WO1997037378A1 - Visual inspection device for wafer bump and height measuring device - Google Patents

Visual inspection device for wafer bump and height measuring device Download PDF

Info

Publication number
WO1997037378A1
WO1997037378A1 PCT/JP1997/001078 JP9701078W WO9737378A1 WO 1997037378 A1 WO1997037378 A1 WO 1997037378A1 JP 9701078 W JP9701078 W JP 9701078W WO 9737378 A1 WO9737378 A1 WO 9737378A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
bump
wafer
measurement
chip
Prior art date
Application number
PCT/JP1997/001078
Other languages
French (fr)
Japanese (ja)
Inventor
Keiji Terada
Shigeyuki Tada
Masato Moriya
Hiroshi Tanaka
Hideyuki Wakai
Takeshi Okamoto
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1997037378A1 publication Critical patent/WO1997037378A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • the present invention relates to an apparatus for visually inspecting a projection such as a bump electrode on a wafer. Further, the present invention relates to an apparatus for measuring the height of the bump or the like. Background art
  • this device consists of a 2D measurement module 31, a wafer movement stage 32, a 3D measurement module 33, and a measurement controller 34.
  • 3 Position the wafer using 1 and the wafer moving stage 3 2, acquire 3D data of the bump shape using the 3D measurement module 3 3, which is a confocal optical system, and estimate the peak height of the bump from the 3D data. Then, the height of the bump is inspected.
  • the wafer 1 to be inspected is an aggregate of IC chips 2a, 2b ... (see FIG. 21), and each chip has a bump electrode 3 (see FIG. 22) at a predetermined position. ) Is formed. Then, the 3D measurement module 33 captures the surface of the wafer 1 every measurement field of view 4 in a fixed range.
  • Figures 22 (a) to (d) show the relationship between the measurement field of view 4 and each chip 2, and at least one chip and a part of two or more chips exist in one measurement field of view 4. Are there.
  • the measurement visual field 4 of the 3D measurement module 3 3 it is necessary to move the measurement visual field 4 of the 3D measurement module 3 3 so as to cover the entire area of the wafer 1.
  • Such a conventional bump inspection apparatus has the following problems.
  • the XY coordinate position of the bump 3 must be specified in some way from the three-dimensional measurement data of the 3D measurement module 33.
  • the 2D measurement module 31 detects feature points on the wafer 1, for example, the positions of the alignment marks M a and M b, so that the ⁇ direction of the air 1 can be changed. Then, the attitude of the wear 1 is corrected by rotating the wafer moving stage 32 (0 stage) in a direction matching the field of view of the 3D measurement module 33. As a result, the bump position on the XY coordinate system can be specified and inspected.
  • the data measured for each bump 3 with different X and ⁇ coordinate positions was corrected by the position error ( ⁇ ⁇ , ⁇ ⁇ ) for the bump coordinate position.
  • the correction process takes a long time.
  • the chip 2 is determined to be “good” only when all the bumps 3 in one chip 2 are within the specified height range. However, according to these criteria, if even one bump 3 in one chip 2 is out of the specified height range, all other bumps 3 are in the specified height range. would be judged as "bad”.
  • FIG. 23 is a chip side view showing the level of the surface of the IC chip 2.
  • the surface of the IC chip 2 has irregularities due to the IC pattern, and is not flat. Therefore, when measuring the height of the bump 3 formed on the surface of the IC chip 2 from the surface of the IC chip, it was not possible to uniquely determine where the reference is made to be the surface of the IC chip.
  • the absolute height of the surface of the IC chip 2 is not the same at one end of the IC chip 2 and the other end. It was not possible to uniquely determine whether to use the surface height of the IC chip 2.
  • the height of the bump 3 on the IC chip 2 depends on the set height of the surface of the IC chip 2, which makes it possible to accurately measure the height of the bump 3. could not.
  • bumps that are formed on bumps 3 as shown in Fig. 24. Due to the presence of bumps 5, sufficient electricity is generated when mounting the IC chip. There is a possibility that no contact can be obtained. Therefore, it is necessary to accurately detect the bump 5 at the time of the inspection and determine that the bump 5 is “defective”.
  • the defective bumps 3 have a defect called extra bump 6, which must also be detected at the time of inspection and judged as "defective".
  • the extra bump (foreign matter) is a bump-like projection formed on the surface of the IC chip 2 where the bump 3 is not originally formed.
  • the detection of the extra bump 6 also depends on the set height of the surface of the IC chip 2, and the detection of the extra bump 6 could not be performed accurately.
  • this application discloses a three-dimensional shape measuring apparatus to which a confocal optical system is applied.
  • the entire confocal optical system, only the objective lens, or a planar workpiece (eg, wafer) is moved in the vertical direction.
  • the 3D measurement module 33 is regarded as the shape measuring device in FIG. 20, by moving the 3D measurement module 33 in the Z direction, the force moving stage 32 is moved in the Z direction.
  • the work is moved relatively to the 3D measurement module 33 by a predetermined distance in the vertical direction.
  • the moving position where the amount of light received by the light receiving unit is maximum is set as the height position of the measured object at the light receiving point.
  • Such processing is executed for each light receiving unit arranged in an array.
  • each movement position on the plane to which the measurement visual field of the 3D measurement module 33 should move is set so that the height of the entire upper surface of the work is measured by the 3D measurement module 33.
  • the measurement visual field is sequentially moved to each of the set plane movement positions, and the work is moved in the Z direction by the above-mentioned predetermined distance relative to the 3D measurement module 33 at each plane movement position. By doing so, the height of each part of the work within the measurement visual field is measured.
  • FIG. 30 is a diagram conceptually showing the state of such movement, and FIG. 31 shows a time chart thereof.
  • the vertical movement of the workpiece is measured by 3D measurement. It is assumed to be performed by moving the Z axis movement mechanism (Z stage) of module 33.
  • the time for moving the measurement visual field is shorter than the time for returning the Z position to the initial position. Therefore, as shown in Fig. 31, even if the movement to the next measurement field of view is completed, the Z position cannot be returned to the initial position, and the time required to completely return the Z stage to the Z position is reached. Was wasted time that was not used for the original measurement and for moving the measurement field of view. As a result, the cycle time for one field of view was increased by that much, and the throughput of the device was reduced.
  • the present invention has been made in view of such a situation, and eliminates all of the above problems, accurately and quickly corrects a wafer positioning error, and accurately performs a bump appearance inspection.
  • the purpose is to perform fast and fast.
  • the relative position and attitude of the wafer and the visual means for imaging the bumps on the wafer are changed by the relative position and attitude changing means.
  • a wafer bump appearance inspection device that inspects the appearance of bumps on a wafer
  • Positioning means for positioning the wafer on a coordinate axis of a predetermined coordinate system by the relative position / posture changing means;
  • the viewing means has a measurement field of view capable of imaging a plurality of bumps at one time, and is arranged so that all the bumps on the wafer are imaged by the viewing means.
  • Setting means for setting a coordinate position on the coordinate system to which the measurement visual field is to be moved; and when the wafer is positioned by the positioning means, rotation of the wafer about a coordinate origin on the coordinate system as a rotation center Detecting means for detecting a positional shift; and rotating each set coordinate position of the measurement field of view of the visual means set by the setting means on the coordinate system by the rotational position shift detected by the detecting means.
  • Bump coordinate position setting means for presetting the coordinate position on the coordinate system of each bump included in the measurement field of view
  • Inspection means for specifying a bump position in the measurement field of view based on preset coordinate positions set by the bump coordinate position setting means, and performing a visual inspection of bumps on the wafer based on the specified bump positions;
  • the position error of the bump due to the rotational position shift of the wafer when positioned by the positioning means is accurately corrected by the rotation conversion in consideration of the moving distance of the measurement visual field from the coordinate origin. Therefore, the conventional problem that the position error of the bump increases as the wafer size increases is solved.
  • the position error is corrected for each measurement field of view including multiple bumps, so the correction process can be completed in a short time and the bump inspection can be performed at high speed. Will be able to do it.
  • a wafer bump appearance inspection apparatus for imaging a plurality of bumps on a wafer by visual means and inspecting the appearance of the bumps on the wafer based on the imaging result
  • An average height of a plurality of bumps in a chip is determined for each chip on the wafer based on an imaging result of the visual means, and a height of all bumps in the chip is determined with respect to the average height. If the chip is within a certain deviation, the chip is good. The decision is made.
  • the average value of the bump height of the chip ⁇ is compared with the height of each bump, and the quality of the chip is determined from the result, so that the inspection of each chip can be accurately performed. It can be carried out. Therefore, it is possible to prevent a non-defective chip from which a sufficient electrical contact is obtained in all bumps during chip mounting from being erroneously determined to be defective.
  • a third aspect of the present invention there is provided visual means for imaging a bump on a wafer with a measurement field of view of a predetermined size, and inspects the appearance of the bump on the wafer based on the imaging result of the visual means.
  • visual means for imaging a bump on a wafer with a measurement field of view of a predetermined size and inspects the appearance of the bump on the wafer based on the imaging result of the visual means.
  • Positioning means for positioning the wafer on a coordinate axis of a predetermined coordinate system; bump coordinate position setting means for presetting the coordinate positions of the bumps included in the measurement visual field on the coordinate system;
  • a bump position in the measurement field of view is specified based on a preset coordinate position set by the bump coordinate position setting means, a window is set for a certain area around the specified bump position, and only this window is set. Inspection means for inspecting the appearance of the bumps on the wafer;
  • the bump detection is performed only in the window portion in a certain area around the bump position, so that the inspection such as the measurement of the bump height can be efficiently performed.
  • inspection since inspection is performed around the bump position, even if there is some error in the coordinate position of the bump, inspection such as measurement of the height of the bump can be reliably performed.
  • Histogram creation means for finding the height of each part in the window, and creating a histogram indicating the relationship between height and frequency based on the height data
  • the height at which the frequency becomes maximum is defined as the chip surface height, and the height in the histogram is The height of the chip surface was subtracted from the maximum value Calculating means for setting the value as the relative height of the bump in the window from the chip surface.
  • Histogram creation means for finding a height of each part in the window, and creating a histogram indicating a relationship between the height and the frequency based on the height data;
  • the average height within a certain range from the minimum height in the histogram to a value larger than the minimum by a predetermined amount is defined as the chip surface height, and the maximum height in the histogram is calculated from the maximum height in the histogram.
  • a histogram is created based on height data of a narrow area such as a window around the coordinate position of the bump, and the height of the chip surface is obtained from this histogram, so that the IC pattern is obtained.
  • the height of the chip surface can be accurately determined by removing the irregularities of the wafer and the effects of the wafer, so that the relative height of the bump from the chip surface can be accurately measured. Become.
  • the fifth invention of the present invention is created based on height data of a narrow area such as a window around the coordinate position of the bump, and the height of the chip surface is obtained from this histogram, so that the IC pattern is obtained.
  • the height of the chip surface can be accurately determined by removing the irregularities of the wafer and the effects of the wafer, so that the relative height of the bump from the chip surface can be accurately measured.
  • a histogram creating means for determining the height of each part in the window, and creating a histogram indicating the relationship between the height and the frequency based on the height data;
  • a cumulative frequency within a certain range from a maximum value to a first value smaller than the maximum value by a predetermined amount is obtained as a first cumulative frequency, and a predetermined amount from the maximum value is calculated.
  • a small cumulative edge having a frequency within a certain range up to a second value larger than the first value is obtained as a second cumulative frequency, and a ratio of the second cumulative frequency to the first cumulative frequency is calculated. Is less than or equal to a predetermined threshold value, a determining means for determining that bumps are present in the bumps in the window; and
  • the bumps generated on the bumps are detected with high accuracy, and the bumps are detected. The inconvenience is prevented when sufficient electrical contact cannot be obtained during chip mounting due to missing.
  • the height of each part in the remaining area of the chip ⁇ excluding the window part set in the chip on the wafer is obtained, and a histogram showing the relationship between the height and the frequency is created based on the height data. Histogram means to perform
  • the creation of the histogram is performed by dividing the remaining region in the chip excluding the window portion into a plurality of regions, and for each of the divided regions.
  • the height at which the frequency is maximum in the histogram is the height of the chip surface, and the value obtained by calculating the height of the chip surface from the maximum height in the histogram is If it is equal to or greater than a predetermined threshold value, it is determined that extra bumps are present in the chip.
  • the average height in the histogram is the height of the chip surface
  • the value obtained by subtracting the height of the chip surface from the maximum height in the histogram is a predetermined threshold value. When the value is equal to or more than the threshold value, it is determined that an extra bump exists in the chip.
  • the presence / absence of extra bumps is determined from the histogram based on the height data of the remaining area where the bumps in the chip are masked, so that normal bumps and extra bumps are mistaken. Without this, extra bumps can be detected accurately.
  • the chip is divided into a plurality of parts and a histogram is created for each divided area, a histogram based on height data of a narrow area is created. Therefore, when the height of the chip surface was obtained from this histogram, IC chip was used. Eliminates the effects of pattern irregularities and wafer tilt, and accurately characterizes chip surface height. This makes it possible to accurately measure the relative height of the extra bump from the chip surface.
  • a height measuring device for measuring the height of each portion of the upper surface of the work by relatively moving the planar work in a vertical constant direction by a predetermined distance
  • Setting means for setting each movement position on a plane to which the measurement field of view of the height measuring device should move so that the entire upper surface is measured by the height measuring device; and each of the planes set by the setting means.
  • the vertical movement in the measurement field of view of the next plane movement position will be the measurement field of the current plane movement position.
  • the height measuring device is for measuring the height of an inspection object having a predetermined size formed on a planar workpiece
  • Adjacent measurement fields are overlapped so that at least one of the two measurement fields adjacent to each other on the plane contains the inspection object, and the plane movement position of the measurement field is set. I have to.
  • the alternate movement of the movement in the vertical Z direction in the measurement visual field and the movement in the planar direction of the measurement visual field is as follows.
  • FIG. 26 is a diagram conceptually showing the state of such movement
  • FIG. 27 is a time chart thereof, corresponding to FIGS. 30 and 31 respectively.
  • the moving direction in the Z direction in each of the measurement visual fields N-1, N, and N + 1 is sequentially reversed. That is, in the measurement visual field N-1, the measurement is performed by moving in the descending direction d, and in the next measurement visual field N, the measurement is performed by moving in the ascending direction d 'opposite to the previous measurement, and the next measurement is performed. In the field of view N + 1, in the downward d direction opposite to the previous It is moved and measured (see arrows d and d 'in Figure 26).
  • one visual field cycle time is a combination of the time required to move in the Z-axis direction for measurement and the time required to move the measurement visual field in the plane direction.
  • the original measurement only to return the Z position to the initial position is not used for moving the measurement field of view, and there is no dead time.
  • the cycle time in one field of view is reduced accordingly, and the throughput of the device can be dramatically improved.
  • the two inspection fields adjacent to each other on the plane are adjacent to each other so that the entire inspection object whose height is to be measured is included in at least one of the measurement fields. Since the measurement visual fields are overlapped with each other and the respective plane movement positions of the measurement visual fields are set, the height measurement of one inspection object as a whole is performed in at least one measurement visual field.
  • the driving mechanism for driving the Z stage has hysteresis between the movement in the ascending direction and the movement in the descending direction. Therefore, a height measurement error occurs between adjacent measurement fields having different Z-axis moving directions.
  • the measurement of the height of one entire inspection object is completed within at least one measurement visual field, the measurement of the height of the inspection object is affected by the reciprocating hysteresis. Measurement can be performed without error.
  • FIG. 1 is a diagram showing an embodiment of a wafer bump appearance inspection apparatus according to the present invention, and is a plan view of a wafer.
  • FIGS. 2 (a), (b), (c), and (d) are diagrams illustrating the relative positional relationship between a chip on a wafer and a measurement visual field.
  • FIG. 2 is a diagram for explaining a manner in which the measurement visual field is moved on the wafer.
  • FIG. 4 is a flowchart showing the procedure of the bump inspection process.
  • FIG. 5 is a diagram showing bumps included in the measurement visual field.
  • FIGS. 6A, 6B and 6C are diagrams for explaining types of bumps.
  • FIG. 7 is a diagram showing the positional relationship between the measurement field origin and the chip origin.
  • FIG. 8 is a diagram showing a chip coordinate system.
  • FIG. 9 is a diagram conceptually showing a data structure of a set value set in the measurement visual field.
  • FIGS. 10 (a), (b), and (c) are flowcharts showing a processing procedure for judging pass / fail of each chip.
  • FIG. 11 is a histogram of height data obtained for each window.
  • FIG. 12 is a histogram when the wafer is tilted.
  • FIGS. 13 (a), (b), (c) and (d) are flow charts showing the procedure of the process for obtaining the height of the bump based on the histogram.
  • Figure 14 is a histogram of height data obtained by a window set for bumps with bumps.
  • Figure 14 is a histogram of height data obtained by a window set for bumps without bumps.
  • FIGS. 16 (a), (b) and (c) are flowcharts showing the procedure of the process for determining the presence or absence of bumps based on the histogram.
  • FIG. 17 is a plan view showing a chip having extra bumps.
  • FIG. 18 is a plan view showing an element obtained by dividing a chip having an extra bump into respective regions.
  • Fig. 19 (a) is a histogram of height data obtained by a chip with extra bumps.
  • Figs. 19 (b) and (c) are histograms of Fig. 19 (a).
  • 6 is a flowchart showing a procedure of a process of determining the presence or absence of an extra bump based on a system.
  • FIG. 20 is a perspective view of a wafer bump appearance inspection apparatus according to the embodiment.
  • FIG. 21 is a view for explaining a conventional wafer bump appearance inspection apparatus, and is a plan view of a wafer.
  • FIGS. 22 (a), (b), (c), and (d) are diagrams illustrating a conventional technique, and are diagrams illustrating a relative positional relationship between a chip on a wafer and a measurement visual field.
  • Figure 23 is a side view showing a state where the wafer (chip) is tilted.
  • FIG. 24 is a side view showing a bump having bumps.
  • FIG. 25 is a plan view showing a chip having extra bumps.
  • FIG. 26 is a diagram showing a mode of movement of each measurement visual field in the plane direction and movement of each measurement visual field in the vertical axis direction.
  • FIG. 27 is a time chart of FIG.
  • FIG. 28 is a side view of the bump.
  • FIG. 29 is a diagram illustrating a state in which the measurement visual fields overlap.
  • FIG. 30 is a diagram for explaining the prior art, and is a diagram showing a mode of movement of each measurement visual field in a plane direction and movement of each measurement visual field in a vertical axis direction.
  • FIG. 31 is a diagram for explaining the prior art, and is a time chart of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a conventional apparatus shown in FIG. 20 is used as a bump inspection apparatus.
  • FIG. 3 is a diagram showing the relationship between the chip 2 formed on the surface of the wafer 1 and the measurement field of view 4 of the 3D measurement module 33 in an XY coordinate system.
  • the identification numbers CID are assigned to all the chips 2 in the chip group in the wafer 1 as C1, C2 to C7, and C8.
  • the upper left corner of chip 2 with identification number C7 in the upper left corner is set to the origin O of the XY coordinate axis (the two are indicated by double circles).
  • the X axis coincides with the top side of the chip group
  • the X- ⁇ coordinate axis is set so that the Y axis coincides with the left side of the chip group.
  • each measurement field of view VI, V2, V3 ... is set.
  • the upper left corner of each measurement field VI, V2, V3 ... is set to the field origin OV (this is indicated by the X mark), and the field origin Ov of each measurement field VI, V2, V3 ... is the field coordinate.
  • position (VX, VY) The total number of measurement fields VI, V2, V3 ... is VN, and this total field number is also preset.
  • the overlapping direction of the measurement visual field 4 exists not only in the X-axis direction as shown in FIG. 3 but also in the Y-axis direction as shown in FIG. 29 described later.
  • the overlap range is wider than the size of one bump.
  • the bump 3 existing near the boundary of the measurement visual field 4 enters without fail in any of the two overlapping measurement visual fields, and the 3D measurement can be accurately performed. Will be able to do so.
  • the overlap of the measurement field of view 4 be larger than the size of a window for bump inspection described later.
  • the wafer 1 is placed on the wafer movement stage 32 by the wafer handling robot (not shown) of the apparatus shown in FIG.
  • the 2D measurement module 31 detects two or more feature points on the wafer 1, for example, the positions of positioning marks.
  • the positioning marks Ma and Mb as shown in FIG. 1 are detected, and the attitude angle ⁇ and the positions X and Y of the wafer 1 are obtained from the detected positions.
  • the XY stage movement axis of the XY stage is aligned with the XY coordinate axis of FIG.
  • the wafer 1 is positioned so that the point coincides with the coordinate origin O in FIG.
  • the position of the attitude position of the wafer 1 is determined by the ⁇ stage of the ⁇ ⁇ stage 32, up to the limit of the rotational resolution of the 0 stage.
  • the positions of the feature points Ma and Mb on the wafer 1 are detected again by the 2D measurement module 31, and the attitude error ⁇ 0 of the XY stage of the wafer 1 with respect to the XY movement axis is obtained (see ⁇ 1). ).
  • the attitude error ⁇ 6 is 0.1 degrees
  • the position error ⁇ is about 222 ⁇ at a position 5 inches away from the coordinate origin of the wafer 1.
  • the feature points on the wafer 1 to be detected by the 2D measurement module 31 need only be two or more places, and are located away from the center of the wafer 1 (chip group), and the feature points are separated from each other. This is desirable for accurately determining the attitude error ⁇ .
  • the position of the attitude position of the wafer 1 is determined up to the limit of the rotational resolution of the stage of the wafer moving stage 32. However, if the attitude error described below can be corrected, However, it is not always necessary to position the attitude position of the wafer 1 up to the limit of the rotation resolution of the stage. Also, the mechanical origin of the stage and the coordinate origin in Fig. 3 do not need to be matched if the offset is known.
  • FIG. 1 and 2 are views showing each measurement field 4 of the 3D measurement module 33.
  • the measurement field of view 4 for measuring the tip 2 b separated from the coordinate origin ⁇ and the surrounding chip is assumed to be without any correction, so that the measurement field of view 4 moves along the X axis.
  • the measurement field of view is indicated by a broken line in FIG. This makes it impossible to accurately measure the chip 2b and the chips around it. Therefore, as shown by the solid line, the measurement field of view 4 is corrected so as to be moved by the XY stage.
  • FIG. 4 is a flowchart showing a procedure of the bump inspection process including the correction process.
  • the identification numbers I of the measurement fields VI, V2, V3 ... are set to 0 (step 101). This identification number I is incremented by +1 (step 102). Then, it is determined whether or not the current incremented identification number I has become larger than the total number of views VN (step 103). If the determination here is YES, the processing is terminated assuming that measurement has been completed for all measurement fields, that is, bump inspection has been completed for the entire wafer 1.
  • step 104 the procedure for measuring the measurement field ID (I) of the incremented identification number I is step 104. Will be migrated to.
  • the visual field origin Ov of each measurement visual field VI, V2, V3... Is represented as a visual field coordinate position (VX, VY).
  • FIGS. 2 (a) and 2 (b) are diagrams showing the positional relationship between the chip and the measurement visual field when there is no attitude error ⁇
  • FIGS. 2 (c) and (d) show the attitude error ⁇ 0
  • FIG. 8 is a diagram showing a positional relationship between a chip and a measurement visual field when performing the measurement.
  • 2 (a) and 2 (c) show the measurement field of view 4 set at the coordinate origin O
  • FIGS. 2 (b) and 2 (d) show the measurement field of view set at a position distant from the coordinate origin O. 4 is shown.
  • the 3D measurement module 33 may be provided with a means for moving this in the X-axis and Y-axis directions, and a method of performing this using the XY moving means may be considered.
  • each of the XY coordinate axes of the measurement visual field 4 of the 3D measurement module 33 is parallel to each of the ⁇ movement axes of the wafer moving stage 32, and the direction of the ⁇ coordinate axis of the measurement visual field 4 of the 3D measurement module 33 It is assumed that the correspondence between the coordinate origin, the direction of the moving axis of the wafer moving stage 32, and the coordinate origin is known in advance (steps 104 and 105).
  • the set values are prepared in advance in the pre-processing stage of the actual inspection processing, similarly to the above-described visual field coordinate positions (VX, VY).
  • FIG. 5 shows the total of chip 2 with identification number C24, including chip 2 with identification numbers C11, CC12, C13, C23, C25, C35, C36, and C37 around it.
  • FIG. 9 is a diagram for explaining set values of a measurement field of view 4 including nine chips in the field of view.
  • CN The total number of chips in the measurement visual field, and 9 is added.
  • C12, C13, C23, C25, C35, C36, C37 are awarded.
  • CBN (CN) The total number of bumps for each chip within the measurement field of view. For example,
  • BID (CN, CBN): The identification number of each bump in each chip within the measurement field of view. For example, in the case of identification number C23, B4, B5, B6, B7, B8, B9 Is given.
  • VY is the X coordinate position.
  • VY is the Y coordinate position.
  • the coordinate position BX, BY of bump 3 can be arbitrarily set as long as it is a position specifying bump 3.
  • it may be the coordinate position of the vertex of bump 3 or the coordinate position offset from the center of bump 3 by a predetermined distance.
  • the identification number (BID) of the bump 3 is a common number ⁇ ⁇ ⁇ 1, ⁇ ⁇ ⁇ 2 '' ⁇ for each chip 2, 2 ⁇ if all the chips 2 on the wafer 1 are of the same design. It is possible to use 14.
  • the bump 3 registered as the set value of the measurement visual field 4 only the bump 3 having the center of the bump 3 in the measurement visual field 4 is targeted. In the case of FIG. 5, only the bumps 3 shown as outlines are targeted.
  • the count J for counting up to the total number of chips CN in the measurement visual field 4 is initialized to 0 (step 106), and the count J is incremented by +1 (step 107). Then, it is determined whether or not the current incremented J has become larger than the total chip number CN (step 108). If the determination here is YES, the procedure proceeds to step 102 assuming that the measurement has been completed for all the chips 2 in the current measurement field of view, that is, that the bump inspection in the measurement field of view 4 has been completed. The measurement of the measurement visual field 4 is performed. However, if the determination is NO, it is determined that the bump inspection has not yet been completed for the entire measurement field of view 4, and the procedure moves to step 109 to perform measurement in the chip 2 indicated by the incremented J. Is done.
  • step 109 the count K, which counts up to the total number of bumps CBN (J) (6 in the case of chip 2 of C23) in the chip 2 which is currently incremented by J, is initialized to 0 (step 109).
  • the count number K is incremented by +1 (step 110).
  • the 3D measurement module 33 performs a height inspection on the specified coordinate position BX, BY of the bump 3. Specifically, as shown in FIG. 5, in the case of the bump 3 having the identification number B 13 of the chip 2 C having the identification number C 12, the entire bump 3 is provided with a window 7 as indicated by diagonal lines. By measuring the height of each part in the window 7 as described later, the height of the bump 3 in the window 7 is detected (step 113).
  • the inspection result is transferred to a predetermined storage location for each bump 3. That is, data to which the identification number C ID of the chip 2 subjected to the inspection and the identification number B ID of the bump 3 subjected to the inspection are added to the inspection result are transferred.
  • the transfer method only the data indicating the inspection result may be stored in a location where the identification numbers CID and BID are specified as addresses in advance, and the identification number CID, BID and the inspection result may be stored. May be transmitted via a communication network and stored in the memory of another processor connected to the network.
  • a set value for specifying the type of the bump 3 may be added in addition to the identification number B ID, the coordinate position BX, and the BY described above.
  • the inspection method (inspection algorithm) can be made different for each type of bump 3. Further, it may be determined whether or not the bump 3 should be inspected according to the content of the set value indicating the type of the bump 3.
  • the coordinate positions BX and BY of all the bumps 3 are stored as data for each measurement visual field 4, and the coordinate positions of the individual bumps 3 are stored based on the data.
  • the amount of such data becomes enormous as the total number of bumps 3 in the wafer 1 increases. For this reason, a memory having a large storage capacity must be used, which leads to a problem of high cost.
  • the data amount of the coordinate position BX, BY of the bump 3 can be reduced, and the data can be stored in a memory having a small storage capacity. Embodiments which can be stored and cost can be reduced will be described.
  • CN The total number of chips in the measurement visual field, and 9 is added.
  • CBN The total number of bumps for each chip within the measurement field of view. For example,
  • BID (CN, CBN): The identification number of each bump for each chip within the measurement field of view. For example, in the case of identification number C23, B4, B5, B6, B7, B8, B9 Granted.
  • the following chip coordinate position is set as a common setting value for all measurement fields of view 4.
  • the chip coordinate origin Oc is set, for example, in the upper left corner of each chip 2 as shown in FIG.
  • a chip coordinate system X—y having the origin at the chip coordinate origin O c is set as shown in FIG. 8, and the coordinate position bx, by of the bump 3 in the chip 2 is a coordinate on the chip coordinate axis x, y.
  • W and H in FIG. 8 indicate the external dimensions of one chip 2.
  • Such arithmetic processing is executed as step 115 instead of the processing of steps 112 in FIG.
  • FIG. 10 a description will be given of a processing procedure for determining whether a chip is good or defective for each chip 2.
  • a check flag F (C ID) for checking whether all the inspection result data has been acquired for each chip 2 is prepared.
  • step 114 of FIG. 4 the inspection result for each bump 3, that is, data H (CID, BID) indicating the height H of the bump 3 of the identification number BID in the chip 2 of the identification number CID is transferred.
  • the check flag F (CID) is decremented by one (step 202).
  • the code I for counting the identification number BID of the bump 3 is initialized to 15, the code BM indicating the calculated value of the height H of the bump 3 is initialized to 0 (step 205), and the code I is decremented by 1 (step 205). 206). Unless the code I has reached 0 (NO in step 207), the process of updating the content of BM with the current BM plus the current bump height data H (CID, I) (Step 208), the process of decrementing the code I by 1 (Step 206) is sequentially performed.
  • the total value BM of the heights of all the bumps 3 in the chip 2 is finally obtained, and the result obtained by dividing this by 14 is used as the new BM content. That is, the average value BM of the heights of the bumps 3 in the chip 2 is obtained (step 209).
  • the code I for counting the identification number B ID of the bump 3 is initialized to 15 again (step 210), and the code I is decremented by 11 (step 211). Then, as long as the code I does not reach 0 (decision N in step 212)
  • step 213 The process of determining whether the absolute value of the value obtained by subtracting 1) is smaller than a predetermined threshold value ⁇ (step 213), and the process of decrementing the code I by 11 (step 211) are sequentially performed. .
  • the chip 2 is judged as “good J”. It is determined that there is (YE S in step 212), and when the deviation between the height H of the bump 3 and the average value BM falls outside the predetermined specified range (soil BH) for any of the bumps 3 (No in step 213), the chip 2 is determined to be “defective”.
  • the chip determination processing may be performed without obtaining the average value of the bump height.
  • the code I for counting the identification number BID of the bump 3 is initialized to 15 (step 214), and the code I is decremented by 1 (step 2). 1 5).
  • the current height data H (CID, I) of the bump 3 is set to the lower limit BL of the predetermined range of the preset height. Is determined to be greater than or equal to and smaller than the current height data H (CID, I) of the bump 3 and the preset upper limit value BH of the prescribed range of height (step 217).
  • the process of decrementing I by 11 (step 215) is performed sequentially.
  • BM relative ratio
  • R the relative ratio of a certain reference value
  • the chip 2 is determined to be “non-defective” (step 216).
  • the chip 2 It is determined to be "defective.”
  • Such an algorithm for shortening the calculation processing time may be applied to the processing of the inspection of the bump 5 described later.
  • the subsequent determination on bump 3 may be terminated, and chip 2 may be determined to be defective.
  • the subsequent processing can be terminated at the time of the data transfer. is there. That is, when the inspection result data indicating that the extra bump 6 is present is transferred, the chip 2 with the identification number CID is determined to be defective, and the subsequent processing for the chip 2 is terminated, and the next chip Wait for the data transfer for step 2.
  • the set value data such as CID and CBN prepared in advance before the inspection can be obtained based on the CAD data of the wafer 1.
  • a square window 7 centered on the center coordinate position of the bump 3 is set to surround this bump 3. .
  • the window 7 is set so as to include not only the entire bump 3 but also the surface of the IC chip near the bump 3, even if there is some error in the XY coordinate position of the bump 3, The whole can be reliably taken into the window 7, and the inspection can be performed effectively and accurately.
  • the diameter of a circular bump 3 as shown in Fig. 6 (a) is 100 ⁇ !
  • a window ⁇ 7 having a size of 200 / ⁇ 200 ⁇ ⁇ (length x width) is set.
  • the window 7 when the window 7 is set, if the window 7 protrudes from the measurement visual field 4 of the 3D measurement module 3 3, that is, the identification number in the chip 2 of the identification number C 12 in FIG.
  • the window 7 is set to the bump 3 of, the vertical position data cannot be acquired for a part of the window 7 depending on the 3D measurement module 33. Therefore, it is desirable that the inspection of the bump 3 having the identification number ⁇ ⁇ ⁇ ⁇ 13 should not be performed, since the histogram described later cannot be effectively created. However, if the pressure is left as it is, the inspection of the height of the bump 3 may be omitted, which is not preferable.
  • the 3D measurement module 33 acquires the vertical position data of each part in the window 7, and the obtained vertical position data is represented as a histogram as shown in FIG.
  • the maximum value MX (the highest position) and the minimum value MN (the lowest position) of the vertical position data are obtained from this histogram.
  • the maximum value MX means the absolute height of the bump 3.
  • the absolute height C of the surface of the IC chip 2 is determined as follows.
  • the frequency between the maximum value MX and the minimum value MN (MX-MN) / 2 to the minimum value MN is searched, and the vertical position data that gives the maximum frequency is the absolute height of the surface of the IC chip 2.
  • the frequency from the intermediate value of the maximum value MX and the minimum value MN (MX—MN) / 2 to the minimum value MN is searched, and the average value of the vertical position data in that range is obtained by the IC chip 2.
  • Absolute height C of the surface the frequency between the maximum value MX and the minimum value MN (MX-MN) / 2 to the minimum value MN is searched for because there are irregularities in the IC pattern. This is for consideration and consideration.
  • the deviation (MX-C) of these absolute position data is defined as the (relative) height H of the bump 3 from the surface of the IC chip 2.
  • Fig. 12 shows the case where the wafer 1 is inclined in the vertical direction as shown in Fig. 23 and the window 7 is set relatively large with respect to the area of the bump 3 (in the window 7, the IC chip 2 has a large proportion of the surface).
  • the peak indicating the frequency of the surface of the IC chip 2 is broad as shown by the broken line, and is uniquely determined by the same arithmetic processing as in the case of FIG. Determining the height H of the bump 3 at the same time results in inaccuracy. That is, as described above, the height of the surface of the IC chip 2 differs between one end of the window 7 and the other end due to the inclination of the wafer 1. Therefore, in order to reduce the influence of the inclination, the window 7 may be set narrow.
  • the window 7 is set to be relatively small with respect to the area of the bump 3 (the window 7 is set so that the ratio of the surface of the IC chip 2 occupies a small amount)
  • the window shown in FIG. Broad histogram showing IC chip surface The peak is changed to a peak, as shown in Fig. 11.
  • the height H of the bump 3 from the chip surface can be accurately measured even if the IC pattern has irregularities or the wafer 1 is inclined.
  • FIGS. 13 (a), (b), (c) and (d) show processing procedures for obtaining the minimum value MN, the maximum value MX, the chip surface height C, and the height H of the bump 3.
  • I is a code indicating the size of the vertical position data, and is set in the range of 1 to 100.
  • H IST (I) indicates the frequency of each vertical position for each size I (see Fig. 11).
  • the vertical position data I is initialized to 0 (step 301), and the size I of the vertical position is incremented by +1 (step 302).
  • the frequency HI ST (I) corresponding to the current vertical position size I is 0 (NO in step 303)
  • the vertical position size I is incremented by +1;
  • the vertical position size I is set to the minimum value MN (step 304).
  • the size I of the vertical position is initialized to 101 (step 305), and the size I of the vertical position is decremented by -1 (step 306).
  • the frequency HIST (I) corresponding to the size I of the current vertical position is 0 (NO in step 307), the vertical position data I is decremented by 11, but When the frequency HI ST (I) corresponding to the size I is no longer 0 (decision YE S in step 307), the size I of the vertical position is set to the maximum value MX (step 308).
  • the magnitude I of the vertical position is initialized to the minimum value MN, and P indicating the large frequency is initialized to 0 (step 309), and the magnitude I of the vertical position is incremented by +1 (step 310).
  • step 311 it is determined whether or not the magnitude of the current vertical position is greater than the intermediate value between the maximum value MX and the minimum value MN (MX + MN) / 2 (step 31 1).
  • the process is determined to be outside the range for searching for the maximum value of frequency, and the processing is terminated. Otherwise, the process is in the range for searching for the maximum value of frequency, so the procedure moves to the next step 312.
  • step 312 it is determined whether the current maximum frequency P is greater than the frequency HI ST (I) corresponding to the current vertical position size I (step 312). If so, the content of the maximum frequency P is updated to the current frequency HI ST (I), and the chip surface height C is used as the current vertical position data I (step 313). If YES, the procedure shifts to step 310 without performing the update as in step 313, and the same processing is repeated.
  • step 311 Eventually, the determination in step 311 becomes YES, and when the frequency exceeds the range for searching for the maximum value of the frequency, the content of P finally updated in step 313 becomes the maximum frequency and the content of the finally updated C Is the chip surface height at which the maximum frequency is obtained.
  • a frequency H 1 ST (I) corresponding to the magnitude I of each vertical position S is created (step 314), and the minimum is determined as described above.
  • the value MN is calculated (step 315), the maximum value MX is calculated (step 316), and the height C of the chip surface is calculated (step 317). Then, as the value obtained by subtracting the chip surface height C from the maximum value MX, the height H of the bump 3 of the identification number B ID in the chip 2 of the identification number C ID is obtained (step 318).
  • the maximum value M is calculated from the intermediate value (MX-MN) / 2 between the maximum value MX and the minimum value MN.
  • the frequency is counted in the range up to X, and the cumulative frequency S in this range is obtained.
  • the frequencies in the range from the value (MX-X) (> (MX-MN) / 2) smaller than the maximum value MX by a predetermined amount X to the maximum value MX are counted, and the cumulative frequency SX in this range is calculated.
  • the ratio SX / S of these cumulative frequencies is evaluated with a predetermined evaluation value R, and the presence or absence of the bump 5 is determined. That is, as shown in FIG. 24, the bump 3 having the bump 5 has a ratio SX / S smaller than the evaluation value R. Conversely, bump 3 without bump 5 has a ratio SX / S equal to or greater than evaluation value R.
  • the evaluation value R can be statistically determined from the ratio SX / S obtained from the histogram of the normal bump 3 without the bump 5 as shown in FIG.
  • FIGS. 16 (a), (b) and (c) are flowcharts showing the processing procedure of the cumulative error SX, the cumulative error S, and the bump test. Hereinafter, these will be described.
  • the magnitude I of the vertical position is initialized to the maximum value MX, SX indicating the cumulative frequency is initialized to 0 (step 401), and the magnitude I of the vertical position is decremented by -1 (step 402). ).
  • step 403 it is determined whether or not the current vertical position size I has become smaller than (MX-X) (step 403). If the determination is YES, it is determined that the range exceeds the range for obtaining the cumulative frequency, and the processing is performed. , But otherwise the frequency is in the range to be accumulated, so the procedure moves to the next step 404.
  • step 404 the content of the maximum frequency SX is updated as the current maximum frequency SX plus the frequency H I ST (I) corresponding to the current vertical position size I (step 404). This process is repeatedly executed while sequentially decrementing I as long as the determination in step 403 is NO.
  • step 403 Eventually, the determination in step 403 becomes YES, and when the maximum frequency is exceeded, the content of SX updated in step 404 is finally obtained as the cumulative frequency.
  • the cumulative frequency S X is calculated (step 409), and the cumulative frequency S is calculated (step 410).
  • the presence or absence of bump 5 is determined for bump 3 of identification number BID in chip 2 of identification number CID based on whether the ratio SX / S is smaller than evaluation value R (step 41). 1).
  • the data indicating the height H of bump 3 and the presence or absence of bump 5 obtained as described above are transferred as inspection result data together with the identification number CID of the chip 2 and the identification number BID of bump 3. (Steps 1 1 4).
  • FIG. 17 shows how each window 7 is set for one chip 2. As described above, when determining the height H of bump 3, the histogram was created assuming that the vertical position data in window 7 was valid, but in the inspection of extra bump 6, the data in window 7 This results in an error in the inspection of bump 6.
  • the window 7 is masked as shown by hatching, and a histogram is created based on the vertical position data of only the other portions.
  • the chip 2 may be divided into small areas so that the peaks indicating the chip surface have a certain peak as shown in FIG. 11, and a histogram may be created for each of the divided regions. For example, as shown in FIG. 18, it is conceivable to divide the entire chip 4 into four and create a histogram for each divided region 8.
  • FIG. 19 (a) shows a histogram for region 8 in FIG.
  • the 3D measurement module 33 obtains the vertical position data of each part in the area 8, and the obtained vertical position data is represented as a histogram as shown in FIG. 19 (a). Therefore, the maximum value MX (the highest position) and the minimum value MN (the lowest position) of the vertical position data are obtained from this histogram.
  • the maximum value MX means the absolute height of the provisional extra bump 6.
  • the absolute height C of the surface of the IC chip 2 is determined as follows.
  • the frequency from the maximum value MX to the minimum value MN is searched, and the vertical position data at which the maximum frequency is obtained is determined as the absolute height C of the surface of the IC chip 2.
  • the frequency from the maximum value MX to the minimum value MN is searched, and the average value of the vertical position data in that range is taken as the absolute height of the surface of the IC chip 2.
  • the deviation (MX-C) of these absolute position data is assumed to be the (relative) height H of the temporary extra bump bump 6 from the surface of the IC chip 2.
  • this H is compared with a preset value T. If the height H is equal to or less than T, it is determined that there is no extra bump 6, and if the height H is larger than T, the extra bump 6 is It is determined that there is.
  • FIGS. 19 (b) and (c) are flowcharts showing the processing procedure for chip surface height C and extra bump inspection. .
  • the maximum value MX is calculated in the same manner as in FIG. 13 (b) (step 506), and the height C of the chip surface is calculated as shown in FIG. 19 (b) (step 507) . Then, the presence or absence of the extra bump 6 is determined for the area 8 in the chip 2 of the identification number C ID depending on whether MX-C is smaller than the set value T (step 508). This process is performed in the same manner for the remaining regions 8, 8, and 8 of the chip 2, and based on the determination results for all four regions, whether or not there is finally the extra bump 6 in the chip 2 Is determined.
  • the data indicating the presence or absence of the extra bump 6 obtained as described above is transferred as inspection result data together with the identification number CID of the chip 2 (step 114).
  • an embodiment capable of inspecting bumps on a wafer at high speed will be described.
  • the three-dimensional shape measurement apparatus to which the confocal optical system disclosed in this application is applied can be used as the 3D measurement module 33.
  • the 3D measurement module 33 in FIG. 20 is provided with a Z-axis movement mechanism for moving the 3D measurement module 33 in the Z-axis direction.
  • the Z-axis movement mechanism moves the 3D measurement module 33 in the Z-axis direction. It is assumed that the wafer 1 is moved relative to the 3D measurement module 33 by a predetermined distance in the vertical direction.
  • the wafer 1 is moved in the Z direction, and the movement position at which the amount of light received by the light receiving unit of the 3D measurement module 33 becomes the maximum is the height of the object to be measured (the bump 3 on the wafer 1) at the light receiving point. Position.
  • Such processing is performed for each light receiving unit arranged in an array.
  • the measurement field 4 is switched and the same processing is executed.
  • each movement position O v, O v, O v... are set (see Fig. 3).
  • the measurement field of view 4 is sequentially moved to each of the set plane movement positions in the order of VI, V2, V3, etc., and the wafer 1 is moved relative to the 3D measurement module 33 for each plane movement position.
  • the predetermined distance in the Z direction the height H of the bump 3 in the measurement visual field 4 is measured.
  • Fig. 26 is a diagram showing the movement of each measurement field of view VI, V2, V3 --- V-1, VN, ViV + 1 ... in the plane direction, and the movement of each measurement field of view in the vertical Z-axis direction.
  • FIG. 27 shows a timing chart thereof, which corresponds to FIGS. 30 and 31 of the prior art, respectively.
  • the Z-axis movement mechanism drives the 3D measurement module 33 so that the movement direction in the Z direction is sequentially reversed in each of the measurement visual fields ViV-l, ViV, and ViV + 1.
  • the height H of the bump 3 is measured by moving in the descending direction d, and in the next measurement visual field ViV, the measurement is performed by moving in the ascending direction d 'opposite to the previous one.
  • the next measurement field of view VN + 1 measurement is performed by moving in the downward direction d opposite to the previous one (see arrows d and d 'in Fig. 26).
  • the measurement of the height H of the bump 3 is performed by setting the window 7 as described above.
  • Fig. 28 shows a cross-sectional view of the bump 3.
  • the 3D measurement module 33 measures the distance Z1 from the origin of the Z-axis movement mechanism (Z stage) to the surface of the chip 2. The distance Z 2 to the vertex of 3 is measured.
  • the height H of the bump 3 in the window 7 is measured as these deviations Z 1 —Z 2.
  • the bump height H is determined as the relative height Zl—Z2 for each window 7 for the following reason. That is, if the position of the wafer 1 is different (if the window setting position is different), the absolute height of the chip surface is different. For this reason, if the height of the bump 3 is determined as an absolute height with respect to one reference, an error occurs in the bump height. This is to avoid this.
  • measurement is performed while sequentially reversing the movement direction in the vertical Z-axis direction, and when moving to the next measurement visual field (arrow c in FIG. 27), Only the movement in the plane direction is sufficient, and the movement in the vertical Z-axis direction only for returning the 3D measurement module 33 to the initial position in the Z direction as in the conventional case is not performed.
  • one view cycle time is the time during which the 3D measurement module 33 is moved in the Z-axis direction for height measurement and the time when the measurement view field 4 is moved in the plane direction.
  • the cycle time for one field of view is reduced accordingly, and the throughput of the device can be dramatically improved.
  • the embodiment of increasing the measurement speed by reciprocating the Z-axis moving mechanism in this way can be applied to any measurement target without being limited to the measurement of the bump.
  • FIG. 29 shows an overlapping mode for four adjacent measurement fields of view A, B, C, and D.
  • window 7 is set such that approximately 1/20 of the length of one side of the measurement visual field is the length of one side of window 7.
  • the overlap area (which is indicated by oblique lines) is set to be larger than the size of the force window 7.
  • the entire window 7 including the bump 3 whose height is to be measured enters the at least one measurement field of view ⁇ ⁇ ⁇ of both adjacent measurement fields, and the measurement of one window 7 is performed by at least one of the two measurement fields. This will be done within the measurement field of view. For example, as shown in window 7 ⁇ in Fig.
  • the inspection of the entire window 7 can be reliably performed in at least one measurement visual field. As a result, the inspection of the bump 3 can be prevented from being missed.
  • the Z-axis movement mechanism that drives the 3D measurement module 33 has hysteresis between the movement in the ascending direction and the movement in the descending direction. Therefore, if there is no overlap between the measurement visual fields, a height measurement error occurs between the measurement visual fields A and B.
  • the measurement fields A and B are overlapped, and the measurement of the entire window 7 is completed in at least one of the fields of view.
  • the measurement of the height of the bump 3 included in 7 is not affected by the hysteresis of the reciprocating movement, and the measurement can be performed without error.
  • the present invention can be applied to inspection of the appearance of protrusions other than bump electrodes on a wafer.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Processing (AREA)

