
  • the blood flow from the left ventricle of the heart 1 enters channel 17 at the time of systole and is ejected into the aorta 3 at the time of diastole.
  • An intake valve 25 and a discharge valve 26 avoid retrograde flow in the left ventricle, which would be extremely harmful on a hemodynamic level.
  • the intake valve 25 is open and the discharge valve 26 is closed at the time of systole.
  • the inlet valve 25 is closed and the discharge valve 26 is open at the time of the diastole.
  • the extra-aortic counterpulsation balloon 15 has the same effects in this apico-aortic configuration as in the aorto-aortic configuration.

Abstract

A biomechanical heart comprising extra-aortic diastolic balloon pumping means consisting of a pump housing (7) arranged between two ducts (5, 9) of an aortic shunt (6) actuated by a muscle (8) energised by electric pulses. A balloon (15) with a substantially ring-shaped cross-section is inserted between the inner walls of the pump housing (7) to define an axial channel (17) communicating with said ducts (5, 9) of the aortic shunt (6). Said channel is connected via a flexible tube (19) to means (20) for injecting a gas flow into said balloon (15) to inflate same and thus reduce the cross-sectional area of flow of the axial channel (17), then deflating said balloon to increase said cross-sectional area of flow of the axial channel (17).

Description

COEUR BIO-MECANIQUE A CONTRE-PULSION DIASTOLIQUE EXTRA-AORTIQUE BIO-MECHANICAL HEART WITH EXTRA-AORTIC DIASTOLIC COUNTER-PULSE
La présente invention concerne des perfectionnements aux coeurs bio-mécaniques du type utilisant, en tant qu'élément moteur, un muscle squelettique, et plus particulièrement un système de contre-pulsion diastolique extra-aortique inclus dans un tel coeur.The present invention relates to improvements in bio-mechanical hearts of the type using, as a motor element, a skeletal muscle, and more particularly an extra-aortic diastolic counter-pulse system included in such a heart.
On connaît des coeurs bio-mécaniques qui se présentent sous la forme d'une pompe circulatoire susceptible d'être complètement implantée dans la cage thoracique d'un patient, en particulier dans les cas d'insuffisance cardiaque terminale. Cette pompe est actionnée par un muscle squelettique, par exemple le muscle grand dorsal, qui est soumis à une électrostimulation de telle façon que toute l'énergie pulsatoire de la pompe provienne du métabolisme du muscle qui en constitue en quelque sorte le moteur.Biomechanical hearts are known which take the form of a circulatory pump capable of being completely implanted in the rib cage of a patient, in particular in cases of terminal heart failure. This pump is actuated by a skeletal muscle, for example the dorsal muscle, which is subjected to electrostimulation in such a way that all the pulsating energy of the pump comes from the metabolism of the muscle which in a way constitutes its motor.
On sait qu'un tel coeur bio-mécanique offre l'avantage qu'il n'entraîne pas une réaction de rejet de l'organisme, du fait que le muscle est prélevé sur le patient dans lequel le coeur bio-mécanique est implanté. Pour pouvoir utiliser, en tant que moteur, un tel coeur bio-mécanique, il s'est avéré nécessaire de soumettre celui-ci, préalablement à sa mise en fonction, à un entraînement dynamique. Pour ce faire, le muscle squelettique est enroulé autour d'un appareil d'entraînement déformable susceptible de pouvoir se contracter en opposant une résistance à la contraction, et reprendre ensuite sa forme initiale, et on stimule le muscle squelettique, au moyen d'impulsions électriques périodiques, de manière à provoquer sa contraction et celle de l'appareil d'entraînement déformable et leur relaxation subséquente.We know that such a bio-mechanical heart has the advantage that it does not cause a rejection reaction of the organism, because the muscle is taken from the patient in which the bio-mechanical heart is implanted. In order to be able to use such a bio-mechanical core as an engine, it has proved necessary to subject it, before it is put into operation, to dynamic training. To do this, the skeletal muscle is wrapped around a device deformable training likely to contract by providing resistance to contraction, and then return to its original shape, and the skeletal muscle is stimulated, by means of periodic electrical pulses, so as to cause its contraction and that of the deformable training apparatus and their subsequent relaxation.
