WO1997030116A1 - Vinyl chloride-base damping resin composition - Google Patents

Vinyl chloride-base damping resin composition Download PDF

Info

Publication number
WO1997030116A1
WO1997030116A1 PCT/JP1996/000908 JP9600908W WO9730116A1 WO 1997030116 A1 WO1997030116 A1 WO 1997030116A1 JP 9600908 W JP9600908 W JP 9600908W WO 9730116 A1 WO9730116 A1 WO 9730116A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
weight
compound
resin composition
parts
Prior art date
Application number
PCT/JP1996/000908
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Ohira
Mitsuo Hori
Masayuki Yamashita
Original Assignee
Yasuyuki Ohira
Mitsuo Hori
Masayuki Yamashita
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2518996A external-priority patent/JPH09216983A/en
Priority claimed from JP3386296A external-priority patent/JPH09227745A/en
Priority claimed from JP8047385A external-priority patent/JPH09241461A/en
Application filed by Yasuyuki Ohira, Mitsuo Hori, Masayuki Yamashita filed Critical Yasuyuki Ohira
Priority to AU12034/97A priority Critical patent/AU1203497A/en
Publication of WO1997030116A1 publication Critical patent/WO1997030116A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings

Definitions

  • the present invention relates to a vinyl chloride-based vibration-damping resin composition having excellent vibration energy absorption performance.
  • a material for absorbing vibration energy a material made of a soft vinyl chloride resin obtained by adding di-2-ethylhexyl phthalate (DOP) to a vinyl chloride resin is known.
  • DOP di-2-ethylhexyl phthalate
  • this soft vinyl chloride resin had a low loss tangent t an ⁇ 5, and did not have a very high ability to absorb vibration energy (loss tangent t an ⁇ 5).
  • an object of the present invention is to provide a vinyl chloride-based vibration damping resin composition having excellent vibration energy absorbing ability.
  • the present invention relates to a vinyl chloride resin, which is soluble in the vinyl chloride resin, has many cyclic structures in the molecule, and the molecular weight of the cyclic structure portion is 50% of the molecular weight of the whole molecule.
  • a vinyl chloride-based vibration damping resin composition (hereinafter simply referred to as a composition) containing a compound occupying the above (hereinafter simply referred to as a polycyclic compound).
  • the vibration energy absorption capacity of this composition shows a high level far exceeding the expected value when compared with the conventional vinyl chloride resin.
  • Vinyl chloride resin has three-dimensionally linked main chains and side chains.
  • each ring of the polycyclic compound itself that has entered the gap between the main chain and the side chain of the molecule of the bichloride-based resin vibrates, and the rings of the polycyclic compound contact each other.
  • Contact between the ring and the main chain or side chain of the molecule of the vinyl chloride resin, or contact between the ring in the polycyclic compound and the ring in the other polycyclic compound occurs, and heat is consumed by friction here. As a result, vibration energy is absorbed.
  • the polymorphic compound is soluble in a vinyl chloride resin, has a large number of cyclic structures in the molecule, and the molecular weight of the cyclic structure portion is 50% of the molecular weight of the whole molecule.
  • “Soluble” in vinyl chloride resin means that it can penetrate into the gaps between the main and side chains of the molecules of the vinyl chloride resin.
  • the category of “soluble” includes not only those in which the compounded polycyclic compound is completely compatible with the vinyl chloride resin but also those in which the compound is partially compatible.
  • it is soluble in a vinyl chloride resin, its compatibility varies depending on the temperature at which it is blended. In other words, some melt at 100 ° C but do not melt at 20 ° C.
  • the degree to which the compounded polycyclic compound partially dissolves in the vinyl chloride resin even if it is not completely compatible is considered to be at least in the range of 120 ° C. to 120 ° C. ”.
  • This polycyclic compound has many cyclic structures in the molecule.
  • the cyclic structure in this polycyclic compound includes not only a monocyclic hydrocarbon and a condensed cyclic hydrocarbon, but also a heteromonocyclic compound and a condensed heterocyclic compound. Includes up to a zero member ring. Also, the number of cyclic structures may be two or more, but those with too many rings are in the range of solubility because they are no longer soluble in vinyl chloride seals.
  • the molecular weight of the cyclic structure in this polycyclic compound accounts for more than 50% of the molecular weight of the whole molecule, which means that the vibrating cyclic structure accounts for the majority of the molecule.
  • FIG. 1 is a graph showing the loss tangent tan c5 at each temperature for the test pieces of Examples 1 to 3 and Comparative Example.
  • FIG. 2 is a graph showing the loss tangent t anc5 at each temperature for the test pieces of Examples 4 to 6 and Comparative Example.
  • FIG. 3 is a graph showing the loss tangent tand at each temperature for the test pieces of Examples 7 to 9 and Comparative Example.
  • FIG. 4 is a graph showing the loss tangent t an (5 at each temperature for the test pieces of Examples 10 to 12 and Comparative Example.
  • FIG. 5 is a graph showing the loss tangent t an (5 at each temperature for the test pieces of Examples 13 to 15 and Comparative Example.
  • FIG. 6 is a graph showing the loss tangent t an (5 at each temperature for the test pieces of Examples 16 to: I8 and the comparative example.
  • FIG. 7 is a graph showing the loss tangent t an 5 at each temperature for the test pieces of Examples 19 to 21 and Comparative Example.
  • FIG. 8 is a graph showing the loss tangent t anc at each temperature for the test pieces of Examples 22 to 24 and Comparative Example.
  • FIG. 9 is a graph showing the loss tangent t an (5 at each temperature for the test pieces of Examples 25 to 27 and Comparative Example.
  • FIG. 10 is a graph showing the loss tangent t an (5) at each temperature for the test pieces of Examples 28 to 30 and Comparative Example.
  • FIG. 11 is a graph showing the change in loss tangent tan 5 with increasing compounding amount of a compound containing a mercaptobenzothiazyl group in Examples 28 to 30.
  • FIG. 12 is a graph showing the loss tangent tan (5) at each temperature for the test pieces of Examples 31 to 34 and Comparative Examples 2 and 3.
  • BEST MODE FOR CARRYING OUT THE INVENTION the best mode of the composition of the present invention will be described in detail.
  • the composition of the present invention is obtained by blending a polycyclic compound with a vinyl chloride resin.
  • the vinyl chloride resin used in this composition includes, in addition to a resin polymerized with vinyl chloride alone, a random copolymer or a random copolymer with at least one of monomers copolymerizable with a vinyl chloride monomer.
  • Graft copolymerization with vinyl chloride copolymer resin obtained by block copolymerization such as vinyl acetate-vinyl chloride copolymer, ethylene-vinyl chloride copolymer, vinylidene chloride-vinyl chloride copolymer, or vinyl chloride monomer
  • a vinyl chloride graft copolymer resin obtained by copolymerizing a resin which can be obtained with the polymer, such as an ethylene-vinyl acetate-vinyl chloride graft copolymer and a polyurethane-monovinyl chloride graft copolymer can also be suitably used.
  • polymorphic compounds include compounds having a benzotriazole group represented by the following formula.
  • the polymorphic compound has benzotriazole having a benzene ring bonded to an azo group as a mother nucleus, and a compound having a phenyl group bonded thereto is particularly excellent.
  • a compound having a phenyl group bonded thereto is particularly excellent.
  • Another polycyclic compound
  • This polycyclic compound is based on diphenyl acrylate in which two phenyl groups are bonded to one carbon atom of ethylene.
  • diphenyl acrylate in which two phenyl groups are bonded to one carbon atom of ethylene.
  • ECDPA ethyl 2-cyano-1,3,3-diphenyl acrylate Acrylate
  • ⁇ Still another polycyclic compound includes a polycyclic compound containing a mercaptobenzothiazyl group represented by the following formula.
  • This polycyclic compound is based on mercaptobenzothiazyl, in which a nitrogen atom is bonded to benzothiazyl, as a core.
  • N N-dicyclohexylbenzothiaziryl 2-sulfenamide, 2-merbutobenzothiazole (MBT), Benzothiazyl sulfide (MBTS), N-cyclohexyl benzothiazyl di-2-sulfenamide (CBS), N-tert-butylbenzothiazyl di-2-sulfenamide (BBS), N-oxydiethylene benzo Thiazilyl 2-sulfenamide (OBS), N, N-diisobrovirbenzothiazilyl 2-sulfenamide (DPBS) and the like can be mentioned.
  • two rings such as benzofuran, indole, benzothiazole, benzoxazole, and benzimidazole are bonded.
  • Compounds having an alkyl group or a phenyl group bonded thereto, compounds having three rings such as dibenzofuran, carbazole, phenanthridine, phenoxazine, etc.
  • azo compounds such as' -azonaphthylene, naphthylene-12-azobenzene, p-phenylazobenzensulfonic acid, and (p- (2-hydroxy-11-naphthylazo) benzenesulfonic acid.
  • the compound containing a mercaptobenzothiazyl group described above is mixed with a vinyl chloride resin, the compound containing the vinyl chloride resin and the compound containing a mercaptobenzothiazyl group are not only compatible with each other, but a part of the compound is partially mixed with the vinyl chloride resin.
  • the mercaptobenzothiazyl group is a new vinyl chloride-based vibration-damping resin in which the chlorine atom of the compound is replaced with a mercaptobenzothiazyl group.
  • the polarity of the mercaptobenzothiazyl group is the polarity of the chlorine atom of the vinyl chloride resin.
  • compounds containing a mercaptobenzothiazyl group are compounded in a vinyl chloride resin. In this case, chlorine atoms are removed from the vinyl chloride resin chain, and the mercaptobenzothiazyl group is replaced with the chlorine atoms, forming a pendant bond.
  • the composition containing the vinyl chloride-based vibration-damping resin substituted with nzothiazyl group has vibration energy absorption It becomes an excellent material. Although the details of this mechanism are unknown, the degree of freedom of movement when vibrating the vinyl chloride resin is reduced by the amount of mercaptobenzothiazyl group bonded instead of chlorine atom, and friction is increased. It seems that there is not. In addition, in the composition containing the vinyl chloride-based vibration damping resin, the chlorine atom of the vinyl chloride-based resin is replaced with a mercaptobenzothiazyl group. The amount of hydrogen chloride, which has an adverse effect, is decreasing.
  • a vinyl chloride-based vibration damper is obtained by replacing the chlorine atom in the vinyl chloride-based resin with the mercaptobenzothiazyl group in the composition.