Abstract

A device corrects a positioning error of a wafer with accuracy in a short period of time and performs visual inspection of bumps with accuracy at high speed. In the device, a wafer is positioned in coordinate axes of a predetermined coordinate system. A coordinate position on the coordinate system, to which a measuring visual field should move, is set so that all the bumps on the wafer is imaged by visual means. When the wafer is positioned, a rotating dislocation of the wafer with an origin of coordinates of the coordinate system as the center of rotation is detected. Respective set coordinate positions of the measuring visual field are subjected to rotating conversion as much as the detected rotating dislocation in the coordinate system and are corrected. Further, relative positions and attitudes of the wafer and the visual means are changed so that the measuring visual field is successively moved to the respective corrected coordinate positions.

Description

明細書 ウェハバンプの外観検査装置および高さ計測装置  Description Appearance inspection device and height measurement device for wafer bump
技術分野 Technical field
本発明は、 ウェハ上のバンプ電極等の突起物を外観検査する装置に関する。 ま た、 本発明は、 上記バンプ等の高さを計測する装置に関する。 背景技術  The present invention relates to an apparatus for visually inspecting a projection such as a bump electrode on a wafer. Further, the present invention relates to an apparatus for measuring the height of the bump or the like. Background art
ウェハ上のバンプ電極等の突起物の外観を検査する装置として、 特願平 6— 1 6 7 3 2 2号に開示されたものがある。  As an apparatus for inspecting the appearance of a projection such as a bump electrode on a wafer, there is one disclosed in Japanese Patent Application No. 6-167032.
この装置では、 図 2 0に示すように、 2 D計測モジュール 3 1、 ウェハ移動ス テージ 3 2、 3 D計測モジュール 3 3、 および計測制御部 3 4から構成されてお り、 2 D計測モジュール 3 1とウェハ移動ステージ 3 2によりウェハの位置決め を行い、 共焦点光学系である 3 D計測モジュール 3 3によりバンプ形状の 3次元 データを取得し、 該 3次元データからバンプのピーク高さを推定し、 バンプの高 さを検査するようにしている。  As shown in Fig. 20, this device consists of a 2D measurement module 31, a wafer movement stage 32, a 3D measurement module 33, and a measurement controller 34. 3 Position the wafer using 1 and the wafer moving stage 3 2, acquire 3D data of the bump shape using the 3D measurement module 3 3, which is a confocal optical system, and estimate the peak height of the bump from the 3D data. Then, the height of the bump is inspected.
ここで、 検査の対象となるウェハ 1は、 I Cチップ 2 a、 2 b…の集合体であ り (図 2 1参照) 、 それぞれのチップには所定の位置にバンプ電極 3 (図 2 2参 照) が形成されている。 そして、 3 D計測モジュール 3 3は、 ウェハ 1の表面を、 —定範囲の計測視野 4毎に取り込むようにしている。  Here, the wafer 1 to be inspected is an aggregate of IC chips 2a, 2b ... (see FIG. 21), and each chip has a bump electrode 3 (see FIG. 22) at a predetermined position. ) Is formed. Then, the 3D measurement module 33 captures the surface of the wafer 1 every measurement field of view 4 in a fixed range.
図 2 2 ( a ) 〜 (d ) は、 計測視野 4と各チップ 2との関係を示しており、 1 つの計測視野 4内に少なくとも 1つのチップ全体と、 2以上のチップの一部が存 在している。 ウェハ 1全部のバンプ 3について検査するためには、 3 D計測モジ ユール 3 3の計測視野 4がウェハ 1の全領域をカバ一するように移動させる必要 力 ある。  Figures 22 (a) to (d) show the relationship between the measurement field of view 4 and each chip 2, and at least one chip and a part of two or more chips exist in one measurement field of view 4. Are there. In order to inspect all the bumps 3 on the wafer 1, it is necessary to move the measurement visual field 4 of the 3D measurement module 3 3 so as to cover the entire area of the wafer 1.
こうした従来のバンプ検査装置には、 つぎのような問題があった。  Such a conventional bump inspection apparatus has the following problems.
( 1 ) 処理のフローに関して  (1) Regarding the processing flow
( a ) ウェハの位置決めの誤差とバンプ位置の特定 バンプ 3の高さを検査するためには、 バンプ 3の高さピーク近傍の 3次元デ一 タを特定し、 そのデータからバンプ 3の高さを検査する必要がある。 (a) Wafer positioning error and bump position identification In order to inspect the height of the bump 3, it is necessary to specify three-dimensional data near the height peak of the bump 3, and inspect the height of the bump 3 from the data.
このため、 3 D計測モジュール 3 3の 3次元計測データの中からバンプ 3の X Y座標位置を何らかの方法で特定しなければならない。 ウェハ 1上のバンプ 3の 位置を特定するためには、 3 D計測モジュール 3 3の計測視野 4の方向に合わせ てウェハ 1の位置、 とりわけ姿勢 Θを修正する必要がある。  Therefore, the XY coordinate position of the bump 3 must be specified in some way from the three-dimensional measurement data of the 3D measurement module 33. In order to specify the position of the bump 3 on the wafer 1, it is necessary to correct the position of the wafer 1, especially the posture 合 わ せ, in accordance with the direction of the measurement visual field 4 of the 3D measurement module 33.
この場合、 図 2 1に示すように、 2 D計測モジュール 3 1によってウェハ 1上 の特徴点、 例えば位置合せマーク M a、 M bの位置を検出することによって、 ゥ エア 1の Θの方向を求め、 それを 3 D計測モジュール 3 3の視野に合う方向にゥ ェハ移動ステージ 3 2 ( 0ステージ) を回動することによってウェア 1の姿勢の 修正を行うようにしていた。 これによつて X—Y座標系上のバンプ位置を特定し て検査することができる。  In this case, as shown in FIG. 21, the 2D measurement module 31 detects feature points on the wafer 1, for example, the positions of the alignment marks M a and M b, so that the Θ direction of the air 1 can be changed. Then, the attitude of the wear 1 is corrected by rotating the wafer moving stage 32 (0 stage) in a direction matching the field of view of the 3D measurement module 33. As a result, the bump position on the XY coordinate system can be specified and inspected.
しかし、 ウェハ移動ステージ 3 2の 0ステージの回動の分解能には限界があり、 完全な姿勢の修正はできず、 図 2 1に示すような回転誤差 Δ Θが生じてしまう。 つまり、 座標原点 O付近のチップ 2 aでは位置誤差は生じないが、 座標原点 Oか ら離間したチップ 2 bでは位置誤差 (Δ Χ、 Δ Υ ) が生じてしまう。  However, the resolution of the rotation of the 0 stage of the wafer moving stage 32 is limited, and the attitude cannot be completely corrected, and a rotation error Δ Θ as shown in FIG. 21 occurs. That is, a position error does not occur at the chip 2a near the coordinate origin O, but a position error (ΔΔ, ΔΥ) occurs at the chip 2b separated from the coordinate origin O.
位置誤差 (Δ Χ、 Δ Υ) が座標原点 Οから離間したチップほど大きくなるとい うことは、 ウェハサイズが大きくなるほど位置誤差は大きなものとなるというこ とを意味する。  The fact that the position error (Δ Χ, Δ Υ) increases as the distance between the chip and the coordinate origin Ο increases means that as the wafer size increases, the position error increases.
こうした問題点を解決するために、 従来は、 X、 Υ座標位置がそれぞれ異なる バンプ 3毎に測定したデータを、 上記位置誤差 (Δ Χ、 Δ Υ ) 分だけバンプ座標 位置を補正していたため、 補正処理に長時間を要することになつていた。  Conventionally, in order to solve these problems, the data measured for each bump 3 with different X and Υ coordinate positions was corrected by the position error (Δ Χ, Δ Υ) for the bump coordinate position. The correction process takes a long time.
( b ) チップごとの判定  (b) Judgment for each chip
バンプの高さの検査結果はチップ毎にまとめる必要がある。 というのは、 最終 的に良品であるか否かの判別は、 チップ単位で行われるからである。  Inspection results of bump height need to be summarized for each chip. This is because the final decision as to whether the product is good or not is made on a chip-by-chip basis.
従来は、 一つのチップ 2の中にあるバンプ 3全てが規定の高さ範囲内にある場 合のみ、 そのチップ 2は 「良品」 と判別するようにしていた。 しかし、 こうした 判別基準によるときは、 一のチップ 2内のうちの一つのバンプ 3でも上記規定高 さ範囲外にある場合には、 たとえ他の全てのバンプ 3が規定高さ範囲内にあった としても、 「不良」 と判断してしまうことになる。 Conventionally, the chip 2 is determined to be “good” only when all the bumps 3 in one chip 2 are within the specified height range. However, according to these criteria, if even one bump 3 in one chip 2 is out of the specified height range, all other bumps 3 are in the specified height range. Would be judged as "bad".
し力 し、 規定高さ範囲外のバンプ 3が存在したとしても、 その数が少ないチッ プ 2の場合には、 チップ実装時に全てのバンプ 3において十分な電気的接触が得 られることが多く、 決して 「不良」 ではない。 よって、 チップ単位の検査を正確 に行うことができる判定方法が望まれる。  However, even if bumps 3 are out of the specified height range, chip 2 with a small number of bumps 3 will often have sufficient electrical contact with all bumps 3 during chip mounting, Not bad. Therefore, a determination method that can accurately perform a chip-by-chip test is desired.
( 2 ) バンプ検査方法に関して  (2) Regarding bump inspection method
( a ) I Cチップ表面の高さの推定  (a) Estimation of IC chip surface height
図 2 3は、 I Cチップ 2の表面の高低の様子を示すチップ側面図であり、 同図 に示すように I Cチップ 2の表面は I Cパターンによる凹凸があり、 けっして平 坦なものではない。 したがって、 I Cチップ 2の表面に形成されたバンプ 3の、 I Cチップ表面からの高さを計測する場合、 どこを基準として I Cチップ表面と するのか一意に決定することはできなかった。  FIG. 23 is a chip side view showing the level of the surface of the IC chip 2. As shown in FIG. 23, the surface of the IC chip 2 has irregularities due to the IC pattern, and is not flat. Therefore, when measuring the height of the bump 3 formed on the surface of the IC chip 2 from the surface of the IC chip, it was not possible to uniquely determine where the reference is made to be the surface of the IC chip.
また、 ウェハ 1が鉛直 Z方向に傾斜している場合には、 I Cチップ 2の一方の 端と他方の端とでは、 I Cチップ 2表面の絶対高さが同一ではなくなるので、 ど の高さを I Cチップ 2の表面高さとするのかは、 一意に決定することはできなか つた。  Also, when the wafer 1 is inclined in the vertical Z direction, the absolute height of the surface of the IC chip 2 is not the same at one end of the IC chip 2 and the other end. It was not possible to uniquely determine whether to use the surface height of the IC chip 2.
このため、 I Cチップ 2上のバンプ 3の高さが、 I Cチップ 2表面の高さの設 定高さいかんによって左右されることになり、 バンプ 3の高さの計測を正確に行 うことができなかった。  For this reason, the height of the bump 3 on the IC chip 2 depends on the set height of the surface of the IC chip 2, which makes it possible to accurately measure the height of the bump 3. could not.
( b ) コブ検査  (b) Cobb inspection
バンプ 3の不良品の中には、 図 2 4に示すように 「コブ」 と呼ばれるバンプ 3 上に形成される欠陥があり、 このコブ 5の存在により I Cチップ実装の際には十 分な電気的接触が得られない可能性が生じる。 このため、 このコブ 5を検査の際 に正確に検出し、 「不良」 であると判定する必要がある。  Among the defective bumps 3, there are defects called bumps that are formed on bumps 3 as shown in Fig. 24. Due to the presence of bumps 5, sufficient electricity is generated when mounting the IC chip. There is a possibility that no contact can be obtained. Therefore, it is necessary to accurately detect the bump 5 at the time of the inspection and determine that the bump 5 is “defective”.
( c ) エキストラバンプ (異物) 検査  (c) Extra bump (foreign matter) inspection
バンプ 3の不良品の中には、 図 2 5に示されるように、 エキストラバンプ 6と 呼ばれる欠陥があり、 これも検査の際に検出し 「不良」 と判定する必要がある。 エキストラバンプ (異物) とは、 本来バンプ 3が形成されない I Cチップ 2の 表面部分に、 バンプ 3のカスのような突起ができたものである。 し力 し、 このエキス トラバンプ 6の検出についても、 I Cチップ 2表面の高さ の設定高さいかんによって左右されることになり、 エキストラバンプ 6の検出を 正確に行うことができなかった。 As shown in Fig. 25, some of the defective bumps 3 have a defect called extra bump 6, which must also be detected at the time of inspection and judged as "defective". The extra bump (foreign matter) is a bump-like projection formed on the surface of the IC chip 2 where the bump 3 is not originally formed. However, the detection of the extra bump 6 also depends on the set height of the surface of the IC chip 2, and the detection of the extra bump 6 could not be performed accurately.
さて、 また、 上記ウェハ上のバンプの高さを計測する装置として、 本出願人に 係る特許出願 (特顧平 6— 1 0 2 9 3 1号) に開示されたものがあり、 これは既 に公知となっている。  An apparatus for measuring the height of bumps on a wafer is disclosed in a patent application filed by the present applicant (Japanese Patent Application No. Hei 6-109293). It is publicly known.
すなわち、 この出願には共焦点光学系を応用した 3次元形状計測装置が開示さ れている。  That is, this application discloses a three-dimensional shape measuring apparatus to which a confocal optical system is applied.
この種の 3次元形状計測装置では、 共焦点光学系全体または対物レンズのみ、 または平面状のワーク (たとえばウェハ) が鉛直方向に移動される。 つまり、 図 2 0において 3 D計測モジュール 3 3を当該形状計測装置とみた場合に、 この 3 D計測モジュール 3 3を Z方向に移動させる力 移動ステージ 3 2を Z方向に移 動させることによって、 ワークを鉛直方向に所定距離だけ 3 D計測モジュール 3 3に対し相対的に移動させるわけである。  In this type of three-dimensional shape measurement device, the entire confocal optical system, only the objective lens, or a planar workpiece (eg, wafer) is moved in the vertical direction. In other words, when the 3D measurement module 33 is regarded as the shape measuring device in FIG. 20, by moving the 3D measurement module 33 in the Z direction, the force moving stage 32 is moved in the Z direction. The work is moved relatively to the 3D measurement module 33 by a predetermined distance in the vertical direction.
こうして、 ワークを Z方向に移動させながら、 受光部で感知する受光量が最大 となる移動位置をその受光点における被計測物体の高さ位置とするのである。 このような処理を、 アレイ状に配列された各受光部に関して実行する。  In this way, while moving the workpiece in the Z direction, the moving position where the amount of light received by the light receiving unit is maximum is set as the height position of the measured object at the light receiving point. Such processing is executed for each light receiving unit arranged in an array.
3 D計測モジュール 3 3の 1計測視野で被計測物体全体を計測できない場合は、 計測視野を切り換えて同様の処理を実行する。  If the entire object to be measured cannot be measured in one measurement field of view of the 3D measurement module 33, the same processing is executed by switching the measurement field of view.
つまり、 ワークの上面すベての高さが 3 D計測モジュール 3 3で計測されるよ うに、 当該 3 D計測モジュール 3 3の計測視野が移動すべき平面上の各移動位置 が設定される。 そして、 この設定された各平面移動位置に計測視野を順次移動さ せ、 各平面移動位置ごとに、 ワークを、 3 D計測モジュール 3 3に対して相対的 に、 上記所定距離だけ Z方向に移動させることにより、 当該計測視野内における ワーク各部の高さの計測を行わせるのである。  That is, each movement position on the plane to which the measurement visual field of the 3D measurement module 33 should move is set so that the height of the entire upper surface of the work is measured by the 3D measurement module 33. Then, the measurement visual field is sequentially moved to each of the set plane movement positions, and the work is moved in the Z direction by the above-mentioned predetermined distance relative to the 3D measurement module 33 at each plane movement position. By doing so, the height of each part of the work within the measurement visual field is measured.
しかし、 こうした計測視野内における鉛直 Z方向の移動、 計測視野の平面方向 の移動を交互に行った場合には、 つぎのような問題があった。  However, when the movement in the vertical Z direction and the movement in the plane direction of the measurement visual field are alternately performed within the measurement visual field, the following problems occur.
図 3 0は、 こうした移動の様子を概念的に示す図であり、 図 3 1はそのタイム チャートを示している。 なお、 ここでは、 ワークの鉛直方向の移動は、 3 D計測 モジュール 3 3の Z軸移動機構 (Zステージ) を移動させることによって行うも のとする。 FIG. 30 is a diagram conceptually showing the state of such movement, and FIG. 31 shows a time chart thereof. Here, the vertical movement of the workpiece is measured by 3D measurement. It is assumed to be performed by moving the Z axis movement mechanism (Z stage) of module 33.
これら図に示すように、 従来は各計測視野 N— 1 、 N、 N + 1における Z方向 の移動を常に一定方向 (例えば下降方向) に設定して計測を行うようにしていた ため (図 3 0の矢印 a参照) 、 つぎの計測視野に移動する際 (図 3 0の矢印 c ) には必ず上記一定方向 aとは反対の方向 b (上昇方向) に、 Zステージを移動さ せて、 3 D計測モジュール 3 3を初期位置まで戻す必要があった。  As shown in these figures, in the past, the movement in the Z direction in each measurement field of view N-1, N, and N + 1 was always set to a fixed direction (for example, the downward direction) and measurement was performed (Fig. 3 When moving to the next measurement visual field (arrow c in Fig. 30), be sure to move the Z stage in the direction b (ascending direction) opposite to the fixed direction a when moving to the next measurement field of view. It was necessary to return the 3D measurement module 33 to the initial position.
ここで、 一般に、 計測視野の移動のための時間は、 Z位置を初期位置まで戻し ている時間よりも短い。 このため、 図 3 1に示すように、 つぎの計測視野までの 移動を終了させても、 Z位置を初期位置まで戻すことはできず、 完全に Z位置ま で Zステージを戻しきるまでの時間は、 本来の計測にも計測視野の移動に使われ ない無駄な時間となっていた。 このため 1視野のサイクルタイムがその分大きく なり、 装置のスループット低下を招来することになつていた。  Here, in general, the time for moving the measurement visual field is shorter than the time for returning the Z position to the initial position. Therefore, as shown in Fig. 31, even if the movement to the next measurement field of view is completed, the Z position cannot be returned to the initial position, and the time required to completely return the Z stage to the Z position is reached. Was wasted time that was not used for the original measurement and for moving the measurement field of view. As a result, the cycle time for one field of view was increased by that much, and the throughput of the device was reduced.
なお、 Zステージを初期位置まで戻す速度を高速化して、 むだ時間の短縮を図 ることも考えられるが、 こうした場合には、 高速化に伴い振動等の悪影礬が発生 してしまい、 これを採用することはできないこととなっていた。 発明の開示  It is conceivable to increase the speed at which the Z stage is returned to the initial position to reduce the dead time. Could not be adopted. Disclosure of the invention
本発明はこうした実状に鑑みてなされたものであり、 以上のような問題点をす ベて除去し、 ウェハの位置決め誤差を精度よく、 かつ短時間で補正し、 バンプ外 観検査を精度よく、 力つ高速に行うことを目的とする。  The present invention has been made in view of such a situation, and eliminates all of the above problems, accurately and quickly corrects a wafer positioning error, and accurately performs a bump appearance inspection. The purpose is to perform fast and fast.
この目的を達成するために、 本発明の第 1発明では、 ウェハと、 このウェハ上 のバンプを撮像する視覚手段との相対位置 .姿勢を、 相対位置 .姿勢変化手段に よって変化させながら、 前記ウェハ上のバンプの外観の検査を行うウェハバンプ の外観検査装置において、  In order to achieve this object, in the first invention of the present invention, the relative position and attitude of the wafer and the visual means for imaging the bumps on the wafer are changed by the relative position and attitude changing means. In a wafer bump appearance inspection device that inspects the appearance of bumps on a wafer,
前記相対位置 '姿勢変化手段によって、 前記ウェハを、 所定の座標系の座標軸 に位置決めする位置決め手段と、  Positioning means for positioning the wafer on a coordinate axis of a predetermined coordinate system by the relative position / posture changing means;
前記視筻手段は、 複数のバンプを一度に撮像することができる計測視野を有し ており、 前記ウェハ上のすべてのバンプが前記視覚手段で撮像されるように、 前 記計測視野が移動すべき前記座標系上の座標位置を設定する設定手段と、 前記位置決め手段によって前記ウェハが位置決めされた際に、 前記座標系上の 座標原点を回転中心とする前記ウェハの回転位置ずれを検出する検出手段と、 前記設定手段で設定された前記視覚手段の計測視野の各設定座標位置を、 前記 検出手段で検出された回転位置ずれ分だけ前記座標系上で回転変換させることに よって補正する補正手段と、 The viewing means has a measurement field of view capable of imaging a plurality of bumps at one time, and is arranged so that all the bumps on the wafer are imaged by the viewing means. Setting means for setting a coordinate position on the coordinate system to which the measurement visual field is to be moved; and when the wafer is positioned by the positioning means, rotation of the wafer about a coordinate origin on the coordinate system as a rotation center Detecting means for detecting a positional shift; and rotating each set coordinate position of the measurement field of view of the visual means set by the setting means on the coordinate system by the rotational position shift detected by the detecting means. Correction means for correcting
前記補正手段で補正された各補正座標位置に、 前記視党手段の計測視野が順次 移動されるように、 前記相対位置 ·姿勢変化手段を駆動する手段と  Means for driving the relative position / posture changing means so that the measurement field of view of the visual means is sequentially moved to each corrected coordinate position corrected by the correction means.
を具えるようにしている。  It is equipped with.
また、 上記第 1発明の別の発明では、 上記構成に加えて、  Further, in another invention of the first invention, in addition to the above configuration,
前記計測視野内に含まれる各バンプの前記座標系上の座標位置を、 予め設定す るバンプ座標位置設定手段と、  Bump coordinate position setting means for presetting the coordinate position on the coordinate system of each bump included in the measurement field of view,
前記バンプ座標位置設定手段で設定された予設定座標位置に基づいて前記計測 視野内のバンプ位置を特定し、 この特定されたバンプ位置に基づき前記ウェハ上 のバンプの外観検査を行う検査手段と  Inspection means for specifying a bump position in the measurement field of view based on preset coordinate positions set by the bump coordinate position setting means, and performing a visual inspection of bumps on the wafer based on the specified bump positions; and
がさらに具えられる。  Is further provided.
上記第 1発明によれば、 位置決め手段で位置決めされた際のウェハの回転位置 ずれによるバンプの位置誤差が、 座標原点からの計測視野の移動距離を考慮した 回転変換によって、 精度よく補正される。 このため、 ウェハサイズが大きくなる ほどバンプの位置誤差が大きくなるという従来の問題が解決される。  According to the first aspect, the position error of the bump due to the rotational position shift of the wafer when positioned by the positioning means is accurately corrected by the rotation conversion in consideration of the moving distance of the measurement visual field from the coordinate origin. Therefore, the conventional problem that the position error of the bump increases as the wafer size increases is solved.
また、 バンプ毎に位置誤差を補正しているのではなくて、 複数のバンプを含む 計測視野単位で位置誤差を補正するようにしたので、 補正処理が短時間で済み、 バンプの検査を高速に行うことができるようになる。  Also, instead of correcting the position error for each bump, the position error is corrected for each measurement field of view including multiple bumps, so the correction process can be completed in a short time and the bump inspection can be performed at high speed. Will be able to do it.
また、 本発明の第 2発明では、 ウェハ上の複数のバンプを視覚手段によって撮 像し、 この撮像結果に基づき前記ウェハ上のバンプの外観の検査を行うウェハバ ンプの外観検査装置において、  Further, according to a second invention of the present invention, in a wafer bump appearance inspection apparatus for imaging a plurality of bumps on a wafer by visual means and inspecting the appearance of the bumps on the wafer based on the imaging result,
前記視党手段の撮像結果に基づいて、 前記ウェハ上の各チップ毎に、 チップ内 の複数のバンプの平均高さを求め、 当該チップ内の全てのバンプの高さが、 前記 平均高さに対する一定偏差内に収まっている場合に、 当該チップは良品であると 判定するようにしている。 An average height of a plurality of bumps in a chip is determined for each chip on the wafer based on an imaging result of the visual means, and a height of all bumps in the chip is determined with respect to the average height. If the chip is within a certain deviation, the chip is good. The decision is made.
この第 2発明では、 チップ內のバンプ高さの平均値と個々のバンプの高さを比 較して、 その結果からチップの良否を判定するようにしたので、 チップ単位の検 査を正確に行うことができる。 このため、 チップ実装時に全てのバンプにおいて 十分な電気的接触が得られる良品のチップを、 不良と誤判定することが防止され る。  In the second aspect of the invention, the average value of the bump height of the chip 內 is compared with the height of each bump, and the quality of the chip is determined from the result, so that the inspection of each chip can be accurately performed. It can be carried out. Therefore, it is possible to prevent a non-defective chip from which a sufficient electrical contact is obtained in all bumps during chip mounting from being erroneously determined to be defective.
また、 本発明の第 3発明では、 ウェハ上のバンプを、 所定の大きさの計測視野 をもって撮像する視覚手段を具え、 この視覚手段の撮像結果に基づき前記ウェハ 上のバンプの外観の検査を行うウェハバンプの外観検査装置において、  According to a third aspect of the present invention, there is provided visual means for imaging a bump on a wafer with a measurement field of view of a predetermined size, and inspects the appearance of the bump on the wafer based on the imaging result of the visual means. In a wafer bump appearance inspection device,
前記ウェハを、 所定の座標系の座標軸に位置決めする位置決め手段と、 前記計測視野内に含まれるバンプの前記座標系上の座標位置を、 予め設定する バンプ座標位置設定手段と、  Positioning means for positioning the wafer on a coordinate axis of a predetermined coordinate system; bump coordinate position setting means for presetting the coordinate positions of the bumps included in the measurement visual field on the coordinate system;
前記バンプ座標位置設定手段で設定された予設定座標位置に基づいて前記計測 視野内のバンプ位置を特定し、 この特定されたバンプ位置周辺の一定領域につい てウィンドウを設定して、 このウィンドウについてのみ前記ウェハ上のバンプの 外観検査を行う検査手段と  A bump position in the measurement field of view is specified based on a preset coordinate position set by the bump coordinate position setting means, a window is set for a certain area around the specified bump position, and only this window is set. Inspection means for inspecting the appearance of the bumps on the wafer;
を具えるようにしている。  It is equipped with.
この第 3発明では、 バンプ位置周辺の一定領域のウィンドウ部分のみバンプ検 查を行うようにしたので、 バンプの高さの計測等の検査を効率よく行うことがで きる。 また、 バンプ位置周辺について検査されるので、 バンプの座標位置に多少 の誤差があつたとしても、 バンプの高さの計測等の検査を確実に行うことができ る。  In the third aspect, the bump detection is performed only in the window portion in a certain area around the bump position, so that the inspection such as the measurement of the bump height can be efficiently performed. In addition, since inspection is performed around the bump position, even if there is some error in the coordinate position of the bump, inspection such as measurement of the height of the bump can be reliably performed.
また、 本発明の第 4発明では、  In the fourth invention of the present invention,
上記第 3発明の検査手段に、  In the inspection means of the third invention,
前記ウィンドウ中の各部の高さを求め、 この高さデータに基づき、 高さと頻度 との関係を示すヒストグラムを作成するヒス卜グラム作成手段と、  Histogram creation means for finding the height of each part in the window, and creating a histogram indicating the relationship between height and frequency based on the height data;
前記ヒス トグラムにおける高さ最小値から、 当該最小値よりも所定量だけ大き い値までの一定範囲内において、 頻度が最大となる高さを、 チップ表面の高さと し、 前記ヒス卜グラムにおける高さ最大値から当該チップ表面の高さを減算した 値を、 前記ウインドウ内のバンプのチップ表面からの相対高さとする演算手段と を具えるようにしている。 Within a certain range from the minimum height value in the histogram to a value larger than the minimum value by a predetermined amount, the height at which the frequency becomes maximum is defined as the chip surface height, and the height in the histogram is The height of the chip surface was subtracted from the maximum value Calculating means for setting the value as the relative height of the bump in the window from the chip surface.
第 4発明の別の発明では、  In another invention of the fourth invention,
上記第 3発明の検査手段に、  In the inspection means of the third invention,
前記ウィンドウ中の各部の高さを求め、 この高さデータに基づき、 高さと頻度 との関係を示すヒス 卜グラムを作成するヒス 卜グラム作成手段と、  Histogram creation means for finding a height of each part in the window, and creating a histogram indicating a relationship between the height and the frequency based on the height data;
前記ヒス トグラムにおける高さ最小値から、 当該最小値よりも所定量だけ大き い値までの一定範囲内における平均髙さを、 チップ表面の高さとし、 前記ヒスト グラムにおける高さ最大値から当該チップ表面の高さを減算した値を、 前記ウイ ンドウ内のバンプのチップ表面からの相対高さとする演算手段と  The average height within a certain range from the minimum height in the histogram to a value larger than the minimum by a predetermined amount is defined as the chip surface height, and the maximum height in the histogram is calculated from the maximum height in the histogram. Calculating means for calculating a value obtained by subtracting the height of the bump from the chip surface of the bump in the window.
を具えるようにしている。  It is equipped with.
上記第 4発明によれば、 バンプの座標位置周辺のウィンドウという狭い領域に ついての高さデータに基づくヒス トグラムを作成し、 このヒストグラムからチッ プ表面の高さを求めるようにしたので、 I Cパターンの凹凸やウェハの頃きの影 響が除去されて、 チップ表面の高さを精度よく特定することができ、 これにより バンプのチップ表面からの相対高さを精度よく計測することができるようになる。 また、 本発明の第 5発明では、  According to the fourth aspect, a histogram is created based on height data of a narrow area such as a window around the coordinate position of the bump, and the height of the chip surface is obtained from this histogram, so that the IC pattern is obtained. The height of the chip surface can be accurately determined by removing the irregularities of the wafer and the effects of the wafer, so that the relative height of the bump from the chip surface can be accurately measured. Become. In the fifth invention of the present invention,
上記第 3発明の検査手段に、  In the inspection means of the third invention,
前記ウィンドウ中の各部の高さを求め、 この高さデータに基づき、 高さと頻度 との関係を示すヒス卜グラムを作成するヒストグラム作成手段と、  A histogram creating means for determining the height of each part in the window, and creating a histogram indicating the relationship between the height and the frequency based on the height data;
前記ヒストグラムにおける高さ最大値から、 当該最大値よりも所定量だけ小さ い第 1の値までの一定範囲内における頻度の累積を第 1の累積頻度として求める とともに、 前記最大値よりも所定量だけ小さく、 かつ前記第 1の値よりも大きい 第 2の値までの一定範囲内における頻度の累稜を第 2の累積頻度として求め、 前 記第 1の累積頻度に対する前記第 2の累積頻度の比が、 所定のしきい値以下であ る場合に、 前記ウインドウ内のバンプにコブが存在していると判定する判定手段 と  From the height maximum value in the histogram, a cumulative frequency within a certain range from a maximum value to a first value smaller than the maximum value by a predetermined amount is obtained as a first cumulative frequency, and a predetermined amount from the maximum value is calculated. A small cumulative edge having a frequency within a certain range up to a second value larger than the first value is obtained as a second cumulative frequency, and a ratio of the second cumulative frequency to the first cumulative frequency is calculated. Is less than or equal to a predetermined threshold value, a determining means for determining that bumps are present in the bumps in the window; and
を具えるようにしている。  It is equipped with.
上記第 5発明によれば、 バンプに発生するコブが精度よく検出され、 コブを見 逃すことによりチップ実装の際に十分な電気的接触が得られなくなるといぅ不都 合が防止される。 According to the fifth aspect, the bumps generated on the bumps are detected with high accuracy, and the bumps are detected. The inconvenience is prevented when sufficient electrical contact cannot be obtained during chip mounting due to missing.
また、 本発明の第 6発明では、  In the sixth invention of the present invention,
上記第 3発明の検査手段に、  In the inspection means of the third invention,
前記ウェハ上のチップ内に設定ざれたウィンドウ部分を除いた当該チップ內の 残りの領域中の各部の高さを求め、 この高さデータに基づき、 高さと頻度との関 係を示すヒストグラムを作成するヒス卜グラム手段と、  The height of each part in the remaining area of the chip た excluding the window part set in the chip on the wafer is obtained, and a histogram showing the relationship between the height and the frequency is created based on the height data. Histogram means to perform
前記ヒストグラムに基づき前記ウェハのチップ内にエキストラバンプが存在し ているか否かを判定する判定手段と  Determining means for determining whether or not extra bumps are present in the chips of the wafer based on the histogram;
を具えるようにしている。  It is equipped with.
また、 第 6発明の別の発明では、 ヒストグラムの作成は、 前記ウィンドウ部分 を除いた前記チップ内の残りの領域を複数に分割し、 この分割領域毎に行うよう にしている。  Further, in another invention of the sixth invention, the creation of the histogram is performed by dividing the remaining region in the chip excluding the window portion into a plurality of regions, and for each of the divided regions.
また、 第 6発明の別の発明では、 前記ヒス トグラムにおいて頻度が最大となる 高さを、 チップ表面の高さとし、 前記ヒストグラムにおける高さ最大値から当該 チップ表面の高さを减算した値が、 所定のしきい値以上である場合に、 当該チッ プ内にエキストラバンプが存在していると判定している。  Further, in another invention of the sixth invention, the height at which the frequency is maximum in the histogram is the height of the chip surface, and the value obtained by calculating the height of the chip surface from the maximum height in the histogram is If it is equal to or greater than a predetermined threshold value, it is determined that extra bumps are present in the chip.
また、 第 6発明の別の発明では、 前記ヒス トグラムにおける平均高さを、 チッ プ表面の高さとし、 前記ヒストグラムにおける高さ最大値から当該チップ表面の 高さを減算した値が、 所定のしきい値以上である場合に、 当該チップ内にエキス トラバンプが存在していると判定するようにしている。  In another aspect of the sixth invention, the average height in the histogram is the height of the chip surface, and the value obtained by subtracting the height of the chip surface from the maximum height in the histogram is a predetermined threshold value. When the value is equal to or more than the threshold value, it is determined that an extra bump exists in the chip.
上記第 6発明によれば、 チップ内のバンプ部分をマスクした残りの領域につい ての高さデータに基づくヒストグラムからエキストラバンプの有無の判定を行う ようにしたので、 通常のバンプとエキストラバンプを誤ることなく、 エキストラ バンプを精度よく検出することができる。  According to the sixth aspect, the presence / absence of extra bumps is determined from the histogram based on the height data of the remaining area where the bumps in the chip are masked, so that normal bumps and extra bumps are mistaken. Without this, extra bumps can be detected accurately.
また、 チップを複数に分割して、 分割領域ごとにヒス トグラムを作成するよう にしたので、 狭い領域についての高さデータに基づくヒストグラムが作成される。 よって、 このヒス トグラムからチップ表面の高さを求めた場合には、 I Cノ、。タ ーンの凹凸やウェハの傾きの影響が除去されて、 チップ表面の高さを精度よく特 定することができ、 これによりエキストラバンプのチップ表面からの相対高さを 精度よく計測することが可能となる。 Further, since the chip is divided into a plurality of parts and a histogram is created for each divided area, a histogram based on height data of a narrow area is created. Therefore, when the height of the chip surface was obtained from this histogram, IC chip was used. Eliminates the effects of pattern irregularities and wafer tilt, and accurately characterizes chip surface height. This makes it possible to accurately measure the relative height of the extra bump from the chip surface.
また、 本発明の第 7発明では、 平面状のワークを鉛直一定方向に所定距離だけ 相対的に移動させることによって当該ワークの上面各部の高さを計測する高さ計 測装置と、 前記ワークの上面すべてが前記高さ計測装置で計測されるように、 当 該高さ計測装置の計測視野が移動すべき平面上の各移動位置を設定する設定手段 と、 前記設定手段で設定された各平面移動位置に前記計測視野を移動させ、 各平 面移動位置ごとに、 前記ワークを、 前記高さ計測装置に対して相対的に、 前記所 定距離だけ前記鉛直一定方向に移動させることにより、 当該計測視野内における ワーク各部の高さの計測を行わせる移動手段とを具えた高さ計測装置において、 つぎの平面移動位置の計測視野における鉛直方向の移動は、 現平面移動位置の 計測視野における鉛直移動方向とは反対の方向に行うように、 鉛直移動方向を制 御する手段  Further, in the seventh invention of the present invention, a height measuring device for measuring the height of each portion of the upper surface of the work by relatively moving the planar work in a vertical constant direction by a predetermined distance, Setting means for setting each movement position on a plane to which the measurement field of view of the height measuring device should move so that the entire upper surface is measured by the height measuring device; and each of the planes set by the setting means. By moving the measurement field of view to a moving position, and moving the workpiece relative to the height measuring device in the vertical constant direction relative to the height measuring device at each plane moving position, In a height measuring device equipped with a moving means for measuring the height of each part in the measurement field of view, the vertical movement in the measurement field of view of the next plane movement position will be the measurement field of the current plane movement position. Means to control the vertical movement direction so that it is performed in the opposite direction to the vertical movement direction
を具えるようにしている。  It is equipped with.
また、 上記第 7発明の別の発明では、  Further, in another invention of the seventh invention,
前記高さ計測装置は、 平面状のワークに形成された所定の大きさの検査対象物 の高さを計測するものであり、  The height measuring device is for measuring the height of an inspection object having a predetermined size formed on a planar workpiece,
平面上で隣り合う両計測視野のうち少なくとも一方の計測視野內に前記検査対 象物全体が入るように、 隣り合う計測視野同士をォ一バーラップさせて計測視野 の各平面移動位置を設定するようにしている。  Adjacent measurement fields are overlapped so that at least one of the two measurement fields adjacent to each other on the plane contains the inspection object, and the plane movement position of the measurement field is set. I have to.
上記第 7発明によってワークの高さの計測を行った場合には、 計測視野内にお ける鉛直 Z方向の移動、 計測視野の平面方向の移動の交互の移動は以下のように なる。  When the height of the workpiece is measured according to the seventh aspect of the invention, the alternate movement of the movement in the vertical Z direction in the measurement visual field and the movement in the planar direction of the measurement visual field is as follows.
図 2 6は、 こうした移動の様子を概念的に示す図であり、 図 2 7はそのタイム チャートを示しており、 図 3 0、 図 3 1にそれぞれ対応する図である。  FIG. 26 is a diagram conceptually showing the state of such movement, and FIG. 27 is a time chart thereof, corresponding to FIGS. 30 and 31 respectively.
これら図に示すように、 各計測視野 N— 1 、 N、 N + 1における Z方向の移動 方向は、 逐次反転される。 すなわち、 計測視野 N— 1では、 下降方向 dに移動さ れて計測が行われ、 つぎの計測視野 Nでは、 前回とは反対の上昇方向 d 'に移動 されて計測が行われ、 つぎの計測視野 N + 1では、 前回とは反対の下降方向 dに 移動されて計測が行われる (図 2 6の矢印 d、 d '参照) 。 As shown in these figures, the moving direction in the Z direction in each of the measurement visual fields N-1, N, and N + 1 is sequentially reversed. That is, in the measurement visual field N-1, the measurement is performed by moving in the descending direction d, and in the next measurement visual field N, the measurement is performed by moving in the ascending direction d 'opposite to the previous measurement, and the next measurement is performed. In the field of view N + 1, in the downward d direction opposite to the previous It is moved and measured (see arrows d and d 'in Figure 26).
このように、 鉛直 Z軸方向の移動方向を逐次反転させながら計測を行うように しており、 つぎの計測視野に移動する際 (図 2 6の矢印 c ) には、 平面方向の移 動だけでよく、 従来のように Zステージを元の位置に戻すためだけの鉛直 Z軸方 向の移動は行われない。  In this way, measurement is performed while sequentially reversing the direction of movement in the vertical Z-axis direction. When moving to the next measurement field of view (arrow c in Fig. 26), only movement in the plane direction is performed. The movement in the vertical Z-axis direction just to return the Z stage to the original position as in the past is not performed.
このため、 図 2 7に示すように、 1視野サイクルタイムは、 計測のために Z軸 方向に移動させている時間と、 計測視野を平面方向に移動させる時間だけの組合 せであり、 図 3 1のように、 Z位置を初期位置まで戻すためだけの本来の計測に も計測視野の移動に使われなレ、無駄時間は存在しなレ、こととなる。 このため 1視 野のサイクルタイムがその分小さくなり、 装置のスループッ トを飛躍的に向上さ せることができる。  For this reason, as shown in Fig. 27, one visual field cycle time is a combination of the time required to move in the Z-axis direction for measurement and the time required to move the measurement visual field in the plane direction. As shown in 1, the original measurement only to return the Z position to the initial position is not used for moving the measurement field of view, and there is no dead time. As a result, the cycle time in one field of view is reduced accordingly, and the throughput of the device can be dramatically improved.
また、 Zステージを初期位置まで戻すための動作がなくなるので、 その分、 移 動に伴う振動等の悪影響が少なくなる。 とりわけ、 むだ時間短縮のために Zステ ージを初期位置まで戻す速度を高速化することによって振動等による甚大な影饗 が発生してしまう虞もなくなる。 また、 Zステージを初期位置まで戻すための動 作がなくなった分、 Zステージを駆動するァクチユエ一タ等駆動機構の耐久性が 向上する。  Also, since there is no operation for returning the Z stage to the initial position, adverse effects such as vibration due to the movement are reduced. In particular, by increasing the speed at which the Z stage is returned to the initial position in order to reduce the dead time, there is no possibility that a large shadow effect due to vibration or the like will occur. In addition, since the operation for returning the Z stage to the initial position is eliminated, the durability of a driving mechanism such as an actuator for driving the Z stage is improved.
さらに、 上記第 7発明の別の発明によれば、 平面上で隣り合う両計測視野のう ち少なくとも一方の計測視野内に、 高さを計測すべき検査対象物全体が入るよう に、 隣り合う計測視野同士がオーバ一ラップされて計測視野の各平面移動位置が 設定されるようにしたので、 一の検査对象物全体の高さの計測が、 少なくとも一 つの計測視野內において行われる。  Further, according to another aspect of the seventh invention, the two inspection fields adjacent to each other on the plane are adjacent to each other so that the entire inspection object whose height is to be measured is included in at least one of the measurement fields. Since the measurement visual fields are overlapped with each other and the respective plane movement positions of the measurement visual fields are set, the height measurement of one inspection object as a whole is performed in at least one measurement visual field.
すなわち、 一般に、 Zステージを駆動する駆動機構には、 上昇方向の移動と下 降方向の移動とでヒステリシスが存在する。 このため、 Z軸移動方向が異なる隣 り合う計測視野同士では、 高さの計測誤差が生じることになる。  That is, in general, the driving mechanism for driving the Z stage has hysteresis between the movement in the ascending direction and the movement in the descending direction. Therefore, a height measurement error occurs between adjacent measurement fields having different Z-axis moving directions.
しかし、 本発明では、 一の検査対象物全体の高さの計測が、 少なくとも一つの 計測視野内において完結されるので、 この検査対象物の高さの計測は、 往復移動 のヒステリシスの影響を受けることがなく、 計測を誤差なく行うことができる。 図面の簡単な説明 However, in the present invention, since the measurement of the height of one entire inspection object is completed within at least one measurement visual field, the measurement of the height of the inspection object is affected by the reciprocating hysteresis. Measurement can be performed without error. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明に係るウェハバンプの外観検査装置の実施の形態を示す図で、 ゥ ェハの平面図である。  FIG. 1 is a diagram showing an embodiment of a wafer bump appearance inspection apparatus according to the present invention, and is a plan view of a wafer.
図 2 (a) 、 (b) 、 (c ) 、 (d) は、 ウェハ上のチップと計測視野の相対 位置関係を説明する図である。  FIGS. 2 (a), (b), (c), and (d) are diagrams illustrating the relative positional relationship between a chip on a wafer and a measurement visual field.
図 2はウェハ上で計測視野を移動させる様子を説明する図である。  FIG. 2 is a diagram for explaining a manner in which the measurement visual field is moved on the wafer.
図 4はバンプ検査の処理手順を示すフローチヤ一トである。  FIG. 4 is a flowchart showing the procedure of the bump inspection process.
図 5は計測視野内に含まれるバンプを示す図である。  FIG. 5 is a diagram showing bumps included in the measurement visual field.
図 6 (a ) 、 (b) 、 (c) は、 バンプの種類を説明する図である。  FIGS. 6A, 6B and 6C are diagrams for explaining types of bumps.
図 7は計測視野原点とチッブ原点との位置関係を示す図である。  FIG. 7 is a diagram showing the positional relationship between the measurement field origin and the chip origin.
図 8はチッブ座標系を示す図である。  FIG. 8 is a diagram showing a chip coordinate system.
図 9は計測視野に設定される設定値のデータ構造を概念的に示す図である。 図 1 0 (a ) 、 (b) 、 (c ) はチップ毎にその良否を判定するための処理手 順を示すフローチヤ一トである。  FIG. 9 is a diagram conceptually showing a data structure of a set value set in the measurement visual field. FIGS. 10 (a), (b), and (c) are flowcharts showing a processing procedure for judging pass / fail of each chip.
図 1 1はウィンドウ毎に得られる高さデータのヒストグラムである。  FIG. 11 is a histogram of height data obtained for each window.
図 1 2はウェハが傾いている場合のヒストグラムである。  FIG. 12 is a histogram when the wafer is tilted.
図 1 3 (a) 、 (b) 、 (c) 、 ( d) はヒストグラムに基づいてバンプの高 さを求める処理の手順を示すフローチヤ一トである。  FIGS. 13 (a), (b), (c) and (d) are flow charts showing the procedure of the process for obtaining the height of the bump based on the histogram.
図 1 4はコブがあるバンプについて設定されるウインドウによって得られる高 さデータのヒストグラムである。  Figure 14 is a histogram of height data obtained by a window set for bumps with bumps.
図 1 4はコブがないバンプについて設定されるウインドウによって得られる高 さデータのヒス トグラムである。  Figure 14 is a histogram of height data obtained by a window set for bumps without bumps.
図 1 6 (a ) 、 (b) 、 (c ) はヒストグラムに基づいてコブの有無を判定す る処理の手順を示すフローチヤ一トである。  FIGS. 16 (a), (b) and (c) are flowcharts showing the procedure of the process for determining the presence or absence of bumps based on the histogram.
図 1 7はエキストラバンプが存在するチップを示す平面図である。  FIG. 17 is a plan view showing a chip having extra bumps.
図 1 8はエキストラバンプが存在するチップを各領域に分割した搽子を示す平 面図である。  FIG. 18 is a plan view showing an element obtained by dividing a chip having an extra bump into respective regions.
図 1 9 (a ) はエキストラバンプが存在するチップによって得られる高さデー タのヒス トグラムであり、 図 1 9 (b) 、 ( c) は、 図 1 9 (a ) のヒス トグラ ムに基づいてエキストラバンプの有無を判定する処理の手順を示すフローチヤ一 トである。 Fig. 19 (a) is a histogram of height data obtained by a chip with extra bumps. Figs. 19 (b) and (c) are histograms of Fig. 19 (a). 6 is a flowchart showing a procedure of a process of determining the presence or absence of an extra bump based on a system.
図 2 0は実施の形態のウェハバンプの外観検査装置の斜視図である。  FIG. 20 is a perspective view of a wafer bump appearance inspection apparatus according to the embodiment.
図 2 1は従来のウェハバンプの外観検査装置を説明する図で、 ウェハの平面図 である。  FIG. 21 is a view for explaining a conventional wafer bump appearance inspection apparatus, and is a plan view of a wafer.
図 2 2 ( a ) 、 ( b ) 、 ( c ) 、 ( d ) は、 従来技術を説明する図で、 ウェハ 上のチップと計測視野の相対位置関係を説明する図である。  FIGS. 22 (a), (b), (c), and (d) are diagrams illustrating a conventional technique, and are diagrams illustrating a relative positional relationship between a chip on a wafer and a measurement visual field.
図 2 3はウェハ (チップ) が傾いている様子を示す側面図である。  Figure 23 is a side view showing a state where the wafer (chip) is tilted.
図 2 4はコブが存在するバンプを示す側面図である。  FIG. 24 is a side view showing a bump having bumps.
図 2 5はエキストラバンプが存在するチップを示す平面図である。  FIG. 25 is a plan view showing a chip having extra bumps.
図 2 6は、 各計測視野の平面方向の移動、 各計測視野毎の鉛直軸方向の移動の 態様を示す図である。  FIG. 26 is a diagram showing a mode of movement of each measurement visual field in the plane direction and movement of each measurement visual field in the vertical axis direction.
図 2 7は図 2 6のタイムチヤ一トである。  FIG. 27 is a time chart of FIG.
図 2 8はバンプの側面図である。  FIG. 28 is a side view of the bump.
図 2 9は計測視野がオーバーラップしている様子を説明する図である。  FIG. 29 is a diagram illustrating a state in which the measurement visual fields overlap.
図 3 0は、 従来技術を説明する図で、 各計測視野の平面方向の移動、 各計測視 野毎の鉛直軸方向の移動の態様を示す図である。  FIG. 30 is a diagram for explaining the prior art, and is a diagram showing a mode of movement of each measurement visual field in a plane direction and movement of each measurement visual field in a vertical axis direction.
図 3 1は、 従来技術を説明する図で、 図 3 0のタイムチャートである。 発明を実施するための最良の形態  FIG. 31 is a diagram for explaining the prior art, and is a time chart of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明に係るウェハバンプの検査装置の実施の形態につ いて説明する。  Hereinafter, an embodiment of a wafer bump inspection apparatus according to the present invention will be described with reference to the drawings.
なお、 バンプ検査装置としては、 図 2 0に示す従来の装置が使用される。  As a bump inspection apparatus, a conventional apparatus shown in FIG. 20 is used.
図 3はウェハ 1の表面に形成されたチップ 2と、 3 D計測モジュール 3 3の計 測視野 4の関係を、 X— Y座標系にて示す図である。  FIG. 3 is a diagram showing the relationship between the chip 2 formed on the surface of the wafer 1 and the measurement field of view 4 of the 3D measurement module 33 in an XY coordinate system.
ウェハバンプ 3の検査に先だって、 ウェハ 1中のチップ群の全てのチップ 2に ついて、 識別番号 C I Dが C 1、 C 2〜C 7、 C 8 と付与される。 この図では、 左上隅にある識別番号 C 7のチップ 2の左上コーナが X— Y座標軸の原点 O (二 れを二重丸にて示す) に設定される。 そして、 X軸がチップ群の上辺に一致し、 Y軸がチップ群の左辺に一致するように X— Υ座標軸が設定される。 一方、 3 D計測モジュール 3 3の計測視野 4については、 オーバ一ラ ンプさせ つつチップ群全体の 3 D計測が行われるように、 各 X、 Υ位置毎に識別番号 1、 2、 3…の各計測視野 VI、 V2、 V3…が設定される。 それぞれの計測視野 VI、 V2、 V3…の左上コーナが視野原点 O V (これを X印にて示す) に設定され、 そ れぞれの計測視野 VI、 V2、 V3…の視野原点 Ovは視野座標位置 (VX、 VY) として表される。 計測視野 VI、 V2、 V3…の数の合計は VNであり、 この総視野 数についても予め設定される。 Prior to the inspection of the wafer bump 3, the identification numbers CID are assigned to all the chips 2 in the chip group in the wafer 1 as C1, C2 to C7, and C8. In this figure, the upper left corner of chip 2 with identification number C7 in the upper left corner is set to the origin O of the XY coordinate axis (the two are indicated by double circles). And the X axis coincides with the top side of the chip group, The X-Υ coordinate axis is set so that the Y axis coincides with the left side of the chip group. On the other hand, for the measurement field of view 4 of the 3D measurement module 33, the identification numbers 1, 2, 3, ... for each X, Υ position are set so that the 3D measurement of the entire chip group is performed while the lamps are overlapped. Each measurement field of view VI, V2, V3 ... is set. The upper left corner of each measurement field VI, V2, V3 ... is set to the field origin OV (this is indicated by the X mark), and the field origin Ov of each measurement field VI, V2, V3 ... is the field coordinate. Expressed as position (VX, VY). The total number of measurement fields VI, V2, V3 ... is VN, and this total field number is also preset.
したがって、 図 20に示すウェハ移動ステージ 32の XYステージの XY移動 軸と、 図 3の XY座標軸とが一致し、 かつ XYステージの機械原点と図 3の座標 原点 Oとが一致すれば、 計測視野 VI、 V2、 V3…の視野原点 Ovの視野座標位置 (VX、 VY) に応じて XYステージを順次移動させることにより、 チップ群の 3D計測を正確に行うことができる。  Therefore, if the XY movement axis of the XY stage of the wafer movement stage 32 shown in FIG. 20 matches the XY coordinate axis of FIG. 3, and the mechanical origin of the XY stage matches the coordinate origin O of FIG. By sequentially moving the XY stage according to the view coordinate position (VX, VY) of the view origin Ov of VI, V2, V3, etc., 3D measurement of the chip group can be performed accurately.
ここで、 計測視野 4のオーバーラップの方向としては、 図 3に示すような X軸 方向だけでなく、 後述する図 29に示すように、 Y軸方向にも存在するものとす る。 また、 オーバ一ラップ範囲としては、 バンプ 1個の大きさよりも広い範囲で あることが望まれる。 このようにオーバーラップさせた場合には、 計測視野 4の 境界付近に存在するバンプ 3が、 オーバーラップする 2つの計測視野のうちのい ずれかに欠けることなく入ることになり 3D計測を正確に行うことができるよう になる。 さらに言えば、 計測視野 4のオーバ一ラップを、 後述のバンプ検査のた めのウィンドウの大きさよりも大きくすると好適である。  Here, it is assumed that the overlapping direction of the measurement visual field 4 exists not only in the X-axis direction as shown in FIG. 3 but also in the Y-axis direction as shown in FIG. 29 described later. Also, it is desired that the overlap range is wider than the size of one bump. In the case of such overlapping, the bump 3 existing near the boundary of the measurement visual field 4 enters without fail in any of the two overlapping measurement visual fields, and the 3D measurement can be accurately performed. Will be able to do so. Furthermore, it is preferable that the overlap of the measurement field of view 4 be larger than the size of a window for bump inspection described later.
以上のような前処理が終了すると、 ウェハ 1は、 図 20に示される装置の図示 せぬウェハハンドリングロボッ トにより、 ウェハ移動ステージである ΧΥ Θステ ージ 32上に載置される。  When the pre-processing as described above is completed, the wafer 1 is placed on the wafer movement stage 32 by the wafer handling robot (not shown) of the apparatus shown in FIG.
つぎに、 2D計測モジュール 3 1によってウェハ 1上の特徴点、 例えば位置決 めマーク等の位置が 2箇所以上検出される。 たとえば、 図 1に示すような位置決 め用マーク Ma、 Mbが検出され、 この検出位置によってウェハ 1の姿勢角 Θ、 位置 X、 Yが求められる。 そして、 ΧΥ Θステージ 32によって、 この XYステ —ジの XY移動軸と、 図 3の XY座標軸とがー致し、 かつ XYステージの機械原 点と図 3の座標原点 Oとが一致するようにウェハ 1の位置決めがなされる。 さら に、 Χ Υ Θステージ 3 2の Θステージによってウェハ 1の姿勢位置の位置決めが、 0ステージの回動分解能の限界まで、 なされる。 そして、 再度 2 D計測モジユー ル 3 1によって、 ウェハ 1上の特徴点 M a 、 M bの位置が検出され、 ウェハ 1の X Yステージの X Y移動軸に対する姿勢誤差 Δ 0が求められる (囡 1参照) 。 ここで、 姿勢誤差 Δ 6が 0 . 1度のとき、 ウェハ 1の座標原点から 5インチ離れ た場所において位置誤差 Δ Χは約 2 2 2 μ πιになる。 Next, the 2D measurement module 31 detects two or more feature points on the wafer 1, for example, the positions of positioning marks. For example, the positioning marks Ma and Mb as shown in FIG. 1 are detected, and the attitude angle Θ and the positions X and Y of the wafer 1 are obtained from the detected positions. Then, the XY stage movement axis of the XY stage is aligned with the XY coordinate axis of FIG. The wafer 1 is positioned so that the point coincides with the coordinate origin O in FIG. Further, the position of the attitude position of the wafer 1 is determined by the Θ stage of the Θ Υ stage 32, up to the limit of the rotational resolution of the 0 stage. Then, the positions of the feature points Ma and Mb on the wafer 1 are detected again by the 2D measurement module 31, and the attitude error Δ0 of the XY stage of the wafer 1 with respect to the XY movement axis is obtained (see 囡 1). ). Here, when the attitude error Δ6 is 0.1 degrees, the position error ΔΧ is about 222 μπι at a position 5 inches away from the coordinate origin of the wafer 1.
因みに、 2 D計測モジュール 3 1によって検出すべきウェハ 1上の特徴点は、 2箇所以上であればよく、 ウェハ 1 (チップ群) の中心から離れた場所であって 特徴点同士が互いに離間していることが、 姿勢誤差 Δ Θを精度よく求める上で望 ましい。  By the way, the feature points on the wafer 1 to be detected by the 2D measurement module 31 need only be two or more places, and are located away from the center of the wafer 1 (chip group), and the feature points are separated from each other. This is desirable for accurately determining the attitude error ΔΘ.
また、 2 D計測モジュール 3 1の視野座標 Χ— Υの方向、 座標原点と、 ウェハ 移動ステージ 3 2の Χ Υ移動軸との方向、 座標原点との対応関係は、 予め既知の ものであるとする。  Also, it is assumed that the correspondence between the direction of the visual field coordinates Χ—Υ of the 2D measurement module 31 and the coordinate origin and the direction of the Χ Υ movement axis of the wafer moving stage 32 and the coordinate origin is known in advance. I do.
なお、 ウェハ 1の姿勢位置の位置決めを、 ウェハ移動ステージ 3 2の Θステ一 ジの回動分解能の限界まで行うようにしているが、 以下に説明する姿勢誤差厶 Θ の補正が可能であれば、 必ずしも Θステージの回動分解能の限界までウェハ 1の 姿勢位置の位置決めを行う必要はない。 また、 Χ Υステージの機械原点と図 3の 座標原点はオフセットが既知ならば一致させなくてもよレ、。  The position of the attitude position of the wafer 1 is determined up to the limit of the rotational resolution of the stage of the wafer moving stage 32. However, if the attitude error described below can be corrected, However, it is not always necessary to position the attitude position of the wafer 1 up to the limit of the rotation resolution of the stage. Also, the mechanical origin of the stage and the coordinate origin in Fig. 3 do not need to be matched if the offset is known.
図 1および図 2は、 3 D計測モジュール 3 3の各計測視野 4を示す図である。 いま、 座標原点 Οから離間したチップ 2 bおよびその周囲のチップを計測する ための計測視野 4は、 何らの補正もしないものとすると、 X軸に沿って計測視野 4が移動するため、 図 1または図 2 ( d ) に破線で示す計測視野となる。 これで は、 チップ 2 bおよびその周囲のチップの計測を正確に行うことができない。 そ こで、 実線に示すごとく計測視野 4を、 X Yステージによって移動させるように 補正するものである。  1 and 2 are views showing each measurement field 4 of the 3D measurement module 33. FIG. Now, the measurement field of view 4 for measuring the tip 2 b separated from the coordinate origin Ο and the surrounding chip is assumed to be without any correction, so that the measurement field of view 4 moves along the X axis. Alternatively, the measurement field of view is indicated by a broken line in FIG. This makes it impossible to accurately measure the chip 2b and the chips around it. Therefore, as shown by the solid line, the measurement field of view 4 is corrected so as to be moved by the XY stage.
図 4は、 かかる補正処理を含むバンプ検査処理の手順を示すフローチヤ一卜で ある。  FIG. 4 is a flowchart showing a procedure of the bump inspection process including the correction process.
まず、 計測視野 V I、 V2、 V3…の識別番号 Iが 0に設定され (ステップ 1 0 1 ) この識別番号 Iが + 1インク リメン トされる (ステップ 102) 。 そして、 現在 のインクリメントされた識別番号 Iが総視野数 VNよりも大きくなったか否かが 判断される (ステップ 103) 。 ここで判断が YE Sであれば、 すべての計測視 野について計測が終了したものと、 つまりウェハ 1全体についてのバンプ検査が 終了したものとして処理を終了させる。 First, the identification numbers I of the measurement fields VI, V2, V3 ... are set to 0 (step 101). This identification number I is incremented by +1 (step 102). Then, it is determined whether or not the current incremented identification number I has become larger than the total number of views VN (step 103). If the determination here is YES, the processing is terminated assuming that measurement has been completed for all measurement fields, that is, bump inspection has been completed for the entire wafer 1.
しかし、 判断が NOであれば、 未だウェハ 1全体についてのバンプ検査が終了 していないものと判断して、 インクリメントされた識別番号 Iの計測視野 I D ( I ) の計測を行うべく手順はステップ 104に移行される。  However, if the determination is NO, it is determined that the bump inspection for the entire wafer 1 has not been completed yet, and the procedure for measuring the measurement field ID (I) of the incremented identification number I is step 104. Will be migrated to.
ここで、 各計測視野 VI、 V2、 V3…の視野原点 Ovは、 視野座標位置 (VX、 VY) として表されている。  Here, the visual field origin Ov of each measurement visual field VI, V2, V3... Is represented as a visual field coordinate position (VX, VY).
そこで、 今回計測しょうとする計測視野 4の視野座標位置 (VX、 VY) の位 置を、 上記姿勢誤差 Δ 0に応じた回転位置に補正すべく、 次式 (1) によって視 野座標位置 (VX、 VY) 、 視野座標位置 (VX' 、 VY' ) に変換される。  Therefore, in order to correct the position of the visual field coordinate position (VX, VY) of the measurement visual field 4 to be measured this time to a rotational position corresponding to the above-described attitude error Δ0, the visual field coordinate position ( VX, VY) and field coordinates (VX ', VY').
IVX' c o s 厶 0 i ri厶 S VX · · · (1) IVX 'cos m 0 i ri m S VX (1)
,νγ' s i ri厶 0 c o s 厶 0 VY , νγ 's i ri m 0 co s m 0 VY
Figure imgf000018_0001
Figure imgf000018_0001
図 2 (a) 、 (b) は、 姿勢誤差 Δ Θが存在しない場合のチップと計測視野の 位置関係を示す図であり、 図 2 (c) 、 (d) は、 姿勢誤差 Δ 0が存在する場合 のチップと計測視野の位置関係を示す図である。 図 2 (a) 、 (c) は、 座標原 点 Oに設定される計測視野 4であり、 図 2 (b) 、 (d) は、 座標原点 Oから離 間した位置に設定される計測視野 4を示している。  2 (a) and 2 (b) are diagrams showing the positional relationship between the chip and the measurement visual field when there is no attitude error ΔΘ, and FIGS. 2 (c) and (d) show the attitude error Δ0 FIG. 8 is a diagram showing a positional relationship between a chip and a measurement visual field when performing the measurement. 2 (a) and 2 (c) show the measurement field of view 4 set at the coordinate origin O, and FIGS. 2 (b) and 2 (d) show the measurement field of view set at a position distant from the coordinate origin O. 4 is shown.
上記 (1) 式による補正を、 座標原点 Oから離間した位置の計測視野 4で行つ た場合には (図 2 (d) 参照) 、 計測視野 4内の座標位置ずれは、 図 2 (b) の 場合と比較しても、 無視できる大きさとなり、 後述する計測視野毎の設定値を参 照することにより、 計測視野 4内のバンプ 3の位置を容易かつ正確に特定するこ とができ、 検査処理を精度よく行うことができるようになる。  When the correction by the above equation (1) is performed in the measurement field of view 4 at a position distant from the coordinate origin O (see Fig. 2 (d)), the coordinate displacement in the measurement field of view 4 is calculated as shown in Fig. 2 (b ), The size is negligible, and the position of the bump 3 in the measurement visual field 4 can be easily and accurately specified by referring to the set value for each measurement visual field described later. The inspection process can be performed with high accuracy.
なお、 計測視野 4を図 3に示すごとく、 VI、 V2、 V3…と移動させる方法とし ては、 ウェハ 1が載置されたステージを移動させる方法 (ウェハ移動ステージ 3 2による移動) 以外に、 3 D計測モジュール 33に、 これを X軸、 Y軸方向に移 動させる手段を設け、 この XY移動手段によって行う方法が考えられる。 また、 3D計測モジュール 33の計測視野 4の XY座標軸のそれぞれは、 ゥェ ハ移動ステージ 32の ΧΥ移動軸のそれぞれに平行であることが望ましく、 3D 計測モジュール 33の計測視野 4の ΧΥ座標軸の方向、 座標原点と、 ウェハ移動 ステージ 32の ΧΥ移動軸の方向、 座標原点との対応関係は、 予め既知であるも のとする (ステップ 104、 105) 。 As shown in FIG. 3, the method of moving the measurement field of view 4 to VI, V2, V3,... Other than the method of moving the stage on which the wafer 1 is mounted (moving by the wafer moving stage 32) The 3D measurement module 33 may be provided with a means for moving this in the X-axis and Y-axis directions, and a method of performing this using the XY moving means may be considered. In addition, it is desirable that each of the XY coordinate axes of the measurement visual field 4 of the 3D measurement module 33 is parallel to each of the ΧΥ movement axes of the wafer moving stage 32, and the direction of the ΧΥ coordinate axis of the measurement visual field 4 of the 3D measurement module 33 It is assumed that the correspondence between the coordinate origin, the direction of the moving axis of the wafer moving stage 32, and the coordinate origin is known in advance (steps 104 and 105).
ここで、 計測視野 VI、 V2、 ν3···毎に設定される設定値の内容について説明す る。  Here, the contents of the set values set for each of the measurement visual fields VI, V2, ν3.
設定値は、 上述した視野座標位置 (VX、 VY) と同様に、 実際の検査処理の 前処理の段階において予め用意されるものである。  The set values are prepared in advance in the pre-processing stage of the actual inspection processing, similarly to the above-described visual field coordinate positions (VX, VY).
図 5は、 識別番号が C 24のチップ 2を中心にその周囲の識別番号 C 1 1、 C C 12、 C 13、 C 23、 C 25、 C35、 C 36、 C 37のチップ 2も含めて 合計 9個のチップを視野内に含む計測視野 4の設定値を説明する図である。  Fig. 5 shows the total of chip 2 with identification number C24, including chip 2 with identification numbers C11, CC12, C13, C23, C25, C35, C36, and C37 around it. FIG. 9 is a diagram for explaining set values of a measurement field of view 4 including nine chips in the field of view.
この計測視野 4には、 つぎのような設定値が付与される。  The following setting values are given to the measurement visual field 4.
CN:計測視野内チップ総数のことであり、 9が付与される。  CN: The total number of chips in the measurement visual field, and 9 is added.
C I D (CN) :計測視野内のチップ毎の識別番号のことであり、 C l l、 C C I D (CN): Identification number for each chip within the measurement field of view, C l l, C
C 12、 C 13、 C23、 C25、 C 35、 C36、 C 37が付与される。 CBN (CN) :計測視野内のチップ毎のバンプ総数のことであり、 たとえばC12, C13, C23, C25, C35, C36, C37 are awarded. CBN (CN): The total number of bumps for each chip within the measurement field of view. For example,
、 識別番号 C 23のチップ 2の場合は 6が付与される。 In the case of chip 2 with identification number C23, 6 is given.
B I D (CN、 CBN) :計測視野内のチップ毎の各バンプの識別番号のこと であり、 たとえば、 識別番号 C 23の場合は B 4、 B 5、 B 6、 B 7、 B 8 、 B 9が付与される。  BID (CN, CBN): The identification number of each bump in each chip within the measurement field of view. For example, in the case of identification number C23, B4, B5, B6, B7, B8, B9 Is given.
BX (CN、 CBN) :計測視野內のチップ毎の各バンプの視野原点 (VX、 BX (CN, CBN): Origin of visual field (VX,
VY) からの X座標位置のことである。 VY) is the X coordinate position.
BY (CN、 CBN) :計測視野内のチップ毎の各バンプの視野原点 (VX、 BY (CN, CBN): View point origin (VX,
VY) からの Y座標位置のことである。 VY) is the Y coordinate position.
具体的には、 図 9に示すような計測視野 4、 チップ 2、 バンプ 3の階層的なデ —タ構造で設定されることになる。 すなわち、 「計測視野 4の中には、 識別番号 C 1 1のチップ 2があり、 このチップ 2の中の識別番号 Β 7のバンプ 3の座標位 置 BX、 BYは、 …である」 ということが特定されるようになっている。 ここで、 バンプ 3の座標位置 BX、 BYとしては、 バンプ 3を特定する位置で あれば、 任意に設定可能である。 たとえば、 バンプ 3の頂点の座標位置でもよく、 バンプ 3の中心から所定距離だけオフセットした座標位置でもよい。 Specifically, it is set with a hierarchical data structure of the measurement field of view 4, chip 2, and bump 3 as shown in Fig. 9. In other words, “In the measurement field of view 4, there is a chip 2 with an identification number C 11, and the coordinate position BX, BY of the bump 3 with an identification number Β 7 in this chip 2 is…” Is to be specified. Here, the coordinate position BX, BY of bump 3 can be arbitrarily set as long as it is a position specifying bump 3. For example, it may be the coordinate position of the vertex of bump 3 or the coordinate position offset from the center of bump 3 by a predetermined distance.
また、 バンプ 3の識別番号 (B I D) とは、 ウェハ 1上の全てのチップ 2が同 一設計であれば、 各チップ 2、 2···に共通の番号 Β 1、 Β 2·'·Β 14を使用する ことが可能である。 また、 計測視野 4の設定値として登録されるバンプ 3として は、 当該計測視野 4内にバンプ 3の中心が存在するバンプ 3のみが対象となる。 図 5の場合でいうと、 白抜きとして示すバンプ 3のみが対象となる。  Also, the identification number (BID) of the bump 3 is a common number チ ッ プ 1, チ ッ プ 2 '' Β for each chip 2, 2 各 if all the chips 2 on the wafer 1 are of the same design. It is possible to use 14. In addition, as the bump 3 registered as the set value of the measurement visual field 4, only the bump 3 having the center of the bump 3 in the measurement visual field 4 is targeted. In the case of FIG. 5, only the bumps 3 shown as outlines are targeted.
以上のことを前提として図 4で行われるバンプ 3の座標位置特定処理、 バンプ 3の検査処理について説明する。  On the premise of the above, the coordinate position specifying process of bump 3 and the inspection process of bump 3 performed in FIG. 4 will be described.
すなわち、 計測視野 4内のチップ総数 CNまでをカウントするカウント数 Jが 0にイニシャライズされ (ステップ 106) 、 このカウント数 Jが + 1インクリ メントされる (ステップ 107) 。 そして、 現在のインクリメントされた Jがチ ップ総数 CNよりも大きくなつたか否かが判断される (ステップ 108) 。 ここ で判断が YE Sであれば、 現在の計測視野内のすべてのチップ 2について計測が 終了したものと、 つまり計測視野 4内のバンプ検査が終了したものとして手順を ステップ 102に移行させ、 つぎの計測視野 4の計測を行わせるようにする。 しかし、 判断が NOであれば、 未だ計測視野 4全体についてのバンプ検査が終 了していないものと判断して、 インクリメントされた Jが示すチップ 2内の計測 を行うべく手順はステップ 109に移行される。  That is, the count J for counting up to the total number of chips CN in the measurement visual field 4 is initialized to 0 (step 106), and the count J is incremented by +1 (step 107). Then, it is determined whether or not the current incremented J has become larger than the total chip number CN (step 108). If the determination here is YES, the procedure proceeds to step 102 assuming that the measurement has been completed for all the chips 2 in the current measurement field of view, that is, that the bump inspection in the measurement field of view 4 has been completed. The measurement of the measurement visual field 4 is performed. However, if the determination is NO, it is determined that the bump inspection has not yet been completed for the entire measurement field of view 4, and the procedure moves to step 109 to perform measurement in the chip 2 indicated by the incremented J. Is done.
ステップ 109では、 現在 Jにインクリメントされているチップ 2内のバンプ 総数 CBN ( J) (C 23のチップ 2であれば 6) までをカウントするカウント 数 Kが 0にイニシャライズされ (ステップ 109) 、 このカウント数 Kが + 1ィ ンクリメントされる (ステップ 1 10) 。 そして、 現在のィンクリメントされた Kがバンプ総数 CBN ( J) よりも大きくなつたか否かが判断される (ステップ 1 1 1) 。 ここで判断が YE Sであれば、 チップ 2内のすべてのバンプ 3につい て計測が終了したものと、 つまりチップ 2内のバンプ検査が終了したものとして 手順をステップ 107に移行させ、 つぎのチップ 2の計測を行わせるようにする c しカゝし、 判断が NOであれば、 未だチップ 2全体についてのバンプ検査が終了 していないものと判断して、 インクリメントされた Kが示すバンプ 3の計測を行 うべく手順はステップ 1 12に移行される。 In step 109, the count K, which counts up to the total number of bumps CBN (J) (6 in the case of chip 2 of C23) in the chip 2 which is currently incremented by J, is initialized to 0 (step 109). The count number K is incremented by +1 (step 110). Then, it is determined whether or not the current incremented K has become larger than the total bump number CBN (J) (step 1 1 1). If the determination here is YES, the procedure proceeds to step 107 assuming that the measurement has been completed for all bumps 3 in chip 2, that is, the bump inspection in chip 2 has been completed, and the next chip Perform the measurement of 2 c. If the judgment is NO, the bump inspection for the entire chip 2 has been completed. It is determined that the measurement has not been performed, and the procedure proceeds to step 112 in order to measure the bump 3 indicated by the incremented K.
すなわち、 現在のカウント数 Jが示す識別番号のチップ 2内に存在するバンプ 3であって、 現在のカウント数 Kが示す識別番号のバンプ 3の座標位置 BX (J、 K) 、 BY (J、 K) 、 図 9に示す記憶データから読み出される。  That is, the coordinate position BX (J, K), BY (J, K) is read from the stored data shown in FIG.
こう してバンプ 3の座標位置が特定されるので、 3D計測モジュール 33は、 その特定された座標位置 BX、 BYのバンプ 3について高さの検査を実行する。 具体的には、 図 5に示すように、 識別番号 C 12のチップ 2內の識別番号 B 13 のバンプ 3であれば、 当該バンプ 3全体に斜線で示すようなウィンドウ 7がかけ られ、 このウィンドウ 7内の各部の高さを後述するようにして計測することによ つて、 当該ウィンドウ 7内のバンプ 3の高さが検出されることになる (ステップ 1 13) 。  Since the coordinate position of the bump 3 is specified in this way, the 3D measurement module 33 performs a height inspection on the specified coordinate position BX, BY of the bump 3. Specifically, as shown in FIG. 5, in the case of the bump 3 having the identification number B 13 of the chip 2 C having the identification number C 12, the entire bump 3 is provided with a window 7 as indicated by diagonal lines. By measuring the height of each part in the window 7 as described later, the height of the bump 3 in the window 7 is detected (step 113).
こうしてバンプ検査が終了すると、 その検査結果は、 バンプ 3毎に所定の記憶 格納場所まで転送される。 つまり、 検査結果に対して、 その検査が行われたチッ プ 2の識別番号 C I D、 その検査が行われたバンプ 3の識別番号 B I Dが付加さ れたデータが、 転送される。 なお、 ここで、 転送の方法としては、 予め識別番号 C I D、 B I Dがア ドレスとして指定された場所に、 検査結果を示すデータのみ を記憶させるようにしてもよく、 識別番号 C I D、 B I Dと検査結果を、 通信ネ ットワークを介して伝送し、 ネットワークに接続された他のプロセッサのメモリ に記憶させるようにしてもよレ、。  When the bump inspection is completed in this way, the inspection result is transferred to a predetermined storage location for each bump 3. That is, data to which the identification number C ID of the chip 2 subjected to the inspection and the identification number B ID of the bump 3 subjected to the inspection are added to the inspection result are transferred. Here, as the transfer method, only the data indicating the inspection result may be stored in a location where the identification numbers CID and BID are specified as addresses in advance, and the identification number CID, BID and the inspection result may be stored. May be transmitted via a communication network and stored in the memory of another processor connected to the network.
さらに、 バンプ 3を特定する設定値として、 上述した識別番号 B I D、 座標位 置 BX、 BY以外に、 バンプ 3の種類を特定する設定値を加えるようにしてもよ い。  Further, as a set value for specifying the bump 3, a set value for specifying the type of the bump 3 may be added in addition to the identification number B ID, the coordinate position BX, and the BY described above.
すなわち、 バンプ 3の種類には、 図 6 (図面左側は上面図、 右側は側面図を示 す) に示すごとく、 (a) 球形、 (b) 台形、 (c) 連結型があり、 こうした種 類を設定値として予め記憶させておくことにより、 バンプ 3の種類毎に検査方法 (検査アルゴリズム) を異ならせることができる。 また、 バンプ 3の種類を示す 設定値の内容に応じて、 そのバンプ 3を検査すべきか否かを判断するようにして もよい。 ところで、 図 4のステップ 1 12、 1 1 3では、 計測視野 4毎に全てのバンプ 3の座標位置 BX、 BYをデータとして記憶させておき、 そのデータに基づき個 々のバンプ 3の座標位置を特定するようにしているが、 こうしたデータ量は、 ゥ ェハ 1内のバンプ 3の総数が多くなるに従い莫大なものとなる。 このため、 メモ リとしては記憶容量の大きいものを使用しなければならず、 コス 卜がかかるとい う問題が招来する。 In other words, as shown in Fig. 6 (the left side is a top view and the right side is a side view), there are three types of bumps: (a) spherical, (b) trapezoidal, and (c) connected type. By previously storing the types as set values, the inspection method (inspection algorithm) can be made different for each type of bump 3. Further, it may be determined whether or not the bump 3 should be inspected according to the content of the set value indicating the type of the bump 3. By the way, in steps 1 12 and 1 13 of FIG. 4, the coordinate positions BX and BY of all the bumps 3 are stored as data for each measurement visual field 4, and the coordinate positions of the individual bumps 3 are stored based on the data. Although it is specified, the amount of such data becomes enormous as the total number of bumps 3 in the wafer 1 increases. For this reason, a memory having a large storage capacity must be used, which leads to a problem of high cost.
そこで、 つぎに、 ウェハ 1内の全てのチップ 2、 2…が同一設計である場合に、 バンプ 3の座標位置 BX、 BYのデータ量を少なくすることができ、 記憶容量の 少ないメモリでもデータを記憶することができ、 コスト低減を図ることができる 実施の形態について説明する。  Then, next, when all the chips 2, 2,... In the wafer 1 have the same design, the data amount of the coordinate position BX, BY of the bump 3 can be reduced, and the data can be stored in a memory having a small storage capacity. Embodiments which can be stored and cost can be reduced will be described.
すなわち、 計測視野 4毎の設定値として、 上述した設定値の代わりに以下の設 定値を使用するようにする。  That is, the following set values are used as the set values for each measurement field of view 4 instead of the above set values.
CN:計測視野内チップ総数のことであり、 9が付与される。  CN: The total number of chips in the measurement visual field, and 9 is added.
C I D (CN) :計測視野内のチップ毎の識別番号のことであり、 C l l、 C C I D (CN): Identification number for each chip within the measurement field of view, C l l, C
C 12、 C 13、 C23、 C25、 C 35、 C36、 C 37が付与される。 CX (CN) :計測視野内のチップ毎の視野原点 O Vからのチップ原点 O cのC12, C13, C23, C25, C35, C36, C37 are awarded. CX (CN): Chip origin O c from visual field origin O V for each chip within the measurement visual field
X座標位置のことである。 X-coordinate position.
CY (CN) :計測視野内のチップ毎の視野原点 Ovからのチップ原点 O cの CY (CN): Chip origin Oc from visual field origin Ov for each chip in the measurement visual field
Y座標位置のことである。 This is the Y coordinate position.
CBN (CN) :計測視野内のチップ毎のバンプ総数のことであり、 たとえば CBN (CN): The total number of bumps for each chip within the measurement field of view. For example,
、 識別番号 C 23のチップ 2の場合は 6が付与される。 In the case of chip 2 with identification number C23, 6 is given.
B I D (CN、 CBN) :計測視野内のチップ毎の各バンプの識別番号のこと であり、 たとえば、 識別番号 C 23の場合は B 4、 B5、 B 6、 B 7、 B 8 、 B 9が付与される。  BID (CN, CBN): The identification number of each bump for each chip within the measurement field of view. For example, in the case of identification number C23, B4, B5, B6, B7, B8, B9 Granted.
—方、 全ての計測視野 4に共通の設定値として、 つぎのチップ座標位置が設定 される。  On the other hand, the following chip coordinate position is set as a common setting value for all measurement fields of view 4.
b X (B I D) :チップ内の各バンプのチップ原点 Ocからの X座標位置のこ とである。  b X (B ID): The X coordinate position of each bump in the chip from the chip origin Oc.
b y (B I D) :チップ内の各バンプのチップ原点 O cからの Y座標位置のこ とである。 by (BID): The Y coordinate position from the chip origin O c of each bump in the chip And
なお、 チップ座標原点 Ocは、 たとえば図 7に示すように各チップ 2の左上コ ーナに設定される。 また、 このチップ座標原点 O cを原点とするチップ座標系 X —yが図 8に示すごとく設定され、 チップ 2内のバンプ 3の座標位置 b x、 b y は、 このチップ座標軸 x、 y上の座標位置として設定される。 因みに、 図 8中の W、 Hは、 1つのチップ 2の外形寸法を示している。  Note that the chip coordinate origin Oc is set, for example, in the upper left corner of each chip 2 as shown in FIG. Also, a chip coordinate system X—y having the origin at the chip coordinate origin O c is set as shown in FIG. 8, and the coordinate position bx, by of the bump 3 in the chip 2 is a coordinate on the chip coordinate axis x, y. Set as position. Incidentally, W and H in FIG. 8 indicate the external dimensions of one chip 2.
以上のように設定値を設定すれば、 ウェハ 1上の全てのバンプ 3について視野 原点 Ovからの座標位置を記憶する必要がなくなるので、 設定値のデータ量を少 なくすることができる。 ただし、 各バンプ 3の座標位置 BX、 BYは、 次式 (2) に示すような演算を行う必要があるので、 演算処理による負荷は大きくなる。  By setting the set values as described above, it is not necessary to store the coordinate position from the visual field origin Ov for all the bumps 3 on the wafer 1, so that the data amount of the set values can be reduced. However, since the coordinate position BX, BY of each bump 3 needs to perform the calculation as shown in the following equation (2), the load of the calculation processing increases.
BX = CX ( J ) + b X (B I D (K) )  BX = CX (J) + b X (B ID (K))
B Y=CY (J) + b y (B I D (K) ) ··· (2)  B Y = CY (J) + b y (B ID (K)) (2)
こうした演算処理がステップ 115として、 図 4のステップ 1 1 2の処理の代 わりに実行されることになる。  Such arithmetic processing is executed as step 115 instead of the processing of steps 112 in FIG.
つぎに、 図 10を参照して、 チップ 2毎に、 チップが良品であるか不良品であ るかを判定する処理手順について説明する。  Next, with reference to FIG. 10, a description will be given of a processing procedure for determining whether a chip is good or defective for each chip 2. FIG.
'チップ 2内のバンプ 3の検査結果のデータを全て取得したか否かの判定  'Determine whether all the data of the inspection results of bump 3 in chip 2 have been acquired
まず、 チップ 2毎に検査結果データが全て取得されたか否かをチェックするた めのチェックフラグ F (C I D) が用意される。 このチェックフラグ F (C I D) は、 チップ 2内のバンプの総数 (図 5に例示されたチップ 2では CN== 14であ る) CNにしておく。  First, a check flag F (C ID) for checking whether all the inspection result data has been acquired for each chip 2 is prepared. This check flag F (CID) is set to CN, the total number of bumps in chip 2 (CN == 14 in chip 2 illustrated in FIG. 5).
そして、 図 4のステップ 1 14においてバンプ 3毎の検査結果、 つまり識別番 号 C I Dのチップ 2内の、 識別番号 B I Dのバンプ 3の高さ Hを示すデータ H ( C I D、 B I D) が転送される度に (ステップ 201) 、 上記チェックフラグ F (C I D) がー 1デクリメントされる (ステップ 202) 。  Then, in step 114 of FIG. 4, the inspection result for each bump 3, that is, data H (CID, BID) indicating the height H of the bump 3 of the identification number BID in the chip 2 of the identification number CID is transferred. Each time (step 201), the check flag F (CID) is decremented by one (step 202).
この結果、 チェックフラグ F (C I D) の内容が 0になった時点で (ステップ 203の判断) 、 チップ 2内のすべてのバンプ 3についての検査結果データは全 て取得されたものと判断し、 取得されたデータに基づきチップ 2の良否判定を実 行する (ステップ 204) 。 -第 1のチップ判定処理 (図 10 (b) ) As a result, when the content of the check flag F (CID) becomes 0 (determination in step 203), it is determined that all the inspection result data for all the bumps 3 in the chip 2 has been acquired, and The quality of chip 2 is determined based on the data thus obtained (step 204). -First chip judgment processing (Fig. 10 (b))
まず、 バンプ 3の識別番号 B I Dをカウントする符号 Iが 15に、 バンプ 3の 高さ Hの演算値を示す符号 BMが 0にイニシャライズされ (ステップ 205) 、 符号 Iがー 1デクリメントされる (ステップ 206) 。 そして、 符号 Iが 0に達 していない限り (ステップ 207の判断 NO) 、 BMの内容を、 現在の BMに現 在のバンプ高さデータ H (C I D、 I) を加えたもので更新する処理 (ステップ 208) 、 符号 Iを— 1デクリメントする処理 (ステップ 206) が順次実行さ れる。  First, the code I for counting the identification number BID of the bump 3 is initialized to 15, the code BM indicating the calculated value of the height H of the bump 3 is initialized to 0 (step 205), and the code I is decremented by 1 (step 205). 206). Unless the code I has reached 0 (NO in step 207), the process of updating the content of BM with the current BM plus the current bump height data H (CID, I) (Step 208), the process of decrementing the code I by 1 (Step 206) is sequentially performed.
この結果、 最終的にチップ 2内の全てのバンプ 3の高さの合計値 BMが得られ、 これを 14で割った結果が、 新たに BMの内容とされる。 つまり、 チップ 2内の バンプ 3の高さの平均値 BMが求められる (ステップ 209) 。  As a result, the total value BM of the heights of all the bumps 3 in the chip 2 is finally obtained, and the result obtained by dividing this by 14 is used as the new BM content. That is, the average value BM of the heights of the bumps 3 in the chip 2 is obtained (step 209).
ついで、 再度、 バンプ 3の識別番号 B I Dをカウントする符号 Iが 1 5にィニ シャライズされ (ステップ 210) 、 符号 Iが一 1デクリメントされる (ステツ プ 21 1) 。 そして、 符号 Iが 0に達していない限り (ステップ 212の判断 N Next, the code I for counting the identification number B ID of the bump 3 is initialized to 15 again (step 210), and the code I is decremented by 11 (step 211). Then, as long as the code I does not reach 0 (decision N in step 212)
0) 、 バンプ高さの平均値 BMから、 現在のバンプ 3の高さデータ H (C I D、0), the current bump height data H (C ID,
1) を減算した値の絶対値が、 所定のしきい値 ΔΒΗよりも小さいか否かを判断 する処理 (ステップ 213) 、 符号 Iを一 1デクリメントする処理 (ステップ 2 1 1 ) が順次行われる。 The process of determining whether the absolute value of the value obtained by subtracting 1) is smaller than a predetermined threshold value ΔΒΗ (step 213), and the process of decrementing the code I by 11 (step 211) are sequentially performed. .
ここで、 バンプ 3の高さ Hと上記平均値 BMとの偏差が、 チップ 2内のすべて のバンプ 3について所定の規定範囲 (土厶 BH) 内にあれば、 そのチップ 2は 「 良品 J であると判定され (ステップ 212の判断 YE S) 、 バンプ 3の高さ Hと 上記平均値 BMとの偏差が、 いずれかのバンプ 3について所定の規定範囲 (土厶 BH) 外になつた時点で (ステップ 213の判断 NO) 、 そのチップ 2は 「不良 品」 であると判定される。  Here, if the deviation between the height H of the bump 3 and the above average value BM is within the prescribed range (BH) for all the bumps 3 in the chip 2, the chip 2 is judged as “good J”. It is determined that there is (YE S in step 212), and when the deviation between the height H of the bump 3 and the average value BM falls outside the predetermined specified range (soil BH) for any of the bumps 3 (No in step 213), the chip 2 is determined to be “defective”.
-第 2のチップ判定処理 (図 10 ( c ) )  -Second chip judgment processing (Fig. 10 (c))
また、 バンプ高さの平均値を求めることなく、 チップ判定処理を行うようにし てもよい。  Further, the chip determination processing may be performed without obtaining the average value of the bump height.
すなわち、 バンプ 3の識別番号 B I Dをカウン卜する符号 Iが 15にィニシャ ライズされ (ステップ 214) 、 符号 Iがー 1デクリメントされる (ステップ 2 1 5) 。 そして、 符号 Iが 0に達していない限り (ステップ 2 1 6の判断 NO) 、 現在のバンプ 3の高さデータ H (C I D、 I ) 力 予め設定された高さの規定範 囲の下限値 B Lよりも大きく、 かつ現在のバンプ 3の高さデータ H (C I D、 I ) 、 予め設定された高さの規定範囲の上限値 BHよりも小さいか否かを判断する 処理 (ステップ 21 7) 、 符号 Iを一 1デクリメン卜する処理 (ステップ 21 5) が順次行われる。 当然のことながら、 前述の ΔΒΗ、 BL、 BHなどの比較のた めの設定値は、 絶対値でなく、 ある基準値 (BM) の相対的な割合 (R) に設定 してもよレ、。 例えば、 ΔΒΗ=ΒΜ · Κ、 あるいは BL= ( 1 -R) . BM、 B H= (1 +R) · BMなどが挙げられる。 なお、 この場合、 BMは必ずしも平均 値でなくてもよい。 That is, the code I for counting the identification number BID of the bump 3 is initialized to 15 (step 214), and the code I is decremented by 1 (step 2). 1 5). Unless the sign I has reached 0 (NO in step 2 16), the current height data H (CID, I) of the bump 3 is set to the lower limit BL of the predetermined range of the preset height. Is determined to be greater than or equal to and smaller than the current height data H (CID, I) of the bump 3 and the preset upper limit value BH of the prescribed range of height (step 217). The process of decrementing I by 11 (step 215) is performed sequentially. As a matter of course, the set values for comparison of ΔΒΗ, BL, BH, etc. described above may be set to the relative ratio (R) of a certain reference value (BM) instead of the absolute value. . For example, ΔΒΗ = ΒΜ · Κ, or BL = (1-R) .BM, BH = (1 + R) · BM. In this case, BM is not necessarily required to be an average value.
ここで、 バンプ 3の高さ Hが、 チップ 2內のすべてのバンプ 3について所定の 規定範囲 (BL〜BH) 内にあれば、 そのチップ 2は 「良品」 であると判定され (ステップ 2 16の判断 YE S) 、 バンプ 3の高さ Hが、 いずれかのバンプ 3に ついて所定の規定範囲 (BL〜BH) 外になつた時点で (ステップ 21 7の判断 NO) 、 そのチップ 2は 「不良品」 であると判定される。  Here, if the height H of the bump 3 is within the prescribed range (BL to BH) for all the bumps 3 of the chip 2 內, the chip 2 is determined to be “non-defective” (step 216). When the height H of the bump 3 falls outside the predetermined range (BL to BH) for one of the bumps 3 (NO in step 217), the chip 2 It is determined to be "defective."
以上のように上述した第 1、 第 2のチップ判定処理では、 高さが規定範囲外に あるバンプ 3が発見された時点 (ステップ 21 3の判断 NO、 ステップ 21 7の 判断 NO) で、 そのチップ 2は不良品であると判定して、 以後のバンプ 3につい ての判断を打ち切るようにしており、 演算処理時間の短縮が図られる。  As described above, in the first and second chip determination processes described above, when bump 3 having a height outside the specified range is found (determination NO in step 213, determination NO in step 217), The chip 2 is determined to be defective and the subsequent determination of the bump 3 is terminated, thereby shortening the calculation processing time.
こうした演算処理時間短縮のアルゴリズムは、 後述するコブ 5の検査の処理に 適用してもよい。 つまり、 チップ 2内のバンプ 3にコブ 5が発見された時点で、 以後のバンプ 3についての判断を打ち切り、 そのチップ 2は不良品であると判断 してもよレ、。  Such an algorithm for shortening the calculation processing time may be applied to the processing of the inspection of the bump 5 described later. In other words, when bump 5 is found on bump 3 in chip 2, the subsequent determination on bump 3 may be terminated, and chip 2 may be determined to be defective.
また、 後述するようにエキストラバンプ 6の検査結果のように、 チップ 2の識 別番号 C I Dのデータとともにデータが転送される場合には、 そのデータ転送時 点で以後の処理を打ち切ることも可能である。 つまり、 エキストラバンプ 6があ る旨の検査結果データが転送された時点で、 その識別番号 C I Dのチップ 2は不 良品であると判定し、 当該チップ 2についての以後の処理を打ち切り、 つぎのチ ップ 2についてのデータ転送を待つようにする。 なお、 以上説明した実施の形態において、 検査に先だって予め用意される C I D、 C B N等の設定値データは、 ウェハ 1の C A Dデータに基づいて求めること ができる。 In addition, when data is transferred together with the data of the identification number CID of the chip 2 as in the inspection result of the extra bump 6 as described later, the subsequent processing can be terminated at the time of the data transfer. is there. That is, when the inspection result data indicating that the extra bump 6 is present is transferred, the chip 2 with the identification number CID is determined to be defective, and the subsequent processing for the chip 2 is terminated, and the next chip Wait for the data transfer for step 2. In the embodiment described above, the set value data such as CID and CBN prepared in advance before the inspection can be obtained based on the CAD data of the wafer 1.
つぎに、 図 4のステップ 1 1 3で行われるバンプ 3の高さ Hの計測内容につい て、 具体的に説明する。  Next, the details of the measurement of the height H of the bump 3 performed in step 113 of FIG. 4 will be specifically described.
すなわち、 図 5に斜線で示すように、 バンプ 3の高さ Hを計測する際、 そのバ ンプ 3の中心座標位置を中心点とする正方形のウィンドウ 7力 このバンプ 3を 囲むように設定される。 このように、 ウィンドウ 7は、 バンプ 3全体のみならず このバンプ 3近傍の I Cチップ表面部分が入るように設定されるので、 バンプ 3 の X Y座標位置に多少の誤差があつたとしても、 バンプ 3全体をウィンドウ 7内 に確実に取り込むことができ、 検査を有効かつ正確に行うことが可能となる。 たとえば、 図 6 ( a ) に示すような円形なバンプ 3の直径が 1 0 0 μ π!〜 1 5 0 tilである場合には、 2 0 0 /χ πι Χ 2 0 0 μ ΐη (縦 X横) の大きさのウィンド ゥ 7が設定されることになる。  That is, as shown by the diagonal lines in Fig. 5, when measuring the height H of the bump 3, a square window 7 centered on the center coordinate position of the bump 3 is set to surround this bump 3. . As described above, since the window 7 is set so as to include not only the entire bump 3 but also the surface of the IC chip near the bump 3, even if there is some error in the XY coordinate position of the bump 3, The whole can be reliably taken into the window 7, and the inspection can be performed effectively and accurately. For example, the diameter of a circular bump 3 as shown in Fig. 6 (a) is 100 μπ! In the case of 1150 til, a window ゥ 7 having a size of 200 / χπιΧ200 μ μη (length x width) is set.
なお、 ウィンドウ 7を設定したときに、 ウィンドウ 7が 3 D計測モジュール 3 3の計測視野 4からはみ出してしまうような場合、 つまり図 5において識別番号 C 1 2のチップ 2内の識別番号 Β 1 3のバンプ 3にウィンドウ 7を設定した場合 には、 3 D計測モジュール 3 3によってはウィンドウ 7内の一部の部分について 鉛直方向位置データを取得することができない。 したがって、 後述するヒストグ ラムを有効に作成することができない場合なので、 この識別番号 Β 1 3のバンプ 3についての検査を行わないようにするのが望ましい。 し力 し、 このままでは、 バンプ 3の高さの検査もれが生じてしまい、 好ましくない。  In addition, when the window 7 is set, if the window 7 protrudes from the measurement visual field 4 of the 3D measurement module 3 3, that is, the identification number in the chip 2 of the identification number C 12 in FIG. When the window 7 is set to the bump 3 of, the vertical position data cannot be acquired for a part of the window 7 depending on the 3D measurement module 33. Therefore, it is desirable that the inspection of the bump 3 having the identification number 望 ま し い 13 should not be performed, since the histogram described later cannot be effectively created. However, if the pressure is left as it is, the inspection of the height of the bump 3 may be omitted, which is not preferable.
し力 し、 前述したように各計測視野 V I、 V2、 V 3…を設定する際、 図 3に示す ように、 これらをオーバ一ラップさせるようにしている。 そこで、 このオーバ一 ラップの大きさを、 ウィンドウ 7の大きさよりも大きく設定しておけば、 図 5の 識別番号 C 1 2のチップ 2内の識別番号 B 1 3のバンプ 3にかけられるウィンド ゥ 7のごとく、 計測視野境界付近にあるウィンドウ 7であっても、 オーバ一ラッ プされた 2つの計測視野のうちのいずれかに全体が欠けることなく入るようにな り、 バンプ 3の検査もれを防止することができる。 3 D計測モジュール 3 3によって、 ウィンドウ 7内の各部分の鉛直方向の位置 データが取得され、 その取得された各鉛直位置データが図 1 1に示すごとく ヒス トグラムとして表される。 However, when setting the measurement fields of view VI, V2, V3, etc. as described above, they are made to overlap as shown in FIG. Therefore, if the size of the overlap is set to be larger than the size of the window 7, the window to be applied to the bump 3 of the identification number B1 3 in the chip 2 of the identification number C12 in FIG. As described above, even if the window 7 is near the measurement field boundary, the entire measurement field can be completely inserted into one of the two measurement fields that have been overlapped. Can be prevented. The 3D measurement module 33 acquires the vertical position data of each part in the window 7, and the obtained vertical position data is represented as a histogram as shown in FIG.
そこで、 このヒス トグラムより、 鉛直位置データの最大値 MX (最も高くなる 位置) と最小値 MN (最も低くなる位置) が取得される。 ここで最大値 MXは、 バンプ 3の絶対高さを意味する。 一方、 I Cチップ 2の表面の絶対高さ Cは、 つ ぎのようにして決定される。  Therefore, the maximum value MX (the highest position) and the minimum value MN (the lowest position) of the vertical position data are obtained from this histogram. Here, the maximum value MX means the absolute height of the bump 3. On the other hand, the absolute height C of the surface of the IC chip 2 is determined as follows.
つまり、 最大値 MXと最小値 MNの中間値 (MX— MN) / 2から最小値 MN までの頻度を探索し、 最大の頻度が得られる鉛直位置データが I Cチップ 2の表 面の絶対高さ Cとされる。 あるいは、 同様にして、 最大値 MXと最小値 MNの中 間値 (MX— MN) / 2から最小値 MNまでの頻度を探索し、 その範囲での鉛直 位置データの平均値が I Cチップ 2の表面の絶対高さ Cとされる。 なお、 ここで、 最大値 MXと最小値 MNの中間値 (MX— MN) / 2から最小値 MNまでの頻度 を採索するようにしているのは、 I Cパターンの凹凸が存在しているのを考慮、す るためである。  In other words, the frequency between the maximum value MX and the minimum value MN (MX-MN) / 2 to the minimum value MN is searched, and the vertical position data that gives the maximum frequency is the absolute height of the surface of the IC chip 2. C. Alternatively, in the same manner, the frequency from the intermediate value of the maximum value MX and the minimum value MN (MX—MN) / 2 to the minimum value MN is searched, and the average value of the vertical position data in that range is obtained by the IC chip 2. Absolute height C of the surface. Here, the frequency between the maximum value MX and the minimum value MN (MX-MN) / 2 to the minimum value MN is searched for because there are irregularities in the IC pattern. This is for consideration and consideration.
そして、 これら絶対位置データの偏差 (MX— C ) がバンプ 3の I Cチップ 2 表面からの (相対) 高さ Hとされる。  The deviation (MX-C) of these absolute position data is defined as the (relative) height H of the bump 3 from the surface of the IC chip 2.
図 1 2は、 図 2 3に示すように、 ウェハ 1が鉛直方向に傾斜しており、 ウィン ドウ 7を、 バンプ 3の面積に対して相対的に大きく設定した場合 (ウィンドウ 7 中、 I Cチップ 2の表面が占める割合が大きい) のヒス トグラムを示している。 このように、 ウェハ 1が傾斜している場合は、 破線にて示すように I Cチップ 2の表面の頻度を示す山がブロードであり、 図 1 1の場合と同様の演算処理によ つて一義的にバンプ 3の高さ Hを決定することは、 正確さを欠く結果となる。 つ まり、 前述したようにウィンドウ 7の一方の端と他方の端とでは、 ウェハ 1の傾 斜によって I Cチップ 2の表面の高さが異なっているからである。 よって、 この 傾斜の影響を少なくするために、 ウィンドウ 7を狭く設定すればよい。  Fig. 12 shows the case where the wafer 1 is inclined in the vertical direction as shown in Fig. 23 and the window 7 is set relatively large with respect to the area of the bump 3 (in the window 7, the IC chip 2 has a large proportion of the surface). Thus, when the wafer 1 is inclined, the peak indicating the frequency of the surface of the IC chip 2 is broad as shown by the broken line, and is uniquely determined by the same arithmetic processing as in the case of FIG. Determining the height H of the bump 3 at the same time results in inaccuracy. That is, as described above, the height of the surface of the IC chip 2 differs between one end of the window 7 and the other end due to the inclination of the wafer 1. Therefore, in order to reduce the influence of the inclination, the window 7 may be set narrow.
すなわち、 ウィンドウ 7を、 バンプ 3の面積に対して相対的に小さく設定する (ウィンドウ 7中に、 I Cチップ 2の表面が占める割合が小さくなるように設定 する) ようにすれば、 図 1 2のヒス トグラムの I Cチップ表面を示すブロードな 山が、 図 1 1に示すように、 ピークをもったものに変化される。 That is, if the window 7 is set to be relatively small with respect to the area of the bump 3 (the window 7 is set so that the ratio of the surface of the IC chip 2 occupies a small amount), the window shown in FIG. Broad histogram showing IC chip surface The peak is changed to a peak, as shown in Fig. 11.
よって、 図 1 1の場合と同様の演算を適用することが可能となり、 正確に I C チップ表面の絶対髙さを求めることができる。 つまり正確にバンプ 3の高さ Hを 求めることができる。  Therefore, it is possible to apply the same calculation as in the case of FIG. 11, and it is possible to accurately obtain the absolute height of the surface of the IC chip. That is, the height H of the bump 3 can be accurately obtained.
以上のように、 I Cパターンの凹凸や、 ウェハ 1の傾斜が存在したとしても、 バンプ 3のチップ表面からの高さ Hを精度よく計測することができる。  As described above, the height H of the bump 3 from the chip surface can be accurately measured even if the IC pattern has irregularities or the wafer 1 is inclined.
図 13 (a) 、 (b) 、 (c) 、 (d) は、 最小値 MN、 最大値 MX、 チップ 表面高さ C、 バンプ 3の高さ Hを求めるための処理手順を示している。  FIGS. 13 (a), (b), (c) and (d) show processing procedures for obtaining the minimum value MN, the maximum value MX, the chip surface height C, and the height H of the bump 3.
なお、 以下において、 Iは铅直位置データの大きさを示す符号であり、 1から 100までの範囲に設定される。 また、 H I ST (I) は、 各鉛直位置の大きさ I毎の頻度を示している (図 1 1参照) 。  In the following, I is a code indicating the size of the vertical position data, and is set in the range of 1 to 100. H IST (I) indicates the frequency of each vertical position for each size I (see Fig. 11).
•最小値 MNの演算  • Calculation of minimum value MN
まず、 鉛直位置データ Iが 0にイニシャライズされ (ステップ 301) 、 鉛直 位置の大きさ Iが + 1インクリメントされる (ステップ 302) 。 以下、 現在の 鉛直位置の大きさ Iに対応する頻度 H I ST (I) が 0である限りは (ステップ 303の判断 NO) 、 鉛直位置の大きさ Iは + 1インクリメントされる力;、 現在 の鉛直位置の大きさ Iに対応する頻度 H I ST (I) が 0ではなくなったとき ( ステップ 303の判断 YE S) の鉛直位置の大きさ Iが最小値 MNとされる (ス テツプ 304) 。  First, the vertical position data I is initialized to 0 (step 301), and the size I of the vertical position is incremented by +1 (step 302). Hereinafter, as long as the frequency HI ST (I) corresponding to the current vertical position size I is 0 (NO in step 303), the vertical position size I is incremented by +1; When the frequency HI ST (I) corresponding to the vertical position size I is no longer 0 (judgment YE S in step 303), the vertical position size I is set to the minimum value MN (step 304).
•最大値 MXの演算  • Calculation of maximum value MX
まず、 鉛直位置の大きさ Iが 101にイニシャライズされ (ステップ 305) 、 鉛直位置の大きさ Iがー 1デクリメン卜される (ステップ 306) 。 以下、 現在 の鉛直位置の大きさ Iに対応する頻度 H I S T (I) が 0である限りは (ステツ プ 307の判断 NO) 、 鉛直位置データ Iは一 1デクリメントされるが、 現在の 鉛直位置の大きさ Iに対応する頻度 H I ST ( I) が 0ではなくなったとき (ス テツプ 307の判断 YE S) の鉛直位置の大きさ Iが最大値 MXとされる (ステ ップ 308 ) 。  First, the size I of the vertical position is initialized to 101 (step 305), and the size I of the vertical position is decremented by -1 (step 306). Hereinafter, as long as the frequency HIST (I) corresponding to the size I of the current vertical position is 0 (NO in step 307), the vertical position data I is decremented by 11, but When the frequency HI ST (I) corresponding to the size I is no longer 0 (decision YE S in step 307), the size I of the vertical position is set to the maximum value MX (step 308).
•チップ表面の高さ C  • Chip surface height C
まず、 鉛直位置の大きさ Iが最小値 MNにイニシャライズされるとともに、 最 大頻度を示す Pが 0にイニシャライズされ (ステップ 309) 、 鉛直位置の大き さ Iが + 1インクリメントされる (ステップ 310) 。 First, the magnitude I of the vertical position is initialized to the minimum value MN, and P indicating the large frequency is initialized to 0 (step 309), and the magnitude I of the vertical position is incremented by +1 (step 310).
以下、 現在の鉛直位置の大きさ I力;、 最大値 MXと最小値 MNの中間値 (MX + MN) /2よりも大きくなつたか否かが判断され (ステップ 31 1) 、 判断 Y E Sならば頻度の最大値を探索する範囲を超えたものと判断して処理を終了させ るが、 そうでない限りは頻度の最大値を探索する範囲にあるので、 手順はつぎの ステップ 312に移行される。  In the following, it is determined whether or not the magnitude of the current vertical position is greater than the intermediate value between the maximum value MX and the minimum value MN (MX + MN) / 2 (step 31 1). The process is determined to be outside the range for searching for the maximum value of frequency, and the processing is terminated. Otherwise, the process is in the range for searching for the maximum value of frequency, so the procedure moves to the next step 312.
ステップ 31 2では、 現在の最大頻度 Pが、 現在の鉛直位置の大きさ Iに対応 する頻度 HI ST (I) よりも大きいか否かが判断されており (ステップ 312) この判断結果が NOであれば、 最大頻度 Pの内容を、 現在の頻度 H I ST ( I ) に更新するとともに、 チップ表面高さ Cを現在の鉛直位置データ Iとする (ステ ップ 313) 力 ステップ 312の判断結果が YESであれば、 ステップ 313 のような更新を行うことなく、 手順をステップ 310に移行させ、 同様の処理を 繰り返し行わせる。  In step 312, it is determined whether the current maximum frequency P is greater than the frequency HI ST (I) corresponding to the current vertical position size I (step 312). If so, the content of the maximum frequency P is updated to the current frequency HI ST (I), and the chip surface height C is used as the current vertical position data I (step 313). If YES, the procedure shifts to step 310 without performing the update as in step 313, and the same processing is repeated.
やがて、 ステップ 311の判断 YESとなり、 頻度の最大値を探索する範囲を 超えたときに、 最終的にステップ 313で更新された Pの内容が、 最大頻度とな り、 最終的に更新された Cの内容が、 その最大頻度が得られるチップ表面高さと される。  Eventually, the determination in step 311 becomes YES, and when the frequency exceeds the range for searching for the maximum value of the frequency, the content of P finally updated in step 313 becomes the maximum frequency and the content of the finally updated C Is the chip surface height at which the maximum frequency is obtained.
•バンプ高さの検査  • Inspection of bump height
図 1 1に示すようにウィンドウ 7内の鉛直位置データに基づき、 各鉛直位 Sの 大きさ Iに対応する頻度 H 1 ST ( I ) が作成され (ステップ 314) 、 上述し たようにして最小値 MNが演算され (ステップ 315) 、 最大値 MXが演算され (ステップ 316) 、 チップ表面の高さ Cが演算される (ステップ 317) 。 そ して、 最大値 MXからチップ表面の高さ Cを減算した値として、 識別番号 C I D のチップ 2内の識別番号 B I Dのバンプ 3の高さ Hが求められる (ステップ 31 8) 。  As shown in FIG. 11, based on the vertical position data in the window 7, a frequency H 1 ST (I) corresponding to the magnitude I of each vertical position S is created (step 314), and the minimum is determined as described above. The value MN is calculated (step 315), the maximum value MX is calculated (step 316), and the height C of the chip surface is calculated (step 317). Then, as the value obtained by subtracting the chip surface height C from the maximum value MX, the height H of the bump 3 of the identification number B ID in the chip 2 of the identification number C ID is obtained (step 318).
つぎに、 図 1 1と同様なヒス トグラムを利用してコブ 5の有無の検査を行う場 合について説明する。  Next, a case where the presence or absence of the bump 5 is inspected by using a histogram similar to that in FIG. 11 will be described.
すなわち、 最大値 MXと最小値 MNの中間値 (MX— MN) / 2から最大値 M Xまでの範囲について頻度がカウントされ、 この範囲における累積頻度 Sが求め られる。 一方、 最大値 MXよりも所定量 Xだけ小さい値 (MX— X) (> (MX -MN) /2) から最大値 MXまでの範囲についての頻度がカウントされ、 この 範囲における累積頻度 SXが求められる。 That is, the maximum value M is calculated from the intermediate value (MX-MN) / 2 between the maximum value MX and the minimum value MN. The frequency is counted in the range up to X, and the cumulative frequency S in this range is obtained. On the other hand, the frequencies in the range from the value (MX-X) (> (MX-MN) / 2) smaller than the maximum value MX by a predetermined amount X to the maximum value MX are counted, and the cumulative frequency SX in this range is calculated. Can be
そこで、 これら累積頻度の比 SX/Sを予め定められた評価値 Rで評価し、 コ ブ 5の有無を判定する。 すなわち、 図 24のようにコブ 5のあるバンプ 3は、 比 SX/Sが評価値 Rよりも小さくなる。 逆にコブ 5のないバンプ 3は、 比 SX/ Sが評価値 R以上となる。  Therefore, the ratio SX / S of these cumulative frequencies is evaluated with a predetermined evaluation value R, and the presence or absence of the bump 5 is determined. That is, as shown in FIG. 24, the bump 3 having the bump 5 has a ratio SX / S smaller than the evaluation value R. Conversely, bump 3 without bump 5 has a ratio SX / S equal to or greater than evaluation value R.
ここで、 評価値 Rは、 図 15に示すようにコブ 5のない正常なバンプ 3につい てのヒストグラムより得られる比 SX/Sから統計的に決定すればよレ、。  Here, the evaluation value R can be statistically determined from the ratio SX / S obtained from the histogram of the normal bump 3 without the bump 5 as shown in FIG.
図 16 (a) 、 (b) 、 (c) は、 上記累積誤差 SX、 累積誤差 S、 コブ検査 の処理手順を示すフローチャートである。 以下、 これらについて説明する。  FIGS. 16 (a), (b) and (c) are flowcharts showing the processing procedure of the cumulative error SX, the cumulative error S, and the bump test. Hereinafter, these will be described.
•累稂頻度 SXの演算  • Calculation of cumulative frequency SX
まず、 鉛直位置の大きさ Iが最大値 MXにイニシャライズされるとともに、 累 積頻度を示す S Xが 0にイニシャライズされ (ステップ 401) 、 鉛直位置の大 きさ Iがー 1デクリメントされる (ステップ 402) 。  First, the magnitude I of the vertical position is initialized to the maximum value MX, SX indicating the cumulative frequency is initialized to 0 (step 401), and the magnitude I of the vertical position is decremented by -1 (step 402). ).
以下、 現在の鉛直位置の大きさ Iが、 (MX— X) よりも小さくなつたか否か が判断され (ステップ 403) 、 判断 YESならば累積頻度を求める範囲を超え たものと判断して処理を終了させるが、 そうでない限りは頻度を累積すべき範囲 にあるので、 手順はつぎのステップ 404に移行される。  Hereinafter, it is determined whether or not the current vertical position size I has become smaller than (MX-X) (step 403). If the determination is YES, it is determined that the range exceeds the range for obtaining the cumulative frequency, and the processing is performed. , But otherwise the frequency is in the range to be accumulated, so the procedure moves to the next step 404.
ステップ 404では、 最大頻度 SXの内容を、 現在の最大頻度 SXに対して、 現在の鉛直位置の大きさ Iに対応する頻度 H I ST (I) を加えたものとして更 新する (ステップ 404) 。 この処理はステップ 403の判断が NOである限り、 Iを順次デクリメントしつつ繰り返し実行される。  In step 404, the content of the maximum frequency SX is updated as the current maximum frequency SX plus the frequency H I ST (I) corresponding to the current vertical position size I (step 404). This process is repeatedly executed while sequentially decrementing I as long as the determination in step 403 is NO.
やがて、 ステップ 403の判断 YE Sとなり、 最大頻度を求めるべき範囲を超 えたときに、 最終的にステップ 404で更新された SXの内容が、 累積頻度とし て得られる。  Eventually, the determination in step 403 becomes YES, and when the maximum frequency is exceeded, the content of SX updated in step 404 is finally obtained as the cumulative frequency.
-累穰頻度 Sの演算  -Calculation of ferocity frequency S
この処理は、 図 16 (a) の (MX— X) の代わりに (MN + MX) /2とし、 S Xの代わりに Sとした他は同様であるので説明は省略する (図 1 6 ( b ) 参照) . コブの検査 In this process, (MN + MX) / 2 is used instead of (MX-X) in Fig. 16 (a), The description is omitted because it is the same except that S is used instead of SX (see Fig. 16 (b)).
上述するようにして累積頻度 S Xが演算され (ステップ 4 0 9 ) 、 累積頻度 S が演算される (ステップ 4 1 0 ) 。 そして、 比 S X / Sが評価値 Rよりも小さい か否かによって、 識別番号 C I Dのチップ 2内の識別番号 B I Dのバンプ 3につ いて、 コブ 5の有り、 無しが判断される (ステップ 4 1 1 ) 。  As described above, the cumulative frequency S X is calculated (step 409), and the cumulative frequency S is calculated (step 410). The presence or absence of bump 5 is determined for bump 3 of identification number BID in chip 2 of identification number CID based on whether the ratio SX / S is smaller than evaluation value R (step 41). 1).
以上のようにして得られたバンプ 3の高さ H、 コブ 5の有無を示すデータは、 そのチップ 2の識別番号 C I D、 バンプ 3の識別番号 B I Dとともに、 検査結果 データとして転送されることになる (ステップ 1 1 4 ) 。  The data indicating the height H of bump 3 and the presence or absence of bump 5 obtained as described above are transferred as inspection result data together with the identification number CID of the chip 2 and the identification number BID of bump 3. (Steps 1 1 4).
つぎに、 図 1 1と同様なヒストグラムを利用してエキストラバンプ 6の有無の 検査を行う場合について説明する。  Next, a case will be described in which the presence / absence of the extra bump 6 is inspected using the same histogram as in FIG.
図 1 7は、 1つのチップ 2について各ウィンドウ 7が設定された様子を示して いる。 前述したようにバンプ 3の高さ Hを求める場合にはウィンドウ 7内の鉛直 位置データは有効なものとしてヒストグラムを作成したが、 このエキストラバン プ 6の検査では、 ウィンドウ 7內のデータは却ってエキストラバンプ 6の検査に 誤差を与える結果となる。  FIG. 17 shows how each window 7 is set for one chip 2. As described above, when determining the height H of bump 3, the histogram was created assuming that the vertical position data in window 7 was valid, but in the inspection of extra bump 6, the data in window 7 This results in an error in the inspection of bump 6.
そこで、 ウィンドウ 7部分は斜線にて示すようにマスクして、 それ以外の部分 のみの鉛直位置データに基づいてヒストグラムを作成するようにする。  Therefore, the window 7 is masked as shown by hatching, and a histogram is created based on the vertical position data of only the other portions.
ただし、 チップ 2全体についての鉛直位置データを使用すると、 図 1 2で説明 したように、 チップ 2の傾斜による誤差が生じてしまレ、、 チップ 2の表面高さ C を精度よく検出することができない虞がある。  However, if the vertical position data for the entire chip 2 is used, errors due to the inclination of the chip 2 may occur as described in FIG. 12, and the surface height C of the chip 2 may be accurately detected. It may not be possible.
そこで、 図 1 1に示すようにチップ表面を示す山が一定のピークをもつ程度に チップ 2を、 小面積に分割し、 分割した領域毎にヒス トグラムを作成すればよい。 たとえば、 図 1 8に示すように、 チップ 4全体を 4分割し、 各分割領域 8毎にヒ ストグラムを作成することが考えられる。  Therefore, the chip 2 may be divided into small areas so that the peaks indicating the chip surface have a certain peak as shown in FIG. 11, and a histogram may be created for each of the divided regions. For example, as shown in FIG. 18, it is conceivable to divide the entire chip 4 into four and create a histogram for each divided region 8.
図 1 9 ( a ) は、 図 1 8の領域 8についてのヒス トグラムを示している。  FIG. 19 (a) shows a histogram for region 8 in FIG.
すなわち、 3 D計測モジュール 3 3によって、 領域 8内の各部分の鉛直方向の 位置データが取得され、 その取得された各鉛直位置データが図 1 9 ( a ) に示す ごとくヒストグラムとして表される。 そこで、 このヒス トグラムより、 鉛直位置データの最大値 MX (最も高くなる 位置) と最小値 MN (最も低くなる位置) が取得される。 ここで最大値 MXは、 仮のエキストラバンプ 6の絶対高さを意味する。 一方、 I Cチップ 2の表面の絶 対高さ Cは、 つぎのようにして決定される。 That is, the 3D measurement module 33 obtains the vertical position data of each part in the area 8, and the obtained vertical position data is represented as a histogram as shown in FIG. 19 (a). Therefore, the maximum value MX (the highest position) and the minimum value MN (the lowest position) of the vertical position data are obtained from this histogram. Here, the maximum value MX means the absolute height of the provisional extra bump 6. On the other hand, the absolute height C of the surface of the IC chip 2 is determined as follows.
つまり、 最大値 MXから最小値 MNまでの頻度を探索し、 最大の頻度が得られ る鉛直位置データが I Cチップ 2の表面の絶対高さ Cとされる。 あるいは、 同様 にして、 最大値 MXから最小値 MNまでの頻度を探索し、 その範囲での鉛直位置 データの平均値が I Cチップ 2の表面の絶対高さじとされる。  That is, the frequency from the maximum value MX to the minimum value MN is searched, and the vertical position data at which the maximum frequency is obtained is determined as the absolute height C of the surface of the IC chip 2. Alternatively, similarly, the frequency from the maximum value MX to the minimum value MN is searched, and the average value of the vertical position data in that range is taken as the absolute height of the surface of the IC chip 2.
そして、 これら絶対位置データの偏差 (MX— C ) 力 仮のエキストラバンプ バンプ 6の I Cチップ 2表面からの (相対) 高さ Hとされる。  Then, the deviation (MX-C) of these absolute position data is assumed to be the (relative) height H of the temporary extra bump bump 6 from the surface of the IC chip 2.
そこで、 この Hが、 予め設定された値 Tと比較され、 高さ Hが T以下ならば、 エキストラバンプ 6は無いと判定し、 高さ Hが Tよりも大きい場合には、 エキス トラバンプ 6は有ると判定する。  Then, this H is compared with a preset value T. If the height H is equal to or less than T, it is determined that there is no extra bump 6, and if the height H is larger than T, the extra bump 6 is It is determined that there is.
図 1 9 ( b ) 、 (c ) は、 チップ表面高さ C、 エキストラバンプ検査の処理手 順を示すフローチャートである。 .  FIGS. 19 (b) and (c) are flowcharts showing the processing procedure for chip surface height C and extra bump inspection. .
•チップ表面高さ Cの演算  • Calculation of chip surface height C
この演算は、 図 1 3 ( c ) の (MX +MN) / 2の代わりに、 MXとした他は、 同様であるので、 重複した説明は省略する。  This operation is the same as in FIG. 13 (c) except that MX is used instead of (MX + MN) / 2, and a duplicate description is omitted.
.エキストラバンプの検査  .Extra bump inspection
図 1 3 ( b ) と同様にして最大値 MXが演算され (ステップ 5 0 6 ) 、 図 1 9 ( b ) に示すようにしてチップ表面の高さ Cが演算される (ステップ 5 0 7 ) 。 そして、 MX— Cが設定値 Tよりも小さいか否かによって、 識別番号 C I Dのチ ップ 2内の領域 8について、 エキストラバンプ 6の無し、 有りが判断される (ス テツプ 5 0 8 ) 。 この処理はチップ 2の残りの領域 8、 8、 8についても同様に 行われ、 4つすベての領域についての判断結果から、 最終的にチップ 2の中にェ キストラバンプ 6が有るか否かが判定される。  The maximum value MX is calculated in the same manner as in FIG. 13 (b) (step 506), and the height C of the chip surface is calculated as shown in FIG. 19 (b) (step 507) . Then, the presence or absence of the extra bump 6 is determined for the area 8 in the chip 2 of the identification number C ID depending on whether MX-C is smaller than the set value T (step 508). This process is performed in the same manner for the remaining regions 8, 8, and 8 of the chip 2, and based on the determination results for all four regions, whether or not there is finally the extra bump 6 in the chip 2 Is determined.
以上のようにして得られたエキストラバンプ 6の有無を示すデータは、 そのチ ップ 2の識別番号 C I Dとともに、 検査結果データとして転送されることになる (ステップ 1 1 4 ) 。 つぎに、 ウェハ上のバンプの検査を高速に行うことができる実施の形態につい て説明する。 The data indicating the presence or absence of the extra bump 6 obtained as described above is transferred as inspection result data together with the identification number CID of the chip 2 (step 114). Next, an embodiment capable of inspecting bumps on a wafer at high speed will be described.
さて、 図 2 0に示す、 ウェハ 1上のバンプ 3の高さを計測する装置としては、 本出願人に係る特許出願 (特願平 6— 1 0 2 9 3 1号) に開示されたものを使用 することができる。  An apparatus for measuring the height of the bumps 3 on the wafer 1 shown in FIG. 20 is disclosed in a patent application filed by the present applicant (Japanese Patent Application No. 6-109293). Can be used.
すなわち、 この出願に開示された共焦点光学系を応用した 3次元形状計測装置 を、 3 D計測モジュール 3 3として使用することができる。  That is, the three-dimensional shape measurement apparatus to which the confocal optical system disclosed in this application is applied can be used as the 3D measurement module 33.
この種の 3 D計測モジュール 3 3では、 共焦点光学系全体または対物レンズの み、 またはウェハ 1を載置したステージが鉛直方向に移動される。 この場合、 図 2 0の 3 D計測モジュール 3 3に、 これを Z軸方向に移動させる Z軸移動機構が 設けられ、 この Z軸移動機構によって 3 D計測モジュール 3 3が Z軸方向に移動 され、 ウェハ 1が鉛直方向に所定距離だけ 3 D計測モジュール 3 3に対し相対的 に移動されるものとする。  In this type of 3D measurement module 33, the entire confocal optical system, only the objective lens, or the stage on which the wafer 1 is mounted is moved in the vertical direction. In this case, the 3D measurement module 33 in FIG. 20 is provided with a Z-axis movement mechanism for moving the 3D measurement module 33 in the Z-axis direction. The Z-axis movement mechanism moves the 3D measurement module 33 in the Z-axis direction. It is assumed that the wafer 1 is moved relative to the 3D measurement module 33 by a predetermined distance in the vertical direction.
こうして、 ウェハ 1が Z方向に移動され、 3 D計測モジュール 3 3の受光部で 感知する受光量が最大となる移動位置がその受光点における被計測物体 (ウェハ 1上のバンプ 3 ) の高さ位置とされる。 このような処理が、 アレイ状に配列され た各受光部に関して実行される。  In this way, the wafer 1 is moved in the Z direction, and the movement position at which the amount of light received by the light receiving unit of the 3D measurement module 33 becomes the maximum is the height of the object to be measured (the bump 3 on the wafer 1) at the light receiving point. Position. Such processing is performed for each light receiving unit arranged in an array.
そして、 前述したように、 3 D計測モジュール 3 3の 1計測視野 4でウェハ 1 全体を計測できないので、 計測視野 4が切り換えられて同様の処理が実行される。 つまり、 ウェハ 1の上面すベての高さが 3 D計測モジュール 3 3で計測される ように、 当該 3 D計測モジュール 3 3の計測視野 4が移動すべき平面上の各移動 位置 O v、 O v、 O v…が設定される (図 3参照) 。 そして、 この設定された各 平面移動位置に計測視野 4を、 V I、 V2、 V3…と順次移動させ、 各平面移動位置 ごとに、 ウェハ 1を、 3 D計測モジュール 3 3に対して相対的に、 上記所定距離 だけ Z方向に移動させることにより、 当該計測視野 4内におけるバンプ 3の高さ Hの計測が行われる。  Then, as described above, since the entire wafer 1 cannot be measured in one measurement field 4 of the 3D measurement module 33, the measurement field 4 is switched and the same processing is executed. In other words, so that the height of the entire upper surface of the wafer 1 is measured by the 3D measurement module 33, each movement position O v, O v, O v… are set (see Fig. 3). Then, the measurement field of view 4 is sequentially moved to each of the set plane movement positions in the order of VI, V2, V3, etc., and the wafer 1 is moved relative to the 3D measurement module 33 for each plane movement position. By moving the predetermined distance in the Z direction, the height H of the bump 3 in the measurement visual field 4 is measured.
図 2 6は、 各計測視野 V I、 V2、 V3--- V -1, VN、 ViV+1…の平面方向の移 動、 各計測視野毎の鉛直 Z軸方向の移動の態様を示す図であり、 図 2 7はそのタ ィムチャートを示しており、 従来技術の図 3 0、 図 3 1にそれぞれ対応している。 これら図に示すように、 各計測視野 ViV-l、 ViV、 ViV+1において、 Z方向の 移動方向が逐次反転されるように、 Z軸移動機構は 3 D計測モジュール 3 3を駆 動する。 すなわち、 計測視野 ViV-1では、 下降方向 dに移動されてバンプ 3の高 さ Hの計測が行われ、 つぎの計測視野 ViVでは、 前回とは反対の上昇方向 d 'に 移動されて計測が行われ、 つぎの計測視野 VN+1では、 前回とは反対の下降方向 dに移動されて計測が行われる (図 2 6の矢印 d、 d '参照) 。 Fig. 26 is a diagram showing the movement of each measurement field of view VI, V2, V3 --- V-1, VN, ViV + 1 ... in the plane direction, and the movement of each measurement field of view in the vertical Z-axis direction. FIG. 27 shows a timing chart thereof, which corresponds to FIGS. 30 and 31 of the prior art, respectively. As shown in these figures, the Z-axis movement mechanism drives the 3D measurement module 33 so that the movement direction in the Z direction is sequentially reversed in each of the measurement visual fields ViV-l, ViV, and ViV + 1. That is, in the measurement visual field ViV-1, the height H of the bump 3 is measured by moving in the descending direction d, and in the next measurement visual field ViV, the measurement is performed by moving in the ascending direction d 'opposite to the previous one. In the next measurement field of view VN + 1, measurement is performed by moving in the downward direction d opposite to the previous one (see arrows d and d 'in Fig. 26).
バンプ 3の高さ Hの計測は、 前述したように、 ウィンドウ 7を設定することに より行われる。  The measurement of the height H of the bump 3 is performed by setting the window 7 as described above.
図 2 8は、 バンプ 3の断面図を示しており、 3 D計測モジュール 3 3によって、 Z軸移動機構 (Zステージ) の原点からチップ 2表面までの距離 Z 1が計測され、 同原点からバンプ 3の頂点までの距離 Z 2が計測される。 そして、 これらの偏差 Z 1— Z 2として、 ウィンドウ 7内のバンプ 3の高さ Hが計測される。 このようにゥ ィンドウ 7毎に相対高さ Z l— Z 2としてバンプ高さ Hを求めるようにしたのは、 つぎのような理由による。 つまり、 ウェハ 1の位置が異なれば (ウィンドウ設定 位置が異なれば) 、 チップ表面の絶対高さが異なる。 このため、 バンプ 3の高さ を、 一の基準に対する絶対高さとして求めたのではバンプ高さに誤差が生じてし まうので、 これを避けるためである。  Fig. 28 shows a cross-sectional view of the bump 3. The 3D measurement module 33 measures the distance Z1 from the origin of the Z-axis movement mechanism (Z stage) to the surface of the chip 2. The distance Z 2 to the vertex of 3 is measured. The height H of the bump 3 in the window 7 is measured as these deviations Z 1 —Z 2. The bump height H is determined as the relative height Zl—Z2 for each window 7 for the following reason. That is, if the position of the wafer 1 is different (if the window setting position is different), the absolute height of the chip surface is different. For this reason, if the height of the bump 3 is determined as an absolute height with respect to one reference, an error occurs in the bump height. This is to avoid this.
以上のように、 この実施の形態では、 鉛直 Z軸方向の移動方向を逐次反転させ ながら計測を行うようにしており、 つぎの計測視野に移動する際 (図 2 7の矢印 c ) には、 平面方向の移動だけでよく、 従来のように 3 D計測モジュール 3 3を Z方向初期位置に戻すためだけの鉛直 Z軸方向の移動は行われない。  As described above, in this embodiment, measurement is performed while sequentially reversing the movement direction in the vertical Z-axis direction, and when moving to the next measurement visual field (arrow c in FIG. 27), Only the movement in the plane direction is sufficient, and the movement in the vertical Z-axis direction only for returning the 3D measurement module 33 to the initial position in the Z direction as in the conventional case is not performed.
このため、 図 2 7に示すように、 1視野サイクルタイムは、 高さ計測のために 3 D計測モジュール 3 3を Z軸方向に移動させている時間と、 計測視野 4を平面 方向に移動させる時間だけの組合せであり、 図 3 1のように、 Z位置を初期位置 まで戻すためだけの本来の高さ計測にも計測視野 4の移動に使われない無駄時間 は存在しないこととなる。 このため 1視野のサイクルタイムがその分小さくなり、 装置のスループットを飛躍的に向上させることができる。  For this reason, as shown in Fig. 27, one view cycle time is the time during which the 3D measurement module 33 is moved in the Z-axis direction for height measurement and the time when the measurement view field 4 is moved in the plane direction. As shown in Fig. 31, there is no dead time that is not used for moving the measurement field of view 4 in the original height measurement just to return the Z position to the initial position. As a result, the cycle time for one field of view is reduced accordingly, and the throughput of the device can be dramatically improved.
また、 3 D計測モジュール 3 3を Z方向初期位置まで戻すための動作がなくな るので、 その分、 移動に伴う振動等の悪影響が少なくなる。 とりわけ、 むだ時間 短縮のために 3 D計測モジュール 3 3を初期位置まで戻す速度を高速化すること によって振動等による甚大な影饗が発生してしまう虞もなくなる。 また、 3 D計 測モジュール 3 3を初期位置まで戻すための動作がなくなった分、 Z軸移動機構 の耐久性が向上する。 In addition, since there is no operation for returning the 3D measurement module 33 to the initial position in the Z direction, adverse effects such as vibration due to movement are reduced. Above all, dead time By increasing the speed at which the 3D measurement module 33 is returned to the initial position for the purpose of shortening, there is no possibility that a large influence due to vibration or the like may occur. In addition, since the operation for returning the 3D measurement module 33 to the initial position is eliminated, the durability of the Z-axis movement mechanism is improved.
このように Z軸移動機構を往復移動させることによって計測の高速化を図る実 施の形態は、 バンプの計測に限定されることなく、 任意の計測対象に適用するこ とができる。  The embodiment of increasing the measurement speed by reciprocating the Z-axis moving mechanism in this way can be applied to any measurement target without being limited to the measurement of the bump.
さて、 前述したように各計測視野 V I、 V2、 ν3···を設定する際、 図 3に示すよ うに、 これらをオーバ一ラップさせるようにしている。  Now, as described above, when setting each measurement visual field VI, V2, ν3,..., They are made to overlap as shown in FIG.
図 2 9は、 隣り合う 4つの計測視野 A、 B、 C、 Dについてオーバ一ラップの 態様を示している。  FIG. 29 shows an overlapping mode for four adjacent measurement fields of view A, B, C, and D.
すなわち、 計測視野の 1辺の長さの 1 / 2 0程度がウィンドウ 7の 1辺の長さ となるようにウィンドウ 7が設定される。 そして、 オーバ一ラップ領域 (これを 斜線にて示す) 力 ウィンドウ 7の大きさよりも大きくなるように、 ォ一バーラ ップ領域が設定される。 この結果、 隣り合う両計測視野のうち少なくとも一方の 計測視野內に、 高さを計測すべきバンプ 3を含んだウィンドウ 7全体が入るよう になり、 一のウィンドウ 7についての計測が、 少なくとも一方の計測視野内にお いて行われることになる。 たとえば、 図 2 9のウィンドウ 7 αのように、 本来、 計測視野 Αの境界付近にあり、 計測視野 Aのみで計測できないウィンドウであつ ても、 上述したオーバ一ラップによって、 隣の計測視野 B内に全体が欠けること なく含まれるようになるので、 この計測視野 Bのみでウィンドウ 7 a全体を計測 することができる。 ウィンドウ 7 bについても同様であり計測視野 Aのみで計測 を行うことができる。 また、 オーバ一ラップ領域內に完全に含まれるウィンドウ 7 cについては、 計測視野 Aと Bとで重複した計測がなされることになる。 この 場合は、 ウィンドウ 7 cについての計測結果をオーバーライ 卜したり、 予め A、 Bいずれの計測結果を優先するかを決めておくことにより、 対処することができ る。  That is, window 7 is set such that approximately 1/20 of the length of one side of the measurement visual field is the length of one side of window 7. Then, the overlap area (which is indicated by oblique lines) is set to be larger than the size of the force window 7. As a result, the entire window 7 including the bump 3 whose height is to be measured enters the at least one measurement field of view の う ち of both adjacent measurement fields, and the measurement of one window 7 is performed by at least one of the two measurement fields. This will be done within the measurement field of view. For example, as shown in window 7α in Fig. 29, even a window that is originally near the boundary of the measurement field of view で き な い and cannot be measured only with the measurement field of view A, due to the overlap described above, The entire window 7a can be measured only with this measurement field of view B since the entire window is included without any loss. The same applies to window 7b, and measurement can be performed only in measurement field A. Further, for the window 7c completely included in the overlapped area 內, measurement is overlapped between the measurement visual fields A and B. In this case, it is possible to deal with this by overwriting the measurement result of the window 7c or determining in advance which of the measurement results A or B has priority.
以上のように、 計測視野をオーバ一ラップさせることにより、 少なくとも一の 計測視野において、 ウィンドウ 7全体の検査を確実に行うことができるようにな り、 バンプ 3の検査もれを防止することができる。 As described above, by overlapping the measurement visual fields, the inspection of the entire window 7 can be reliably performed in at least one measurement visual field. As a result, the inspection of the bump 3 can be prevented from being missed.
この実施の形態と、 前述した Z軸移動機構を往復移動させることによって計測 の高速化を図る実施の形態とを組み合わせることによって、 以下のような効果が もたらされる。  By combining this embodiment with the above-described embodiment in which the Z-axis moving mechanism is reciprocated to increase the speed of measurement, the following effects can be obtained.
すなわち、 一般に、 3 D計測モジュール 3 3を駆動する Z軸移動機構には、 上 昇方向の移動と下降方向の移動とで、 ヒステリシスが存在する。 このため、 もし 計測視野同士のオーバーラップが存在してないとすると、 計測視野 Aと計測視野 Bとの間で、 高さの計測誤差が生じることになる。  That is, in general, the Z-axis movement mechanism that drives the 3D measurement module 33 has hysteresis between the movement in the ascending direction and the movement in the descending direction. Therefore, if there is no overlap between the measurement visual fields, a height measurement error occurs between the measurement visual fields A and B.
すなわち、 仮に、 計測視野 Aと計測視野 Bとがオーバ一ラップしていないで、 これら計測視野の境界領域にウィンドウ 7が両視野にまたがって設定された場合 には、 このウィンドウ 7の一部については計測視野 Aで計測され、 ウィンドウ 7 の残りの部分は計測視野 Bで計測されることになる。 これら隣り合う計測視野 A、 Bでは、 計測の際の Z軸移動方向が逆であり、 ヒステリシスが存在し、 ウィンド ゥ 7の計測視野 Aによる計測部分と、 当該ウィンドウ 7の計測視野 Bによる計測 部分とで、 誤差が生じてしまうことになる。  In other words, if the measurement visual field A and the measurement visual field B do not overlap, and if the window 7 is set over both fields in the boundary area of these measurement visual fields, a part of the window 7 Will be measured in measurement field A, and the rest of window 7 will be measured in measurement field B. In these adjacent measurement fields of view A and B, the Z-axis movement direction at the time of measurement is reversed, and there is hysteresis, and the measurement part of the window ゥ 7 by the measurement field A and the measurement part of the window 7 by the measurement field B Thus, an error occurs.
しかし、 この実施の形態では、 両計測視野 A、 Bをオーバ一ラップさせ、 少な くともいずれかの視野内でウィンドウ 7全体が計測が完結されるので、 このウイ ンドウ 7の計測、 つまりこのウィンドウ 7に含まれるバンプ 3の高さの計測は、 往復移動のヒステリシスの影響を受けることがなく、 計測を誤差なく行うことが できるようになる。 産業上の利用可能性  However, in this embodiment, the measurement fields A and B are overlapped, and the measurement of the entire window 7 is completed in at least one of the fields of view. The measurement of the height of the bump 3 included in 7 is not affected by the hysteresis of the reciprocating movement, and the measurement can be performed without error. Industrial applicability
本発明はウェハ上のバンプ電極以外の突起物の外観の検査に応用することがで さる。  INDUSTRIAL APPLICABILITY The present invention can be applied to inspection of the appearance of protrusions other than bump electrodes on a wafer.

Claims

請求の範囲 The scope of the claims
1 . ウェハと、 このウェハ上のバンプを撮像する視覚手段との相対位置 -姿勢を、 相対位置 ·姿勢変化手段によって変化させながら、 前記ウェハ上のバ ンプの外観の検査を行うウェハバンプの外観検査装置において、 1. Inspection of the appearance of the bumps on the wafer by changing the relative position and orientation between the wafer and the visual means for imaging the bumps on the wafer by the relative position and orientation change means, and inspecting the appearance of the bumps on the wafer. In the device,
前記相対位置 ·姿勢変化手段によって、 前記ウェハを、 所定の座標系の座標軸 に位置決めする位置決め手段と、  Positioning means for positioning the wafer on a coordinate axis of a predetermined coordinate system by the relative position / posture changing means;
前記視覚手段は、 複数のバンプを一度に撮像することができる計測視野を有し ており、 前記ウェハ上のすべてのバンプが前記視覚手段で撮像されるように、 前 記計測視野が移動すべき前記座標系上の座標位置を設定する設定手段と、 前記位置決め手段によつて前記ウェハが位置決めされた際に、 前記座標系上の 座標原点を回転中心とする前記ウェハの回転位置ずれを検出する検出手段と、 前記設定手段で設定された前記視觉手段の計測視野の各設定座標位置を、 前記 検出手段で検出された回転位置ずれ分だけ前記座標系上で回転変換させることに よって補正する補正手段と、  The visual means has a measurement visual field capable of imaging a plurality of bumps at once, and the measurement visual field should be moved so that all the bumps on the wafer are imaged by the visual means. Setting means for setting a coordinate position on the coordinate system; and when the wafer is positioned by the positioning means, detecting a rotational position shift of the wafer about a coordinate origin on the coordinate system as a rotation center. A detecting unit, and correcting each set coordinate position of the measurement field of view of the viewing unit set by the setting unit by rotating the coordinate system on the coordinate system by a rotational position shift detected by the detecting unit. Correction means;
前記補正手段で補正された各補正座標位置に、 前記視覚手段の計測視野が順次 移動されるように、 前記相対位置 ·姿勢変化手段を駆動する手段と  Means for driving the relative position / posture changing means so that the measurement field of view of the visual means is sequentially moved to each corrected coordinate position corrected by the correction means.
を具えたウェハバンプの外観検査装置。  Apparatus for inspecting wafer bump appearance.
2 . 前記計測視野内に含まれる各バンプの前記座標系上の座標位置を、 予 め設定するバンプ座標位置設定手段と、  2. Bump coordinate position setting means for presetting the coordinate position on the coordinate system of each bump included in the measurement field of view,
前記バンプ座標位置設定手段で設定された予設定座標位置に基づいて前記計測 視野内のバンプ位置を特定し、 この特定されたバンプ位置に基づき前記ウェハ上 のバンプの外観検査を行う検査手段と  Inspection means for specifying a bump position in the measurement field of view based on preset coordinate positions set by the bump coordinate position setting means, and performing a visual inspection of bumps on the wafer based on the specified bump positions; and
をさらに具えた請求の範囲第 1項記載のウェハバンプの外観検査装置。  2. The wafer bump appearance inspection device according to claim 1, further comprising:
3 . ウェハ上の複数のバンプを視覚手段によって撮像し、 この撮像結果に 基づき前記ウェハ上のバンプの外観の検查を行うウェハバンプの外観検査装置に おいて、  3. In a wafer bump appearance inspection apparatus that images a plurality of bumps on a wafer by visual means and inspects the appearance of the bumps on the wafer based on the imaging result,
前記視覚手段の撮像結果に基づいて、 前記ウェハ上の各チップ毎に、 チップ内 の複数のバンプの平均高さを求め、 当該チップ内の全てのバンプの高さが、 前記 平均高さに対する一定偏差内に収まっている場合に、 当該チップは良品であると 判定するようにしたウェハバンプの外観検査装置。 For each chip on the wafer, the average height of a plurality of bumps in the chip is determined based on the imaging result of the visual means, and the height of all bumps in the chip is Apparatus for inspecting the appearance of wafer bumps that determines that the chip is non-defective if it falls within a certain deviation from the average height.
4 . ウェハ上のバンプを、 所定の大きさの計測視野をもって撮像する視覚 手段を具え、 この視覚手段の撮像結果に基づき前記ウェハ上のバンプの外観の検 査を行うウェハバンプの外観検査装置において、  4. In a wafer bump appearance inspection apparatus, comprising visual means for imaging a bump on a wafer with a measurement field of a predetermined size, and inspecting the appearance of the bump on the wafer based on an imaging result of the visual means,
前記ウェハを、 所定の座標系の座標軸に位置決めする位置決め手段と、 前記計測視野内に含まれるバンプの前記座標系上の座標位置を、 予め設定する バンプ座標位置設定手段と、  Positioning means for positioning the wafer on a coordinate axis of a predetermined coordinate system; bump coordinate position setting means for presetting the coordinate positions of the bumps included in the measurement visual field on the coordinate system;
前記バンプ座標位置設定手段で設定された予設定座標位置に基づいて前記計測 視野内のバンプ位置を特定し、 この特定されたバンプ位置周辺の一定領域につい てウィンドウを設定して、 このウィンドウについてのみ前記ウェハ上のバンプの 外観検査を行う検査手段と  A bump position in the measurement field of view is specified based on a preset coordinate position set by the bump coordinate position setting means, a window is set for a certain area around the specified bump position, and only this window is set. Inspection means for inspecting the appearance of the bumps on the wafer;
を具えたウェハバンプの外観検査装置。  Apparatus for inspecting wafer bump appearance.
5 . 前記検査手段は、  5. The inspection means includes:
前記ウィンドウ中の各部の高さを求め、 この高さデータに基づき、 高さと頻度 との関係を示すヒストグラムを作成するヒストグラム作成手段と、  Histogram creation means for finding the height of each part in the window, and creating a histogram indicating the relationship between height and frequency based on the height data;
前記ヒス トグラムにおける髙さ最小値から、 当該最小値よりも所定量だけ大き い値までの一定範囲内において、 頻度が最大となる高さを、 チップ表面の高さと し、 前記ヒストグラムにおける高さ最大値から当該チップ表面の高さを減算した 値を、 前記ウィンドウ內のバンプのチップ表面からの相対高さとする演算手段と を具えた請求の範囲第 4項記載のウェハバンプの外観検査装置。  Within a certain range from the minimum height value in the histogram to a value larger than the minimum value by a predetermined amount, the height at which the frequency is maximum is defined as the chip surface height, and the maximum height in the histogram 5. The wafer bump appearance inspection device according to claim 4, further comprising: a calculating unit that sets a value obtained by subtracting the height of the chip surface from the value to a relative height of the bump of the window # from the chip surface.
6 . 前記検査手段は、  6. The inspection means includes:
前記ウィンドウ中の各部の高さを求め、 この高さデータに基づき、 高さと頻度 との関係を示すヒストグラムを作成するヒストグラム作成手段と、  Histogram creation means for finding the height of each part in the window, and creating a histogram indicating the relationship between height and frequency based on the height data;
前記ヒス トグラムにおける高さ最小値から、 当該最小値より も所定量だけ大き い値までの一定範囲内における平均高さを、 チップ表面の高さとし、 前記ヒスト グラムにおける高さ最大値から当該チップ表面の高さを減算した値を、 前記ウイ ンドウ内のバンプのチップ表面からの相対高さとする演算手段と  The average height within a certain range from the minimum height value in the histogram to a value larger than the minimum value by a predetermined amount is defined as the chip surface height.From the maximum height value in the histogram, the chip surface is determined. Calculating means for calculating a value obtained by subtracting the height of the bump from the chip surface of the bump in the window.
を具えた請求の範囲第 4項記載のウェハバンプの外観検査装置。 5. The visual inspection device for wafer bumps according to claim 4, comprising:
7 . 前記検査手段は、 7. The inspection means includes:
前記ウィンドウ中の各部の高さを求め、 この高さデータに基づき、 高さと頻度 との関係を示すヒストグラムを作成するヒストグラム作成手段と、  Histogram creation means for finding the height of each part in the window, and creating a histogram indicating the relationship between height and frequency based on the height data;
前記ヒストグラムにおける高さ最大値から、 当該最大値よりも所定量だけ小さ い第 1の値までの一定範囲内における頻度の累積を第 1の累積頻度として求める とともに、 前記最大値よりも所定量だけ小さく、 かつ前記第 1の値よりも大きい 第 2の値までの一定範囲内における頻度の累積を第 2の累積頻度として求め、 前 記第 1の累積頻度に対する前記第 2の累積頻度の比が、 所定のしきい値以下であ る場合に、 前記ウィンドウ内のバンプにコブが存在していると判定する判定手段 と  From the height maximum value in the histogram, a cumulative frequency within a certain range from a maximum value to a first value smaller than the maximum value by a predetermined amount is obtained as a first cumulative frequency, and a predetermined amount from the maximum value is calculated. The second frequency is calculated as a second cumulative frequency, which is smaller and is larger than the first value and which is within a certain range up to a second value, wherein the ratio of the second cumulative frequency to the first cumulative frequency is Judging means for judging that bumps are present in the bumps in the window when the difference is equal to or less than a predetermined threshold value;
を具えた請求の範囲第 4項記載のウェハバンプの外観検査装置。  5. The visual inspection device for wafer bumps according to claim 4, comprising:
8 . 前記検査手段は、  8. The inspection means includes:
前記ウェハ上のチップ内に設定されたウィンドウ部分を除いた当該チップ内の 残りの領域中の各部の高さを求め、 この高さデータに基づき、 高さと頻度との関 係を示すヒストグラムを作成するヒストグラム手段と、  The height of each part in the remaining area in the chip excluding the window part set in the chip on the wafer is determined, and a histogram showing the relationship between the height and the frequency is created based on the height data. Histogram means for performing
前記ヒストグラムに基づき前記ウェハのチップ內にエキストラバンプが存在し ているか否かを判定する判定手段と  Determining means for determining whether or not extra bumps are present on the chips の of the wafer based on the histogram;
を具えた請求の範囲第 4項記載のウェハバンプの外観検査装置。  5. The visual inspection device for wafer bumps according to claim 4, comprising:
9 . 前記ヒストグラムの作成は、 前記ウィンドウ部分を除いた前記チップ 内の残りの領域を複数に分割し、 この分割領域毎に行うものである請求の範囲第 8項記載のウェハバンプの外観検査装置。  9. The wafer bump appearance inspection apparatus according to claim 8, wherein the histogram is created by dividing a remaining region in the chip excluding the window portion into a plurality of regions and performing the division for each of the divided regions.
1 0 . 前記判定手段は、  1 0. The determining means
前記ヒス トグラムにおいて頻度が最大となる高さを、 チップ表面の高さとし、 前記ヒス トグラムにおける高さ最大値から当該チップ表面の高さを減算した値が、 所定のしきい値以上である場合に、 当該チップ內にエキストラバンプが存在して いると判定するようにした、  The height at which the frequency is maximum in the histogram is the height of the chip surface, and the value obtained by subtracting the height of the chip surface from the maximum height in the histogram is equal to or greater than a predetermined threshold value. , It was determined that extra bumps were present on the chip 、,
請求の範囲第 8項記載のウェハバンプの外観検査装置。  9. The visual inspection apparatus for a wafer bump according to claim 8, wherein:
1 1 . 前記判定手段は、  1 1. The determining means
前記ヒス トグラムにおける平均高さを、 チップ表面の高さとし、 前記ヒストグ ラムにおける高さ最大値から当該チップ表面の高さを减算した値が、 所定のしき い値以上である場合に、 当該チップ内にエキストラバンプが存在していると判定 するようにした、 The average height in the histogram is defined as the height of the chip surface. When a value obtained by calculating the height of the chip surface from the maximum height of the ram is equal to or larger than a predetermined threshold value, it is determined that an extra bump exists in the chip.
請求の範囲第 8項記載のウェハバンプの外観検査装置。  9. The visual inspection apparatus for a wafer bump according to claim 8, wherein:
1 2 . 平面状のワークを鉛直一定方向に所定距離だけ相対的に移動させるこ とによって当該ワークの上面各部の高さを計測する高さ計測装置と、 前記ワーク の上面すべてが前記高さ計測装置で計測されるように、 当該高さ計測装置の計測 視野が移動すべき平面上の各移動位置を設定する設定手段と、 前記設定手段で設 定された各平面移動位置に前記計測視野を移動させ、 各平面移動位置ごとに、 前 記ワークを、 前記高さ計測装置に对して相対的に、 前記所定距離だけ前記鉛直一 定方向に移動させることにより、 当該計測視野内におけるワーク各部の高さの計 測を行わせる移動手段とを具えた高さ計測装置において、  1 2. A height measuring device that measures the height of each part of the upper surface of the work by relatively moving a planar work by a predetermined distance in the vertical constant direction, and measuring the height of the entire upper surface of the work Setting means for setting each movement position on a plane to which the measurement field of view of the height measuring device is to be moved, so that the measurement field of view is measured at each plane movement position set by the setting means. By moving the work relative to the height measuring device and moving the work by the predetermined distance in the vertical constant direction at each plane movement position, each part of the work in the measurement visual field is moved. In a height measuring device provided with a moving means for measuring the height of
つぎの平面移動位置の計測視野における鉛直方向の移動は、 現平面移動位置の 計測視野における鉛直移動方向とは反対の方向に行うように、 鉛直移動方向を制 御する手段  Means for controlling the vertical movement direction so that the next vertical movement in the measurement visual field at the plane movement position is performed in the opposite direction to the vertical movement direction in the measurement visual field at the current plane movement position.
を具えた高さ計測装置。  Height measuring device equipped with.
1 3 . 前記高さ計測装置は、 平面状のワークに形成された所定の大きさの検 査対象物の高さを計測するものであり、  13. The height measuring device is for measuring the height of an inspection object of a predetermined size formed on a planar workpiece,
平面上で隣り合う両計測視野のうち少なくとも一方の計測視野内に前記検査対 象物全体が入るように、 隣り合う計測視野同士をォ一バーラップさせて計測視野 の各平面移動位置を設定するようにした、  Adjacent measurement fields are overlapped so that the entire inspection object falls within at least one of the two measurement fields adjacent to each other on the plane, and the plane movement position of the measurement field is set. ,
請求の範囲第 1 2項記載の高さ計測装置。  The height measuring device according to claim 12.
PCT/JP1997/001078 1996-04-02 1997-03-28 Visual inspection device for wafer bump and height measuring device WO1997037378A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8080099A JPH09275126A (en) 1996-04-02 1996-04-02 Appearance inspecting equipment and height measuring equipment of wafer bump
JP8/80099 1996-04-02

Publications (1)

Publication Number Publication Date
WO1997037378A1 true WO1997037378A1 (en) 1997-10-09

Family

ID=13708747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001078 WO1997037378A1 (en) 1996-04-02 1997-03-28 Visual inspection device for wafer bump and height measuring device

Country Status (2)

Country Link
JP (1) JPH09275126A (en)
WO (1) WO1997037378A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116394135A (en) * 2023-06-08 2023-07-07 沈阳和研科技股份有限公司 Contact height measurement method of dicing saw

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236493A (en) * 2000-02-23 2001-08-31 Nikon Corp Visual inspection apparatus
US20030025918A1 (en) * 2001-07-16 2003-02-06 August Technology Corp. Confocal 3D inspection system and process
JP4563254B2 (en) * 2004-06-01 2010-10-13 パナソニック株式会社 IC parts bump inspection system
JP4740672B2 (en) * 2005-07-14 2011-08-03 株式会社ナノシステムソリューションズ Surface inspection apparatus and surface inspection method
JP4997768B2 (en) * 2006-01-10 2012-08-08 株式会社ニコン Inspection device
JP5612969B2 (en) * 2010-09-03 2014-10-22 株式会社サキコーポレーション Appearance inspection apparatus and appearance inspection method
JP6976205B2 (en) * 2018-03-19 2021-12-08 東レエンジニアリング株式会社 Chip position measuring device
CN113161254B (en) * 2021-03-24 2024-01-30 创微微电子(常州)有限公司 Wafer vision detection method, detection system and method for detecting wafer damage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290624A (en) * 1988-09-28 1990-03-30 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPH02176406A (en) * 1988-12-27 1990-07-09 Nippondenso Co Ltd Position adjusting apparatus
JPH03169024A (en) * 1989-11-29 1991-07-22 Hitachi Ltd Formation of solder bump and semiconductor integrated circuit device using it
JPH06167322A (en) * 1992-09-29 1994-06-14 Fujitsu Ltd Inspecting apparatus for stereoscopic appearance of electrode
JPH06201332A (en) * 1993-01-06 1994-07-19 Fujitsu Ltd Inspection device for appearance of bump
JPH06258047A (en) * 1993-03-02 1994-09-16 Omron Corp Teaching method of bump data inspection data
JPH07311025A (en) * 1994-05-17 1995-11-28 Komatsu Ltd Three-dimensional shape inspection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290624A (en) * 1988-09-28 1990-03-30 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPH02176406A (en) * 1988-12-27 1990-07-09 Nippondenso Co Ltd Position adjusting apparatus
JPH03169024A (en) * 1989-11-29 1991-07-22 Hitachi Ltd Formation of solder bump and semiconductor integrated circuit device using it
JPH06167322A (en) * 1992-09-29 1994-06-14 Fujitsu Ltd Inspecting apparatus for stereoscopic appearance of electrode
JPH06201332A (en) * 1993-01-06 1994-07-19 Fujitsu Ltd Inspection device for appearance of bump
JPH06258047A (en) * 1993-03-02 1994-09-16 Omron Corp Teaching method of bump data inspection data
JPH07311025A (en) * 1994-05-17 1995-11-28 Komatsu Ltd Three-dimensional shape inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116394135A (en) * 2023-06-08 2023-07-07 沈阳和研科技股份有限公司 Contact height measurement method of dicing saw
CN116394135B (en) * 2023-06-08 2023-08-25 沈阳和研科技股份有限公司 Contact height measurement method of dicing saw

Also Published As

Publication number Publication date
JPH09275126A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
US7034272B1 (en) Method and apparatus for evaluating integrated circuit packages having three dimensional features
US6501554B1 (en) 3D scanner and method for measuring heights and angles of manufactured parts
US7894660B2 (en) Image processing alignment method and method of manufacturing semiconductor device
KR100932316B1 (en) Wafer center detection method and recording medium recording the method
US20010055069A1 (en) One camera system for component to substrate registration
US7191929B2 (en) Method of measuring thickness of bonded ball in wire bonding
WO1997037378A1 (en) Visual inspection device for wafer bump and height measuring device
JP2002319028A (en) Image processing method and device therefor, and bonding device
JP3855244B2 (en) Three-dimensional image recognition device using a microscope
JP2008294065A (en) Mounting method and mounting device for electronic component
WO2002029357A2 (en) Method and apparatus for evaluating integrated circuit packages having three dimensional features
KR101626374B1 (en) Precision position alignment technique using edge based corner estimation
JP4073995B2 (en) Electronic component position detection method
JP3823488B2 (en) IC lead float inspection device and inspection method
WO2020217970A1 (en) Wire shape measurement device, wire three-dimensional image generation method, and wire shape measurement method
JP4706366B2 (en) Position detection method
EP1218688B1 (en) Method and apparatus for three dimensional inspection of electronic components
JP3269816B2 (en) Component mounting equipment
JP4158349B2 (en) Dimension measurement method and apparatus by image processing
WO2020031980A1 (en) Method for correcting lens marker image, correcting device, program, and recording medium
JP3395721B2 (en) Bump joint inspection apparatus and method
JP3923168B2 (en) Component recognition method and component mounting method
JP2005274309A (en) Inspection method and inspection device for three-dimensional object
JP3111433B2 (en) Image processing device
JP4098932B2 (en) Solder bump position measurement method and electronic component position measurement method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WR Later publication of a revised version of an international search report
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642