WO1997037166A1 - Tuyau pour canalisations du type a double enveloppe d'isolation thermique - Google Patents

Tuyau pour canalisations du type a double enveloppe d'isolation thermique Download PDF

Info

Publication number
WO1997037166A1
WO1997037166A1 PCT/FR1997/000564 FR9700564W WO9737166A1 WO 1997037166 A1 WO1997037166 A1 WO 1997037166A1 FR 9700564 W FR9700564 W FR 9700564W WO 9737166 A1 WO9737166 A1 WO 9737166A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
plate
pipe according
tube
microporous material
Prior art date
Application number
PCT/FR1997/000564
Other languages
English (en)
Inventor
Ludovic Villatte
Original Assignee
Itp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9491298&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997037166(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Itp filed Critical Itp
Priority to US09/147,062 priority Critical patent/US6145547A/en
Priority to DE69701353T priority patent/DE69701353T2/de
Priority to EP97919439A priority patent/EP0890056B1/fr
Priority to AU23915/97A priority patent/AU2391597A/en
Publication of WO1997037166A1 publication Critical patent/WO1997037166A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L39/00Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
    • F16L39/005Joints or fittings for double-walled or multi-channel pipes or pipe assemblies for concentric pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/07Arrangements using an air layer or vacuum the air layer being enclosed by one or more layers of insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/143Pre-insulated pipes

Definitions

  • the present invention relates to the design and production of double-walled pipes, such as in particular those which are intended to be connected end to end to form pipes, or which are more particularly constructed to form pipes to be laid at the bottom of the seas, to be used to transport petroleum products, in liquid and / or gaseous form.
  • a constant problem in the production of such pipes comes from the need for good thermal insulation between the inside and the outside of the pipe, at least during certain periods of the life of a pipe using them.
  • the submarine pipelines conveying petroleum products are found at cold temperature in the seabed (normally between 0 and 20 ° C), while the fluids conveyed must often be able to present themselves at relatively high temperature (between 100 and 200 ° C according to the usual prescriptions).
  • the fluid must maintain a minimum temperature (for example 40 ° C) until the place of destination at the end of the pipeline, in order to avoid the formation of solid condensates.
  • the present invention provides a double-jacket pipe for thermal insulation, which is characterized in that, in a sealed annular space between an inner tube and an outer tube arranged coaxially one inside the other, it comprises a self-supporting plate of microporous material with open pores, having sufficient flexibility to be wound against the internal tube, and in that it is reserved outside said material in said annular space, a free passage for a longitudinal circulation of gas by which a reduced pressure prevails while along said annular space.
  • such a passage is in the form of an annular layer left free between the plate of microporous material and the internal wall of the internal tube.
  • This embodiment lends itself particularly well to pipes, the manufacture of which provides for the threading of the internal tube (which will be here previously equipped with the microporous material pressed against it) inside an existing external tube. This is generally the case for pipes using steel tubes to limit the double jacket.
  • the external tube may appear preferable to constitute the external tube by closing it pressed against the microporous material, or by producing it by hardening in situ of a material such as an organic resin composition, applied to the microporous material by spraying, immersion , extrusion, or the like.
  • a material such as an organic resin composition
  • Such a layer could then be replaced by conduits inserted on the surface of the microporous material, for example before drowning the assembly in a plastic envelope, or by avoiding closing the plates of microporous material edge to edge, so as to leave free passage along a generator of the pipe.
  • a particularly suitable material for the pipe of the invention is represented by the plates microporous insulation based on a ceramic material, and preferably based on silica, as they exist in the trade, where they are produced in particular by the company Micropore International Ltd under the brand Microtherm.
  • the material of these plates is made of a mixture of silica powder and ceramic reinforcing fibers, all compacted into a coherent three-dimensional structure of fine particles which is retained in a non-waterproof envelope.
  • the latter is commonly made of a fabric of mineral fibers linked in a network of nonwoven cross fibers, in particular of glass fibers, but it will be more economical for the invention to prefer a cotton fabric, including here the case of cotton fibers tied together without real weaving.
  • silica microporous structure (without taking its envelope into account), a mixture the major part of which is formed of silica but which also contains a minor part of titanium dioxide .
  • these materials are also advantageous in the context of the present invention in that they are characterized by an open porosity and a pore diameter less than or at most equal to 0.1 microns.
  • the porosity is said to be open when the open pores in communication with each other represent almost all of the pores that the microporous structure comprises, ie in practice of the order of 85 to 95% in volume of the overall pore volume, which is itself of the order of 80% of the apparent volume.
  • microporous materials essentially consisting of silicic particles, in particular pyrogenic silica gel, exploit the fact that the diameter of the open pores is less than the mean free path of the air molecules, which provides essentially a thermal insulation capacity much higher than that of more traditional materials, in particular those which are manufactured so as to provide mainly closed pores.
  • the present invention leads to further improving their performance by exploiting the fact that the pores are open to create a partial vacuum all within the material.
  • the invention makes it possible to select thicknesses of microporous material which become sufficient to provide their own insulating power within satisfactory limits while remaining within the framework of the economic imperatives of manufacturing and implementing pipes, even though such a material is in itself very expensive.
  • the increase in the average free path of the gaseous molecules which results therefrom it is possible to increase the insulating power by a factor ranging from 2 to 10, according to the value of reduced pressure chosen and according to the thermal conditions in positioning. .
  • the thickness occupied by the plate of microporous material in the annular space between the two coaxial tubes leaves free a laminar air circulation passage which facilitates a suction creating the reduced pressure. by passing it along the pipe from one end of the pipe.
  • the requirements for making seals are less severe, which helps to facilitate the conditions of manufacture and transport of pipes to the place of installation of pipes and reduce costs.
  • the useful thickness of the latter turns out in practice to be of the same order of magnitude as those which correspond to the manufacturing tolerances of the tubes themselves. same and technological needs related to the manufacture of such a pipe by threading an outer tube pre-formed over the inner tube equipped with the cover formed by the plate of microporous material.
  • Another important advantage of the present invention lies in the fact that the coefficient of thermal insulation obtained by the combination of the microporous material with the creation of a reduced pressure, both in the microporous material itself and in the thickness left free in the annular space between the two coaxial tubes, makes it possible to substantially reduce the total thickness of this annular space, therefore the dimensions of the external tube for the same useful section of the internal tube and similar thermal insulation constraints.
  • a thickness of microporous material of 10 mm is sufficient to meet the requirements of the pipes leading petroleum products through the seabed in many cases of practical application. In other cases, it will be possible to increase this thickness up to a value advantageously in the range of 5 mm to 30 mm, and preferably from 10 mm to 20 millimeters.
  • the thickness of the plate of micro-porous material will advantageously be chosen to a value covering 30 to 95% of the space. annular between the two coaxial tubes, this range preferably being in the order of 50 to 80%. It can be considered that in this kind of situation, the internal diameter of the external tube is most often 25 to 50 mm greater than the diameter of the external wall of the internal tube.
  • thermal insulator in the form of parallel flat strips joined together by the covering fabric, by placing these strips longitudinally on the internal tube of the pipe of the invention. But more often than not, it will be more advantageous to avoid the creation of thermal bridges along generatrices of the pipe by providing for winding around the internal tube a single plate manufactured under constant thickness whose edges meet.
  • the plates of microporous material commercially available as being flat plates have sufficient flexibility to be able to be wound without difficulty. by being pressed against the inner tube.
  • the plates of microporous material are nevertheless self-supporting, which means that in general, it will not be necessary to fix the edges of the plate along a generatrix of the internal tube, and that we can preferably be satisfied with an edge-to-edge fixing from place to place, to be ensured in particular by means of self-adhesive bandages.
  • the invention takes advantage of the peculiarities of silica-based insulating plates in microporosity with open porosity and flexibility in the useful dimensions, more than their known capacity to withstand very high temperatures due to their ceramic nature.
  • the reduced pressure created is not necessarily under an air atmosphere.
  • the invention provides for lining the plate of microporous material externally with a protective sheet capable of preventing its deterioration when the coaxial tubes are threaded one inside the other.
  • a protective sheet capable of preventing its deterioration when the coaxial tubes are threaded one inside the other.
  • a preferred example of such a sheet is constituted by a sheet of organic material, in particular of polyester resin such as polyethylene.
  • microporous material can be made in intimate contact with the microporous material either by its own shrinkage capacity, or by a vacuum effect avoiding that when threading an external tube previously formed over the internal tube equipped with the material plates microporous, this sheet can form beads and cause jams.
  • such a sheet has a low coefficient of surface friction, especially by its surface facing the outer tube, so as not to interfere with the punctual relative displacements caused by the winding of a pipe on itself and its unwinding on the installation site of the pipe for which it is intended.
  • a sheet made of another material and more particularly an aluminized sheet having outwardly a surface tending to avoid heat transfers of the type radiative.
  • the inner tube may be advantageous to coat the inner tube with an anti-radiative layer on the underside of the microporous material.
  • the effectiveness of the insulation provided by the invention advantageously makes it possible to avoid the additional cost that such layers can involve.
  • spacers are advantageously provided with the aim of ensuring centering of the internal tube in the external tube while maintaining a suitable minimum space between internal tube and external tube from end to end along the pipe.
  • Such spacers are produced in a conventional manner by half-shells clamped together in a fixed position on the internal tube of the pipe.
  • This figure shows in partial longitudinal section a double-jacket pipe according to the invention, which therefore comprises an internal tube 1 threaded coaxially into an external tube 2, as it is prefabricated in the factory to be transported to the site of use where successive identical pipes are connected end to end to form a pipeline plunged into the sea.
  • a sleeve 3 is shown diagrammatically, which is then added at the level of the connection between two pipes welded end to end by their respective internal tubes 1.
  • This ferrule 4 of generally conical shape, which constitutes what is called an end tulip in the trade, is welded in a leaktight manner on the one hand to the internal tube 2, leaving a sufficient area beyond it ci for making the weld 6, and on the other hand inside the recessed end of the outer tube 2.
  • the plates 7, 8, 9 are separated from each other by spacers 12 interposed between them.
  • These consist of half-shells fixed to each other in a firm position clamped against the internal tube 1. They are produced in particular from a molded organic material.
  • Their outside diameter is less than the inside diameter of the outer tube 2, so as not to interfere with the threading of the two tubes 1 and 2 into one another despite the variations in wall thicknesses and roundness which are usually tolerated in the manufacture of this kind of tubes.
  • the spacers 12 thus produced combine the transverse centering function of the inner tube 1 inside the outer tube 2 with a stop function between the successive plates of microporous material in the longitudinal direction. They also constitute mechanical reinforcement elements which transfer directly to the internal tube rather than by means of the insulating plates the bending forces which the tube may have to bear during laying at sea.
  • the microporous material consists of a thermal insulating plate based on fumed silica gel enclosed in an envelope of cotton fabric.
  • the microporous silica structure contains approximately 65% of silica and approximately 32% of titanium dioxide, the rest of the composition in weight being constituted by alumina and traces of various other metallic or alkaline-earth oxides, originating in particular from alumino-silicates constituting the material of the fibers crosslinking the silica particles.
  • the thickness of the microporous material plate occupies half of the annular space 5 between the two coaxial tubes.
  • the tubes 1 and 2 are made of steel.
  • the inner tube 1 may advantageously include a coating complementary to its outer wall chosen to have properties opposing the longi ⁇ tudinal sliding of the microporous material pressed against it.
  • a coating complementary to its outer wall chosen to have properties opposing the longi ⁇ tudinal sliding of the microporous material pressed against it.
  • it may be advantageous, more particularly for mounting operations, to ensure adhesion of the edges of each plate of microporous material where they meet, all along the corresponding generatrix of the internal tube.
  • This sheet 13 is shown consisting of a sheet of organic material coated with aluminum on its outer face. But it is better to use a 0.2 mm thick polyethylene sheet closed by gluing along a generatrix of the pipe.
  • the use of a sheet of shrinkable material has the advantage of ensuring good coupling of the insulating plate with the internal tube from the point of view of mechanical vibrations.
  • the running part of each pipe consists of an internal tube 1 having an outside diameter of 219 mm and a wall thickness 13 mm and an external tube 2 of 249 mm internal diameter and 11 mm wall thickness.
  • the outer tube is threaded around the inner tube after the latter has first been fitted with spacers 12, then plates of microporous material 7, 8, 9, each having a constant thickness of 12 mm, under a width equivalent to the peripheral periphery of the internal tube and a length of 40 centimeters.
  • This material has a porosity at 90% of empty spaces, essentially in open pores with an average diameter of less than 0.1 microns, and a density of 255 kg '/ m 3 .
  • the same layer which allows circulation gaseous in the longitudinal direction and allows to create the partial vacuum within the microporous material in the transverse direction, can keep a utility later, once the successive pipes connected in an underwater pipeline.
  • the pipe is produced over long lengths in the factory and transported wound on itself to the installation site, possibly also located at sea.
  • a complete tube is made in one piece, with an annular space all along for thermal insulation.
  • the gas circulation passage remains accessible from either end of the pipe to vary the degree of vacuum during the life of the latter, to vary accordingly l insulation efficiency.
  • the temperature of the effluent at the inlet of the pipeline drops significantly, and it becomes useful to improve the overall thermal insulation coefficient, up to, for example, 0.5 W / m 2 per ° C, to maintain the same temperature at the outlet of the pipeline, in a compromise between economic concerns and the need to avoid the formation of undesirable condensates throughout the path followed by the effluent in the pipeline.
  • the invention results in a method of using a pipe thus constituted, essentially characterized in that the pressure prevailing in said annular space is varied between values which can reach 50 bars at the start of life of a pipe formed by said pipe, and values between 1 mbar and 900 mbar at the end of the life of the pipe.
  • We can thus vary the coefficient overall thermal insulation between 0.5 W / m 2. ° C and 5 W / m 2. ° C, for a plate thickness of microporous material of the order of 10 to 14 mm and an annular layer of longitudinal circulation of gas having an average radial thickness of between 1 and 5 millimeters.
  • the air presumed to be present in the annular space, including in the pores of the microporous material can be replaced by another gas, such as a neutral gas such as argon, in order to d 'further improving the desired qualities, for the same types and dimensions of the constituent elements.
  • a neutral gas such as argon

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

La présente invention a pour objet un tuyau à double enveloppe pour canalisations, notamment pour produits pétroliers. Suivant un mode de réalisation préféré, un tel tuyau est caractérisé en ce que, dans un espace annulaire étanche (5) entre un tube interne (1) et un tube externe (2) disposés coaxialement l'un dans l'autre, il comporte une plaque autoportante (7, 8, 9) de matériau microporeux à pores ouverts, présentant une flexibilité suffisante pour être enroulée contre le tube interne (1). Cette plaque présente de préférence une épaisseur inférieure à celle dudit espace annulaire (5), de sorte à créer entre elle et le tube externe (2) un passage libre par lequel on fait régner une pression réduite.

Description

TUYAU POURCANALISATIONS DU TYPEADOUBLE ENVELOPPE D'ISOLATIONTHERMIQUE
La présente invention concerne la conception et la réalisation des tuyaux à double enveloppe, tels notamment que ceux qui sont destinés à être raccordés bout à bout pour constituer des canalisations, ou qui sont plus particulièrement construits pour former des canalisations à poser au fond des mers, pour servir à véhiculer des produits pétroliers, sous forme liquide et/ou gazeuse.
Pour cette application comme pour d'autres appli¬ cations industrielles analogues, elle apporte perfec¬ tionnement aux tuyaux qui, d'une manière générale, sont prévus à double enveloppe d'isolation thermique ménageant un espace annulaire étanche entre deux tubes coaxiaux.
Un problème constant dans la réalisation de tels tuyaux vient du besoin d'une bonne isolation thermique entre l'intérieur et l'extérieur du tuyau, au moins en certaines périodes de la vie d'une canalisation les utilisant. En effet, et à titre d'exemple, les cana¬ lisations sous-marines véhiculant des produits pétroliers se trouvent à température froide dans les fonds marins (normalement entre 0 et 20 °C) , alors que les fluides véhiculés doivent souvent pouvoir se présenter à température relativement élevée (comprises entre 100 et 200 °C suivant les prescriptions usuelles) . Et même lorsque cette température diminue au cours de la vie d'un champ producteur, le fluide doit conserver une température minimale (par exemple 40 °C) jusqu'au lieu de destination en bout de la canalisation, afin d'éviter la formation de condensats solides.
D'autre part, les distances à parcourir sont considérables. Elles se chiffrent en dizaines de kilomètres. La qualité d'isolation thermique doit en plus perdurer pendant de longues années d'utilisation des canalisations. En tant qu'autres impératifs de la pratique, on peut souligner que cette capacité d'isolation thermique ne doit pas souffrir des opérations d'assemblage des canalisations au cours desquelles des tuyaux successifs sont raccordés bout à bout, ni des opérations de mise en place d'une canalisation ainsi formée, progressivement plongée dans la mer, ni encore des conditions de transport entre une usine de fabrication des tuyaux et le site de pose de la canalisation.
D'autres difficultés sont liées aux conditions de fabrication des tuyaux, aux tolérances dimensionnelles inévitables pour les tubes, compte tenu de leur nature (généralement de l'acier) et de leur diamètre (généralement compris entre 100 et 700 millimètres) , et à la réalisation des étanchéités. L'une des solutions qui ait été proposée à l'industrie pétrolière consiste à créer un vide poussé dans l'espace annulaire entre les deux tubes coaxiaux d'un tuyau à double enveloppe. On comprend que dans ce cas, la réalisation des étanchéités est particulièrement délicate, et que tant le degré de vide que l'épaisseur sous vide nécessaire grèvent lourdement le coût des tuyaux.
Les mêmes impératifs de degré d'isolation thermique et de durabilité se retrouvent dans d'autres applications, en particulier dans des situations où l'on rencontre un différentiel de température de même ordre de grandeur entre intérieur et extérieur du tuyau, mais en sens inverse.
Dans le souci notamment de diminuer les coûts et d'améliorer la qualité et la durabilité de l'isolation thermique, la présente invention propose un tuyau à double enveloppe d'isolation thermique, qui se caractérise en ce que, dans un espace annulaire étanche entre un tube interne et un tube externe disposés coaxialement l'un dans l'autre, il comporte une plaque autoportante de matériau microporeux à pores ouverts, présentant une flexibilité suffisante pour être enroulée contre le tube interne, et en ce qu'il est réservé hors ledit matériau dans ledit espace annulaire, un passage libre à une circulation longitudinale de gaz par lequel on fait régner une pression réduite tout au long dudit espace annulaire.
Suivant un mode de réalisation préféré de l'invention un tel passage se présente sous la forme d'une couche annulaire laissée libre entre la plaque de matériau microporeux et la paroi interne du tube interne.
Cette forme de réalisation se prête particulèrement bien aux tuyaux dont la fabrication prévoit l'enfilage du tube interne (qui sera ici préalablement équipé du matériau microporeux plaqué contre lui) à l'intérieur d'un tube externe existant. Tel est en général le cas pour les tuyaux utilisant des tubes d'acier pour limiter la double enveloppe.
En variante il peut apparaître préférable de constituer le tube externe en le fermant plaqué contre le matériau microporeux, ou en le réalisant par durcissement sur place d'une matière telle qu'une composition de résine organique, appliquée sur le matériau microporeux par projection, immersion, extrusion, ou autre technique analogue. Dans un tel contexte, il peut se révéler mal- commode de réserver une couche annulaire complète libre à une circulation gazeuse longitudinale. Une telle couche pourra alors être remplacée par des conduits insérés en surface du matériau microporeux, avant par exemple de noyer l'ensemble dans une enveloppe de matière plastique, ou en évitant de fermer les plaques de matériau microporeux bord à bord, de sorte à laisser libre un passage suivant une génératrice du tuyau.
Un matériau particulièrement approprié pour le tuyau de l'invention est représenté par les plaques d'isolant microporeux à base d'une matière céramique, et préférentiellement à base de silice, telles qu'elles existent dans le commerce, où elles sont produites notamment par la société Micropore International Ltd sous la marque Microtherm.
Le matériau de ces plaques est fait d'un mélange de poudre silicique et de fibres de renforcement céramiques, le tout compacté en une structure tridimensionnelle cohérente de fines particules qui est retenue dans une enveloppe non étanche. Cette dernière est couramment constituée d'un tissu de fibres minérales liées en un réseau de fibres croisées non tissées, notamment en fibres de verre, mais il sera plus économique de préférer pour l'invention un tissu de coton, en englobant ici le cas de fibres de coton liées ensemble sans véritable tissage.
Du point de vue chimique, il s'agit, du moins pour la structure microporeuse silicique (sans tenir compte de son enveloppe) , d'un mélange dont la majeure partie est formée de silice mais qui contient aussi une mineure partie de dioxyde de titane.
Dans l'application qui est faite suivant l'invention de ce genre de plaques isolantes, la présence de dioxyde de titane apporte au matériau microporeux un pouvoir anti-radiatif que l'on exploite au voisinage du tube interne, celui qui est porté à température élevée dans les canalisations. A ce sujet, il est intéressant d'observer que l'on sait fabriquer des matériaux micro¬ poreux à base de gel de silice pyrogéné dans lesquels la proportion de dioxyde de titane dépasse 20 % en poids du poids total, jusqu'à atteindre environ 30 à 35 % en poids pour 60 à 70 % en poids de silice, si l'on néglige les parts mineures d'autres oxydes minéraux qui représentent au total moins de 5 % en poids.
Ces matériaux sont également avantageux dans le cadre de la présente invention par le fait qu'ils se caractérisent par une porosité ouverte et un diamètre de pores inférieur ou, au plus, égal à 0,1 micron. Dans le langage du métier utilisé ici, la porosité est dite ouverte quand les pores ouverts en communication les uns avec les autres représentent la quasi-totalité des pores que la structure microporeuse comporte, soit en pratique de l'ordre de 85 à 95 % en volume du volume global des pores, qui est lui-même de l'ordre de 80 % du volume apparent.
Toutes les applications qui ont été recommandées à ce jour pour les matériaux microporeux essentiellement constitués de particules siliciques, notamment de gel de silice pyrogéné, exploitent le fait que le diamètre des pores ouverts est inférieur au libre parcours moyen des molécules d'air, ce qui assure pour l'essentiel une capacité d'isolation thermique bien supérieure à celle de matériaux plus traditionnels, en particulier de ceux qui sont fabriqués de sorte à ménager principalement des pores fermés.
A l'inverse de ces applications connues, la présente invention conduit à améliorer encore leurs performances en exploitant le fait que les pores sont ouverts pour créer un vide partiel tout au sein du matériau.
De ce fait, l'invention permet de sélectionner des épaisseurs de matériau microporeux qui deviennent suffisantes à apporter leur propre pouvoir isolant dans des limites satisfaisantes tout en restant dans le cadre des impératifs économiques de fabrication et mise en oeuvre des canalisations, alors même qu'un tel matériau est en soi très coûteux.
Dans le même temps, il découle de l'invention que l'on peut se contenter d'un vide partiel, se traduisant préférentiellement par une pression réduite comprise entre 0,5 millibar et 100 millibars. Ces conditions sont beaucoup plus faciles à réaliser, pour un coût bien moindre, que les degrés de vide poussé proposés antérieurement pour des tuyaux à double enveloppe d'isolation thermique.
Par, entre autres, l'augmentation du libre parcours moyen des molécules gazeuses qui en résulte, on parvient à augmenter le pouvoir isolant d'un facteur allant de 2 à 10, suivant la valeur de pression réduite choisie et suivant les conditions thermiques en positionnement.
Il est remarquable en outre que, suivant l'invention, l'épaisseur occupée par la plaque de matériau microporeux dans l'espace annulaire entre les deux tubes coaxiaux laisse libre un passage de circulation laminaire d'air qui facilite une aspiration créant la pression réduite en la répercutant tout au long du tuyau à partir d'une extrémité de celui-ci. De plus, les exigences posées pour la réalisation des étanchéités s'en trouvent moins sévères, ce qui contribue à faciliter les conditions de fabrication et de transport des tuyaux vers le lieu de mise en place des canalisations et à réduire les coûts.
D'une manière générale, on peut observer qu'il suffit de laisser une épaisseur moyenne de l'ordre de 0,5 à 5 mm à une couche de l'espace annulaire laissée libre du côté du tube externe par le matériau microporeux, pour que les opérations de création de la pression réduite soient efficaces à évacuer l'air contenu d'origine dans les pores du matériau isolant microporeux. Cet effet peut s'expliquer par le fait que l'action d'aspiration s'exerce radialement à travers l'épaisseur de matériau microporeux en toute section transversale du tuyau, tandis que l'air circule aisément dans le sens longitudinal dans l'espace laissé libre.
L'épaisseur utile de ce dernier se révèle en pratique du même ordre de grandeur que celles qui correspondent aux tolérances de fabrication des tubes eux- mêmes et aux besoins technologiques relevant de la fabrication d'un tel tuyau par enfilage d'un tube externe pré-constitué par dessus le tube interne équipé de la couverture constituée par la plaque de matériau micro- poreux.
Un autre avantage important de la présente invention réside dans le fait que le coefficient d'isolation thermique obtenu par la combinaison du matériau microporeux avec la création d'une pression réduite, à la fois dans le matériau microporeux lui-même et dans l'épaisseur laissée libre dans l'espace annulaire entre les deux tubes coaxiaux, permet de réduire sensiblement l'épaisseur totale de cet espace annulaire, donc les dimensions du tube externe pour une même section utile du tube interne et des contraintes d'isolation thermique similaires.
On peut ainsi observer qu'une épaisseur de matériau microporeux de 10 mm est suffisante pour satisfaire aux exigences des canalisations conduisant des produits pétroliers à travers les fonds marins dans bien des cas d'application pratique. Dans d'autres cas, il sera possible d'augmenter cette épaisseur jusqu'à une valeur se situant avantageusement dans la gamme des 5 mm à 30 mm, et préférentiellement de 10 mm à 20 millimètres.
Dans la pratique toutefois, il se présente des situations où l'épaisseur de l'espace annulaire entre les deux tubes coaxiaux ne peut être ramenée à moins de 10 à 15 mm pour d'autres raisons d'ordre technologique, notamment pour permettre 1 ' accès à des machines de soudage pour fermer l'enveloppe annulaire de manière étanche aux extrémités du tuyau et/ou pour permettre cette fermeture par des moyens n'entraînant pas de transferts thermiques exagérés entre les tubes. Dans ce cas, on choisira avan¬ tageusement l'épaisseur de la plaque de matériau micro- poreux à une valeur couvrant de 30 à 95 % de l'espace annulaire entre les deux tubes coaxiaux, cette gamme se situant préférentiellement dans l'ordre de 50 à 80 %. On peut considérer que dans ce genre de situation, le diamètre interne du tube extérieur est le plus souvent de 25 à 50 mm supérieur au diamètre de la paroi externe du tube interne.
Dans le paragraphe précédent et dans ce qui va suivre, on se réfère à un cas préféré d'application de l'invention dans lequel des tuyaux individuellement préfabriqués sont transportés ainsi sur le site de mise en place de la canalisation, où celle-ci est alors assemblée par raccordement de tuyaux successifs bout à bout. D'autre part, on s'intéresse spécialement à de tels tuyaux dans lesquels les deux tubes co-axiaux sont des tubes métalliques qui sont enfilés l'un dans l'autre avant de fermer l'enveloppe intermédiaire aux deux extrémités du tuyau.
On remarquera, à ce sujet, que l'utilité de faire intervenir pour cela la présence d'une virole intermédiaire doublement fixée, de manière étanche, d'une part sur le tube interne, d'autre part sur le tube externe, en chacune des extrémités des tuyaux préfabriqués, se fait surtout sentir lorsque ces tuyaux sont de longueur relativement faible, par exemple fixée à 12 m ou 24 m, alors que pour des tuyaux de plus grande longueur, on est plus aisément conduits à négliger le risque de fuites thermiques minimes qui peuvent se produire à l'endroit des raccords entre les tuyaux soudés bout à bout. Une telle virole est de préférence de nature métallique et fixée par soudage, mais dans d'autres cas, on peut avantageusement utiliser une virole en élastomère que l'on colle sur chacun des tubes.
Dans la mesure où les températures élevées que le matériau microporeux doit être capable de supporter restent de l'ordre de grandeur de 100 à 200 °C, donc bien inférieures à celles des applications connues de ce type de matériau, il est avantageux de remplacer l'enveloppe non étanche qui enferme le matériau silicique lui-même par un tissu à base de coton plutôt qu'un tissu à base de fibres de verre ou autres fibres céramiques. Par la notion de tissu ici employée, on entend couvrir les réseaux où les fibres ne sont pas véritablement tissées entre elles, conformément à ce que l'on désigne couramment sous les termes de tissus non tissés.
Par ailleurs, on pourra trouver intérêt à utiliser ce type d'isolant thermique sous la forme de bandes planes parallèles réunies entre elles par le tissu enveloppe, en disposant ces bandes longitudinalement sur le tube interne du tuyau de l'invention. Mais le plus souvent, il sera plus avantageux d'éviter la création de ponts thermiques suivant des génératrices du tuyau en prévoyant d'enrouler autour du tube interne une plaque unique fabriquée sous épaisseur constante dont les bords se rejoignent.
En effet, sous les épaisseurs utiles suivant 1 ' invention et pour les diamètres de tubes utilisés dans la pratique des canalisations envisagées, les plaques de matériau microporeux disponibles dans le commerce comme étant des plaques planes présentent une flexibilité suffisante pour pouvoir s'enrouler sans difficulté en étant plaquées contre le tube interne.
Comme on l'a déjà indiqué, les plaques de matériau microporeux sont néanmoins auto-portantes, ce qui fait qu'en général, il ne sera pas nécessaire de fixer les bords de la plaque tout au long d'une génératrice du tube interne, et que l'on pourra préférentiellement se contenter d'une fixation bord à bord de place en place, à assurer notamment au moyen de bandages auto-collants.
Des explications qui précèdent comme de celles qui suivront, on doit comprendre que l'invention met à profit les particularités des plaques isolantes à base de silice en microporosité à porosité ouverte et en flexibilité dans les dimensions utiles, plus que leur capacité connue de résister à de très fortes températures de par leur nature céramique.
En conséquence, l'homme de l'art saura choisir des matériaux équivalents, sans sortir du cadre de la présente invention. En cela il pourra notamment avoir recours à des matériaux microporeux à base de résine organique poly- mérisée, plutôt qu'à base de composés minéraux, ou à des matériaux fabriqués à partir d'une composition comportant plus ou moins de particules fines homogènes dans leurs dimensions ou plus ou moins de fibres comme dans les feutres.
Par ailleurs, la pression réduite créée n'est pas nécessairement sous atmosphère d'air. Au contraire, il peut être plus avantageux de remplacer l'air rémanent par un autre gaz, tel que l'argon, par une opération de substitution par balayage qui, là encore, ne demande pas de passer par l'intermédiaire d'un vide poussé.
Conformément à l'une de ses caractéristiques secondaires, l'invention prévoit de doubler extérieurement la plaque de matériau microporeux d'une feuille de protection capable d'éviter sa détérioration lors de l'enfilage des tubes coaxiaux l'un dans l'autre. Un exemple préféré d'une telle feuille est constitué par une feuille de matériau organique, notamment en résine de polyester telle que le polyéthylène.
On peut la rendre en contact intime avec le matériau microporeux soit par sa capacité propre de rétraction, soit par un effet de vide évitant que lors de l'enfilage d'un tube externe préalablement formé par-dessus le tube interne équipé des plaques de matériau microporeux, cette feuille puisse former des bourrelets et entraîner des bourrages.
Dans certains cas, il sera aussi des plus utiles qu'une telle feuille présente un faible coefficient de friction en surface, spécialement par sa surface tournée vers le tube externe, afin de ne pas gêner les déplacements relatifs ponctuels qu'entraînent l'enroulement d'un tuyau sur lui-même et son déroulement sur le site de pose de la canalisation à laquelle il est destiné.
Dans d'autres applications, on pourra préférer apposer ainsi, en surface extérieure du matériau micro¬ poreux, une feuille réalisée en un autre matériau, et plus particulièrement une feuille aluminisee présentant vers l'extérieur une surface tendant à éviter les transferts thermiques de type radiatif.
De manière similaire, on pourra trouver intérêt à revêtir le tube interne d'une couche anti-radiative en sous face du matériau microporeux. Toutefois, il semble que d'une manière générale, l'efficacité de l'isolation procurée par l'invention permet avantageusement d'éviter le surcoût que de telles couches peuvent impliquer.
Suivant encore une autre caractéristique de l'invention, il est avantageusement prévu des espaceurs ayant pour finalité d'assurer un centrage du tube interne dans le tube externe en maintenant un espace minimal convenable entre tube interne et tube externe de bout en bout le long du tuyau. De tels espaceurs sont réalisés de manière classique par des demi-coquilles serrées ensemble en position fixe sur le tube interne du tuyau.
Dans le cadre de la présente invention, on pourra en général éviter de disposer de tels espaceurs par-dessus le matériau microporeux, et les disposer au contraire en position stable directement sur le tube interne, de telle sorte qu'ils forment simultanément une butée longitudinale s' intercalant entre deux plaques de matériau microporeux se succédant sur la longueur du tuyau.
Les différentes caractéristiques de l'invention apparaîtront plus clairement avec leurs avantages respectifs au cours de la description ci-après d'un exemple de mise en oeuvre particulier illustré par la figure unique des dessins annexés.
Cette figure montre en coupe longitudinale partielle un tuyau à double enveloppe suivant l'invention, qui comporte donc un tube interne 1 enfilé coaxialement dans un tube externe 2, tel qu'il est préfabriqué en usine pour être transporté sur le site d'utilisation où des tuyaux identiques successifs sont raccordés bout à bout pour constituer une canalisation plongée en mer.
On a fait apparaître schématiquement un manchon 3 que l'on ajoute alors au niveau du raccord entre deux tuyaux soudés bout à bout par leurs tubes internes 1 respectifs.
On a représenté également une virole intermédiaire 4, que l'on retrouve à chaque extrémité du tuyau et qui ferme en ces deux extrémités une espace annulaire étanche 5 compris entre les deux tubes.
Cette virole 4, de forme générale conique, qui constitue ce que l'on appelle une tulipe d'extrémité dans le métier, est soudée de manière étanche d'une part sur le tube interne 2, en laissant dépasser une zone suffisante de celui-ci pour la réalisation de la soudure 6, et d'autre part à l'intérieur de l'extrémité en retrait du tube externe 2.
Sur la même figure, on voit des plaques de matériau microporeux 7, 8, 9, qui sont enroulées autour du tube interne 1 et dimensionnées pour que leurs bords opposés se rejoignent suivant une génératrice de ce tube, ainsi que des bandages ou colliers 11, formés de simples bandes de papier auto-collant, qui les retiennent serrées bord à bord plaquées contre la paroi externe du tube 1. On y voit aussi que, dans le sens de la longueur du tuyau, les plaques 7, 8, 9 sont séparées les unes des autres par des espaceurs 12 intercalés entre elles. Ceux-ci sont constitués par des demi-coquilles fixées l'une à l'autre en position ferme serrée contre le tube interne 1. Ils sont réalisés notamment en une matière organique moulée. Leur diamètre extérieur est inférieur au diamètre intérieur du tube externe 2, afin de ne pas gêner l'enfilage des deux tubes 1 et 2 l'un dans l'autre malgré les variations d'épaisseurs de paroi et de rotondité qui sont habituellement tolérées dans la fabrication de ce genre de tubes.
Les espaceurs 12 ainsi réalisés combinent la fonction de centrage transversal du tube interne 1 à l'intérieur du tube externe 2 avec une fonction de butée entre les plaques successives de matériau microporeux dans le sens longitudinal. Ils constituent en outre des éléments de renforcement mécanique reportant directement sur le tube interne plutôt que par l' intermédiaire des plaques isolantes les efforts de flexion que le tuyau peut avoir à supporter lors de la pose en mer.
Dans l'exemple de réalisation illustré ici, le matériau microporeux est constitué par une plaque d'isolant thermique à base de gel de silice pyrogéné enfermé dans une enveloppe de tissu de coton.
Il s'agit plus précisément d'une plaque fabriquée par la société Micropore International Ltd sous la marque Microtherm, dans laquelle la structure microporeuse de silice contient environ 65 % de silice et environ 32 % de dioxyde de titane, le reste de la composition en poids étant constitué par de l'alumine et des traces de différents autres oxydes métalliques ou alcalino-terreux, provenant notamment d'alumino-silicates constituant la matière des fibres réticulant les particules de silice. En se référant toujours à l'exemple particulier décrit, l'épaisseur de la plaque de matériau microporeux occupe la moitié de l'espace annulaire 5 entre les deux tubes coaxiaux.
Pour une épaisseur de 15 mm et un espace annulaire de 30 mm autour d'un tube interne 1 d'épaisseur courante
(13 mm) pour une section de passage de fluide de 430 mm de diamètre, elle laisse libre une épaisseur équivalente de volume d'air au voisinage du tube externe 2.
C'est par circulation longitudinale dans cet espace laissé libre que l'on crée un vide partiel extrayant l'air contenu dans les pores ouverts du matériau microporeux à travers le tissu qui l'enveloppe. Le vide est réalisé jusqu'à faire régner une pression réduite de l'ordre de 50 millibars, par aspiration au moyen d'un piquage provisoirement branché sur un trou ménagé à l'une des extrémités d'un tuyau, trou qui est ensuite fermé par un joint de soudure.
Comme il est classique, les tubes 1 et 2, de même que les viroles d'extrémité 4, de forme globalement conique, sont réalisés en acier.
Le tube interne 1 peut avantageusement comporter un revêtement complémentaire de sa paroi externe choisi pour présenter des propriétés s'opposant au glissement longi¬ tudinal du matériau microporeux plaqué contre elle. En variante ou en complément, on peut trouver intérêt, plus particulièrement pour les opérations de montage, à assurer une adhérence des bords de chaque plaque de matériau microporeux là où ils se rejoignent, tout le long de la génératrice correspondante du tube interne.
D'autre part, on a fait apparaître sur la figure une feuille intermédiaire 13 qui est enroulée exté¬ rieurement autour de chaque plaque isolante 7, 8, 9 de matériau microporeux. Son propos est de protéger l'enveloppe de tissu de ce matériau des dégradations qu'elle pourrait subir lors de l'enfilage du tube externe sur le tube interne déjà équipé desdites plaques et des épaisseurs 12.
Cette feuille 13 est représentée constituée d'une nappe de matière organique revêtue d'aluminium sur sa face extérieure. Mais il est mieux d'utiliser une feuille de polyéthylène de 0,2 mm d'épaisseur fermée par collage le long d'une génératrice du tuyau. L'emploi d'une feuille en matière rétractable a l'avantage d'assurer un bon couplage de la plaque isolante avec le tube interne du point de vue des vibrations mécaniques.
Suivant l'un des exemples de réalisation pratique des tuyaux décrits et représentés, tels qu'ils sont préfabriqués en usine, la partie courante de chaque tuyau est constituée d'un tube interne 1 présentant un diamètre extérieur de 219 mm et une épaisseur de paroi de 13 mm et d'un tube externe 2 de 249 mm de diamètre intérieur et de 11 mm d'épaisseur de paroi.
Pour chaque tuyau, le tube externe est enfilé autour du tube interne après que celui-ci ait été équipé d'abord des espaceurs 12, puis des plaques de matériau microporeux 7 , 8 , 9 , présentant chacune une épaisseur constante de 12 mm, sous une largeur équivalente au pourtour périphérique du tube interne et une longueur de 40 centimètres. Ce matériau présente une porosité à 90 % d'espaces vides, essentiellement en pores ouverts de diamètre moyen inférieur à 0,1 micron, et une masse volumique de 255 kg'/m3.
On procède ensuite à la mise sous vide par la couche de 3 mm d'épaisseur moyenne laissée libre au voisinage du tube externe, jusqu'à une pression réduite ie 50 millibars, comme ci-dessus.
La même couche, qui autorise une circulation gazeuse dans le sens longitudinal et permet de créer le vide partiel au sein du matériau microporeux dans le sens transversal, peut conserver une utilité ultérieurement, une fois les tuyaux successifs raccordés en une canalisation sous-marine.
Cette possibilité sera maintenant illustrée en se référant à une variante de construction d'une canalisation à partir d'un tuyau suivant l'invention. Conformément à cette variante le tuyau est réalisé sur de grandes longueurs en usine et transporté enroulé sur lui-même jusqu'au site de mise en place, éventuellement là aussi situé en pleine mer.
Qu'il y ait lieu ou non à raccordement de tubes successifs, un tuyau complet se présente d'une seule pièce, avec un espace annulaire tout du long pour l'isolation thermique.
Une fois un tel tuyau mis en place, le passage de circulation gazeuse reste accessible de l'une ou l'autre des extrémités de la canalisation pour faire varier le degré de vide au cours de la vie de cette dernière, faire varier en conséquence l'efficacité d'isolation.
Cette possibilité se révèle particulièrement utile dans le domaine pétrolier, car les effluents d'un champ producteur voient leurs températures varier au fur et à mesure de l'exploitation des puits, ainsi d'ailleurs que d'autres conditions de fonctionnement, telles que le débit et la composition physique et chimique de l'effluent véhiculé par la canalisation.
Dans un exemple pratique, on commence par régler l'efficacité d'isolation thermique à une valeur rela¬ tivement faible, pour les périodes d'exploitation où l'effluent pénètre dans la canalisation par exemple à 150 °C. La réalisation d'un coefficient d'isolation thermique global ("Overall Heat Transfer Coefficient" en anglais) de l'ordre de 2 à 5 W/m2 par °C permet de limiter les phénomènes de dilation longitudinale du tube interne, tout en préservant à l'effluent une température au moins égale à 40 °C jusqu'à sa sortie de la canalisation.
En fin de vie du champ producteur, la température de l'effluent à l'entrée de la canalisation s'abaisse sensiblement, et il devient utile d'améliorer le coefficient d'isolation thermique global, jusqu'à par exemple 0,5 W/m2 par °C, pour conserver en sortie de la canalisation, la même température, dans un compromis entre les soucis d'ordre économique et le besoin d'éviter la formation de condensats indésirables tout au long du trajet suivi par l'effluent dans la canalisation.
Dans de telles circonstances, on a donc intérêt à choisir, dimensionner et disposer les éléments constitutifs du tuyau suivant l'invention de manière qu'il soit adapté à générer un coefficient d'isolation thermique global compris entre 0,5 W/m2.°C et 1 W/m2.°C quand on fait régner dans la double enveloppe du tuyau une dépression de l'ordre de 1 à 100 mbar, pouvant évenuellement ne pas dépasser une valeur de pression réduite de l'ordre de 900 mbars, et que l'on puisse néanmoins exploiter la présence des passages longitudinaux libres à la circulation de l'air pour créer au contraire une surpression, la pression dans l'espace annulaire entre les tubes coaxiaux (y compris le matériau microporeux) pouvant alors atteindre 50 bars par exemple.
Dans un tel exemple, l'invention se traduit par un procédé d'utilisation d'un tuyau ainsi constitué, essentiellement caractérisé par le fait qu'on fait varier la pression régnant dans ledit espace annulaire entre des valeurs pouvant atteindre 50 bars en début de vie d'une canalisation formée par ledit tuyau, et des valeurs comprises entre 1 mbar et 900 mbar en fin de vie de la canalisation. On peut ainsi faire varier le coefficient d'isolation thermique global entre 0,5 W/m2.°C et 5 W/m2.°C, pour une épaisseur de plaque de matériau microporeux de l'ordre de 10 à 14 mm et une couche annulaire de circulation longitudinale de gaz présentant une épaisseur radiale moyenne comprise entre 1 et 5 millimètres.
Dans un cas comme dans l'autre, l'air supposé présent dans l'espace annulaire, y compris dans les pores du matériau microporeux, peut être remplacé par un autre gaz, tel qu'un gaz neutre comme l'argon, afin d'améliorer encore les qualités recherchées, pour les mêmes natures et dimensions des éléments constitutifs.

Claims

R E V E N D I C A T I O N S
1. Tuyau à double enveloppe pour canalisations, notamment pour canalisations de produits pétroliers à poser en mer, caractérisé en ce que, dans un espace annulaire étanche (5) entre un tube interne (1) et un tube externe (2) disposés coaxialement l'un dans l'autre, il comporte une plaque autoportante (7,8,9) de matériau microporeux à pores ouverts, présentant une flexibilité suffisante pour être enroulée contre le tube interne (1) , et en ce qu'il est réservé hors ledit matériau dans ledit espace annulaire, un passage libre à une circulation longitudinale de gaz par lequel on fait régner une pression réduite tout au long dudit espace annulaire.
2. Tuyau suivant la revendication 1, caractérisé en ce que ledit passage se présente sous la forme d'une couche annulaire laissée libre entre la plaque de matériau microporeux et la paroi interne du tube externe, l'épaisseur de ladite plaque étant inférieure à celle dudit espace annulaire (5) .
3. Tuyau suivant la revendication 1 ou 2, caractérisé en ce que ladite pression réduite est comprise entre 0,5 et 100 millibars.
4. Tuyau suivant la revendication 1, 2 ou 3, carac¬ térisé en ce que ledit matériau microporeux est sous forme de plaques isolantes à base céramique réparties sur la longueur du tuyau.
5. Tuyau suivant la revendication 4, caractérisé en ce que le matériau desdites plaques est fait d'un mélange de poudre silicique et de fibres de renforcement céramiques, le tout compacté en une structure tridimensionnelle cohérente de fines particules qui est retenue dans une enveloppe non étanche.
6. Tuyau suivant la revendication 5, caractérisé en ce que ladite enveloppe est constituée d'un tissu de fibres de coton, de préférence non tissées.
7. Tuyau suivant l'une quelconque des revendications 4 à 6, caractérisé en ce que ledit matériau microporeux est constitué d'un mélange d'une majeure partie formée de silice avec une mineure partie formée de dioxyde de titane.
8. Tuyau suivant la revendication 7, caractérisé en ce que la proportion de dioxyde de titane dans ledit matériau est comprise entre 30 à 35 % en poids pour 60 à 70 % en poids de silice, par rapport au poids total de sa composition.
9. Tuyau suivant l'une quelconque des revendications 1 à 8, caractérisé en ce que les pores du matériau constituant ladite plaque sont ouverts pour 85 à 95 % de leur volume global, sous un diamètre de pores moyen inférieur ou au plus égal à 0,1 micron.
10. Tuyau suivant la revendication 2, éventuellement combinée avec l'une quelconque des revendications 3 à 9, caractérisé en ce que la couche laissée libre contre ledit tube externe (2) par la plaque de matériau microporeux présente une épaisseur moyenne comprise entre 0,5 et 5 millimètres.
11. Tuyau suivant l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comporte des espaceurs de centrage dudit tube interne (1) dans ledit tube externe (2) , régulièrement répartis serrés fixes sur ledit tube interne (1) sur la longueur du tuyau, qui forment des éléments de renforcement et des butées longitudinales pour des plaques distinctes dudit matériau microporeux.
12. Tuyau suivant l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il comporte une feuille (13) de protection de ladite plaque (7,8,9) qui est plaquée extérieurement autour de ladite plaque et qui, de préférence, présente un faible coefficient de friction en surface.
13. Tuyau suivant la revendication 12, caractérisé en ce que ladite feuille (13) est en matière rétractable favorisant un couplage de ladite plaque avec ledit tube interne du point de vue des vibrations mécaniques.
14. Tuyau suivant l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il comporte au moins une feuille à effet anti-radiatif, interposée entre ledit tube interne (1) et ledit tube externe (2) , en coopération avec ladite plaque (7,8,9) de matériau microporeux et ledit passage laissé libre sous pression réduite.
15. Tuyau suivant l'une quelconque des revendications 1 à 14 , caractérisé en ce ledit tube interne est un tube d'acier qui est enfilé sur le tube interne, également en acier, préalablement équipé de ladite plaque de matériau microporeux, l'espace annulaire étant ensuite fermé étanche aux extrémités du tuyau au moyen d'une virole intermédiaire entre lesdits tubes coaxiaux.
16. Procédé d'utilisation d'un tuyau suivant l'une quelconque des revendications l à 15, caractérisé par le fait qu'au cours de la vie d'une canalisation formée par ledit tuyau, on fait varier la pression régnant dans ledit espace annulaire entre des valeurs pouvant atteindre 50 bars et des valeurs comprises entre 1 mbar et 900 mbar, pour faire varier le coefficient d'isolation thermique global entre l'intérieur et l'extérieur du tuyau entre 0,5 W/m2.°C et 5 W/m2.°C, l'épaisseur de ladite plaque de matériau microporeux étant de l'ordre de 10 à 14 mm et une couche de circulation longitudinale de gaz suivant la revendication 2 étant ménagée sous une épaisseur moyenne comprise entre 1 et 5 millimètres.
PCT/FR1997/000564 1996-03-29 1997-03-28 Tuyau pour canalisations du type a double enveloppe d'isolation thermique WO1997037166A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/147,062 US6145547A (en) 1996-03-29 1997-03-28 Pipes for pipelines with heat insulating double casing
DE69701353T DE69701353T2 (de) 1996-03-29 1997-03-28 Leitungsrohr des typs doppelwärmedämpfungsmantel
EP97919439A EP0890056B1 (fr) 1996-03-29 1997-03-28 Tuyau pour canalisations du type a double enveloppe d'isolation thermique
AU23915/97A AU2391597A (en) 1996-03-29 1997-03-28 Line pipe with a double heat-insulating casing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9604812A FR2746891B1 (fr) 1996-03-29 1996-03-29 Tuyau pour canalisations du type a double enveloppe d'isolation thermique
FR96/04812 1996-03-29

Publications (1)

Publication Number Publication Date
WO1997037166A1 true WO1997037166A1 (fr) 1997-10-09

Family

ID=9491298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/000564 WO1997037166A1 (fr) 1996-03-29 1997-03-28 Tuyau pour canalisations du type a double enveloppe d'isolation thermique

Country Status (7)

Country Link
US (1) US6145547A (fr)
EP (1) EP0890056B1 (fr)
AU (1) AU2391597A (fr)
CH (1) CH694772A5 (fr)
DE (1) DE69701353T2 (fr)
FR (1) FR2746891B1 (fr)
WO (1) WO1997037166A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397895B1 (en) 1999-07-02 2002-06-04 F. Glenn Lively Insulated pipe
WO2003006871A1 (fr) * 2001-07-09 2003-01-23 Saes Getters S.P.A. Systeme d'isolation thermique de corps tubulaires
EP1403578A1 (fr) * 2002-09-30 2004-03-31 Fränkische Rohrwerke Gebr. Kirchner GmbH + Co KG Tuyau d'un système de chauffage à grande distance
WO2021123350A1 (fr) 2019-12-18 2021-06-24 Subsea 7 Limited Enroulement et installation de pipelines chauffés par traçage de configuration à doube enveloppe

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007720B1 (en) * 2000-04-04 2006-03-07 Lacks Industries, Inc. Exhaust tip
FR2817319B1 (fr) 2000-11-29 2008-12-19 Itp Pipeline double enveloppe a resistance amelioree au flambage
NO335033B1 (no) 2000-05-10 2014-08-25 Itp Rørledning med dobbel rørvegg og stor bøyestivhet
US6955221B2 (en) 2002-05-31 2005-10-18 Stolt Offshore Inc. Active heating of thermally insulated flowlines
GB0212689D0 (en) * 2002-05-31 2002-07-10 Stolt Offshore Sa Flowline insulation system
ATE415585T1 (de) * 2003-05-06 2008-12-15 Aspen Aerogels Inc Tragendes, leichtes und kompaktes isoliersystem
GB0326118D0 (en) * 2003-11-08 2003-12-17 Subsea 7 Uk Apparatus and method
FR2865262B1 (fr) 2004-01-20 2006-11-24 Gaz Transport & Technigaz Conduite thermiquement isolee
MX356474B (es) 2004-03-26 2018-05-30 Fluor Tech Corp Metodos y configuraciones de tuberia criogenica.
US20050212285A1 (en) * 2004-03-29 2005-09-29 Ope International, L.P. Dual-walled piping system and methods
CN100582564C (zh) * 2004-09-16 2010-01-20 皇家飞利浦电子股份有限公司 具有灯和反射器的灯组件
GB2419171A (en) * 2004-10-14 2006-04-19 Crp Group Ltd Insulated pipe assembly
FR2878936A1 (fr) 2004-12-08 2006-06-09 Saipem S A Sa Procede d'isolation thermique de conduites coaxiales par un materiau isolant particulaire
BRPI0519128B1 (pt) * 2004-12-20 2017-09-26 Shell Internationale Research Maatschappij B. V. System and method for maintaining production drainage in a submarine pipe
WO2007053164A2 (fr) * 2005-01-12 2007-05-10 Shell Oil Company Canalisations, systemes et procedes de transport d'hydrocarbures
WO2006107420A2 (fr) * 2005-02-23 2006-10-12 Aspen Aerogels, Inc. Composites a base de materiaux macroporeux et nanoporeux
US20060207673A1 (en) * 2005-03-18 2006-09-21 O'brien John V Vacuum insulated assured flow piping
US20060272727A1 (en) 2005-06-06 2006-12-07 Dinon John L Insulated pipe and method for preparing same
US7464755B2 (en) * 2006-12-12 2008-12-16 Schlumberger Technology Corporation Methods and systems for sampling heavy oil reservoirs
CN102066824B (zh) 2008-05-01 2014-07-09 卡伯特公司 隔离管或其元件的制造和安装
US20110227337A1 (en) * 2010-03-18 2011-09-22 Kattler David R Fitting for jacketed tubing
FR2967752B1 (fr) * 2010-11-18 2013-07-05 Itp Sa Conduit isole et chauffe realise par des troncons double enveloppe et procede de pose du conduit
RU2487228C1 (ru) * 2011-12-20 2013-07-10 Общество С Ограниченной Ответственностью "Тмк-Премиум Сервис" Секция теплоизолированной колонны
US9243726B2 (en) 2012-10-03 2016-01-26 Aarne H. Reid Vacuum insulated structure with end fitting and method of making same
CN103196008A (zh) * 2013-04-11 2013-07-10 广西玉林宏江能源科技有限公司 无填满料的普通低温软硬保温管及其制造方法
US9463918B2 (en) 2014-02-20 2016-10-11 Aarne H. Reid Vacuum insulated articles and methods of making same
EP3140492B1 (fr) * 2014-05-06 2019-01-30 Total S.A. Ensemble de jonction pour former une conduite
GB2535474B (en) 2015-02-16 2018-05-16 Acergy France SAS Subsea pipe-in-pipe structures
BR112017020367B1 (pt) * 2015-03-24 2022-04-19 Sanoh Industrial Co., Ltd Tubo automotivo
US10497908B2 (en) 2015-08-24 2019-12-03 Concept Group, Llc Sealed packages for electronic and energy storage devices
US10065256B2 (en) 2015-10-30 2018-09-04 Concept Group Llc Brazing systems and methods
US11702271B2 (en) 2016-03-04 2023-07-18 Concept Group Llc Vacuum insulated articles with reflective material enhancement
US10006568B2 (en) 2016-06-06 2018-06-26 United Technologies Corporation Double walled tube and manufacture thereof
WO2018093773A1 (fr) 2016-11-15 2018-05-24 Reid Aarne H Ensembles à isolation multiple
KR20200010162A (ko) * 2016-11-15 2020-01-30 컨셉트 그룹 엘엘씨 미세 다공성 절연재를 갖는 향상된 진공-절연된 물품
US20190277440A1 (en) * 2016-11-15 2019-09-12 Concept Group Llc Enhanced vacuum-insulated articles with controlled thermal pathways
FR3066778B1 (fr) 2017-05-29 2020-08-28 Majus Ltd Installation de rechauffage de conduite d'extraction d'hydrocarbures
FR3066777B1 (fr) 2017-05-29 2020-11-27 Majus Ltd Installation de rechauffage de la zone productrice du gisement d'un puits pour l'extraction d'hydrocarbures
CN111465800B (zh) 2017-08-25 2022-03-01 概念集团有限责任公司 多几何形状和多材料隔热部件
GB2569787B (en) 2017-12-20 2020-06-17 Acergy France SAS Insulation of pipe-in-pipe systems
JP7152857B2 (ja) * 2017-12-28 2022-10-13 川崎重工業株式会社 流体荷役継手および流体荷役装置
GB2574377A (en) 2018-05-29 2019-12-11 Acergy France SAS Sealing hollow structures
GB2577289B (en) 2018-09-20 2021-04-28 Acergy France SAS Spacers for pipe-in-pipe systems
CN109578752B (zh) * 2019-01-29 2024-02-23 信达科创(唐山)石油设备有限公司 一种超长保温钢套钢管道及其加工工艺
AU2021310291A1 (en) * 2020-07-15 2023-03-09 Alliance For Sustainable Energy, Llc Fluidized-bed heat exchanger for conversion of thermal energy to electricity
JP2022082299A (ja) 2020-11-20 2022-06-01 国立研究開発法人物質・材料研究機構 断熱配管
CN113108137A (zh) * 2021-04-14 2021-07-13 浙江千禧龙纤特种纤维股份有限公司 一种超高分子聚乙烯纤维内衬管油管及其生产方法
CN113108136A (zh) * 2021-04-14 2021-07-13 浙江千禧龙纤特种纤维股份有限公司 一种超高分子聚乙烯纤维内衬管油管及其生产方法
AU2021215194A1 (en) * 2021-07-19 2023-02-02 Fortescue Future Industries Pty Ltd Apparatus and method for transfer of cryogenic fluids – materials substitution
AU2021215186A1 (en) * 2021-07-19 2023-02-02 Fortescue Future Industries Pty Ltd Apparatus and method for transfer of cryogenic fluids
AU2021215196A1 (en) * 2021-07-19 2023-02-02 Fortescue Future Industries Pty Ltd Apparatus and method for transfer of cryogenic fluids – dual use vapour return and liquid circulation line

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930407A (en) * 1957-06-10 1960-03-29 Conley John Insulated piping
US3410313A (en) * 1965-05-04 1968-11-12 New England Realty Co Corrosion protected conduit system
DE2844223A1 (de) * 1978-10-11 1980-04-24 Gruenzweig & Hartmann Montage Waermegedaemmtes rohr
AT378834B (de) * 1981-11-16 1985-10-10 Eternit Werke Hatschek L Rohrleitungssystem, insbesondere mehrkanalrohrleitungssystem, und verfahren zu dessen herstellung
FR2613814A1 (fr) * 1987-04-09 1988-10-14 Bertin & Cie Dispositif d'isolation thermique et acoustique d'une paroi, en particulier de forme complexe
GB2269876A (en) * 1992-08-12 1994-02-23 Terence Jeffrey Corbishley Hydrotherm-thermal insulation for submarine pipelines and equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1441742A (en) * 1972-08-15 1976-07-07 Smiths Industries Ltd Tubing
US3961907A (en) * 1972-12-08 1976-06-08 Minnesota Mining And Manufacturing Company Catalytic converter
US3863679A (en) * 1973-02-05 1975-02-04 Joseph Young Pipeline assembly
JPS5030115U (fr) * 1973-07-11 1975-04-04
US4500487A (en) * 1982-02-26 1985-02-19 The United States Of America As Represented By The United States Department Of Energy Pressure surge attenuator
US4768455A (en) * 1983-01-07 1988-09-06 Conoco Inc. Dual wall steel and fiber composite mooring element for deep water offshore structures
US4700751A (en) * 1984-11-01 1987-10-20 Fedrick Ronald M Insulated pipe apparatus
JPS61127348A (ja) * 1984-11-27 1986-06-14 日本特殊陶業株式会社 セラミツクスと金属との複合体
US4718459A (en) * 1986-02-13 1988-01-12 Exxon Production Research Company Underwater cryogenic pipeline system
US4874648A (en) * 1988-03-17 1989-10-17 Sorrento Engineer, Inc. Method of making flame resistant polyimide foam insulation and the resulting insulation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930407A (en) * 1957-06-10 1960-03-29 Conley John Insulated piping
US3410313A (en) * 1965-05-04 1968-11-12 New England Realty Co Corrosion protected conduit system
DE2844223A1 (de) * 1978-10-11 1980-04-24 Gruenzweig & Hartmann Montage Waermegedaemmtes rohr
AT378834B (de) * 1981-11-16 1985-10-10 Eternit Werke Hatschek L Rohrleitungssystem, insbesondere mehrkanalrohrleitungssystem, und verfahren zu dessen herstellung
FR2613814A1 (fr) * 1987-04-09 1988-10-14 Bertin & Cie Dispositif d'isolation thermique et acoustique d'une paroi, en particulier de forme complexe
GB2269876A (en) * 1992-08-12 1994-02-23 Terence Jeffrey Corbishley Hydrotherm-thermal insulation for submarine pipelines and equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397895B1 (en) 1999-07-02 2002-06-04 F. Glenn Lively Insulated pipe
WO2003006871A1 (fr) * 2001-07-09 2003-01-23 Saes Getters S.P.A. Systeme d'isolation thermique de corps tubulaires
US7036531B2 (en) 2001-07-09 2006-05-02 Saes Getters S.P.A. System for thermally insulating tubular bodies
CN1299043C (zh) * 2001-07-09 2007-02-07 工程吸气公司 用于绝热管形体的系统
EP1403578A1 (fr) * 2002-09-30 2004-03-31 Fränkische Rohrwerke Gebr. Kirchner GmbH + Co KG Tuyau d'un système de chauffage à grande distance
WO2021123350A1 (fr) 2019-12-18 2021-06-24 Subsea 7 Limited Enroulement et installation de pipelines chauffés par traçage de configuration à doube enveloppe
GB2590453A (en) 2019-12-18 2021-06-30 Subsea 7 Ltd Spooling and installing trace-heated pipelines of pipe-in-pipe configuration

Also Published As

Publication number Publication date
DE69701353T2 (de) 2000-07-06
EP0890056B1 (fr) 2000-03-01
AU2391597A (en) 1997-10-22
US6145547A (en) 2000-11-14
CH694772A5 (fr) 2005-07-15
EP0890056A1 (fr) 1999-01-13
FR2746891A1 (fr) 1997-10-03
DE69701353D1 (de) 2000-04-06
FR2746891B1 (fr) 1998-06-05

Similar Documents

Publication Publication Date Title
EP0890056B1 (fr) Tuyau pour canalisations du type a double enveloppe d'isolation thermique
EP1828656B1 (fr) Element de conduites coaxiales sous-marines allege et renforce
EP1232361B1 (fr) Complexe tubulaire isolant pour conduite
EP3224393B1 (fr) Couche d'isolation thermique pour conduite tubulaire flexible sous-marine
EP1743116B1 (fr) Complexe isolant a enveloppe metallique pour conduite
CA2491675C (fr) Conduite thermiquement isolee
WO1986007432A1 (fr) Canalisation utilisable notamment pour le transport de fluides et permettant de limiter la permeabilite aux fluides transportes
EP1664607B1 (fr) Dispositif d'espacement et de centrage perfectionne pour conduite rigide a double enveloppe a faible coefficient de transfert thermique
WO1998034061A1 (fr) Enveloppe d'isolation thermique, notamment pour la construction de canalisations sous-marines vehiculant des produits petroliers
FR2542060A1 (fr) Tuyau conducteur isole de la chaleur et procede pour le fabriquer
EP1056970A1 (fr) Procede de raccordement de deux tubes en materiau thermoplastique renforce
FR2600747A1 (fr) Tube flexible utilisable notamment pour le transport de fluides caloporteurs ou frigorifiques
FR2777628A1 (fr) Procede de realisation d'une conduite calorifugee a enveloppe externe de protection et conduite ainsi realisee
FR2721681A1 (fr) Procédé de construction de conduites telles que des canalisations de produits pétroliers en mer, tuyaux et dispositifs de raccordement de tuyaux pour la mise en Óoeuvre de ce procédé.
FR2606857A1 (fr) Tube de canalisation isole thermiquement constitue de deux tubes concentriques enroules en bottes annulaires de diametre reduit
EP0071551A1 (fr) Elément de tube préfabriqué pour canalisations de transport de fluide à température différente de l'ambiante
EP0140773A1 (fr) Tube flexible utilisable notamment pour le transport de fluides caloporteurs ou frigorifiques
CA2126246A1 (fr) Canalisation de fluide realisee en matiere plastique, notamment pour raccorder le reservoir de carburant d'un vehicule au moteur dudit vehicule
FR2559875A1 (fr) Tuyau calorifuge en beton arme de fibres
FR2748545A1 (fr) Conduite isolee thermiquement pour le transport de gaz naturel liquefie
FR2788831A1 (fr) Dispositif d'isolation thermique d'au moins une conduite sous marine a grande profondeur
FR3092381A1 (fr) Isolation thermique de pipelines sous-marins
FR2556443A1 (fr) Reservoir pour le stockage de liquides a des temperatures cryogeniques, matiere de garnissage pour un tel reservoir et procede de fabrication de cette matiere
FR2761449A1 (fr) Tuyaux a double enveloppe pour canalisation de type pipeline
FR2832206A1 (fr) Dispositif de flottaison utilisable a grande profondeur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09147062

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997919439

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97534986

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997919439

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1997919439

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997919439

Country of ref document: EP