WO1998001818A1 - Method and apparatus for image registration - Google Patents

Method and apparatus for image registration Download PDF

Info

Publication number
WO1998001818A1
WO1998001818A1 PCT/US1997/011563 US9711563W WO9801818A1 WO 1998001818 A1 WO1998001818 A1 WO 1998001818A1 US 9711563 W US9711563 W US 9711563W WO 9801818 A1 WO9801818 A1 WO 9801818A1
Authority
WO
WIPO (PCT)
Prior art keywords
points
transform
template
image
computing
Prior art date
Application number
PCT/US1997/011563
Other languages
English (en)
French (fr)
Inventor
Michael I. Miller
Gary E. Christensen
Sarang C. Joshi
Ulf Grenander
Original Assignee
Washington University
Brown University Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Washington University, Brown University Research Foundation filed Critical Washington University
Priority to AT97932453T priority Critical patent/ATE265070T1/de
Priority to DE69728765T priority patent/DE69728765T2/de
Priority to CA002260085A priority patent/CA2260085A1/en
Priority to AU35911/97A priority patent/AU3591197A/en
Priority to EP97932453A priority patent/EP0910832B1/en
Publication of WO1998001818A1 publication Critical patent/WO1998001818A1/en

Links

Classifications

    • G06T3/153
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/754Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries involving a deformation of the sample pattern or of the reference pattern; Elastic matching

Definitions

  • the present invention relates to image processing systems and methods, and more particularly to image registration systems that combine two or more images into a composite image Background Art
  • Image registration involves combining two or more images, or selected points from the images, to produce a composite image containing data from each of the registered images During registration, a transformation is computed that maps related points among the combined images so that points defining the same structure in each of the combined images are correlated in the composite image
  • mapping relationship u(x) is extended from the set of N landmark points to the continuum using a linear quadratic form regula ⁇ zation optimization of the equation
  • the second currently-practiced technique for image registration uses the mathematics of small deformation multi-target registration and is purely image data driven
  • volume based imagery is generated of the two targets from which a coordinate system transformation is constructed
  • a distance measure represented by the expression D(uJ, represents the distance between a template T(x) and a target image S(x)
  • D(uJ) represents the distance between a template T(x) and a target image S(x)
  • the distance measure D(u) measuring the disparity between imagery has various forms, e.g., the Gaussian squared error distance J
  • the second technique is limited by the computational complexity presented by the number of data points in most images
  • the second technique is further limited by the fact that the process produces many local minima that confuse proper registration This is because when registering two images according to the second technique, many possible orientations of the images produce subregions in the images that are properly matched but the images as a whole are improperly registered
  • the present invention overcomes the limitations of the conventional techniques by providing a methodology which combines, or fuses, some aspects of both Techniques Specifically, the present invention uses landmark manifolds to produce a coarse registration, and subsequently incorporates image data to complete a fine registration of the template and target images
  • a method for registering a template image and a target image comprises several steps, including defining manifold landmark points in the template image and identifying points in the target image corresponding to the defined manifold landmark points Once these points have been identified, the method includes the steps of computing a transform relating the defined manifold landmark points in the template image to corresponding points in the target image, fusing the first transform with a distance measure to determine a second transform relating all points within a region of interest in the target image to the corresponding points in the template image, and registering the template image with the target image using this second transform
  • Fig 1 is a target and template image of an axial section of a human head with 0- dimensional manifolds
  • FIG. 1 is schematic diagram illustrating an apparatus for registering images in accordance with the present invention
  • Fig 3 is a flow diagram illustrating the method of image registration according to the present invention.
  • Fig 4 is a target and a template image with 1 -dimensional manifolds
  • Fig 5 is a target and a template image with 2-d ⁇ mens ⁇ onal manifolds
  • Fig 6 is a target and a template image with 3-d ⁇ mens ⁇ onal manifolds
  • Fig 7 is sequence of images illustrating registration of a template and target image
  • Fig 8 is a flow diagram illustrating the computation of a fusing transform BEST MODE FOR CARRYING OUT THE INVENTION
  • Fig 1 shows two axial views of a human head
  • template image 100 contains points 102, 104, and 1 14 ldentifying structural points (0-d ⁇ mens ⁇ onal landmark manifolds) of interest in the template image
  • Target image 120 contains points 108, 1 10, 1 16, corresponding respectively to template image points 102, 104, 1 14 via vectors 106, 1 12, 1 18, respectively
  • FIG 2 shows apparatus to carry out the preferred embodiment of this invention
  • a medical imaging scanner 214 obtains the images show in Fig 1 and stores them on a computer memory 206 which is connected to a computer central processing unit (CPU) 204
  • CPU central processing unit
  • a parallel computer platform having multiple CPUs is also a suitable hardware platform for the present invention, including, but not limited to, massively parallel machines and workstations with multiple processors
  • Computer memorv 206 can be directly connected to CPU 204, or this memory can be remotely connected through a communications network
  • Registering images 100 120 unifies registration based on landmark deformations and image data transformation using a coarse-to-fine approach
  • the highest dimensional transformation required during registration is computed from the solution of a sequence of lower dimensional problems driven by successive refinements
  • the method is based on information either provided bv an operator, stored as defaults or determined automatically about the various substructures of the template and the target, and varying degrees of knowledge about these substructures derived from anatomical imagery, acquired from modalities like CT MRl, functional MRl, PET ultrasound, SPECT. MEG, EEG, or cryosection
  • an operator using pointing device 208, moves cursor 210 to select points 102, 104, 1 14 m Fig 1 , which are then displayed on a computer monitor 202 along with images 100, 120 Selected image points 102, 104, and 1 14 are 0-d ⁇ mens ⁇ onal manifold landmarks
  • CPU 204 computes a first transform relating the manifold landmark points in template image 100 to their corresponding image points in target image 120
  • a second CPU 204 transform is computed by fusing the first transform relating selected manifold landmark points with a distance measure relating all image points in both template image 100 and target image 120
  • the operator can select an equation for the distance measure several ways including, but not limited to, selecting an equation from a list using pointing device 208, entering into CPU 204 an equation using keyboard 212, or reading a default equation from memory 206 Registration is completed by CPU 204 applying the second computed transform to all points in the template image 100
  • the transforms, boundary values, region of interest, and distance measure can be defaults read from memory or determined automatically
  • Fig 3 illustrates the method of this invention in operation
  • each landmark point, x aboard in the template image is a corresponding point _y, in the target image
  • the operator therefore next identifies the corresponding points, y, , in the target image are identified (step 310)
  • the nature of this process means that the corresponding points can only be identified within some degree of accuracy
  • This mapping between the template and target points can be specified with a resolution having a Gaussian error of variance ⁇ 2
  • the operator may select a region of interest in the target image Restricting the computation to a relatively small region of interest reduces both computation and storage requirements because transformation is computed only over a subregion of interest It is also possible that in some applications the entire image is the desired region of interest In other applications there may be default regions of interest that are automatically identified
  • the number of computations required is proportional to the number of points in the region of interest, so the computational savings equals the ratio of the total number of points in the image to the number of points in the region of interest
  • the data storage savings for an image with N points with a region of interest having M points is a factor of N/M
  • the computation time and the data storage are reduced by a factor of eight
  • CPU 204 computes a transform that embodies the mapping relationship between these two sets of points (step 350) This transform can be estimated using Bayesian optimization, using the following equation
  • A is a 3 x 3 matrix
  • b [/>,
  • b 2 , b ⁇ is a 3 x 1 vector
  • L ⁇ ( / . ⁇ . ⁇ , j ] is a 3 x 1
  • the foregoing steps of the image registration method provide a coarse matching of a template and a target image
  • Fine matching of the images requires using the full image data and the landmark information and involves selecting a distance measure by solving a synthesis equation that simultaneously maps selected image landmarks in the template and target images and matches all image points within a region of interest
  • a synthesis equation that simultaneously maps selected image landmarks in the template and target images and matches all image points within a region of interest
  • the operator L in equation (6) may be the same operator used in equation (4), or alternatively, another operator may be used with a different set of boundary conditions
  • the distance measure in the first term measures the relative position of points in the target image with respect to points in the template image
  • this equation uses a quadratic distance measure, one of ordinary skill in the art will recognize that there are other suitable distance measures
  • CPU 204 then computes a second or fusing transformation (Step 370) using the synthesis equation relating all points within a region of interest in the target image to all corresponding points in the template image
  • the synthesis equation is defined so that the resulting transform incorporates or fuses, the mapping of manifold landmarks to corresponding target image points determined when calculating the first transform
  • the computation using the synthesis equation is accomplished by solving a sequence of optimization problems from coarse to fine scale via estimation of the basis coefficients ⁇ k
  • This is analogous to multi-g ⁇ d methods, but here the notion of refinement from coarse to fine is accomplished by increasing the number of basis components d As the number of basis functions increases, smaller and smaller variabilities between the template and target are accommodated
  • the basis coefficients are determined by gradient descent, I e ,
  • is a fixed step size and ⁇ are the eigenvalues of the eigenvectors ⁇
  • Equation (7) is used to initialize the value of the displacement field u(x) - ⁇ t m (x) (step 800)
  • the basis coefficients ⁇ k ⁇ k ' 0> are set equal to zero and the variables ⁇ ; , A, and b are set equal to the solution of equation (6) (step 802)
  • Equation (8) is then used to estimate the new values of the basis coefficients //, (n '" given the current estimate of the displacement field u ⁇ nJ (x) (step 804)
  • Equation (10) is then used to compute the new estimate of the displacement field u (n> (x) given the current estimate of the basis coefficients ⁇ k ' n> (step 806)
  • the next part of the computation is to decide whether or not to increase the number d of basis functions ⁇ k used to represent the transformation (step 808) Increasing the number of basis functions allows more deformation Normally, the algorithm is started
  • CPU 204 uses this transform to register the template image with the target image (step 380)
  • the spectrum of the second transformation, h is highly concentrated around zero This means that the spectrum mostly contains low frequency components
  • the transformation can be represented by a subsampled version provided that the sampling frequency is greater than the Nyquist frequency of the transformation
  • the computation may be accelerated by computing the transformation on a coarse g ⁇ d and extending it to the full voxel lattice e g , in the case of 3D images, by interpolation
  • the computational complexity of the algorithm is proportional to the dimension of the lattice on which the transformation is computed Therefore, the computation acceleration equals the ratio of the full voxel lattice to the coarse computational lattice
  • Another wav to increase the efficiency of the algorithm is to precompute the Green's functions and eigen functions of the operator / and store these precomputed values in a lookup table These tables replace the computation of these functions at each iteration with a table lookup
  • This approach exploits the symmetry of Green ' s functions and eigen functions of the operator / so that very little computer memory is required
  • the radial symmetry is exploited by precomputing the Green's function only along a radial direction
  • the method described for fusing landmark information with the image data transformation can be extended from landmarks that are individual points (0-d ⁇ mens ⁇ onal manifolds) to manifolds of dimensions 1 , 2 and 3 corresponding to curves (1- dimensional), surfaces (2-d ⁇ mens ⁇ onal) and subvolumes (3 -dimensional)
  • Fig 4 shows a template image 400 of a section of a brain with 1 - dimensional manifolds 402 and 404 corresponding to target image 406 1 -dimensional manifolds 408 and 410 respectively
  • Fig 5 shows a template image 500 of a section of a brain with 2-d ⁇ mens ⁇ onal manifold 502 corresponding to target image 504 2-d ⁇ mens ⁇ onal manifold 506
  • Fig 6 shows a template image 600 of a section of a brain with 3- dimensional manifold 602 corresponding to target image 604 3-d ⁇ mens ⁇ onal manifold 606
  • M(3),dS is the Lebesgue measure on M 3 .
  • dS is the surface measure on M(2)
  • dS is the line measure on M(l)
  • M(0), dS is the atomic measure.
  • the Fredholm integral equation degenerates into a summation given by equation (5).
  • step 370 It is also possible to compute the transform (step 370) with rapid convergence by solving a series of linear minimization problems where the solution to the series of linear problems converges to the solution of the nonlinear problem This avoids needing to solve the nonlinear minimization problem directly Using a conjugate gradient method, the computation converges faster than a direct solution of the synthesis equation because the basis coefficients ⁇ are updated with optimal step sizes
  • the displacement field is assumed to have the form d u ( ⁇ ) ⁇ k ⁇ k W ' f ( ⁇ ) (16)
  • I e , fig ⁇ , 3 , /, g, for /, g e M'
  • equation ( 18) results Computation of equation ( 18) repeats until all ⁇ fall below a predetermined threshold solving for each ⁇ , in sequence of increasing j, and ⁇ y is computed using the values of ⁇ k for 0 ⁇ k ⁇ j
  • step 370 of Fig 3 computing the registration transform fusing landmark and image data, is implemented using the conjugate gradient method, the computation will involve a series of inner products Using the FFT exploits the structure of the eigen functions and the computational efficiency of the FFT to compute these inner-products
  • the integral in the above summation for all k can be computed by Fourier transforming the elements of the 3 x 3 matrix
  • V7 ' V7Y (25)
  • a distance function used to measure the disparity between images is the Gaussian square error distance
  • j [(x-u(x)J - S(x) ⁇ 2 dx
  • distance functions such as the correlation distance, or the Kullback Liebler distance, can be written in the form f O(l(x-u(x)) , S(x))dx
  • D( , ) is a distance function relating points in the template and target images
  • the basis coefficients ⁇ ⁇ k ⁇ are determined by gradient descent, i.e.
  • Modifying boundary conditions requires modifying the butterflies of the FFT from complex exponentials to appropriate sines and cosines
  • template image 700 illustrates the sequence of registering a template image and a target image
  • Template image 700 has 0-dimensional landmark manifolds 702. Applying the landmark manifold transform computed at step 350 in Fig 3 to image 700 produces image 704 Applying a second transform computed using the synthesis equation combining landmark manifolds and image data to image 700 produces image 706
  • Image 706 is the final result of registering template image 700 with target image 708 Landmark manifold 710 in image 708 corresponds to landmark manifold 702 in template image 700
  • CT computed tomography
  • MRl magnetic resonance imaging
  • this invention can also be used on images acquired from other imaging modalities
  • application of the present invention is not limited to anatomical images
  • This invention also applies to non-anatomical images, including, but not limited to, satellite imagery, photographs, radar images, and images acquired from multiple sources
  • the present invention overcame the limitation of the conventional technique by using some aspects of both techniques
  • the principal advantage of the present invention is an image registration method and apparatus that fuses the techniques of registration using selected landmarks and image data
  • Other advantages of the invention include 1 ) allowing for experts to insert knowledge directly into the imagery while at the same time allowing for the imagery itself to drive registration, 2) extending the classical framework for landmark point information (0-d ⁇ mens ⁇ onal landmarks) used in manual assisted deformation to arbitrary manifold information in the form of 0, 1 , 2, and 3 dimensional landmarks, I e .
PCT/US1997/011563 1996-07-10 1997-07-08 Method and apparatus for image registration WO1998001818A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT97932453T ATE265070T1 (de) 1996-07-10 1997-07-08 Verfahren und gerät zum ausrichten von bildern
DE69728765T DE69728765T2 (de) 1996-07-10 1997-07-08 Verfahren und Vorrichtung zur Bildregistrierung
CA002260085A CA2260085A1 (en) 1996-07-10 1997-07-08 Method and apparatus for image registration
AU35911/97A AU3591197A (en) 1996-07-10 1997-07-08 Method and apparatus for image registration
EP97932453A EP0910832B1 (en) 1996-07-10 1997-07-08 Method and apparatus for image registration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/678,628 US6009212A (en) 1996-07-10 1996-07-10 Method and apparatus for image registration
US08/678,628 1996-07-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/186,359 Continuation-In-Part US6226418B1 (en) 1996-07-10 1998-11-05 Rapid convolution based large deformation image matching via landmark and volume imagery

Publications (1)

Publication Number Publication Date
WO1998001818A1 true WO1998001818A1 (en) 1998-01-15

Family

ID=24723602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/011563 WO1998001818A1 (en) 1996-07-10 1997-07-08 Method and apparatus for image registration

Country Status (7)

Country Link
US (2) US6009212A (US06553152-20030422-M00007.png)
EP (1) EP0910832B1 (US06553152-20030422-M00007.png)
AT (1) ATE265070T1 (US06553152-20030422-M00007.png)
AU (1) AU3591197A (US06553152-20030422-M00007.png)
CA (1) CA2260085A1 (US06553152-20030422-M00007.png)
DE (1) DE69728765T2 (US06553152-20030422-M00007.png)
WO (1) WO1998001818A1 (US06553152-20030422-M00007.png)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000931A1 (de) * 1998-06-30 2000-01-06 Thorsten Schormann Berechnung und darstellung 2- oder 3-dimensionaler räumdifferenzen von strukturen
WO2000036565A1 (en) * 1998-12-16 2000-06-22 Miller Michael I Method and apparatus for processing images with regions representing target objects
EP1057137A1 (en) * 1997-11-07 2000-12-06 Washington University Rapid convolution based large deformation image matching via landmark and volume imagery
US6553152B1 (en) 1996-07-10 2003-04-22 Surgical Navigation Technologies, Inc. Method and apparatus for image registration
US6611615B1 (en) 1999-06-25 2003-08-26 University Of Iowa Research Foundation Method and apparatus for generating consistent image registration
US6694057B1 (en) 1999-01-27 2004-02-17 Washington University Method and apparatus for processing images with curves
US6754374B1 (en) 1998-12-16 2004-06-22 Surgical Navigation Technologies, Inc. Method and apparatus for processing images with regions representing target objects
EP2691900A2 (en) * 2011-03-29 2014-02-05 Boston Scientific Neuromodulation Corporation System and method for image registration

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6708184B2 (en) 1997-04-11 2004-03-16 Medtronic/Surgical Navigation Technologies Method and apparatus for producing and accessing composite data using a device having a distributed communication controller interface
US5970499A (en) 1997-04-11 1999-10-19 Smith; Kurt R. Method and apparatus for producing and accessing composite data
FR2763721B1 (fr) * 1997-05-21 1999-08-06 Inst Nat Rech Inf Automat Dispositif electronique de traitement d'images pour la detection de variations dimensionnelles
JP3970386B2 (ja) * 1997-06-24 2007-09-05 株式会社アマダ パンチプレス用自動プログラミング装置、及びそのプログラムを記憶した記録媒体
US6295083B1 (en) * 1998-02-27 2001-09-25 Tektronix, Inc. High precision image alignment detection
US6243494B1 (en) * 1998-12-18 2001-06-05 University Of Washington Template matching in 3 dimensions using correlative auto-predictive search
US6259815B1 (en) * 1999-03-04 2001-07-10 Mitsubishi Electric Research Laboratories, Inc. System and method for recognizing scanned objects with deformable volumetric templates
CA2286447C (en) * 1999-10-15 2009-01-06 Vittorio Accomazzi Perspective with shear warp
US6772026B2 (en) * 2000-04-05 2004-08-03 Therics, Inc. System and method for rapidly customizing design, manufacture and/or selection of biomedical devices
US6377712B1 (en) * 2000-04-10 2002-04-23 Adobe Systems Incorporated Iteratively building displacement maps for image warping
US6837892B2 (en) 2000-07-24 2005-01-04 Mazor Surgical Technologies Ltd. Miniature bone-mounted surgical robot
CA2314794A1 (en) * 2000-08-01 2002-02-01 Dimitre Hristov Apparatus for lesion or organ localization
DE10054814A1 (de) * 2000-11-04 2002-05-08 Philips Corp Intellectual Pty Verfahren und Vorrichtung zur Registrierung von Bildern
US6765589B1 (en) 2000-11-16 2004-07-20 Adobe Systems Incorporated Brush for warping and water reflection effects
US7046831B2 (en) * 2001-03-09 2006-05-16 Tomotherapy Incorporated System and method for fusion-aligned reprojection of incomplete data
US7106891B2 (en) * 2001-10-15 2006-09-12 Insightful Corporation System and method for determining convergence of image set registration
US7840250B2 (en) * 2001-11-13 2010-11-23 Electrical Geodesics, Inc. Method for neural current imaging
JP2005521502A (ja) * 2002-04-03 2005-07-21 セガミ エス.エー.アール.エル. 胸部および腹部の画像モダリティの重ね合わせ
US20030210820A1 (en) * 2002-05-07 2003-11-13 Rainer Lachner Method and device for localizing a structure in a measured data set
JP2004041694A (ja) * 2002-05-13 2004-02-12 Fuji Photo Film Co Ltd 画像生成装置およびプログラム、画像選択装置、画像出力装置、画像提供サービスシステム
US7356172B2 (en) * 2002-09-26 2008-04-08 Siemens Medical Solutions Usa, Inc. Methods and systems for motion tracking
WO2004069040A2 (en) * 2003-02-04 2004-08-19 Z-Kat, Inc. Method and apparatus for computer assistance with intramedullary nail procedure
WO2004069036A2 (en) * 2003-02-04 2004-08-19 Z-Kat, Inc. Computer-assisted knee replacement apparatus and method
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US20050148861A1 (en) * 2003-11-26 2005-07-07 Vijay Ramanathan Methods and systems for image selection and display
US20050267353A1 (en) * 2004-02-04 2005-12-01 Joel Marquart Computer-assisted knee replacement apparatus and method
US20050207674A1 (en) * 2004-03-16 2005-09-22 Applied Research Associates New Zealand Limited Method, system and software for the registration of data sets
US7374536B1 (en) 2004-04-16 2008-05-20 Taylor Colin R Method for analysis of pain images
US7724943B2 (en) * 2004-04-21 2010-05-25 Siemens Medical Solutions Usa, Inc. Rapid and robust 3D/3D registration technique
US7372984B2 (en) * 2004-05-05 2008-05-13 California Institute Of Technology Four-dimensional imaging of periodically moving objects via post-acquisition synchronization of nongated slice-sequences
US20050285947A1 (en) * 2004-06-21 2005-12-29 Grindstaff Gene A Real-time stabilization
US7672705B2 (en) * 2004-07-19 2010-03-02 Resonant Medical, Inc. Weighted surface-to-surface mapping
WO2006007716A2 (en) * 2004-07-20 2006-01-26 Resonant Medical Inc. Calibrating imaging devices
US7729744B2 (en) * 2004-07-20 2010-06-01 Resonant Medical, Inc. Verifying lesion characteristics using beam shapes
US7639896B2 (en) * 2004-08-09 2009-12-29 Carestream Health, Inc. Multimodal image registration using compound mutual information
US20060041375A1 (en) * 2004-08-19 2006-02-23 Geographic Data Technology, Inc. Automated georeferencing of digitized map images
WO2006032134A2 (en) * 2004-09-20 2006-03-30 Resonant Medical Inc. Radiotherapy treatment monitoring using ultrasound
EP1643444B1 (en) * 2004-10-01 2008-08-13 MedCom Gesellschaft für medizinische Bildverarbeitung mbH Registration of a medical ultrasound image with an image data from a 3D-scan, e.g. from Computed Tomography (CT) or Magnetic Resonance Imaging (MR)
US20060100508A1 (en) * 2004-11-10 2006-05-11 Morrison Matthew M Method and apparatus for expert system to track and manipulate patients
JP2008528949A (ja) * 2004-11-23 2008-07-31 ケアストリーム ヘルス インコーポレイテッド 自動形状分類の方法
ATE553456T1 (de) 2005-02-03 2012-04-15 Bracco Imaging Spa Verfahren und computerprogrammprodukt zur registrierung biomedizinischer bilder mit verminderten objektbewegungsbedingten bildgebungsartefakten
US7777761B2 (en) * 2005-02-11 2010-08-17 Deltasphere, Inc. Method and apparatus for specifying and displaying measurements within a 3D rangefinder data set
US7974461B2 (en) * 2005-02-11 2011-07-05 Deltasphere, Inc. Method and apparatus for displaying a calculated geometric entity within one or more 3D rangefinder data sets
ATE484809T1 (de) * 2005-05-05 2010-10-15 California Inst Of Techn Vierdimensionale abbildung von sich periodisch bewegenden objekten über nacherfassungs- synchronisation von nicht-vorgeschalteten slice- sequenzen
US20070016008A1 (en) * 2005-06-23 2007-01-18 Ryan Schoenefeld Selective gesturing input to a surgical navigation system
US7840256B2 (en) 2005-06-27 2010-11-23 Biomet Manufacturing Corporation Image guided tracking array and method
US20080219405A1 (en) * 2005-09-06 2008-09-11 Tony Falco System and method for patient setup for radiotherapy treatment
US20070073133A1 (en) * 2005-09-15 2007-03-29 Schoenefeld Ryan J Virtual mouse for use in surgical navigation
US7643862B2 (en) * 2005-09-15 2010-01-05 Biomet Manufacturing Corporation Virtual mouse for use in surgical navigation
EP1780672A1 (en) 2005-10-25 2007-05-02 Bracco Imaging, S.P.A. Method of registering images, algorithm for carrying out the method of registering images, a program for registering images using the said algorithm and a method of treating biomedical images to reduce imaging artefacts caused by object movement
US8357181B2 (en) 2005-10-27 2013-01-22 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7912321B1 (en) * 2005-12-19 2011-03-22 Sandia Corporation Image registration with uncertainty analysis
US8929621B2 (en) * 2005-12-20 2015-01-06 Elekta, Ltd. Methods and systems for segmentation and surface matching
US20070173822A1 (en) * 2006-01-13 2007-07-26 Sdgi Holdings, Inc. Use of a posterior dynamic stabilization system with an intradiscal device
US8083795B2 (en) 2006-01-18 2011-12-27 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US8165659B2 (en) 2006-03-22 2012-04-24 Garrett Sheffer Modeling method and apparatus for use in surgical navigation
AU2006352758A1 (en) 2006-04-10 2008-12-24 Avaworks Incorporated Talking Head Creation System and Method
JP4816281B2 (ja) * 2006-06-22 2011-11-16 富士ゼロックス株式会社 文書利用管理システム、文書管理サーバ及びそのプログラム
DE102006029718A1 (de) * 2006-06-28 2008-01-10 Siemens Ag Verfahren zur Auswertung zweier Abbilder sowie medizinisches Abbildungssystem
US20080051677A1 (en) * 2006-08-23 2008-02-28 Warsaw Orthopedic, Inc. Method and apparatus for osteochondral autograft transplantation
US7747306B2 (en) 2006-09-01 2010-06-29 Warsaw Orthopedic, Inc. Osteochondral implant procedure
US9451928B2 (en) * 2006-09-13 2016-09-27 Elekta Ltd. Incorporating internal anatomy in clinical radiotherapy setups
US7879040B2 (en) * 2006-10-23 2011-02-01 Warsaw Orthopedic, IN Method and apparatus for osteochondral autograft transplantation
CN101173853B (zh) * 2006-11-01 2011-02-02 鸿富锦精密工业(深圳)有限公司 定位测量装置及方法
US8852192B2 (en) * 2006-11-13 2014-10-07 Warsaw Orthopedic, Inc. Method and apparatus for osteochondral autograft transplantation
US20080183068A1 (en) * 2007-01-25 2008-07-31 Warsaw Orthopedic, Inc. Integrated Visualization of Surgical Navigational and Neural Monitoring Information
US20080183074A1 (en) * 2007-01-25 2008-07-31 Warsaw Orthopedic, Inc. Method and apparatus for coordinated display of anatomical and neuromonitoring information
US8374673B2 (en) * 2007-01-25 2013-02-12 Warsaw Orthopedic, Inc. Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control
US7987001B2 (en) * 2007-01-25 2011-07-26 Warsaw Orthopedic, Inc. Surgical navigational and neuromonitoring instrument
WO2008103804A2 (en) * 2007-02-23 2008-08-28 Lockheed Martin Corporation Iterative region-based automated control point generation
GB0708600D0 (en) * 2007-05-03 2007-06-13 Ucl Business Plc Registration method
WO2008141293A2 (en) * 2007-05-11 2008-11-20 The Board Of Regents Of The University Of Oklahoma One Partner's Place Image segmentation system and method
US8934961B2 (en) 2007-05-18 2015-01-13 Biomet Manufacturing, Llc Trackable diagnostic scope apparatus and methods of use
US20080319491A1 (en) * 2007-06-19 2008-12-25 Ryan Schoenefeld Patient-matched surgical component and methods of use
WO2009012577A1 (en) * 2007-07-20 2009-01-29 Resonant Medical Inc. Methods and systems for compensating for changes in anatomy of radiotherapy patients
US10531858B2 (en) 2007-07-20 2020-01-14 Elekta, LTD Methods and systems for guiding the acquisition of ultrasound images
US8135198B2 (en) * 2007-08-08 2012-03-13 Resonant Medical, Inc. Systems and methods for constructing images
WO2009077955A1 (en) * 2007-12-18 2009-06-25 Koninklijke Philips Electronics N.V. Consistency metric based image registration
US8571637B2 (en) * 2008-01-21 2013-10-29 Biomet Manufacturing, Llc Patella tracking method and apparatus for use in surgical navigation
WO2009154691A2 (en) * 2008-05-29 2009-12-23 Yale University Systems, devices and methods for cartilage and bone grafting
US8189738B2 (en) * 2008-06-02 2012-05-29 Elekta Ltd. Methods and systems for guiding clinical radiotherapy setups
WO2009146703A2 (en) * 2008-06-02 2009-12-10 Aarhus Universitet System and method for volumetric analysis of medical images
DE102008049467B4 (de) * 2008-09-29 2016-12-29 Siemens Healthcare Gmbh Verfahren und Vorrichtung zur Registrierung von tomographischen Volumendatensätzen des Darms
US8406497B2 (en) * 2009-02-25 2013-03-26 Dongwook YOON Method for population-driven identification of body landmarks
WO2010120534A1 (en) 2009-03-31 2010-10-21 Whitten Matthew R System and method for radiation therapy treatment planning using a memetic optimization algorithm
US10542962B2 (en) * 2009-07-10 2020-01-28 Elekta, LTD Adaptive radiotherapy treatment using ultrasound
US20110081055A1 (en) * 2009-10-02 2011-04-07 Harris Corporation, Corporation Of The State Of Delaware Medical image analysis system using n-way belief propagation for anatomical images subject to deformation and related methods
US20110081061A1 (en) * 2009-10-02 2011-04-07 Harris Corporation Medical image analysis system for anatomical images subject to deformation and related methods
US20110081054A1 (en) * 2009-10-02 2011-04-07 Harris Corporation Medical image analysis system for displaying anatomical images subject to deformation and related methods
US20110172526A1 (en) * 2010-01-12 2011-07-14 Martin Lachaine Feature Tracking Using Ultrasound
US9248316B2 (en) 2010-01-12 2016-02-02 Elekta Ltd. Feature tracking using ultrasound
US9224229B2 (en) * 2010-11-24 2015-12-29 Blackford Analysis Limited Process and apparatus for data registration
US8837791B2 (en) * 2010-12-22 2014-09-16 Kabushiki Kaisha Toshiba Feature location method and system
US8666195B1 (en) * 2011-03-15 2014-03-04 Google Inc. Image alignment
US9439627B2 (en) 2012-05-22 2016-09-13 Covidien Lp Planning system and navigation system for an ablation procedure
US9439623B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical planning system and navigation system
US8750568B2 (en) 2012-05-22 2014-06-10 Covidien Lp System and method for conformal ablation planning
US9498182B2 (en) 2012-05-22 2016-11-22 Covidien Lp Systems and methods for planning and navigation
US9439622B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical navigation system
US9443633B2 (en) 2013-02-26 2016-09-13 Accuray Incorporated Electromagnetically actuated multi-leaf collimator
JP6179271B2 (ja) * 2013-08-23 2017-08-16 ブラザー工業株式会社 処理装置、および、コンピュータプログラム
KR102349059B1 (ko) * 2014-11-07 2022-01-10 삼성전자주식회사 영상의 관심영역으로부터 랜드마크를 결정하는 장치 및 방법
US10373386B2 (en) 2016-02-16 2019-08-06 Ohzone, Inc. System and method for virtually trying-on clothing
US10127717B2 (en) 2016-02-16 2018-11-13 Ohzone, Inc. System for 3D Clothing Model Creation
US11615462B2 (en) 2016-02-16 2023-03-28 Ohzone, Inc. System for virtually sharing customized clothing
US10235585B2 (en) 2016-04-11 2019-03-19 The Nielsen Company (US) Methods and apparatus to determine the dimensions of a region of interest of a target object from an image using target object landmarks
US10121091B2 (en) 2017-02-09 2018-11-06 Rosemount Aerospace Inc. IMU-aided image registration
US10460458B1 (en) * 2017-09-14 2019-10-29 United States Of America As Represented By The Secretary Of The Air Force Method for registration of partially-overlapped aerial imagery using a reduced search space methodology with hybrid similarity measures
WO2020033947A1 (en) 2018-08-10 2020-02-13 Covidien Lp Systems for ablation visualization
WO2020106792A1 (en) * 2018-11-21 2020-05-28 University Of Washington System and method for retina template matching in teleophthalmology
CN111435969B (zh) * 2019-01-11 2021-11-09 佳能株式会社 图像处理装置及其控制方法、记录介质和信息处理系统
CN110648276B (zh) * 2019-09-25 2023-03-31 重庆大学 基于流形映射与字典学习的高维图像数据降维方法
CN111291813B (zh) * 2020-02-13 2023-10-31 腾讯科技(深圳)有限公司 图像标注方法、装置、计算机设备和存储介质
US11941825B2 (en) * 2021-10-28 2024-03-26 Canon Medical Systems Corporation Method and apparatus for registering image volumes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644582A (en) * 1983-01-28 1987-02-17 Hitachi, Ltd. Image registration method
US4987412A (en) * 1988-08-25 1991-01-22 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for the simultaneous display and correlation of independently generated images
US5027422A (en) * 1988-08-29 1991-06-25 Raytheon Company Confirmed boundary pattern matching
US5048103A (en) * 1989-03-29 1991-09-10 General Electric Cgr S.A. Method for the automatic resetting of images
US5483606A (en) * 1994-01-03 1996-01-09 Xerox Corporation Method for automatically registering a document having a plurality of pages
US5490221A (en) * 1990-10-02 1996-02-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Digital data registration and differencing compression system
US5531520A (en) * 1994-09-01 1996-07-02 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets including anatomical body data
US5568384A (en) * 1992-10-13 1996-10-22 Mayo Foundation For Medical Education And Research Biomedical imaging and analysis
US5581638A (en) * 1993-07-26 1996-12-03 E-Systems, Inc. Method for autonomous image registration
US5633951A (en) * 1992-12-18 1997-05-27 North America Philips Corporation Registration of volumetric images which are relatively elastically deformed by matching surfaces

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590607A (en) * 1982-09-17 1986-05-20 Environmental Research Institute Of Michigan Image correspondence techniques using serial neighborhood processing
US4662222A (en) * 1984-12-21 1987-05-05 Johnson Steven A Apparatus and method for acoustic imaging using inverse scattering techniques
US4722056A (en) 1986-02-18 1988-01-26 Trustees Of Dartmouth College Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US5005126A (en) * 1987-04-09 1991-04-02 Prevail, Inc. System and method for remote presentation of diagnostic image information
US4958283A (en) * 1987-07-08 1990-09-18 Kabushiki Kaisha Toshiba Method and system for storing and communicating medical image data
US5204944A (en) 1989-07-28 1993-04-20 The Trustees Of Columbia University In The City Of New York Separable image warping methods and systems using spatial lookup tables
FR2652928B1 (fr) 1989-10-05 1994-07-29 Diadix Sa Systeme interactif d'intervention locale a l'interieur d'une zone d'une structure non homogene.
JPH03223976A (ja) * 1990-01-29 1991-10-02 Ezel Inc 画像照合装置
US5323472A (en) * 1990-03-27 1994-06-21 The Boeing Company Optical image analyzer using optical correlation and opto-electronic feedback
US5465378A (en) * 1990-05-15 1995-11-07 Compuspeak, Inc. Report generating system
US5272625A (en) * 1990-05-17 1993-12-21 Kabushiki Kaisha Toshiba Medical image data managing system
US5073963A (en) * 1990-05-25 1991-12-17 Arizona Technology Development Corp. Computerized method of matching two-dimensional (2-d) patterns
US5274714A (en) 1990-06-04 1993-12-28 Neuristics, Inc. Method and apparatus for determining and organizing feature vectors for neural network recognition
US5241472A (en) * 1990-10-15 1993-08-31 University Of Pittsburgh Of The Commonwealth System Of Higher Education Method of identifying and archiving medical images
EP1210916B1 (en) 1990-10-19 2006-09-20 ST. Louis University System for indicating a location within a body of a patient
US5823958A (en) 1990-11-26 1998-10-20 Truppe; Michael System and method for displaying a structural data image in real-time correlation with moveable body
US5662111A (en) 1991-01-28 1997-09-02 Cosman; Eric R. Process of stereotactic optical navigation
EP0514688A2 (en) * 1991-05-21 1992-11-25 International Business Machines Corporation Generalized shape autocorrelation for shape acquisition and recognition
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5390110A (en) * 1991-07-09 1995-02-14 Rensselaer Polytechnic Institute Layer stripping process for impedance imaging
US5740274A (en) 1991-09-12 1998-04-14 Fuji Photo Film Co., Ltd. Method for recognizing object images and learning method for neural networks
EP0537854B1 (en) 1991-10-18 1997-09-10 Koninklijke Philips Electronics N.V. Method of manufacturing a semiconductor device whereby a layer of material is deposited on the surface of a semiconductor wafer from a process gas
US5291401A (en) * 1991-11-15 1994-03-01 Telescan, Limited Teleradiology system
US5274551A (en) * 1991-11-29 1993-12-28 General Electric Company Method and apparatus for real-time navigation assist in interventional radiological procedures
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5368030A (en) 1992-09-09 1994-11-29 Izi Corporation Non-invasive multi-modality radiographic surface markers
US5287417A (en) * 1992-09-10 1994-02-15 Microsoft Corporation Method and system for recognizing a graphic object's shape, line style, and fill pattern in a pen environment
US5442572A (en) * 1992-11-23 1995-08-15 Ford Motor Company Method and system for comparing free-form geometries using high density point data models
US5734915A (en) * 1992-11-25 1998-03-31 Eastman Kodak Company Method and apparatus for composing digital medical imagery
US5615112A (en) * 1993-01-29 1997-03-25 Arizona Board Of Regents Synthesized object-oriented entity-relationship (SOOER) model for coupled knowledge-base/database of image retrieval expert system (IRES)
US5483961A (en) 1993-03-19 1996-01-16 Kelly; Patrick J. Magnetic field digitizer for stereotactic surgery
AU6666894A (en) 1993-04-22 1994-11-08 Pixsys, Inc. System for locating relative positions of objects
DE69433588T2 (de) 1993-04-26 2005-02-03 St. Louis University Anzeige der lage einer sonde
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
FR2709656B1 (fr) * 1993-09-07 1995-12-01 Deemed Int Sa Installation pour opération de microchirurgie assistée par ordinateur et procédés mis en Óoeuvre par ladite installation.
US5675720A (en) 1993-09-14 1997-10-07 Fujitsu Limited Method of searching for points of closest approach, and preprocessing method therefor
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5399146A (en) 1993-12-13 1995-03-21 Nowacki; Christopher Isocentric lithotripter
US5800535A (en) 1994-02-09 1998-09-01 The University Of Iowa Research Foundation Wireless prosthetic electrode for the brain
DE4417944A1 (de) 1994-05-21 1995-11-23 Zeiss Carl Fa Verfahren zum Korrelieren verschiedener Koordinatensysteme in der rechnergestützten, stereotaktischen Chirurgie
US5643286A (en) 1994-06-24 1997-07-01 Cytotherapeutics, Inc. Microdrive for use in stereotactic surgery
US5999840A (en) * 1994-09-01 1999-12-07 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets
US5803089A (en) 1994-09-15 1998-09-08 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5695501A (en) 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
US5891157A (en) 1994-09-30 1999-04-06 Ohio Medical Instrument Company, Inc. Apparatus for surgical stereotactic procedures
US5920319A (en) 1994-10-27 1999-07-06 Wake Forest University Automatic analysis in virtual endoscopy
US5740428A (en) * 1995-02-07 1998-04-14 Merge Technologies, Inc. Computer based multimedia medical database management system and user interface
US5588430A (en) 1995-02-14 1996-12-31 University Of Florida Research Foundation, Inc. Repeat fixation for frameless stereotactic procedure
CA2214101A1 (en) 1995-03-03 1996-09-12 Ulrich Bick Method and system for the detection of lesions in medical images
US5682526A (en) * 1995-07-20 1997-10-28 Spacelabs Medical, Inc. Method and system for flexibly organizing, recording, and displaying medical patient care information using fields in a flowsheet
US5747767A (en) 1995-09-13 1998-05-05 The Esab Group, Inc. Extended water-injection nozzle assembly with improved centering
US5772594A (en) 1995-10-17 1998-06-30 Barrick; Earl F. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US5970182A (en) * 1995-11-15 1999-10-19 Focus Imaging, S. A. Registration process for myocardial images
US5682886A (en) 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
US5711299A (en) 1996-01-26 1998-01-27 Manwaring; Kim H. Surgical guidance method and system for approaching a target within a body
US5799055A (en) 1996-05-15 1998-08-25 Northwestern University Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy
US6009212A (en) 1996-07-10 1999-12-28 Washington University Method and apparatus for image registration
US6175655B1 (en) 1996-09-19 2001-01-16 Integrated Medical Systems, Inc. Medical imaging system for displaying, manipulating and analyzing three-dimensional images
US5980535A (en) 1996-09-30 1999-11-09 Picker International, Inc. Apparatus for anatomical tracking
US5921992A (en) 1997-04-11 1999-07-13 Radionics, Inc. Method and system for frameless tool calibration
US5834759A (en) 1997-05-22 1998-11-10 Glossop; Neil David Tracking device having emitter groups with different emitting directions
US6278457B1 (en) 1998-01-15 2001-08-21 International Business Machines Corporation Methods and apparatus for performing sampling based synthesis of three-dimensional geometric models
US6393159B1 (en) 1998-06-29 2002-05-21 The Regents Of The University Of California Multiscale characterization and analysis of shapes
US6300958B1 (en) 1998-07-17 2001-10-09 T-Surf Corp. Global constrained parameterization of triangulated surfaces
US6112112A (en) 1998-09-18 2000-08-29 Arch Development Corporation Method and system for the assessment of tumor extent in magnetic resonance images

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644582A (en) * 1983-01-28 1987-02-17 Hitachi, Ltd. Image registration method
US4987412A (en) * 1988-08-25 1991-01-22 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for the simultaneous display and correlation of independently generated images
US5027422A (en) * 1988-08-29 1991-06-25 Raytheon Company Confirmed boundary pattern matching
US5048103A (en) * 1989-03-29 1991-09-10 General Electric Cgr S.A. Method for the automatic resetting of images
US5490221A (en) * 1990-10-02 1996-02-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Digital data registration and differencing compression system
US5568384A (en) * 1992-10-13 1996-10-22 Mayo Foundation For Medical Education And Research Biomedical imaging and analysis
US5633951A (en) * 1992-12-18 1997-05-27 North America Philips Corporation Registration of volumetric images which are relatively elastically deformed by matching surfaces
US5581638A (en) * 1993-07-26 1996-12-03 E-Systems, Inc. Method for autonomous image registration
US5483606A (en) * 1994-01-03 1996-01-09 Xerox Corporation Method for automatically registering a document having a plurality of pages
US5531520A (en) * 1994-09-01 1996-07-02 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets including anatomical body data

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GRAMKOW C: "REGISTRATION OF 2D AND 3D MEDICAL IMAGES", REPORT IMM-EKS, XX, XX, 10 June 1996 (1996-06-10), XX, pages 01 - 327 + I/II, XP002981699 *
PELIZZARI C A, ET AL.: "ACCURATE THREE-DIMENSIONAL REGISTRATION OF CT, PET, AND/OR MR IMAGES OF THE BRAIN", JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, NEW YORK, NY, US, vol. 13, no. 01, 1 January 1989 (1989-01-01), US, pages 20 - 26, XP002925932 *
PENN R D, ET AL.: "STEREOTACTIC SURGERY WITH IMAGE PROCESSING OF COMPUTERIZED TOMOGRAPHIC SCANS", NEUROSURGERY., WILLIAMS & WILKINS, BALTIMORE, MD, US, vol. 03, no. 02, 1 October 1978 (1978-10-01), US, pages 157 - 163, XP002945175, ISSN: 0148-396X *
YALI AMIT: "Graphical Shape Templates for Deformable Model Registration passage", GRAPHICAL SHAPE TEMPLATES FOR DEFORMABLE MODEL REGISTRATION, XX, XX, 1 January 1991 (1991-01-01), XX, pages 1 - 18, XP002981698 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553152B1 (en) 1996-07-10 2003-04-22 Surgical Navigation Technologies, Inc. Method and apparatus for image registration
EP1057137A1 (en) * 1997-11-07 2000-12-06 Washington University Rapid convolution based large deformation image matching via landmark and volume imagery
EP1057137A4 (en) * 1997-11-07 2001-07-18 Univ Washington DETECTION OF DISTRUCTED IMAGES BY FAST FOLDING AND IMAGE CAPTURE FROM MARGINAL POINTS AND VOLUME INFORMATION
WO2000000931A1 (de) * 1998-06-30 2000-01-06 Thorsten Schormann Berechnung und darstellung 2- oder 3-dimensionaler räumdifferenzen von strukturen
WO2000036565A1 (en) * 1998-12-16 2000-06-22 Miller Michael I Method and apparatus for processing images with regions representing target objects
US6754374B1 (en) 1998-12-16 2004-06-22 Surgical Navigation Technologies, Inc. Method and apparatus for processing images with regions representing target objects
US6694057B1 (en) 1999-01-27 2004-02-17 Washington University Method and apparatus for processing images with curves
US6611615B1 (en) 1999-06-25 2003-08-26 University Of Iowa Research Foundation Method and apparatus for generating consistent image registration
EP2691900A2 (en) * 2011-03-29 2014-02-05 Boston Scientific Neuromodulation Corporation System and method for image registration

Also Published As

Publication number Publication date
DE69728765D1 (de) 2004-05-27
CA2260085A1 (en) 1998-01-15
US6553152B1 (en) 2003-04-22
US6009212A (en) 1999-12-28
DE69728765T2 (de) 2005-04-21
AU3591197A (en) 1998-02-02
EP0910832B1 (en) 2004-04-21
ATE265070T1 (de) 2004-05-15
EP0910832A1 (en) 1999-04-28
EP0910832A4 (en) 2001-05-30

Similar Documents

Publication Publication Date Title
EP0910832B1 (en) Method and apparatus for image registration
EP1057137B1 (en) Rapid convolution based large deformation image matching via landmark and volume imagery
US6633686B1 (en) Method and apparatus for image registration using large deformation diffeomorphisms on a sphere
US6408107B1 (en) Rapid convolution based large deformation image matching via landmark and volume imagery
US20010036302A1 (en) Method and apparatus for cross modality image registration
Cootes et al. A unified framework for atlas matching using active appearance models
JP4079690B2 (ja) 物体追跡装置及び方法
US7764817B2 (en) Method for database guided simultaneous multi slice object detection in three dimensional volumetric data
US7561757B2 (en) Image registration using minimum entropic graphs
Khalifa et al. State-of-the-art medical image registration methodologies: A survey
CN108027878A (zh) 用于面部对齐的方法
Gu et al. Matching 3d shapes using 2d conformal representations
Srinivasan Extracting structure from optical flow using the fast error search technique
Sun et al. Medical Image Registration via Neural Fields
Hutchcroft et al. CoVisPose: Co-visibility pose transformer for wide-baseline relative pose estimation in 360∘ indoor panoramas
Rueckert et al. Registration and segmentation in medical imaging
US20040096097A1 (en) Scene reconstruction and camera calibration with robust use of cheirality
Goshtasby et al. Image registration methods
Park et al. Construction of abdominal probabilistic atlases and their value in segmentation of normal organs in abdominal CT scans
Oh et al. A reliable quasi-dense corresponding points for structure from motion
Younes Combining geodesic interpolating splines and affine transformations
WO2001022352A1 (en) Method and apparatus for image registration using large deformation diffeomorphisms on a sphere
Shah et al. Deformable Registration Choices for Multi-Atlas Segmentation
Li et al. Spline-based motion recovery for 3D surfaces using nonrigid shape properties
CN115359467A (zh) 一种针对可变形医学靶标的识别方法及装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2260085

Country of ref document: CA

Ref country code: CA

Ref document number: 2260085

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997932453

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997932453

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998505269

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1997932453

Country of ref document: EP