AU715667B2 - Inhibitors of farnesyl-protein transferase - Google Patents

Inhibitors of farnesyl-protein transferase Download PDF

Info

Publication number
AU715667B2
AU715667B2 AU25875/97A AU2587597A AU715667B2 AU 715667 B2 AU715667 B2 AU 715667B2 AU 25875/97 A AU25875/97 A AU 25875/97A AU 2587597 A AU2587597 A AU 2587597A AU 715667 B2 AU715667 B2 AU 715667B2
Authority
AU
Australia
Prior art keywords
substituted
alkyl
aryl
cycloalkyl
unsubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU25875/97A
Other versions
AU2587597A (en
Inventor
Jeffrey Bergman
Christopher J. Dinsmore
Theresa M. Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck and Co Inc
Original Assignee
Merck and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9613461.4A external-priority patent/GB9613461D0/en
Application filed by Merck and Co Inc filed Critical Merck and Co Inc
Publication of AU2587597A publication Critical patent/AU2587597A/en
Application granted granted Critical
Publication of AU715667B2 publication Critical patent/AU715667B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Description

WO 97/36888 PCT/US97/04711 TITLE OF THE INVENTION INHIBITORS OF FARNESYL-PROTEIN
TRANSFERASE
BACKGROUND OF THE INVENTION The Ras proteins (Ha-Ras, Ki4a-Ras, Ki4b-Ras and N-Ras) are part of a signalling pathway that links cell surface growth factor receptors to nuclear signals initiating cellular proliferation. Biological and biochemical studies of Ras action indicate that Ras functions like a G-regulatory protein. In the inactive state, Ras is bound to GDP. Upon growth factor receptor activation Ras is induced to exchange GDP for GTP and undergoes a conformational change. The GTP-bound form of Ras propagates the growth stimulatory signal until the signal is terminated by the intrinsic GTPase activity of Ras, which returns the protein to its inactive GDP bound form Lowy and D.M.
Willumsen, Ann. Rev. Biochem. 62:851-891 (1993)). Mutated ras genes (Ha-ras, Ki4a-ras, Ki4b-ras and N-ras) are found in many human cancers, including colorectal carcinoma, exocrine pancreatic carcinoma, and myeloid leukemias. The protein products of these genes are defective in their GTPase activity and constitutively transmit a growth stimulatory signal.
Ras must be localized to the plasma membrane for both normal and oncogenic functions. At least 3 post-translational modifications are involved with Ras membrane localization, and all 3 modifications occur at the C-terminus of Ras. The Ras C-terminus contains a sequence motif termed a "CAAX" or "Cys-Aaal-Aaa 2 -Xaa" box (Cys is cysteine, Aaa is an aliphatic amino acid, the Xaa is any amino acid) (Willumsen et al., Nature 310:583-586 (1984)). Depending on the specific sequence, this motif serves as a signal sequence for the enzymes famesyl-protein transferase or geranylgeranyl-protein transferase, which catalyze the alkylation of the cysteine residue of the CAAX motif with a C15 or C20 isoprenoid, respectively. Clarke., Ann. Rev. Biochem. 61:355-386 (1992); W.R. Schafer and J. Rine, Ann.
Rev. Genetics 30:209-237 (1992)). The Ras protein is one of several proteins that are known to undergo post-translational farnesylation.
WO 97/36888 PCT/US97/04711 -2- Other famesylated proteins include the Ras-related GTP-binding proteins such as Rho, fungal mating factors, the nuclear lamins, and the gamma subunit of transducin. James, et al., J. Biol. Chem. 269, 14182 (1994) have identified a peroxisome associated protein Pxf which is also famesylated. James, et al., have also suggested that there are famesylated proteins of unknown structure and function in addition to those listed above.
Inhibition of farnesyl-protein transferase has been shown to block the growth of Ras-transformed cells in soft agar and to modify other aspects of their transformed phenotype. It has also been demonstrated that certain inhibitors of famesyl-protein transferase selectively block the processing of the Ras oncoprotein intracellularly Kohl et al., Science, 260:1934-1937 (1993) and G.L. James et al., Science, 260:1937-1942 (1993). Recently, it has been shown that an inhibitor of faresyl-protein transferase blocks the growth of rasdependent tumors in nude mice Kohl et al., Proc. Natl. Acad. Sci 91:9141-9145 (1994) and induces regression of mammary and salivary carcinomas in ras transgenic mice Kohl et al., Nature Medicine, 1:792-797 (1995).
Indirect inhibition of faresyl-protein transferase in vivo has been demonstrated with lovastatin (Merck Co., Rahway, NJ) and compactin (Hancock et al., ibid; Casey et al., ibid; Schafer et al., Science 245:379 (1989)). These drugs inhibit HMG-CoA reductase, the rate limiting enzyme for the production of polyisoprenoids including faresyl pyrophosphate. Farnesyl-protein transferase utilizes faresyl pyrophosphate to covalently modify the Cys thiol group of the Ras CAAX box with a famesyl group (Reiss et al., Cell, 62:81-88 (1990); Schaber et al., J. Biol. Chem., 265:14701-14704 (1990); Schafer et al., Science, 249:1133-1139 (1990); Manne et al., Proc. Natl. Acad. Sci USA, 87:7541-7545 (1990)). Inhibition of farnesyl pyrophosphate biosynthesis by inhibiting HMG-CoA reductase blocks Ras membrane localization in cultured cells. However, direct inhibition of famesylprotein transferase would be more specific and attended by fewer side WO 97/36888 PCT/US97/04711 -3effects than would occur with the required dose of a general inhibitor of isoprene biosynthesis.
Inhibitors of farnesyl-protein transferase (FPTase) have been described in two general classes. The first are analogs of famesyl diphosphate (FPP), while the second class of inhibitors is related to the protein substrates Ras) for the enzyme. The peptide derived inhibitors that have been described are generally cysteine containing molecules that are related to the CAAX motif that is the signal for protein prenylation. (Schaber et al., ibid; Reiss et. al., ibid; Reiss et al., PNAS, 88:732-736 (1991)). Such inhibitors may inhibit protein prenylation while serving as alternate substrates for the farnesyl-protein transferase enzyme, or may be purely competitive inhibitors (U.S.
Patent 5,141,851, University of Texas; N.E. Kohl et al., Science, 260:1934-1937 (1993); Graham, et al., J. Med. Chem., 37, 725 (1994)).
In general, deletion of the thiol from a CAAX derivative has been shown to dramatically reduce the inhibitory potency of the compound.
However, the thiol group potentially places limitations on the therapeutic application of FPTase inhibitors with respect to pharmacokinetics, pharmacodynamics and toxicity. Therefore, a functional replacement for the thiol is desirable.
It has recently been reported that farnesyl-protein transferase inhibitors are inhibitors of proliferation of vascular smooth muscle cells and are therefore useful in the prevention and therapy of arteriosclerosis and diabetic disturbance of blood vessels (JP H7- 112930).
It has recently been disclosed that certain tricyclic compounds which optionally incorporate a piperidine moiety are inhibitors of FPTase (WO 95/10514, WO 95/10515 and WO 95/10516).
Imidazole-containing inhibitors of farnesyl protein transferase have also been disclosed (WO 95/09001 and EP 0 675 112 A1).
It is, therefore, an object of this invention to develop peptidomimetic compounds that do not have a thiol moiety, and that will inhibit famesyl-protein transferase and thus, the post-translational farnesylation of proteins. It is a further object of this invention to WO 97/36888 PCT/US97/04711 -4develop chemotherapeutic compositions containing the compounds of this invention and methods for producing the compounds of this invention.
SUMMARY OF THE INVENTION The present invention comprises peptidomimetic diketopiperazine-containing compounds which inhibit the famesylprotein transferase. The instant compounds lack a thiol moiety and thus offer unique advantages in terms of improved pharmacokinetic behavior in animals, prevention of thiol-dependent chemical reactions, such as rapid autoxidation and disulfide formation with endogenous thiols, and reduced systemic toxicity. Further contained in this invention are chemotherapeutic compositions containing these famesyl transferase inhibitors and methods for their production.
The compounds of this invention are illustrated by the formula A: (R)rR r 9 O R 3 V A(CRa 2
)A
2 2)n W (CR2p N N-Z
R
4 5 O
A
WO 97/36888 PCTIUS97/0471 1 DETAILED DESCRIPTION OF THE INVENTION The compounds of this invention are useful in the inhibition of famnesyl-protein transferase and the famnesylation of the oncogene protein Ras. In a first embodiment of this invention, the inhibitors of farnesyl-protein transferase are illustrated by the formula A:
(R
8 )r (R9) V-Al(CRla 2 )nA 2 V (CR' wherein: R Ia and R Ib are independently selected from: a) hydrogen, b) aryl, heterocycle, C3-C1O cycloalkyl, C2-C6 alkenyl, C2- C6 alkynyl, RlO0-, RI IS(O)m-, RIOC(O)NRIO-, (R I 0 R I 0 2N-C(NR CN, N02, R IOC(O)-, N3, -N(R 10)2, or R 1 0C(O)NR c) unsubstituted or substituted C I -C6 alkyl wherein the substitutent on the substituted C I -C6 alkyl is selected from unsubstituted or substituted aryl, heterocyclic, C3-C cycloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, RlO0-, R I 1 R IOC(O)NR 1 (R 10 R'1 0 2N- C(NR CN, R IOC(O)-, N3, -N(R 10)2, and R I IOC(O)- NR 1 0-;
R
2 and R 4 are independently selected from: H; unsubstituted or substituted C 1-8 alkyl, unsubstituted or substituted C2-8 alkenyl, 6 unsubstituted or substituted C 2 8 alkynyl, unsubstituted or substituted aryl, unsubstituted. or
NR
6
R
7
OR,
or substituted heterocycle, 0 0 wherein the substituted group is substituted with one or more of: 1) aryl or heterocycle, unsubstituted or substituted with: a) C 14 alkyl, b) (CH 2 )pOR 6 c) (CH 2
)PNR
6
R',
d) halogen, e) CN, fJ aryl or heteroaryl, g) perfluoro-CI- 4 alkyl, or 6a 6a 6a h) SR S(O)R S0 2
R
2) C 3 6 cycloalkyl, 3) OR 6 6a6a 6, 4) SR S(O)R~a or S0 2
R
6 7 5) -NR
R
6)6 7 7a -N NR R In 0
S..
S S
S.
S.
S S
S.
S
S S
S
5.55.*
S
5* S S
S
*S
S.
[R:\LIBAA107737. dmc:tab WO 97/36888 PCT/US97/04711 -7- -0 NR 6
R
7 9) -Ok OR 6
O
11) 12) 13) 14)
S/NR
6
R
7 0
-SO
2
-NR
6
R
7 6
-N-SO-R
6 a -r 6 0
OR
6 N0
N
3 perfluoro-C 4 -alkyl;
R
3 and R 5 are selected from H and CH3; or
R
2 and R 3 or R 4 and R 5 attached to the same C atom are combined to form (CH2)u wherein one of the carbon atoms is optionally replaced by a moiety selected from: 0, S(O)m, and -N(CORO1)-; 0
R
6
R
7 and R7a are independently selected from: H; C1-4 alkyl, C3-6 cycloalkyl, heterocycle, aryl, aroyl, heteroaroyl, arylsulfonyl, heteroarylsulfonyl, unsubstituted or substituted with: WO 97/36888 PCTIUS97/04711 -8a) C 1 4 alkoxy, b) aryl or heterocycle, c) halogen, d) HO, e)
"YR
0 f) -S0 2
R
1 or g) N(RIO)2; or
R
6 and R 7 may be joined in a ring;
R
7 and R7a may be joined in a ring; R6a is selected from: Ci -4 alkyl, C3-6 cycloalkyl, heterocycle, aryl, unsubstituted or substituted with: a) Ci -4 alkoxy, b) aryl or heterocycle, c) halogen, d) HO, e)
"YR
0 f) -S0 2
R
1 or g) N(R'10)2; R8 is independently selected from: a) hydrogen, b) aryl, heterocycle, C3-CIO cycloalkyl, C2-C6 alkenyl, C2- C6 alkynyl, perfluoroalkyl, F, Cl, Br, R 1 0 RI IS R I OC(O)NR 1 (R 10 RI 0 2N-C(NR
CN,
N02, R IOC(O)-, N3, -N(R 10)2, or R I I0C(O)NR 10-, and c) C I-C6 alkyl. unsubstituted or substituted by aryl, cyanophenyl, heterocycle, C3-CIO cycloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, peffluoroalkyl, F, Cl, Br, RIO0-, WO 97/36888 PCTJUS97/04711
R
1 1 RIOC(O)NH-,
(R
1 0
R
10 2N- C(NR CN, R IOC(O)-, N3, -N(R 10)2, or RI OOC(O)NH-; R9 is selected from: a) hydrogen, b) alkenyl, alkynyl, perfluoroalkyl, F, C1, Br, R 1 0 0-, R I 1 R I C(O)NRi10-, (R 10 R 10 2N- C(NR CN, N02, R IOC(O)-, N3, -N(R 10 or R I I0C(O)NR 10-, and c) C1I-C6 alkyl unsubstituted or substituted by perfluoroalkyl, F, Cl, Br, R 10 R I S R I C(O)NR (RIO)2NC(O)-,
R
1 0 2N-C(NRIO)-, CN, RIOC(O)-, N3, -N(R 1 0 or R I I0C(O)NR10-; RIO is independently selected from hydrogen, CL-C6 alkyl, benzyl and aryl; Ri is independently selected from C I -C6 alkyl and aryl; A I and A 2 are independently selected from: a bond, -CH=CH-, -C(O)NRIO-, -NRIOC(O)-, 0, -N(RIO)-, -S(0)2N(R -N(R IO)S(0)2-, or S(O)m; V is selected from: a) hydrogen, b) heterocycle, c) aryl, d) C I -C20 alkyl wherein from 0 to 4 carbon atoms are replaced with a a heteroatom selected from 0, S, and N, and e) C2.-C20 alkenyl, provided that V is not hydrogen if A 1 I is S(O)m and V is not hydrogen if AIis a bond, n is 0 and A 2 is S(O)m; WO 97/36888 PCTUS97/0471 1 10 W is a heterocycle; X is a bond, -CH2-, or Z is selected from: 1) a unsubstituted or substituted group selected from aryl, heteroaryl, arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following: a) Ci1 -4 alkyl, unsubstituted or substituted with: C 1-4 alkoxy, NR 6
R
7 C3-.6 cycloalkyl, aryl, heterocycle, HO, -S(O)mR 6 a, or -C(O)NR 6
R
7 b) aryl or heterocycle, c) halogen, d) OR 6 e) NR 6
R
7 f) CN, g) N02, h) CF3; i) -S(O)mR 6 a, j) -C(O)NR 6
R
7 or k) C3-C6 cycloalkyl; or 2) unsubstituted C I -C6 alkyl, substituted C I -C6 alkyl, unsubstiflited C3-C6 cycloalkyl or substituted C3-C6 cycloalkyl,wherein the substituted C I -C6 alkyl and substituted C3-C6 cycloalkyl is substituted with one or two of the following: a) CI1-4 alkoxy, b) NR 6
R
7 c) C3-6 cycloalkyl, d) -NR 6 C(O)R7, e) HO, f) -S(O)mR 6 a, WO 97/36888 PCT/US97/04711 -11g) halogen, or h) perfluoroalkyl; m is nis p is q is r is t is uis 0, 1 or 2; 0, 1,2,3 or4; 0, 1, 2, 3 or 4; 1 or 2; 0 to 5, provided that r is 0 when V is hydrogen; 0 or 1; and 4 or or the pharmaceutically acceptable salts thereof.
A preferred embodiment of the compounds of this invention is illustrated by the following formula:
(R
8 )r V A'(CR 1 a2)nA 2 CRla2W t wherein: Ra is independently selected from: hydrogen or CI-C6 alkyl; Rib is independently selected from: a) hydrogen, b) aryl, heterocycle, cycloalkyl,
R
10 -N(RI0)2 or C2-C6 alkenyl, c) unsubstituted or substituted C 1-C6 alkyl wherein the substitutent on the substituted CI-C6 alkyl is selected from unsubstituted or substituted aryl, heterocycle, cycloalkyl, alkenyl,
R
10 0- and -N(R 10)2; R 3 and R 5 are independently selected from H and CH 3 rNR 6 R 7 *R and R 4 are independently selected from H; 0 branched, unsubstituted or substituted with one or more of: 1) aryl, 2) heterocycle, 3) OR', 6a 6a 4) SR' S0 2 R or ,rNR 6R7 or C 1 5 alkyl, unbranched or a.
a.
*ae.
as a a a a a. a.
a a a.