On a proposé, dans la demande de brevet WO 94/26326, de stimuler au cours d'une première étape, le muscle squelettique au moyen d'impulsions électriques ayant une fréquence allant en croissant en fonction du temps et au cours d'une seconde étape d'augmenter progressivement la résistance de l'appareil d'entraînement déformable à la contraction, les premières et seconde étapes se chevauchant éventuellement quelque peu.It has been proposed, in patent application WO 94/26326, to stimulate during a first step, the skeletal muscle by means of electrical pulses having a frequency increasing as a function of time and during a second step of gradually increasing the resistance of the deformable training device to contraction, the first and second steps possibly overlapping somewhat.
Un inconvénient majeur de ce système est qu'il nécessite, pour être pleinement efficace, de soumettre préalablement le muscle squelettique à l'entraînement précédemment mentionné, si bien qu'il n'est efficace qu'après un délai de l'ordre de 8 à 12 semaines, de sorte qu'il ne peut être utilisé que sur des patients en insuffisance cardiaque pré-terminale. Il ne peut donc pas être utilisé sur des patients en insuffisance cardiaque très évoluée exigeant un traitement immédiat.A major drawback of this system is that, in order to be fully effective, the skeletal muscle must first be subjected to the training mentioned above, so that it is effective only after a delay of the order of 8 at 12 weeks, so it can only be used on patients with pre-terminal heart failure. It cannot therefore be used on patients with very advanced heart failure requiring immediate treatment.
Dans ce dernier cas, on fait habituellement appel à des systèmes dits de contre-pulsion diastolique intra-aortique qui ont pour effet d'augmenter le flux coronaire au moment de la diastole et diminuer la postcharge en aspirant le sang du coeur au moment de la systole. Pour mettre en place de tels appareils, on introduit dans l'aorte du patient, à partir de l'artère fémorale, un ballon que l'on gonfle au moment de la diastole et que l'on dégonfle au moment de la systole. L'introduction de ce ballon dans le système artériel du patient présente l'inconvénient de provoquer, lorsque son utilisation se prolonge dans le temps, des hémorragies, des infections des ischémies du membre inférieur et des thromboses fémoro-iliaqueε.In the latter case, we usually use so-called intra-aortic diastolic counter-pulse systems which have the effect of increasing the coronary flow at the time of diastole and decreasing the afterload by aspirating blood from the heart at the time of systole. To set up such devices, a balloon is introduced into the patient's aorta, from the femoral artery, which is inflated at the time of diastole and which is deflated at the time of systole. The introduction of this balloon into the arterial system of the patient has the disadvantage of causing, when its use is prolonged in time, hemorrhages, infections of the ischaemias of the lower limb and femoro-iliac thromboses.
La présente invention se propose de remédier aux inconvénients des deux techniques d'intervention précitées en proposant un coeur bio-mécanique en mesure d'être opérationnel sitôt son implantation effectuée, si bien qu'il est en mesure d'être utilisé sur des patients qui possèdent une insuffisance cardiaque très évoluée, exigeant un traitement mécanique immédiat.The present invention proposes to remedy the drawbacks of the two abovementioned intervention techniques by proposing a bio-mechanical heart able to be operational as soon as its implantation is carried out, so that it is able to be used on patients who have very advanced heart failure, requiring immediate mechanical treatment.
La présente invention a ainsi pour objet un coeur bio-mécanique du type comportant des moyens de contre- pulsion diastolique extra-aortique constitués d'une cage de pompage, disposée entre deux conduits d'une dérivation aortique, dont 1 'actionnement est commandé par un muscle excité par des impulsions électriques, caractérisé en ce que les parois internes de la cage de pompage, reçoivent un ballon, de section droite sensiblement annulaire, de façon à ménager un canal axial en communication avec les deux conduits de la dérivation aortique, qui est relié par un tube souple à des moyens permettant d'injecter dans le dit ballon un flux gazeux apte à le gonfler, de façon à diminuer la section de passage du canal axial et à le dégonfler de façon à augmenter ladite section de passage. Dans une variante de mise en oeuvre de l'invention, le flux gazeux est constitué d'hélium.The present invention thus relates to a bio-mechanical heart of the type comprising means of extra-aortic diastolic counterpulsation constituted by a pumping cage, disposed between two conduits of an aortic bypass, the actuation of which is controlled by a muscle excited by electrical pulses, characterized in that the internal walls of the pumping cage receive a balloon, of substantially annular cross section, so as to provide an axial channel in communication with the two conduits of the aortic bypass, which is connected by a flexible tube to means making it possible to inject a gas flow capable of inflating it, so as to reduce the passage section of the axial channel and to deflate it so as to increase said passage section. In an alternative embodiment of the invention, the gas flow consists of helium.
La présente invention est particulièrement intéressante en ce qu'elle permet de rendre un coeur bio-mécanique immédiatement efficace, sans attendre un délai d'entraînement du muscle 8. Par ailleurs, le système de contre-pulsion diastolique extra-aortique suivant l'invention ne nécessite pas d'interrompre la phase d'entraînement musculaire du muscle 8 et peut même contribuer à améliorer l'entraînement de celui-ci.The present invention is particularly advantageous in that it makes it possible to make a bio-mechanical heart immediately effective, without waiting for a delay in training the muscle 8. Furthermore, the extra-aortic diastolic counter-pulse system according to the invention does not require interrupting the muscular training phase of muscle 8 and can even help improve its training.
On décrira ci-après, à titre d'exemples non limitatifs, diverses formes d'exécution de la présente invention, en référence au dessin annexé sur lequel :Various embodiments of the present invention will be described below, by way of non-limiting examples, with reference to the appended drawing in which:
La figure 1 est une vue schématique d'un coeur bio-mécanique suivant l'état antérieur de la technique, mis en oeuvre dans une application aorto-aortique. La figure 2 est une vue en coupe longitudinale d'un coeur bio-mécanique suivant l'invention.Figure 1 is a schematic view of a bio-mechanical heart according to the prior art, used in an aorto-aortic application. Figure 2 is a longitudinal sectional view of a bio-mechanical core according to the invention.
La figure 3 est une vue schématique d'un coeur bio-mécanique suivant l'invention, du type de celui représenté sur la figure 2, et qui est mis en oeuvre dans un application aorto-aortique du type de celle représentée sur la figure 1.Figure 3 is a schematic view of a bio-mechanical heart according to the invention, of the type of that shown in Figure 2, and which is implemented in an aorto-aortic application of the type of that shown in Figure 1 .
La figure 4 est une vue schématique d'un mode de mise en oeuvre, dans une application apico-aortique, du coeur bio-mécanique représenté sur la figure 2. Sur la figure 1 , on a représenté un coeur 1 et son aorte 3, sur laquelle on a branché une dérivation 6 formée d'un conduit 5 qui part de l'amont de l'aorte 3, qui traverse une cage de pompage tubulaire 7 pour ressortir de celle-ci par un conduit 9 qui est relié à une partie aval de l'aorte 3. La cage de pompage 7 est globalement constituée d'une enceinte déformable formant pompe qui est actionnée par un muscle 8, notamment par un muscle squelettique de type grande dorsal, qui pour ce faire est enroulé autour de la cage de pompage 7. Les contractions du muscle 8 sont déclenchées par un myostimulateur 11, lui-même synchronisé avec les mouvements cardiaques par un capteur 13 fixé sur le coeur 1 auquel il est relié. Lorsque le muscle 8 n'est pas excité, c'est-à-dire lorsqu'il est relâché, la cage 7 possède alors un grand diamètre et lorsque le muscle 8 est excité, elle est alors contractée si bien que la section de passage dans la cage 7 est réduite . Dans ces conditions, lorsque la valve aortique 10 est fermée (ce qui est détecté par le capteur 13, et ce qui correspond à la diastole) le myostimulateur 11 envoie une impulsion électrique au muscle 8, qui est en synchronisme avec la diastole. Le muscle 8 est alors excité et comprime la cage de pompage 7, si bien que le sang qui traverse celle-ci est refoulé à la fois vers l'amont et vers l'aval. Vers l'amont, cet afflux de sang augmente la circulation sanguine dans les artères coronaires, et vers l'aval il améliore la circulation sanguine se faisant par l'aorte 3. Lorsgue la valve aortique 10 est ouverte (ce qui correspond alors à la systole), le muscle 8 n'est pas excité électriquement, si bien qu'il se relâche et que la cage 7 retrouve son volume, créant ainsi une dépression qui favorise la circulation sanguine dans l'aorte 3.FIG. 4 is a schematic view of an embodiment, in an apico-aortic application, of the bio-mechanical heart shown in FIG. 2. In Figure 1, there is shown a heart 1 and its aorta 3, to which a branch 6 is connected, formed of a conduit 5 which starts from the upstream of the aorta 3, which passes through a tubular pumping cage 7 to emerge from it by a conduit 9 which is connected to a downstream part of the aorta 3. The pumping cage 7 is generally made up of a deformable enclosure forming a pump which is actuated by a muscle 8, in particular by a muscle skeletal type of great dorsal, which for this is wrapped around the pumping cage 7. The contractions of the muscle 8 are triggered by a myostimulator 11, itself synchronized with the cardiac movements by a sensor 13 fixed on the heart 1 to which it is connected. When the muscle 8 is not excited, that is to say when it is released, the cage 7 then has a large diameter and when the muscle 8 is excited, it is then contracted so that the passage section in cage 7 is reduced. Under these conditions, when the aortic valve 10 is closed (which is detected by the sensor 13, and which corresponds to the diastole) the myostimulator 11 sends an electrical pulse to the muscle 8, which is in synchronism with the diastole. The muscle 8 is then excited and compresses the pumping cage 7, so that the blood which passes through it is forced back both upstream and downstream. Upstream, this influx of blood increases blood circulation in the coronary arteries, and downstream it improves circulation blood flow through the aorta 3. When the aortic valve 10 is open (which then corresponds to the systole), the muscle 8 is not electrically excited, so that it relaxes and the cage 7 regains its volume, thus creating a depression which promotes blood circulation in the aorta 3.
On a représenté sur la figure 2, sous forme schématique, un coeur bio-mécanique à contre-pulsion diastolique qui peut aussi bien être utilisé dans des applications aorto-aortiques, (figure 3) qu'apico- aortiques (figure 4). Ce coeur a été disposé dans une dérivation 6 crée sur l'aorte 3 par deux conduits 5 et 9, une cage de pompage 7 autour de laquelle a été enroulée un muscle squelettique destiné, comme mentionné précédemment, à comprimer la cage de pompage 7 lorsqu'il est électriquement excité.There is shown in Figure 2, in schematic form, a bio-mechanical heart with a diastolic counterpulse which can be used in aorto-aortic applications, (Figure 3) as well as apico-aortic (Figure 4). This heart was placed in a bypass 6 created on the aorta 3 by two conduits 5 and 9, a pumping cage 7 around which was wound a skeletal muscle intended, as mentioned previously, to compress the pumping cage 7 when 'he is electrically excited.
Suivant l'invention, la cage de pompage 7 comprend sur sa surface interne 12, un ballon 15 de section droite sensiblement annulaire, de façon à ménager un canal axial 17 qui est relié au conduit amont 5 et aval 9 de la dérivation 6. Le ballon 15 est relié par un tube souple 19 qui sort de la peau après un long trajet sous-cutané, à un générateur externe de pression et de vide 20 en mesure de créer successivement dans le ballon 15 une pression, notamment par injection d'un gaz tel que de l'hélium, et un vide par aspiration, de façon, en synchronisme avec la diastole et la systole cardiaque, à gonfler et à dégonfler le ballon 15. Pour assurer un tel synchronisme, le générateur de pression et de vide 20 est en communication avec le coeur natif 1 par une liaison 22 et une électrode d'écoute 24 implantable ou cutanée. Dans le mode de mise en oeuvre aorto-aortique représenté sur la figure 3, le fonctionnement du dispositif est du même type que celui décrit sur la figure l , à la différence que, au lieu d'exciter le muscle 8 par une décharge électrique afin de comprimer la cage de pompage 7 de façon à expulser le sang contenu dans la dérivation 6, on assure le gonflage du ballon 15, en insufflant dans celui-ci de l'hélium par la canalisation 19. De même, au lieu de laisser le muscle 8 se détendre, ce qui avait pour effet de permettre a la cage de pompage de reprendre son volume créant ainsi une aspiration par la conduite 5, on crée le vide dans le ballon 15 pour rétracter celui-ci.According to the invention, the pumping cage 7 comprises on its internal surface 12, a balloon 15 of substantially annular cross section, so as to provide an axial channel 17 which is connected to the upstream 5 and downstream 9 conduit of the bypass 6. The balloon 15 is connected by a flexible tube 19 which leaves the skin after a long subcutaneous journey, to an external pressure and vacuum generator 20 able to successively create in the balloon 15 a pressure, in particular by injection of a gas such as helium, and a vacuum by suction, so, in synchronism with the diastole and the cardiac systole, to inflate and deflate the balloon 15. To ensure such synchronism, the pressure and vacuum generator 20 is in communication with the native heart 1 by a link 22 and a listening or implantable listening electrode 24. In the aorto-aortic embodiment shown in FIG. 3, the operation of the device is of the same type as that described in FIG. 1, with the difference that, instead of exciting the muscle 8 by an electric discharge in order to compress the pumping cage 7 so as to expel the blood contained in the bypass 6, the balloon 15 is inflated, by blowing helium through the line 19. Likewise, instead of leaving the muscle 8 relax, which had the effect of allowing the pumping cage to regain its volume thus creating suction through the pipe 5, a vacuum is created in the balloon 15 to retract it.
La présente invention présente un certain nombre d'avantages et tout d'abord celui de rendre un coeur bio-mécanique immédiatement efficace, sans attendre un délai d'entraînement du muscle 8. Par ailleurs, le système de contre-pulsion diastolique extra-aortique suivant l'invention ne nécessite pas d'interrompre la phase d'entraînement musculaire du muscle 8 et peut même contribuer à améliorer l'entraînement de celui-ci. Lorsque la phase d'entraînement du muscle 8 est terminée, on peut soit éliminer le tube 19 au travers de l'orifice cutané, soit le laisser en place en le coupant au ras de la peau et en l'enfouissant dans les tissus sous-cutanés. Le système de contre-pulsion diastolique suivant l'invention peut également être mis en oeuvre dans des coeurs bio-mécaniques avec des valves d'admission et de refoulement ainsi que ceux utilisés dans les dispositions dites apico-aortiques. Dans cette disposition, le flux sanguin provenant du ventricule gauche du coeur 1 pénètre dans le canal 17 au moment de la systole et est éjecté dans l'aorte 3 au moment de la diastole. Une valve d'admission 25 et une valve de refoulement 26 évitent le flux rétrograde dans le ventricule gauche, ce qui serait extrêmement délétère sur un plan hémodynamique. La valve d'admission 25 est ouverte et la valve de refoulement 26 est fermée au moment de la systole. La valve d'admission 25 est fermée et la valve de refoulement 26 est ouverte au moment de la diastole. Le ballon de contre-pulsion extra-aortique 15 a les mêmes effets dans cette configuration apico-aortique que dans la configuration aorto-aortique. La déflation du ballon 15 pendant la systole, la valve de refoulement 26 étant fermée, facilite le remplissage du canal 17 où le sang est aspiré du fait du vide créé. Le gonflage du ballon 15 pendant la diastole, la valve d'admission 25 étant fermée, permet l'éjection de ce volume de sang dans l'aorte 3 au travers de la valve de refoulement 26 qui est alors ouverte. The present invention has a certain number of advantages and first of all that of making a bio-mechanical heart immediately effective, without waiting for a delay in training the muscle 8. In addition, the extra-aortic diastolic counter-pulse system according to the invention does not require interrupting the muscular training phase of muscle 8 and can even contribute to improving the training thereof. When the training phase of muscle 8 is complete, it is possible either to eliminate the tube 19 through the cutaneous orifice, or to leave it in place by cutting it flush with the skin and burying it in the sub-tissues. skin. The diastolic counter-pulse system according to the invention can also be implemented in bio-mechanical hearts with inlet and outlet valves as well as those used in the so-called apico-aortic arrangements. In this arrangement, the blood flow from the left ventricle of the heart 1 enters channel 17 at the time of systole and is ejected into the aorta 3 at the time of diastole. An intake valve 25 and a discharge valve 26 avoid retrograde flow in the left ventricle, which would be extremely harmful on a hemodynamic level. The intake valve 25 is open and the discharge valve 26 is closed at the time of systole. The inlet valve 25 is closed and the discharge valve 26 is open at the time of the diastole. The extra-aortic counterpulsation balloon 15 has the same effects in this apico-aortic configuration as in the aorto-aortic configuration. The deflation of the balloon 15 during systole, the delivery valve 26 being closed, facilitates the filling of the channel 17 where the blood is drawn due to the vacuum created. The inflation of the balloon 15 during the diastole, the inlet valve 25 being closed, allows the ejection of this volume of blood into the aorta 3 through the delivery valve 26 which is then open.

Claims

REVENDICATIONS
1. - Coeur bio-mécanique du type comportant des moyens de contre-pulsion diastolique extra-aortique, constitués d'une cage de pompage (7), disposée entre deux conduits (5,9) d'une dérivation aortique (6) dont 1 'actionnement est commandé par un muscle (8) excité par des impulsions électriques, caractérisé en ce que les parois internes de la cage de pompage (7), reçoivent un ballon (15) de section droite sensiblement annulaire, de façon à ménager un canal axial (17) en communication avec les deux conduits (5,9) de la dérivation aortique (6), qui est relié par un tube souple (19) à des moyens (20) aptes à injecter dans le dit ballon (15) un flux gazeux apte à le gonfler, de façon à diminuer la section de passage du canal axial (17) puis à le dégonfler, de façon à augmenter ladite section de passage (17).1. - Bio-mechanical heart of the type comprising extra-aortic diastolic counter-pulse means, constituted by a pumping cage (7), disposed between two conduits (5, 9) of an aortic bypass (6) of which 1 actuation is controlled by a muscle (8) excited by electrical pulses, characterized in that the internal walls of the pumping cage (7) receive a balloon (15) of substantially annular cross section, so as to provide a axial channel (17) in communication with the two conduits (5, 9) of the aortic bypass (6), which is connected by a flexible tube (19) to means (20) capable of injecting into said balloon (15) a gas flow capable of inflating it, so as to reduce the passage section of the axial channel (17) and then to deflate it, so as to increase said passage section (17).
2.- Coeur suivant la revendication 1 caractérisé en ce que le flux gazeux est constitué d'hélium. 2.- Heart according to claim 1 characterized in that the gas flow consists of helium.
PCT/FR1997/001385 1996-07-24 1997-07-24 Biomechanical heart for extra-aortic diastolic balloon pumping WO1998003212A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10506666A JP2000514687A (en) 1996-07-24 1997-07-24 Biomechanical heart for extra-aortic diastolic balloon pumping
CA002261846A CA2261846A1 (en) 1996-07-24 1997-07-24 Biomechanical heart for extra-aortic diastolic balloon pumping
EP97935620A EP0925079A1 (en) 1996-07-24 1997-07-24 Biomechanical heart for extra-aortic diastolic balloon pumping
AU38541/97A AU3854197A (en) 1996-07-24 1997-07-24 Biomechanical heart for extra-aortic diastolic balloon pumping

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96/09320 1996-07-24
FR9609320A FR2751549B1 (en) 1996-07-24 1996-07-24 BIO-MECHANICAL HEART WITH EXTRA-AORTIC DIASTOLIC COUNTER-PULSE

Publications (1)

Publication Number Publication Date
WO1998003212A1 true WO1998003212A1 (en) 1998-01-29

Family

ID=9494433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/001385 WO1998003212A1 (en) 1996-07-24 1997-07-24 Biomechanical heart for extra-aortic diastolic balloon pumping

Country Status (6)

Country Link
EP (1) EP0925079A1 (en)
JP (1) JP2000514687A (en)
AU (1) AU3854197A (en)
CA (1) CA2261846A1 (en)
FR (1) FR2751549B1 (en)
WO (1) WO1998003212A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984201B2 (en) 2000-09-23 2006-01-10 Harefield Cardiac Limited Blood circulation assistance device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL156452A0 (en) 2003-06-16 2004-01-04 Technion Res & Dev Foundation Peri-arterial blood flow booster

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685446A (en) * 1984-02-21 1987-08-11 Choy Daniel S J Method for using a ventricular assist device
WO1992008500A1 (en) * 1990-11-09 1992-05-29 Mcgill University Cardiac assist method and apparatus
WO1994026326A1 (en) * 1993-05-14 1994-11-24 Norbert Guldner Method of training a skeletal muscle for a biomechanical heart and biomechanical heart using said muscle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685446A (en) * 1984-02-21 1987-08-11 Choy Daniel S J Method for using a ventricular assist device
WO1992008500A1 (en) * 1990-11-09 1992-05-29 Mcgill University Cardiac assist method and apparatus
WO1994026326A1 (en) * 1993-05-14 1994-11-24 Norbert Guldner Method of training a skeletal muscle for a biomechanical heart and biomechanical heart using said muscle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984201B2 (en) 2000-09-23 2006-01-10 Harefield Cardiac Limited Blood circulation assistance device

Also Published As

Publication number Publication date
EP0925079A1 (en) 1999-06-30
FR2751549B1 (en) 1998-10-16
AU3854197A (en) 1998-02-10
FR2751549A1 (en) 1998-01-30
CA2261846A1 (en) 1998-01-29
JP2000514687A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
EP0876168B1 (en) Implantable heart assistance pump with a counter-pressure balloon
AU2014229150B2 (en) Renal pump
EP0366535B1 (en) Apparatus to perform a prolonged angioplasty
CH618609A5 (en)
EP0014130A1 (en) Complete cardiac prosthesis and device for regulating the blood flow rate therein
EP0821598A1 (en) Device for temporarily closing a canal in a body, in particular for assisting the function of the heart by application of counter-pressure
FR2766373A1 (en) VENTRICULAR COUNTER-PULSE HEART ASSISTANCE DEVICE
FR2653993A1 (en) HYDRAULIC PRESSURE INVERTER FOR CONTROLLING AN ARTIFICIAL SPHINCTER, AND IMPLANTABLE PROSTHESIS COMPRISING THE INVERTER.
EP0564321A2 (en) Drug injecting device
WO1994026326A1 (en) Method of training a skeletal muscle for a biomechanical heart and biomechanical heart using said muscle
EP0925079A1 (en) Biomechanical heart for extra-aortic diastolic balloon pumping
EP2291209B1 (en) Device for applying a pulsatile pressure to a medical device
CA2982204C (en) Cannula device, artificial lung
CA3189345A1 (en) Unloading blood pump system and the blood pump thereof
EP0227537B1 (en) Total cardiac prosthesis with two separate pumps operating as an inseparable unit
WO2022194981A1 (en) Device for assistance by direct cardiac compression
FR2681789A1 (en) Apparatus for circulatory assistance
EP3917604B1 (en) Injection cannula, ecmo system
BE1005293A6 (en) Circulatory assistance procedure and system for implementing this procedure
FR2705238A1 (en) Biomechanical heart with dynamic development
FR2708857A1 (en) Biomechanical heart with dynamic development
EP0069031A1 (en) Device and method facilitating extra-corporeal circulation of blood of a living being
WO1987006453A1 (en) Fluid flow rate control device, prosthetic organ provided with such device and method for fabricating such device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2261846

Country of ref document: CA

Ref country code: CA

Ref document number: 2261846

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09230333

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997935620

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997935620

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997935620

Country of ref document: EP