  • the resin is present has been described, an embodiment in which all chlorine atoms are replaced with mercaptobenzothiazyl groups to form a novel vinyl chloride-based vibration damping resin may be considered depending on the amount of the resin and the temperature conditions. As described later, this composition is applied to vibration-generating parts of automobiles, interior materials, building materials, home electric appliances, and the like, but the temperature (operating temperature range) applied in those applications varies.
  • the loss tangent tan (the maximum value of 5 is within the range of 40 ⁇ 10 ° C) is added to a plasticizer-added vinyl chloride resin (hereinafter referred to as vinyl chloride A).
  • the composition obtained by blending the rubber (hereinafter referred to as DCHP) with rubber has excellent vibrational energy absorption performance over a wide temperature range, but the temperature range is so high that it can be applied to all applications. Therefore, the temperature at which the loss tangent tan 6 becomes the maximum must be moved to the operating temperature range so that excellent vibration energy absorption performance can be achieved in the operating temperature range.
  • This composition is thought to result from the loss tangent t an ⁇ shifting to the vinyl chloride ⁇ side.
  • This composition can be applied to vibration-generating parts such as automobiles, interior materials, building materials, and home appliances.
  • the type of polymorphic compound and the compounding ratio (vinyl chloride-based areocyanate / polycyclic compound) are appropriately determined in accordance with the intended use. Determined mixing ratio
  • the known vinyl chloride resin and polycyclic compound are kneaded by using a conventionally known melt-mixing device such as a hot roll, Banbury mixer, twin-screw kneader, or extruder, and the vibration damping material is formed by molding.
  • this composition contains plasticizers, stabilizers, lubricants, antioxidants, flame retardants, antistatic agents, ultraviolet absorbers, or coloring pigments, depending on the application and use conditions.
  • Example 1 100 parts by weight of vinyl chloride resin (SS-110, manufactured by Nippon PVC Sales Co., Ltd.) and 100 parts by weight of VIOSORB590 (manufactured by Kyodo Yakuhin Co., Ltd.) (Example 1), 70 Parts by weight (Example 2) and 30 parts by weight (Example 3), and these were charged into a roll set at 160 ° C. and kneaded. The kneaded material is sandwiched between dies heated to 180 ° C.
  • the compositions of Examples 1 to 3 have extremely low vibrational energy-absorbing performance as compared with the vinyl resin of Comparative Example 1 alone.
  • the compositions of Examples 1 and 2 have excessively high loss tangents t anc5, and cannot be measured 2
  • Example 3 in which 30 parts by weight of HPMMB is blended Even with the composition of Example 1, the maximum value of the loss tangent t and is 2.5, which indicates that the composition has more than twice the performance of that of Comparative Example 1.
  • the temperature at which the loss tangent t anc5 is the maximum, regardless of the amount of 2HP MMB, It does not move and it is noted that the temperature is around 100 ° C.
  • Example 4 100 parts by weight of 2HMBP (VI OSORB 520, manufactured by Kyodo Yakuhin Co., Ltd.) (Example 4), 70 parts by weight (Specimens were prepared in the same manner as in Examples 1 to 3, except that they were blended in the respective amounts of Example 5) and 30 parts by weight (Example 6).
  • the tangent t an (5 was measured. The results are shown in FIG. 2. From FIG. 2, the maximum values of the loss tangent tan 5 in the compositions of Examples 4 to 6 were 1.7 to 1.8 in all cases. In the compositions of Examples 4 to 6, the amount of 2HMBP was increased.
  • the loss tangent t an (5) of each of the compositions of Examples 9 to 9 is around 2.0, and the vibration energy absorption performance is about twice that of Comparative Example 1.
  • the temperature at which the loss tangent t and becomes maximum is in the range of 80 to 90 ° C. regardless of the amount of 2HMBP.
  • Example 10 2HDBPCB (VI OSORB 580, manufactured by Kyodo Yakuhin) in 100 parts by weight (Example 10), 70 parts by weight (Example 11), 30 parts by weight (Example 12)
  • Specimens were prepared in the same manner as in Examples 1 to 3 except that they were blended, and their loss tangents t an (5 were measured together with Comparative Example 1 using only vinyl resin.
  • the results are shown in FIG. 4 shows that the maximum values of the loss tangents t an ⁇ ⁇ ⁇ ⁇ in the compositions of Examples 10 to 12 all have vibration energy absorption performances exceeding those of Comparative Example 1.
  • ECDPA VIOSORB910, manufactured by Kyodo Yakuhin Co., Ltd.
  • Example 13 70 parts by weight
  • Example 14 30 parts by weight
  • Specimens were prepared in the same manner as in Examples 1 to 3 except that they were blended in the respective amounts of Example 15
  • Their loss tangents t an (5) were measured together with Comparative Example 1 using only vinyl resin.
  • FIG. 5 it can be seen that the maximum value of the loss tangent t an (5 in the compositions of Examples 13 to 15 is gradually increased as the amount of ECDPA is increased, while the loss tangent tan (5 is the maximum value.
  • Example 16 100 parts by weight of MBTS (Soxinol DM, manufactured by Sumitomo Chemical Co., Ltd.) (Example 16), 70 parts by weight (Example 17), 30 parts by weight Specimens were prepared in the same manner as in Examples 1 to 3 except that they were blended in the respective amounts of parts (Example 18), and their loss tangents t an (5 were measured together with Comparative Example 1 using only vinyl resin.
  • the results are shown in Fig. 6. From Fig. 6, the loss tangent tan (the maximum value of 5 in the compositions of Examples 16 to 18 was 1.6 to 1.7 in all cases, indicating that sufficient results were obtained.
  • the maximum value of the loss tangent t anc in the compositions of Examples 22 to 24 is 1.8 to 2.3 in each case, and increases as the blending amount of BBS increases, and the loss tangent tan 0 increases. It can be seen that the maximum temperature has shifted to the lower temperature side.
  • 100 parts by weight (Example 25), 70 parts by weight (Example 26), and 30 parts by weight (Example 27) of DPBS (DIB, manufactured by Sanshin Chemical Industry Co., Ltd.) were distributed. Test pieces were prepared in the same manner as in Examples 1 to 3 except that they were combined, and their loss tangents t an (5) were measured together with Comparative Example 1 using only vinyl resin. The results are shown in FIG. From FIG.
  • Comparative Example 1 A sample of Comparative Example 1 was molded in the same manner as Comparative Example 1 to obtain a test piece.
  • the test pieces of Examples 29 to 30 and Comparative Example 1 were measured in the same manner as in Examples 1 to 3, and the measurement results are shown in FIG. From FIG. 10, it can be seen that the vinyl chloride-based vibration damping resins of Examples 28 to 30 have much better vibration energy absorption performance than the vinyl resin of Comparative Example 1. In particular, it can be seen that the resin of Example 28 has twice or more the performance of Comparative Example 1.
  • the amount of the compound containing a mercaptobenzozothiazyl group was increased in the range of 0 to 50 parts by weight with respect to 100 parts by weight of the biel chloride resin.
  • the degree of change in the loss tangent t an (5) was examined. The results are shown in Fig. 11. In the same manner as in the previous experiment, only the vinyl chloride resin was measured as Comparative Example 1. t an (was also determined in the same manner as in the previous experiment. From FIG. 11, it can be seen that the value of the loss tangent t an (5 increases as the compounding amount of the compound containing a mercaptobenzozothiazyl group increases. Furthermore, it was confirmed that the loss tangent t an (5 was surely increased as the compounding amount of the compound containing a mercaptobenzothiazyl group was increased from 0 to 50 parts by weight.
  • Example 31 the, 180 ° heated sandwiched therebetween 180 seconds between heated mold to a C, 30 seconds pressurized with 80 pressure kg ⁇ f cm 2 in this after press, 1 mm of It was sheeted to thickness.
  • the obtained sheet was cut into a size of 67 mm X 9 mm for loss tangent measurement to obtain a test piece (Example 31).
  • Recycled agricultural vinyl chloride resin used in Example 31 / D CHP / NB R / Calcium carbonate / vinyl chloride resin 100 parts by weight / 95 parts by weight / 20 parts by weight / 63 parts by weight / 38 parts by weight (32 (% By weight / 30% by weight / 6% by weight / 20% by weight / 12% by weight) in the same manner as in Example 31 except that the test piece (Example 32) was obtained.
  • Recycled agricultural vinyl chloride resin used in Example 31 ZDCHP / NBR / Calcium carbonate 100 parts by weight / 122 parts by weight of vinyl chloride resin Z 20 parts by weight 81 parts by weight / 83 parts by weight (25% by weight / 30% (Weight% / 5 weight% / 20 weight% / 20 weight%) in the same manner as in Example 31 except that the test piece (Example 33) was obtained.
  • Recycled agricultural polyvinyl chloride resin used in Example 31 ZD CH P / NBR / calcium carbonate / vinyl chloride resin 100 parts by weight / 177 parts by weight / 20 parts by weight / 188 parts by weight / 175 parts by weight (17 parts by weight % / 30% by weight, Z3% by weight, 20% by weight / 30% by weight), and a test piece (Example 34) was obtained in the same manner as in Example 31.
  • a test piece (Comparative Example 2) was obtained in the same manner as in Example 31 using only the recycled vinyl chloride resin for agriculture used in Example 31.
  • Recycled agricultural vinyl chloride resin used in Example 31 DCHP and calcium carbonate were blended at a ratio of 100 parts by weight / 60 parts by weight / 40 parts by weight (50% by weight / 30% by weight / 20% by weight).
  • a test piece (Comparative Example 3) was obtained in the same manner as in Example 31 except that the test was performed.
  • the loss tangent t an (5 was measured for the test pieces of Examples 31 to 34 and Comparative Examples 2 and 3 in the same manner as in Examples 1 to 3. The measurement results are shown in FIG.
  • Example 31 the temperature at which the loss tangent t an ⁇ 5 was the maximum was about 20 ° C., but the amount of vinyl chloride B was 38 parts by weight (12% by weight) and 83 parts by weight (20% by weight) and 175 parts by weight (30 parts by weight)
  • the temperatures at which the loss tangent t anc5 of Examples 32 to 34 is maximum are about 27 ° C, about 33 ° C, and about 43 ° C. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A vinyl chloride-base damping resin composition excellent in the capability of absorbing vibrational energy. The composition comprises a vinyl chloride resin and a compound that is soluble in the resin and has a number of cyclic structures in its molecule, the molecular weight of the cyclic structure parts accounting for at least 50 % of that of the molecule as a whole. The composition is applied to vibration generating portions of automotive trims, building materials, household electric appliances, and so forth.

Description

曰月 糸田 » 発明の名称 塩化ビニル系制振樹脂組成物 技術分野 本発明は優れた振動エネルギー吸収性能を有する塩化ビニル系制振樹脂組成物 に関する。 従来の技術 従来、 振動エネルギーを吸収する材料としては、 塩化ビニル系樹脂にジー 2— ェチルへキシルフ夕レート (DOP) を添加した軟質の塩化ビニル系樹脂を素材 とするものが知られている。 ところが、 この軟質塩化ビニル系樹脂は、 図 1に示すように損失正接 t an<5 が低く、 振動エネルギーを吸収する能力 (損失正接 t an<5) があまり高くなか つた。 しかもこの軟質塩化ビニル系樹脂は、 損失正接 t an<5の最大値が、 約 6 0〜100° Cの比較的高温域にあることから、 DOPの添加量を増やして、 2 0。 C前後の常温域で損失正接 t a n (5が最大となるように調節した場合には、 その損失正接 t a n (5の最大値そのものが低くなつてしまうという不具合を有し ていた。 本発明は、 このような事情に鑑みなされたものであり、 優れた振動エネルギー 吸収能力を有する塩化ビニル系制振樹脂組成物を提供することを目的とするもの である。 発明の開示 本発明は、 塩化ビニル系樹脂に、 同塩化ビニル系樹脂に可溶であり、 分子内に 多数の環状構造を持ち、 かつその環状構造部分の分子量が分子全体の分子量の 5 0 %以上を占めている化合物 (以下単に多環式化合物という) を配合した塩化ビ 二ル系制振樹脂組成物 (以下単に組成物という) を提案している。 この組成物の振動エネルギー吸収能力は、 従来の塩化ビニル系樹脂と比較した とき、 予測を遙かに越えた高いレベルを示すものとなっている。 その詳細は明ら かではないが、 以下のような理由が考えられる。 塩化ビニル系樹脂は分子の主鎖、 側鎖が三次元的に連なって存在している。 こ の塩化ビニル系樹脂に振動エネルギーが加わったとき、 分子の主鎖、 側鎖には伸 縮回転運動が生じ、 分子の主鎖、 側鎖は相互に接触し合うことになる。 このとき 生じる摩擦によつて熱の消費が行われ、 振動エネルギ一の吸収がなされるように なっている。 この塩化ビニル系樹脂に多璟式化合物を配合することで、 塩化ビニル系樹脂の 分子の主鎖、 側鎖の間隔は開かれて、 この間隙に多環式化合物が入り込むことに なる。 このため、 塩化ビニル系樹脂の分子の主鎖、 側鎖はより動きやすくなり、 摩擦による熱の消費も増大して、 振動エネルギーを吸収する能力も向上すること になる。 さらに、 塩化ビエル系樹脂の分子の主鎖、 側鎖の間隙に入り込んだ多環式化合 物自体も各環が振動し、 同多環式化合物における環同志の接触、 この多環式化合 物における環と塩化ビニル系樹脂の分子の主鎖、 側鎖との接触、 あるいは多璟式 化合物における環と他の多環式化合物における環との接触が生じ、 ここに摩擦に より熱の消費が行われ、 振動エネルギーの吸収がなされるようになる。 本発明の組成物において、 多璟式化合物は、 塩化ビニル系樹脂に可溶であり、 分子内に多数の環状構造を持ち、 かつその環状構造部分の分子量が分子全体の分 子量の 5 0 %以上を占めているものである。 塩化ビニル系樹脂に 「可溶」 とは、 塩化ビニル系樹脂の分子の主鎖、 側鎖の間隙に入り込むことができるということ である。 この 「可溶」 の範疇には、 配合した多環式化合物が塩化ビニル系樹脂に すべて完全相溶するものの他、 部分的に相溶するものも含まれる。 さらに塩化ビニル系樹脂に溶けるといっても、 配合時の温度によってその相溶 状態は様々に異なるものである。 つまり 1 0 0 ° Cで溶けても 2 0 ° Cでは溶け ないものもある。 本発明では、 少なくとも一 2 0 ° Cから 1 2 0 ° Cの範囲にお いて、 配合した多環式化合物が塩化ビニル系樹脂に完全相溶ではなくとも部分的 には溶けるという程度を 「可溶」 としている。 またこの多環式化合物は、 分子内に多数の環状構造を持っている。 この多環式 化合物における環状構造とは、 単環式炭化水素や縮合環式炭化水素の他、 複素単 環式化合物や縮合複素環式化合物も含まれ、 各環の員数も 3員環から 1 0員環ま で含まれる。 また環状構造の数は 2個以上であればよいが、 あまり多くの環を持 つものは、 塩化ビニル系封脂に 「可溶 j ではなくなるため、 可溶の範囲というこ とになる。 またこの多環式化合物における環状構造部分の分子量は、 分子全体の分子量の 5 0 %以上を占めている。 このことは振動する環状構造の部分が分子の大部分を 占めているということである。 この部分の分子量が分子全体の分子量の 5 0 %を 下回る化合物の場合、 環の振動に換えて回転伸縮運動する直鎖、 側鎖の部分が増 えることになる。 つまり、 従来に認識されていない優れた振動エネルギー吸収性 能を生み出す環の振動による振動エネルギーの消費が少なくなり、 換わって分子 の直鎖部分あるいは側鎖部分における回転伸縮運動による振動エネルギーの消費 が行われるようになり、 振動エネルギー吸収性能は著しくて低下することになる。 図面の簡単な説明 図 1は、 実施例 1〜3及び比較例の試験片について各温度における損失正接 t a n c5を示したグラフである。 Technical Field The present invention relates to a vinyl chloride-based vibration-damping resin composition having excellent vibration energy absorption performance. 2. Description of the Related Art Conventionally, as a material for absorbing vibration energy, a material made of a soft vinyl chloride resin obtained by adding di-2-ethylhexyl phthalate (DOP) to a vinyl chloride resin is known. However, as shown in Fig. 1, this soft vinyl chloride resin had a low loss tangent t an <5, and did not have a very high ability to absorb vibration energy (loss tangent t an <5). Moreover, since the maximum value of the loss tangent t an <5 of this soft vinyl chloride resin is in a relatively high temperature range of about 60 to 100 ° C., the amount of DOP added is increased to 20. In the case where the loss tangent tan (5 is adjusted to be the maximum in the normal temperature range around C, the loss tangent tan (5 has a disadvantage that the maximum value itself becomes low. In view of such circumstances, an object of the present invention is to provide a vinyl chloride-based vibration damping resin composition having excellent vibration energy absorbing ability. DISCLOSURE OF THE INVENTION The present invention relates to a vinyl chloride resin, which is soluble in the vinyl chloride resin, has many cyclic structures in the molecule, and the molecular weight of the cyclic structure portion is 50% of the molecular weight of the whole molecule. We have proposed a vinyl chloride-based vibration damping resin composition (hereinafter simply referred to as a composition) containing a compound occupying the above (hereinafter simply referred to as a polycyclic compound). The vibration energy absorption capacity of this composition shows a high level far exceeding the expected value when compared with the conventional vinyl chloride resin. Although the details are not clear, the following reasons are considered. Vinyl chloride resin has three-dimensionally linked main chains and side chains. When vibrational energy is applied to the vinyl chloride resin, the main chain and side chains of the molecules undergo stretching and rotating motion, and the main chains and side chains of the molecules come into contact with each other. Heat is consumed by friction generated at this time, and vibration energy is absorbed as much as possible. By blending the polychloride compound into the vinyl chloride resin, the main chains and side chains of the molecules of the vinyl chloride resin are widened, and the polycyclic compound enters the gap. As a result, the main chain and side chains of the molecules of the vinyl chloride resin become easier to move, the heat consumption due to friction increases, and the ability to absorb vibration energy also improves. In addition, each ring of the polycyclic compound itself that has entered the gap between the main chain and the side chain of the molecule of the bichloride-based resin vibrates, and the rings of the polycyclic compound contact each other. Contact between the ring and the main chain or side chain of the molecule of the vinyl chloride resin, or contact between the ring in the polycyclic compound and the ring in the other polycyclic compound occurs, and heat is consumed by friction here. As a result, vibration energy is absorbed. In the composition of the present invention, the polymorphic compound is soluble in a vinyl chloride resin, has a large number of cyclic structures in the molecule, and the molecular weight of the cyclic structure portion is 50% of the molecular weight of the whole molecule. It accounts for more than%. "Soluble" in vinyl chloride resin means that it can penetrate into the gaps between the main and side chains of the molecules of the vinyl chloride resin. The category of “soluble” includes not only those in which the compounded polycyclic compound is completely compatible with the vinyl chloride resin but also those in which the compound is partially compatible. Furthermore, even though it is soluble in a vinyl chloride resin, its compatibility varies depending on the temperature at which it is blended. In other words, some melt at 100 ° C but do not melt at 20 ° C. In the present invention, the degree to which the compounded polycyclic compound partially dissolves in the vinyl chloride resin even if it is not completely compatible is considered to be at least in the range of 120 ° C. to 120 ° C. ”. This polycyclic compound has many cyclic structures in the molecule. The cyclic structure in this polycyclic compound includes not only a monocyclic hydrocarbon and a condensed cyclic hydrocarbon, but also a heteromonocyclic compound and a condensed heterocyclic compound. Includes up to a zero member ring. Also, the number of cyclic structures may be two or more, but those with too many rings are in the range of solubility because they are no longer soluble in vinyl chloride seals. The molecular weight of the cyclic structure in this polycyclic compound accounts for more than 50% of the molecular weight of the whole molecule, which means that the vibrating cyclic structure accounts for the majority of the molecule. In the case of a compound in which the molecular weight of this portion is less than 50% of the molecular weight of the whole molecule, the linear and side chain portions that rotate and expand and contract in exchange for the vibration of the ring will increase. The vibration energy consumption due to the vibration of the ring, which produces excellent vibration energy absorption performance, is reduced, and instead the vibration energy is consumed by the rotational expansion and contraction motion in the linear part or side chain part of the molecule. Becomes, vibration energy absorbing performance will decrease significantly. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the loss tangent tan c5 at each temperature for the test pieces of Examples 1 to 3 and Comparative Example.
図 2は、 実施例 4〜 6及び比較例の試験片について各温度における損失正接 t a n c5を示したグラフである。  FIG. 2 is a graph showing the loss tangent t anc5 at each temperature for the test pieces of Examples 4 to 6 and Comparative Example.
図 3は、 実施例 7〜 9及び比較例の試験片について各温度における損失正接 t a n dを示したグラフである。  FIG. 3 is a graph showing the loss tangent tand at each temperature for the test pieces of Examples 7 to 9 and Comparative Example.
図 4は、 実施例 1 0〜 1 2及び比較例の試験片について各温度における損失正 接 t a n (5を示したグラフである。  FIG. 4 is a graph showing the loss tangent t an (5 at each temperature for the test pieces of Examples 10 to 12 and Comparative Example.
図 5は、 実施例 1 3〜1 5及び比較例の試験片について各温度における損失正 接 t a n (5を示したグラフである。  FIG. 5 is a graph showing the loss tangent t an (5 at each temperature for the test pieces of Examples 13 to 15 and Comparative Example.
図 6は、 実施例 1 6〜: I 8及び比較例の試験片について各温度における損失正 接 t a n (5を示したグラフである。  FIG. 6 is a graph showing the loss tangent t an (5 at each temperature for the test pieces of Examples 16 to: I8 and the comparative example.
図 7は、 実施例 1 9〜2 1及び比較例の試験片について各温度における損失正 接 t a n 5を示したグラフである。  FIG. 7 is a graph showing the loss tangent t an 5 at each temperature for the test pieces of Examples 19 to 21 and Comparative Example.
図 8は、 実施例 2 2〜2 4及び比較例の試験片について各温度における損失正 接 t a n c を示したグラフである。  FIG. 8 is a graph showing the loss tangent t anc at each temperature for the test pieces of Examples 22 to 24 and Comparative Example.
図 9は、 実施例 2 5〜2 7及び比較例の試験片について各温度における損失正 接 t a n (5を示したグラフである。  FIG. 9 is a graph showing the loss tangent t an (5 at each temperature for the test pieces of Examples 25 to 27 and Comparative Example.
図 1 0は、 実施例 2 8〜3 0及び比較例の試験片について各温度における損失 正接 t a n (5を示したグラフである。  FIG. 10 is a graph showing the loss tangent t an (5) at each temperature for the test pieces of Examples 28 to 30 and Comparative Example.
図 1 1は、 実施例 2 8〜3 0について、 メルカプトべンゾチアジル基を含む化 合物の配合量の増加に伴う損失正接 t a n 5の変化の示したグラフである。 図 1 2は、 実施例 3 1〜3 4及び比較例 2及び 3の試験片について各温度にお ける損失正接 t a n (5を示したグラフである。 発明を実施するための最良の形態 以下、 本発明の組成物の最良の形態について詳しく説明する。 本発明の組成物 は、 塩化ビニル系樹脂に多環式化合物を配合したものである。 この組成物で使用 される塩化ビエル系樹脂としては、 塩化ビニル単独で重合した樹脂のほか、 塩化 ビニル単量体と共重合し得る単量体のうちの少なくとも 1種以上とランダム共重 合またはプロック共重合して得られる塩化ビニル共重合樹脂、 例えば酢酸ビニル 一塩化ビニル共重合体、 エチレン一塩化ビニル共重合体、 塩化ビニリデン—塩化 ビニル共重合体、 あるいは塩化ビニル単量体とグラフト共重合し得る樹脂とグラ フ卜共重合して得られる塩化ビニルグラフト共重合樹脂、 例えばエチレン—酢酸 ビニルー塩化ビニルグラフト共重合体、 ポリウレタン一塩化ビニルグラフト共重 合体なども好適に使用することができる。 多璟式化合物としては、 例えば下記式で表されるベンゾトリアゾール基を持つ 化合物を挙げることができる。 FIG. 11 is a graph showing the change in loss tangent tan 5 with increasing compounding amount of a compound containing a mercaptobenzothiazyl group in Examples 28 to 30. FIG. 12 is a graph showing the loss tangent tan (5) at each temperature for the test pieces of Examples 31 to 34 and Comparative Examples 2 and 3. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode of the composition of the present invention will be described in detail. The composition of the present invention is obtained by blending a polycyclic compound with a vinyl chloride resin. The vinyl chloride resin used in this composition includes, in addition to a resin polymerized with vinyl chloride alone, a random copolymer or a random copolymer with at least one of monomers copolymerizable with a vinyl chloride monomer. Graft copolymerization with vinyl chloride copolymer resin obtained by block copolymerization, such as vinyl acetate-vinyl chloride copolymer, ethylene-vinyl chloride copolymer, vinylidene chloride-vinyl chloride copolymer, or vinyl chloride monomer A vinyl chloride graft copolymer resin obtained by copolymerizing a resin which can be obtained with the polymer, such as an ethylene-vinyl acetate-vinyl chloride graft copolymer and a polyurethane-monovinyl chloride graft copolymer, can also be suitably used. Examples of polymorphic compounds include compounds having a benzotriazole group represented by the following formula.
Figure imgf000007_0001
この多璟式化合物は、 ベンゼン環にァゾ一ル基が結合したベンゾトリアゾ一ル を母核とするものであり、 特にフエニル基が結合したものが優れている。 具体的 には、 2— {2' —ハイ ドロキシー 3' — (3" , 4", 5" , 6"テトラハイ ドロフ夕リミデメチル) 一 5' —メチルフエ二ル} 一べンゾトリアゾ一ル (2Η ΡΜΜΒ)、 2- {2' 一ハイ ドロキシー 5' —メチルフエ二ル} 一べンゾトリ ァゾ一ル (2ΗΜΡΒ) 、 2— {2' —ハイ ドロキシー 3' — t—ブチルー 5' 一メチルフエ二ル} 一 5—クロ口べンゾトリアゾ一ル (2HBMPCB) 、 2— {2' —ハイ ドロキシー 3' , 5 ' ージ一 t一ブチルフエ二ル} 一 5—クロ口べ ンゾトリアゾ一ル (2HDBPCB) などを挙げることができる。 また別の多環式化合物としては、 下記式で表されるジフエ二ルァクリレート基 を持つ化合物を挙げることができる,
Figure imgf000007_0001
The polymorphic compound has benzotriazole having a benzene ring bonded to an azo group as a mother nucleus, and a compound having a phenyl group bonded thereto is particularly excellent. Specifically, 2— {2'—hydroxy-3 '— (3 ", 4", 5 ", 6" tetrahydrofumidimidemethyl) 1-5'—methylphenyl} benzotriazole (2Η Η) , 2- {2'-hydroxy-5'-methylphenyl} -benzotriazole (2ΗΜΡΒ), 2- {2'-hydroxy-3'-t-butyl-5'-methylphenyl} 1-5 —Black benzotriazole (2HBMPCB), 2— {2 ′ —Hydroxy 3 ′, 5 ′ di-t-butylphenyl} -15—Black benzotriazole (2HDBPCB) it can. Another polycyclic compound includes a diphenyl acrylate group represented by the following formula: Can be mentioned,
Figure imgf000008_0001
Figure imgf000008_0001
この多環式化合物は、 エチレンの 1つの炭素原子に 2個のフエニル基が結合し たジフエ二ルァクリレートを母核とするものであり、 例えばェチルー 2—シァノ 一 3, 3—ジ一フエニルァクリレート (ECDPA) などを挙げることができる < またさらに別の多環式化合物としては、 下記式で表されるメルカプトべンゾチ ァジル基を含む多環式化合物を挙げることができる。  This polycyclic compound is based on diphenyl acrylate in which two phenyl groups are bonded to one carbon atom of ethylene. For example, ethyl 2-cyano-1,3,3-diphenyl acrylate Acrylate (ECDPA) and the like. <Still another polycyclic compound includes a polycyclic compound containing a mercaptobenzothiazyl group represented by the following formula.
Figure imgf000008_0002
Figure imgf000008_0002
この多環式化合物は、 ベンゾチアジルに窒素原子が結合したメルカプトベンゾ チアジルを母核とするものであり、 例えば N、 N—ジシク へキシルベンゾチア ジルー 2—スルフェンアミ ド、 2—メルカブトべンゾチアゾール (MBT) 、 ジ ベンゾチアジルスルフィ ド (MBTS)、 N—シクロへキシルペンゾチアジルー 2—スルフェンアミ ド (CBS) 、 N— t er t—ブチルベンゾチアジルー 2— スルフェンアミ ド (BBS) 、 N—ォキシジエチレンベンゾチアジルー 2—スル フェンアミ ド (OBS) 、 N, N—ジイソブロビルべンゾチアジルー 2 _スルフ ェンアミ ド (DPBS) などを挙げることができる。 多環式化合物のさらに別の態様としては、 ペンゾフラン、 インドール、 ベンゾ チアゾール、 ベンゾォキサゾール、 ベンゾイミダゾ一ルなどの 2つの環が結合し た化合物、 およびこれらの化合物にアルキル基やフエニル基が結合したもの、 ジ ベンゾフラン、 力ルバ一ゾール、 フエナントリジン、 フヱノキサジンなどの 3つ の環が結合した化合物、 およびこれらの化合物にアルキル基ゃフヱニル基が結合 したもの、 あるいは 2つのシクロ環が結合したジジクロへキサン、 2つのべンゼ ン環が結合したジフエ二ル、 2つのピリジンが結合したビビリジン、 2つのフエ ニル基が酸素原子を介して結合したビフエ二ルェ一テル、 フヱニル基とシクロへ キサンが酸素原子を介して結合した (シクロへキシルォキシ) ベンゼン、 ペンゼ ン、 シクロへキサン、 ナフタリンなどの環をァシル基で結合した (ジー (2—ナ フチル) ジケトン) 、 2 , 2 ' フリル、 (シクロへキシルカルボニル) ベンゼン、This polycyclic compound is based on mercaptobenzothiazyl, in which a nitrogen atom is bonded to benzothiazyl, as a core. For example, N, N-dicyclohexylbenzothiaziryl 2-sulfenamide, 2-merbutobenzothiazole (MBT), Benzothiazyl sulfide (MBTS), N-cyclohexyl benzothiazyl di-2-sulfenamide (CBS), N-tert-butylbenzothiazyl di-2-sulfenamide (BBS), N-oxydiethylene benzo Thiazilyl 2-sulfenamide (OBS), N, N-diisobrovirbenzothiazilyl 2-sulfenamide (DPBS) and the like can be mentioned. In still another embodiment of the polycyclic compound, two rings such as benzofuran, indole, benzothiazole, benzoxazole, and benzimidazole are bonded. Compounds having an alkyl group or a phenyl group bonded thereto, compounds having three rings such as dibenzofuran, carbazole, phenanthridine, phenoxazine, etc. A phenyl group-bonded or dicyclohexane bonded with two cyclo rings, a diphenyl bonded with two benzene rings, a biviridine bonded with two pyridines, and two phenyl groups connected via an oxygen atom (Cyclohexyloxy) in which a biphenyl ether, a phenyl group and a cyclohexane are bonded via an oxygen atom, and a ring such as benzene, benzene, cyclohexane, and naphthalene are bonded by an acyl group (G 2-naphthyl) diketone), 2,2'furyl, (cyclohexylcarbonyl) benzene,
(シクロへキシルカルボニル) ベンゾイツクァシド、 1, 1 0—フエナントレン カルボラクトンなどのラクトン、 ジ一 2—ピリジルァミンなどのァミン、 1 , 2(Cyclohexylcarbonyl) benzoituside, 1,10-phenanthrene lactone such as carboractone, di-amine-2-amine such as pyridylamine, 1,2
'—ァゾナフ夕レン、 ナフ夕レン一 2—ァゾベンゼン、 p—フエ二ルァゾベンゼ ンスルホン酸、 (p— ( 2—ヒドロキシ一 1一ナフチルァゾ) ベンゼンスルホン 酸などのァゾ化合物などを挙げることができる。 また、 前述のメルカブトべンゾチアジル基を含む化合物を塩化ビニル系樹脂に 配合したとき、 塩化ビニル系樹脂とメルカプトべンゾチアジル基を含む化合物は 単に相溶するに留まらず、 その一部が前記塩化ビニル系樹脂の塩素原子をメルカ ブトべンゾチアジル基で置換した新たな塩化ビ二ル系制振樹脂となって存在する ことになる。 メルカプトべンゾチアジル基の極性は塩化ビ二ル系樹脂の塩素原子の持つ極性 よりもビニルの持つ極性に近い。 このため、 塩化ビニル系樹脂にメルカプトベン ゾチアジル基を含む化合物を配合したとき、 塩化ビニル系樹脂の鎖から塩素原子 が取れ、 これにメルカプトべンゾチアジル基が取って変わってペンダント状に結 合するのである。 このようにして、 塩化ビニル系樹脂の塩素原子がメルカブトべンゾチアジル基 で置換された当該塩化ビニル系制振樹脂を含む組成物は、 振動エネルギー吸収性 能に優れた材料となる。 このメカニズムについて詳細は不明であるが、 塩素原子 に換わってメルカプトべンゾチアジル基が結合した分だけ、 塩化ビニル系樹脂の 振動を受けたときの運動の自由度が小さくなり、 摩擦が大きくなるからではない かと思われる。 またこの塩化ビニル系制振樹脂を含む組成物は、 当該塩化ビニル系制振樹脂が 塩化ビニル系樹脂の塩素原子がメルカプトベンゾチアジル基で置換されてなるこ とから、 焼却時に人体や環境に悪影響を与える塩化水素の発生量が少なくなつて いる。 尚、 上にはメルカプトべンゾチアジル基を含む化合物を塩化ビニル系樹脂に配 合したときに、 組成物中に塩化ビニル系樹脂における塩素原子がメルカプトベン ゾチアジル基と置換してなる塩化ビニル系制振樹脂が存在している態様について 説明したが、 その配合量、 温度条件などによっては、 全ての塩素原子がメルカブ トベンゾチアジル基と置換して新規な塩化ビニル系制振樹脂となる態様も考えら れる。 またこの組成物は、 後述のとおり自動車、 内装材、 建材、 家電機器などの振動 の発生する部分に適用されるが、 それらの用途において適用される温度 (使用温 度領域) は様々である。 例えば損失正接 t a n (5の最大値が 4 0 ± 1 0 ° Cの範 囲内に存在する可塑剤添加の塩化ビニル系樹脂 (以下塩化ビニル Aという) に、 多璟式化合物であるジシクロへキシルフ夕レート (以下 D C H Pという) とゴム とを配合することで得られる組成物は、 広い温度領域に渡って優れた振動エネル ギー吸収性能を有している。 しかしながら全ての用途に適用できる程その温度領 域は広くない。 このため、 使用温度領域において優れた振動エネルギー吸収性能 が発揮されるように、 損失正接 t a n 6が最大となる温度を使用温度領域に移動 しなければならない。 そこで、 上記塩化ビニル Aと D C H Pとゴムとを所定の割合で配合することで 得られる組成物に、 更に可塑剤未添加の塩化ビニル系樹脂 (以下塩化ビニル Bと いう) を配合するのである。 これにより、 損失正接 t an(5が最大となる温度を 使用温度領域に移動させ、 使用温度領域において優れた振動エネルギー吸収性能 が発揮されるすることができる。 これは、 塩化ビニル Aと DCHPとゴムとを配合することで得られる組成物に、 損失正接 t andの最大値を 50〜 150° Cの高温域に有する塩化ビニル Bを 配合することで、 当該組成物全体が塩化ビニル Bの影響を受け、 損失正接 t an δが塩化ビニル Β側に移行することから生じるものと思われる。 この組成物は、 自動車、 内装材、 建材、 家電機器などの振動の発生する部分に 適用することができ、 それらの用途に合わせて、 多璟式化合物の種類、 その配合 比 (塩化ビニル系檳 ί脂/多環式化合物) は適宜決定する。 またこの組成物は、 上記用途に合わせて種類、 配合比の決定された塩化ビニル 系樹脂及び多環式化合物を、 熱ロール、 バンバリ一ミキサー、 二軸混練機、 押し 出し機などの従来公知の溶融混合する装置を用いることで混練し、 成形すること で制振材としての形態に造られる。 またこの組成物には、 用途や使用状態に応じて、 可塑剤、 安定剤、 滑剤、 酸化 防止剤、 難燃剤、 帯電防止剤、 紫外線吸収剤、 あるいは着色顔料を配合すること もできる。 実施例 塩化ビニル樹脂 (SS— 110、 日本塩ビ販売株式会社製) 100重量部に対 し、 2ΗΡΜΜΒ (VIOSORB590、 共同薬品株式会社製) を 100重量 部 (実施例 1) 、 70重量部 (実施例 2)、 30重量部 (実施例 3) の各配合量 で配合し、 これらを 160°Cに設定したロールに投入して混練し、 次いで得られ た混練物を、 180°Cに加熱した金型間に挟んで 180秒間加熱し、 この後プレ ス機で 80kg ' fZcm2 の圧力で 30秒間加圧し、 1 mmの厚さにシート化 する。 得られたシートを損失正接 t anc5測定用として 67 mm X 9 mmの寸法 に切断し、 試験片とする。 なお、 塩化ビニル樹脂のみのものも比較例 1として同 様な方法で成形し、 試験片とした。 上記実施例 1〜 3並びに比較例 1の試験片について損失正接 t a n (5を測定し た。 損失正接 t andの測定は、 動的粘弾性測定試験装置 (レオバイブロン DD V—25FP、 株式会社オリエンテック製) を用いて行った。 測定結果を図 1に 示した。 図 1から、 実施例 1〜 3の組成物は、 比較例 1のビニル系樹脂のみものに比べ、 振動エネルギ一吸収性能が頗るよいことが解る。 特に実施例 1及び実施例 2の組 成物はそれらの損失正接 t anc5の最大値が剰りに高く測定不能となっている。 2 HPMMBを 30重量部配合した実施例 3の組成物にあっても、 その損失正接 t andの最大値は 2. 5となっており、 比較例 1のものに比べ 2倍以上の性能 を有していることが解る。 またこれら実施例 1〜3の組成物にあっては、 2HP MMBの配合量に関わらず損失正接 t anc5の最大となる温度は移動せず、 10 0° C前後となっていることが注目される。 次に、 2HMBP (V I OSORB 520, 共同薬品株式会社製) を 100重 量部 (実施例 4) 、 70重量部 (実施例 5)、 30重量部 (実施例 6) の各配合 量で配合した以外は、 実施例 1〜3と同様にして試験片を作製し、 ビニル系樹脂 のみの比較例 1と共にそれらの損失正接 t an (5を測定した。 この結果を図 2に 示した。 図 2から、 実施例 4〜 6の組成物における損失正接 tan 5の最大値はいずれ も 1. 7〜1. 8となっており、 十分な振動エネルギー吸収性能を有しているこ とが解る。 これら実施例 4〜6の組成物にあっては、 2HMBPの配合量が増え るに従って損失正接 t an <5の最大値は余り変化はないものの、 損失正接 t an 5が最大となる温度が低温側に移動していることが解る。 次に、 2HBMPCB (VI OSORB 550、 共同薬品株式会社製) を 10 0重量部 (実施例 7) 、 70重量部 (実施例 8)、 30重量部 (実施例 9) の各 配合量で配合した以外は、 実施例 1〜3と同様にして試験片を作製し、 ビニル系 樹脂のみの比較例 1と共にそれらの損失正接 t an (5を測定した。 この結果を図 3に示した。 図 3から、 実施例?〜 9の組成物における損失正接 t an (5の最大値はいずれ も 2. 0前後となっており、 比較例 1の約 2倍の振動エネルギー吸収性能を有し ていることが解る。 またこれら実施例 7〜9の組成物にあっては、 2HMBPの 配合量に関わらず損失正接 t andの最大となる温度が 80〜90° Cの範囲内 になっている。 次に、 2HDBPCB (VI OSORB 580, 共同薬品株式会社製) を 10 0重量部 (実施例 10) 、 70重量部 (実施例 11) 、 30重量部 (実施例 12) の各配合量で配合した以外は、 実施例 1〜3と同様にして試験片を作製し、 ビニ ル系樹脂のみの比較例 1と共にそれらの損失正接 t an (5を測定した。 この結果 を図 4に示した。 図 4から、 実施例 10〜12の組成物における損失正接 t an όの最大値は、 いずれも比較例 1のものを上回る振動エネルギー吸収性能を有しているが。 2H DBPCBの配合量が増えるに従って低くなつていることが注目される。 次に、 ECDPA (VIOSORB910、 共同薬品株式会社製) を 100重 量部 (実施例 13) 、 70重量部 (実施例 14) 、 30重量部 (実施例 15 ) の 各配合量で配合した以外は、 実施例 1〜3と同様にして試験片を作製し、 ビニル 系樹脂のみの比較例 1と共にそれらの損失正接 t an(5を測定した。 この結果を 図 5に示した。 図 5から、 実施例 13〜 15の組成物における損失正接 t an(5の最大値は、 E CD P Aの配合量が増えるに従って次第に高くなつていると同時に、 損失正接 t a n (5の最大となる温度も低温側へと移動していることが解る。 次に、 MBTS (ソキシノール DM、 住友化学工業株式会社製) を 100重量 部 (実施例 16 )、 70重量部 (実施例 17 ) 、 30重量部 (実施例 18 ) の各 配合量で配合した以外は、 実施例 1〜3と同様にして試験片を作製し、 ビニル系 樹脂のみの比較例 1と共にそれらの損失正接 t an (5を測定した。 この結果を図 6に示した。 図 6から、 実施例 16〜 18の組成物における損失正接 t a n (5の最大値は、 いずれも 1. 6〜1. 7となっており、 十分な振動エネルギー吸収性能を有して いることが解る。 また損失正接 t a の最大値は、 MB TSの配合量の多少に 拘わらずほぼ横這いであり、 配合量が増えるに従って、 損失正接 tanc5の最大 となる温度が低温側へと移動してレ、ることが解る。 次に、 CBS (ソキシノール CZ、 住友化学工業株式会社製) を 100重量部 (実施例 19) 、 70重量部 (実施例 20) 、 30重量部 (実施例 21) の各配 合量で配合した以外は、 実施例 1〜3と同様にして試験片を作製し、 ビニル系樹 脂のみの比較例 1と共にそれらの損失正接 t andを測定した。 この結果を図 7 に示した。 図 7から、 実施例 19〜21の組成物における損失正接 t an (5の最大値は、 いずれも 1. 7〜2. 2と、 CB Sの配合量が増えるに従って向上し、 かつ損失 正接 t a nc5の最大となる温度が低温側へと移動していることが解る。 次に、 BBS (NSG、 三新化学工業株式会社製) を 100重量部 (実施例 2 2)、 70重量部 (実施例 23)、 30重量部 (実施例 24) の各配合量で配合 した以外は、 実施例 1~3と同様にして試験片を作製し、 ビニル系樹脂のみの比 較例 1と共にそれらの損失正接 t anc を測定した。 この結果を図 8に示した。 図 8から、 実施例 22〜24の組成物における損失正接 t ancの最大値は、 いずれも 1. 8〜2. 3と、 BB Sの配合量が増えるに従って向上し、 かつ損失 正接 t a n 0の最大となる温度が低温側へと移動していることが解る。 次に、 DPBS (Dい B、 三新化学工業株式会社製) を 100重量部 (実施例 25)、 70重量部 (実施例 26) 、 30重量部 (実施例 27) の各配合量で配 合した以外は、 実施例 1〜3と同様にして試験片を作製し、 ビニル系樹脂のみの 比較例 1と共にそれらの損失正接 t an(5を測定した。 この結果を図 9に示した。 図 9から、 実施例 22〜24の組成物における損失正接 t an(5の最大値は、 DPBSの配合量に拘わらず、 いずれも 1. 6〜1. 8とほぼ横這いであり、 D PBSの配合量が増えるに従って、 損失正接 t an (5の最大となる温度が低温側 へと移動していることが解る。 次に、 塩化ビニル樹脂 (S S— 110、 日本塩ビ販売株式会社製) 100重量 部に対し、 50重量部の N、 N—ジシクロへキシルベンゾチアジルー 2—スルフ ェンアミ ド (サンセラ一 DZ、 三新化学工業株式会社製) (実施例 28)、 MB T (サンセラ一 M、 三新化学工業株式会社製) (実施例 29) 、 及び MBTS (サンセラ一 DM、 三新化学工業株式会社製) (実施例 33) を、 160°Cに設 定したロールに投入して混練し、 次いで得られた混練物を、 180°Cに加熱した 金型間に挟んで 180秒間加熱し、 この後ブレス機で 80 kg · /cm2 の圧 力で 30秒間加圧し、 1mmの厚さにシート化する。 得られたシートを損失係数 測定用として 67 mmx 9 mmの寸法に切断し、 試験片とする。 なお、 塩化ビニ ル樹脂のみのものも比較例 1として同様な方法で成形し、 試験片とした。 上記実施例 29〜 30及び比較例 1の試験片について実施例 1 ~ 3と同様にし て測定し、 その測定結果を図 10に示した。 図 10から、 実施例 28〜 30の塩化ビニル系制振樹脂は、 比較例 1のビニル 系樹脂に比べ、 振動エネルギー吸収性能が頗るよいことが解る。 特に実施例 28 の樹脂は比較例 1に比べて 2倍以上の性能を有していることが解る。 次に、 上記実施例 28〜 30について、 メルカブトべンゾチアジル基を含む化 合物の配合量を、 塩化ビエル樹脂 100重量部に対して、 0から 50重量部まで の範囲で増やしていき、 その増加に伴う損失正接 t an (5の変化の度合いを調べ た。 この結果を図 11に示す。 なお、 先の実験と同じく塩化ビニル樹脂のみのも のも比較例 1として測定した。 また、 損失正接 t an( も先の実験と同様にして 求めた。 図 11から、 メルカブトべンゾチアジル基を含む化合物の配合量が増加すれば するほど、 損失正接 t an(5の値が大きくなつていることが解る。 しかも 0から 50重量部までメルカプトベンゾチアジル基を含む化合物の配合量が増加するに 伴い、 確実に損失正接 t an (5の値が大きくなつていることが確認された。 次に、 塩化ビニル Aとして、 農業用塩化ビエル樹脂の再生品 (株式会社山本商 店製) を 100重量部 (38重量%) 、 DCHP (DCHP特級、 和光試薬工業 株式会社製) を 78重量部 (30重量%) 、 NBR (再生 NBR、 株式会社鈴鋼 製作所製) を 20重量部 (8重量%) 、 炭酸カルシウム (#250、 株式会社尾 花屋製) を 52重量部 (20重量%) 、 更に塩化ビニル Bとして、 塩化ビニル樹 月旨 (SS— 110、 日本塩ビ販売株式会社製) を 10重量部 (4重量%) の割合 で配合し、 これらを 160°Cに設定したロールに投入して混練した。 次いで得られた混練物を、 180°Cに加熱した金型間に挟んで 180秒間加熱 し、 この後プレス機で 80 kg · f cm2 の圧力で 30秒間加圧し、 1 mmの 厚さにシ一ト化した。 得られたシートを損失正接測定用として 67 mm X 9 mm の寸法に切断し、 試験片 (実施例 31) とした。 実施例 31で用いた農業用塩化ビニル樹脂の再生品/ D CHP/NB R/炭酸 カルシウム/塩化ビニル樹脂を 100重量部 /95重量部 /20重量部 /63重 量部 /38重量部 (32重量%/30重量%/6重量%/20重量%/12重量 %) の割合で配合した以外は、 実施例 31と同様にして試験片 (実施例 32) を 得た。 実施例 31で用いた農業用塩化ビニル樹脂の再生品 Z D C H P / N B R /炭酸 カルシウム Z塩化ビニル樹脂を 100重量部 /122重量部 Z 20重量部ノ81 重量部 /83重量部 (25重量%/30重量%/5重量%/20重量%/20重 量%) の割合で配合した以外は、 実施例 31と同様にして試験片 (実施例 33) を得た。 実施例 31で用いた農業用塩化ビニル樹脂の再生品 ZD CH P/NBR/炭酸 カルシウム/塩化ビニル樹脂を 100重量部 /177重量部 /20重量部 /18 8重量部 /175重量部 ( 17重量%/30重量%Z3重量%ノ20重量%/3 0重量%) の割合で配合した以外は、 実施例 31と同様にして試験片 (実施例 3 4) を得た。 実施例 31で用いた農業用塩化ビニル樹脂の再生品のみを用いて実施例 31と 同様に試験片 (比較例 2) を得た。 実施例 31で用いた農業用塩化ビニル樹脂の再生品、 DCHP及び炭酸カルシ ゥムを 100重量部 /60重量部 /40重量部 (50重量%/30重量%/20 重量%) の割合で配合した以外は、 実施例 31と同様にして試験片 (比較例 3) を得た。 上記実施例 31〜34及び比較例 2及び 3の試験片について実施例 1〜3と同 様にして損失正接 t an (5を測定した。 その測定結果を図 12に示した。 And azo compounds such as' -azonaphthylene, naphthylene-12-azobenzene, p-phenylazobenzensulfonic acid, and (p- (2-hydroxy-11-naphthylazo) benzenesulfonic acid. However, when the compound containing a mercaptobenzothiazyl group described above is mixed with a vinyl chloride resin, the compound containing the vinyl chloride resin and the compound containing a mercaptobenzothiazyl group are not only compatible with each other, but a part of the compound is partially mixed with the vinyl chloride resin. The mercaptobenzothiazyl group is a new vinyl chloride-based vibration-damping resin in which the chlorine atom of the compound is replaced with a mercaptobenzothiazyl group.The polarity of the mercaptobenzothiazyl group is the polarity of the chlorine atom of the vinyl chloride resin. For this reason, compounds containing a mercaptobenzothiazyl group are compounded in a vinyl chloride resin. In this case, chlorine atoms are removed from the vinyl chloride resin chain, and the mercaptobenzothiazyl group is replaced with the chlorine atoms, forming a pendant bond. The composition containing the vinyl chloride-based vibration-damping resin substituted with nzothiazyl group has vibration energy absorption It becomes an excellent material. Although the details of this mechanism are unknown, the degree of freedom of movement when vibrating the vinyl chloride resin is reduced by the amount of mercaptobenzothiazyl group bonded instead of chlorine atom, and friction is increased. It seems that there is not. In addition, in the composition containing the vinyl chloride-based vibration damping resin, the chlorine atom of the vinyl chloride-based resin is replaced with a mercaptobenzothiazyl group. The amount of hydrogen chloride, which has an adverse effect, is decreasing. When a compound containing a mercaptobenzothiazyl group is combined with a vinyl chloride-based resin, a vinyl chloride-based vibration damper is obtained by replacing the chlorine atom in the vinyl chloride-based resin with the mercaptobenzothiazyl group in the composition. Although the embodiment in which the resin is present has been described, an embodiment in which all chlorine atoms are replaced with mercaptobenzothiazyl groups to form a novel vinyl chloride-based vibration damping resin may be considered depending on the amount of the resin and the temperature conditions. As described later, this composition is applied to vibration-generating parts of automobiles, interior materials, building materials, home electric appliances, and the like, but the temperature (operating temperature range) applied in those applications varies. For example, the loss tangent tan (the maximum value of 5 is within the range of 40 ± 10 ° C) is added to a plasticizer-added vinyl chloride resin (hereinafter referred to as vinyl chloride A). The composition obtained by blending the rubber (hereinafter referred to as DCHP) with rubber has excellent vibrational energy absorption performance over a wide temperature range, but the temperature range is so high that it can be applied to all applications. Therefore, the temperature at which the loss tangent tan 6 becomes the maximum must be moved to the operating temperature range so that excellent vibration energy absorption performance can be achieved in the operating temperature range. By mixing A, DCHP and rubber at a predetermined ratio The resulting composition is further blended with a plasticizer-free vinyl chloride resin (hereinafter referred to as vinyl chloride B). As a result, the temperature at which the loss tangent t an (5 is maximized can be moved to the operating temperature range, and excellent vibration energy absorption performance can be exhibited in the operating temperature range. By adding vinyl chloride B, which has a maximum loss tangent t and in the high temperature range of 50 to 150 ° C, to the composition obtained by compounding with rubber, the overall composition is affected by vinyl chloride B. This composition is thought to result from the loss tangent t an δ shifting to the vinyl chloride Β side.This composition can be applied to vibration-generating parts such as automobiles, interior materials, building materials, and home appliances. The type of polymorphic compound and the compounding ratio (vinyl chloride-based areocyanate / polycyclic compound) are appropriately determined in accordance with the intended use. Determined mixing ratio The known vinyl chloride resin and polycyclic compound are kneaded by using a conventionally known melt-mixing device such as a hot roll, Banbury mixer, twin-screw kneader, or extruder, and the vibration damping material is formed by molding. In addition, this composition contains plasticizers, stabilizers, lubricants, antioxidants, flame retardants, antistatic agents, ultraviolet absorbers, or coloring pigments, depending on the application and use conditions. Example 1 100 parts by weight of vinyl chloride resin (SS-110, manufactured by Nippon PVC Sales Co., Ltd.) and 100 parts by weight of VIOSORB590 (manufactured by Kyodo Yakuhin Co., Ltd.) (Example 1), 70 Parts by weight (Example 2) and 30 parts by weight (Example 3), and these were charged into a roll set at 160 ° C. and kneaded. The kneaded material is sandwiched between dies heated to 180 ° C. and heated for 180 seconds, and then pressed with a press at a pressure of 80 kg ′ fZcm 2 for 30 seconds to form a sheet having a thickness of 1 mm. The obtained sheet is cut into a dimension of 67 mm x 9 mm for loss tangent t anc5 measurement, and used as a test piece. In addition, a test piece of the vinyl chloride resin alone was molded in the same manner as Comparative Example 1 to obtain a test piece. The loss tangent tan (5 was measured for the test pieces of Examples 1 to 3 and Comparative Example 1. The loss tangent t and was measured using a dynamic viscoelasticity measurement test apparatus (Rheovibron DD V-25FP, Orientec Co., Ltd.). The measurement results are shown in Fig. 1. From Fig. 1, the compositions of Examples 1 to 3 have extremely low vibrational energy-absorbing performance as compared with the vinyl resin of Comparative Example 1 alone. In particular, the compositions of Examples 1 and 2 have excessively high loss tangents t anc5, and cannot be measured 2 Example 3 in which 30 parts by weight of HPMMB is blended Even with the composition of Example 1, the maximum value of the loss tangent t and is 2.5, which indicates that the composition has more than twice the performance of that of Comparative Example 1. For compositions 1-3, the temperature at which the loss tangent t anc5 is the maximum, regardless of the amount of 2HP MMB, It does not move and it is noted that the temperature is around 100 ° C. Next, 100 parts by weight of 2HMBP (VI OSORB 520, manufactured by Kyodo Yakuhin Co., Ltd.) (Example 4), 70 parts by weight ( Specimens were prepared in the same manner as in Examples 1 to 3, except that they were blended in the respective amounts of Example 5) and 30 parts by weight (Example 6). The tangent t an (5 was measured. The results are shown in FIG. 2. From FIG. 2, the maximum values of the loss tangent tan 5 in the compositions of Examples 4 to 6 were 1.7 to 1.8 in all cases. In the compositions of Examples 4 to 6, the amount of 2HMBP was increased. It can be seen that the maximum value of the loss tangent t an <5 does not change much, but the temperature at which the loss tangent t an 5 becomes maximum moves to the lower temperature side. Next, 100 parts by weight (Example 7), 70 parts by weight (Example 8), and 30 parts by weight (Example 9) of 2HBMPCB (VI OSORB 550, manufactured by Kyodo Yakuhin Co., Ltd.) were blended. Except for the above, test pieces were prepared in the same manner as in Examples 1 to 3, and their loss tangents t an (5) were measured together with Comparative Example 1 using only vinyl resin. The results are shown in FIG. Therefore, the loss tangent t an (5) of each of the compositions of Examples 9 to 9 is around 2.0, and the vibration energy absorption performance is about twice that of Comparative Example 1. In addition, in the compositions of Examples 7 to 9, the temperature at which the loss tangent t and becomes maximum is in the range of 80 to 90 ° C. regardless of the amount of 2HMBP. , 2HDBPCB (VI OSORB 580, manufactured by Kyodo Yakuhin) in 100 parts by weight (Example 10), 70 parts by weight (Example 11), 30 parts by weight (Example 12) Specimens were prepared in the same manner as in Examples 1 to 3 except that they were blended, and their loss tangents t an (5 were measured together with Comparative Example 1 using only vinyl resin. The results are shown in FIG. 4 shows that the maximum values of the loss tangents t an に お け る in the compositions of Examples 10 to 12 all have vibration energy absorption performances exceeding those of Comparative Example 1. 2H DBPCB It is noted that ECDPA (VIOSORB910, manufactured by Kyodo Yakuhin Co., Ltd.) is 100 parts by weight (Example 13), 70 parts by weight (Example 14), 30 parts by weight ( Specimens were prepared in the same manner as in Examples 1 to 3 except that they were blended in the respective amounts of Example 15), and their loss tangents t an (5) were measured together with Comparative Example 1 using only vinyl resin. The result This is shown in FIG. From FIG. 5, it can be seen that the maximum value of the loss tangent t an (5 in the compositions of Examples 13 to 15 is gradually increased as the amount of ECDPA is increased, while the loss tangent tan (5 is the maximum value. It can be seen that the temperature is also moving to the low temperature side Next, 100 parts by weight of MBTS (Soxinol DM, manufactured by Sumitomo Chemical Co., Ltd.) (Example 16), 70 parts by weight (Example 17), 30 parts by weight Specimens were prepared in the same manner as in Examples 1 to 3 except that they were blended in the respective amounts of parts (Example 18), and their loss tangents t an (5 were measured together with Comparative Example 1 using only vinyl resin. The results are shown in Fig. 6. From Fig. 6, the loss tangent tan (the maximum value of 5 in the compositions of Examples 16 to 18 was 1.6 to 1.7 in all cases, indicating that sufficient results were obtained. It can be seen that it has vibration energy absorption performance, and the maximum value of the loss tangent ta depends on the amount of MBTS. It can be seen that the temperature at which the loss tangent tanc5 reaches a maximum moves to a lower temperature side as the blending amount increases, and then the CBS (Soxinol CZ, Sumitomo Chemical Co., Ltd.) The test pieces were prepared in the same manner as in Examples 1 to 3, except that 100 parts by weight (Example 19), 70 parts by weight (Example 20), and 30 parts by weight (Example 21) were mixed. The samples were prepared and their loss tangents t and were measured together with Comparative Example 1 of only vinyl resin.The results are shown in Fig. 7. From Fig. 7, the loss tangents t an ( The maximum value of 5 is 1.7 to 2.2 in each case, and it can be seen that the temperature increases as the compounding amount of CBS increases, and the temperature at which the maximum loss tangent ta nc5 moves to the lower temperature side. Next, 100 parts by weight of BBS (NSG, manufactured by Sanshin Chemical Industry Co., Ltd.) (Example 2) 2), 70 parts by weight (Example 23), and 30 parts by weight (Example 24) except that the respective amounts were blended, a test piece was prepared in the same manner as in Examples 1 to 3, and only the vinyl resin was used. Together with Comparative Example 1, their loss tangents t anc were measured. The result is shown in FIG. From FIG. 8, the maximum value of the loss tangent t anc in the compositions of Examples 22 to 24 is 1.8 to 2.3 in each case, and increases as the blending amount of BBS increases, and the loss tangent tan 0 increases. It can be seen that the maximum temperature has shifted to the lower temperature side. Next, 100 parts by weight (Example 25), 70 parts by weight (Example 26), and 30 parts by weight (Example 27) of DPBS (DIB, manufactured by Sanshin Chemical Industry Co., Ltd.) were distributed. Test pieces were prepared in the same manner as in Examples 1 to 3 except that they were combined, and their loss tangents t an (5) were measured together with Comparative Example 1 using only vinyl resin. The results are shown in FIG. From FIG. 9, it can be seen that the loss tangent t an (5 in the compositions of Examples 22 to 24 is almost the same as 1.6 to 1.8 regardless of the amount of DPBS, regardless of the amount of DPBS. As the blending amount increases, it can be seen that the loss tangent t an (the temperature at which the maximum value of 5 moves to the lower temperature side. Then, 100 weight of vinyl chloride resin (SS-110, manufactured by Nippon PVC Sales Co., Ltd.) Parts by weight, 50 parts by weight of N, N-dicyclohexylbenzothiaziruyl 2-sulfenamide (Sansera I DZ, manufactured by Sanshin Chemical Industry Co., Ltd.) (Example 28), MBT (Sancera M, manufactured by Sanshin Chemical Industry Co., Ltd.) (Example 29), and MBTS (Sancera DM, manufactured by Sanshin Chemical Industry Co., Ltd.) (Example 33) The mixture was put into a roll set at 160 ° C and kneaded, and the resulting kneaded material was sandwiched between molds heated to 180 ° C and heated for 180 seconds, and then 80 kg · / cm Press for 30 seconds with a pressure of 2 to form a sheet with a thickness of 1 mm Cut the obtained sheet into 67 mm x 9 mm dimensions for measurement of loss factor, and use it as a test piece. A sample of Comparative Example 1 was molded in the same manner as Comparative Example 1 to obtain a test piece. The test pieces of Examples 29 to 30 and Comparative Example 1 were measured in the same manner as in Examples 1 to 3, and the measurement results are shown in FIG. From FIG. 10, it can be seen that the vinyl chloride-based vibration damping resins of Examples 28 to 30 have much better vibration energy absorption performance than the vinyl resin of Comparative Example 1. In particular, it can be seen that the resin of Example 28 has twice or more the performance of Comparative Example 1. Next, in the above Examples 28 to 30, the amount of the compound containing a mercaptobenzozothiazyl group was increased in the range of 0 to 50 parts by weight with respect to 100 parts by weight of the biel chloride resin. The degree of change in the loss tangent t an (5) was examined. The results are shown in Fig. 11. In the same manner as in the previous experiment, only the vinyl chloride resin was measured as Comparative Example 1. t an (was also determined in the same manner as in the previous experiment. From FIG. 11, it can be seen that the value of the loss tangent t an (5 increases as the compounding amount of the compound containing a mercaptobenzozothiazyl group increases. Furthermore, it was confirmed that the loss tangent t an (5 was surely increased as the compounding amount of the compound containing a mercaptobenzothiazyl group was increased from 0 to 50 parts by weight. Agricultural as PVC A 100 parts by weight (38% by weight) of recycled PVC resin (manufactured by Yamamoto Shoten), 78 parts by weight (30% by weight) of DCHP (DCHP special grade, manufactured by Wako Reagents Co., Ltd.), NBR (recycled NBR) 20 parts by weight (8% by weight) manufactured by Suzuko Seisakusho Co., Ltd., 52 parts by weight (20% by weight) of calcium carbonate (# 250, manufactured by Ohanaya Co., Ltd.) (SS-110, manufactured by Nippon PVC Sales Co., Ltd.) at a ratio of 10 parts by weight (4% by weight), and these were charged into a roll set at 160 ° C. and kneaded. the, 180 ° heated sandwiched therebetween 180 seconds between heated mold to a C, 30 seconds pressurized with 80 pressure kg · f cm 2 in this after press, 1 mm of It was sheeted to thickness. The obtained sheet was cut into a size of 67 mm X 9 mm for loss tangent measurement to obtain a test piece (Example 31). Recycled agricultural vinyl chloride resin used in Example 31 / D CHP / NB R / Calcium carbonate / vinyl chloride resin 100 parts by weight / 95 parts by weight / 20 parts by weight / 63 parts by weight / 38 parts by weight (32 (% By weight / 30% by weight / 6% by weight / 20% by weight / 12% by weight) in the same manner as in Example 31 except that the test piece (Example 32) was obtained. Recycled agricultural vinyl chloride resin used in Example 31 ZDCHP / NBR / Calcium carbonate 100 parts by weight / 122 parts by weight of vinyl chloride resin Z 20 parts by weight 81 parts by weight / 83 parts by weight (25% by weight / 30% (Weight% / 5 weight% / 20 weight% / 20 weight%) in the same manner as in Example 31 except that the test piece (Example 33) was obtained. Recycled agricultural polyvinyl chloride resin used in Example 31 ZD CH P / NBR / calcium carbonate / vinyl chloride resin 100 parts by weight / 177 parts by weight / 20 parts by weight / 188 parts by weight / 175 parts by weight (17 parts by weight % / 30% by weight, Z3% by weight, 20% by weight / 30% by weight), and a test piece (Example 34) was obtained in the same manner as in Example 31. A test piece (Comparative Example 2) was obtained in the same manner as in Example 31 using only the recycled vinyl chloride resin for agriculture used in Example 31. Recycled agricultural vinyl chloride resin used in Example 31, DCHP and calcium carbonate were blended at a ratio of 100 parts by weight / 60 parts by weight / 40 parts by weight (50% by weight / 30% by weight / 20% by weight). A test piece (Comparative Example 3) was obtained in the same manner as in Example 31 except that the test was performed. The loss tangent t an (5 was measured for the test pieces of Examples 31 to 34 and Comparative Examples 2 and 3 in the same manner as in Examples 1 to 3. The measurement results are shown in FIG.
@  @
図 12から、 実施例 31〜34の試験片は、 比較例 2のものに比べ、 振動エネ ルギ一吸収性能が頗るよいことが解る。 また実施例 31の試験片と比較例 3のも のとを比べたとき、 振動エネルギー吸収性能は同程度ではあるが、 損失正接 t a nc^が 1. 6以上の温度範囲を見てみると、 比較例 3のものが約 11〜約 34° Cとなっているのに対し、 実施例 31は約 11〜45° Cと、 その温度領域は 2 3° Cから 34° Cと大幅に拡張されていることが解る。  From FIG. 12, it can be seen that the test pieces of Examples 31 to 34 have much better vibration energy-absorbing performance than those of Comparative Example 2. Also, when comparing the test piece of Example 31 with that of Comparative Example 3, the vibration energy absorption performance is almost the same, but when looking at the temperature range where the loss tangent ta nc ^ is 1.6 or more, Comparative Example 3 has a temperature range of about 11 to about 34 ° C., whereas Example 31 has a temperature range of about 11 to 45 ° C., and its temperature range is greatly expanded from 23 ° C. to 34 ° C. I understand that
@  @
また実施例 31の試験片は、 損失正接 t an<5の最大となる温度が約 20° C であるのに対し、 塩化ビニル Bの配合量を 38重量部 (12重量%) 、 83重量 部 (20重量%) 、 175重量部 (30重量部) と変えた実施例 32〜34の損 失正接 t anc5が最大となる温度は、 約 27° C、 約 33° C、 約 43° Cとな つている。  In the test piece of Example 31, the temperature at which the loss tangent t an <5 was the maximum was about 20 ° C., but the amount of vinyl chloride B was 38 parts by weight (12% by weight) and 83 parts by weight (20% by weight) and 175 parts by weight (30 parts by weight) The temperatures at which the loss tangent t anc5 of Examples 32 to 34 is maximum are about 27 ° C, about 33 ° C, and about 43 ° C. It is.

Claims

言青求の範囲 Scope of word blue
1. 塩化ビニル系樹脂に、 同塩化ビニル系樹脂に可溶であり、 分子内に多数の 環状構造を持ち、 かつその環状構造部分の分子量が分子全体の分子量の 50%以 上を占めている化合物を配合したことを特徴とする塩化ビニル系制振樹脂組成物 c 1. It is soluble in vinyl chloride resin, has a large number of cyclic structures in the molecule, and the molecular weight of the cyclic structure portion accounts for 50% or more of the molecular weight of the whole molecule A vinyl chloride-based vibration damping resin composition c characterized by containing a compound
2. 塩化ビニル系樹脂に下記式で表されるベンゾトリアゾ一ル基を持つ化合物 を配合したことを特徴とする請求項 1記載の塩化ビニル系制振樹脂組成物。 2. The vinyl chloride-based vibration damping resin composition according to claim 1, wherein a compound having a benzotriazole group represented by the following formula is blended with the vinyl chloride-based resin.
Figure imgf000019_0001
Figure imgf000019_0001
3. ベンゾトリァゾ一ル基を持つ化合物が、 2— {2' 一ハイ ドロキシ— 3' 一 (3" , 4", 5" , 6"テトラハイ ドロフタリミデメチル) 一5' —メチル フエ二ル} —ベンゾトリアゾールであることを特徴とする請求項 2記載の塩化ビ 二ル系制振樹脂組成物。 3. The compound having a benzotriazole group is 2- {2'-hydroxy-3 '-(3 ", 4", 5 ", 6" tetrahydrophtalidimidemethyl) 1-5'-methylphenyl }-The vinyl chloride-based vibration damping resin composition according to claim 2, characterized in that it is benzotriazole.
4. ベンゾトリアゾ一ル基を持つ化合物が、 2— {2' 一ハイ ド口キシ— 5' —メチルフエ二ル}一べンゾトリアゾ一ルであることを特徴とする請求項 2記載 の塩化ビニル系制振樹脂組成物。 4. The vinyl chloride-based compound according to claim 2, wherein the compound having a benzotriazole group is 2- {2'-one-open-mouth xy-5'-methylphenyl} -benzotriazole. Vibrating resin composition.
5. ベンゾトリアゾール基を持つ化合物が、 2— {2' —ハイ ドロキシー 3' 一 tーブチルー 5' —メチルフエ二ル} 一 5—クロ口べンゾトリアゾールである ことを特徴とする請求項 2記載の塩化ビニル系制振樹脂組成物。 5. The compound having a benzotriazole group is 2- {2′-hydroxy-3′-t-butyl-5′-methylphenyl} -15-chlorobenzototriazole, according to claim 2, characterized in that: Vinyl chloride-based vibration damping resin composition.
6. ベンゾトリアゾール基を持つ化合物が、 2— {2' —ハイ ドロキシ— 3' , 5 ' ージー t一ブチルフエ二ル} 一 5—クロ口べンゾトリアゾ一ルであるこ を 特徴とする請求項 2記載の塩化ビニル系制振樹脂組成物。 6. Make sure that the compound having a benzotriazole group is 2- {2'-hydroxy-3 ', 5'-di-t-butylphenyl} -1-5-benzobenzotriazole. 3. The vinyl chloride-based vibration damping resin composition according to claim 2, wherein:
7 . 塩化ビニル系樹脂に下記式で表されるジフエ二ルァクリレート基を持つ化 合物を配合したことを特徴とする請求項 1記載の塩化ビニル系制振樹脂組成物。 7. The vinyl chloride-based vibration-damping resin composition according to claim 1, wherein a compound having a diphenylacrylate group represented by the following formula is blended with the vinyl chloride-based resin.
Figure imgf000020_0001
Figure imgf000020_0001
8 . 塩化ビニル系樹脂に下記式で表されるメルカブトべンゾチアジル基を含む 化合物を配合したことを特徴とする請求項 1記載の塩化ビニル系制振樹脂組成物  8. The vinyl chloride-based vibration damping resin composition according to claim 1, wherein a compound containing a mercaptobenzozothiazyl group represented by the following formula is blended with the vinyl chloride-based resin.
Figure imgf000020_0002
Figure imgf000020_0002
9 . メルカブトべンゾチアジル基を含む化合物が、 N、 N—ジシクロへキシル ベンゾチアジルー 2—スルフェンアミ ドであることを特徴とする請求項 8記載の 塩化ビニル系制振樹脂組成物。  9. The vinyl chloride-based vibration-damping resin composition according to claim 8, wherein the compound containing a mercaptobenzozothiazyl group is N, N-dicyclohexylbenzothiaziru-2-sulfenamide.
1 0 . メルカブトべンゾチアジル基を含む化合物が、 2—メルカブトべンゾチ ァゾールであることを特徴とする請求項 8記載の塩化ビニル系制振樹脂組成物。 10. The vinyl chloride-based vibration-damping resin composition according to claim 8, wherein the compound containing a mercaptobenzozothiazyl group is 2-mercaptobenzothiazole.
1 1 . メルカプトべンゾチアジル基を含む化合物が、 ジベンゾチアジルスルフ イ ドであることを特徴とする請求項 8記載の塩化ビニル系制振樹脂組成物。 11. The vinyl chloride-based vibration-damping resin composition according to claim 8, wherein the compound containing a mercaptobenzothiazyl group is dibenzothiazyl sulfide.
1 & 1 &
PCT/JP1996/000908 1996-02-13 1996-04-01 Vinyl chloride-base damping resin composition WO1997030116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU12034/97A AU1203497A (en) 1996-02-13 1996-04-01 Vinyl chloride-base damping resin composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8/25189 1996-02-13
JP2518996A JPH09216983A (en) 1996-02-13 1996-02-13 Vibration damping vinyl chloride resin and vibration damping material prepared using the same
JP3386296A JPH09227745A (en) 1996-02-21 1996-02-21 Vibration-damping resin composition
JP8/33862 1996-02-21
JP8047385A JPH09241461A (en) 1996-03-05 1996-03-05 Vibration-damping vinyl chloride resin composition
JP8/47385 1996-03-05

Publications (1)

Publication Number Publication Date
WO1997030116A1 true WO1997030116A1 (en) 1997-08-21

Family

ID=27284925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000908 WO1997030116A1 (en) 1996-02-13 1996-04-01 Vinyl chloride-base damping resin composition

Country Status (2)

Country Link
AU (1) AU1203497A (en)
WO (1) WO1997030116A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829854A (en) * 1971-08-18 1973-04-20
JPS5698252A (en) * 1980-01-07 1981-08-07 Hitachi Cable Ltd Crosslinkable polyvinyl chloride resin composition
JPS60233140A (en) * 1984-05-02 1985-11-19 Bando Chem Ind Ltd Vinyl chloride based resin composition
JPH0370758A (en) * 1989-08-11 1991-03-26 Tosoh Corp Vinyl chloride-based resin composition
JPH0565382A (en) * 1990-10-31 1993-03-19 Tosoh Corp Polyvinyl chloride resin composition
JPH0657076A (en) * 1992-06-11 1994-03-01 Tosoh Corp Polyvinyl chloride resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829854A (en) * 1971-08-18 1973-04-20
JPS5698252A (en) * 1980-01-07 1981-08-07 Hitachi Cable Ltd Crosslinkable polyvinyl chloride resin composition
JPS60233140A (en) * 1984-05-02 1985-11-19 Bando Chem Ind Ltd Vinyl chloride based resin composition
JPH0370758A (en) * 1989-08-11 1991-03-26 Tosoh Corp Vinyl chloride-based resin composition
JPH0565382A (en) * 1990-10-31 1993-03-19 Tosoh Corp Polyvinyl chloride resin composition
JPH0657076A (en) * 1992-06-11 1994-03-01 Tosoh Corp Polyvinyl chloride resin composition

Also Published As

Publication number Publication date
AU1203497A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
TW517070B (en) Curable perfluoroelastomer composition
Banerjee et al. Novel nanostructured polyamide 6/fluoroelastomer thermoplastic elastomeric blends: Influence of interaction and morphology on physical properties
US5591798A (en) High temperature stable, low solvent swelling thermoplastic elastomer compositions
CA1334701C (en) High temperature stable, low solvent swelling thermoplastic elastomer compositions
JP6472874B2 (en) Encapsulant for dynamic applications
US4367316A (en) Vulcanized elastomeric molded article
US5053450A (en) Elastomer compositions
JP2006188689A (en) Dynamic vulcanization of non-nitrile rubber in fluororesin polymer
JP2006241434A (en) Thermoplastic vulcanized rubber containing high-temperature processing aid
JP6800890B2 (en) Hardness setting of thermoplastic elastomer composition by combination of thermoplastic and thermoplastic elastomer
Lai et al. Shape memory properties of olefin block copolymer (OBC)/poly (ɛ‐caprolactone)(PCL) blends
Jha et al. Effect of fillers and plasticizers on the performance of novel heat and oil‐resistant thermoplastic elastomers from nylon‐6 and acrylate rubber blends
CA1334703C (en) High temperature stable, low solvent swelling thermoplastic elastomer compositions
WO1997030116A1 (en) Vinyl chloride-base damping resin composition
Abdul Kader et al. Effect of filler on the mechanical, dynamic mechanical, and aging properties of binary and ternary blends of acrylic rubber, fluorocarbon rubber, and polyacrylate
JPH09241461A (en) Vibration-damping vinyl chloride resin composition
Mousa et al. Rheological and mechanical properties of dynamically cured poly (vinyl chloride)/nitrile butadiene rubber thermoplastic elastomers
JP2009203322A (en) Thermoplastic elastomer product and its manufacturing method
CN114195921B (en) Polymeric sterically hindered amine and preparation method and application thereof
JPH107845A (en) Vibration-damping material
Poomalai et al. Poly (methyl methacrylate) toughened by ethylene‐vinyl acetate copolymer: Physico‐mechanical, thermal, and chemical properties
JPH10138365A (en) Laminated damping steel material of unconstrained type
JPH09216983A (en) Vibration damping vinyl chloride resin and vibration damping material prepared using the same
JP3575659B2 (en) High attenuation material composition
CN109721857A (en) Improve the new auxiliary formula of TPV

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase