WO1997036593A1 - Inhibiteurs de la farnesyle-proteine transferase - Google Patents

Inhibiteurs de la farnesyle-proteine transferase Download PDF

Info

Publication number
WO1997036593A1
WO1997036593A1 PCT/US1997/005144 US9705144W WO9736593A1 WO 1997036593 A1 WO1997036593 A1 WO 1997036593A1 US 9705144 W US9705144 W US 9705144W WO 9736593 A1 WO9736593 A1 WO 9736593A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
alkyl
aryl
unsubstituted
cycloalkyl
Prior art date
Application number
PCT/US1997/005144
Other languages
English (en)
Inventor
Dong D. Wei
Theresa M. Williams
Original Assignee
Merck & Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9613460.6A external-priority patent/GB9613460D0/en
Application filed by Merck & Co., Inc. filed Critical Merck & Co., Inc.
Priority to AU25548/97A priority Critical patent/AU706495B2/en
Priority to JP9535473A priority patent/JP2000507582A/ja
Priority to EP97917116A priority patent/EP0921801A1/fr
Publication of WO1997036593A1 publication Critical patent/WO1997036593A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • Ras proteins are part of a signalling pathway that links cell surface growth factor receptors to nuclear signals initiating cellular proliferation.
  • Biological and biochemical studies of Ras action indicate that Ras functions like a G-regulatory protein.
  • Ras In the inactive state, Ras is bound to GDP.
  • Ras Upon growth factor receptor activation Ras is induced to exchange GDP for GTP and undergoes a conformational change.
  • the GTP- bound form of Ras propagates the growth stimulatory signal until the signal is terminated by the intrinsic GTPase activity of Ras, which returns the protein to its inactive GDP bound form (D.R. Lowy and D.M. Willumsen, Ann. Rev. Biochem.
  • Mutated ras genes are found in many human cancers, including colorectal carcinoma, exocrine pancreatic carcinoma, and myeloid leukemias.
  • the protein products of these genes are defective in their GTPase activity and constitutively transmit a growth stimulatory signal.
  • Ras must be localized to the plasma membrane for both normal and oncogenic functions. At least 3 post-translational modifications are involved with Ras membrane localization, and all 3 modifications occur at the C-terminus of Ras.
  • the Ras C-terminus contains a sequence motif termed a "CAAX” or "Cys-Aaa 1 -Aaa 2 -Xaa” box (Cys is cysteine, Aaa is an aliphatic amino acid, the Xaa is any amino acid) (Willumsen et al., Nature 310:583-586 (1984)).
  • this motif serves as a signal sequence for the enzymes farnesyl-protein transferase or geranylgeranyl-protein transferase, which catalyze the alkylation of the cysteine residue of the CAAX motif with a C 15 or C 20 isoprenoid, respectively.
  • the Ras protein is one of several proteins that are known to undergo post-translational farnesylation.
  • farnesylated proteins include the Ras-related GTP- binding proteins such as Rho, fungal mating factors, the nuclear lamins, and the gamma subunit of transducin. James, et al., J. Biol. Chem. 269, 14182 (1994) have identified a peroxisome associated protein Pxf which is also farnesylated. James, et al., have also suggested that there are farnesylated proteins of unknown structure and function in addition to those listed above.
  • HMG-CoA reductase the rate limiting enzyme for the production of polyisoprenoids
  • farnesyl pyrophosphate the rate limiting enzyme for the production of polyisoprenoids
  • Farnesyl-protein transferase utilizes farnesyl pyrophosphate to covalently modify the Cys thiol group of the Ras CAAX box with a farnesyl group (Reiss et al., Cell, 62:81 -88 (1990); Schaber et al., J. Biol. Chem., 265: 14701-14704 (1990); Schafer et al., Science, 249: 1133-1139 (1990); Marine et al., Proc. Natl. Acad.
  • FPTase farnesyl-protein transferase
  • FPP farnesyl diphosphate
  • Ras protein substrates
  • the peptide derived inhibitors that have been described are generally cysteine containing molecules that are related to the CAAX motif that is the signal for protein prenylation. (Schaber et al., ibid; Reiss et. al., ibid; Reiss et al., PNAS, 88:732:736 ( 1991 )).
  • Such inhibitors may inhibit protein prenylation while serving as altemate substrates for the farnesyl-protein transferase enzyme, or may be purely competitive inhibitors (U.S.
  • Patent 5,141 ,851 University of Texas; N.E. Kohl et al., Science,
  • farnesyl-protein transferase inhibitors are inhibitors of proliferation of vascular smooth muscle cells and are therefore useful in the prevention and therapy of arteriosclerosis and diabetic disturbance of blood vessels (JP H7- 1 12930).
  • the present invention comprises peptidomimetic piperazine- or piperazinone-containing compounds which inhibit the farnesyl-protein transferase.
  • the instant compounds lack a thiol moiety and thus offer unique advantages in terms of improved pharmacokinetic behavior in animals, prevention of thiol-dependent chemical reactions, such as rapid autoxidation and disulfide formation with endogenous thiols, and reduced systemic toxicity.
  • the compounds of this invention are useful in the inhibition of farnesyl-protein transferase and the farnesylation of the oncogene protein Ras.
  • the inhibitors of farnesyl-protein transferase are illustrated by the formula A:
  • R 1a and R 1b are independently selected from:
  • substitutent on the substituted C 1 -C 6 alkyl is selected from unsubstituted or substituted aryl, heterocyclic, C 3 -C 10 cycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R 10 O-,
  • R 2 and R 3 are independently selected from: H; unsubstituted or substituted C 1-8 alkyl, unsubstituted or substituted C 2-8 alkenyl, unsubstituted or substituted C 2-8 alkynyl, unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, O
  • substituted group is substituted with one or more of:
  • R 2 and R 3 are attached to the same C atom and are combined to form (CH 2 ) u - wherein one of the carbon atoms is optionally replaced by a moiety selected from: O, S(O) m , -NC(O)-, and -N(COR 10 )- ;
  • R 4 is selected from H and CH 3 ; and any two of R 2 , R 3 and R 4 are optionally attached to the same carbon atom;
  • R 6 , R 7 and R 7a are independently selected from: H; C 1 -4 alkyl, C 3-6 cycloalkyl, heterocycle, aryl, aroyl, heteroaroyl, arylsulfonyl, heteroarylsulfonyl, unsubstituted or substituted with:
  • R 6 and R 7 may be joined in a ring;
  • R 7 and R 7a may be joined in a ring;
  • R 6a is selected from: C 1 -4 alkyl, C 3 -6 cycloalkyl, heterocycle, aryl, unsubstituted or substituted with:
  • R 8 is independently selected from:
  • R 9 is selected from:
  • R 10 is independently selected from hydrogen, C 1 -C 6 alkyl, benzyl and aryl;
  • R 11 is independently selected from C 1 -C 6 alkyl and aryl
  • G is H 2 or O;
  • V is selected from:
  • V is not hydrogen if A 1 is S(O) m and V is not hydrogen if A 1 is a bond, n is 0 and A 2 is S(O) m ;
  • W is a heterocycle
  • Z is unsubstituted C 1 -C 6 alkyl, substituted C 1 -C 6 alkyl,
  • n 0, 1 , 2, 3 or 4;
  • p 0, 1 , 2, 3 or 4;
  • q 1 or 2;
  • r is 0 to 5, provided that r is 0 when V is hydrogen;
  • s is 0 or 1 ;
  • t is 0 or 1 ;
  • u is 4 or 5; or the pharmaceutically acceptable salts thereof.
  • R 1a and R 1b are independently selected from:
  • substitutent on the substituted C 1 -C 6 alkyl is selected from unsubstituted or substituted aryl, heterocyclic, C 3 -C 10 cycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R 10 O-, R 11 S(O) m -, R 10 C(O)NR 10 -, (R 10 ) 2 NC(O)-, R 10 2 N- C(NR 10 )-, CN, R 10 C(O)-, N 3 , -N(R 10 ) 2 , and R 11 OC(O)-
  • R 2 and R 3 are independently selected from: H; unsubstituted or
  • R 2 and R 3 are attached to the same C atom and are combined to form (CH 2 ) u - wherein one of the carbon atoms is optionally replaced by a moiety selected from: O, S(O) m , -NC(O)-, and -N(COR 10 )- ;
  • R 4 is selected from H and CH 3 ; and any two of R 2 , R 3 and R 4 are optionally attached to the same carbon atom;
  • R 6 , R 7 and R 7a are independently selected from: H; C 1-4 alkyl, C 3-6 cycloalkyl, heterocycle, aryl, aroyl, heteroaroyl, arylsulfonyl, heteroarylsulfonyl, unsubstituted or substituted with:
  • R 6 and R 7 may be joined in a ring;
  • R 7 and R 7a may be joined in a ring;
  • R 6a is selected from: C 1-4 alkyl, C 3-6 cycloalkyl, heterocycle, aryl, unsubstituted or substituted with:
  • R 8 is independently selected from:
  • cyanophenyl heterocycle, C 3 -C 10 cycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, perfluoroalkyl, F, Cl, Br, R 10 O-,
  • R 11 S(O) m -, R 10 C(O)NH-, (R 10 ) 2 NC(O)-, R 10 2 N- C(NR 10 )-, CN, R 10 C(O)-, N 3 , -N(R 10 ) 2 , or R 10 OC(O)NH-;
  • R 9 is selected from:
  • V is selected from:
  • V is not hydrogen if A 1 is S(O) m and V is not hydrogen if A 1 is a bond, n is 0 and A 2 is S(O) m ;
  • W is a heterocycle
  • Z is unsubstituted C 1 -C 6 alkyl, substituted C 1 -C 6 alkyl,
  • n 0, 1, 2, 3 or 4;
  • p 0, 1, 2, 3 or 4;
  • q 1 or 2;
  • r is 0 to 5, provided that r is 0 when V is hydrogen;
  • s 1 ;
  • t is 0 or 1 ;
  • u is 4 or 5; or the pharmaceutically acceptable salts thereof.
  • the inhibitors of farnesyl-protein transferase are illustrated by the formula A:
  • R 1 a is independently selected from: hydrogen or C 1 -C 6 alkyl; R 1 b is independently selected from:
  • substitutent on the substituted C 1 -C 6 alkyl is selected from unsubstituted or substituted aryl, heterocycle, cycloalkyl, alkenyl, R 10 O- and -N(R 10 ) 2 ;
  • R 3 and R 4 are independently selected from H and CH 3 ;
  • R 2 is H; or C 1 -5 alkyl, unbranched or branched, unsubstituted or substituted with one or more of:
  • R 6 , R 7 and R 7a are independently selected from:
  • H C 1-4 alkyl, C 3-6 cycloalkyl, aryl, heterocycle, unsubstituted or substituted with:
  • R 6a is selected from:
  • R 8 is independently selected from:
  • perfluoroalkyl F, Cl, R 10 O-, R 10 C(O)NR 10 -, CN, NO 2 , (R 10 ) 2 N-C(NR 10 )-, R 10 C(O)-, -N(R 10 ) 2 , or R 11 OC(O)NR 10 -, and
  • R 9 is selected from:
  • perfluoroalkyl F, Cl, R 10 O-, R 11 S(O) m -, R 10 C(O)NR 10 -, CN, (R 10 ) 2 N-C(NR 10 )-, R 10 C(O)-, -N(R 10 ) 2 , or
  • R 11 OC(O)NR 10 -;
  • R 10 is independently selected from hydrogen, C 1 -C 6 alkyl, benzyl and aryl;
  • R 11 is independently selected from C 1 -C 6 alkyl and aryl;
  • V is selected from:
  • heterocycle selected from pyrrolidinyl, imidazolyl,
  • V is not hydrogen if A 1 is S(O) m and V is not hydrogen if A 1 is a bond, n is 0 and A 2 is S(O) m ;
  • G is H 2 or O
  • W is a heterocycle selected from pyrrolidinyl, imidazolyl, pyridinyl. thiazolyl, pyridonyl, 2-oxopiperidinyl, indolyl, quinolinyl, or
  • Z is unsubstituted C 1 -C 6 alkyl, substituted C 1 -C 6 alkyl,
  • n 0, 1, 2, 3 or 4;
  • p 0, 1 , 2, 3 or 4;
  • r is 0 to 5, provided that r is 0 when V is hydrogen;
  • s is 0 or 1 ;
  • t is 0 or 1 ;
  • R 1 a is selected from: hydrogen or C 1 -C 6 alkyl; R 1 b is independently selected from:
  • heterocycle cycloalkyl, alkenyl, R 10 O-, or -N(R 10 ) 2 ;
  • R 3 is selected from H and CH 3 ;
  • R 2 is selected from H; or C 1 -5 alkyl, unbranched or branched, unsubstituted or substituted with one or more of:
  • R 6 and R7 are independently selected from:
  • R 6a is selected from:
  • R 8 is independently selected from:
  • perfluoroalkyl F, Cl, R 10 O-, R 10 C(O)NR 10 -, CN, NO 2 , (R 10 ) 2 N-C(NR 10 )-, R 10 C(O)-, -N(R 10 ) 2 , or
  • R 9a is hydrogen or methyl
  • R 10 is independently selected from hydrogen, C 1 -C 6 alkyl, benzyl and aryl
  • R 11 is independently selected from C 1 -C 6 alkyl and aryl
  • V is selected from:
  • V is not hydrogen if A 1 is S(O) m and V is not hydrogen if A 1 is a bond, n is 0 and A 2 is S(O) m ;
  • Z is unsubstituted C 1 -C 6 alkyl, substituted C 1 -C 6 alkyl,
  • n 0, 1 , 2, 3 or 4;
  • p 0, 1 , 2, 3 or 4;
  • r is 0 to 5, provided that r is 0 when V is hydrogen; or the pharmaceutically acceptable salts thereof.
  • the inhibitors of farnesyl-protein transferase are illustrated by the formula D:
  • R 1 b is independently selected from:
  • heterocycle cycloalkyl, alkenyl, R 10 O-, or -N(R 1 0 ) 2 ;
  • R 3 is selected from H and CH 3 ;
  • R 2 is selected from H; or C 1 -5 alkyl, unbranched or branched, unsubstituted or substituted with one or more of:
  • R 6 and R 7 are independently selected from: H; C 1-4 alkyl, C 3-6 cycloalkyl, aryl, heterocycle, unsubstituted or substituted with:
  • R 6a is selected from:
  • R 8 is independently selected from:
  • perfluoroalkyl F, Cl, R 10 O-, R 10 C(O)NR 10 -, CN, NO 2 , (R 10 ) 2 N-C(NR 10 )-, R 10 C(O)-, -N(R 10 ) 2 , or R 11 OC(O)NR 10 -, and
  • R 10 is independently selected from hydrogen, C 1 -C 6 alkyl, benzyl and aryl;
  • R 11 is independently selected from C 1 -C 6 alkyl and aryl
  • Z is unsubstituted C 1 -C 6 alkyl, substituted C 1 -C 6 alkyl,
  • p is 0, 1 , 2, 3 or 4; or the pharmaceutically acceptable salts thereof.
  • R 1 b is independently selected from:
  • R 2 and R 3 are independently selected from: hydrogen or C 1 -C 6 alkyl;
  • R 10 is independently selected from hydrogen, C 1 -C 6 alkyl, benzyl and aryl;
  • R 1 1 is independently selected from C 1 -C 6 alkyl and aryl;
  • Z is unsubstituted C 1 -C 6 alkyl, substituted C 1 -C 6 alkyl,
  • p is 0, 1 , 2, 3 or 4; or the pharmaceutically acceptable salts thereof.
  • the preferred compounds of this invention are as follows: 2(S)-n-Butyl-1 -[ 1 -(4-cyanobenzyl)-5-imidazolylmethyl]-4-(2,2,2- trifluoroethyl)piperazin-5-one dihydrochloride
  • the compounds of the present invention may have asymmetric centers and occur as racemates, racemic mixtures, and as individual diastereomers, with all possible isomers, including optical isomers, being included in the present invention.
  • any variable e.g. aryl, heterocycle, R 1 , R 2 etc.
  • its definition on each occurence is independent at every other occurence.
  • combinations of substituents/or variables are permissible only if such combinations result in stable compounds.
  • alkyl is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms;
  • alkoxy represents an alkyl group of indicated number of carbon atoms attached through an oxygen bridge.
  • Halogen or “halo” as used herein means fluoro, chloro, bromo and iodo.
  • aryl is intended to mean any stable monocyclic or bicyclic carbon ring of up to 7 members in each ring, wherein at least one ring is aromatic.
  • aryl elements include phenyl, naphthyl, tetrahydronaphthyl, indanyl, biphenyl, phenanthryl, anthryl or acenaphthyl.
  • heterocycle or heterocyclic represents a stable 5- to 7-membered monocyclic or stable 8- to 1 1 - membered bicyclic heterocyclic ring which is either saturated or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from the group consisting of N, O, and S, and including any bicyclic group in which any of the above-defined
  • heterocyclic rings is fused to a benzene ring.
  • the heterocyclic ring may be attached at any heteroatom or carbon atom which results in the creation of a stable structure.
  • heterocyclic elements include, but are not limited to, azepinyl, benzimidazolyl, benzisoxazolyl, benzofurazanyl, benzopyranyl, benzothiopyranyl, benzofuryl,
  • heteroaryl is intended to mean any stable monocyclic or bicyclic carbon ring of up to 7 members in each ring, wherein at least one ring is aromatic and wherein from one to four carbon atoms are replaced by heteroatoms selected from the group consisting of N, O, and S. Examples of such heterocyclic elements include, but are not limited to, benzimidazolyl, benzisoxazolyl, benzofurazanyl, benzopyranyl, benzothiopyranyl, benzofuryl,
  • the substituted group intended to mean a substituted C 1 -8 alkyl, substituted C 2-8 alkenyl, substituted C 2-8 alkynyl, substituted aryl or substituted heterocycle from which the substitutent(s) R 2 and R 3 are selected.
  • the substituted C 1 -8 alkyl, substituted C 3-6 cycloalkyl, substituted aroyl, substituted aryl, substituted heteroaroyl, substituted arylsulfonyl, substituted heteroarylsulfonyl and substituted heterocycle include moieties containing from 1 to 3 substitutents in addition to the point of attachment to the rest of the compound.
  • cyclic moieties When R 2 and R 3 are combined to form - (CH 2 ) u -, cyclic moieties are formed. Examples of such cyclic moieties include, but are not limited to:
  • cyclic moieties may optionally include a heteroatom(s).
  • heteroatom-containing cyclic moieties include, but are not limited to:
  • Lines drawn into the ring systems from substituents indicate that the indicated bond may be attached to any of the substitutable ring carbon atoms.
  • R 1 a and R 1 b are independently selected from: hydrogen, -N(R 10 ) 2 , R 1 0 C(O)NR 1 0 - or unsubstituted or substituted C 1 -C 6 alkyl wherein the substituent on the substituted C 1 -C 6 alkyl is selected from unsubstituted or substituted phenyl, -N(R 10 ) 2 , R 10 O- and R 10 C(O)NR 10 -.
  • R 2 is selected from: H, and an unsubstituted or substituted group, the group selected from C 1 -8 alkyl, C 2-8 alkenyl and C 2-8 alkynyl;
  • substituted group is substituted with one or more of:
  • R 3 is selected from: hydrogen and C 1 -C 6 alkyl.
  • R 4 and R 5 are hydrogen.
  • R 6 , R 7 and R 7a is selected from: hydrogen, unsubstituted or substituted C 1 -C 6 alkyl, unsubstituted or substituted aryl and unsubstituted or substituted cycloalkyl.
  • R 6a is unsubstituted or substituted C 1 -C 6 alkyl, unsubstituted or substituted aryl and unsubstituted or substituted cycloalkyl.
  • R 9 is hydrogen or methyl.
  • R a is hydrogen.
  • R 10 is selected from H, C 1 -C 6 alkyl and benzyl.
  • a 1 and A 2 are independently selected from: a bond, -C(O)NR 10 -, -N R 10 C(O)-, O, -N( R 10 )-, -S(O) 2 N(R 10 )- and-
  • V is selected from hydrogen, heterocycle and aryl. More preferably, V is phenyl.
  • Z is unsubstituted or substituted C 1 -C 6 alkyl.
  • W is selected from imidazolinyl, imidazolyl, oxazolyl, pyrazolyl, pyyrolidinyl, thiazolyl and pyridyl. More
  • W is selected from imidazolyl and pyridyl.
  • n and r are independently 0, 1 , or 2.
  • p is 1 , 2 or 3.
  • s is 0.
  • t is 1. It is intended that the definition of any substituent or variable (e.g., R 1 a , R 9 , n, etc.) at a particular location in a molecule be independent of its definitions elsewhere in that molecule.
  • substituent or variable e.g., R 1 a , R 9 , n, etc.
  • -N(R 10 ) 2 represents -NHH, -NHCH 3 , -NHC 2 H 5 , etc. It is understood that substituents and substitution patterns on the compounds of the instant invention can be selected by one of ordinary skill in the art to provide compounds that are chemically stable and that can be readily synthesized by techniques known in the art, as well as those methods set forth below, from readily available starting materials.
  • the pharmaceutically acceptable salts of the compounds of this invention include the conventional non-toxic salts of the compounds of this invention as formed, e.g., from non-toxic inorganic or organic acids.
  • such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like: and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxy-benzoic, fumaric, toluenesulfonic, methanesulf onic, ethane disulfonic, oxalic, isethionic, trifluoroacetic and the like.
  • the pharmaceutically acceptable salts of the compounds of this invention can be synthesized from the compounds of this invention which contain a basic moiety by conventional chemical methods.
  • the salts are prepared either by ion exchange
  • Reactions used to generate the compounds of this invention are prepared by employing reactions as shown in the Schemes 1 -21 , in addition to other standard manipulations such as ester hydrolysis, cleavage of protecting groups, etc., as may be known in the literature or exemplified in the experimental procedures.
  • Substituents R, R a and R b as shown in the Schemes, represent the substituents R 2 , R 3 , R 4 and R 5 ; however their point of attachment to the ring is illustrative only and is not meant to be limiting.
  • Substituent Z' represents an alkyl moiety or a substitutent on an alkyl moiety such that Z'CH 2 - is the substiutent Z as defined hereinabove.
  • N-benzyl amino acid esters can be coupled to N-benzyl amino acid esters using a variety of dehydrating agents such as DCC (dicyclohexycarbodiimide) or EDC ⁇ HCl ( 1 -ethyl-3- (3-dimethylaminopropyl)carbodiimide hydrochloride) in a solvent such as methylene chloride , chloroform, dichloroethane, or in
  • the product VI can be reductively alkylated with a suitably substituted aldehyde to provide the protected piperazine VII; a final acid deprotection as previously described gives the intermediate VIII
  • the intermediate VIII can itself be reductively alkylated with a variety of aldehydes, such as IX.
  • the aldehydes can be prepared by standard procedures, such as that described by O. P. Goel, U. Krolls, M. Stier and S. Kesten in Organic Syntheses, 1988, 67, 69-75, from the appropriate amino acid (Scheme 3).
  • the reductive alkylation can be accomplished at pH 5-7 with a variety of reducing agents, such as sodium triacetoxyborohydride or sodium cyanoborohydride in a solvent such as dichloroethane, methanol or dimethylformamide.
  • the product X can be deprotected to give the final compounds XI with
  • the piperazine intermediate VIII can be reductively alkylated with other aldehydes such as 1 -trityl-4-imidazolyl- carboxaldehyde or 1-trityl-4-imidazolylacetaldehyde, to give products such as XVI (Scheme 4).
  • the trityl protecting group can be removed from XVI to give XVII, or altematively, XVI can first be treated with an alkyl halide then subsequently deprotected to give the alkylated imidazole XVIII.
  • the intermediate VIII can be acylated or sulfonylated by standard techniques.
  • the imidazole acetic acid XIX can be converted to the acetate XXI by standard procedures, and XXI can be first reacted with an alkyl halide, then treated with refluxing methanol to provide the regiospecifically alkylated imidazole acetic acid ester XXII.
  • Hydrolysis and reaction with piperazine VIII in the presence of condensing reagents such as 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC) leads to acylated products such as XXIV.
  • the piperazine VIII is reductively alkylated with an aldehyde which also has a protected hydroxyl group, such as XXV in Scheme 6, the protecting groups can be subsequently removed to unmask the hydroxyl group (Schemes 6, 7).
  • the alcohol can be oxidized under standard conditions to e.g. an aldehyde, which can then be reacted with a variety of organometallic reagents such as Grignard reagents, to obtain secondary alcohols such as XXIX.
  • the fully deprotected amino alcohol XXX can be reductively alkylated (under conditions described previously) with a variety of aldehydes to obtain secondary amines, such as XXXI (Scheme 7), or tertiary amines.
  • the Boc protected amino alcohol XXVII can also be utilized to synthesize 2-aziridinylmethylpiperazines such as XXXII (Scheme 8). Treating XXVII with 1 ,1 '-sulfonyldiimidazole and sodium hydride in a solvent such as dimethylformamide led to the formation of aziridine XXXII. The aziridine reacted in the presence of a nucleophile, such as a thiol, in the presence of base to yield the protected ring-opened product XXXIII.
  • a nucleophile such as a thiol
  • piperazine VIII can be reacted with aldehydes derived from amino acids such as O-alkylated tyrosines, according to standard procedures, to obtain compounds such as XXXIX.
  • R' is an aryl group
  • XXXIX can first be hydrogenated to unmask the phenol, and the amine group deprotected with acid to produce XL. Altematively, the amine protecting group in XXXIX can be removed, and O-alkylated phenolic amines such as XLI produced.
  • N-Alkyl piperazines can be prepared as described in
  • the isomeric piperazin-3-ones can be prepared as described in Scheme 13.
  • the imine formed from arylcarboxamides LII and 2- aminoglycinal diethyl acetal (LIII) can be reduced under a variety of conditions, including sodium triacetoxyborohydride in dichloroethane, to give the amine LIV.
  • Amino acids I can be coupled to amines LIV under standard conditions, and the resulting amide LV when treated with aqueous acid in tetrahydrofuran can cyclize to the unsaturated LVI.
  • Catalytic hydrogenation under standard conditions gives the requisite intermediate LVII, which is elaborated to final products as described in Schemes 3-9.
  • Reaction Scheme 14 provides an illustrative example the synthesis of compounds of the instant invention wherein the substituents R 2 and R 3 are combined to form - (CH 2 ) u -.
  • substituents R 2 and R 3 are combined to form - (CH 2 ) u -.
  • 1- aminocyclohexane-1-carboxylic acid LVIII can be converted to the spiropiperazine LXVI essentially according to the procedures outlined in Schemes 1 and 2.
  • the piperazine intermediate LXVI can be
  • the aldehyde XLIX from Scheme 12 can also be reductively alkylated with an alkyl amine as shown in Scheme 15.
  • the product LXVIII can be converted to a piperazinone by acylation with chloroacetyl chloride to give LXIX, followed by base-induced
  • LXXII deprotection, followed by reductive alkylation with a protected imidazole carboxaldehyde leads to LXXII, which can be alkylation with an arylmethylhalide to give the imidazolium salt LXXIII.
  • Final removal of protecting groups by either solvolysis with a lower alkyl alcohol, such as methanol, or treatment with triethylsilane in methylene chloride in the presence of trifluoroacetic acid gives the final product LXXIV.
  • Scheme 16 illustrates the use of an optionally substituted homoserine lactone LXXV to prepare a Boc-protected piperazinone LXXVIII.
  • Intermediate LXXVIII may be deprotected and reductively alkylated or acylated as illustrated in the previous Schemes.
  • intermediate LXXVIII may be mesylated and displaced by a suitable nucleophile, such as the sodium salt of ethane thiol, to provide an intermediate LXXIX.
  • suitable nucleophile such as the sodium salt of ethane thiol
  • Intermediate LXXVIII may also be oxidized to provide the carboxylic acid on intermediate LXXXX, which can be utilized form an ester or amide moiety.
  • Amino acids of the general formula LXXXI which have a sidechain not found in natural amino acids may be prepared by the reactions illustrated in Scheme 17 starting with the readily prepared imine LXXXII.
  • the instant compounds are useful as pharmaceutical agents for mammals, especially for humans. These compounds may be administered to patients for use in the treatment of cancer. Examples of the type of cancer which may be treated with the compounds of this invention include, but are not limited to, colorectal carcinoma, exocrine pancreatic carcinoma, myeloid leukemias and neurological tumors.
  • Such tumors may arise by mutations in the ras genes themselves, mutations in the proteins that can regulate Ras activity (i.e.,
  • NF-1 neurofibromin
  • neu neu
  • ser ser
  • abl abl
  • lck lck
  • fyn fyn
  • the compounds of the instant invention inhibit farnesyl- protein transferase and the farnesylation of the oncogene protein Ras.
  • the instant compounds may also inhibit tumor angiogenesis, thereby affecting the growth of tumors (J. Rak et al. Cancer Research, 55:4575- 4580 (1995)).
  • the compounds of this invention are also useful for inhibiting other proliferative diseases, both benign and malignant, wherein Ras proteins are aberrantly activated as a result of oncogenic mutation in other genes (i.e., the Ras gene itself is not activated by mutation to an oncogenic form) with said inhibition being accomplished by the administration of an effective amount of the compounds of the invention to a mammal in need of such treatment.
  • a component of NF-1 is a benign proliferative disorder.
  • the instant compounds may also be useful in the treatment of certain viral infections, in particular in the treatment of hepatitis delta and related viruses (J.S. Glenn et al. Science, 256:1331 -1333 (1992).
  • the compounds of the instant invention are also useful in the prevention of restenosis after percutaneous transluminal coronary angioplasty by inhibiting neointimal formation (C. Indolfi et al. Nature medicine, 1 :541 -545( 1995).
  • the instant compounds may also be useful in the treatment and prevention of polycystic kidney disease (D.L. Schaffner et al. American Journal of Pathology, 142: 1051 - 1060 (1993) and B. Cowley, Jr. et al.FASEB Journal, 2:A3160 (1988)).
  • the instant compounds may also be useful for the treatment of fungal infections.
  • the compounds of this invention may be administered to mammals, preferably humans, either alone or, preferably, in
  • the compounds can be administered orally or parenterally, including the intravenous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration.
  • the selected compound may be administered, for example, in the form of tablets or capsules, or as an aqueous solution or suspension.
  • carriers which are commonly used include lactose and corn starch, and lubricating agents, such as magnesium stearate, are commonly added.
  • useful diluents include lactose and dried com starch.
  • the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring agents may be added.
  • sterile solutions of the active ingredient are usually prepared, and the pH of the solutions should be suitably adjusted and buffered.
  • the total concentration of solutes should be controlled in order to render the preparation isotonic.
  • the compounds of the instant invention may also be co- administered with other well known therapeutic agents that are selected for their particular usefulness against the condition that is being treated.
  • the instant compounds may be useful in combination with known anti-cancer and cytotoxic agents.
  • the instant compounds may be useful in combination with known anti-cancer and cytotoxic agents.
  • compounds may be useful in combination with agents that are effective in the treatment and prevention of NF- 1 , restinosis, polycystic kidney disease, infections of hepatitis delta and related viruses and fungal infections.
  • Such combination products employ the compounds of this invention within the dosage range described below and the other pharmaceutically active agent(s) within its approved dosage range.
  • Compounds of the instant invention may altematively be used sequentially with known pharmaceutically acceptable agent(s) when a combination formulation is inappropriate.
  • the present invention also encompasses a pharmaceutical composition useful in the treatment of cancer, comprising the
  • compositions of this invention include aqueous solutions comprising compounds of this invention and pharmacolo- gically acceptable carriers, e.g., saline, at a pH level, e.g., 7.4.
  • pharmacolo- gically acceptable carriers e.g., saline
  • the solutions may be introduced into a patient's blood-stream by local bolus injection.
  • the daily dosage will normally be determined by the prescribing physician with the dosage generally varying according to the age, weight, and response of the individual patient, as well as the severity of the patient's symptoms.
  • a suitable amount of compound is administered to a mammal undergoing treatment for cancer.
  • Administration occurs in an amount between about 0.1 mg/kg of body weight to about 60 mg/kg of body weight per day, preferably of between 0.5 mg/kg of body weight to about 40 mg/kg of body weight per day.
  • the compounds of the instant invention are also useful as a component in an assay to rapidly determine the presence and quantity of farnesyl-protein transferase (FPTase) in a composition.
  • FPTase farnesyl-protein transferase
  • composition to be tested may be divided and the two
  • mixtures which comprise a known substrate of FPTase (for example a tetrapeptide having a cysteine at the amine terminus) and farnesyl pyrophosphate and, in one of the mixtures, a compound of the instant invention.
  • FPTase for example a tetrapeptide having a cysteine at the amine terminus
  • farnesyl pyrophosphate for example a tetrapeptide having a cysteine at the amine terminus
  • the chemical content of the assay mixtures may be determined by well known
  • inhibitors of FPTase absence or quantitative reduction of the amount of substrate in the assay mixture without the compound of the instant invention relative to the presence of the unchanged substrate in the assay containing the instant compound is indicative of the presence of FPTase in the composition to be tested.
  • potent inhibitor compounds of the instant invention may be used in an active site titration assay to determine the quantity of enzyme in the sample.
  • a series of samples composed of aliquots of a tissue extract containing an unknown amount of farnesyl-protein transferase, an excess amount of a known substrate of FPTase (for example a tetrapeptide having a cysteine at the amine terminus) and farnesyl pyrophosphate are incubated for an appropriate period of time in the presence of varying concentrations of a compound of the instant invention.
  • the concentration of a sufficiently potent inhibitor i.e., one that has a Ki substantially smaller than the
  • concentration of enzyme in the assay vessel required to inhibit the enzymatic activity of the sample by 50% is approximately equal to half of the concentration of the enzyme in that particular sample.
  • Step A N-Methoxy-N-methyl 2(S)-(tert-butoxycarbonylamino)- hexanamide
  • Step B 2(S)-(tert-Butoxycarbonylamino)hexanal
  • Step C N-(2,2,2,-Trifluoroethyl)-2(S)-(tert- butoxycarbonylamino)-hexanamine
  • Step D 1 -tert-Butoxycarbonyl-2(S)-n -butyl-4-(2,2,2- trifluoroethyl)piperazin-5-one
  • Step F 1 -Triphenylmethyl-4-(acetoxymethyl)-imidazole
  • Step G 1 -(4-Cyanobenzyl)-5-(acetoxymethyl)-imidazole
  • the filtrate was concentrated in vacuo to a volume 100 mL, reheated at 60 °C for another two hours, cooled to room temperature, and concentrated in vacuo to provide a pale yellow solid. All of the solid material was combined, dissolved in 500 mL of methanol, and warmed to 60 °C. After two hours, the solution was reconcentrated in vacuo to provide a white solid which was triturated with hexane to remove soluble materials. Removal of residual solvents in vacuo provided the titled product hydrobromide as a white solid which was used in the next step without further purification.
  • Step H 1 -(4-Cyanobenzyl)-5-(hydroxymethyl)-imidazole
  • Step J 2(S)-n -Butyl-1-[1 -(4-cyanobenzyl)-5-imidazolylmethyl]-4-
  • the cmde product was purified by preparative HPLC on a 40 X 100 mm Waters PrepPak® reverse phase HPLC column (Delta-PakTM C 18 15 ⁇ m, 100 ⁇ ) using a gradient elution of 25% (0.1 % TFA in acetonitrile), 75% (0.1 % TFA in water) progressing to 45% (0.1 % TFA in acetonitrile), 55% (0.1 % TFA in water) over 50 min. Pure fractions were combined, concentrated, and the residue partitioned between ethyl acetate and saturated sodium bicarbonate solution. The organic layer was dried over magnesium sulfate.
  • Step A N- 1 -(3,3,3-Trifluoropropyl)-2(S)-(tert- butoxycarbonylamino)-hexanamine
  • the title compound is prepared according to the procedure described in Example 1, Step C, except using 1 -(3,3,3- trifluoropropyl)amine hydrochloride in place of 2,2,2- trifluoroethylamine hydrochloride.
  • Step B 1 -tert-Butoxycarbonyl-2(S)-n -butyl-4-[ 1 -(3,3,3- trifluoropropyI)]piperazin-5-one
  • the title compound is prepared according to the procedure described in Example 1 , Step D, except using N- 1 -(3,3,3- trifluoropropyl)-2(S)-(tert-butoxycarbonylamino)hexanamine in place of N-(2,2,2,-trifluoroethyI)-2(S)-(tert- butoxycarbonylamino)hexanamine.
  • Step C 2(S)-n-Butyl-1 -[1-(4-cyanobenzyl)-5-imidazolylmethyl]-4- [1 -(3,3,3-trifluoropropyl)]piperazin-5-one dihydrochloride
  • the title compound is prepared according to the procedure described in Example 1 , Step J, except using 1 -tert-butoxycarbonyl- 2(S)-n -butyl-4-[ 1-(3,3,3-trifluoropropyl)]piperazin-5-one in place of 1 - te rt-butoxycarbonyl-2(S)-n -butyl-4-(2,2,2-trifluoroethyl)piperazin-5- one.
  • the purified product is converted to the hydrochloride salt with
  • Step A N-(Cyclopropylmethyl)-2(S)-(tert-butoxycarbonylamino)- hexanamine
  • the title compound is prepared according to the procedure described in Example 1 , Step C, except using cyclopropylmethylamine hydrochloride in place of 2,2,2-trifluoroethylamine hydrochloride.
  • Step B 1 -tert-Butoxycarbonyl-2(S)- n-butyl-4-
  • the title compound is prepared according to the procedure described in Example 1 , Step J, except using 1-tert-butoxycarbonyl- 2(S)- n-butyl-4-(cyclopropylmethyI)piperazin-5-one in place of 1 -tert- butoxycarbonyI-2(S)- n-butyl-4-(2,2,2-trifluoroethyI)piperazin-5-one to obtain the title compound.
  • the purified product is converted to the dihydrochloride salt with HCl in dichloromethane.
  • Step B 3-(4-Cyanobenzyl)-4-(hvdroxymethyl)pyridine
  • the title compound was obtained by activated manganese dioxide (1.0 g) oxidation of the alcohol from Step B (0.240 g, 1.07 mmol) in dioxane ( 10 mL) at reflux for 30 min. Filtration and evaporation of the solvent provided title compound, mp 80-83°C.
  • Step D 3(S)-n-Butyl- 1-[3-(4-cyanobenzyl)pyridin-4-yl]-4-(2,2,2- trifluoroethyl)piperazin-5-one dihydrochloride
  • Bovine FPTase was assayed in a volume of 100 ⁇ l containing 100 mM N-(2- hydroxy ethyl) piperazine-N'-(2-ethane sulfonic acid) (HEPES), pH 7.4, 5 mM MgCl 2 , 5 mM dithiothreitol (DTT), 100 mM [ 3 H] -farnesyl diphosphate ([ 3 H]-FPP; 740 CBq/mmol, New England Nuclear), 650 nM Ras-CVLS and 10 ⁇ g/ml FPTase at 31 °C for 60 min. Reactions were initiated with FPTase and stopped with 1 ml of 1.0 M HCL in ethanol.
  • Precipitates were collected onto filter-mats using a TomTec Mach II cell harvestor, washed with 100% ethanol, dried and counted in an LKB ⁇ - plate counter.
  • the assay was linear with respect to both substrates, FPTase levels and time; less than 10% of the [ 3 H]-FPP was utilized during the reaction period.
  • Purified compounds were dissolved in 100% dimethyl sulfoxide (DMSO) and were diluted 20-fold into the assay. Percentage inhibition is measured by the amount of
  • Human FPTase was prepared as described by Omer et al., Biochemistry 32:5167-5176 (1993). Human FPTase activity was assayed as described above with the exception that 0.1 % (w/v)
  • polyethylene glycol 20,000, 10 ⁇ M ZnCl 2 and 100 nm Ras-CVIM were added to the reaction mixture. Reactions were performed for 30 min., stopped with 100 ⁇ l of 30% (v/v) trichloroacetic acid (TCA) in ethanol and processed as described above for the bovine enzyme.
  • TCA trichloroacetic acid
  • the cell line used in this assay is a v-ras line derived from either Ratl or NIH3T3 cells, which expressed viral Ha-ras p21.
  • the assay is performed essentially as described in DeClue, J.E. et al., Cancer Research 51:712-717. (1991). Cells in 10 cm dishes at 50-75%
  • the cells are labelled in 3 ml methionine-free DMEM supplemeted with 10% regular DMEM, 2% fetal bovine serum and 400 mCi[ 35 S]methionine (1000 Ci/mmol).
  • the cells are lysed in 1 ml lysis buffer (1 % NP40/20 mM HEPES, pH 7.5/5 mM MgCl 2 /lmM DTT/ 10 mg/ml aprotinen/2 mg/ml leupeptin/2 mg/ml antipain/0.5 mM PMSF) and the lysates cleared by centrifugation at 100,000 x g for 45 min. Aliquots of lysates containing equal numbers of acid-precipitable counts are bought to 1 ml with IP buffer (lysis buffer lacking DTT) and immunoprecipitated with the ras-specific monoclonal antibody Y13-259 (Furth, M.E. et al., J. Virol.
  • Rat 1 cells transformed with either v-ras, v-raf, or v-mos are seeded at a density of 1 x 10 4 cells per plate (35 mm in diameter) in a 0.3% top agarose layer in medium A (Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine semm) over a bottom agarose layer (0.6%). Both layers contain 0.1 % methanol or an appropriate concentration of the instant compound (dissolved in methanol at 1000 times the final concentration used in the assay).
  • the cells are fed twice weekly with 0.5 ml of medium A containing 0.1 % methanol or the concentration of the instant compound.
  • Photomicrographs are taken 16 days after the cultures are seeded and comparisons are made.

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Cardiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Virology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention concerne des composés inhibiteurs de la farnésyle-protéine transférase (FTase) et de la farnésylation de la protéine oncogène Ras. L'invention concerne également, non seulement des compositions chimiothérapiques contenant les composés de l'invention, mais aussi des procédés d'inhibition de la farnésyle-protéine transférase et de la farnésylation de la protéine oncogène Ras.
PCT/US1997/005144 1996-04-03 1997-03-27 Inhibiteurs de la farnesyle-proteine transferase WO1997036593A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU25548/97A AU706495B2 (en) 1996-04-03 1997-03-27 Inhibitors of farnesyl-protein transferase
JP9535473A JP2000507582A (ja) 1996-04-03 1997-03-27 ファルネシルプロテイントランスフェラーゼの阻害剤
EP97917116A EP0921801A1 (fr) 1996-04-03 1997-03-27 Inhibiteurs de la farnesyle-proteine transferase

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US1459396P 1996-04-03 1996-04-03
US60/014,593 1996-04-03
GB9613460.6 1996-06-27
GBGB9613460.6A GB9613460D0 (en) 1996-06-27 1996-06-27 Inhibitors of farnesyl-protein transferase

Publications (1)

Publication Number Publication Date
WO1997036593A1 true WO1997036593A1 (fr) 1997-10-09

Family

ID=26309575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/005144 WO1997036593A1 (fr) 1996-04-03 1997-03-27 Inhibiteurs de la farnesyle-proteine transferase

Country Status (5)

Country Link
EP (1) EP0921801A1 (fr)
JP (1) JP2000507582A (fr)
AU (1) AU706495B2 (fr)
CA (1) CA2249599A1 (fr)
WO (1) WO1997036593A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009985A1 (fr) * 1997-08-27 1999-03-04 Merck & Co., Inc. Inhibiteurs de prenyl-proteine-transferases
EP1087770A1 (fr) * 1998-06-15 2001-04-04 Merck & Co., Inc. Inhibiteurs de prenyl-proteine transferase
US6335343B1 (en) 1999-03-03 2002-01-01 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
US6355643B1 (en) 1999-03-03 2002-03-12 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
US6376496B1 (en) 1999-03-03 2002-04-23 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
US6387903B1 (en) 1997-08-27 2002-05-14 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
US6562823B1 (en) 1998-07-02 2003-05-13 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
US6642240B2 (en) 1999-10-07 2003-11-04 Smithkline Beecham Corporation Treating emesis in a mammal
US7060702B2 (en) 2000-10-17 2006-06-13 Smithkline Beecham Corporation Chemical compounds
US7189713B2 (en) 2002-02-08 2007-03-13 Glaxo Group Limited Piperidine derivatives
US7276509B2 (en) 2002-02-08 2007-10-02 Glaxo Group Limited Piperidine derivatives and their use as antagonists of tachykinins
USRE39921E1 (en) 1999-10-07 2007-11-13 Smithkline Beecham Corporation Chemical compounds
US7482365B2 (en) 2002-02-08 2009-01-27 Glaxo Group Limited Piperidylcarboxamide derivatives and their use in the treatment of tachykinin-mediated diseases

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915981A (en) * 1973-03-16 1975-10-28 Yoshitomi Pharmaceutical 1-{8 2-(2-Chlorobenzoyl)-4-nitrophenyl{9 -2-(diethylaminomethyl)-imidazole
US4835154A (en) * 1987-06-01 1989-05-30 Smithkline Beckman Corporation 1-aralykyl-5-piperazinylmethyl-2-mercaptoimidazoles and 2-alkylthioimidazoles and their use as dopamine-βhydroxylase inhibitors
US5128355A (en) * 1986-07-11 1992-07-07 E. I. Du Pont De Nemours And Company Treatment of congestive heart failure with angiotensin 11 receptor blocking imidazoles
US5219856A (en) * 1992-04-06 1993-06-15 E. I. Du Pont De Nemours And Company Angiotensin-II receptor blocking, heterocycle substituted imidazoles
US5478934A (en) * 1994-11-23 1995-12-26 Yuan; Jun Certain 1-substituted aminomethyl imidazole and pyrrole derivatives: novel dopamine receptor subtype specific ligands
WO1996016057A1 (fr) * 1994-11-23 1996-05-30 Neurogen Corporation Certains derives d'aminoethyl imidazole et pyrrole substitues en 1; nouveaux ligands specifiques d'un sous-type de recepteur dopaminergique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915981A (en) * 1973-03-16 1975-10-28 Yoshitomi Pharmaceutical 1-{8 2-(2-Chlorobenzoyl)-4-nitrophenyl{9 -2-(diethylaminomethyl)-imidazole
US5128355A (en) * 1986-07-11 1992-07-07 E. I. Du Pont De Nemours And Company Treatment of congestive heart failure with angiotensin 11 receptor blocking imidazoles
US4835154A (en) * 1987-06-01 1989-05-30 Smithkline Beckman Corporation 1-aralykyl-5-piperazinylmethyl-2-mercaptoimidazoles and 2-alkylthioimidazoles and their use as dopamine-βhydroxylase inhibitors
US5219856A (en) * 1992-04-06 1993-06-15 E. I. Du Pont De Nemours And Company Angiotensin-II receptor blocking, heterocycle substituted imidazoles
US5478934A (en) * 1994-11-23 1995-12-26 Yuan; Jun Certain 1-substituted aminomethyl imidazole and pyrrole derivatives: novel dopamine receptor subtype specific ligands
WO1996016057A1 (fr) * 1994-11-23 1996-05-30 Neurogen Corporation Certains derives d'aminoethyl imidazole et pyrrole substitues en 1; nouveaux ligands specifiques d'un sous-type de recepteur dopaminergique

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009985A1 (fr) * 1997-08-27 1999-03-04 Merck & Co., Inc. Inhibiteurs de prenyl-proteine-transferases
US6387903B1 (en) 1997-08-27 2002-05-14 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
EP1087770A1 (fr) * 1998-06-15 2001-04-04 Merck & Co., Inc. Inhibiteurs de prenyl-proteine transferase
EP1087770A4 (fr) * 1998-06-15 2001-11-14 Merck & Co Inc Inhibiteurs de prenyl-proteine transferase
US6562823B1 (en) 1998-07-02 2003-05-13 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
US6335343B1 (en) 1999-03-03 2002-01-01 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
EP1165013A2 (fr) * 1999-03-03 2002-01-02 Merck & Co., Inc. Inhibiteurs de prenyle proteine transferase
US6355643B1 (en) 1999-03-03 2002-03-12 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
US6376496B1 (en) 1999-03-03 2002-04-23 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
EP1165013A4 (fr) * 1999-03-03 2002-08-07 Merck & Co Inc Inhibiteurs de prenyle proteine transferase
EP1218359B1 (fr) * 1999-10-07 2004-07-07 Glaxo Group Limited Derives de piperazine utilises comme antagonistes de tachykinines
USRE39921E1 (en) 1999-10-07 2007-11-13 Smithkline Beecham Corporation Chemical compounds
US6642240B2 (en) 1999-10-07 2003-11-04 Smithkline Beecham Corporation Treating emesis in a mammal
US6951861B1 (en) 1999-10-07 2005-10-04 Smithkline Beechan Corporation Chemical compounds
US7625904B2 (en) 1999-10-07 2009-12-01 Smithkline Beecham Corporation Methods for the treatment of sleep disorders
US7071196B2 (en) 1999-10-07 2006-07-04 Smithkline Beecham Croporation Chemical compounds
CN100413850C (zh) * 1999-10-07 2008-08-27 葛兰素集团有限公司 化合物
US7345041B2 (en) 1999-10-07 2008-03-18 Smithkline Beecham Corporation Chemical compounds
AU768780B2 (en) * 1999-10-07 2004-01-08 Glaxo Group Limited Piperazine compounds
US7294630B2 (en) 2000-10-17 2007-11-13 Smithkline Beecham Corporation Piperazinyl piperidine tachykinin antagonists
US7119092B2 (en) 2000-10-17 2006-10-10 Smithkline Beecham Corporation Chemical compounds
US7060702B2 (en) 2000-10-17 2006-06-13 Smithkline Beecham Corporation Chemical compounds
US7648990B2 (en) 2000-10-17 2010-01-19 Glaxosmithkline Llc Chemical compounds
US7276509B2 (en) 2002-02-08 2007-10-02 Glaxo Group Limited Piperidine derivatives and their use as antagonists of tachykinins
US7189713B2 (en) 2002-02-08 2007-03-13 Glaxo Group Limited Piperidine derivatives
US7482365B2 (en) 2002-02-08 2009-01-27 Glaxo Group Limited Piperidylcarboxamide derivatives and their use in the treatment of tachykinin-mediated diseases
US7652012B2 (en) 2002-02-08 2010-01-26 Glaxo Group Limited 2-(R)-(4-fluoro-2-methyl-phenyl)-4-(S)-((8aS)-6-oxo-hexahydro-pyrrolo[1,2-a]-pyrazin-2-yl)-piperidine-1-carboxylic acid [1-(R)-3,5-bis-trifluoromethyl-phenyl)-ethyl]-methylamide maleate and pharmaceutical compositions thereof

Also Published As

Publication number Publication date
AU706495B2 (en) 1999-06-17
EP0921801A1 (fr) 1999-06-16
AU2554897A (en) 1997-10-22
JP2000507582A (ja) 2000-06-20
CA2249599A1 (fr) 1997-10-09

Similar Documents

Publication Publication Date Title
US5859012A (en) Inhibitors of farnesyl-protein transferase
US6066738A (en) Inhibitors of farnesyl-protein transferase
US5919785A (en) Inhibitors of farnesyl-protein transferase
US6090948A (en) Inhibitors of farnesyl-protein transferase
US5968965A (en) Inhibitors of farnesyl-protein transferase
US5885995A (en) Inhibitors of farnesyl-protein transferase
AU715603B2 (en) Inhibitors of farnesyl-protein transferase
US5925651A (en) Inhibitors of farnesyl-protein transferase
WO1996030343A1 (fr) Inhibiteurs de farnesyl-proteine transferase
AU707139B2 (en) Inhibitors of farnesyl-protein transferase
US5780492A (en) Inhibitors of farnesyl-protein transferase
AU715667B2 (en) Inhibitors of farnesyl-protein transferase
WO1997027752A1 (fr) Inhibiteurs de la farnesyl-proteine transferase
AU706495B2 (en) Inhibitors of farnesyl-protein transferase
WO1997036886A1 (fr) Inhibiteurs de la farnesyl-proteine transferase
AU707416B2 (en) Inhibitors of farnesyl-protein transferase
WO1997036892A1 (fr) Inhibiteurs de farnesyle-proteine transferase
US6028201A (en) Inhibitors of farnesyl-protein transferase
AU703988B2 (en) Inhibitors of farnesyl-protein transferase
US5981562A (en) Inhibitors of farnesyl-protein transferase
US5972942A (en) Inhibitors of farnesyl-protein transferase
AU707347B2 (en) Inhibitors of farnesyl-protein transferase
WO1996031525A2 (fr) Inhibiteurs de la farnesyl-proteine transferase
AU5428596A (en) Inhibitors of farnesyl-protein transferase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GE HU IL IS JP KG KR KZ LC LK LR LT LV MD MG MK MN MX NO NZ PL RO RU SG SI SK TJ TM TR TT UA US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2249599

Country of ref document: CA

Ref country code: CA

Ref document number: 2249599

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997917116

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997917116

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997917116

Country of ref document: EP