a R 6and R7 are independently selected from: H; CI- 4 alkyl, C 3 6 cycloalkyl, aryl, heterocycle, unsubstituted or substituted with: a) C1 -4 alkoxy, b) halogen, or c) aryl or heterocycle; R 6ais selected from: C 1 4 alkyl or C 3 6 cycloalkyl, unsubstituted or substituted with: a) C 1 4 alkoxy, b) halogen, or c) aryl or heterocycle;
R
8 is independently selected from: a) hydrogen, 20 b) CI-C 6 alkyl, C 2
-C
6 alkenyl, C 2
-C
6 alkynyl, C 1
-C
6 perfluoroalkyl, F, Cl, R 0-,
R'
0
C(O)NR'
0 CN, NO 2 2
N-C(NR
10
R
10
-N(R'
0 2 or
R
11 0C(O)NR 1 0 and [R \LIBAA]07737.dm tab WO 97/36888 PCT/US97/0471 1 13 C) C I-C6 alkyl substituted by C I-C6 perfluoroalkyl, R 10 0-, RI 0 C(O)NRIO0, (RI O)2N-C(NRI Rl 0 -N(R 10)2, or R I IOC(O)NR R9 is selected from: a) hydrogen, b) C2-C6 alkenyl, C2-C6 alkynyl, C I-C6 perfluoroalkyl,
F,
Cl, R 10 R I I R IOC(O)NRl10-, CN, N02, (R I 0 )2N-C(NRi 10>, R I -N(R 10)2, or R IlIOC(O)NR10, and c) C I -C6 alkyl unsubstituted or substituted by C I -C6 perfluoroalkyl, F, Cl, R 10 R II 1 R IOC(O)NR CN, (RIO)2N-C(NRI0)-, RIOC(O)-, -N(RIO)2, or R I I0C(O)NR R 10 is independently selected from hydrogen, C I -C6 alkyl, benzyl and aryl; R I 1 is independently selected from CLI-C6 alkyl and aryl; A1 and A 2 are independently selected from: a bond, -CH=CH-, -C(O)NR 10-, 0, -N(RiO0)-, or S(O)m; V is selected from: a) hydrogen, b) hetero cycle selected from pyrrolidinyl, imidazolyl, pyridinyl, thiazolyl, pyridonyl, 2 -oxopiperidinyl, indolyl, quinolinyl, isoquinolinyl, and thienyl, c) aryl, d) C I -C20 alkyl wherein from 0 to 4 carbon atoms are replaced with a a heteroatom selected from 0, S, and N, and e) C2-C20 alkenyl, and WO 97/36888 PCT/US97/04711 -14provided that V is not hydrogen if A 1 is S(O)m and V is not hydrogen if AI is a bond, n is 0 and A 2 is S(O)m; W is a heterocycle selected from pyrrolidinyl, imidazolyl, pyridinyl, thiazolyl, pyridonyl, 2-oxopiperidinyl, indolyl, quinolinyl, or isoquinolinyl; X is -CH2- or Z is selected from: 1) a unsubstituted or substituted group selected from aryl, heteroaryl, arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following: a) C -4 alkyl, unsubstituted or substituted with: C1-4 alkoxy, NR 6
R
7 C3-6 cycloalkyl, aryl, heterocycle, HO, -S(O)mR 6 a, or -C(O)NR 6
R
7 b) aryl or heterocycle, c) halogen, d) OR 6 e) NR 6
R
7 f) CN, g) N02, h) CF3; i) -S(O)mR 6 a, j) -C(O)NR 6
R
7 or k) C3-C6 cycloalkyl; or 2) unsubstituted C1-C6 alkyl, substituted C1-C6 alkyl, unsubstituted C3-C6 cycloalkyl or substituted C3-C6 cycloalkyl,wherein the substituted Ci-C6 alkyl and substituted C3-C6 cycloalkyl is substituted with one or two of the following: a) C1-4 alkoxy, b) NR 6
R
7 WO 97/36888 PCT/US97/04711 15 C3-6 cycloalkyl,
-NR
6
C(O)R
7
HO,
-S(O)mR 6 a, halogen, or perfluoroalkyl; m is n is pis r is t is u is 1 or 2; 1, 2, 3 or 4; 1, 2, 3 or 4; to 5, provided that r is 0 when V is hydrogen; or 1; and or or the pharmaceutically acceptable salts thereof.
A preferred embodiment of the compounds of this invention are illustrated by the formula B: (R8)r 1 a A l 2 la N V (C R 2)nA (C R 2a2n- N
R
O R 3 N N-Z B (CRb 2 )p-X
R
4 R5 0 wherein: Ra is selected from: hydrogen or Cl-C6 alkyl; Rib is independently selected from: a) hydrogen, b) aryl, heterocycle, cycloalkyl, R 10 -N(R10)2 or C2-C6 alkenyl, WO 97/36888 PCTJUS97/0471 1 16c) C 1-C6 alkyl unsubstituted or substituted by aryl, heterocycle, cycloalkyl, alkenyl, R 10 or -N(R 10)2;
R
3 and R 5 are independently selected from H and CH13;
NR
6
R
7
R
2 and R 4 are independently selected from H; 0 or alkyl, unbranched or branched, unsubstituted or substituted with one or more of: 1) aryl, 2) heterocycle, 3) OR 6 4) SR 6 a, SO2R 6 a, or N R 6
R
7 0
R
6 and R 7 are independently selected from: a) hydrogen, b) C I -C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C I -C6 perfluoroalkyl, F, Cl, R 1 0 R I C(O)NR 1 CN, N02, (Ri 0 )2N-C(NR R I R I OOC(O)-, -N(R 1 0)2, or R I I0C(O)NR 10-, and c) C I-C6 alkyl substituted by C I-C6 perfluoroalkyl, R 10 0-,
R
1 0 C(O)NR 10., (R 1 0 )2N-C(NRI10>, R 1
OC(O)-,
R I -N(R 10 or R I IOC(O)NR R8 is independently selected from: a) hydrogen, b) C1I-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1I-C6 perfinoroalkyl, F, Cl, RIO0-, RIOC(O)NR 1 CN, N02, (Ri 0 )2N-C(NRI10>, R 1 0 -N(R 10)2, or R I IOC(O)NR 10-, and WO 97/36888 PCT/US97/04711 17 c) C1-C6 alkyl substituted by C1-C6 perfluoroalkyl, R 10 0-,
R
I O
C(O)NR
1 0 (R 0)2N-C(NR10)-,
RIOC(O)-,
-N(R 10)2, or R11 OC(O)NR
R
9 a is hydrogen or methyl;
R
10 is independently selected from hydrogen, C1-C6 alkyl, benzyl and aryl; R 1 is independently selected from C1-C6 alkyl and aryl; Al and A 2 are independently selected from: a bond, -CH=CH-, -C(O)NR10-, O, or S(O)m; V is selected from: a) hydrogen, b) heterocycle selected from pyrrolidinyl, imidazolyl, pyridinyl, thiazolyl, pyridonyl, 2-oxopiperidinyl, indolyl, quinolinyl, isoquinolinyl, and thienyl, c) aryl, d) C1-C20 alkyl wherein from 0 to 4 carbon atoms are replaced with a a heteroatom selected from 0, S, and N, and e) C2-C20 alkenyl, and provided that V is not hydrogen if Al is S(O)m and V is not hydrogen if Al is a bond, n is 0 and A 2 is S(O)m; X is -CH2-; Z is selected from: 1) a unsubstituted or substituted group selected from aryl, heteroaryl, arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following: WO 97/36888 PCTJUS97/04711 i8 a) Ci 1 4 alkyl, unsubstituted or substituted with: C 1-4 alkoxy, NR 6
R
7 C3-6 cycloalkyl, aryl, heterocycle, HO, -S(O)mR 6 a, or -C(O)NR 6
R
7 b) aryl or heterocycle, c) halogen, d) OR 6 e) NR 6
R
7 f) CN, g) N02, h) CF3; i) -S(O)mR 6 a, j) -C(O)NR 6
R
7 or k) C3-C6 cycloalkyl; or 2) unsubstituted C1I-C6 alkyl, substituted C1I-C6 alkyl, unsubstituted C3-C6 cycloalkyl or substituted C3-C6 cycloalkyl,wherein the substituted C I -C6 alkyl and substituted C3-C6 cycloalkyl is substituted with one or two of the following: a) Ci1 -4 alkoxy, b)
NR
6
R
7 c) C3-6 cycloalkyl, d) -NR 6
C(O)R
7 e) HO, -S(O)mR 6 a, g) halogen, or h) peffluoroalkyl; m is 0,l1or 2; n.is 0, 1, 2, 3 or 4; p is 0, 1,2, 3or 4;and r is 0 to 5, provided that r is 0 when V is hydrogen; or the pharmaceutically acceptable salts thereof.
WO 97/36888 PCT/US97/04711 -19- In a more preferred embodiment of this invention, the inhibitors of farnesyl-protein transferase are illustrated by the formula
C:
H
HN 23 N N-Z (CR b 2 )p X R R8 C wherein:
R
1 b is independently selected from: a) hydrogen, b) aryl, heterocycle, cycloalkyl,
R
10
-N(R
10 )2 or C2-C6 alkenyl, c) C1-C6 alkyl unsubstituted or substituted by aryl, heterocycle, cycloalkyl, alkenyl, R 10 or -N(R10)2;
R
3 and R 5 are independently selected from H and CH3;
NR
6
R
7
R
2 and R 4 are independently selected from H; 0 or alkyl, unbranched or branched, unsubstituted or substituted with one or more of: 1) aryl, 2) heterocycle, 3) OR 6 4) SR 6 a, SO2R 6 a, or
NR
6
R
7
O
R
6 and R 7 are independently selected from: WO 97/36888 PCTIUS97/04711 20 a) hydrogen, b) CI-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, CI-C6 perfluoroalkyl, F, Cl, RIO0-, RIOC(O)NR1O.., CN, N02, (Ri %02N-C(NR
R
1 I R I O0C(O)-, -N(R 10)2, or R I IOC(O)NR 1 and c) ClI-C6 alkyl substituted by C I-C6 perfluoroalkyl, R 10 0-,
R
1 I C(O)NR (R I 0 )2N-C(NRl 10>, Rl I R I -N(R'1O)2, or R I I OC(O)NR
R
8 is independently selected from: a) hydrogen, b) C1I-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C I-C6 perfluoroalkyl, F, Cl, R 1 0 R IOC(O)NR 10-, CN, N02, (RI 0 )2N-C(NRIO0>, RI -N(Rl 0)2, or R I IOC(O)NRI10-, and c) C1I-C6 alkyl substituted by C I-C6 perfluoroalkyl, R 10 0-, Rl 0 C(O)NRI10., (RI 0 )2N-C(NR10).., R 1 0 102,or R IIOC(O)NR10- R 10 is independently selected from hydrogen, C I-C6 alkyl, benzyl and aryl;
R
1 I s independently selected from C I -C6 alkyl and aryl; X is -CH2-; Z is selected from: 1) a unsubstituted or substituted group selected from aryl, heteroaryl, arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following: a) Ci1 -4 alkyl, unsubstituted or substituted with: CI-4 alkoxy, NR 6
R
7 C3-.6 cycloalkyl, aryl, heterocycle, HO, S(O)mR 6 a, or -C(O)Nk 6
R
7 WO 97/36888 PCT/US97/04711 -21 b) aryl or heterocycle, c) halogen, d) OR6, e) NR 6
R
7 f) CN, g) N02, h) CF3; i) -S(O)mR 6 a, j) -C(O)NR 6
R
7 or k) C3-C6 cycloalkyl; or 2) unsubstituted C1-C6 alkyl, substituted C1-C6 alkyl, unsubstituted C3-C6 cycloalkyl or substituted C3-C6 cycloalkyl,wherein the substituted C -C6 alkyl and substituted C3-C6 cycloalkyl is substituted with one or two of the following: a) C1-4 alkoxy, b) NR 6
R
7 c) C3-6 cycloalkyl, d) -NR 6
C(O)R
7 e) HO, f) -S(O)mR 6 a, g) halogen, or h) perfluoroalkyl; m is 0, 1 or 2; and pis 0, 1, 2, 3 or 4; or the pharmaceutically acceptable salts thereof.
In a second more preferred embodiment of this invention, the inhibitors of famesyl-protein transferase are illustrated by the formula D: WO 97/36888 PCT/US97/0471 1 22 NX N0
R
3 \A-j N N-Z NC (CRlb 2 -X R 4 RH0 wherein:
R
1 b is independently selected from: a) hydrogen, b) aryl, heterocycle, cycloalkyl, R 10 -N(R 10)2 or C2-C6 alkenyl, c) C1I-C6 alkyl unsubstituted or substituted by aryl, heterocycle, cycloalkyl, alkenyl, R 10 or 02
R
2 and R 4 are independently selected from: hydrogen or C I -C6 alkyl;
R
3 and R 5 are hydrogen;
R
6 and R 7 are independently selected from: a) hydrogen, b) C I-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C I -C6 perfluoroalkyl, F, Cl, R 10 R IOC(O)NR 10-, CN, N02, (R 10 )2N-C(NRI10>,
R
1 0 C(Oy-, R 1 0 -N(R 10)2, or R I IOC(O)NR 10-, and c) C1I-C6 alkyl substituted by C1I-C6 perfluoroalkyl, R 10 0-,
R
1 I C(O)NRi 10, (R 1 0 )2N-C(NR R 1
OC(O)-,
R I -N(R 10)2, or R I IOC(O)NR 10- R 10 is independently selected from hydrogen, C1I-C6 alkyl, benzyl and aryl;
R
1 is independently selected from C I-C6 alkyl and aryl; WO 97/36888 PCTIUS97/04711 23 X is -CH2-; Z is mono- or bicyclic aryl, mono- or bicyclic heteroaryl, mono- or bicyclic arytmethyl, mono- or bicyclic heteroary lm ethyl, mono- or bicyclic arylsulfonyl, mono- or bicyclic heteroarylsulfonyl, unsubstituted or substituted with one or two of the following: 1) C 1 -4 alkyl, unsubstituted or substituted with: a) Ci1 4 alkoxy, b) NR 6
R
7 c) C3-.6 cycloalkyl, d) aryl or heterocycle, e) HO, f) -S(O)mR 6 or g) -C(O)NR 6
R
7 2) aryl or heterocycle, 3) halogen, 4) OR 6
NR
6
R
7 6) CN, 7) N02, 8) CF3; 9) -S(O)mR 6
-C(O)NR
6
R
7 or 11) C3-C6 cycloalkyl; M is 0,l1or 2;and p is 0,1, 2 3or 4; or the pharmaceutically acceptable salts thereof.
The preferred compounds of this invention are as follows: WO 97/36888 PCTIUS97/0471 1 24 1-( 4 -Cyanobenzyl)-5-imidazolylmethylj -1 -chlorophenyl)- -n-Butyl-4-[ l-( 4 -cyanobenzyl)-5-imidazolylmethyl1 -1 chlo rophenyl)piperazine-2,5 di one 1 -Chlorophenyl)-4- 3 4 -cyanobenzyl)pyridin-4yl)methyl] piperazin-2,5 -dione 1-.(4-cyanobenzyl)-5 -imidazolylmethyl] -1 -phenylpiperazine-2,s dione and 4-benzyl-l1-[1 4 -cyanobenzyl)-5-imidazolylmethyl] dione or the pharmaceutically acceptable salts thereof.
Specific examples of the compounds of the invention are: 4- [1 4 -Cyanobenzy1) imidazolylmethyl. -I (3 -chi orophenyl) -dione 0 C1
NC-
N -N N\0 N 0 or the pharmaceutically acceptable salts thereof.
The compounds of the present invention may have asymmetric centers and occur as racemnates, racemic mixtures, and as individual diastereomers, with all possible isomers, including optical WO 97/36888 PCT/US97/04711 isomers, being included in the present invention. When any variable aryl, heterocycle, R1, R 2 etc.) occurs more than one time in any constituent, its definition on each occurence is independent at every other occurence. Also, combinations of substituents/or variables are permissible only if such combinations result in stable compounds.
As used herein, "alkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms; "alkoxy" represents an alkyl group of indicated number of carbon atoms attached through an oxygen bridge. "Halogen" or "halo" as used herein means fluoro, chloro, bromo and iodo.
As used herein, "aryl" is intended to mean any stable monocyclic or bicyclic carbon ring of up to 7 members in each ring, wherein at least one ring is aromatic. Examples of such aryl elements include phenyl, naphthyl, tetrahydronaphthyl, indanyl, biphenyl, phenanthryl, anthryl or acenaphthyl.
The term heterocycle or heterocyclic, as used herein, represents a stable 5- to 7-membered monocyclic or stable 8- to 11membered bicyclic heterocyclic ring which is either saturated or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from the group consisting of N, 0, and S, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The heterocyclic ring may be attached at any heteroatom or carbon atom which results in the creation of a stable structure. Examples of such heterocyclic elements include, but are not limited to, azepinyl, benzimidazolyl, benzisoxazolyl, benzofurazanyl, benzopyranyl, benzothiopyranyl, benzofuryl, benzothiazolyl, benzothienyl, benzoxazolyl, chromanyl, cinnolinyl, dihydrobenzofuryl, dihydrobenzothienyl, dihydrobenzothiopyranyl, dihydrobenzothiopyranyl sulfone, furyl, imidazolidinyl, imidazolinyl, imidazolyl, indolinyl, indolyl, isochromanyl, isoindolinyl, isoquinolinyl, isothiazolidinyl, isothiazolyl, isothiazolidinyl, morpholinyl, naphthyridinyl, oxadiazolyl, 2 -oxoazepinyl, oxazolyl, 2 -oxopiperazinyl, 2-oxopiperdinyl, 2 -oxopyrrolidinyl, piperidyl, piperazinyl, pyridyl, WO 97/36888 PCTIUS97/04711 -26pyrazinyl, pyrazolidinyl, pyrazolyl, pyridazinyl, pyrimidinyl, pyrrolidinyl, pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyl, tetrahydrofuryl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, thiamorpholinyl, thiamorpholinyl sulfoxide, thiazolyl, thiazolinyl, thienofuryl, thienothienyl, and thienyl.
As used herein, "heteroaryl" is intended to mean any stable monocyclic or bicyclic carbon ring of up to 7 members in each ring, wherein at least one ring is aromatic and wherein from one to four carbon atoms are replaced by heteroatoms selected from the group consisting of N, 0, and S. Examples of such heterocyclic elements include, but are not limited to, benzimidazolyl, benzisoxazolyl, benzofurazanyl, benzopyranyl, benzothiopyranyl, benzofuryl, benzothiazolyl, benzothienyl, benzoxazolyl, chromanyl, cinnolinyl, dihydrobenzofuryl, dihydrobenzothienyl, dihydrobenzothiopyranyl, dihydrobenzothiopyranyl sulfone, furyl, imidazolyl, indolinyl, indolyl, isochromanyl, isoindolinyl, isoquinolinyl, isothiazolyl, naphthyridinyl, oxadiazolyl, pyridyl, pyrazinyl, pyrazolyl, pyridazinyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, thiazolyl, thienofuryl, thienothienyl, and thienyl.
As used herein in the definition of R 2 and R 3 the term "the substituted group" intended to mean a substituted Ci-8 alkyl, substituted C2-8 alkenyl, substituted C2-8 alkynyl, substituted aryl or substituted heterocycle from which the substitutent(s) R 2 and R 3 are selected.
As used herein in the definition of R 6
R
6 a, R 7 and R 7 a, the substituted C1-8 alkyl, substituted C3-6 cycloalkyl, substituted aroyl, substituted aryl, substituted heteroaroyl, substituted arylsulfonyl, substituted heteroarylsulfonyl and substituted heterocycle include moieties containing from I to 3 substitutents in addition to the point of attachment to the rest of the compound.
When R 2 and R 3 are combined to form (CH2)u cyclic moieties are formed. Examples of such cyclic moieties include, but are not limited to: WO 97/36888 PCT/US97/04711 -27- In addition, such cyclic moieties may optionally include a heteroatom(s). Examples of such heteroatom-containing cyclic moieties include, but are not limited to: 0 2' S-j H 0
S
S
N
IR
COR'O
Lines drawn into the ring systems from substituents (such as from R 2
R
3
R
4 etc.) indicate that the indicated bond may be attached to any of the substitutable ring carbon atoms.
Preferably, R 1a and R 1 b are independently selected from: hydrogen, -N(R 10
R
10
C(O)NR
1 O- or unsubstituted or substituted C1-C6 alkyl wherein the substituent on the substituted C -C6 alkyl is selected from unsubstituted or substituted phenyl, -N(R 10 R 10 and
R
10 C(O)NR1O-
R
6
R
7 Preferably,
R
2 is selected from: H, R 6 O O and an unsubstituted or substituted group, the group selected from Cl-8 alkyl, C2-8 alkenyl and C2-8 alkynyl; wherein the substituted group is substituted with one or more of: 1) aryl or heterocycle, unsubstituted or substituted with: a) C1-4 alkyl, b) (CH2)pOR 6 WO 97/36888 PCTIUS97/0471 1 28 c) (CH2)pNR 6
R
7 d) halogen, 2) C3-6 cycloalkyl, 3)
OR
6 4) SR 6 a, S(O)R6a, SO2R6a,
-NR
6
RI
R
6 6) -N R 0 7) 7RI -N yNRRa 0 8) -0 NR 6R 7 0 9) -0 OR 6 0 Y NR 6
R
7 0 11) -S0 2
-NR
6
R
7
R
6 12) WO 97/36888 PCT/US97/04711 -29- 13)
R
6 0 14) OR6
OR
0
N
3 or 16) F.
Preferably, R3 is selected from: hydrogen and C1-C6 alkyl.
Preferably,
R
4 and R 5 are hydrogen.
Preferably,
R
6
R
7 and R7a is selected from: hydrogen, unsubstituted or substituted Ci-C6 alkyl, unsubstituted or substituted aryl and unsubstituted or substituted cycloalkyl.
Preferably, R6a is unsubstituted or substituted C1-C6 alkyl, unsubstituted or substituted aryl and unsubstituted or substituted cycloalkyl.
Preferably,
R
9 is hydrogen or methyl. Most preferably,
R
9 is hydrogen.
Preferably,
R
1 0 is selected from H, C1-C6 alkyl and benzyl.
Preferably, Al and A 2 are independently selected from: a bond, -C(0)NR10-,
-NR
1 0, -N(R -S(0)2N(RIO)- and- N(R10)S(0)2-.
Preferably, V is selected from hydrogen, heterocycle and aryl. More preferably, V is phenyl.
Preferably, Z is selected from unsubstituted or substituted phenyl, unsubstituted or substituted naphthyl, unsubstituted or substituted pyridyl, unsubstituted or substituted furanyl, unsubstituted or substituted thienyl and unsubstituted or substituted alkyl. More preferably, Z is unsubstituted or substituted phenyl.
Preferably, W is selected from imidazolinyl, imidazolyl, oxazolyl, pyrazolyl, pyyrolidinyl, thiazolyl and pyridyl. More preferably, W is selected from imidazolyl and pyridyl.
WO 97/36888 PCT/US97/04711 Preferably, n and r are independently 0, 1, or 2.
Preferably p is 1, 2 or 3.
Preferably s is 0.
Preferably t is 1.
Preferably X is -CH2-.
It is intended that the definition of any substituent or variable Rla, R 9 n, etc.) at a particular location in a molecule be independent of its definitions elsewhere in that molecule. Thus, -N(R10)2 represents -NHH, -NHCH3, -NHC2H5, etc. It is understood that substituents and substitution patterns on the compounds of the instant invention can be selected by one of ordinary skill in the art to provide compounds that are chemically stable and that can be readily synthesized by techniques known in the art, as well as those methods set forth below, from readily available starting materials.
The pharmaceutically acceptable salts of the compounds of this invention include the conventional non-toxic salts of the compounds of this invention as formed, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like: and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2 -acetoxy-benzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, trifluoroacetic and the like.
The pharmaceutically acceptable salts of the compounds of this invention can be synthesized from the compounds of this invention which contain a basic moiety by conventional chemical methods.
Generally, the salts are prepared either by ion exchange chromatography or by reacting the free base with stoichiometric amounts or with an excess of the desired salt-forming inorganic or organic acid in a suitable solvent or various combinations of solvents.
Reactions used to generate the compounds of this invention are prepared by employing reactions as shown in the Schemes 1-14, in WO 97/36888 PCT/US97/04711 -31 addition to other standard manipulations such as ester hydrolysis, cleavage of protecting groups, etc., as may be known in the literature or exemplified in the experimental procedures.
These reactions may be employed in a linear sequence to provide the compounds of the invention or they may be used to synthesize fragments which are subsequently joined by the alkylation reactions described in the Schemes.
Synopsis of Schemes 1-14: The requisite intermediates are in some cases commercially available, or can be prepared according to literature procedures, for the most part. 2 ,5-Diketopiperazines can be generally prepared as shown in Scheme 1. Amination of the suitably substituted bromoacetate
I
provides the N-substitued ester II. This is then reacted with a protected substituted acetyl chloride to provide the secondary amide III; subsequent to acid deprotection, ring closure to the diketopiperazine
VI
occurs concurrently with reductive alkylation with an aldehyde such as the protected imidazolyl aldehyde V. The imidazolyl protecting group may be removed under acidic conditions such as trifluoroacetic acid in methylene chloride. Alternatively, the imidazolyl may be alkylated and then deprotected to provide compounds such as VIII The intermediate IV can be cyclized and reductively alkylated with a variety of aldehydes, such as IX. The aldehydes can be prepared by standard procedures, such as that described by O. P. Goel, U. Krolls, M. Stier and S. Kesten in Organic Syntheses, 1988, 67, 69from the appropriate amino acid (Scheme The reductive alkylation can be accomplished at pH 5-7 with a variety of reducing agents, such as sodium triacetoxyborohydride or sodium cyanoborohydride in a solvent such as dichloroethane, methanol or dimethylformamide. The product X can be deprotected to give the final compounds XI with trifluoroacetic acid in methylene chloride. The final product XI is isolated in the salt form, for example, as a trifluoroacetate, hydrochloride or acetate salt, among others. The product diamine XI can further be selectively protected to obtain XII, WO 97/36888 PCT/US97/04711 -32which can subsequently be reductively alkylated with a second aldehyde to obtain XIII. Removal of the protecting group, and conversion to cyclized products such as the dihydroimidazole XV can be accomplished by literature procedures.
As shown in Scheme 3, the imidazole acetic acid XVI can be converted to the acetate XVII by standard procedures, and XVII can be first reacted with an alkyl halide, then treated with refluxing methanol to provide the regiospecifically alkylated imidazole acetic acid ester XIX. The ester is hydrolyzed and the acid converted to the acid chloride. Reaction with the suitably substituted lithium diketopiperazine XXI in the presence of condensing reagents such as 1-(3dimethylaminopropyl)-3-ethylcarbodiimide (EDC) leads to acylated products such as XXII.
Scheme 3a illustrates an alternative preparation of the instant compounds which incorporate the preferred benzylimidazolyl moiety. As shown in the scheme, cyclization affords the key intermediate 1-(1-benzylimidazol-5-yl)piperazine-2,5-dione, which can then be reacted with a suitably substituted triaryl bismuth reagent or other suitable electrophiles (Scheme 3b).
If the intermediate IV is cyclized/reductively alkylated with an aldehyde which also has a protected hydroxyl group, such as XXIII in Scheme 4, the protecting groups can be subsequently removed to unmask the hydroxyl group (Schemes 4, The alcohol can be oxidized under standard conditions to e.g. an aldehyde, which can then be reacted with a variety of organometallic reagents such as Grignard reagents, to obtain secondary alcohols such as XXVII. In addition, the fully deprotected amino alcohol XXV can be reductively alkylated (under conditions described previously) with a variety of aldehydes to obtain secondary amines, such as XXIX (Scheme or tertiary amines.
The Boc protected amino alcohol XXV can also be utilized to synthesize 4 2 -aziridinylmethyl)-2,5-diketopiperazines such as XXX (Scheme Treating XXV with 1,1'-sulfonyldiimidazole and sodium hydride in a solvent such as dimethylformamide led to the formation of aziridine XXX. The aziridine reacted in the presence of a nucleophile, WO 97/36888 PCT/US97/04711 -33 such as a thiol, in the presence of base to yield, after deprotection, the ring-opened product XXXII.
In addition, the intermediate IV can be reacted with aldehydes derived from amino acids such as O-alkylated tyrosines, according to standard procedures, to obtain compounds such as XXXV as shown in Scheme 7. When R' is an aryl group, XXXV can first be hydrogenated to unmask the phenol, and the amine group deprotected with acid to produce XXXVI. Alternatively, the amine protecting group in XXXV can be removed, and O-alkylated phenolic amines such as XXXVII produced.
Reaction Scheme 8 provides an illustrative example the synthesis of compounds of the instant invention wherein the substituents
R
4 and R 5 are combined to form (CH2)u For example, 1aminocyclohexane-1-carboxylic acid XXXVIII can be converted to the spirodiketopiperazine an intermediate IXL essentially according to the procedures outlined in Schemes 1 and 2. The intermediate IXL can be deprotected as before, and carried on to final products as described in Schemes 3-8. It is understood that reagents utilized to provide the imidazolylalkyl substituent may be readily replaced by other reagents well known in the art and readily available to provide other Nsubstituents on the diketopiperazine.
Scheme 9 illustrates the use of an optionally substituted homoserine lactone XLII to prepare a Boc-protected intermediate XLIII. Intermediate XLIII may be deprotected and cyclized/reductively alkylated or acylated as illustrated in the previous Schemes.
Alternatively, the hydroxyl moiety of diketopiperazine XLIV may be mesylated and displaced by a suitable nucleophile, such as the sodium salt of ethane thiol, to provide an the sulfide XLV. Diketopiperazine XLIV may also be oxidized to provide the carboxylic acid on diketopiperazine XLVI, which can be further utilized to form an ester or amide moiety.
Amino acids of the general formula XLVIII which have a sidechain not found in natural amino acids may be prepared by the WO 97 36888 PCT/US97/04711 -34reactions illustrated in Scheme 10 starting with the readily prepared imine XLIX.
Schemes 11-14 illustrate syntheses of suitably substituted aldehydes useful in the syntheses of the instant compounds wherein the variable W is present as a pyridyl moiety. Similar synthetic strategies for preparing alkanols that incorporate other heterocyclic moieties for variable W are also well known in the art.
SCHEME 1
R
2
H
3 C0 2 C jBr
Z-NH
2
K
2 00 3
R
2 H3002
C
N H-Z 0 Boc-HN
C
1
R
4 Et 3
N
HCI
EtOAc R 2
H
3 00 2 0
R
4
N-Z
Boc-HN 0
R
2 H3C02C-
R
4
N-Z
HCI H 2
N
WO 97/36888 PCTIUS97/04711 35 SCHEME I (continued) R82
H
3 00 2
C
R4 N-Z HOL H 2 N 0
IV
NaB H(OAc) 3 Et 3 N CICH 2
CH
2
CI
N
Tr
N-
N
VI
Tr
CF
3 C0 2 H, 0H 2 C1 2
(C
2
H
5 3 S1 H
(H
2 1
N~NZ
N
R
4 0
(CH
2 )nCHO
V
1) Ar CH 2 X, CH 3
CN
2) CF 3 00 2 H, CH 2 Ci 2
(C
2
H
5 3 SiH o Rp N N-Z N ~R 4 0 N ViIl WO 97/36888 PCT/US97/0471 1 36 SCHEME 2 R 2
H
3 00 2
C
R 4
N-Z
HCI -H 2 N 0 Boo NH I Ix Boo NH CHO NaBH(OAc)3 Et 3 N ,CICH 2
CH
2
CI
Boo
NH
2 f NN- R 4 o
NH
2 xi z 0F 3 00 2
H
CH
2
CI
2 x
BOC
2 0
CH
2 C1 2 o R 2 BocNH N N- Z
RH
4 0
NH
2
XI
~CHO
NaBH (0Ao)3 Et 3 N CICH 2
CH
2
CI
WO 97/36888 PCTIUS97/0471 1 37 SCHEME 2 (continued) o R 2 BocNHN N- NH R' 0
NH
2 N N-Z NH R 4 0
XIV
CF
3 00 2 H, 0H 2 01 2 NaHCO 3
NC
AgON L N N- Z WO 97/36888PC/S/071 PCT/US97/04711 38 SCHEME 3 N- C H 2
CO
2
H
N
H
XV'
CH
3 0H-
HOI
I HOI xv"l
(C
6
H
5 3 C Br
(C
2
H
5 3
N
DMF
N-CH2 00 2
CH
3
N
1) ArCH 2 X CH 3
CN
ref lux 2) CH 3 OH, ref lux xv"'l Ar--\N-CH 2 00 2
CH
3
N
x'x N CH 2 00 2
H
N
2.5N HClaq 550C WO 97/36888 WO 9736888PCTIUS97/0471 1 39 SCHEME 3 (continued)
H
3 C0 2 0 R 4
N-Z
HCI -H 2 NO0
IV
Et 3
N
0 0OR 2 n-BuLi l HN NN-Z LUN N-Z R 4 0 R 4 0 XXI
XX-'
0CH 2 C0 2
H
1. t-Bu-( Et 3
N
Ar"
N
O R 2 N \N-Z R 4 0 XXI I
.HCI
WO 97/36888 PCTIUS97/04711 40 SCHEME 3a CHO Na(AcO) 3
BH
CICH
2
CH
2
CI
4A mol sieves HCIkHN ,Co 2 Me
H
N OMe EDO!, HOBt
DMF
BocHN,,,C0 2
H
o NHBoc *N OMe HO!, EtOAc; Et 3 N, 0H 2
CI
2 .N NNH 0 sub- Bi Cu(OAc) 2 Et3N, CH 2
CI
2 WO 97/36888 PCTJUS97/04711I 41 SCHEME 3b N NH 0 sub B r NaH, DMF 0 WO 97/36888 PCTIUS97/0471 1 42 SCHEME 4 R 2
H
3 00 2
C
R 4
N-Z
HOV -H 2 N 0
IV
0 R 2 BnO 4 BocHN R 4 o NaB H(OAc).
3 Et 3 N ClCH 2
CH
2
CI
BnOI BocNH CHO xxii' Pd(OH) 2
H
2
CH
3 0H
CH
3 00 2
H
xxiv 0 R 2 HO 4 BocHN R 4 0 xxv
CICOCOCI
DMSO
CH
2
CI
2
(C
2
H
5 3
N
WO 97/36888 PCT/US97/0471 1 43 SCEE4(CNIUD H N N-Z BocHN R 4 0
XXVI
O R 2
OH
R'Jy N N-Z
H
2 N RA 4 0 1. R'MgX (0 2
H.
5 2 0 2. TFA,
CH
2
CI
2
XXVII
WO 97/36888 PCT/US97/0471 1 44 HO 4 BocHN R 4 0
CF
3 00 2
H
CH
2
CI
2 xxv
R'CHO
H
2
N
NaBH(OAC) 3
CICH
2
CH
2
CI
xxv"'l
HO
N N-Z NH R 4 0
R'CH
2 xxix WO 97/36888 PCTf[US97/0471 1 45 SCHEME 6 HO 4 N N-Z BocHN R 4 0 H H
S"
02 NaH, DMF 0 0
C
xxv O
R
2 W N
N-Z
N R 4 0 Boc xxx
R'SH
(C
2
H
5 3 N
A
CH
3 0H O R 2 R'S BocHN R 4 0
XXXI
R'S
N N-z
H
2 N R 4 0
TFA
CH
2 01 2 xx"i WO 97/36888 PCT/US97/0471 1 46 1) BoC 2 O, K 2 00 3
THF-H
2 0 2) 0H 2
N
2 EtOAc oN BocNH 0 2
CH
3
H
2
N
xxxiII LiAIH 4
THF
0-200C
R'CH
2
X
CS
2
CO
3
DMF
CH
2 0H
R'CH
2 O 0 BocNH
CH
2 0H pyridine
-SO
3
DMSO
(C
2 H )3N 200C
R'CH
2
O
BocNH CHO WO 97/36888 PCTJUS97/04711I 47 SCHEME 7 (continued) R'0H 2 0 BocNH CHO
H
3
CO
2
C
R 4
N-Z
HCI -H 2 N 0
XXXIV
NaB H(OAc) 3 010 H 2 CHqCl O R 2 R 4 0
R'CH
2 BocHN
XXXV
1) 20% Pd(OH) 2
CH
3 OH, CH 3
CO
2
H
2) HOI, EtOAc
HOP
O F
HCI
ETOAc 0 R 2
R'CH
2 0 R r N 4N-
H
2 N RH 4 0 12 XXXVII
H
2
N
XXXVI
WO 97/36888 PCTIUS97/04711 48 SCEEME8
H
3 00 2 C Br
Z-NH
2
K
2 C0 3
H
3 00 2 C NH-Z xxxviii BocNH CODl Et 3
N
HOI
R 2
N-Z
Boc-HN 0
-CO
2
CH
3
IXL
EtOAc WO 97/36888PCIS7071 PCTIUS97/04711 49 SCHEME 8 (continued)
CO
2
CH,
N-Z
H
2 N 0 u 0 N N- Z N0R CPh 3 u 0 N N-Z N0R H .2 TFA NaBH (OAc) 3
C(=O)H
N
N
CPh 3 TFA 0H 2 01 2 (C 2
H
5 3 Si H
XLI
WO 97/36888PCIS7071 PCT/US97/04711 50 SCHEME 9 Boc 2 O, i-Pr 2 EtN sub BocHN* 0 XLI I
H
3
CO
2 C NH-Z HO sub BocNH N-Z
H
3 C0 2 0-
XLIII
1. HCI, EtOAc 2. Na(ACO) 3
BH
N\
XLIV
WO 97/36888PC/S7071 PCT/US97/04711 -51 SCHEME 9 (continued) HO sub Het CH 2 N N-Ar
>HR
2 I Ir 1. MsCI, iPr 2 NEt 2. NaSEt, DMF EtS sub Het CH 2 N N-Ar
O
2
XLV
Het
XLIVD
001)2, Et 3
N
~Aso 2. NaC 102, t-BuOH 2-Me-2-butene NaH 2
PO
4 HO sub Het OH 2 N N-Ar O R
XLVI
N
WO 97/36888 WO 9736888PCTJUS97/0471 1 52 SCHEME p- CO 2 Et P
/-N
1. KOtBu, THF R 2
X
2. 5% aqueous HOI
CO
2 Et
H
2
N
HCI
XLVII
1 BoC 2 O, NaHCO 3 2. NaOH, THF/H 2 0
CICOCOCI
-C0 2
H
BocHN XL VIII BocHN
IL
WO 97/36888 PCTIUS97/0471 1 53 REACTION SCHEME I1I C H 3
H
2 N" N 1) HNQ 2 ,Br 2 2) KMnO 4 3) MeOH,H+ C0 2 0H 3 Br"
N
MgC! ZnCI 2 ,NiCI 2 (Ph 3
P)
2 NaB H 4 (excess) R 6 S03aPy, Et 3 N ,C0 2 C H 3 .0H 2 0H
CHO
DMSO
WO 97/36888 PCT/US97/0471 1 -54 REACTION4 SCHEME 12 1. EtO(CO)CI
R
2.R6 Zn, CuCN
C
2
H
3. S, xylene, heat N NaBH 4 (excess)
SO
3 -Py, Et 3
N
i DMSO
CHO
N
Br
CO
2
CH
N
3 MgCI ZnCI 2 NiCI 2 (Ph 3
P)
2
CH
2
OHSO
3 'Py, Et 3
N
CH20H DMSO
-CO
2
CH
3 NaBH 4 (excess) WO 97/36888 PCTIUS97,0471 1 REACTION SC,'HEME 13
I
No LDA,
CO
2 2. MeOH, H+
CO
2
CH
3 Br
N
MgCi ZnCI 2 NiCI 2 (PhP) 2 NaB H 4 (excess) SO3-Py, Et 3
N
DMSO
CHO
WO 97/36888 PCTJUS97/0471 1 56 REACTION SCHEME 14 N Br 1. LDA, 002 2. (0H 3 3 SiCHN 2 C0 2 0H 3 Br R 6 Br Zn, NiCI 2 (Ph 3
P)
2 R 6 N 0 2
CH
3 excess NaBH 4
CH
2
O
SO
3 -Py, Et 3
N
DMSO
WO 97/36888 PCT/US97/04711 -57 The instant compounds are useful as pharmaceutical agents for mammals, especially for humans. These compounds may be administered to patients for use in the treatment of cancer. Examples of the type of cancer which may'be treated with the compounds of this invention include, but are not limited to, colorectal carcinoma, exocrine pancreatic carcinoma, myeloid leukemias and neurological tumors.
Such tumors may arise by mutations in the ras genes themselves, mutations in the proteins that can regulate Ras activity neurofibromin neu, scr, abl, Ick, fyn) or by other mechanisms.
The compounds of the instant invention inhibit famesylprotein transferase and the faresylation of the oncogene protein Ras.
The instant compounds may also inhibit tumor angiogenesis, thereby affecting the growth of tumors Rak et al. Cancer Research, 55:4575- 4580 (1995)). Such anti-angiogenesis properties of the instant compounds may also be useful in the treatment of certain forms of blindness related to retinal vascularization.
The compounds of this invention are also useful for inhibiting other proliferative diseases, both benign and malignant, wherein Ras proteins are aberrantly activated as a result of oncogenic mutation in other genes the Ras gene itself is not activated by mutation to an oncogenic form) with said inhibition being accomplished by the administration of an effective amount of the compounds of the invention to a mammal in need of such treatment. For example, a component of NF-1 is a benign proliferative disorder.
The instant compounds may also be useful in the treatment of certain viral infections, in particular in the treatment of hepatitis delta and related viruses Glenn et al. Science, 256:1331-1333 (1992).
The compounds of the instant invention are also useful in the prevention of restenosis after percutaneous transluminal coronary angioplasty by inhibiting neointimal formation Indolfi et al. Nature medicine, 1:541-545(1995).
The instant compounds may also be useful in the treatment and prevention of polycystic kidney disease Schaffner et al.
WO 97/36888 PCT/US97/04711 -58 American Journal of Pathology, 142:1051-1060 (1993) and B. Cowley, Jr. et al.FASEB Journal, 2:A3160 (1988)).
The instant compounds may also be useful for the treatment of fungal infections.
The compounds of this invention may be administered to mammals, preferably humans, either alone or, preferably, in combination with pharmaceutically acceptable carriers or diluents, optionally with known adjuvants, such as alum, in a pharmaceutical composition, according to standard pharmaceutical practice. The compounds can be administered orally or parenterally, including the intravenous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration.
For oral use of a chemotherapeutic compound according to this invention, the selected compound may be administered, for example, in the form of tablets or capsules, or as an aqueous solution or suspension. In the case of tablets for oral use, carriers which are commonly used include lactose and corn starch, and lubricating agents, such as magnesium stearate, are commonly added. For oral administration in capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents.
If desired, certain sweetening and/or flavoring agents may be added.
For intramuscular, intraperitoneal, subcutaneous and intravenous use, sterile solutions of the active ingredient are usually prepared, and the pH of the solutions should be suitably adjusted and buffered. For intravenous use, the total concentration of solutes should be controlled in order to render the preparation isotonic.
The compounds of the instant invention may also be coadministered with other well known therapeutic agents that are selected for their particular usefulness against the condition that is being treated.
For example, the instant compounds may be useful in combination with known anti-cancer and cytotoxic agents. Similarly, the instant compounds may be useful in combination with agents that are effective in the treatment and prevention of NF-1, restinosis, polycystic kidney WO 97/36888 PCTUS97/04711 -59disease, infections of hepatitis delta and related viruses and fungal infections.
If formulated as a fixed dose, such combination products employ the compounds of this invention within the dosage range described below and the other pharmaceutically active agent(s) within its approved dosage range. Compounds of the instant invention may alternatively be used sequentially with known pharmaceutically acceptable agent(s) when a combination formulation is inappropriate.
The present invention also encompasses a pharmaceutical composition useful in the treatment of cancer, comprising the administration of a therapeutically effective amount of the compounds of this invention, with or without pharmaceutically acceptable carriers or diluents. Suitable compositions of this invention include aqueous solutions comprising compounds of this invention and pharmacologically acceptable carriers, saline, at a pH level, 7.4. The solutions may be introduced into a patient's blood-stream by local bolus injection.
When a compound according to this invention is administered into a human subject, the daily dosage will normally be determined by the prescribing physician with the dosage generally varying according to the age, weight, and response of the individual patient, as well as the severity of the patient's symptoms.
In one exemplary application, a suitable amount of compound is administered to a mammal undergoing treatment for cancer. Administration occurs in an amount between about 0.1 mg/kg of body weight to about 60 mg/kg of body weight per day, preferably of between 0.5 mg/kg of body weight to about 40 mg/kg of body weight per day.
The compounds of the instant invention are also useful as a component in an assay to rapidly determine the presence and quantity of famesyl-protein transferase (FPTase) in a composition.
Thus the composition to be tested may be divided and the two portions contacted with mixtures which comprise a known substrate of FPTase (for example a tetrapeptide having a cysteine at the amine WO 97/36888 PCT/US97/04711 terminus) and famesyl pyrophosphate and, in one of the mixtures, a compound of the instant invention. After the assay mixtures are incubated for an sufficient period of time, well known in the art, to allow the FPTase to famesylate the substrate, the chemical content of the assay mixtures may be determined by well known immunological, radiochemical or chromatographic techniques.
Because the compounds of the instant invention are selective inhibitors of FPTase, absence or quantitative reduction of the amount of substrate in the assay mixture without the compound of the instant invention relative to the presence of the unchanged substrate in the assay containing the instant compound is indicative of the presence of FPTase in the composition to be tested.
It would be readily apparent to one of ordinary skill in the art that such an assay as described above would be useful in identifying tissue samples which contain famesyl-protein transferase and quantitating the enzyme. Thus, potent inhibitor compounds of the instant invention may be used in an active site titration assay to determine the quantity of enzyme in the sample. A series of samples composed of aliquots of a tissue extract containing an unknown amount of famesyl-protein transferase, an excess amount of a known substrate of FPTase (for example a tetrapeptide having a cysteine at the amine terminus) and famesyl pyrophosphate are incubated for an appropriate period of time in the presence of varying concentrations of a compound of the instant invention. The concentration of a sufficiently potent inhibitor one that has a Ki substantially smaller than the concentration of enzyme in the assay vessel) required to inhibit the enzymatic activity of the sample by 50% is approximately equal to half of the concentration of the enzyme in that particular sample.
EXAMPLES
Examples provided are intended to assist in a further understanding of the invention. Particular materials employed, species WO 97/36888 PCT/US97/04711 -61 and conditions are intended to be further illustrative of the invention and not limitative of the reasonable scope thereof. Purification by HPLC was accomplished with a 40 X 100 mm Waters PrepPak® reverse phase HPLC column (Delta-PakTM C18 15 pm, 100 Gradient elution employed 0.1% trifluoroacetic acid in water (Solvent A) and 0.1% trifluoroacetic acid in acetonitrile (Solvent Chloride salts were obtained by passing an aqueous solution of the trifluoroacetic acid salt through a Biorad AG® 3X4 ion exchange resin column (100-200 mesh, Cl-form). Purification by HPLC was utilized for each of the Examples 1, and 49 as set forth below.
EXAMPLE 1 4 -Cyanobenzyl)-5-imidazolylmethyl]-1 -(3-chlorophenyl)piperazine-2,5-dione hydrochloride Step A: Preparation of 1-triphenylmethyl-4-(hydroxymethyl)imidazole To a solution of 4 -(hydroxymethyl)imidazole hydrochloride (35.0 g, 260 mmol) in 250 mL of dry DMF at room temperature was added triethylamine (90.6 mL, 650 mmol). A white solid precipitated from the solution. Chlorotriphenylmethane (76.1 g, 273 mmol) in 500 mL of DMF was added dropwise. The reaction mixture was stirred for 20 hours, poured over ice, filtered, and washed with ice water. The resulting product was slurried with cold dioxane, filtered, and dried in vacuo to provide the titled product as a white solid which was sufficiently pure for use in the next step.
Step B: Preparation of 1-triphenylmethyl-4-(acetoxymethyl)imidazole Alcohol from Step A (260 mmol, prepared above) was suspended in 500 mL of pyridine. Acetic anhydride (74 mL, 780 mmol) was added dropwise, and the reaction was stirred for 48 hours during which it became homogeneous. The solution was poured into 2 WO 97/36888 PCT/US97/04711 -62- L of EtOAc, washed with water (3 x 1 5% aq. HCI soln. (2 x 1 L), sat. aq. NaHCO 3 and brine, then dried (Na 2
SO
4 filtered, and concentrated in vacuo to provide the crude product. The acetate was isolated as a white powder (85.8 g, 86% yield for two steps) which was sufficiently pure for use in the next reaction.
Step C: Preparation of 1-( 4 imidazole hydrobromide A solution of the product from Step B (85.8 g, 225 mmol) and a-bromo-p-tolunitrile (50.1 g, 232 mmol) in 500 mL of EtOAc was stirred at 60 °C for 20 hours, during which a pale yellow precipitate formed. The reaction was cooled to room temperature and filtered to provide the solid imidazolium bromide salt. The filtrate was concentrated in vacuo to a volume 200 mL, reheated at 60 oC for two hours, cooled to room temperature, and filtered again. The filtrate was concentrated in vacuo to a volume 100 mL, reheated at 60 oC for another two hours, cooled to room temperature, and concentrated in vacuo to provide a pale yellow solid. All of the solid material was combined, dissolved in 500 mL of methanol, and warmed to 60 oC.
After two hours, the solution was reconcentrated in vacuo to provide a white solid which was triturated with hexane to remove soluble materials. Removal of residual solvents in vacuo provided the titled product hydrobromide as a white solid (50.4 g, 67% yield, 89% purity by HPLC) which was used in the next step without further purification.
Step D: Preparation of 1-( 4 imidazole To a solution of the acetate from Step C (50.4 g, 150 mmol) in 1.5 L of 3:1 THF/water at 0 oC was added lithium hydroxide monohydrate (18.9 g, 450 mmol). After one hour, the reaction was concentrated in vacuo, diluted with EtOAc (3 and washed with water, sat. aq. NaHCO 3 and brine. The solution was then dried (Na 2
SO
4 filtered, and concentrated in vacuo to provide the crude WO 97/36888 PCT/US97/04711 -63 product (26.2 g, 82% yield) as a pale yellow fluffy solid which was sufficiently pure for use in the next step without further purification.
Step E: Preparation of 1-( 4 carboxaldehyde To a solution of the alcohol from Step D (21.5 g, 101 mmol) in 500 mL of DMSO at room temperature was added triethylamine (56 mL, 402 mmol), then S03-pyridine complex (40.5 g, 254 mmol). After 45 minutes, the reaction was poured into 2.5 L of EtOAc, washed with water (4 x 1 L) and brine, dried (Na 2
SO
4 filtered, and concentrated in vacuo to provide the aldehyde (18.7 g, 88% yield) as a white powder which was sufficiently pure for use in the next step without further purification.
Sp: Preparation of methyl 2-r(3-chlorophenvl)aminolacetate To a solution of 3-chloroaniline and potassium carbonate (3 equiv.) in DMF is added methylbromoacetate (1.1 equiv.), and the reaction is stirred at 60 oC. After complete reaction, the solution is poured into EtOAc and washed with water, sat. aq. NaHCO 3 soln., and brine. The solution is dried (Na 2
SO
4 filtered, and concentrated in vacuo. The resulting material is purified by silica gel chromatography to provide the titled compound.
Step G: Preparation of 2 -[(tert-butoxycarbonyl)amino]-N-(3chlorophenvl)-N-rlcarbomethoxy)methyllacetamide To a solution of Boc-glycine and triethylamine (1.0 equiv.) in dichloromethane at 0 OC is added oxalylchloride (1.0 equiv). After one hour, a solution of the product from Step F (1 equiv.) in dichloromethane is added to the first solution, followed by triethylamine (1 equiv.). The solution is allowed to warm to room temperature.
After complete reaction, the solution is poured into EtOAc and washed with sat. NH 4 C1 soln., sat. NaHCO 3 soln., and brine. The solution is dried (Na 2
SO
4 filtered, and concentrated in vacuo. The resulting WO 97/36888 PCT/US97/04711 -64material is purified by silica gel chromatography to provide the titled compound.
Step H: Preparation of 2 -amino-N-(3-chlorophenyl)-N- [(carbomethoxv)methvllacetamide Through a solution of Boc-protected amine from Step G in EtOAc at 0 °C is bubbled anhydrous HCI gas. After the reaction is complete, nitrogen gas is bubbled through the reaction to remove excess HCI, and the mixture is warmed to room temperature. The solution is concentrated in vacuo to provide the hydrochloridewhich is used in the next step without further purification.
Step Preparation of 4 4 1-(3-chlorophenvl)piperazine-2.5-dione hydrochloride To a solution of the amine hydrochloride from Step H in 1,2-dichloroethane at 0 °C is added 4A powdered molecular sieves (200 wt followed by sodium triacetoxyborohydride (1.5 equiv.). The aldehyde from Step E (1.1 equiv.) is added, and the reaction is stirred overnight, allowing it to warm to room temperature. After completion, the reaction is poured into EtOAc, washed with sat. aq. NaHCO 3 and brine, dried (Na 2
SO
4 filtered, and concentrated in vacuo. The resulting product is taken up in CH 2 C1 2 and propylamine (20 vol is added. The reaction is stirred for 12 hours, then concentrated in vacuo, and purified by silica gel chromatography. The resulting product is taken up in CH 2 C1 2 and treated with excess 1 M HCl/ether solution, and concentrated in vacuo to provide the titled product hydrochloride.
EXAMPLE 2 (S)-3-n-Butyl-4-[ 4 -cyanobenzyl)-5-imidazolylmethyl]-1-(3hydrochloride The titled compound is prepared from the amine product from Step F of Example 1 using the reaction sequence described in Steps WO 97/36888 PCT/US97/04711 G, H, and I of Example 1, except that in Step G the Boc-glycine is substituted with 2 -butoxycarbonylaminohexanoic acid. After the three Steps, the product is purified by silica gel chromatography, then taken up in CH 2 C12 and treated with excess 1 M HCl/ether solution, and concentrated in vacuo to provide the titled product hydrochloride.
EXAMPLE 3 1-(3-Chlorophenyl)-4-[(3-( 4 -cyanobenzyl)pyridin-4-yl)methyl]piperazine-2,5-dione hydrochloride Step A: Preparation of 3 4 -cyanobenzyl)pyridin-4-carboxylic acid methyl ester A solution of 4-cyanobenzyl bromide (625 mg, 3.27 mmol) in dry THF (4mL) was added slowly over -3 min. to a suspension of activated Zn (dust; 250 mg) in dry THF (2 mL) at 00 under an argon atmosphere. The ice-bath was removed and the slurry was stirred at room temperature for a further 30 min. Then 3-bromopyridin-4carboxylic acid methyl ester (540 mg. 2.5 mmol) followed by dichlorobis(triphenylphosphine)nickel (II) (50 mg). The resultant reddish-brown mixture was stirred for 3h at ~40-450C. The mixture was cooled and distributed between EtOAc (100 ml) and 5% aqueous citric acid (50 mL). The organic layer was washed with H20 (2X50 mL), dried with Na2S04. After evaporation of the solvent the residue was purified on silica gel, eluting with 35% EtOAc in hexane to give 420 mg as a clear gum. FAB ms 253.
StepB: Preparation of 3 4 -cyanobenzyl)-4-(hydroxymethyl)pyridine The title compound was obtained by sodium borohydride (300 mg) reduction of the ester from Step A (415 mg) in methanol mL) at room temperature. After stirring for 4 h the solution was evaporated and the product was purified on silica gel, eluting with 2% WO 97/36888 PCT/US97/04711 -66 methanol in chloroform to give the title compound. FAB ms (M+1) 225.
Step C: Preparation of 3-(4-cvanobenzvl-4-pyridinal The title compound was obtained by activated manganese dioxide (1.0g) oxidation of the alcohol from Step B (240 mg, 1.07 mmol) in dioxane (10 mL) at reflux for 30 min. Filtration and evaporation of the solvent provided title compound, mp 80-830C.
Step D: Preparation of 1-(3-chlorophenyl)-4-[(3-(4cyanobenzyl)pyridin-4-yl)methyl]-piperazine-2,5-dione hydrochloride The titled compound is prepared from the pyridinal from Step C and the amine hydrochloride from Step H of Example 1 using the reductive alkylation procedured in Step I of Example 1. The product is purified by silica gel chromatography, then taken up in CH 2 C12 and treated with excess 1 M HCl/ether solution, and concentrated in vacuo to provide the titled product hydrochloride.
EXAMPLE 4 0 NC N0 4 -cyanobenzyl)-5-imidazolylmethyl]-l-phenylpiperazine-2,5dione hydrochloride Step A: Preparation of 1-(4-cyanobenzyl)-5-[N- ((carbomethoxy)methvl)aminomethvll-imidazole To a solution of glycine methyl ester hydrochloride (595 mg, 4.74 mmol) in 1,2-dichloroethane at 0 °C wass added 4A powdered molecular sieves followed by sodium triacetoxyborohydride (1.51 g, 7.1 mmol). The 1-(4-cyanobenzyl)- WO 97/36888 PCT/US97/04711 -67 from Step E of Example 1 (1.00 g, 4.74 mmol) was added, and the reaction was stirred overnight, allowing it to warm to room temperature. The reaction was poured into EtOAc, washed with sat. aq. NaHCO 3 and brine, dried (Na 2
SO
4 filtered, and concentrated in vacuo. The resulting product was taken up in
CH
2 C1 2 and propylamine (20 vol was added. The reaction was stirred for one hour, then concentrated in vacuo, and purified by silica gel chromatography (95:5; CHC13:MeOH) to provide the titled amine product.
Ste B: Preparation of 1-( 4 ((carbomethoxy)-methyl)-N-(2-((tert-butoxycarbonyl)amino)acetamido)aminomethvllimidazole To a solution of the product of Step A (750 mg, 2.64 mmol) and Boc-glycine (462 mg, 2.64 mmol) in 10 mL of DMF was added HOBt-H20 (392 mg, 2.9 mmol) and EDC*HCI (556 mg, 2.9 mmol). The reaction was stirred at room temperature for 2.5 hours.
The solution was poured into EtOAc and washed with sat. aq.
NaHCO 3 soln., and brine, then dried (Na 2 SO4), filtered, and concentrated in vacuo. The resulting titled product was used in the next step without further purification.
Step C: Preparation of l-[1-(4-cyanobenzyl)-5imidazolylmethyl Through a solution of Boc-protected amine from Step B (930 mg, 2.1 mmol) in 10 mL of EtOAc at 0 oC was bubbled anhydrous HCI gas. After 30 minutes the solution was concentrated in vacuo to provide a solid hydrochloride salt. This was taken up in dichloromethane (25 mL), and triethylamine was added (0.725 mL.
5.2 mmol). After stirring for 2 hours, the solvent was removed in vacuo, and the resulting residue taken up in EtOAc/EtOH. The solution was washed with sat. aq. NaHCO 3 soln., and brine, then dried (Na 2
SO
4 filtered, and concentrated in vacuo. The resulting titled product was used in the next step without further purification.
WO 97/36888 PCT/US97/04711 68 Step D: Preparation of 4 imidazolylmethyl] hydrochloride A mixture of the product from Step C (309 mg, mmol), triphenylbismuth (660 mg, 1.5 mmol), triethylamine (0.209 mL. 1.5 mmol), and copper(II) acetate (272 mg, 1.5 mmol) was stirred together in 7 mL of dichloromethane. After 18 hours, the solution was added to a silica gel chromatography column, and eluted with MeOH/CHC13 solution. The resulting product was treated with excess 1 M HCl/ether solution, and concentrated in vacuo to provide the titled product hydrochloride as a white solid.
FAB mass spectrum m/e 386.14 Analysis calculated for C 22 Hi 9
N
5 02 1.0 HCI 0.15 H20 0.45 CHC13: C, 56.38; H, 4.37; N, 14.64; Found: C, 56.36; H, 4.39; N, 14.54.
EXAMPLE 0 4-benzyl- 4 -cyanobenzyl)-5-imidazolylmethyl]piperazine-2,5 dione hydrochloride To a solution of the diketopiperazine product from Step C of Example 4 (41 mg, 0.13 mmol) and benzylbromide (0.017 mL.
0.14 mmol) in 2.0 mL of DMF was added at room temperature sodium hydride (5 mg, 60% dispersion in mineral oil). After 2 hours, the solution was diluted with EtOAc and washed with sat. aq.
NaHCO 3 soln., and brine, then dried (Na 2 SO4), filtered, and concentrated in vacuo. The crude product was purified by WO 97/36888 PCT/US97/04711 69preparative silica gel TLC using 10% MeOH/CHC13 as solvent. The resulting product was treated with excess 1 M HCl/ether solution, and concentrated in vacuo to provide the titled product hydrochloride as a white solid.
FAB mass spectrum m/e 400.05 Analysis calculated for C 23
H
2 1
N
5 0 2 1.0 HCI 1.00 MeOH 0.40 CHC13: C, 56.83; H, 5.16; N, 13.58; Found: C, 56.81; H, 5.03; N, 13.07.
EXAMPLE 6 In vitro inhibition of ras famesvl transferase Assays of farnesyl-protein transferase. Partially purified bovine FPTase and Ras peptides (Ras-CVLS, Ras-CVIM and Ras-CAIL) were prepared as described by Schaber et al., J. Biol. Chem. 265:14701- 14704 (1990), Pompliano, et al., Biochemistry 31:3800 (1992) and Gibbs et al., PNAS U.S.A. 86:6630-6634 (1989), respectively. Bovine FPTase was assayed in a volume of 100 gl containing 100 mM N-(2hydroxy ethyl) piperazine-N'-(2-ethane sulfonic acid) (HEPES), pH 7.4, mM MgC12, 5 mM dithiothreitol (DTT), 100 mM 3 H]-famesyl diphosphate 3 H]-FPP; 740 CBq/mmol, New England Nuclear), 650 nM Ras-CVLS and 10 Rg/ml FPTase at 31 C for 60 min. Reactions were initiated with FPTase and stopped with 1 ml of 1.0 M HCL in ethanol.
Precipitates were collected onto filter-mats using a TomTec Mach II cell harvestor, washed with 100% ethanol, dried and counted in an LKB (3plate counter. The assay was linear with respect to both substrates, FPTase levels and time; less than 10% of the 3 H]-FPP was utilized during the reaction period. Purified compounds were dissolved in 100% dimethyl sulfoxide (DMSO) and were diluted 20-fold into the assay. Percentage inhibition is measured by the amount of incorporation of radioactivity in the presence of the test compound WO 97/36888 PCT/US97/04711 when compared to the amount of incorporation in the absence of the test compound.
Human FPTase was prepared as described by Omer et al.
Biochemistry 32:5167-5176 (1993). Human FPTase activity was assayed as described above with the exception that 0.1% (w/v) polyethylene glycol 20,000, 10 [M ZnCl 2 and 100 InM Ras-CVIM were added to the reaction mixture. Reactions were performed for 30 min., stopped with 100 gl of 30% trichloroacetic acid (TCA) in ethanol and processed as described above for the bovine enzyme.
The compounds of the instant invention described in the Examples 4 and 5 were tested for inhibitory activity against human FPTase by the assay described above and were found to have IC50 of gM.
EXAMPLE In vivo ras faresvlation assay The cell line used in this assay is a v-ras line derived from either Ratl or NIH3T3 cells, which expressed viral Ha-ras p21. The assay is performed essentially as described in DeClue, J.E. et al., Cancer Research 51:712-717, (1991). Cells in 10 cm dishes at 50-75% confluency are treated with the test compound (final concentration of solvent, methanol or dimethyl sulfoxide, is After 4 hours at 37 0 C, the cells are labelled in 3 ml methionine-free DMEM supplemeted with 10% regular DMEM, 2% fetal bovine serum and 400 mCi[ 3 5 S]methionine (1000 Ci/mmol). After an additional 20 hours, the cells are lysed in 1 ml lysis buffer NP40/20 mM HEPES, pH 7.5/5 mM MgC12/lmM DTT/10 mg/ml aprotinen/2 mg/ml leupeptin/2 mg/ml mM PMSF) and the lysates cleared by centrifugation at 100,000 x g for 45 min. Aliquots of lysates containing equal numbers of acid-precipitable counts are bought to 1 ml with IP buffer (lysis buffer lacking DTT) and immunoprecipitated with the ras-specific monoclonal antibody Y13-259 (Furth, M.E. et al., J. Virol. 43:294-304, (1982)). Following a 2 hour antibody incubation at 4 0 C, 200 ml of a WO 97/36888 PCT/US97/04711 -71 suspension of protein A-Sepharose coated with rabbit anti rat IgG is added for 45 min. The immunoprecipitates are washed four times with IP buffer (20 nM HEPES, pH 7.5/1 mM EDTA/1% Triton X- 100.0.5% deoxycholate/0.1%/SDS/0.1 M NaCI) boiled in SDS-PAGE sample buffer and loaded on 13% acrylamide gels. When the dye front reached the bottom, the gel is fixed, soaked in Enlightening, dried and autoradiographed. The intensities of the bands corresponding to farnesylated and nonfarnesylated ras proteins are compared to determine the percent inhibition of famesyl transfer to protein.
EXAMPLE 6 In vivo growth inhibition assay To determine the biological consequences of FPTase inhibition, the effect of the compounds of the instant invention on the anchorage-independent growth of Ratl cells transformed with either a v-ras, v-raf, or v-mos oncogene is tested. Cells transformed by v-Raf and v-Mos maybe included in the analysis to evaluate the specificity of instant compounds for Ras-induced cell transformation.
Rat 1 cells transformed with either v-ras, v-raf, or v-mos are seeded at a density of 1 x 104 cells per plate (35 mm in diameter) in a 0.3% top agarose layer in medium A (Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum) over a bottom agarose layer Both layers contain 0.1% methanol or an appropriate concentration of the instant compound (dissolved in methanol at 1000 times the final concentration used in the assay). The cells are fed twice weekly with 0.5 ml of medium A containing 0.1% methanol or the concentration of the instant compound.
Photomicrographs are taken 16 days after the cultures are seeded and comparisons are made.

Claims (3)

10-, 1 2NC(O)-, R I 0 2N- C(NRIO)-, CN, RIOC(O)-, N3, -N(RlO)2, and RI I0C(O)- NRIO-; R 2 and R 4 are independently selected from: H; unsubstituted or substituted Ci -8 alkyl, un 'substituted or substituted C2-.8 alkenyl, unsubstituted or substituted C2-8 alkynyl, unsubstituted or substituted aryl, oR or H 6 unsubstituted or substituted heterocycle, 0 0 73 wherein the substituted group is substituted with one or more of-. 1) aryl or heterocycle, unsubstituted or substituted with: a) CI- 4 alkyl, b) (CH 2 )pOR 6 67 c) (CH 2 )pNIRR d) halogen, e) CN, 1) aryl or heteroaryl, g) perfluoro-C 1 4 alkyl, or la a h) SR a, S(O)R S0 2 R~a 2) C 3 6 cycloalkyl, 6 3) OR 6a 6a 6a 4) SR S(O)R or S0 2 R -NR R 7 17 15 R kI1~I 7 7a *7 0*L [R:\LIBAA]07737 doc tab WO 97/36888 PCTIUS97/0471 1 74 8) -O NR 6 R 7 0 9) -0 OR 6 0 "YNR 6 R' 0 11) -S0 2 -NR 6 R 7 12) -N-SO-R 6 a 13) -f-R 0 14) R6 0 N 3 16) F, or 17) perf luoro-C, 4 -alkyl; R 3 and R 5 are selected from H and CH3; or R 2 and R 3 or R 4 and R 5 attached to the same C atom are combined to form (CH2) 1 wherein one of the carbon atoms is optionally replaced by a moiety selected from: 0, S(O)m, and -N(COR R 6 R 7 and R7a are independently selected from: H; C.14 alkyl, C3-6 cycloalkyl, heterocycle, aryl, aroyl, heteroaroyl, arylsulfonyl, heteroarylsulfonyl, unsubstituted or substituted with: WO 97/36888 PCTIUS97/04711 75 a) C 1 -4 alkoxy, b) aryl or heterocycle, c) halogen, d) HO, e) 'YR 0 f) -S0 2 R 11 ,or g) N(RIO)2; or R 6 and R 7 may be joined in a ring; R 7 and R7a may be joined in a ring; R6a is selected from: Ci -4 alkyl, C3-6 cycloalkyl, heterocycle, aryl, unsubstituted or substituted with: a) C 1 -4 alkoxy, b) aryl or heterocycle, c) halogen, d) HO, e) 'YR 0 f) -S0 2 R 11 ,or g) N(R 10)2; R8 is independently selected from: a) hydrogen, b) aryl, heterocycle, C3-CIO cycloalkyl, C2-C6 alkenyl, C2- C6 alkynyl, perfluoroalkyl, F, Cl, Br, R 1 0 R I IS(O)m-, RI 0 C(O)NR (RI 0 R102-CNR 1 CN, N02, R IOC(O)-, N3, -N(R'1O)2, or R I I0C(O)NR 10-, and c) Cl-C6 aikyl unsubstituted or substituted by aryl, cyanophenyl, heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, perfluoroalkyl, F, Cl, Br, RIO0-, WO 97/36888 PCTIUS97/0471 1 76 R' IIS R I C(O)NH-, (R IQ02NC(O)-, R 10 2N- C(NRIO)-, CN, RIOC(O)-, N3, or R 1 0 0C(O)NH-; R9 is selected from: a) hydrogen, b) alkenyl, alkynyl, perfluoroalkyl, F, Cl, Br, RI 0 0-, RI IS(O)m-, RIOC(O)NRIO-, (RIO)2NC(O)-, R 10 2N- C(NRIO)-, CN, N02, RIOC(O)-, N3, -N(RIO)2, or R I I0C(O)NR 10-, and c) C I -C6 alkyl unsubstituted or substituted by perfluoroalkyl, F, Cl, Br, RIO0-, RI IS(O)m-, RIOC(O)NRIO-, (R I 0 R 10 2N-C(NRi10)-, CN, R IOC(O)-, N3, -N(R 1 0)2, or R I I0C(O)NR R 10 is independently selected from hydrogen, CI-C6 alkyl, benzyl and aryl; Ri 1 is independently selected from C I -C6 alkyl and aryl; A I and A 2 are independently selected from: a bond, -CH=CH-, -C(O)NRI1 0, -NR 1 0, -N(Rl 0 or S(O)m; V is selected from: a) hydrogen, b) heterocycle, c) aryl, d) C I -C20 aikyl wherein from 0 to 4 carbon atoms are replaced with a a heteroatom selected from 0, S, and N, and e) C2-C20 alkenyl, provided that V is not hydrogen if Al. is S(O)m and V is not hydrogen if Al is a bond, n is 0 and A 2 is S(O)m; WO 97/36888 WO 9736888PCTfUS97/04711 77 W is a heterocycle; X is a bond, -CH2-, or Z is selected from: 1) a unsubstituted or substituted group selected from aryl, heteroaryl, arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following: a) Ci1 -4 alkyl, unsubstituted or substituted with: C 1-4 alkoxy, N-R 6 R 7 C3-6 cycloalkyl, aryl, heterocycle, HO, -S(O)mR 6 a, or -C(O)NR 6 R 7 b) aryl or heterocycle, c) halogen, d) OR 6 e) NR 6 R 7 f) CN, g) N02, h) CF3; i) -S(O)mR 6 a, j) -C(O)NR 6 R 7 or k) C3-C6 cycloalkyl; or 2) unsubstituted C I -C6 alkyl, substituted C I -C6 alkyl, unsubstituted C3-C6 cycloalkyl or substituted C3-C6 cycloalkyl,wherein the substituted C I -C6 alkyl and substituted C3-C6 cycloalkyl is substituted with one or two of the following: a) C 1-4 alkoxy, b) NR 6 R 7 C) C3-6 cycloalkyl, d) -NR 6 C(O)R 7 e) HO, f) -S(O)mR 6 a, WO 97/36888 PCT/US97/04711 -78 g) halogen, or h) perfluoroalkyl; m is nis p is qis r is t is uis 0, 1 or 2; 0, 1, 2, 3 or 4; 0, 1, 2, 3 or 4; 1 or 2; 0 to 5, provided that r is 0 when V is hydrogen; 0 or 1; and 4 or or an optical isomer or pharmaceutically acceptable salt thereof. 2. A compound according to Claim 1 of the formula A: R 8 )r (R9 R V Al(CRa 2 )nA 2 (CRa 2 )n W (CRb 2 )p N N-Z R 4 R5 0 wherein: Ra is independently selected from: hydrogen or C1-C6 alkyl; Rib is independently selected from: a) hydrogen, b) aryl, heterocycle, cycloalkyl, R10O-, -N(R10)2 or C2-C6 alkenyl, c) unsubstituted or substituted C -C6 alkyl wherein the substitutent on the substituted C1-C6 alkyl is selected from unsubstituted or substituted aryl, heterocycle, cycloalkyl, alkenyl, R 10 0- and -N(R 10 )2; *R 3 and R 5 are independently selected from H and CH 3 rNR 6 R 7 *R 2 and R4 are independently selected from H; 0 branched, unsubstituted or substituted with one or more of: 1 aryl, 2) heterocycle, 3) OR', 4) SRa ,SORa ,or NR6R7 or C 1 5 alkyl, unbranched or 0* U U U. 9* U U U *9 U *9 U U U *9 S U U U U C. S R 6 and R 7 are independently selected from: H; CI- 4 alkyl, C 3 6 cycloalkyl, aryl, heterocycle, unsubstituted or substituted with: a) C 1 4 alkoxy, b) halogen, or c) aryl or heterocycle; R 6 is selected from: CI- 4 alkyl or C 3 6 cycloalkyl, unsubstituted or substituted with: a) C 14 alkoxy, b) halogen, or c) aryl or heterocycle; R8 is independently selected from: a) hydrogen, 20 b) CI-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, CI-C 6 perfluoroalkyl, F, Cl, R 10 0-, R' 0 C(O)NR' 0 CN, NO 2 (R' 0 ),N-C(NR' 0 R' 0 -N(R 1 0 2 or R"OC(O)NR 1 0 and [R \L1BAAj07737.doc:tab WO 97/36888 R 9 is PCTIUS97/0471 1 80 c) C I-C6 alkyl substituted by ClI-C 6 perfluoroalkyl, R 1 0 0-, RI 0 C(O)NRIO0., (RI 0 )2N-C(NRI10>, RI OC(O)-, -N(R 10)2, or R I I0C(O)NR selected from: a) hydrogen, b) C2-C6 alkenyl, C2-C6 alkynyl, C I -C6 perfluoroalkyl, F, Cl, R 1 0 RI I S R 1 C(O)NRl10-, CN, N02, (RI 0 )2N-C(NRI10>, RI 0 -N(Rl 0)2, or R I IOC(O)NRI10-, and c) C I -C6 alkyl unsubstituted or substituted by C I -C6 perfluoroalkyl, F, Cl, R 10 R I IS(O)m-, R 1 OC(O)NR CN, (RlO0)2N-C(NR R IOC(O)-, -N(R 10)2, or R I R 10 is independently selected from hydrogen, C I-C6 alkyl, benzyl and aryl; R i s independently selected from C I -C6 alkyl and aryl; *AI and A 2 are independently selected from: a bond, -CH=CH-, -C(O)NR 10-, 0, -N(R or S(O)m; V is selected from: a) hydrogen, b) heterocycle selected from pyrrolidinyl, imidazo lyl, pyridinyl, thiazolyl, pyridonyl, 2 -oxopiperidinyl, indolyl, quinolinyl, isoquinolinyl, and thienyl, c) aryl, d) C I-C20 alkyl wherein from 0 to 4 carbon atoms are replaced with a a heteroatom selected from 0, S, and N, and e) C2-C20 alkenyl, and WO 97/36888 PCTIUS97/04711 -81- provided that V is not hydrogen if A 1 I is S(O)m and V is not hydrogen if AIis a bond, n is 0 and A 2 is S(O)m; W is a heterocycle selected from pyrrolidinyl, imidazolyl, pyridinyl, thiazolyl, pyridonyl, 2 -oxopiperidinyl, indolyl, quinolinyl, or isoquinolinyl; X is -CH2- or Z is selected from: 1) a unsubstituted or substituted group selected from aryl, heteroaryl, arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following: a) C 1-4 alkyl, unsubstituted or substituted with: CI-.4 alkoxy, NR 6 R 7 C3-6 cycloalkyl, aryl, heterocycle, HO, -S(O)mR 6 a, or -C(O)N-R 6 R 7 b) aryl or heterocycle, c) halogen, d) OR 6 e) NR 6 R 7 f) CN, g) N02, h) C173; i) -S(O)mR 6 a, j) -C(O)NR 6 R 7 or k) C3-C6 cycloalkyl; or 2) unsubstituted C1I-C6 alkyl, substituted C1I-C6 alkyl, unsubstituted C3-C6 cycloalkyl or substituted C3-C6 cycloalkyl,wherein the substituted C I -C6 alkyl and substituted C3-C6 cycloalkyl is substituted with one or two of the following: a) CI-4 alkoxy, b) NR 6 R 7 WO 97/36888 PCT/US97/04711
82- c) d) e) f) g) h) C3-6 cycloalkyl, -NR 6 C(O)R 7 HO, -S(O)mR 6 a, halogen, or perfluoroalkyl; m is n is pis r is t is u is 0, 1 or 2; 0, 1, 2, 3 or 4; 0, 1, 2, 3 or 4; 0 to 5, provided that r is 0 when V is hydrogen; 0 or 1; and 4 or or a pharmaceutically acceptable salt thereof. 3. A compound according to Claim 1 of the formula B: (R 8 )r V A 1 (CR 1 b2) p wherein: R1a is selected from: hydrogen or Ci-C6 alkyl; Rib is independently selected from: a) hydrogen, b) aryl, heterocycle, cycloalkyl, R 10 -N(RO0) 2 or C2-C6 alkenyl, c) C1-C6 alkyl unsubstituted or substituted by aryl, heterocycle, cycloalkyl, alkenyl, R 10 or -N(RO1)2; WO 071IldeQfe PCTIUS97/04711 83 R 3 and R 5 are independently selected from H and CH3; N~yNR 6 R 7 R 2 and R 4 are independently selected from H; 0 or alkyl, unbranched or branched, unsubstituted or substituted with one or more of: 1) aryl, 2) heterocycle, 3) OR 6 4) SR 6 a, SO2R 6 a, or YNR7 0 R 6 and R 7 are independently selected from: a) hydrogen, b) C1I-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C I-C6 perfluoroalkyl, F, Cl, R 1 0 R I C(O)NR 1 CN, N02, (R 10 )2N-C(NR 1 R I R I O0C(O)-, -N(R 10)2, or R I I0C(O)NR 10-, and c) C1I-C6 alkyl substituted by C I-C6 perfluoroalkyl, R 1 0 0-, R' I C(O)NR 1 (R 1 0 )2N-C(NR R IOC(O)-, R I -N(R'1O)2, or R I IOC(O)NR R8 is independently selected from: a) hydrogen, b) C I-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C I-C6 perfluoroalkyl, F, Cl, R 1 0 RIOC(O)NRIO-, CN, N02, (Ri 0 )2N-C(NRl R 1 0 -N(Rl 0)2, Or R I I0C(O)NR 1 and c) ClI-C6 alkyl substituted by C1I-C6 perfluoroalkyl, R 1 0 0-, R I OC(O)NR (R I Q2N-C(NR R I OC(O)-, -N(R 1 0 or R I WO 97/36888 PCT/US97/04711 -84- R 9 a is hydrogen or methyl; R 1 0 is independently selected from hydrogen, Cl-C6 alkyl, benzyl and aryl; R 1 1 is independently selected from C1-C6 alkyl and aryl; Al and A 2 are independently selected from: a bond, -CH=CH-, -C(O)NR10-, O, or S(O)m; V is selected from: a) hydrogen, b) heterocycle selected from pyrrolidinyl, imidazolyl, pyridinyl, thiazolyl, pyridonyl, 2 -oxopiperidinyl, indolyl, quinolinyl, isoquinolinyl, and thienyl, c) aryl, d) C -C20 alkyl wherein from 0 to 4 carbon atoms are replaced with a a heteroatom selected from O, S, and N, and e) C2-C20 alkenyl, and provided that V is not hydrogen if Al is S(O)m and V is not hydrogen if Al is a bond, n is 0 and A 2 is S(O)m; X is -CH2-; Z is selected from: 1) a unsubstituted or substituted group selected from aryl, heteroaryl, arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following: a) C1-4 alkyl, unsubstituted or substituted with: C1-4 alkoxy, NR 6 R 7 C3-6 cycloalkyl, aryl, heterocycle, HO, -S(O)mR 6 a, or -C(O)NR 6 R 7 b) aryl or heterocycle, WO 97/36888 PCT/US97/0471 1 85 C) halogen, d) OR 6 e) NR 6 R 7 f) CN, g) N02, h) CF3; i) -S(O)mR 6 a, j) -C(O)NR 6 R 7 or k) C3-C6 cycloalkyl; or 2) unsubstituted C I-C6 alkyl, substituted C1I-C6 alkyl, unsubstituted C3-C6 cycloalkyl or substituted C3-C6 cycloalkyl,wherein the substituted C I -C6 alkyl and substituted C3-C6 cycloalkyl is substituted with one or two of the following: a) C 1-4 alkoxy, b) NR 6 R 7 c) C3-6 cycloalkyl, d) -NR 6 C(O)R 7 e) HO, f) -S(O)mR 6 a, g) halogen, or h) perfluoroalkyl; m is 0, 1 or 2; n is 0,1, 2, 3or 4; p is 0,1, 2 3or 4;and r is 0 to 5, provided that r is 0 when V is hydrogen; or a pharmaceutically acceptable salt thereof. 4. The compound according to Claim 3 of the formula WO 97/36888 PCTJUS97/0471 1 86 N N-Z R 4 R5 0 wherein: R I b is independently selected from: a) hydrogen, b) aryl, heterocycle, cycloalkyl, RIO0-, -N(R'O)2 or C2-C6 alkenyl, c) C I-C6 alkyl unsubstituted or substituted by aryl, heterocycle, cycloalkyl, alkenyl, RIO0-, or NR02 R 3 and R 5 are independently selected from H and CH3; N NR 6 R 7 R 2 and R 4 are independently selected from H; 0 or Ci alkyl, unbranched or branched, unsubstituted or substituted with one or more of: 1) aryl, 2) heterocycle, 3) OR 6 4) SR 6 a, SO2R 6 a, or >NR 6 R 7 0 R 6 and R 7 a) b) are independently selected from: hydrogen, C I -C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, Ci1 -C6 perfluoroalkyl, F, Cl, RIO0-, Rl 0 C(O)NRIO-, CN, N02, WO 97/36888 PCT/US97/0471 1 87 (R I 0 )2N-C(NR R I Ri I -N(R 10)2, or R I IOC(O)NR 10-, and C) C I-C6 alkyl substituted by C1I-C6 perfluoroalkyl, R 1 0 0-, RI 0 C(O)NRI (Ri Q2N-C(NR R 1 0 R IOOC(O)-, -N(R 10)2, or R I I 0C(O)NR R8 is independently selected from: a) hydrogen, b) Ci -C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, CI -C6 peffluoroalkyl, F, Cl, R 1 0 R IOC(O)NR 10-, CN, N02, (R I 0 )2N-C(NR R I -N(R 10)2, or R I IOC(O)NRIO0-, and c) CI-C6 alkyl substituted by C1-C6 perfluoroalkyl, RIOO-, R 1 0 C(O)NRI10., (RI 0 )2N-C(NR RI OC(O)-, -N(R 10)2, or R I I0C(O)NR R 10 is independently selected from hydrogen, C1I-C6 alkyl, benzyl and aryl; Ri 1 is independently selected from C I-C6 alkyl and aryl; X is -CH2-; Z is selected from: 1) a unsubstituted. or substituted group selected from aryl, heteroaryl, arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following: a) Ci1 -4 alkyl, unsubstituted. or substituted with: C1-4 alkoxy, NR 6 R 7 C3-6 cycloalkyl, aryl, heterocycle, HO, S(O)mR 6 a, or -C(O)NR 6 R 7 b) aryl or heterocycle, c) halogen, d) OR 6 WO 97/36888 PCTIUS97/0471 1 88 e) NR 6 R 7 f) CN, g) N02, h) CF3; 1) -S(O)mR 6 a, j) -C(O)NR 6 R 7 or k) C3-C6 cycloalkyl; or 2) unsubstituted C I -C6 alkyl, substituted C I -C6 alkyl, unsubstituted C3-C6 cycloalkyl or substituted C3-C6 cycloalkyl,wherein the substituted C I -C6 alkyl and substituted C3-C6 cycloalkyl is substituted with one or two of the following: a) C1-4 alkoxy, b) NR 6 R 7 c) C3-6 cycloalkyl, d) -NR 6 C(O)R7, e) HO, f) -S(O)mR 6 a, g) halogen, or h) perfluoroalkyl; m is 0,lor 2; and p is 0,1, 2 3or 4; or an optical isomer or pharmaceutically acceptable salt thereof. The compound according to Claim 3 of the formula WO 97/36888 WO 9736888PCTJUS97/0471 1 89 N' j zN__ -(CRlb 2 )p NC D wherein: R Ib is independently selected from: a) hydrogen, b) aryl, heterocycle, cycloalkyl, R 10 -N(R 1 0 )2 or C2-C6 alkenyl, c) C I-C6 alkyl unsubstituted or substituted by aryl, heterocycle, cycloalkyl, alkenyl, RIO0-, or NRO2 R2 and R 4 are independently selected from: hydrogen or C I -C6 alkyl; R 3 and R 5 are hydrogen; R 6 and R 7 are independently selected from: a) hydrogen, b) C1I-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1I-C6 perfluoroalkyl, F, Cl, RIO0-, RIOC(O)NRIO-, CN, N02, (R 10 )2N-C(NRIO0>, R 1 R 1 0 -N(R 10)2, or R I IOC(O)NRl10-, and c) C1I-C6 alkyl substituted by C1I-C6 perfl uoroalkyl, R 1 0 0-, R I -N(R 10)2, or R I OC(O)NR R 1 0 is independently selected from hydrogen, C I -C6 alkyl, benzyl and aryl; Ri is independently selected from C I -C6 alkyl. and aryl; WO 97/36888 PCTUS97/0471 1 90 X is -CH2-; Z is mono- or bicyclic aryl, mono- or bicyclic heteroaryl, mono- or bicyclic arylmethyl, mono- or bicyclic heteroarylmethyl, mono- or bicyclic arylsulfonyl, mono- or bicyclic heteroarylsulfonyl, unsubstituted or substituted with one or two of the following: 1) C 1-4 alkyl, unsubstituted or substituted with: a) C 1 -4 alkoxy, b) NR 6 R 7 C) C3-6 cycloalkyl, d) aryl or heterocycle, e) HO, f) -S(O)mR 6 or g) -C(O)NR 6 R 7 2) aryl or heterocycle, 3) halogen, 4) OR 6 NR 6 R 7 6) CN, 7) N02, 8) CF73; 9) -S(O)mR 6 -C(O)NR 6 R 7 or 11) C3-C6 cycloalkyl; mnis 0,l1or 2;and p is 0,1, 2 3or 4; or pharmaceutically acceptable salt thereof. 6. A compound which inhibits farnesyl-protein transferase which is: 91 4-[1-(4-cyanobenzyl)-5-imidazolylmethyl]-1-(3-chlorophenyl)-piperazine-2,5-dione; n-butyl-4-[l-(4-cyanobenzyl)-5-imidazolylmethyl]-1-(3-chlorophenyl)piperazine-2,5-dione; 1 -(3-chlorophenyl)-4-[(3-(4-cyanobenzyl)pyridin-4-yl)methyl]piperazine-2,5-dione; 4-[1- 1-phenylpiperazine-2,5-dione or 4-benzyl- 1-(4- cyanobenzyl)-5imidazolylmethyl]-piperazine-2,5-dione or a pharmaceutically acceptable salt or optical isomer thereof. 7. The compound according to claim 6 which is: 4-benzyl-l-[l-(4-cyanobenzyl)-5- imidazolylmethyl] O NN N CN O N 0 or a pharmaceutically acceptable salt thereof. 8. A compound which inhibits famesyl-protein transferase, substantially as hereinbefore described with reference to any one of the examples. 9. A pharmaceutical composition comprising a pharmaceutical carrier, and Sdispersed therein, a therapeutically effective amount of a compound according to any one of 15 claims 1 to 8. 10. A pharmaceutical composition made by combining the compound according to any one of claims 1 to 8 and a pharmaceutically acceptable carrier. 11. A process for making a pharmaceutical composition comprising combining a compound according to any one of claims 1 to 8 and a pharmaceutically acceptable carrier. 20 12. A method for inhibiting famesyl-protein transferase which method comprises administering to a mammal a therapeutically effective amount of a compound according to Sany one of claims 1 to 8 or of a composition of claim 9 or claim 13. A compound of any one of claims 1 to 8 or of a composition according to claim S* 9 or claim 10 when used in inhibiting famesyl-protein transferase. 25 14. The use of a compound according to any one of claims 1 to 8 for the manufacture of a medicament for inhibiting faresyl-protein transferase. A method for treating cancer which comprises administering to a mammal a therapeutically effective amount of a compound according to any one of claims 1 to 8 or of a composition of claim 9 or claim 16. A compound of any one of claims 1 to 8 or of a composition according to claim -9 or claim 10 when used in treating cancer. [R:\LIBAA]07737.doc:tab 92 17. The use of a compound according to any one of claims 1 to 8 for the manufacture of a medicament for treating cancer. 18. A method for treating neurofibromin benign proliferative disorder which comprises administering to a mammal a therapeutically effective amount of a compound according to any one of claims 1 to 8 or of a composition according to claim 9 or claim 19. A compound according to any one of claims 1 to 8 or a composition according to claim 9 or claim 10 when used in treating neurofibromin benign proliferative disorder. The use of a compound according to any one of claims 1 to 8 for the manufacture of a medicament for treating neurofibromin benign proliferative disorder. 21. A method for treating blindness related to retinal vascularisation which method comprises administering to a mammal a therapeutically effective amount of a compound according to any one of claims 1 to 8 or of a composition of claim 9 or claim 22. A compound according to any one of claims 1 to 8 or a composition according to claim 9 or claim 10 when used in treating blindness related to retinal vascularisation. 23. The use of a compound according to any one of claims 1 to 8 for the manufacture of a medicament for treating blindness related to retinal vascularisation. 24. A method for treating infections from hepatitis delta and related viruses which method comprises administering to a mammal a therapeutically effective amount of a compound of any one of claims 1 to 8 or of a composition of claim 9 or claim 20 25. A compound according to any one of claims 1 to 8 or a composition according to claim 9 or claim 10 when used in treating infections from hepatitis delta and related viruses. 26. The use of a compound according to any one of claims 1 to 8 for the S. 2 manufacture of a medicament for treating infections from hepatitis delta and related viruses. 27. A method for preventing restenosis which method comprises administering to a mammal a therapeutically effective amount of a compound according to any one of claims 1 to 8 or of a composition according to claim 9 or claim 28. A compound according to any one of claims 1 to 8 or a composition according to claim 9 or claim 10 when used in preventing restenosis. 29. The use of a compound according to any one of claims 1 to 8 for the manufacture of a medicament for preventing restenosis. A method for treating polycystic kidney disease which method comprises administering to a mammal a therapeutically effective amount of a compound according to any one of claims 1 to 8 or of a composition according to claim 9 or claim
531. A compound according to any one of claims 1 to 8 or a composition according z. to claim 9 or claim 10 when used in treating polycystic kidney disease. [R-\LIBAA]07737.doc:tab 93 32. The use of a compound according to any one of claims 1 to 8 for the manufacture of a medicament for treating polycystic kidney disease. Dated 22 November, 1999 Merck Co., Inc. Patent Attorneys for the Applicant/Nominated Person SPRUSON FERGUSON :0 *0 [R \L1BAA]07737.doc:tab
AU25875/97A 1996-04-03 1997-03-27 Inhibitors of farnesyl-protein transferase Ceased AU715667B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US1458796P 1996-04-03 1996-04-03
US60/014587 1996-04-03
GBGB9613461.4A GB9613461D0 (en) 1996-06-27 1996-06-27 Inhibitors of farnesyl-protein transferase
GB9613461 1996-06-27
PCT/US1997/004711 WO1997036888A1 (en) 1996-04-03 1997-03-27 Inhibitors of farnesyl-protein transferase

Publications (2)

Publication Number Publication Date
AU2587597A AU2587597A (en) 1997-10-22
AU715667B2 true AU715667B2 (en) 2000-02-10

Family

ID=26309576

Family Applications (1)

Application Number Title Priority Date Filing Date
AU25875/97A Ceased AU715667B2 (en) 1996-04-03 1997-03-27 Inhibitors of farnesyl-protein transferase

Country Status (5)

Country Link
EP (1) EP0891349A4 (en)
JP (1) JP2000507576A (en)
AU (1) AU715667B2 (en)
CA (1) CA2249604A1 (en)
WO (1) WO1997036888A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562823B1 (en) 1998-07-02 2003-05-13 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
USRE39921E1 (en) 1999-10-07 2007-11-13 Smithkline Beecham Corporation Chemical compounds
GB9923748D0 (en) 1999-10-07 1999-12-08 Glaxo Group Ltd Chemical compounds
CN101632669B (en) 2000-08-04 2011-05-18 Dmi生物科学公司 Method of using diketopiperazines and composition containing them
US6967202B2 (en) 2000-08-04 2005-11-22 Dmi Biosciences, Inc. Method of synthesizing diketopiperazines
GB0025354D0 (en) 2000-10-17 2000-11-29 Glaxo Group Ltd Chemical compounds
WO2003066589A1 (en) 2002-02-08 2003-08-14 Glaxo Group Limited Piperidylcarboxamide derivatives and their use in the treatment of tachykinim-mediated diseases
GB0203022D0 (en) 2002-02-08 2002-03-27 Glaxo Group Ltd Chemical compounds
GB0203020D0 (en) 2002-02-08 2002-03-27 Glaxo Group Ltd Chemical compounds
KR20150080004A (en) 2003-05-15 2015-07-08 앰피오 파마슈티컬스 인코퍼레이티드 Treatment of t-cell mediated diseases
WO2009146320A1 (en) 2008-05-27 2009-12-03 Dmi Life Sciences, Inc. Therapeutic methods and compounds
CA2810844C (en) 2010-09-07 2017-03-21 Dmi Acquisition Corp. Diketopiperazine compositions for the treatment of metabolic syndrome and related conditions
BR112014007675A2 (en) 2011-10-10 2017-04-18 Ampio Pharmaceuticals Inc degenerative joint disease treatment
CA2846464A1 (en) 2011-10-10 2013-04-18 Ampio Pharmaceuticals, Inc. Implantable medical devices with increased immune tolerance, and methods for making and implanting
EP2771007B1 (en) 2011-10-28 2018-04-04 Ampio Pharmaceuticals, Inc. Treatment of rhinitis
US9808454B2 (en) 2013-03-15 2017-11-07 Ampio Pharmaceuticals, Inc. Compositions for the mobilization, homing, expansion and differentiation of stem cells and methods of using the same
AU2015305611B2 (en) 2014-08-18 2020-04-23 Ampio Pharmaceuticals, Inc. Treatment of joint conditions
WO2016209969A1 (en) 2015-06-22 2016-12-29 Ampio Pharmaceuticals, Inc. Use of low molecular weight fractions of human serum albumin in treating diseases
US11129878B1 (en) 2020-03-24 2021-09-28 Ampio Pharmaceuticals, Inc. Methods for treating diseases associated with respiratory viruses

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106481A (en) * 1978-02-08 1979-08-21 Toyama Chem Co Ltd Novel 2,3-dioxopiperazine derivative and its preparation
US4287195A (en) * 1978-07-14 1981-09-01 Janssen Pharmaceutica, N.V. Heterocyclic derivatives of [4-(piperazin-1-yl-phenyloxymethyl)-1,3-dioxolan-2-ylmethyl]-1H-imidazoles and 1H-1,2,4-triazoles
US4456605A (en) * 1981-05-07 1984-06-26 Janssen Pharmaceutica N.V. Heterocyclic derivatives of [4-(piperazin-1-yl-phenyloxymethyl)-1,3-dioxolan-2-ylmethyl]-1H-imidazoles and 1H-1,2,4-triazoles
GB8507778D0 (en) * 1985-03-26 1985-05-01 Fujisawa Pharmaceutical Co Piperazine compound
CA2165176A1 (en) * 1993-06-18 1995-01-05 Samuel L. Graham Inhibitors of farnesyl-protein transferase
WO1995008542A1 (en) * 1993-09-22 1995-03-30 Kyowa Hakko Kogyo Co., Ltd. Farnesyltransferase inhibitor
US5478934A (en) * 1994-11-23 1995-12-26 Yuan; Jun Certain 1-substituted aminomethyl imidazole and pyrrole derivatives: novel dopamine receptor subtype specific ligands

Also Published As

Publication number Publication date
AU2587597A (en) 1997-10-22
WO1997036888A1 (en) 1997-10-09
JP2000507576A (en) 2000-06-20
CA2249604A1 (en) 1997-10-09
EP0891349A1 (en) 1999-01-20
EP0891349A4 (en) 2001-01-24

Similar Documents

Publication Publication Date Title
AU716338B2 (en) Inhibitors of farnesyl-protein transferase
US5919785A (en) Inhibitors of farnesyl-protein transferase
AU704087B2 (en) Inhibitors of farnesyl-protein transferase
US6066738A (en) Inhibitors of farnesyl-protein transferase
AU715603B2 (en) Inhibitors of farnesyl-protein transferase
US5968965A (en) Inhibitors of farnesyl-protein transferase
US5885995A (en) Inhibitors of farnesyl-protein transferase
AU715667B2 (en) Inhibitors of farnesyl-protein transferase
AU717190B2 (en) Inhibitors of farnesyl-protein transferase
WO1997036897A1 (en) Inhibitors of farnesyl-protein transferase
US5780492A (en) Inhibitors of farnesyl-protein transferase
WO1997027752A1 (en) Inhibitors of farnesyl-protein transferase
AU706495B2 (en) Inhibitors of farnesyl-protein transferase
WO1997036886A1 (en) Inhibitors of farnesyl-protein transferase
AU707416B2 (en) Inhibitors of farnesyl-protein transferase
AU716153B2 (en) Inhibitors of farnesyl-protein transferase
US6001835A (en) Inhibitors of farnesyl-protein transferase
AU715604B2 (en) Inhibitors of farnesyl-protein transferase
AU703988B2 (en) Inhibitors of farnesyl-protein transferase
AU707347B2 (en) Inhibitors of farnesyl-protein transferase
US5972942A (en) Inhibitors of farnesyl-protein transferase

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired