WO1998002691A1 - Method and apparatus for burning aqueous fuel - Google Patents

Method and apparatus for burning aqueous fuel Download PDF

Info

Publication number
WO1998002691A1
WO1998002691A1 PCT/JP1997/002430 JP9702430W WO9802691A1 WO 1998002691 A1 WO1998002691 A1 WO 1998002691A1 JP 9702430 W JP9702430 W JP 9702430W WO 9802691 A1 WO9802691 A1 WO 9802691A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
generation chamber
gas generation
fuel
hydrogen
Prior art date
Application number
PCT/JP1997/002430
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyuki Yamaki
Original Assignee
Hashimoto, Yutaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hashimoto, Yutaka filed Critical Hashimoto, Yutaka
Publication of WO1998002691A1 publication Critical patent/WO1998002691A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam

Definitions

  • the present invention relates to a method for burning an aqueous fuel containing water as a main material and a combustion apparatus applied to the method.
  • the emulsified fuel is added with an emulsifier in order to weaken the repulsive action of water and oil.However, the emulsified state is not always maintained. It gradually returns to the original state, that is, the state where water and oil are separated, and has a problem that it cannot be stockpiled as an emulsified fuel.
  • the emulsifier itself acts to hinder the oxidation reaction of oxygen, so that a sudden fire extinguishing phenomenon during combustion often occurs. Has not been put to practical use. Therefore, when water is used as thermal energy, the bond between hydrogen and oxygen constituting water molecules is made unstable without using an emulsifier, etc., and the oxygen in the unstable state is actively oxidized. By reacting and separating from hydrogen, it is possible to burn as a mixed gas of hydrogen gas and oxide. Disclosure of the invention
  • the present invention introduces water molecules into a gas generation chamber which is heated from the outside and is in a high-temperature vacuum state, and is further heated from saturated steam to combine hydrogen and oxygen.
  • the gaseous superheated dry vapor is vaporized by introducing a sufficient amount of liquefied fossil fuel into the gas generation chamber to cause an oxidation reaction with oxygen.
  • b. Producing a high-temperature mixed gas of hydrogen gas and oxide gas by mixing the hydrogen gas and the oxide gas, and injecting the high-temperature mixed gas from a burner to burn it.
  • a gas generation chamber having an introduction part for introducing water molecules and fossil fuel into the gas supply chamber, and a derivation part for deriving a high-temperature mixed gas on the other side; heating means for heating the gas generation chamber; Pars freely connected There is provided a combustion apparatus of the aqueous fuel, characterized in that it consists in Tokyo and.
  • the gas generation chamber is formed of a heat-resistant material and is formed of a coil-shaped space, and is formed of a heat-resistant material mainly composed of transparent or translucent quartz. That the UV irradiation means were installed close to the gas generation chamber, and that the temperature sensor was installed in the gas generation chamber. It is included as an additional component.
  • water molecules are introduced into a gas generation chamber in a high-temperature vacuum state, and heated to a gaseous superheated dry vapor in which the bond between hydrogen atoms and oxygen atoms becomes unstable.
  • a sufficient amount of liquid fossil fuel for causing an oxidation reaction with the oxygen atoms is introduced into a gas generation chamber, vaporized and gasified, and mixed with the gaseous superheated dry steam to generate a high-temperature mixed gas.
  • the high temperature gas mixture can be taken out and used as fuel.
  • the energy when burning this high-temperature mixed gas is several times the sum of the energy for heating the gas generation chamber from the outside and the energy of the liquid fossil fuel itself introduced into the gas generation chamber. You get it. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic perspective view showing the principle of a combustion device according to the first embodiment of the present invention
  • FIG. 2 is a diagram showing the principle of the combustion device according to the second embodiment
  • FIG. 3 is a schematic perspective view showing the principle of the combustion apparatus according to the third embodiment
  • FIG. 4 is a schematic perspective view showing the principle of the third embodiment.
  • FIG. 5 is a schematic end view of the combustion device according to the embodiment as viewed from the discharge side of the mixed gas
  • FIG. 5 is another configuration of a coil-shaped space serving as a gas generation chamber of the combustion device according to the embodiment.
  • FIG. 6 is a perspective view showing an example
  • FIG. 6 is a partially enlarged perspective view of the other configuration example.
  • FIG. 7 is a schematic perspective view showing the principle of a combustion device according to a third embodiment of the present invention.
  • FIG. 8 is a control box for controlling the aqueous fuel combustion device according to the present invention.
  • FIG. 2 is a perspective view schematically showing an example of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described with reference to the illustrated embodiments.
  • the water fuel combustion device according to the first embodiment shown in FIG. 1 is a device showing a basic principle, wherein 1 is a gas generation chamber, and the gas generation chamber is located on one side.
  • An introduction section 2 for introducing water molecules and an introduction section 3 for introducing liquefied fossil fuel are provided.
  • a deriving unit 4 for deriving a gas component generated inside is provided.
  • the gas generation chamber 1 is made of, for example, a metal material having good thermal conductivity and can be heated from the outside by a heating means 5 composed of an appropriate gas burner or the like. Expands and is discharged to the outside, and the inside of the gas generation chamber 1 is substantially in a high-temperature vacuum state.
  • the gas generation chamber 1 of the aqueous fuel combustion device according to the second embodiment shown in FIG. 2 has a heating means 5 provided therein, and the heating means 5 includes, for example, This is a heater using a nichrome wire or the like, and is disposed along an inner wall surface of the gas generation chamber 1 with an appropriate support member 6.
  • the support member 6 is formed of, for example, an insulator, and has a groove 6 a, and supports the nichrome wire as the heating means 5. At one end of the gas generation chamber 1, connection terminals 5a and 5b for supplying power to the heating means 5 from outside are taken out. Further, in this embodiment, the outer peripheral surface of the gas generating chamber 1 is covered with a heat insulating member 7 so that heat does not escape outside.
  • the gas generating chamber 1 in this embodiment is formed of a heat-resistant material mainly composed of, for example, transparent or translucent quartz glass, silicon or silicon carbide, and has a coil-like overall shape. It has a cylindrical shape having a space, and a substantially coil-shaped space is formed as the gas generation chamber 1. Has become.
  • An appropriate cover member 8 is attached to the outer peripheral surface of the gas generating chamber 1 including the coil-shaped space for reinforcement and heat retention.
  • the cover member 8 may be formed of the same material as the gas generation chamber 1 or may be formed of another heat insulating material. In short, the internal pressure does not increase so much, so long as it can be protected from being damaged by external impact.
  • the supply position of the fossil fuel to the gas generation chamber 1 is not limited to the same position (side) of the fuel introduction part 3 as the water molecule introduction part 2, but, for example, from the middle part to the discharge part 4 as shown in the figure. May be provided.
  • the gas generation chamber 1 when hydrogen atoms and oxygen atoms of water molecules are in an unstable state due to heating, it is sufficient if fuel can be supplied in a state where oxidation reaction is easily caused by oxygen atoms. The same is true for the four discharge sections.
  • a tube having a predetermined length formed of, for example, quartz glass, silicon, silicon carbide, or the like can be formed by winding the tube into a cylindrical shape.
  • a tube having a length exceeding 1 Om depending on the size and scale of the gas generating chamber 1 is used, and is formed by winding the tubes in an adjacent state and in a coil shape.
  • the coil-shaped space may be formed by uniting the cylindrical halves 9a and 9b.
  • arc-shaped passages 1a and 1b are formed in the wall surfaces of the halves 9a and 9b to be joined so that a spiral continuous space can be formed when the two halves are joined.
  • a hole 11 d for supplying water molecules and fuel to these passages is formed at one end of each half, and a hole 1 e for extracting gas is formed at the other end.
  • the inner surfaces of the halves 9a and 9b are, as shown in FIG. 6, inwardly protruding or rising along the arc-shaped passages la and lb. 0 can be formed. This is because the projecting portions 10 also serve to capture the passages la and 1b and actively perform heat exchange related to gas generation.
  • the halves 9a and 9b having such a configuration are united so that the passages la and 1b communicate with each other to form a coil-shaped space, and the united surfaces are welded to each other to form the entire cylinder.
  • the gas generating chamber 1 having a coil-shaped space can be formed.
  • the gas generating chamber 1 formed in a cylindrical shape in this manner is configured such that a heating means 5 such as a gas wrench is disposed on the supply side of water molecules and heats the gas generating chamber 1 from the inside of the cylindrical shape.
  • a heating means 5 such as a gas wrench
  • an electric means for generating heat from the nichrome wire can be employed.
  • FIG. 7 shows a fourth embodiment.
  • a gas generation chamber 1 is formed in a barrel shape, and one end portion ⁇ L, that is, a water molecule introduction portion 2 is provided on the base side, and a gas discharge portion 4 is formed by reducing the diameter of the tip side. It is.
  • the fuel supply introduction section 3 is provided near the front end, and internally has a heating means 5 for heating by electric means.
  • the power supply terminals 5a and 5 for the heating means 5 are taken out from the end on the base side.
  • the outer peripheral surface is covered with a heat insulating member 7 as in the second embodiment.
  • water molecules to be introduced are supplied in the form of a spray, and an atomizer 11 is connected to the introduction section 2.
  • the atomizer 11 uses, for example, ultrasonic waves.
  • the atomization state is dry and extremely fine, and the atomization is forcibly introduced into the gas generation chamber 1 from the introduction section 2.
  • evaporating means may be used as an atomizer. Wear.
  • FIG. 8 shows a control box 12.
  • the control box 12 includes at least a temperature control unit 13 that detects and controls the internal temperature of the gas generation chamber 1, a water supply control unit 14 that controls the amount of water molecules introduced, and a fuel introduction amount. And a fuel supply control section 15 for controlling the control section.
  • Each control section has a display section 13a, 14a, 15a and a control knob 13b, 14b, 15b. It is configured.
  • Reference numeral 16 denotes a switch
  • reference numeral 17 denotes a pilot lamp for displaying a driving state.
  • a temperature sensor 18 is attached to the gas discharge section 4 side. Can be accurately detected.
  • the output of the heating means 5 is increased, and when it is higher, the output is decreased.
  • the gas generation capacity differs depending on the capacity of the gas generation chamber 1 and the internal temperature
  • the supply amounts of the water molecules and the fuel are set in advance by experiments.
  • the temperature fluctuates due to the adjustment of the heating means 5 the supply amount of water molecules and the fuel is checked in response to the change and while visually checking the state of the ejected gas (mainly the combustion state). Can be fine-tuned.
  • an adapter 19 equipped with an adjusting member such as a valve is appropriately attached to the water molecule introduction end side of the gas generating chamber 1 in each embodiment, and the adjusting members are appropriately adjusted by the control units 14 and 15. It is adjusted to a proper state.
  • control box 12 is provided with a push button type ultraviolet irradiation switch 20, and the switch 20 is turned on and off as appropriate. By doing so, the ultraviolet irradiation lamp 21 is selectively turned on.
  • the ultraviolet irradiation lamp 21 can be used only in the gas generation chamber 1 made of a transparent or translucent heat-resistant material. Is irradiated with ultraviolet light.
  • the aqueous fuel can be burned, and the principle of combustion will be described below.
  • the heating means 5 is operated on the gas generating chamber 1 to heat the gas generating chamber 1, so that the air inside is eliminated and almost no air is present, so that a so-called high-temperature vacuum state is established.
  • the internal temperature of the gas generation chamber 1 is approximately 500 ° C. or higher.
  • Water molecules are introduced into the gas generating chamber 1 in such a high-temperature vacuum state through the introduction section 2.
  • the water molecules are introduced in a state of being dispersed in a spray form from a nozzle or the like, the water molecules are immediately evaporated and spread to be in a vapor or vaporized state and head toward the discharge unit 4 side.
  • the gas generating chamber 1 since the gas generating chamber 1 has a predetermined length, the steam is not immediately discharged from the discharge section 4 to the outside, and since the internal temperature is high, it becomes dry saturated steam and further heated. This will result in superheated steam.
  • the gas generating chamber 1 since the gas generating chamber 1 is formed as a coil-shaped space exceeding 10 m, the heating is sufficiently performed to produce superheated steam.
  • the vaporized water molecules and the fuel are mixed with the vaporized ones, and the hydrogen and oxygen atoms of the water molecules are in an unstable state, so that the fuel molecules undergo an oxidation reaction in the vaporized state. Due to this oxidation reaction, the hydrogen atoms are separated and are discharged from the discharge part 4 to the outside as a high-temperature mixed gas that has been vaporized together with the oxidized fuel.
  • the mixed gas is simply discharged from the discharge unit 4 as a mixed gas of hydrogen gas and fuel oxidizing gas. Combustion. If the internal temperature exceeds the ignition temperature of hydrogen of 570 ° C, for example, is not less than 64 ° C, the mixed gas is ejected in the state of a burned flame, so that ignition is unnecessary.
  • the experiment was performed using the apparatus of the first embodiment.
  • a steel pipe with an inner diameter of 50 mm and a length of 2.5 m was used, and a metal plate was welded to both ends of the steel tube and closed, and two holes were opened in one of the metal plates.
  • a water molecule introduction part and a fuel introduction part were formed, and a hole was formed in the other metal plate to form a nozzle-shaped discharge part.
  • the gas generating chamber is supported at a height of about 200 mm and substantially in parallel, and the gas generation chamber is heated by heating means for about 10 minutes to make the inside thereof a high-temperature vacuum state.
  • the mixture is supplied to the gas generation chamber in a state where it is ejected in a mist over a period of 150 to 200 seconds, and the mixed gas ejected from the ejection part side is ignited, it has a length of about 300 to 350 mm. A blue flame unique to hydrogen was confirmed. This combustion was confirmed for about 10 minutes.
  • the experiment was performed using the device of the third embodiment.
  • a copper pipe with an inner diameter of 10 mm and a length of 15 m is used as a gas generation chamber, and the copper pipe is wound into a coil shape with a diameter of about 150 mm, and a water molecule introduction part and fuel are provided at one end. The other end was reduced in diameter by about 95% to form a discharge section that opened about 0.5 mm.
  • the vicinity of both ends of the gas generation chamber is supported by a suitable supporting means at a height of about 200 mm from the surface and substantially in parallel, and the heating means heats the gas generation chamber for about 5 minutes, and the inside is heated.
  • a suitable supporting means at a height of about 200 mm from the surface and substantially in parallel, and the heating means heats the gas generation chamber for about 5 minutes, and the inside is heated.
  • Approximately 10 cc of water molecules at high temperature Is supplied into the gas generation chamber in the state of spraying in the form of a spray over 200 to 250 seconds, and after confirming that the temperature of the gas discharged from the discharge section has reached 350 ° C or more,
  • 2 cc of oil is sprayed in a spray form over a period of 150 to 200 seconds and supplied into the gas generation chamber, and igniting mixed gas ejected from the ejection part side, it is about 300 to 350 mm long.
  • a unique blue flame of hydrogen was confirmed. This combustion was confirmed for about 10 minutes.
  • the experiment was performed using the apparatus of the fourth embodiment.
  • a copper pipe with an inner diameter of 25 mm and a length of 2.5 m was used as the gas generation chamber, and an inlet for water molecules was formed at one end of the copper pipe and the other end was about 95
  • the discharge part was opened by about 1 mm by reducing the diameter, and a fuel introduction part was formed near the discharge part.
  • the water molecules are introduced into the introduction section using an ultrasonic atomizer and a fan as an introduction device, and a hand pump gasoline torch is used as a fuel introduction device using a nozzle tip.
  • the head was improved and used in an airtight connection to the introduction.
  • the vicinity of both ends of the gas generation chamber is supported by an appropriate supporting means at a height of about 200 mm from the ground surface and substantially in parallel, and the heating means heats the gas generation chamber for about 10 minutes, and the inside is heated.
  • a high-temperature vacuum is applied, and about 10 cc of water molecules are supplied in the gas generation chamber in a state where they are almost scattered in 300 to 400 seconds.
  • the temperature of the gas ejected from the discharge section becomes 350 ° C or more.
  • approximately 2 cc of gasoline was sprayed in a spray form over a period of 150 to 200 seconds, supplied to the gas generation chamber, and ignited to the mixed gas ejected from the ejection section side.
  • Hydrogen unique blue with a length of about 200 to 300 mm / 02
  • each experimental device only the water molecules are supplied without supplying fuel into the gas generation chamber to generate gaseous superheated dry steam in which the bond between hydrogen and oxygen is unstable, and this superheated dry steam is taken out to another line.
  • this superheated dry steam is taken out to another line.
  • by passing the easily oxidizable substance through a filter the substance and oxygen are oxidized and removed to remove only hydrogen gas, and the hydrogen gas is used as fuel. You can also.
  • the present invention by heating water molecules to convert the saturated steam into gaseous superheated dry steam, leaving the bond between hydrogen and oxygen in an unstable state, and supplying a substance that undergoes an oxidation reaction with oxygen to supply hydrogen
  • the substance that oxidizes and reacts with oxygen is fuel, it can be used as a mixed gas of hydrogen and oxide fuel for combustion, and the substance that oxidizes and reacts with oxygen is not fuel. If it is a mineral such as iron, it can be extracted as hydrogen gas.
  • the method for burning aqueous fuel according to the present invention is a method for effectively utilizing water as a fuel, a method for saving energy, and a method for preventing environmental pollution because it is clean energy.
  • the aqueous fuel combustion apparatus according to the present invention is useful as an apparatus used for carrying out such an aqueous fuel combustion method, and has a simple configuration. Therefore, it can be widely used as boilers or various internal combustion engines for industrial use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

A plurality of chemical substances constituting an aqueous fuel are organically bonded to one another and does not easily decompose. According to the invention, the bonds are forcedly broken and the chemical substances are extracted as the individual substances or burnt. Pressurized water is fed into a space in a vacuum at a high temperature, vaporized, and further heated to turn it to superheated water vapor. Thus the bond between hydrogen and oxygen is made unstable, an affinitive quantity of a fossile fuel necessary for causing the oxidation reaction by oxygen is pressure-fed into the space so as to substantially decompose the water into hydrogen and oxygen and to enable the hydrogen and the fossile fuel to burn, or to enable hydrogen and oxygen to be extracted separately.

Description

明 細 書 水性燃料の燃焼方法及び燃焼装置 技術分野  Description Water-based fuel combustion method and combustion apparatus
本発明は、 水を主材とする水性燃料の燃焼方法及びその燃焼方法に適 用される燃焼装置に関するものである。 背景技術  The present invention relates to a method for burning an aqueous fuel containing water as a main material and a combustion apparatus applied to the method. Background art
例えば、 石炭を燃やす時に 石炭に水を掛けて濡らした状態で燃焼さ せると、 石炭自体の持つエネルギーよりも高いエネルギーが得られるこ と、 及び木材にしても、 枯れて乾燥した木材よりも生木または水に濡ら した木材の方が火力が高いことがそれぞれ知られている。  For example, when coal is burned and burned in a wet state with water, it is possible to obtain energy higher than the energy of the coal itself. It is known that wood or wood wet with water has higher thermal power, respectively.
これらのことから、 水が一部において燃焼に寄与しているものと認識 して、 化石燃料である石油またはガソリン等の水性燃料に対して、 所定 量 (比率にして略 1 0 %程度) の水と触媒 (乳化剤等) を添加して均一 に撹拌混合 (ホモジナイズ化) した乳化燃料とするものでり、 実質的に 燃料を増量させて燃料の節減を図ることが提案されている。  Based on these facts, it is recognized that water partially contributes to combustion, and a certain amount (approximately 10% in proportion) of water-based fuel such as petroleum or gasoline as fossil fuel. Water and a catalyst (emulsifier, etc.) are added to make an emulsified fuel that is uniformly stirred and mixed (homogenized). It has been proposed that fuel be saved by substantially increasing the amount of fuel.
しかしながら、 前記乳化燃料は 水と油の反発作用を弱めるために乳 化剤が添加されているが、 いつまでも乳化状態が維持されているわけで はなく、 静置状態にして置く と時間の経過と共に徐々に元の状態、 即ち 水と油が分離した状態に戻ってしまレ、、 乳化燃料と して備蓄ができない という問題点を有している。  However, the emulsified fuel is added with an emulsifier in order to weaken the repulsive action of water and oil.However, the emulsified state is not always maintained. It gradually returns to the original state, that is, the state where water and oil are separated, and has a problem that it cannot be stockpiled as an emulsified fuel.
また、 前記乳化燃料を用いて燃焼に供した場合に、 乳化剤自体が酸素 の酸化反応を妨げる作用をすることから、 燃焼中に突然消火する現象が しばしば生ずるという問題点を有しており、 現実に実用化されていない。 従って、 水を熱エネルギーとして利用する場合に、 乳化剤等を使用し ないで、 水分子を構成する水素と酸素との結合を不安定な状態にし そ の不安定な状態の酸素を積極的に酸化反応させて水素と分離させること で、 水素ガス及び酸化物の混合ガスとして燃焼できるようにすることで ある。 発明の開示 Further, when the fuel is used for combustion using the emulsified fuel, the emulsifier itself acts to hinder the oxidation reaction of oxygen, so that a sudden fire extinguishing phenomenon during combustion often occurs. Has not been put to practical use. Therefore, when water is used as thermal energy, the bond between hydrogen and oxygen constituting water molecules is made unstable without using an emulsifier, etc., and the oxygen in the unstable state is actively oxidized. By reacting and separating from hydrogen, it is possible to burn as a mixed gas of hydrogen gas and oxide. Disclosure of the invention
前記従来例の課題を解決する具体的手段として本発明は、 外部から加 熱され高温真空状態にあるガス生成室内に水分子を導入し、 飽和蒸気か ら更に加熱して水素と酸素との結合が不安定になるガス状の過熱乾燥蒸 気とし、 前記酸素と酸化反応させるに充分な量の液状化石燃料をガス生 成室内に導入し気化させ、 前記ガス状の過熱乾燥蒸気と気化した燃料と を混合して水素ガスと酸化物ガスとの高温混合ガスを生成し、 該高温混 合ガスをパーナ一から噴射させて燃焼させることを特徴とする水性燃料 の燃焼方法、 並びに、 一方の側に水分子と化石燃料を導入する導入部を 備えると共に 他方の側に高温混合ガスを導出する導出部を備えたガス 生成室と、 該ガス生成室を加熱する加熱手段と、 前記導出部に着脱自在 に接続されるパーナ一とからなることを特徴とする水性燃料の燃焼装置 を提供するものである。  As a specific means for solving the problems of the conventional example, the present invention introduces water molecules into a gas generation chamber which is heated from the outside and is in a high-temperature vacuum state, and is further heated from saturated steam to combine hydrogen and oxygen. The gaseous superheated dry vapor is vaporized by introducing a sufficient amount of liquefied fossil fuel into the gas generation chamber to cause an oxidation reaction with oxygen. And b. Producing a high-temperature mixed gas of hydrogen gas and oxide gas by mixing the hydrogen gas and the oxide gas, and injecting the high-temperature mixed gas from a burner to burn it. A gas generation chamber having an introduction part for introducing water molecules and fossil fuel into the gas supply chamber, and a derivation part for deriving a high-temperature mixed gas on the other side; heating means for heating the gas generation chamber; Pars freely connected There is provided a combustion apparatus of the aqueous fuel, characterized in that it consists in Tokyo and.
また、 本発明の燃焼方法においては、 ガス生成室内に導入される水分 子 液状または気化状であること、 少なく ともガス状の過熱乾燥蒸気 に紫外線を照射させること、 を付加的な構成要件と して含むと共に、 燃 焼装置においては ガス生成室が、 耐熱性の材料で且つコイル状の空間 部で形成されていること、 及び透明又は半透明の石英を主材と した耐熱 性の材料で形成されていること、 ガス生成室に近接して紫外線照射手段 を配設したこと、 更に、 ガス生成室内に温度センサーを配設したことを 付加的な構成要件として含むものである。 Further, in the combustion method of the present invention, it is an additional constitutional requirement that the water molecules introduced into the gas generation chamber be in a liquid or vaporized state, and that at least gaseous superheated dry steam is irradiated with ultraviolet rays. In the combustion apparatus, the gas generation chamber is formed of a heat-resistant material and is formed of a coil-shaped space, and is formed of a heat-resistant material mainly composed of transparent or translucent quartz. That the UV irradiation means were installed close to the gas generation chamber, and that the temperature sensor was installed in the gas generation chamber. It is included as an additional component.
本発明に係る水性燃料の燃焼方法は、 高温真空状態にあるガス生成室 内に水分子を導入し、 水素原子と酸素原子との結合が不安定になるガス 状の過熱乾燥蒸気になるまで加熱し 前記酸素原子と酸化反応させるに 充分な量の液状化石燃料をガス生成室内に導入し気化させてガス化して、 前記ガス状の過熱乾燥蒸気と混合させて高温混合ガスを生成するもので あり、 その高温混合ガスは外部に取り出し燃料として使用できるもので ある。 そして、 この高温混合ガスを燃焼させた時のエネルギーは、 ガス 生成室を外部から加熱するエネルギーと、 ガス生成室内に導入された液 状化石燃料自体のもつエネルギーとの和の数倍のエネルギーが得られる のである。 図面の簡単な説明  In the method of burning aqueous fuel according to the present invention, water molecules are introduced into a gas generation chamber in a high-temperature vacuum state, and heated to a gaseous superheated dry vapor in which the bond between hydrogen atoms and oxygen atoms becomes unstable. A sufficient amount of liquid fossil fuel for causing an oxidation reaction with the oxygen atoms is introduced into a gas generation chamber, vaporized and gasified, and mixed with the gaseous superheated dry steam to generate a high-temperature mixed gas. The high temperature gas mixture can be taken out and used as fuel. The energy when burning this high-temperature mixed gas is several times the sum of the energy for heating the gas generation chamber from the outside and the energy of the liquid fossil fuel itself introduced into the gas generation chamber. You get it. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施の形態に係る燃焼装置の原理を示す略 示的斜視図であり、 第 2図は、 同第 2の実施の形態に係る燃焼装置の原 理を示す略示的斜視図であり、 第 3図は、 同第 3の実施の形態に係る燃 焼装置の原理を示す略示的斜視図であり、 第 4図は、 同第 3の実施の形 態に係る燃焼装置の混合ガスの排出部側から見た略示的端面図であり、 第 5図は、 同実施の形態に係る燃焼装置のガス生成室となるコィル状の 空間の他の構成例を示す斜視図であり、 第 6図は、 同他の構成例におけ る一部拡大斜視図である。 第 7図は 本発明に係る第 3の実施の形態に 係る燃焼装置の原理を示す略示的斜視図であり、 第 8図 本発明に係 る水性燃料の燃焼装置を制御するコン卜ロールボックスの一例を略示的 に示す斜視図である。 発明を実施するための最良の形態 次に、 本発明を図示の実施の形態について説明する。 図 1に示した第 1の実施の形態に係る水性燃料の燃焼装置は 基本的な原理を示す装置 であり、 該装置において、 1はガス生成室であり、 該ガス生成室は 一 方の側において水分子を導入するための導入部 2と、 液状化石燃料を導 入するための導入部 3とが設けられている。 そして、 他方の側において は 内部で生成されたガス成分を導出するための導出部 4が設けられて レヽる。 FIG. 1 is a schematic perspective view showing the principle of a combustion device according to the first embodiment of the present invention, and FIG. 2 is a diagram showing the principle of the combustion device according to the second embodiment. FIG. 3 is a schematic perspective view showing the principle of the combustion apparatus according to the third embodiment, and FIG. 4 is a schematic perspective view showing the principle of the third embodiment. FIG. 5 is a schematic end view of the combustion device according to the embodiment as viewed from the discharge side of the mixed gas, and FIG. 5 is another configuration of a coil-shaped space serving as a gas generation chamber of the combustion device according to the embodiment. FIG. 6 is a perspective view showing an example, and FIG. 6 is a partially enlarged perspective view of the other configuration example. FIG. 7 is a schematic perspective view showing the principle of a combustion device according to a third embodiment of the present invention. FIG. 8 is a control box for controlling the aqueous fuel combustion device according to the present invention. FIG. 2 is a perspective view schematically showing an example of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described with reference to the illustrated embodiments. The water fuel combustion device according to the first embodiment shown in FIG. 1 is a device showing a basic principle, wherein 1 is a gas generation chamber, and the gas generation chamber is located on one side. An introduction section 2 for introducing water molecules and an introduction section 3 for introducing liquefied fossil fuel are provided. Then, on the other side, a deriving unit 4 for deriving a gas component generated inside is provided.
このガス生成室 1は 例えば、 熱導電性の良好な金属材料で形成され ており、 適宜のガスバーナ等からなる加熱手段 5により外部から加熱で きる構成のものであり、 その加熱によって、 内部の空気が膨張して外部 に排出され 実質的にガス生成室 1内が高温真空状態になる。  The gas generation chamber 1 is made of, for example, a metal material having good thermal conductivity and can be heated from the outside by a heating means 5 composed of an appropriate gas burner or the like. Expands and is discharged to the outside, and the inside of the gas generation chamber 1 is substantially in a high-temperature vacuum state.
また、 図 2に示した第 2の実施の形態に係る水性燃料の燃焼装置のガ ス生成室 1は、 その内部に加熱手段 5を設けたものであり、 その加熱手 段 5は、 例えば、 ニクロム線等を用いたヒータ一であって、 ガス生成室 1の内壁面に沿って適宜の支持部材 6により配設してある。  Further, the gas generation chamber 1 of the aqueous fuel combustion device according to the second embodiment shown in FIG. 2 has a heating means 5 provided therein, and the heating means 5 includes, for example, This is a heater using a nichrome wire or the like, and is disposed along an inner wall surface of the gas generation chamber 1 with an appropriate support member 6.
この支持部材 6は、 例えば、 碍子等によって形成され 溝部 6 aが形 成されていて、 加熱手段 5であるニクロム線を支持するものである。 そ して、 ガス生成室 1の一方の端部側には、 加熱手段 5に対して外部から 給電するための接続端子 5 a、 5 bが取り出されている。 また、 この実 施の形態において 外部に熱を逃さないように、 ガス生成室 1の外周 面を断熱部材 7により被覆してある。  The support member 6 is formed of, for example, an insulator, and has a groove 6 a, and supports the nichrome wire as the heating means 5. At one end of the gas generation chamber 1, connection terminals 5a and 5b for supplying power to the heating means 5 from outside are taken out. Further, in this embodiment, the outer peripheral surface of the gas generating chamber 1 is covered with a heat insulating member 7 so that heat does not escape outside.
更に、 図 3〜 6に燃焼装置における第 3の実施の形態を示してある。 この実施の形態におけるガス生成室 1は、 例えば透明又は半透明な石英 ガラス、 シリ コンまたはシリ コンカーバイ 卜等を主材とする耐熱性の材 料で形成されており、 全体形状としてはコイル状の空間部を有する円筒 状を呈するものであって、 実質的にコイル状の空間部がガス生成室 1 と なっている。 3 to 6 show a third embodiment of the combustion apparatus. The gas generating chamber 1 in this embodiment is formed of a heat-resistant material mainly composed of, for example, transparent or translucent quartz glass, silicon or silicon carbide, and has a coil-like overall shape. It has a cylindrical shape having a space, and a substantially coil-shaped space is formed as the gas generation chamber 1. Has become.
そして、 コイル状の空間部からなるガス生成室 1の外周面は補強及び 保温のために、 適宜のカバー部材 8が取り付けられている。 このカバー 部材 8は ガス生成室 1 と同質材料で形成しても良ぐ また別の断熱性 の材料で形成しても良い。 要するに 内部圧がそれ程高くなる訳ではな いので、 外部からの衝擊によって破損しないように保護できるものであ れば足りるのである。  An appropriate cover member 8 is attached to the outer peripheral surface of the gas generating chamber 1 including the coil-shaped space for reinforcement and heat retention. The cover member 8 may be formed of the same material as the gas generation chamber 1 or may be formed of another heat insulating material. In short, the internal pressure does not increase so much, so long as it can be protected from being damaged by external impact.
また、 ガス生成室 1に対する化石燃料の供給位置は 即ち燃料の導入 部 3は水分子の導入部 2 と同じ位置 (側) に限らず、 図示したように、 例えば中間部から排出部 4寄りに設けても良い。 要するに、 ガス生成室 1内において、 水分子の水素原子と酸素原子とが加熱によって不安定な 状態になったところで、 酸素原子による酸化反応し易い状態の時に燃料 を供給できれば良いのであるから、 ガスの排出部 4寄りでも実質的に同 じである。  In addition, the supply position of the fossil fuel to the gas generation chamber 1 is not limited to the same position (side) of the fuel introduction part 3 as the water molecule introduction part 2, but, for example, from the middle part to the discharge part 4 as shown in the figure. May be provided. In short, in the gas generation chamber 1, when hydrogen atoms and oxygen atoms of water molecules are in an unstable state due to heating, it is sufficient if fuel can be supplied in a state where oxidation reaction is easily caused by oxygen atoms. The same is true for the four discharge sections.
このコイル状の空間部を形成するためには、 例えば、 石英ガラス、 シ リ コンまたはシリ コンカーバイ 卜等で形成した所定長さのチューブを円 筒状に巻回して形成することができる。 この場合に、 ガス生成室 1の大 きさ及び規模にもよるカ チューブの長さは 1 O mを越えるものが使用 され そのチューブを隣接状態に且つコイル状に卷回して形成される。 また、 コイル状の空間部は、 図 5に示したように、 筒体の半体 9 a、 9 bを合体させて形成することもできる。 この場合には、 合体される各 半体 9 a、 9 bの壁面内に、 両者を合体させた時に、 螺旋状の連続した 空間部が形成できるように円弧状の通路 1 a、 1 bが形成されると共に、 これらの通路に対して水分子と燃料とが供給できる孔 1 1 dが各半 体の一端部に形成され 他端部側にはガス取り出し用の孔 1 eが形成さ れている。 この場合に、 例えば、 半体 9 a、 9 bの内側となる面には、 図 6に示 したように、 円弧状の通路 l a、 l bに沿って、 内側への突出または盛 り上り部 1 0を形成することができる。 この突出部 1 0 通路 l a、 1 bの捕強を兼ねると共に、 ガス生成に関与する熱交換を積極的に行わ せるためである。 そして、 このような構成の半体 9 a、 9 bを通路 l a、 1 bが相互に連通してコイル状の空間部となるように合体させ、 合体面 を相互に溶着させることで全体が円筒状を呈するようになり、 コイル状 の空間部を有するガス生成室 1が形成できるのである。 In order to form the coil-shaped space, a tube having a predetermined length formed of, for example, quartz glass, silicon, silicon carbide, or the like can be formed by winding the tube into a cylindrical shape. In this case, a tube having a length exceeding 1 Om depending on the size and scale of the gas generating chamber 1 is used, and is formed by winding the tubes in an adjacent state and in a coil shape. Further, as shown in FIG. 5, the coil-shaped space may be formed by uniting the cylindrical halves 9a and 9b. In this case, arc-shaped passages 1a and 1b are formed in the wall surfaces of the halves 9a and 9b to be joined so that a spiral continuous space can be formed when the two halves are joined. At the same time, a hole 11 d for supplying water molecules and fuel to these passages is formed at one end of each half, and a hole 1 e for extracting gas is formed at the other end. ing. In this case, for example, the inner surfaces of the halves 9a and 9b are, as shown in FIG. 6, inwardly protruding or rising along the arc-shaped passages la and lb. 0 can be formed. This is because the projecting portions 10 also serve to capture the passages la and 1b and actively perform heat exchange related to gas generation. Then, the halves 9a and 9b having such a configuration are united so that the passages la and 1b communicate with each other to form a coil-shaped space, and the united surfaces are welded to each other to form the entire cylinder. As a result, the gas generating chamber 1 having a coil-shaped space can be formed.
このように円筒状に形成されたガス生成室 1は、 水分子の供給側にガ スパーナ等の加熱手段 5が配設され 円筒状の内部からガス生成室 1を 加熱するように構成されている。 この場合でも、 加熱手段 5と しては、 例えば、 ニクロム線を発熱させる電気的手段が採用できる。 要するに、 コイル状の空間部が所定温度に加熟できれば良いのである。  The gas generating chamber 1 formed in a cylindrical shape in this manner is configured such that a heating means 5 such as a gas wrench is disposed on the supply side of water molecules and heats the gas generating chamber 1 from the inside of the cylindrical shape. . Even in this case, as the heating means 5, for example, an electric means for generating heat from the nichrome wire can be employed. In short, it is only necessary that the coil-shaped space can be ripened to a predetermined temperature.
図 7に第 4の実施の形態を示してある。 この実施の形態 ガス生成 室 1を砲身状に形成し 一方の端部彻 L 即ち基部側に水分子の導入部 2 が設けられ 先端側を縮径してガスの排出部 4が形成されたものである。 そして、 燃料供給用の導入部 3は先端寄りに設けられ 内部には電気的 手段で加熱する加熱手段 5を配設したものである。 そして、 加熱手段 5 に対する給電用の端子 5 a、 5 基部側の端部から取り出してある。 なお、 外周面は、 前記第 2の実施の形態と同様に断熱部材 7により覆つ てある。  FIG. 7 shows a fourth embodiment. In this embodiment, a gas generation chamber 1 is formed in a barrel shape, and one end portion 彻 L, that is, a water molecule introduction portion 2 is provided on the base side, and a gas discharge portion 4 is formed by reducing the diameter of the tip side. It is. The fuel supply introduction section 3 is provided near the front end, and internally has a heating means 5 for heating by electric means. The power supply terminals 5a and 5 for the heating means 5 are taken out from the end on the base side. The outer peripheral surface is covered with a heat insulating member 7 as in the second embodiment.
この第 4の実施の形態においては 導入される水分子を噴霧状にして 供給するものであり、 導入部 2に霧化機 1 1が接続されている。 この霧 化機 1 1は、 例えば超音波を利用したものであり、 霧化の状態がドライ で且つ極めて細かくなり、 これを導入部 2からガス生成室 1内に強制的 に導入する。 なお、 霧化機として、 例えば、 蒸発手段を用いることもで きる。 In the fourth embodiment, water molecules to be introduced are supplied in the form of a spray, and an atomizer 11 is connected to the introduction section 2. The atomizer 11 uses, for example, ultrasonic waves. The atomization state is dry and extremely fine, and the atomization is forcibly introduced into the gas generation chamber 1 from the introduction section 2. In addition, as an atomizer, for example, evaporating means may be used. Wear.
更に、 図 8にコントロールボックス 1 2を示してある。 このコント口 ールボックス 1 2は 少なく とも、 ガス生成室 1の内部温度を検出して 制御する温度制御部 1 3と、 水分子の導入量を制御する水供給制御部 1 4 と、 燃料の導入量を制御する燃料供給制御部 1 5とを備え、 各制御部 においては表示部 1 3 a、 1 4 a、 1 5 aと、 制御用の摘み 1 3 b、 1 4 b、 1 5 b とから構成されている。 なお、 1 6はスィッチであり、 1 7は駆動状態を表示するパイ口ッ トランプである。  Further, FIG. 8 shows a control box 12. The control box 12 includes at least a temperature control unit 13 that detects and controls the internal temperature of the gas generation chamber 1, a water supply control unit 14 that controls the amount of water molecules introduced, and a fuel introduction amount. And a fuel supply control section 15 for controlling the control section.Each control section has a display section 13a, 14a, 15a and a control knob 13b, 14b, 15b. It is configured. Reference numeral 16 denotes a switch, and reference numeral 17 denotes a pilot lamp for displaying a driving state.
ガス生成室 1内の温度を検出するためには、 前記各実施の形態におい て、 ガスの排出部 4側に温度センサー 1 8が取り付けられるものであり、 該温度センサー 1 8により、 内部の温度が正確に検出できるのである。 そして、 内部の温度が設定した値よりも低い場合には、 加熱手段 5の出 力を上げるようにし、 高い場合には出力を下げるようにして制御するの である。  In order to detect the temperature inside the gas generation chamber 1, in each of the above-described embodiments, a temperature sensor 18 is attached to the gas discharge section 4 side. Can be accurately detected. When the internal temperature is lower than the set value, the output of the heating means 5 is increased, and when it is higher, the output is decreased.
また、 ガス生成室 1の容量と、 内部温度とによってガスの生成能力が 異なるので、 予め実験によつて水分子と燃料との供給量が設定されてい る。 しかしながら加熱手段 5の調整によって温度が変動した場合に、 そ れに対応して、 及び噴出するガスの状態 (主と して燃焼状態) を目視に より確認しながら、 水分子と燃料の供給量を微妙に調整することができ るのである。  Further, since the gas generation capacity differs depending on the capacity of the gas generation chamber 1 and the internal temperature, the supply amounts of the water molecules and the fuel are set in advance by experiments. However, when the temperature fluctuates due to the adjustment of the heating means 5, the supply amount of water molecules and the fuel is checked in response to the change and while visually checking the state of the ejected gas (mainly the combustion state). Can be fine-tuned.
この場合に 特に 各実施の形態におけるガス生成室 1の水分子の導 入端側にバルブ等の調整部材を装備したアダプター 1 9が適宜取り付け られ 制御部 1 4及び 1 5によって各調整部材が適正な状態に調整され るのである。  In this case, in particular, an adapter 19 equipped with an adjusting member such as a valve is appropriately attached to the water molecule introduction end side of the gas generating chamber 1 in each embodiment, and the adjusting members are appropriately adjusted by the control units 14 and 15. It is adjusted to a proper state.
更に、 コント口一ルポックス 1 2には、 プッシュボタン式の紫外線照 射スィッチ 2 0が設けられており、 該スィッチ 2 0を適宜オン ' オフさ せることで、 紫外線照射ランプ 2 1が選択的に点灯するものである。 こ の紫外線照射ランプ 2 1は透明または半透明な耐熱材料で形成されたガ ス生成室 1に限って使用可能なものであり、 そのガス生成室 1の周囲に 設置してガス生成室 1内に紫外線を照射させるのである。 In addition, the control box 12 is provided with a push button type ultraviolet irradiation switch 20, and the switch 20 is turned on and off as appropriate. By doing so, the ultraviolet irradiation lamp 21 is selectively turned on. The ultraviolet irradiation lamp 21 can be used only in the gas generation chamber 1 made of a transparent or translucent heat-resistant material. Is irradiated with ultraviolet light.
前記したいずれの実施の形態の装置においても、 水性燃料を燃焼させ ることができるのであり、 その燃焼原理について以下に説明する。  In any of the above-described embodiments, the aqueous fuel can be burned, and the principle of combustion will be described below.
まず、 ガス生成室 1に対して加熱手段 5を作動させて、 ガス生成室 1 を加熱することにより、 内部の空気が排除されて空気がほとんど存在し ない、 所謂高温真空状態になる。 この時のガス生成室 1の内部温度は略 5 0 0 °C以上である。  First, the heating means 5 is operated on the gas generating chamber 1 to heat the gas generating chamber 1, so that the air inside is eliminated and almost no air is present, so that a so-called high-temperature vacuum state is established. At this time, the internal temperature of the gas generation chamber 1 is approximately 500 ° C. or higher.
このように高温真空状態になったガス生成室 1内に 導入部 2を介し て水分子を導入する。 この場合に、 例えば、 ノズル等から噴霧状に拡散 する状態で導入すると、 水分子は直ちに蒸発して拡がり蒸気または気化 状態になって排出部 4側に向かう。  Water molecules are introduced into the gas generating chamber 1 in such a high-temperature vacuum state through the introduction section 2. In this case, for example, when the water molecules are introduced in a state of being dispersed in a spray form from a nozzle or the like, the water molecules are immediately evaporated and spread to be in a vapor or vaporized state and head toward the discharge unit 4 side.
しかしながら、 ガス生成室 1 所定の長さがあるため、 蒸気が直ち に排出部 4から外部に排出される訳ではなく、 そして内部温度が高いこ とから、 乾いた状態の飽和蒸気となり更に加熱されることで過熱蒸気と なる。 特に、 第 3の実施の形態においては ガス生成室 1が 1 0 mを越 えるコィル状の空間で形成されているので、 加熱が充分に行われて過熱 蒸気となる。  However, since the gas generating chamber 1 has a predetermined length, the steam is not immediately discharged from the discharge section 4 to the outside, and since the internal temperature is high, it becomes dry saturated steam and further heated. This will result in superheated steam. In particular, in the third embodiment, since the gas generating chamber 1 is formed as a coil-shaped space exceeding 10 m, the heating is sufficiently performed to produce superheated steam.
そして、 所謂過熱蒸気になると、 水分子を形成する水素原子と酸素原 子とが不安定な結合状態になってくる。 この不安定な結合状態の中に 化石燃料、 例えば石油を導入部 3からガス生成室 1内に、 前記と同様に 噴霧状に拡散する状態で導入すると、 内部が高温であることから石油も 直ちに気化状態になる。  Then, when it becomes a so-called superheated steam, a hydrogen atom forming a water molecule and an oxygen atom come into an unstable bonding state. When fossil fuel, for example, petroleum, is introduced into the gas generating chamber 1 from the introduction section 3 in a state of being sprayed in the same manner as described above in this unstable bonding state, the oil is immediately heated because of the high temperature inside. It becomes a vaporized state.
そして、 ガス生成室 1内においては、 水分子の気化したものと燃料の 気化したものとが混合し、 水分子の水素原子と酸素原子とが不安定な状 態にあるので、 気化の状態で燃料分子が酸化反応する。 この酸化反応に より、 水素原子が分離した状態になって酸化燃料と共に気化状態になつ た高温の混合ガスとして排出部 4から外部に排出される。 In the gas generation chamber 1, the vaporized water molecules and the fuel The fuel molecules are mixed with the vaporized ones, and the hydrogen and oxygen atoms of the water molecules are in an unstable state, so that the fuel molecules undergo an oxidation reaction in the vaporized state. Due to this oxidation reaction, the hydrogen atoms are separated and are discharged from the discharge part 4 to the outside as a high-temperature mixed gas that has been vaporized together with the oxidized fuel.
この時に ガス生成室 1内の温度が 5 7 0 °C以下であると、 単に水素 ガス及び燃料酸化ガスの混合ガスとして排出部 4から排出されるので、 その排出部 4において混合ガスに着火させることにより燃焼する。 また、 内部温度が水素の着火温度である 5 7 0 °Cを越えて、 例えば 6 4 0 °C以 上であれば、 混合ガスは燃焼した炎の状態で噴出するので着火は不要で ある。  At this time, if the temperature in the gas generation chamber 1 is 570 ° C. or lower, the mixed gas is simply discharged from the discharge unit 4 as a mixed gas of hydrogen gas and fuel oxidizing gas. Combustion. If the internal temperature exceeds the ignition temperature of hydrogen of 570 ° C, for example, is not less than 64 ° C, the mixed gas is ejected in the state of a burned flame, so that ignition is unnecessary.
加熱手段 5によって内部が高温に維持されているガス生成室 1に対し て、 水分子及び燃料をどのような状態で導入または供給しても、 ガス生 成室 1内においてそれらが直ちに蒸発するものであり、 その蒸発によつ て体積が著しく膨張することになるため、 ガス生成室 1の内圧が高くな り内部で生成した混合ガス^ 特別な導出手段を講じなくても必然的に 排出部 4から噴出することになる。  Regardless of the state in which water molecules and fuel are introduced or supplied to the gas generating chamber 1 whose inside is maintained at a high temperature by the heating means 5, they are immediately evaporated in the gas generating chamber 1. Since the volume is significantly expanded due to the evaporation, the internal pressure of the gas generating chamber 1 is increased, and the mixed gas generated inside is inevitably discharged without any special deriving means. It will erupt from 4.
[実験例 1 ]  [Experimental example 1]
使用した装置は、 第 1の実施の形態の装置を使用して実験を行った。 The experiment was performed using the apparatus of the first embodiment.
( 1 ) ガス生成室としては、 内径 5 0 m m、 長さ 2. 5 mの鋼管を用い、 その鋼管の両端部に金属板を溶接して塞ぎその金属板の一方に二つの孔 を開けて水分子の導入部と燃料の導入部とを形成し、 他方の金属板には 一つの孔を開けてノズル状の排出部を形成した。 (1) For the gas generation chamber, a steel pipe with an inner diameter of 50 mm and a length of 2.5 m was used, and a metal plate was welded to both ends of the steel tube and closed, and two holes were opened in one of the metal plates. A water molecule introduction part and a fuel introduction part were formed, and a hole was formed in the other metal plate to form a nozzle-shaped discharge part.
( 2 ) 加熱手段としては ブタンガス ( 1 7 0 g ) が充塡され約 9 0分 燃焼可能なガストーチを 1 0個を使用し ガス生成室の両側に夫々 5個 づっ所定の間隔をもって交互に配設した。  (2) As heating means, butane gas (170 g) was used, and about 90 minutes, 10 combustible gas torches were used, and 5 gas torches were alternately arranged on both sides of the gas generation chamber at predetermined intervals. Established.
( 3 ) 水分子及び燃料の導入装置としては、 手動ポンプ式のガソ リ ン卜 ーチを利用し、 ノズルチップヘッ ドを改良して使用し、 夫々の導入部に 気密に接続して使用した。 (3) As a device for introducing water molecules and fuel, a manual pump type gasoline The nozzle tip head was modified and used, and used in an airtight connection to each inlet.
先ず、 ガス生成室の両端部近傍を適宜の支持手段により、 地表から約 First, the vicinity of both ends of the gas generation chamber is approximately
2 00 mm程度の高さで且つ略平行に支持させ、 加熱手段によりガス生 成室を約 1 0分間加熱して、 その内部を高温真空状態にし、 約 l O c c の水分子が 2 00〜2 5 0秒かけて噴霧状に噴出する状態にしてガス生 成室内に供給し 排出部側から噴出するガスの温度が 3 5 0°C以上にな つたことを確認してから、 約 2 c cの石油が 1 50〜 20 0秒かけて噴 霧状に噴出する状態にしてガス生成室内に供給し、 噴出部側から噴出す る混合ガスに点火すると、 約 300〜 3 50 mmの長さの水素独特なブ ルーの炎が確認された。 この燃焼を約 1 0分間に亘つて確認した。 The gas generating chamber is supported at a height of about 200 mm and substantially in parallel, and the gas generation chamber is heated by heating means for about 10 minutes to make the inside thereof a high-temperature vacuum state. After supplying the gas into the gas generation chamber in a state of spraying over 250 seconds and confirming that the temperature of the gas ejected from the discharge side has reached 350 ° C or higher, it is about 2 cc When the mixture is supplied to the gas generation chamber in a state where it is ejected in a mist over a period of 150 to 200 seconds, and the mixed gas ejected from the ejection part side is ignited, it has a length of about 300 to 350 mm. A blue flame unique to hydrogen was confirmed. This combustion was confirmed for about 10 minutes.
[実験例 2]  [Experimental example 2]
使用した装置は、 第 3の実施の形態の装置を使用して実験を行った。 The experiment was performed using the device of the third embodiment.
( 1 ) ガス生成室としては 内径 1 0mm、 長さ 1 5mの銅パイプを用 い、 その銅パイプを直径約 1 50mmのコイル状に卷回し、 一方の端部 に水分子の導入部と燃料の導入部とを形成し 他方の端部は約 9 5 %縮 径して約 0. 5 m m程度開口する排出部を形成した。 (1) A copper pipe with an inner diameter of 10 mm and a length of 15 m is used as a gas generation chamber, and the copper pipe is wound into a coil shape with a diameter of about 150 mm, and a water molecule introduction part and fuel are provided at one end. The other end was reduced in diameter by about 95% to form a discharge section that opened about 0.5 mm.
( 2) 加熱手段としては、 ブタンガス ( 1 7 0 g) が充塡され約 90分 燃焼可能なガストーチを 8個を使用し、 ガス生成室の両側に夫々 4個づ つ所定の間隔をもって配設した。  (2) As heating means, eight gas torches filled with butane gas (170 g) and capable of combusting for about 90 minutes are used, and four are provided on both sides of the gas generation chamber at predetermined intervals. did.
(3) 水分子及び燃料の導入装置としては、 手動ポンプ式のガソリント ーチを利用し、 ノズルチップヘッ ドを改良して使用し、 夫々の導入部に 気密に接続して使用した。  (3) As a device for introducing water molecules and fuel, a manually pumped gasoline torch was used, and the nozzle tip head was used in an improved manner.
ガス生成室の両端部近傍を適宜の支持手段により、 地表から約 2 0 0 mm程度の高さで且つ略平行に支持させ、 加熱手段によりガス生成室を 約 5分間加熱して、 その内部を高温真空状態にし 約 1 0 c cの水分子 が 200〜 2 50秒かけて噴霧状に噴出する状態にしてガス生成室内に 供給し、 排出部側から喷出するガスの温度が 3 50°C以上になったこと を確認してから、 約 2 c cの石油が 1 50〜 2 00秒かけて噴霧状に嘖 出する状態にしてガス生成室内に供給し、 噴出部側から噴出する混合ガ スに点火すると、 約 300〜 3 50 mmの長さの水素独特なブルーの炎 が確認された。 この燃焼を約 1 0分間に亘つて確認した。 The vicinity of both ends of the gas generation chamber is supported by a suitable supporting means at a height of about 200 mm from the surface and substantially in parallel, and the heating means heats the gas generation chamber for about 5 minutes, and the inside is heated. Approximately 10 cc of water molecules at high temperature Is supplied into the gas generation chamber in the state of spraying in the form of a spray over 200 to 250 seconds, and after confirming that the temperature of the gas discharged from the discharge section has reached 350 ° C or more, When 2 cc of oil is sprayed in a spray form over a period of 150 to 200 seconds and supplied into the gas generation chamber, and igniting mixed gas ejected from the ejection part side, it is about 300 to 350 mm long. A unique blue flame of hydrogen was confirmed. This combustion was confirmed for about 10 minutes.
[実験例 3]  [Experimental example 3]
使用した装置は、 第 4の実施の形態の装置を使用して実験を行った。 The experiment was performed using the apparatus of the fourth embodiment.
( 1 ) ガス生成室としては、 内径 2 5mm、 長さ 2. 5 mの銅パイプを 用い、 その銅パイプの一方の端部に水分子の導入部を形成し 他方の端 部は約 9 5%縮径して約 l mm程度開口する排出部を形成し、 その排出 部寄りに燃料の導入部を形成した。 (1) A copper pipe with an inner diameter of 25 mm and a length of 2.5 m was used as the gas generation chamber, and an inlet for water molecules was formed at one end of the copper pipe and the other end was about 95 The discharge part was opened by about 1 mm by reducing the diameter, and a fuel introduction part was formed near the discharge part.
( 2) 加熱手段としては、 1 500Wの電熱ヒーターをガス生成室内に 配設して用いた。  (2) As a heating means, a 1500 W electric heater was used in the gas generation chamber.
( 3) 水分子はの導入装置としては超音波式の霧化機とファンとを使用 して、 導入部に接続させ、 燃料の導入装置としては、 手動ポンプ式のガ ソリントーチを利用し ノズルチップへッ ドを改良して導入部に気密に 接続して使用した。  (3) The water molecules are introduced into the introduction section using an ultrasonic atomizer and a fan as an introduction device, and a hand pump gasoline torch is used as a fuel introduction device using a nozzle tip. The head was improved and used in an airtight connection to the introduction.
ガス生成室の両端部近傍を適宜の支持手段により、 地表から約 20 0 mm程度の高さで且つ略平行に支持させ、 加熱手段によりガス生成室を 約 1 0分間加熱して、 その内部を高温真空状態にし、 約 1 0 c cの水分 子が 3 00〜 400秒間で略霧散してしまう状態にしてガス生成室内に 供給し 排出部側から噴出するガスの温度が 3 50°C以上になったこと を確認してから、 約 2 c cのガソリンが 1 50〜 2 00秒かけて噴霧状 に噴出する状態にしてガス生成室内に供給し、 噴出部側から噴出する混 合ガスに点火すると、 約 20 0〜 3 00 mmの長さの水素独特なブルー /02 The vicinity of both ends of the gas generation chamber is supported by an appropriate supporting means at a height of about 200 mm from the ground surface and substantially in parallel, and the heating means heats the gas generation chamber for about 10 minutes, and the inside is heated. A high-temperature vacuum is applied, and about 10 cc of water molecules are supplied in the gas generation chamber in a state where they are almost scattered in 300 to 400 seconds.The temperature of the gas ejected from the discharge section becomes 350 ° C or more. After confirming this, approximately 2 cc of gasoline was sprayed in a spray form over a period of 150 to 200 seconds, supplied to the gas generation chamber, and ignited to the mixed gas ejected from the ejection section side. Hydrogen unique blue with a length of about 200 to 300 mm / 02
12  12
の炎が確認され^ この燃焼を約 1 0分間に亘つて確認し Flame was confirmed ^ This combustion was observed for about 10 minutes.
前記したいずれの実験例においても、 カロリ一の高い燃焼が確認され しかも燃焼排ガスにおいて、 C oまたは C o 2 が 0. 0 2 p p mと著し く少ないことが確認された。 従って、 クリーンエネルギーとして有効に 利用できるものである。  In each of the experimental examples described above, high calorie combustion was confirmed, and Co or Co 2 in the combustion exhaust gas was confirmed to be extremely small at 0.02 ppm. Therefore, it can be effectively used as clean energy.
更に、 各実験装置において、 ガス生成室内に燃料を供給しないで水分 子だけを供給し 水素と酸素との結合が不安定なガス状の過熱乾燥蒸気 を生成し この過熱乾燥蒸気を別ラインに取り出し、 その別ラインにお いて、 酸化し易い物質のフィルタ一を通過させることにより、 その物質 と酸素とが酸化反応して除去され 水素ガスだけを取り出すことができ、 その水素ガスを燃料として使用することもできる。  Furthermore, in each experimental device, only the water molecules are supplied without supplying fuel into the gas generation chamber to generate gaseous superheated dry steam in which the bond between hydrogen and oxygen is unstable, and this superheated dry steam is taken out to another line. In another line, by passing the easily oxidizable substance through a filter, the substance and oxygen are oxidized and removed to remove only hydrogen gas, and the hydrogen gas is used as fuel. You can also.
要するに 本発明において 水分子を加熱することにより飽和蒸気 からガス状の過熱乾燥蒸気とし、 水素と酸素との結合を不安定な状態に しておいて、 酸素と酸化反応する物質を供給して水素と酸素とを分離さ せ、 酸素と酸化反応する物質が燃料である場合には、 水素と酸化物燃料 との混合ガスとして燃焼に供することができるし 酸素と酸化反応する 物質が、 燃料でない例えば鉄等の鉱物である場合には、 水素ガスとして 取り出すことができるのである。 産業上の利用可能性  In short, in the present invention, by heating water molecules to convert the saturated steam into gaseous superheated dry steam, leaving the bond between hydrogen and oxygen in an unstable state, and supplying a substance that undergoes an oxidation reaction with oxygen to supply hydrogen If the substance that oxidizes and reacts with oxygen is fuel, it can be used as a mixed gas of hydrogen and oxide fuel for combustion, and the substance that oxidizes and reacts with oxygen is not fuel. If it is a mineral such as iron, it can be extracted as hydrogen gas. Industrial applicability
以上説明したように本発明に係る水性燃料の燃焼方法は、 水の燃料と しての有効利用方法として、 また、 省エネルギーの方法として、 さらに は、 ク リーンエネルギーであるため、 環境汚染防止の方法として有用で める。  As described above, the method for burning aqueous fuel according to the present invention is a method for effectively utilizing water as a fuel, a method for saving energy, and a method for preventing environmental pollution because it is clean energy. Useful as
また、 本発明に係る水性燃料の燃焼装置は、 かかる水性燃料の燃焼方 法の実施に用いるものとして有用であり、 さらに、 構成が簡単であるこ とから、 ボイラーまたは工業用の各種内燃機関等と して幅広い利用が可 能である。 Further, the aqueous fuel combustion apparatus according to the present invention is useful as an apparatus used for carrying out such an aqueous fuel combustion method, and has a simple configuration. Therefore, it can be widely used as boilers or various internal combustion engines for industrial use.

Claims

請 求 の 範 囲 The scope of the claims
1. 外部から加熱され高温真空状態にあるガス生成室内に水分子を導入 し 飽和蒸気から更に加熱して水素と酸素との結合が不安定になるガス 状の過熱乾燥蒸気とし、 1. Water molecules are introduced into the gas generating chamber which is heated from the outside and is in a high-temperature vacuum state, and further heated from saturated steam to form gaseous superheated dry steam in which the bond between hydrogen and oxygen becomes unstable.
前記酸素と酸化反応させるに充分な量の液状化石燃料をガス生成室内 に導入し気化させ、  A sufficient amount of liquid fossil fuel for the oxidation reaction with oxygen is introduced into the gas generation chamber and vaporized,
前記ガス状の過熱乾燥蒸気と気化した燃料とを混合して水素ガスと酸 化物ガスとの高温混合ガスを生成し、  Mixing the gaseous superheated dry steam with the vaporized fuel to produce a high-temperature mixed gas of hydrogen gas and oxide gas;
該高温混合ガスをバーナーから噴射させて燃焼させること、  Injecting the high-temperature mixed gas from a burner to burn;
を特徴とする水性燃料の燃焼方、  How to burn aqueous fuel, characterized by
2. ガス生成室内に導入される水分子は、 液状または気化状である請求 項 1に記載の水性燃料の燃焼方?  2. The water fuel combustion method according to claim 1, wherein the water molecules introduced into the gas generation chamber are in a liquid or vaporized state.
3. ガス生成室内の加熱温度は、 4 0 0 °C以上である請求項] に記載の 水性燃料の燃焼方  3. The method for burning aqueous fuel according to claim 2, wherein the heating temperature in the gas generation chamber is 400 ° C. or higher.
4. 少なく ともガス状の過熱乾燥蒸気に紫外線を照射させる請求項 1 に 記載の水性燃料の燃焼方  4. The method for burning aqueous fuel according to claim 1, wherein at least gaseous superheated dry steam is irradiated with ultraviolet rays.
5. 一方の側に水分子と化石燃料を導入する導入部を備えると共に 他 方の側に高温混合ガスを導出する導出部を備えたガス生成室と、  5. A gas generation chamber having an inlet for introducing water molecules and fossil fuels on one side and an outlet for extracting a high-temperature mixed gas on the other side;
該ガス生成室を加熱する加熱手段と、  Heating means for heating the gas generation chamber;
前記導出部に着脱自在に接続されるバーナーとからなること、 を特徴とする水性燃料の燃焼装  A burner detachably connected to the outlet portion.
6. ガス生成室が、 耐熱性の材料で且つコイル状の空間部で形成されて いる請求項 5に記載の水性燃料の燃焼装 ¾  6. The aqueous fuel combustion device according to claim 5, wherein the gas generating chamber is formed of a heat-resistant material and a coil-shaped space.
7. ガス生成室は、 透明又は半透明の石英またはシリ コンを主材とした 耐熱性の材料で形成されている請求項 5又は 6に記載の水性燃料の燃焼 装 7. The aqueous fuel combustion according to claim 5 or 6, wherein the gas generation chamber is formed of a heat-resistant material mainly composed of transparent or translucent quartz or silicon. Dress
8. ガス生成室の近傍に、 紫外線照射手段を配設した請求項 5、 6又は 7に記載の水性燃料の燃焼装 ft  8. The aqueous fuel combustion device according to claim 5, 6 or 7, wherein an ultraviolet irradiation means is provided near the gas generation chamber.
9. ガス生成室内に、 温度センサーを配設した請求項 5、 6、 7又は 8 に記載の水性燃料の燃焼装 ft  9. The aqueous fuel combustion device according to claim 5, 6, 7 or 8, wherein a temperature sensor is disposed in the gas generation chamber.
PCT/JP1997/002430 1996-07-15 1997-07-14 Method and apparatus for burning aqueous fuel WO1998002691A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/216545 1996-07-15
JP21654596 1996-07-15

Publications (1)

Publication Number Publication Date
WO1998002691A1 true WO1998002691A1 (en) 1998-01-22

Family

ID=16690122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002430 WO1998002691A1 (en) 1996-07-15 1997-07-14 Method and apparatus for burning aqueous fuel

Country Status (1)

Country Link
WO (1) WO1998002691A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424992B1 (en) 2014-03-11 2014-08-01 (주)태원 Burner Device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075188A (en) * 1973-11-05 1975-06-20
JPS55105102A (en) * 1979-02-02 1980-08-12 Kouzan Shiyu Method of combustion by utilizing water
JPS5782605A (en) * 1980-09-29 1982-05-24 Tatsuto Kimura Method of and apparatus for producing high heat energy by combusting steam at the instant when it is thermally dissociated and vaporized
JPS61250408A (en) * 1985-04-28 1986-11-07 Kazunori Fujigami Method and apparatus for combustion with vaporized water
JPH05215304A (en) * 1992-01-08 1993-08-24 Seiichi Ito Combustion equipment
JPH07505186A (en) * 1991-05-17 1995-06-08 メイヤー スタンリー エイ Water-fueled injection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075188A (en) * 1973-11-05 1975-06-20
JPS55105102A (en) * 1979-02-02 1980-08-12 Kouzan Shiyu Method of combustion by utilizing water
JPS5782605A (en) * 1980-09-29 1982-05-24 Tatsuto Kimura Method of and apparatus for producing high heat energy by combusting steam at the instant when it is thermally dissociated and vaporized
JPS61250408A (en) * 1985-04-28 1986-11-07 Kazunori Fujigami Method and apparatus for combustion with vaporized water
JPH07505186A (en) * 1991-05-17 1995-06-08 メイヤー スタンリー エイ Water-fueled injection
JPH05215304A (en) * 1992-01-08 1993-08-24 Seiichi Ito Combustion equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424992B1 (en) 2014-03-11 2014-08-01 (주)태원 Burner Device
WO2015137683A1 (en) * 2014-03-11 2015-09-17 (주)태원 Burner device capable of reducing fuel

Similar Documents

Publication Publication Date Title
JP4251993B2 (en) Method and apparatus for generating power by burning vaporized fuel
JP4050001B2 (en) Gas-fired hair dryer
TWI278291B (en) Gas combustion-type portable dryer for generating negative ions and negative ion generating method in the portable dryer
JPH0781691B2 (en) Method and apparatus for starting a boiler of a solid fuel combustion power plant and ensuring the combustion process of fuel
JPH11166705A (en) Method and apparatus for combusting emulsion of water/ fossil fuel mixture
WO1997038265A3 (en) A gas burner and a gas powered heating device
JP2573486B2 (en) Equipment for raising the temperature of the catalyst
WO1998002691A1 (en) Method and apparatus for burning aqueous fuel
JP3878284B2 (en) Cremation method and apparatus
JP2002115812A (en) Combustion method and apparatus for water-fossile fuel mixed emulsion
EP0154945B1 (en) Gas heater
JP2006501435A (en) Post-combustion device
JP4546831B2 (en) Driving method of post-combustion device and post-combustion device
SU1588987A1 (en) Burner arrangement for furnace
KR20060027856A (en) Apparatus for generating power and hybrid fuel vaporization system therefor
EP1179708A1 (en) Burner for liquid fuel combustion apparatuses
KR200275166Y1 (en) Burner
JPH0464802A (en) Liquid fuel burner
JP3524722B2 (en) Catalytic combustion device
JP2002106810A (en) Equipment for catalytic combustion
RU2184906C1 (en) Heat generator for pulse combustion
RU2244878C2 (en) Igniter (versions)
KR100388637B1 (en) A boiler of hybrid type using gas and liquid fuel
JPH02157504A (en) Ignition method of burner for liquid fuel
JP2000266409A (en) Codeless heat air supply apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE DK FR GB IT NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA