WO1997029914A1 - Optical switch and ink-jet printer - Google Patents

Optical switch and ink-jet printer Download PDF

Info

Publication number
WO1997029914A1
WO1997029914A1 PCT/JP1997/000384 JP9700384W WO9729914A1 WO 1997029914 A1 WO1997029914 A1 WO 1997029914A1 JP 9700384 W JP9700384 W JP 9700384W WO 9729914 A1 WO9729914 A1 WO 9729914A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
electrode
photoconductor
piezoelectric element
optical
Prior art date
Application number
PCT/JP1997/000384
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Kimura
Masao Hiyane
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to DE19780213T priority Critical patent/DE19780213T1/en
Priority to JP9529188A priority patent/JP3030787B2/en
Publication of WO1997029914A1 publication Critical patent/WO1997029914A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Definitions

  • the present invention relates to an optical switch using a capacitance object such as a piezoelectric element and a photoconductor, and to an ink jet printer using such an optical switch.
  • the present invention can be conveniently applied to achieve a high-speed driving and high-density switch structure.
  • the inkjet printer which is rapidly developing as a personal printer, is not an exception.
  • it is necessary to reduce the pitch between the nozzles for the ink jet.
  • the limit is to limit the nozzle arrangement interval to several lines per square meter, and especially the narrowing of the pitch at the connection between the ink injection pump and the starting circuit is already limited. Has been reached.
  • Japanese Patent Application Laid-Open No. Sho 61-29343 discloses a conventional technique for controlling the driving state of a piezoelectric element by irradiating a photoconductor with light. This is related to an ultrasonic probe that transmits and receives ultrasonic signals, and has a structure in which a photoconductor is directly provided on one side of a piezoelectric element, and a transparent electrode is provided thereon, so that a light beam emitted from the transparent conductor side is emitted.
  • the operating area of the piezoelectric element and the sensitivity (resistance) of the photoconductor are controlled, and when the piezoelectric element receives ultrasonic waves, the output of the piezoelectric element receiving the ultrasonic waves The voltage is taken out as an analog value.
  • a recording element is formed of a photoconductive element in a piezoelectric element that deforms a pressure chamber of an ink nozzle, a recording electrode provided in the nozzle, and a counter electrode provided corresponding to the recording electrode.
  • a high voltage is applied to the ink by forming a meniscus of the ink with the piezoelectric element, applying a voltage between the nozzle surface and the recording electrode, and irradiating the photoconductor provided on the nozzle surface with light.
  • electric charges are injected into the ink at the generated high voltage, and at the same time, the ink starts flying at the high charge level. Disclosure of the invention
  • the present invention provides an ink jet printer device which realizes the four problems (1) to (4) described above, namely, wiring of a fine pattern, a large number of individual drive circuits, suppression of high voltage, and low cost.
  • the task is to provide.
  • Another object of the present invention is to provide an optical switch which can be suitably used for driving an ink jetting mechanism of a head in an ink jet printer according to the present invention.
  • the present invention uses a photoconductor as a driving circuit for a piezoelectric element, and irradiates the photoconductor with light according to a signal pattern, thereby varying the voltage between both ends of the piezoelectric element (capacitance object).
  • a light switch characterized by An optical multi-switch is provided by providing a switch and a plurality of nozzles for ejecting ink by mechanical displacement of the piezoelectric element, and providing individual photoconductors for each piezoelectric element.
  • the optical switch of the present invention can switch the charging or discharging of the capacitance object (piezoelectric element) by irradiating the photoconductor connected to the capacitance object with light.
  • the feature is that it is performed by using the
  • the capacitance object has a pair of electrodes, one of which is formed by the photoconductor, and the other of which is grounded.
  • the photoconductor has a first side connected to one electrode of the capacitive object, and a second side opposite to the first side, and the second side is a transparent conductor.
  • the signal of the electric circuit connected to the transparent conductor is transmitted to the capacitance object by an optical switching effect of the photoconductor.
  • One electrode of the capacitance object is a good conductor electrode, the photoconductor is bonded to the good conductor electrode, and a side of the photoconductor opposite to the good conductor electrode is formed of a transparent conductor. A signal of an electric circuit connected to the transparent conductor is transmitted to the capacitance object by an optical switching effect of the photoconductor.
  • the capacitance object is composed of a piezoelectric body, and the piezoelectric body is deformed by a signal transmitted to the piezoelectric body by an optical switching effect of the photoconductor. It is desirable to extract mechanical output.
  • the optical multi-switch of the present invention includes a plurality of capacitance objects (piezoelectric elements), and one electrode of each capacitance object is independently illuminated.
  • the other electrode of each capacitance object is connected to the conductor, and the other electrode of the adjacent capacitance object is connected to the other electrode of the adjacent capacitance object, and performs switching of charging or discharging of each capacitance object.
  • the method is characterized by performing the light switch effect by irradiating each photoconductor with light.
  • a plurality of ink jetting mechanisms using piezoelectric materials are arranged in parallel, and one electrode of each piezoelectric material is connected to each other. Independently connected to the photoconductor, and the other electrode of each piezoelectric body is connected to the other electrode of the adjacent piezoelectric body, and the light scanning means selectively irradiates the plurality of photoconductors with light.
  • the ink is ejected from the ink ejecting mechanism by deforming the corresponding piezoelectric body.
  • a laser optical system such as a laser light source, a rotating mirror or a vibrating mirror, and acoustic deflection can be used.
  • a photosensitive layer is connected to the piezoelectric element of an image forming apparatus including an ink supply path, an ink pressure chamber, an ink nozzle, and a piezoelectric element, and the photosensitive layer is irradiated with light according to an image pattern. Accordingly, in an ink jet printer using an optical switch, the piezoelectric element is deformed and the piezoelectric element is ejected from the ink nozzle by mechanical fluctuation.
  • a switch circuit is connected between one electrode and the other electrode of the piezoelectric element, and a voltage having a polarity such that the photosensitive member can respond to light is applied to the photosensitive layer (5).
  • a printer device characterized by the following is provided.
  • the ink pressure chamber When a voltage of approximately 0 V is applied to the piezoelectric element, the ink pressure chamber expands, absorbs ink from the ink supply path, and is applied to the photosensitive element to the photosensitive layer. When a high voltage is applied, the ink pressure chamber may be configured to contract.
  • the ink pressure chamber expands, absorbs ink from the ink supply path, and conversely, when the high voltage applied to the photosensitive layer is applied to the piezoelectric element, the ink chamber shrinks. It can also be configured.
  • FIG. 1 is a configuration diagram schematically showing an inkjet nozzle of the present invention.
  • FIG. 2 is a principle view of an ink jet nozzle using the optical switch of the present invention.
  • FIG. 3 shows a specific configuration example of the ink jet nozzle of the present invention.
  • FIGS. 4 (a) and 4 (b) are diagrams for explaining a method of forming a diode 7 used in an ink jet head using the optical switch of the present invention.
  • Figure 5 shows a multiplexed circuit configuration that includes a piezoelectric element, a photoconductor film, and a diode.
  • Figure 6 shows the overall configuration of the ink jet printer.
  • Figure 7 is a schematic diagram of the print head.
  • FIG. 8 shows a configuration example of the optical switch of the present invention.
  • FIG. 9 shows another example of the configuration of the optical switch of the present invention.
  • FIG. 1 shows a configuration of an ink jet nozzle to which the present invention is applied.
  • 1 is a nozzle plate
  • 2 is an ink pressure chamber
  • 3 is a piezoelectric element, which is configured as a piezoelectric injection device.
  • the piezoelectric element 3 is a part of the inner wall of the ink pressure chamber 2, for example, the upper wall as shown in the figure. Is formed.
  • the pressure chamber 2 contracts, so that pressure is applied to the ink in the pressure chamber 2 Image recording by ejecting ink droplets through the nozzle holes 1 a of the nozzle plate 1.
  • the piezoelectric element 3 is deformed from the solid line position in FIG. 1 to the broken line position, the pressure chamber 2 expands, and the ink is absorbed into the pressure chamber 2. I do.
  • the piezoelectric element 3 contracts the pressure chamber 2 when applying a voltage, that is, when charging, ejects ink droplets, and expands the pressure chamber 2 during discharge to absorb ink in the pressure chamber 2.
  • a voltage that is, when charging, ejects ink droplets
  • the pressure chamber 2 expands to absorb ink into the pressure chamber 2
  • discharging contracts the pressure chamber 2 to cause ink drop. May be deformed so as to inject water.
  • FIG. 2 is a diagram illustrating the principle of the ink jet printer of the present invention.
  • FIG. 3 is a perspective view thereof.
  • reference numeral 4 denotes a conductive film individually connected to each piezoelectric element 3
  • 5 denotes a photoconductor layer individually formed on each conductive film 4
  • 6 denotes an individual photoconductor layer 5
  • a common high-voltage circuit connected to the other surface 7 is a diode individually connected to each photoconductor layer 5
  • 8 is a ground short circuit (commonly provided for each diode 7).
  • 9) is a common ink supply path
  • 10 is a platen
  • 11 is a print medium
  • 12 is a scanning light.
  • Reference numeral 13 denotes a transparent conductive film.
  • a plurality of pressure chambers 2 are arranged in the line direction with respect to the platen 10.
  • the nozzle plate 1 has a nozzle hole 1a corresponding to each pressure chamber 2.
  • the common ink supply passage 9 communicates with the individual pressure chambers 2 via the communication holes 9a.
  • each piezoelectric element 3 is connected to one (upper) surface of an individual photoconductor eyebrow 5 via an individual conductive film 4.
  • Individual One (upper) surface of the photoconductor layer 5 is connected to an individual diode 7 and the other (lower) surface is connected to a common high-voltage circuit 6.
  • the electrodes on the other (lower) surface of the individual piezoelectric element 3 are connected to a common ground (switch) 8.
  • the individual photoconductor layer 5 is selectively irradiated with the scanning light 12 of the laser beam via the transparent conductive film 13 o
  • the present invention by realizing a large number of drive circuit elements by the photoconductor layer 5 individually connected to the piezoelectric element 3, it is possible to increase the density and reduce the cost. Further, the control of the high voltage applied to the piezoelectric element 3 can be easily handled by applying the optical switching by the photoconductor layer 5.
  • FIGS. 4 (a) and 4 (b) are diagrams for explaining a method of forming a diode 7 used in an ink jet head using the optical switch of the present invention.
  • an N-type silicon substrate 71 is prepared.
  • the surface of the single crystal of the N-type silicon substrate 71 is heated and oxidized to form a silicon oxide film (SiO 2 film).
  • This SiO 2 film functions as a single-crystal protective film and at the same time acts to prevent diffusion of the doping agent.
  • a photosensitive chemical substance (not shown) called a photo resist is applied on the SiO 2 film, and ultraviolet rays are irradiated through a mask (not shown).
  • the SiO 2 film is removed only in the region where the P-type diffusion layer is to be formed.
  • boron is diffused in an oxidizing atmosphere to form a P-type region 73.
  • a SiO 2 film is formed on the surface.
  • the oxide film in the portions corresponding to the electrode portions is removed, and aluminum is formed by vapor deposition on the portions from which these oxide films have been removed, to form electrodes 74 and 75.
  • the SiO 2 film 72 as a protective film remains in portions other than the electrode forming portion.
  • Figure 5 shows a multi-circuit configuration.
  • the piezoelectric element 3, the photoconductive film 5, and the diode 7 are provided for each ink jet nozzle. Is provided.
  • One electrode of each piezoelectric element 3 (1 to n) is connected to one side of a separate photoconductor layer 5 (1 to n), and each connection portion is connected to one of the individual diodes 7.
  • the other side of each diode 7 is commonly connected and connected to the ground via a common ground switch 8.
  • the other sides of the individual photoconductor layers 5 (1 to n) are connected in common and connected to a high-voltage circuit (6).
  • each of the photoconductor layers 5 (1 to! 1) is selectively driven by light irradiation.
  • FIG. 6 is an overall configuration diagram of an ink jet printer that drives nozzles using the optical switch of the present invention
  • FIG. 7 is a schematic diagram of a print head.
  • 20 is a print head
  • 10 is a platen
  • 11 is paper
  • 24 is a paper cassette
  • 25 is paper staple force
  • 30 is a control unit.
  • 21 is an LED array
  • 22 is a self-optical lens
  • 23 is a circuit board. As shown, the structure of the pressure chamber 2 and the multi-circuit configuration shown in FIG.
  • An LED array 21, a self-occurring lens 22, and a circuit board 23 are mounted on a print head 20, and a control unit 30 including a common ground switch 8 is provided on the side of the printer body.
  • the paper 11 is supplied from the paper cassette 24 to the platen 10, and printing is performed on the paper 11 on the platen 10 by the ink jet printing head 20.
  • the printed paper 11 is accumulated on the paper stat force 25.
  • the LED array 21 is arranged in parallel to the arrangement direction of the nozzles 1 a, and can selectively irradiate light to the photoconductor layer 5 corresponding to a specific nozzle via the self-ox lens 22.
  • FIG. 2 the operation principle of the ink jet printer according to the present invention will be described with reference to FIGS. 2, 3, and 5 to 7.
  • FIG. 2 the operation principle of the ink jet printer according to the present invention will be described with reference to FIGS. 2, 3, and 5 to 7.
  • the common ground short circuit 8 is closed (that is, ) And short circuit all circuits. Then, by the action of the diode 7, the surface potential of the upper part of the photoconductor layer 5, that is, the piezoelectric element 3 becomes 0 V. At this time, the piezoelectric element 3 is set so that the pressure chamber 2 expands.
  • the light beam 12 is scanned in accordance with the image signal pattern, and the individual photoconductor layers 5 are selectively irradiated with light via the transparent conductive film 13 (FIG. 3) to selectively irradiate the light.
  • the power supply voltage of the common high-voltage circuit 6 also appears on the opposite side of the photoconductor layer 5 (that is, the upper surface of the photoconductor layer 5), and this potential is transmitted via the conductive film 4 to the piezoelectric body.
  • element 3 Applied to element 3.
  • the piezoelectric element 3 is deformed and the pressure chamber 2 is compressed. As a result, ink droplets are ejected from the compression chamber 2 through the nozzle holes la.
  • the common earth short circuit is closed again (that is, turned on), and since the surface potential of the piezoelectric element 3 that has ejected the ink is higher than the earth potential, the piezoelectric element 3 is discharged through the diode 7 and discharged. The surface of the body element 3 is set to the 0 V potential again. Then, the piezoelectric element 3 expands again in the direction in which the pressure chamber 2 expands, and ink is supplied from the common ink supply path 9 to the pressure chamber 2 via the individual communication holes 9a. In this way, all the piezoelectric elements 3 become 0 V potential and return to the initial state. That is, the pressure chamber 2 is filled with ink.
  • the irradiation of the light beam 12 causes the pressure chamber 2 of the ink to contract and eject the ink.
  • the photoconductor layer is formed. 5 irradiates light, the pressure chamber 2 expands and sucks ink, and a voltage of 0 V is applied to the piezoelectric element 3. Conversely, when the pressure is applied, the pressure chamber 2 is contracted so that ink can be injected.
  • the present invention a large number of drive circuit elements are realized by the photoconductor layer 5 individually connected to the piezoelectric element 3, thereby enabling a reduction in cost. Furthermore, since the voltage is controlled by applying the optical switching by the photoconductor layer 5, the high voltage to be applied to the piezoelectric element 3 can be easily controlled.
  • the ON / OFF ratio of the photoconductor is high, and second, that the ON resistance is small and no residual voltage remains. Is done.
  • the characteristics of currently known inorganic photoconductor films are as follows.
  • Mobility / 10- 5 ⁇ l (T 7 cm 2 / Vs 0. l ⁇ 10cm 2 / Vs ⁇ 0. LcmVVs carrier lifetime Te ⁇ 1 s 10- 5 s 10 " 6 s
  • an injection ink amount lOOpl can be obtained. This value is the required ink amount at 240dpi.
  • the electrical energy once stored in this piezoelectric element is 3.2 ⁇ J from 1Z2QV. Since particle velocity of the injected Lee ink particles is about 8 s, the injection I link is Mochisa ivy kinetic energy is calculated from 1/2 m V 2, about 4 X 10- 4 jtz J, and the stored energy It is about 1/10000. That is, even if ink is ejected, the energy once accumulated in the piezoelectric element remains almost completely.
  • the capacitance of the piezoelectric element becomes 26 pFF.
  • the area becomes It can be reduced by about an order of magnitude to 0.16 times. This is because, as can be understood from Figs. 1 to 3, in the piezo type, the area of the piezoelectric element 3 is designed to restrict the adjacent pitch, and therefore, the area of the piezoelectric element 3 can be reduced. ⁇ ⁇ ⁇ It turns out that it is extremely effective in reducing the size of the nozzle.
  • the piezoelectric element can be driven by a high voltage without using a driving driver. It is advantageous for
  • the optical carrier generated in the photoconductor (photoconductor) must pass through the photoconductor within at least 6 ms.
  • a photoconductor that satisfies this condition is an a-Si or Se photoconductor. Note that the 0PC, only the photosensitive member having 10- 5 ⁇ 10 6 cm 2 ZVs more mobility becomes applicable.
  • the amount of charge stored in the piezoelectric element is 13 nC at 500 V. This means that the number of electrons is 8.125X10 1 °.
  • the photon Nerugi one becomes 2.76 X 10- 1 9 J. Now, assuming that the light conversion efficiency of the photoreceptor is 100%, the required energy is
  • the light energy per unit time is 16.6mW.
  • this can be achieved by using a semiconductor laser with a power of about 30 mW that has about twice the optical output.
  • Wavelength 720nm semiconductor laser
  • the photoconductor that is, the photoconductor layer 5
  • the charge resistance of the piezoelectric element 26pF it is necessary to discharge the charge accumulated in the piezoelectric element 26pF in at least one line scanning time of 6 ms. is there. That is, from the time constant of CR, the resistance R of the photoconductor is
  • the resistance of the a-Si photoreceptor is about 10 7 ⁇ cm, and the required area S of the photoreceptor is
  • an area of about 100 mC] is sufficient. Also, in this area, if the required LD light amount is provided, the required irradiation light amount is
  • This value is about three orders of magnitude greater than the half-life exposure energy of a normal photoreceptor.
  • FIGS. 8 and 9 two types as shown in FIGS. 8 and 9 can be considered. 8 and 9, members corresponding to those in FIGS. 1 to 7 are denoted by the same reference numerals. That is, 3 is a piezoelectric element (capacitance), 4 is a good conductor, 5 is a photoconductor, 6 is a high-voltage circuit, 8 is a ground switch, 12 is a light beam (electric signal), and 13 is a transparent conductive film ( Electrodes) and 15 are electrodes.
  • 3 is a piezoelectric element (capacitance)
  • 4 is a good conductor
  • 5 is a photoconductor
  • 6 is a high-voltage circuit
  • 8 is a ground switch
  • 12 is a light beam (electric signal)
  • 13 is a transparent conductive film
  • Electrodes Electrodes
  • FIG. 8 shows the capacitance, that is, the photoconductor layer 5 formed on the piezoelectric element 3—a body type.
  • the switch 8 is short-circuited, and the voltage applied to the piezoelectric element 3 is substantially reduced. Set to 0 V. 2)
  • switch 8 is opened.
  • 3) Light irradiation is performed from the transparent electrode 13 side of the photoconductor 5 according to the electric signal.
  • an optical carrier is generated only at the place where light is irradiated, the voltage applied to the transparent electrode 13 is applied to the good conductor 4, the voltage is applied to the piezoelectric element 3, and the piezoelectric element 3 outputs mechanical displacement. become.
  • switch 8 is shorted first, and the above operation is repeated.
  • an optical switch is configured.
  • FIG. 9 shows the capacitance, that is, the photoconductive layer 5 formed directly on the piezoelectric element 3. Rather, the photoconductive layer 5 is formed at a position separated from the photoconductive layer 5 via the good conductor 4, and the operation principle is the same as that of the example of FIG.
  • the advantage of FIG. 9 is that the size of the photoconductor (photoconductor) 5 in the optical switch portion can be any configuration without being limited to the size of the piezoelectric element 3.
  • the nozzle plate indicated by 1 is composed of a SUS multilayer plate.
  • 3 is a stacked piezoelectric element o
  • the photoconductor layer 5 is formed by applying a strip-shaped mask pattern on the PET film having a thickness of 100 ⁇ m so as to correspond to the cuts of each piezoelectric element, and then applying the transparent conductive film I T0. It is formed by vapor deposition. Next, a mask pattern in which a mask is opened only at a portion where a photosensitive layer is to be formed is attached, and a single-layer a-Si photosensitive member layer is formed by vacuum evaporation. Further, a conductive dry film is stuck on the photoreceptor film, and a substrate is stacked thereon. On the other hand, an individual diode 7 and a common electrode are formed on the Si substrate at a position remote from the ink jet substrate. Thereafter, the I T0 portion of the transparent conductive layer 13 and the electrode portion of the diode 7 are bonded with a conductive material. In this way, a multi-nozzle head as shown in FIGS. 1 to 3 was created.
  • the operation principle of the ink jet nozzle according to the embodiment of the present invention is as follows.
  • the high voltage circuit 6 does not supply the piezoelectric body 3 with a voltage in a direction in which the pressure chamber 2 expands.
  • the light beam 12 is scanned to selectively activate the photoconductive film 5 and supply electric charges to the piezoelectric body 3.
  • the selected piezoelectric body 3 deforms and sucks ink into the pressure chamber 3
  • the unit not selected by the optical scanning is also coupled with the capacitor, so that a voltage is applied to the piezoelectric body 3 in the step 1, but the dielectric constant of the photoconductor 5 becomes 11 Since the dielectric constant of 3 has a difference of 2 digits or more from 1800 to 4600, if the area is the same and the thickness is the same, most of the voltage is received by the capacitor of the photoconductor film 5 and the value of 1 to 100 or less Only the voltage is applied to the piezoelectric body 3, and the design conditions of the thickness and the area are not affected by this problem.
  • ink suction is selected by an optical switch so that an organic photoreceptor which can be constructed at a low cost is selected.
  • an a-Si photoconductor or a Se photoconductor which is faster than the above, it is also possible to select on the ejection side.
  • optical switching can be performed on the ink jetting side.
  • Piezo element capacitance 26pF 13nC electrostatic storage capacity at 500V drive voltage
  • Table 5 shows the results. As basic conditions, the required maximum ink response speed is 100 s or less, and the resolution is 600 dpi.
  • the optical switching element and the ink jet head are configured one-to-one. This eliminates the need for a drive driver having a high drive voltage with respect to the piezo element of the ink jet as in the past. A simpler configuration can be achieved using mirrors and line LEDs, which is advantageous for economy and miniaturization.

Abstract

The printing speed and resolution of an ink-jet printer are improved by making the wiring pattern finer and increasing the number of individual driving circuits which are required for obtaining a line head, while avoiding high-voltage operation and the increase in cost of the printer. The ink-jet printer is constituted in such a way that ink jetting mechanisms respectively using piezoelectric bodies (3) are arranged in parallel and one electrode of the bodies (3) is independently connected to photoconductors, and then, the other electrodes of the bodies (3) are connected to the other electrodes of adjacent bodies (3). The ink jetting mechanisms emit ink by deforming one of the piezoelectric bodies (3) by selectively irradiating the corresponding photoconductor (5) with light (12) from an optical scanning device. The printer uses an optical switch.

Description

明 細 書 光スィ ッチ及びイ ンク ジエ ツ ト式プリ ンタ 技術分野  Description Optical switch and inkjet printer Technical field
本発明は圧電体素子のような静電容量物体及び光導電体を用いた 光スィ ツチおよびこのような光スィ ツチを利用したィ ンク ジェ ッ ト 式プリ ンタ装置に関する。 本発明は高速駆動で且つ高密度なスィ ッ チ構造を達成しよう とする場合に都合よく適用することができる。 背景技術  The present invention relates to an optical switch using a capacitance object such as a piezoelectric element and a photoconductor, and to an ink jet printer using such an optical switch. The present invention can be conveniently applied to achieve a high-speed driving and high-density switch structure. Background art
近年、 情報処理用の機器の進歩には著しいものがあり、 並列信号 処理が至る所で行われている。 このような並列信号処理を利用した 画像処理装置において、 高密度化、 高画質化が進展し、 一部では人 間の認識限界である約 500dp i (イ ンチ当りの ドッ ト数) の画素密度 を既に凌駕しているのが実情である。 特に、 オフィ スプリ ンタとし て主流となりつつある電子写真プリ ンタ装置において、 約 10 /z m程 度の小さな画素を得るためには、 ( 1 ) 10〃 m程度のビーム径に絞 つたレーザ光を感光体 ドラム上に所望の画像パターンに応じて照射 してこの感光体 ドラム上に静電潜像を形成し、 ( 2 ) この静電潜像 を、 数/ からサブ m程度に細分化した帯電 トナーを用いて、 感 光体 ドラム上で現像することにより画素が約 10 m程度の微細な ト ナー像を得ている。  In recent years, there has been remarkable progress in information processing equipment, and parallel signal processing has been performed everywhere. In image processing devices that use such parallel signal processing, higher densities and higher image quality have progressed, and in some cases, pixel densities of about 500 dpi (dots per inch), which is the limit of human recognition The fact is that it has already surpassed. In particular, in electrophotographic printers, which are becoming mainstream as office printers, in order to obtain pixels as small as about 10 / zm, (1) a laser beam focused to a beam diameter of about 10〃m is exposed. The electrostatic latent image is formed on the photosensitive drum by irradiating the electrostatic latent image on the photosensitive drum in accordance with a desired image pattern. (2) The charged toner obtained by subdividing this electrostatic latent image into several to sub-m By developing on the photosensitive drum using a photo sensor, a fine toner image with pixels of about 10 m is obtained.
—方、 パーソナルプリ ンタと して急速に進展して来ているイ ンク ジエ ツ トプリ ンタについても、 例外ではなく、 高密度で綺麗な画質 を高速で得ることが強く望まれている。 しかしながら、 高密度化を 図るためには、 イ ンク ジヱ ッ ト用ノ ズルのピッチ間隔を縮小するこ とが要求されるが、 ( 1 ) イ ン ク の噴射ポンプを微細化するこ とに 伴ってイ ンク噴射能力が不足すること、 ( 2 ) ノ ズルからのイ ン ク 滴の噴射をノズル毎に個別に制御するための起動回路と噴出ポンプ との接続の構成が困難となり、 高密度化の実現を阻害していた。 現状のプリ ン ト板配線技術では、 ノズルの配列間隔を 1 删当り数 本程度とするのが限界であり、 特にイ ンク噴射ポンプと起動回路と の接続部分におけるピッチを狭めることには既に限界に達している 。 また、 高速化を達成するためにイ ンク ジェ ッ トヘッ ドをラ イ ン化 することが試みられている。 即ち、 噴射ノズルをヘッ ドのラ イ ン方 向に多数配列し、 印刷媒体に対してライ ン毎に並列的にィ ンク ジェ ッ 卜印刷を行う ものである。 し力、し、 噴射へッ ドのライ ン化に際し ては印刷面の幅全域、 即ち約 1 00mm程度の幅にわたってへッ ドを形 成しなければならず、 高々数 10麵程度の幅に対して好適な半導体微 細パター ン形成法を用いて、 ライ ン化されたイ ンク ジヱ ッ トへッ ド を形成するのは非常に困難で且つ高価なものとなる。 —On the other hand, the inkjet printer, which is rapidly developing as a personal printer, is not an exception. However, in order to increase the density, it is necessary to reduce the pitch between the nozzles for the ink jet. (1) Insufficient ink jetting capability due to miniaturization of the ink jet pump, and (2) Injection of ink droplets from nozzles for each nozzle. However, it was difficult to configure the connection between the starter circuit and the ejection pump for individual control, which hindered the realization of high density. With the current print board wiring technology, the limit is to limit the nozzle arrangement interval to several lines per square meter, and especially the narrowing of the pitch at the connection between the ink injection pump and the starting circuit is already limited. Has been reached. Attempts have also been made to line up the inkjet head to achieve higher speeds. That is, a large number of injection nozzles are arranged in the line direction of the head, and ink jet printing is performed in parallel on a print medium for each line. When the head is sprayed, the head must be formed over the entire width of the printing surface, that is, over a width of about 100 mm. On the other hand, it is very difficult and expensive to form a lined ink jet head using a semiconductor fine pattern forming method suitable for the method.
なお、 光導電体に光を照射することにより圧電体素子を駆動状態 を制御する従来技術と して、 特開昭 6 1 - 29343号公報がある。 これは 、 超音波信号を送受信する超音波探触子に関するもので、 圧電素子 の一方に直接光導電体を設け、 その上に透明電極を設けた構造と し 、 透明導電体側から照射する光束の形状及び強度を変更することに より、 圧電素子の動作領域及び光導電体の感度 (抵抗値) を制御し 、 圧電素子が超音波を受信した時は、 超音波を受けた圧電素子の出 力電圧をアナログ値として取り出すようにしたものである。  Japanese Patent Application Laid-Open No. Sho 61-29343 discloses a conventional technique for controlling the driving state of a piezoelectric element by irradiating a photoconductor with light. This is related to an ultrasonic probe that transmits and receives ultrasonic signals, and has a structure in which a photoconductor is directly provided on one side of a piezoelectric element, and a transparent electrode is provided thereon, so that a light beam emitted from the transparent conductor side is emitted. By changing the shape and strength, the operating area of the piezoelectric element and the sensitivity (resistance) of the photoconductor are controlled, and when the piezoelectric element receives ultrasonic waves, the output of the piezoelectric element receiving the ultrasonic waves The voltage is taken out as an analog value.
また、 光導電膜を用いたイ ンク ジヱ ッ ト記録装置と しては、 特開 昭 6 1 - 79664号公報がある。 これは、 イ ンクノズルの圧力室を変形す る圧電素子と、 ノズルに設けた記録電極と、 この記録電極に対応し て設けた対向電極において、 記録電極を光導電素子にて構成する。 圧電素子でイ ンクのメニスカスを形成し、 ノズル面と記録電極との 間に電圧を印加し、 ノズル面に設けた光導電体に光照射をすること によりイ ンクに高電圧が印加され、 その発生した高電圧にてイ ンク に電荷を注入すると同時に、 高電荷位にてイ ンクの飛翔を開始させ るものである。 発明の開示 As an ink jet recording apparatus using a photoconductive film, there is JP-A-61-79664. In this method, a recording element is formed of a photoconductive element in a piezoelectric element that deforms a pressure chamber of an ink nozzle, a recording electrode provided in the nozzle, and a counter electrode provided corresponding to the recording electrode. A high voltage is applied to the ink by forming a meniscus of the ink with the piezoelectric element, applying a voltage between the nozzle surface and the recording electrode, and irradiating the photoconductor provided on the nozzle surface with light. At the same time, electric charges are injected into the ink at the generated high voltage, and at the same time, the ink starts flying at the high charge level. Disclosure of the invention
上述のように、 イ ンク ジヱ ッ 卜プリ ンタにおいて高速化 . 高解像 度化の実現に対しては、 ライ ンヘッ ド化に必須の技術である、 ①微 細パターンの配線、 ②多数の個別駆動回路の実現、 等が重要となる 。 また、 多数の個別駆動回路素子からの発熱を抑制するために、 低 消費電力化の実現も重要となる。 これには、 定電流駆動方式ではな く、 高電圧でも定電圧駆動方式が望ま しい。 したがって、 こ こに、 定電圧駆動における、 ③高電圧の抑制、 という課題が新たな生じる 。 更に、 イ ンク ジヱ ッ 卜へッ ドのライ ン化のためには、 駆動回路の 集積化のみならず、 絶対価格を安価にする、 ④低価格化の課題もあ る  As mentioned above, the speed of the ink jet printer is increased. To achieve high resolution, technologies that are indispensable for line heading are: (1) fine pattern wiring, (2) many It is important to realize individual drive circuits. It is also important to reduce power consumption in order to suppress heat generation from many individual drive circuit elements. For this purpose, it is desirable to use a constant voltage driving method even at a high voltage instead of a constant current driving method. Therefore, there arises a new problem in constant voltage driving: (3) suppression of high voltage. Furthermore, in order to make the ink jet head a line, not only the integration of the drive circuit, but also the problem of reducing the absolute price and lowering the price.
そこで、 本発明は、 上記①から④までの 4つの課題、 即ち、 微細 パターンの配線、 多数の個別駆動回路、 高電圧の抑制、 並びに低価 格化を実現したイ ンク ジエ ツ トプリ ンタ装置を提供することを課題 とする。  Accordingly, the present invention provides an ink jet printer device which realizes the four problems (1) to (4) described above, namely, wiring of a fine pattern, a large number of individual drive circuits, suppression of high voltage, and low cost. The task is to provide.
また、 本発明のイ ンクジヱ ッ 卜プリ ンタ装置におけるへッ ドのィ ンク噴射機構を駆動する等のために好適に使用するこ とのできる光 スィ ッチを提供することを課題とする。  Another object of the present invention is to provide an optical switch which can be suitably used for driving an ink jetting mechanism of a head in an ink jet printer according to the present invention.
本発明は、 圧電素子の駆動回路と して光導電体を用い、 該光導電 体を信号パターンに応じて光照射することにより、 圧電体素子 (静 電容量物体) の両端間の電圧を可変させることを特徴とした光スィ ツチと、 該圧電体素子の機械的変位によってイ ンクを噴射させるノ ズルを複数個設け、 個々の圧電体素子に対して、 個別の光導電体を 設けて、 光マルチスィ ッチを構成することにより、 マルチイ ンク ジ エ ツ トへッ ド · プリ ンタ装置を達成し、 上記①から④までの 4 つの 課題の全てに解決を与えるものである。 The present invention uses a photoconductor as a driving circuit for a piezoelectric element, and irradiates the photoconductor with light according to a signal pattern, thereby varying the voltage between both ends of the piezoelectric element (capacitance object). A light switch characterized by An optical multi-switch is provided by providing a switch and a plurality of nozzles for ejecting ink by mechanical displacement of the piezoelectric element, and providing individual photoconductors for each piezoelectric element. As a result, a multi-ink jet head printer is achieved, and all four problems (1) to (4) are solved.
したがって、 本発明の光スィ ッチは、 静電容量物体 (圧電体素子 ) の充電あるいは放電のスイ ッチングを、 該静電容量物体に接続さ れた光導電体への光照射による光スィ ッチ効果により行う ことを特 徴とする。  Therefore, the optical switch of the present invention can switch the charging or discharging of the capacitance object (piezoelectric element) by irradiating the photoconductor connected to the capacitance object with light. The feature is that it is performed by using the
前記静電容量物体は 1対の電極を有し、 その一方の電極は前記光 導電体により形成され、 他方の電極は接地されている。  The capacitance object has a pair of electrodes, one of which is formed by the photoconductor, and the other of which is grounded.
前記光導電体は、 前記静電容量物体の一方の電極に接続されてい る第 1 の側と、 これと反対側の第 2の側とを有し、 該第 2の側を透 明導電体で構成し、 該透明導電体に接続された電気回路の信号を、 前記光導電体の光スィ ツチ効果で、 前記静電容量物体に伝達するよ うにしている。  The photoconductor has a first side connected to one electrode of the capacitive object, and a second side opposite to the first side, and the second side is a transparent conductor. The signal of the electric circuit connected to the transparent conductor is transmitted to the capacitance object by an optical switching effect of the photoconductor.
前記静電容量物体の一方の電極を良導体電極と し、 該良導体電極 に前記光導電体を接合すると共に、 該光導電体の前記良導体電極と は反対の側は透明導電体で構成し、 該透明導電体に接続された電気 回路の信号を、 前記光導電体の光スィ ッチ効果で、 前記静電容量物 体に伝達するようにしている。  One electrode of the capacitance object is a good conductor electrode, the photoconductor is bonded to the good conductor electrode, and a side of the photoconductor opposite to the good conductor electrode is formed of a transparent conductor. A signal of an electric circuit connected to the transparent conductor is transmitted to the capacitance object by an optical switching effect of the photoconductor.
前記静電容量物体を圧電体により構成するのが、 望ま しく、 また 、 前記光導電体の光スィ ッチ効果で、 前記圧電体に伝達される信号 により該圧電体を変形させ、 該変形を機械的出力を取り出すように するのが望ま しい。  It is preferable that the capacitance object is composed of a piezoelectric body, and the piezoelectric body is deformed by a signal transmitted to the piezoelectric body by an optical switching effect of the photoconductor. It is desirable to extract mechanical output.
また、 本発明の光マルチスィ ッチは、 複数の静電容量物体 (圧電 体素子) を具備し、 各静電容量物体の一方の電極は各々独立して光 導電体に接続され、 且つ各静電容量物体の他方の電極は隣接する静 電容量物体の他方の電極と互いに接続され、 前記各静電容量物体の 充電あるいは放電のスイ ッ チングを、 対応する前記各光導電体への 光照射による光スィ ツチ効果により行う ことを特徴とする。 Further, the optical multi-switch of the present invention includes a plurality of capacitance objects (piezoelectric elements), and one electrode of each capacitance object is independently illuminated. The other electrode of each capacitance object is connected to the conductor, and the other electrode of the adjacent capacitance object is connected to the other electrode of the adjacent capacitance object, and performs switching of charging or discharging of each capacitance object. The method is characterized by performing the light switch effect by irradiating each photoconductor with light.
更にまた、 本発明の光スィ ッチを用いたイ ンク ジヱ ッ トプリ ンタ 装置によると、 圧電体を用いたィ ンク噴射機構を複数個並列に配置 し、 各圧電体の一方の電極を各々独立して光導電体に接続し、 且つ 各圧電体の他方の電極を隣接する圧電体の他方の電極と互いに接続 し、 光走査手段により前記複数の光導電体に選択的に光照射を行う こ とによ り、 対応する前記圧電体を変形させて、 前記イ ン ク噴射機 構よりイ ンクを噴射するように構成したことを特徴とする。  Furthermore, according to the ink jet printer device using the optical switch of the present invention, a plurality of ink jetting mechanisms using piezoelectric materials are arranged in parallel, and one electrode of each piezoelectric material is connected to each other. Independently connected to the photoconductor, and the other electrode of each piezoelectric body is connected to the other electrode of the adjacent piezoelectric body, and the light scanning means selectively irradiates the plurality of photoconductors with light. Thus, the ink is ejected from the ink ejecting mechanism by deforming the corresponding piezoelectric body.
前記光走査手段と して、 レーザ光源、 回転鏡或いは振動鏡、 音響 偏向、 等のレーザ光学系を用いることができる。  As the optical scanning means, a laser optical system such as a laser light source, a rotating mirror or a vibrating mirror, and acoustic deflection can be used.
更に、 本発明は、 イ ンク供給路、 イ ンク圧力室、 インクノズル及 び圧電素子からなる画像形成装置の該圧電素子に感光層を接続し、 該感光層を画像パターンに応じて光照射することにより、 該圧電素 子を変形せしめて、 該圧電素子を機械的変動により該イ ンクノズル からイ ンクを噴射せしめるように構成した、 光スィ ッチを用いたィ ンク ジエ ツ トプリ ンタ装置において、 該圧電素子の一方の電極と他 方の電極との間のスィ ッチ回路を接続し、 且つ前記感光層 ( 5 ) に 、 該感光雇が光に感応できるような極性の電圧を印加したことを特 徴とするプリ ンタ装置が提供される。  Further, according to the present invention, a photosensitive layer is connected to the piezoelectric element of an image forming apparatus including an ink supply path, an ink pressure chamber, an ink nozzle, and a piezoelectric element, and the photosensitive layer is irradiated with light according to an image pattern. Accordingly, in an ink jet printer using an optical switch, the piezoelectric element is deformed and the piezoelectric element is ejected from the ink nozzle by mechanical fluctuation. A switch circuit is connected between one electrode and the other electrode of the piezoelectric element, and a voltage having a polarity such that the photosensitive member can respond to light is applied to the photosensitive layer (5). A printer device characterized by the following is provided.
前記圧電素子にほぼ 0 V近傍の電圧が印加された際に、 イ ンク圧 力室が膨張し、 イ ンク供給路よりイ ンクを吸収し、 逆に前記圧電素 子に前記感光層に印加された高電圧が印加された際には、 イ ンク圧 力室が縮むよう構成することもできる。  When a voltage of approximately 0 V is applied to the piezoelectric element, the ink pressure chamber expands, absorbs ink from the ink supply path, and is applied to the photosensitive element to the photosensitive layer. When a high voltage is applied, the ink pressure chamber may be configured to contract.
また、 逆に、 前記圧電素子にほぼ 0 V近傍の電圧が印加された際 に、 イ ンク圧力室が膨張し、 イ ンク供給路よりイ ンクを吸収し、 逆 に前記圧電素子に前記感光層に印加された高電圧が印加された際に は、 イ ンク室が縮むよう構成することもできる。 図面の簡単な説明 Conversely, when a voltage near 0 V is applied to the piezoelectric element, Then, the ink pressure chamber expands, absorbs ink from the ink supply path, and conversely, when the high voltage applied to the photosensitive layer is applied to the piezoelectric element, the ink chamber shrinks. It can also be configured. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明のイ ンクジエ ツ トノズルの概略を示す構成図である o  FIG. 1 is a configuration diagram schematically showing an inkjet nozzle of the present invention.
図 2 は本発明の光スィ ッ チを使用 したイ ンク ジヱ ッ トノ ズルの原 理図である。  FIG. 2 is a principle view of an ink jet nozzle using the optical switch of the present invention.
図 3 は本発明のイ ン ク ジエ ツ トノ ズルの具体的構成例を示す。 図 4 ( a ) 及び図 4 ( b ) は本発明の光スィ ッチを利用したイ ン クジ ッ トへッ ドにおいて使用するダイオー ド 7の作成方法を説明 するための図である。  FIG. 3 shows a specific configuration example of the ink jet nozzle of the present invention. FIGS. 4 (a) and 4 (b) are diagrams for explaining a method of forming a diode 7 used in an ink jet head using the optical switch of the present invention.
図 5 は圧電体素子、 光導電体膜、 ダイオー ド等を含むマルチ化し た回路構成を示す。  Figure 5 shows a multiplexed circuit configuration that includes a piezoelectric element, a photoconductor film, and a diode.
図 6 はイ ンク ジ ヱ ッ トプリ ン夕の全体構成図である。  Figure 6 shows the overall configuration of the ink jet printer.
図 7 は印字へッ ドの模式図である。  Figure 7 is a schematic diagram of the print head.
図 8 は本発明の光スィ ツチの構成例を示す。  FIG. 8 shows a configuration example of the optical switch of the present invention.
図 9 は本発明の光スィ ッ チの構成の他の例を示す。 発明を実施するための最良の形態  FIG. 9 shows another example of the configuration of the optical switch of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して本発明の実施の形態について詳細に説 明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
図 1 は、 本発明を適用したイ ンクジヱ ッ トノズルの構成を示した ものである。 図において、 1 はノズル板、 2 はイ ンク圧力室、 3 は 圧電体素子であり、 圧電噴射デバイスと して構成されている。 圧電 体素子 3 はイ ンク圧力室 2の内壁の一部、 例えば図示のように上壁 を形成している。 圧電体素子 3 に電圧が印加され、 充電が行われる と、 図 1 の破線位置から実線位置へ圧電体素子 3が変形し、 圧力室 2が収縮することにより圧力室 2 内のイ ンクに圧力をかけ、 ノズル 板 1 のノズル孔 1 aを通じてイ ンク滴を噴射することにより画像記 録を行う。 圧電体素子 3 への電圧印加が停止され、 放電が行なわれ ると圧電体素子 3 は図 1 の実線位置から破線位置へ変形して圧力室 2が膨張しィ ンクを圧力室 2内に吸収する。 FIG. 1 shows a configuration of an ink jet nozzle to which the present invention is applied. In the figure, 1 is a nozzle plate, 2 is an ink pressure chamber, and 3 is a piezoelectric element, which is configured as a piezoelectric injection device. The piezoelectric element 3 is a part of the inner wall of the ink pressure chamber 2, for example, the upper wall as shown in the figure. Is formed. When a voltage is applied to the piezoelectric element 3 and charging is performed, the piezoelectric element 3 is deformed from the broken line position to the solid line position in FIG. 1 and the pressure chamber 2 contracts, so that pressure is applied to the ink in the pressure chamber 2 Image recording by ejecting ink droplets through the nozzle holes 1 a of the nozzle plate 1. When the voltage application to the piezoelectric element 3 is stopped and the discharge is performed, the piezoelectric element 3 is deformed from the solid line position in FIG. 1 to the broken line position, the pressure chamber 2 expands, and the ink is absorbed into the pressure chamber 2. I do.
このよ う に圧電体素子 3 は電圧の印加時、 即ち充電時に圧力室 2 を収縮させてイ ンク滴を噴射し、 放電時に圧力室 2を膨張させて圧 力室 2内にイ ンクを吸収するように変形させても良く 、 また逆に、 電圧の印加時、 即ち充電時に圧力室 2を膨張させてイ ンクを圧力室 2 に吸収し、 放電時に圧力室 2を収縮させてイ ンク滴を噴射するよ うに変形させても良い。  In this way, the piezoelectric element 3 contracts the pressure chamber 2 when applying a voltage, that is, when charging, ejects ink droplets, and expands the pressure chamber 2 during discharge to absorb ink in the pressure chamber 2. On the other hand, when voltage is applied, that is, during charging, the pressure chamber 2 expands to absorb ink into the pressure chamber 2, and when discharging, contracts the pressure chamber 2 to cause ink drop. May be deformed so as to inject water.
図 2 は、 本発明のイ ンク ジヱ ッ トプリ ンタの原理説明図である。 図 3 はその斜視図である。 図 2 において、 4 は個々の圧電体素子 3 に対応して個別に接続された導電膜、 5 は各導電膜 4上に個別に形 成した光導電体層、 6 は個別光導電体層 5の他面に接続された共通 の高電圧回路、 7 は個別の光導電体層 5 にそれぞれ個別に接続され たダイォー ド、 8は個別のダイォー ド 7 に共通して設けたアース短 絡回路 (スィ ッチ) 、 9 は共通のイ ンク供給路、 10はプラテン、 1 1 は印刷媒体、 1 2は走査光である。 また、 1 3は透明導電膜である。 図 2及び図 3 において、 圧力室 2 はプラテン 1 0に対してライ ン方 向に複数配列されている。 ノズル板 1 には各圧力室 2 に対応してノ ズル孔 1 aが形成されている。 共通のィ ンク供給路 9 は各連通孔 9 aを介して個別の圧力室 2 に連通されている。  FIG. 2 is a diagram illustrating the principle of the ink jet printer of the present invention. FIG. 3 is a perspective view thereof. In FIG. 2, reference numeral 4 denotes a conductive film individually connected to each piezoelectric element 3, 5 denotes a photoconductor layer individually formed on each conductive film 4, and 6 denotes an individual photoconductor layer 5 , A common high-voltage circuit connected to the other surface, 7 is a diode individually connected to each photoconductor layer 5, and 8 is a ground short circuit (commonly provided for each diode 7). 9) is a common ink supply path, 10 is a platen, 11 is a print medium, and 12 is a scanning light. Reference numeral 13 denotes a transparent conductive film. 2 and 3, a plurality of pressure chambers 2 are arranged in the line direction with respect to the platen 10. The nozzle plate 1 has a nozzle hole 1a corresponding to each pressure chamber 2. The common ink supply passage 9 communicates with the individual pressure chambers 2 via the communication holes 9a.
各圧電体素子 3の一方 (上側) の電極は個別の導電膜 4を介して 個別の光導電体眉 5の一方 (上側) の面に接続されている。 個別の 光導電体層 5 の一方 (上側) の面は個別ダイオー ド 7 に接続され、 他方 (下側) の面は共通の高圧回路 6 に接続されている。 また個別 の圧電体素子 3の他方 (下側) の面の電極は共通のアース (スイ ツ チ) 8 に接続されている。 個別の光導電体層 5 には透明導電膜 13を 介してレーザビームの走査光 12が選択的に照射されるようになって いる o One (upper) electrode of each piezoelectric element 3 is connected to one (upper) surface of an individual photoconductor eyebrow 5 via an individual conductive film 4. Individual One (upper) surface of the photoconductor layer 5 is connected to an individual diode 7 and the other (lower) surface is connected to a common high-voltage circuit 6. The electrodes on the other (lower) surface of the individual piezoelectric element 3 are connected to a common ground (switch) 8. The individual photoconductor layer 5 is selectively irradiated with the scanning light 12 of the laser beam via the transparent conductive film 13 o
このよう に、 本発明では、 多数の駆動回路素子を圧電体素子 3 に 個別に接続された光導電体層 5で実現することにより、 高密度化並 びに低価格化を可能と した。 更に、 圧電体素子 3へ印加される高電 圧の制御についても、 光導電体層 5 による光スイ ッチングを適用す ることにより、 簡易に取り扱えるようになる。  As described above, in the present invention, by realizing a large number of drive circuit elements by the photoconductor layer 5 individually connected to the piezoelectric element 3, it is possible to increase the density and reduce the cost. Further, the control of the high voltage applied to the piezoelectric element 3 can be easily handled by applying the optical switching by the photoconductor layer 5.
図 4 ( a ) 及び ( b ) は本発明の光スィ ッチを利用したイ ンク ジ エ ツ トへッ ドにおいて使用するダイオー ド 7の作成方法を説明する ための図である。 まず、 N型シ リ コ ン基板 71を準備する。 次に、 N 型シリ コン基板 71の単結晶の表面を加熱酸化してシリ コン酸化膜 ( S i 02膜) を形成する。 この S i 02膜は単結晶の保護膜と して機能する と同時に ドーピング剤の拡散を防ぐ作用をする。 次に、 この S i 02膜 の上にフ ォ ト レジス トと呼ばれる感光性の耐薬品物質 (図示せず) を塗布し、 マスク (図示せず) を通じて紫外線を照射する。 これに より、 P型拡散層を形成する領域のみ S i 02膜を除去する。 次に、 ほ う素を酸化雰囲気で拡散させ、 P型領域 73を形成する。 同時に、 そ の表面に S i 02膜が形成される。 次に、 電極部に相当する部分の酸化 膜を除去し、 これらの酸化膜を除去した部分にアルミ ニウムを蒸着 により形成し、 電極 74, 75が形成される。 電極形成部以外の部分は 保護膜と しての S i 02膜 72が残る。 FIGS. 4 (a) and 4 (b) are diagrams for explaining a method of forming a diode 7 used in an ink jet head using the optical switch of the present invention. First, an N-type silicon substrate 71 is prepared. Next, the surface of the single crystal of the N-type silicon substrate 71 is heated and oxidized to form a silicon oxide film (SiO 2 film). This SiO 2 film functions as a single-crystal protective film and at the same time acts to prevent diffusion of the doping agent. Next, a photosensitive chemical substance (not shown) called a photo resist is applied on the SiO 2 film, and ultraviolet rays are irradiated through a mask (not shown). As a result, the SiO 2 film is removed only in the region where the P-type diffusion layer is to be formed. Next, boron is diffused in an oxidizing atmosphere to form a P-type region 73. At the same time, a SiO 2 film is formed on the surface. Next, the oxide film in the portions corresponding to the electrode portions is removed, and aluminum is formed by vapor deposition on the portions from which these oxide films have been removed, to form electrodes 74 and 75. The SiO 2 film 72 as a protective film remains in portions other than the electrode forming portion.
図 5はマルチ化した回路構成を示す。 前述のように、 圧電体素子 3、 光導電体膜 5、 ダイオー ド 7 は各イ ンクジェ ッ ト ' ノズル毎に 設けられている。 各圧電体素子 3 ( l〜n ) の一方の電極は個別の 光導電体層 5 ( l〜n ) の一方の側に接铳され、 その各接続部は個 別のダイォ一 ド 7の一方の側に接続され、 各ダイォ一 ド 7の他方の 側は共通に接統されて、 共通アーススィ ツチ 8を介してアースに接 続されている。 また、 個別の光導電体層 5 ( l〜n ) の他方の側は 共通に接続されて、 高圧回路 ( 6 ) に接続されている。 各光導電体 層 5 ( 1〜! 1 ) には光照射により選択的に駆動されることは前述の とおりである。 Figure 5 shows a multi-circuit configuration. As described above, the piezoelectric element 3, the photoconductive film 5, and the diode 7 are provided for each ink jet nozzle. Is provided. One electrode of each piezoelectric element 3 (1 to n) is connected to one side of a separate photoconductor layer 5 (1 to n), and each connection portion is connected to one of the individual diodes 7. The other side of each diode 7 is commonly connected and connected to the ground via a common ground switch 8. The other sides of the individual photoconductor layers 5 (1 to n) are connected in common and connected to a high-voltage circuit (6). As described above, each of the photoconductor layers 5 (1 to! 1) is selectively driven by light irradiation.
図 6 は本発明の光スィ ツチを利用してノズルを駆動するィ ンク ジ エ ツ トプリ ンタの全体構成図、 図 7 は印字へッ ドの模式図である。 これらの図において、 20は印字へッ ド、 10はプラテン、 11は用紙、 24は用紙カセッ ト、 25は用紙スタ ツ力、 30は制御部である。 また、 21は LED ア レイ、 22はセルフ ォ ッ クスレンズ、 23は回路基板である 図示のように、 圧力室 2の構造体、 図 5 に示すマルチ回路構成 ( 共通ァ一ススィ ッチ 8を除く) 、 LED ア レイ 21、 セルフ ォ ッ ク スレ ンズ 22、 回路基板 23は印字ヘッ ド 20に搭載され、 共通アーススイ ツ チ 8を含む制御部 30は、 プリ ンタ本体の側に設けられている。 用紙 11は用紙カセッ ト 24からプラテン 10に供給され、 イ ンク ジヱ ッ ト式 の印字へッ ド 20によりプラテン 10上の用紙 11に対して印字が行われ る。 印字の行われた用紙 11は用紙スタ ツ力 25に集積される。  FIG. 6 is an overall configuration diagram of an ink jet printer that drives nozzles using the optical switch of the present invention, and FIG. 7 is a schematic diagram of a print head. In these figures, 20 is a print head, 10 is a platen, 11 is paper, 24 is a paper cassette, 25 is paper staple force, and 30 is a control unit. In addition, 21 is an LED array, 22 is a self-optical lens, and 23 is a circuit board. As shown, the structure of the pressure chamber 2 and the multi-circuit configuration shown in FIG. 5 (excluding the common switch 8) ), An LED array 21, a self-occurring lens 22, and a circuit board 23 are mounted on a print head 20, and a control unit 30 including a common ground switch 8 is provided on the side of the printer body. The paper 11 is supplied from the paper cassette 24 to the platen 10, and printing is performed on the paper 11 on the platen 10 by the ink jet printing head 20. The printed paper 11 is accumulated on the paper stat force 25.
LED アレイ 21はノズル 1 aの配列方向と平行に配列されており、 セルフ ォ ッ クスレンズ 22を介して、 特定のノズルに対応する光導電 体層 5 に選択的に光を照射することができる。  The LED array 21 is arranged in parallel to the arrangement direction of the nozzles 1 a, and can selectively irradiate light to the photoconductor layer 5 corresponding to a specific nozzle via the self-ox lens 22.
次に、 図 2、 図 3、 図 5〜 7 に基づいて、 本発明のイ ンク ジヱ ッ トブリ ンタの動作原理を説明する。  Next, the operation principle of the ink jet printer according to the present invention will be described with reference to FIGS. 2, 3, and 5 to 7. FIG.
①まず、 初期状態では共通アース短絡回路 8を閉成 (即ちオンと ) して、 全ての回路を短絡させる。 すると、 ダイオー ド 7の作用に より、 光導電体層 5 の上部、 即ち圧電体素子 3 の表面電位は 0 Vと なる。 このとき圧電体素子 3 は圧力室 2が膨張するように設定して おぐ ① First, in the initial state, the common ground short circuit 8 is closed (that is, ) And short circuit all circuits. Then, by the action of the diode 7, the surface potential of the upper part of the photoconductor layer 5, that is, the piezoelectric element 3 becomes 0 V. At this time, the piezoelectric element 3 is set so that the pressure chamber 2 expands.
②次に、 共通アース回路 8を開放 (即ちオフと) する。 この状態 では、 上記①で述べた状態がそのまま保持され、 全ての圧電素子 3 の表面電位は 0 Vとなっている。  (2) Next, the common ground circuit 8 is opened (that is, turned off). In this state, the state described in (1) above is maintained as it is, and the surface potentials of all the piezoelectric elements 3 are 0 V.
③次に、 画像信号のパターンにしたがって光ビーム 12を走査し、 透明導電膜 13 (図 3 ) を介して個別の光導電体層 5 に選択的に光を 照射して当該光導電体層 5を活性化すると、 共通高圧回路 6 の電源 電圧が当該光導電体層 5の反対側 (即ち、 光導電体層 5 の上面) に も現れ、 この電位が導電膜 4 を介して、 当該圧電体素子 3 に印加さ れる。 すると、 圧電体素子 3が変形して圧力室 2が圧縮される。 こ れにより、 ノズル孔 l aを介して圧縮室 2 よりイ ンク滴が噴射され  (3) Next, the light beam 12 is scanned in accordance with the image signal pattern, and the individual photoconductor layers 5 are selectively irradiated with light via the transparent conductive film 13 (FIG. 3) to selectively irradiate the light. Is activated, the power supply voltage of the common high-voltage circuit 6 also appears on the opposite side of the photoconductor layer 5 (that is, the upper surface of the photoconductor layer 5), and this potential is transmitted via the conductive film 4 to the piezoelectric body. Applied to element 3. Then, the piezoelectric element 3 is deformed and the pressure chamber 2 is compressed. As a result, ink droplets are ejected from the compression chamber 2 through the nozzle holes la.
④最後に、 共通アース短絡回路を再び閉成 (即ちオンと) して、 イ ンクを噴出した圧電体素子 3 の表面電位はアース電位より高いた め、 ダイオー ド 7を介して放電し、 圧電体素子 3 の表面を再び 0 V 電位とする。 すると、 圧電体素子 3 は再び圧力室 2が膨張する方向 に膨らみ、 イ ンクが共通のィ ンク供給路 9から個別の連通孔 9 aを 介して当該圧力室 2に供給される。 このようにして、 すべての圧電 体素子 3が 0 V電位となって初期状態に復帰する。 即ち、 圧力室 2 にィ ンクが充満した状態となる。 ④Lastly, the common earth short circuit is closed again (that is, turned on), and since the surface potential of the piezoelectric element 3 that has ejected the ink is higher than the earth potential, the piezoelectric element 3 is discharged through the diode 7 and discharged. The surface of the body element 3 is set to the 0 V potential again. Then, the piezoelectric element 3 expands again in the direction in which the pressure chamber 2 expands, and ink is supplied from the common ink supply path 9 to the pressure chamber 2 via the individual communication holes 9a. In this way, all the piezoelectric elements 3 become 0 V potential and return to the initial state. That is, the pressure chamber 2 is filled with ink.
なお、 上記の動作原理では、 光ビーム 1 2の照射により、 イ ンクの 圧力室 2が収縮してィ ンクを噴射するように構成したが、 電圧印加 の仕方を逆にすると、 光導電体層 5 に対する光照射により、 圧力室 2が膨張してィ ンクの吸引を行い、 圧電体素子 3 に 0 Vの電圧が印 加されると逆に圧力室 2が収縮してイ ン クの噴射を行うようにする ことも可能である。 In the above operation principle, the irradiation of the light beam 12 causes the pressure chamber 2 of the ink to contract and eject the ink. However, when the method of applying the voltage is reversed, the photoconductor layer is formed. 5 irradiates light, the pressure chamber 2 expands and sucks ink, and a voltage of 0 V is applied to the piezoelectric element 3. Conversely, when the pressure is applied, the pressure chamber 2 is contracted so that ink can be injected.
このよ う に本発明では、 多数の駆動回路素子を、 圧電体素子 3 に 個別に接続された光導電体層 5で実現することにより、 低価格化を も可能と した。 更に、 光導電体層 5 による光スイ ッ チ ングを適用し て電圧の制御を行っているので、 圧電体素子 3 に印加すべき高電圧 を簡易に制御することができる。  As described above, in the present invention, a large number of drive circuit elements are realized by the photoconductor layer 5 individually connected to the piezoelectric element 3, thereby enabling a reduction in cost. Furthermore, since the voltage is controlled by applying the optical switching by the photoconductor layer 5, the high voltage to be applied to the piezoelectric element 3 can be easily controlled.
光スィ ッ チの実現可能性の理論的考察  Theoretical consideration of the feasibility of optical switches
( a ) 光スィ ッチ用感光体の特性について :  (a) Characteristics of photoreceptor for optical switch:
本発明において使用可能な光スィ ッチを実現するには、 第一に光 導電体のォン オフ比が高いこと、 第二にォン抵抗が小さ く残留電 圧が残らないこと、 が要求される。 現在知られている無機光導電体 膜の特性は以下の通りである。  In order to realize an optical switch that can be used in the present invention, first, it is required that the ON / OFF ratio of the photoconductor is high, and second, that the ON resistance is small and no residual voltage remains. Is done. The characteristics of currently known inorganic photoconductor films are as follows.
〔表 1 〕  〔table 1 〕
光導電膜の特性 項目 0PC a- Si Se系 膜厚 10〜30 zm 20〜30 m 〜60 m 比誘電率 3〜4 11-12 〜7  Characteristics of photoconductive film Item 0PC a-SiSe film thickness 10 ~ 30 zm 20 ~ 30 m ~ 60 m Relative permittivity 3 ~ 4 11-12 ~ 7
移動度/ 10— 5〜l(T7cm2/Vs 0. l〜10cm2/Vs ≥0. lcmVVs キヤリア寿命て 〜 1 s 10-5 s 10"6 s Mobility / 10- 5 ~l (T 7 cm 2 / Vs 0. l~10cm 2 / Vs ≥0. LcmVVs carrier lifetime Te ~ 1 s 10- 5 s 10 " 6 s
て積 ≥10-7cm2/Vs Te product ≥10- 7 cm 2 / Vs
帯電電圧 600〜800 V 〜500 V 600〜1000V キヤリァ通過時間 0.125ms~150ms 0.8ns 〜0.18 s 0.36 s 〜0, 6 us 光導電体膜の種類と して、 表 1 のような OPC, a- Si , Se 系のもの があるが、 どの光導電体膜が本発明のィ ンクジェ ッ トプリ ンタに適 用可能かについては後に検討する。 ( b ) イ ン ク ジヱ ッ ト駆動用圧電体素子について : Charging voltage 600 to 800 V to 500 V 600 to 1000 V Carrier transit time 0.125 ms to 150 ms 0.8 ns to 0.18 s 0.36 s to 0.6 us The OPC, a- There are Si and Se-based ones, and which photoconductor film can be applied to the ink jet printer of the present invention will be discussed later. (b) Regarding the piezoelectric element for driving the ink jet:
イ ンク ジェ ッ トの圧電体駆動では、 一例と して、 静電容量 I nFの 圧電体素子を 80Vの電圧で駆動すると、 噴射イ ン ク量 lOOplが得ら れる。 この値は 240dpiにおける必要イ ンク量である。 この圧電体素 子に一旦蓄積される電気エネルギーは 1 Z 2 QVより 3.2〃 J となる 。 噴射されたイ ンク粒子の粒子速度は約 8 sであるから、 噴射 ィ ンクが持ち去つた運動エネルギーは 1 / 2 m V 2 から計算すると 、 約 4 X 10— 4 jtz J となり、 蓄積エネルギーの 1 万分の 1程度である 。 即ち、 イ ンクが噴射しても、 圧電体素子に一旦蓄積されたェネル ギ一はほぼ完全に残ることになる。 In the piezoelectric driving of an ink jet, for example, when a piezoelectric element having a capacitance of InF is driven at a voltage of 80 V, an injection ink amount lOOpl can be obtained. This value is the required ink amount at 240dpi. The electrical energy once stored in this piezoelectric element is 3.2〃J from 1Z2QV. Since particle velocity of the injected Lee ink particles is about 8 s, the injection I link is Mochisa ivy kinetic energy is calculated from 1/2 m V 2, about 4 X 10- 4 jtz J, and the stored energy It is about 1/10000. That is, even if ink is ejected, the energy once accumulated in the piezoelectric element remains almost completely.
ィ ンク噴射に必要なこの静電エネルギーを得るために、 圧電体素 子への印加電圧を 500Vに上げると、 圧電素子の静電容量は 26pFF となり、 例えば厚みを 6倍とすれば、 面積は 0.16倍と約 1 桁小さ く することができる。 このことは、 図 1 〜 3からも理解されるように ピエゾタイプでは圧電体素子 3の面積が隣接ピッチを制約する設計 となっているため、' 圧電体素子 3の面積の低減がィ ンク ジヱ ッ トノ ズルの小型化に極めて有効であることが分かる。  If the voltage applied to the piezoelectric element is increased to 500 V in order to obtain this electrostatic energy required for ink ejection, the capacitance of the piezoelectric element becomes 26 pFF. For example, if the thickness is increased six times, the area becomes It can be reduced by about an order of magnitude to 0.16 times. This is because, as can be understood from Figs. 1 to 3, in the piezo type, the area of the piezoelectric element 3 is designed to restrict the adjacent pitch, and therefore, the area of the piezoelectric element 3 can be reduced.分 か る It turns out that it is extremely effective in reducing the size of the nozzle.
以上の関係を表 2 にまとめて示す。 The above relationships are summarized in Table 2.
〔表 2〕 (Table 2)
圧電素子 項 目 数 値  Piezoelectric element Item Value
条 解像度 240dp i  Article Resolution 240dp i
件 噴射ィンク量 l OOp l  Case Injection amount l OOp l
圧 静電容量 C 1 nF 26pF  Pressure Capacitance C 1 nF 26pF
電 駆動電圧 80 V 500 V  Drive voltage 80 V 500 V
蓄積エネルギー 3. 2 J 3. 2 J  Stored energy 3.2 J 3.2 J
子 蓄積電荷量 80nC 13nC 一般に、 圧電体素子によるイ ンクジヱ ッ トの直接駆動法において は、 駆動電圧を上げると駆動 ドライバーのコス 卜アップに蘩がるが In general, in the direct drive method of the ink jet by the piezoelectric element, increasing the drive voltage increases the cost of the drive driver.
、 本発明のように感光体である光導電体層 5を用いた光スィ ッ チを 利用すると、 駆動 ドライバーを用いることなく、 高い電圧による圧 電体素子の駆動が可能となり、 小型 · 低コス ト化に有利となる。 However, when an optical switch using the photoconductor layer 5 as a photoreceptor as in the present invention is used, the piezoelectric element can be driven by a high voltage without using a driving driver. It is advantageous for
( c ) 光走査の条件について :  (c) Regarding optical scanning conditions:
光走査の条件と しては、 例えば 100行 分のプリ ンタ装置で、 ィ ンチ当り 6行の解像度 600 dp iの記録密度で A 4サイズの紙幅方向 1 90mmに渡って走査するとすると、 1 行分の総印字 ドッ ト数は 449 X 10 3 個であり、 1行当りの走査時間 0. 6秒から、 1 ドッ ト当り 1. 34 S程度の走査時間となる。 また 1行分の光走査の回数は 100回と なるので、 1 ライ ン当り走査時間間隔は 6 msとなる。 イ ンク ジエ ツ トのライ ンへッ ドにおいては、 必要なイ ンク噴射時間を得るために はピエゾの駆動時間を s、 イ ンク圧力室へのイ ンク吸入サイク ルの高速限界は約 10kH z ( = 100 /z s ) であるため、 1 ラ イ ン当り の走査時間 6 msはイ ンクの吸引に対しては十分な時間である。 The optical scanning conditions are as follows.For example, if a printer device for 100 lines scans over an A4 size paper width direction of 190 mm at a recording density of 600 lines per inch and a resolution of 600 dpi, one line The total number of print dots per minute is 449 x 10 3 , and the scan time per line is 0.6 seconds to 1.34 S per dot. In addition, since the number of optical scans for one row is 100, the scanning time interval per line is 6 ms. In the line head of the ink jet, the driving time of the piezo is s to obtain the required ink injection time, and the high speed limit of the ink suction cycle to the ink pressure chamber is about 10 kHz. (= 100 / zs), the scanning time of 6 ms per line is enough time for ink suction.
以上の関係を表 3にまとめて示す。 〔表 3〕 Table 3 summarizes the above relationships. (Table 3)
光走査条件の検討結果 項 目 数 値  Examination result of optical scanning conditions Item Number Value
圧電素子最高駆動周波数 lUkHz ― luu s *— - ノクのル、 生より 必要な圧電素子駆動時間 〜 10 ^ S  Maximum driving frequency of piezoelectric element lUkHz ― luu s * —-Required driving time of piezoelectric element from raw ~ 10 ^ S
印字速度 100 行 分 (二 0.6秒ノ行)  Printing speed 100 lines (two 0.6 seconds)
行間隔 6行 イ ンチ (= 4.233隱 行)  Line spacing 6 lines inches (= 4.233 hidden lines)
解像度 600dpi (= 42.33 /z m/ドッ ト)  Resolution 600dpi (= 42.33 / zm / dot)
主走査ドッ ト 600/25.4X 190誦(用紙幅) = 4, 488ドッ 卜 行 走査回数 600/25.4X 4.233(—行分) = 100回 総 0.6S/100 回 = 6 ms/ 1 ライ ン  Main scanning dot 600 / 25.4X 190 recitation (paper width) = 4,488 dot lines Scanning times 600 / 25.4X 4.233 (-line) = 100 times Total 0.6S / 100 times = 6 ms / 1 line
 number
総ドッ ト数 448.8 X 103 個 Z 0.6秒→1.34 s/ドッ ト Total number of dots 448.8 X 10 3 Z 0.6 seconds → 1.34 s / dot
1 ライ ンの走査時間は、 6 msであるため、 感光体 (光導電体) 内 で発生した光キャ リアは、 少なく とも 6 ms以内で感光体内を通過す る必要がある。 この条件を満たす感光体と しては、 表 1 から a- Siあ るいは Se系感光体となる。 なお、 0PC については、 10— 5〜10 6cm2 ZVs以上の移動度を持つ感光体のみが適用可能となる。 Since the scanning time for one line is 6 ms, the optical carrier generated in the photoconductor (photoconductor) must pass through the photoconductor within at least 6 ms. As shown in Table 1, a photoconductor that satisfies this condition is an a-Si or Se photoconductor. Note that the 0PC, only the photosensitive member having 10- 5 ~10 6 cm 2 ZVs more mobility becomes applicable.
( d ) 必要な光エネルギーについて :  (d) About required light energy:
表 2 に示すように、 圧電素子への蓄積電荷量は、 500Vでは 13nC である。 これは、 電子数は 8.125X 101 °個にあたる。 波長 720nmの 半導体レーザを用いるとすると、 光子ネルギ一は 2.76 X 10— 1 9 J と なる。 今、 感光体での光変換効率を 100%とすれば、 必要光ェネル ギ一は、 As shown in Table 2, the amount of charge stored in the piezoelectric element is 13 nC at 500 V. This means that the number of electrons is 8.125X10 1 °. When a semiconductor laser having a wavelength of 720 nm, the photon Nerugi one becomes 2.76 X 10- 1 9 J. Now, assuming that the light conversion efficiency of the photoreceptor is 100%, the required energy is
2.76X 10" 1 9 J X 8. 125 X 101 G = 2.22 x 10— 8 J 2.76X 10 " 1 9 JX 8.125 X 10 1 G = 2.22 x 10— 8 J
となる。 この光エネルギーを表 3 に示す 1 ドッ ト当りの光走査時間 1.34 s にてまかなう とすれば、 単位時間当りの光エネルギーは、 16.6mWとなる。 透明導電膜による光減衰および光学系での光口スを 考慮して、 2倍程度の光出力を持つ約 30mWの半導体レーザを用いれ ば可能となる。 Becomes Assuming that this light energy is covered by the light scanning time per dot of 1.34 s shown in Table 3, the light energy per unit time is 16.6mW. Taking into account the optical attenuation due to the transparent conductive film and the optical aperture in the optical system, this can be achieved by using a semiconductor laser with a power of about 30 mW that has about twice the optical output.
以上の検討結果を表 4 にまとめて示す。  Table 4 summarizes the above study results.
〔表 4〕  (Table 4)
必要光エネルギー 項 目 検討数値  Required light energy Item Consideration value
圧 駆動電圧 500 V  Pressure Drive voltage 500 V
 Electric
素 静電容量 26pF  Element capacitance 26pF
 Child
蓄積電荷量 13nC 8.125X101 (1個 (電子数) 13nC 8.125X10 1 (1 (number of electrons)
波 長 720nm (半導体レーザ)  Wavelength 720nm (semiconductor laser)
hC 6.626X 10— X 3 X108 hC 6.626X 10— X 3 X10 8
光ネエルギ一 —— = =2.76X10— l 9J Optical energy —— = = 2.76X10— l 9 J
ス 720X 10一9 Scan 720X 10 one 9
必要光エネルギー 2.76X10"I BJX8.125 X 10' °個 =2.22 X 10— 8 J/ドッ ト 必要 LD光量 2.22X10-8J ÷1. =16mW Required light energy 2.76X10 "IB JX8.125 X 10 '° number = 2.22 X 10- 8 J / dot need LD light amount 2.22X10- 8 J ÷ 1. = 16mW
( e ) 感光体の光照射面積 (e) Light irradiation area of photoconductor
感光体 (即ち光導電体層 5 ) を圧電体素子 3の充電抵抗と見做す と、 少なく とも 1 ライ ンの走査時間 6 msにて圧電素子 26pFに蓄積さ れた電荷を放電する必要がある。 即ち、 CRの時定数から感光体の抵 抗 Rは、  If the photoconductor (that is, the photoconductor layer 5) is regarded as the charge resistance of the piezoelectric element 3, it is necessary to discharge the charge accumulated in the piezoelectric element 26pF in at least one line scanning time of 6 ms. is there. That is, from the time constant of CR, the resistance R of the photoconductor is
R = 6 ms÷ 26pF= 2.31 x 108 Ω R = 6 ms ÷ 26pF = 2.31 x 10 8 Ω
となる。 また、 a-Si感光体では抵抗が 107 Ω cm程度であり、 感光体 の厚みを約 とすると、 感光体の必要面積 Sは、 Becomes Also, the resistance of the a-Si photoreceptor is about 10 7 Ωcm, and the required area S of the photoreceptor is
S = 105 Ω m X 20X 10-6 ÷ 2.3 X 108 S = 10 5 Ω m X 20X 10- 6 ÷ 2.3 X 10 8
= 8.65X 10"9m 2 = 8.65X 10 " 9 m 2
以上となる。 即ち、 約 100 mC]の面積で良いことになる。 また、 このエリアでは、 必要な LD光量を賄う とすれば、 必要照射 光量は、 That is all. That is, an area of about 100 mC] is sufficient. Also, in this area, if the required LD light amount is provided, the required irradiation light amount is
2.22x 10"B J ÷ (8. 65 X 10— 9) = 2.5 J m 2 2.22x 10 "B J ÷ (8. 65 X 10- 9) = 2.5 J m 2
= 2.5x 102 J /cm2 = 2.5x 10 2 J / cm 2
となる。 この値は、 通常の感光体の半減露光エネルギーの約 3桁大 きい値となる。 Becomes This value is about three orders of magnitude greater than the half-life exposure energy of a normal photoreceptor.
以上述べたように、 光スィ ッチの実現可能性を理論的に考察した 結果、 現状では光キャ リ アの移動度の高い、 a- Si感光体或いは Se系 感光体を用いることにより、 本発明で適用する光スィ ッチが実現可 能なことが明らかになった。  As described above, as a result of theoretical consideration of the feasibility of an optical switch, it has been found that the use of a-Si or Se-based It became clear that the optical switch applied in the invention was feasible.
( 7 ) 光スィ ッチの構成について  (7) Configuration of optical switch
具体的な光スイ ツチの構成法については、 図 8及び図 9 に示すよ うな 2種のタイプが考えられる。 図 8及び図 9 において、 図 1 〜図 7の部材と対応する部材については同一の番号で示す。 即ち、 3 は 圧電体素子 (静電容量) 、 4 は良導体、 5 は光導電体、 6 は高電圧 回路、 8 はアーススィ ッチ、 12は光ビーム (電気信号) 、 13は透明 導電膜 (電極) 、 15は電極である。  As for the concrete method of configuring the optical switch, two types as shown in FIGS. 8 and 9 can be considered. 8 and 9, members corresponding to those in FIGS. 1 to 7 are denoted by the same reference numerals. That is, 3 is a piezoelectric element (capacitance), 4 is a good conductor, 5 is a photoconductor, 6 is a high-voltage circuit, 8 is a ground switch, 12 is a light beam (electric signal), and 13 is a transparent conductive film ( Electrodes) and 15 are electrodes.
図 8 は静電容量、 即ち圧電体素子 3上に光導電体層 5を形成した —体型タィプであり、 1 ) 最初スィ ッチ 8をショー ト し、 圧電体素 子 3 にかかる電圧をほぼ 0 Vにする。 2 ) 次に、 スィ ッチ 8を開放 する。 3 ) 電気信号に応じて、 光導電体 5の透明電極 13側から光照 射を行う。 すると、 光照射された所のみ光キャ リアが発生し、 透明 電極 13に印加された電圧が良導体 4 に与えられ、 圧電素子 3 に電圧 が印加され、 圧電素子 3が機械的変位を出力することになる。 次の サイクルにおいても、 同様に最初スィ ッチ 8をショー ト し、 以上の 動作を繰り返す。 このようにして、 光スィ ッチが構成される。  FIG. 8 shows the capacitance, that is, the photoconductor layer 5 formed on the piezoelectric element 3—a body type. 1) First, the switch 8 is short-circuited, and the voltage applied to the piezoelectric element 3 is substantially reduced. Set to 0 V. 2) Next, switch 8 is opened. 3) Light irradiation is performed from the transparent electrode 13 side of the photoconductor 5 according to the electric signal. Then, an optical carrier is generated only at the place where light is irradiated, the voltage applied to the transparent electrode 13 is applied to the good conductor 4, the voltage is applied to the piezoelectric element 3, and the piezoelectric element 3 outputs mechanical displacement. become. In the next cycle, switch 8 is shorted first, and the above operation is repeated. Thus, an optical switch is configured.
図 9 は静電容量、 即ち圧電体素子 3上に直接光導電層 5を形成す るのではなく、 良導体 4を介して光導電層 5 を離れた位置に形成し たものであり、 動作原理は図 8の例と同じである。 図 9の利点は、 光スィ ッチ部の感光体 (光導電体) 5のサイズが圧電体素子 3 のサ ィズに限定されることなく任意の構成をとれることにある。 FIG. 9 shows the capacitance, that is, the photoconductive layer 5 formed directly on the piezoelectric element 3. Rather, the photoconductive layer 5 is formed at a position separated from the photoconductive layer 5 via the good conductor 4, and the operation principle is the same as that of the example of FIG. The advantage of FIG. 9 is that the size of the photoconductor (photoconductor) 5 in the optical switch portion can be any configuration without being limited to the size of the piezoelectric element 3.
次に、 本発明の具体的な実施例について説明する。  Next, specific examples of the present invention will be described.
図 1〜 3 におけるイ ンク ジヱ ッ トノズルにおいて、 1 で示したノ ズル板を SUS の多層板にて構成する。 3 は積層した圧電体素子とす o  In the ink jet nozzles in Figs. 1 to 3, the nozzle plate indicated by 1 is composed of a SUS multilayer plate. 3 is a stacked piezoelectric element o
光導電体層 5 は、 厚さ 100 u mの PET フ ィ ルム上に、 各圧電体素 子の切れ目に対応させて、 ス トライプ状のマスクパターンを張り付 け、 その後、 透明導電膜 I T0 を蒸着により形成する。 次に、 感光層 を形成する部所のみマスク開けしたマスクパターンを張り付け、 真 空蒸着にて単層 a- S i感光体層を形成する。 更に、 感光体膜の上に導 電性ドライフ ィルムを張り付け、 その上に Α ί基板を重ねる。 一方、 イ ンクジヱ ッ ト基板に対して、 離れた位置に S i基板上に個別ダイォ 一ド 7および共通電極を形成する。 その後、 透明導電層 13の I T0 部 とダイォー ド 7の電極部とを導電材にて接着する。 このようにして 、 図 1 〜図 3 に示すようなマルチノズルへッ ドを作成した。  The photoconductor layer 5 is formed by applying a strip-shaped mask pattern on the PET film having a thickness of 100 μm so as to correspond to the cuts of each piezoelectric element, and then applying the transparent conductive film I T0. It is formed by vapor deposition. Next, a mask pattern in which a mask is opened only at a portion where a photosensitive layer is to be formed is attached, and a single-layer a-Si photosensitive member layer is formed by vacuum evaporation. Further, a conductive dry film is stuck on the photoreceptor film, and a substrate is stacked thereon. On the other hand, an individual diode 7 and a common electrode are formed on the Si substrate at a position remote from the ink jet substrate. Thereafter, the I T0 portion of the transparent conductive layer 13 and the electrode portion of the diode 7 are bonded with a conductive material. In this way, a multi-nozzle head as shown in FIGS. 1 to 3 was created.
本発明の実施例にかかるイ ンク ジエ ツ トノズルの動作原理は次の 通りである。  The operation principle of the ink jet nozzle according to the embodiment of the present invention is as follows.
① 高圧回路 6 は圧電体 3を圧力室 2が膨張する向きの電圧を供 給^ な。  (1) The high voltage circuit 6 does not supply the piezoelectric body 3 with a voltage in a direction in which the pressure chamber 2 expands.
② 光ビーム 12を走査して、 選択的に光導電膜 5を活性化して、 圧電体 3 に電荷を供給する。  (2) The light beam 12 is scanned to selectively activate the photoconductive film 5 and supply electric charges to the piezoelectric body 3.
③ 選択された圧電体 3 は変形して圧力室 3 にイ ンクを吸引する  ③ The selected piezoelectric body 3 deforms and sucks ink into the pressure chamber 3
④ 高圧回路 6 は遮断されるが、 ユニッ ト間はダイオー ド 7 によ り隔離される。 高 圧 The high voltage circuit 6 is cut off, but the diode 7 Isolated.
⑤ 全ュニッ トの電極をアース電位に戻し、 圧電体を元の形に戻 すことにより圧力室 2を収縮せしめ、 前記③項にて圧力室 2 内に吸 引されたィ ンクのみ噴射される。  戻 し Return the electrodes of all units to the ground potential and return the piezoelectric body to its original shape to contract the pressure chamber 2, and only the ink sucked into the pressure chamber 2 in the above item ③ is injected .
上記動作において、 光走査で選択されないュニッ ト もコ ンデンサ —結合しているので、 ①の段階で圧電体 3 に電圧が加わるが、 光導 電体 5の誘電率が、 11に対して、 圧電体 3の誘電率は 1800〜4600と 2桁以上の差をもつので、 同じ面積、 同じ厚みであれば、 電圧の大 半は光導電体膜 5のコ ンデンサ一で受けもたれ、 1 ノ 100 以下の電 圧が圧電体 3 に加わるのみであり、 厚みおよび面積の設計条件は、 この問題で左右されることはない。  In the above operation, the unit not selected by the optical scanning is also coupled with the capacitor, so that a voltage is applied to the piezoelectric body 3 in the step ①, but the dielectric constant of the photoconductor 5 becomes 11 Since the dielectric constant of 3 has a difference of 2 digits or more from 1800 to 4600, if the area is the same and the thickness is the same, most of the voltage is received by the capacitor of the photoconductor film 5 and the value of 1 to 100 or less Only the voltage is applied to the piezoelectric body 3, and the design conditions of the thickness and the area are not affected by this problem.
なお本実施例では、 比較的光応答速度は遅いが、 安価に構成でき る有機感光体にても可能なように、 光スィ ッチにてイ ンクの吸引を 選択したが、 勿論光応答速度のより速い a- Si感光体或いは Se系感光 体を用いることにより、 噴射側で選択することも可能である。 また 、 将来に鑑みるとより速度の速い有機感光体の出現により、 イ ンク 噴射側で光スィ ッチを行い得る可能性があることは言うまでもない とでめる。  In this embodiment, although the photoresponse speed is relatively slow, ink suction is selected by an optical switch so that an organic photoreceptor which can be constructed at a low cost is selected. By using an a-Si photoconductor or a Se photoconductor, which is faster than the above, it is also possible to select on the ejection side. In addition, it is needless to say that with the advent of organic photoconductors having a higher speed in the future, there is a possibility that optical switching can be performed on the ink jetting side.
以上の結果を踏まえ、 本発明の光スィ ッチを利用したイ ンク ジェ ッ トプリ ンタの実現可能性について数値的な検討を行なった。  Based on the above results, numerical studies were made on the feasibility of an ink jet printer using the optical switch of the present invention.
① 応答速度の早い感光体 (光導電膜) (表 1参照)  ① Photoreceptor (photoconductive film) with fast response speed (see Table 1)
光キャ リァ通過時間≤ 6 ms/ 1 ライ ン (1.5ppm, 600dpi) この条件に適合するためには、 光キャ リ ア移動度 ≥ 10— 6cm2 / Vsであることが必要である。 従って、 a-Si/Se系感光体、 0PC でも 速度の早い物であれば使用可能である。 Light calibration Ria transit time ≤ 6 ms / 1 line (1.5 ppm, 600 dpi) in order to meet this condition, it is necessary that an optical calibration Li A mobility ≥ 10- 6 cm 2 / Vs. Therefore, a-Si / Se-based photoreceptors and 0PC can be used as long as they are fast.
② 圧電体素子の蓄積容量 (表 2参照)  ② Storage capacity of piezoelectric element (see Table 2)
ピエゾ素子の静電容量 : 26pF 駆動電圧 500Vにて静電蓄積容量 13nC Piezo element capacitance: 26pF 13nC electrostatic storage capacity at 500V drive voltage
③ 光走査の条件 : 1.5ppmにて 600dpiでは (表 3参照)  ③ Optical scanning conditions: 1.5 dpi and 600 dpi (see Table 3)
1 ) 1 ライ ン走査時間 : 6 ms  1) 1 line scanning time: 6 ms
2 ) 1 ドッ ト照射時間 : 1.34 s  2) One-dot irradiation time: 1.34 s
④ 必要光エネルギー (表 4参照)  光 Required light energy (See Table 4)
• 13nC→ 8. 125X 10'。個 (電子数)  • 13nC → 8.125X10 '. Pieces (number of electrons)
• 720nm 半導体レーザの光子エネルギー→ 2.76 x 10— 1 9 J • 720nm semiconductor laser photon energy → 2.76 x 10- 1 9 J
' 必要光エネルギー : 2.22 x 10— 1 9 Jノ ドッ ト 'Necessary light energy: 2.22 x 10- 1 9 J Roh dot
• 必要 LD光量 : 16mW  • Required LD light amount: 16mW
⑤ 感光体 (光導電膜) の光照射面積 : 面積 100 mC3にて可能 光 Light irradiation area of photoconductor (photoconductive film): Possible with area 100 mC3
• CR時定数 : 6 ms • CR time constant: 6 ms
→感光体の明部抵抗 : 6 ms÷ 26pF= 2.31 X 108 Ω → Bright part resistance of photoconductor: 6 ms ÷ 26 pF = 2.31 X 10 8 Ω
また、 プリ ンタの高速限界についての数値的な検討を行なった。 その結果は表 5のとおりである。 基本的な条件として、 必要最高ィ ンク応答速度を 100 s以下と し、 解像度を 600dpiとする。  In addition, a numerical study on the high speed limit of the printer was performed. Table 5 shows the results. As basic conditions, the required maximum ink response speed is 100 s or less, and the resolution is 600 dpi.
(なお、 解像度が 300dpiであれば、 4倍の高速化が可能となる。 ) 〔表 5〕  (If the resolution is 300 dpi, 4 times speedup is possible.) [Table 5]
高速限界  High speed limit
Figure imgf000021_0001
以上より、 LD= 50mWでは、 600dpiで約 5 ppm (300dpi で約 20ppm) が可能であり、 高輝度 LED 、 等のライ ン固体発光素子では、 約 ΙΟΟρ pmも可能性を期待できる。
Figure imgf000021_0001
From the above, at LD = 50 mW, about 5 ppm at 600 dpi (about 20 ppm at 300 dpi) is possible, and about ΙΟΟρ for line solid-state light-emitting elements such as high-brightness LEDs. pm can be expected.
以上、 添付図面を参照して本発明の実施例について詳細に説明し たが、 本発明は上記の実施例に限定されるものではなく、 本発明の 精神ないし範囲内において種々の形態、 変形、 修正等が可能である ことに留意すべきである。 産業上の利用可能性  As described above, the embodiments of the present invention have been described in detail with reference to the accompanying drawings. However, the present invention is not limited to the above-described embodiments, and various forms, modifications, and variations are possible within the spirit and scope of the present invention. It should be noted that modifications are possible. Industrial applicability
以上に説明したような、 本発明の感光体素子 (即ち光導電体) を 利用する こ と によ り、 光スイ ッ チ ング素子とイ ンク ジ X ッ トへッ ド とを一対一に構成することが可能となり、 従来のように、 イ ン ク ジ ッ 卜のピエゾ素子に対して、 高い駆動電圧を有する駆動 ドライバ 一を必要とすることはなく 、 電子写真装置等で使用されてきた回転 鏡やラ イ ン L E D を用いてより簡単な構成とすることができ、 経済化 、 小型化に有利である。  By using the photoreceptor element (that is, photoconductor) of the present invention as described above, the optical switching element and the ink jet head are configured one-to-one. This eliminates the need for a drive driver having a high drive voltage with respect to the piezo element of the ink jet as in the past. A simpler configuration can be achieved using mirrors and line LEDs, which is advantageous for economy and miniaturization.

Claims

請 求 の 範 囲 The scope of the claims
1 . 静電容量物体の充電あるいは放電のスイ ッチングを、 該静電 容量物体に電気的に接続された光導電体への光照射による光スィ ッ チ効果により行うことを特徵とする光スィ ッチ。 1. An optical switch characterized in that switching of charging or discharging of a capacitive object is performed by an optical switching effect by irradiating light to a photoconductor electrically connected to the capacitive object. Ji.
2 . 前記静電容量物体は 1対の電極を有し、 その一方の電極は前 記光導電体により形成され、 他方の電極は接地されていることを特 微とする請求項 1 に記載の光スィ ツチ。  2. The capacitance object according to claim 1, wherein the capacitance object has a pair of electrodes, one of the electrodes is formed by the photoconductor, and the other electrode is grounded. Light switch.
3 . 前記光導電体は、 前記静電容量物体の一方の電極に接続され ている第 1 の側と、 これと反対側の第 2の側とを有し、 該第 2の側 を透明導電体で構成し、 該透明導電体に接続された電気回路の信号 を、 前記光導電体の光スィ ッチ効果で、 前記静電容量物体に伝達す ることを特徴とする請求項 2 に記載の光スィ ッチ。  3. The photoconductor has a first side connected to one electrode of the capacitance object, and a second side opposite to the first side, and the second side is formed of a transparent conductive material. The signal of an electric circuit connected to the transparent conductor is transmitted to the capacitance object by an optical switching effect of the photoconductor. Light switch.
4 . 前記静電容量物体の一方の電極を良導体電極とし、 該良導体 電極に前記光導電体を接合すると共に、 該光導電体の前記良導体電 極とは反対の側は透明導電体で構成し、 該透明導電体に接続された 電気回路の信号を、 前記光導電体の光スィ ッチ効果で、 前記静電容 量物体に伝達することを特徴とする請求項 2 に記載の光スィ ッチ。  4. One electrode of the capacitance object is a good conductor electrode, the photoconductor is joined to the good conductor electrode, and a side of the photoconductor opposite to the good conductor electrode is formed of a transparent conductor. The optical switch according to claim 2, wherein a signal of an electric circuit connected to the transparent conductor is transmitted to the capacitive object by an optical switch effect of the photoconductor. .
5 . 複数の静電容量物体を具備し、 各静電容量物体の一方の電極 は各々独立して個別の光導電体に接続され、 且つ各静電容量物体の 他方の電極は隣接する静電容量物体の他方の電極と互いに接続され 、 前記各静電容量物体の充電あるいは放電のスイ ッチングを、 対応 する前記各光導電体への光照射による光スィ ッチ効果により行うこ とを特徴とする光マルチスィ ッチ。  5. Equipped with a plurality of capacitance objects, one electrode of each capacitance object is independently connected to a separate photoconductor, and the other electrode of each capacitance object is It is connected to the other electrode of the capacitive object, and performs switching of charging or discharging of each of the capacitive objects by an optical switching effect by irradiating light to each of the corresponding photoconductors. Light multi-switch.
6 . 前記各光導電体は、 前記各静電容量物体の一方の電極に接続 されている第 1 の側と、 これと反対側の第 2の側とを有し、 該第 2 の側を透明導電体で構成し、 該透明導電体に接続された各電気回路 の信号を、 前記各光導電体の光スィ ッチ効果で、 前記各静電容量物 体に伝達することを特徴とする請求項 5 に記載の光マルチスィ ツチ 6. Each of the photoconductors has a first side connected to one electrode of each of the capacitance objects and a second side opposite to the first side, and the second side is connected to the second side. Each electric circuit composed of a transparent conductor and connected to the transparent conductor The optical multi-switch according to claim 5, wherein the signal is transmitted to each of the capacitance objects by an optical switching effect of each of the photoconductors.
7 . 各静電容量物体の一方の電極を良導体電極と し、 該良導体電 極に前記光導電体を接合すると共に、 該光導電体の前記良導体電極 とは反対の側は透明導電体で構成し、 該透明導電体に接続された電 気回路の信号を、 前記光導電体の光スィ ッチ効果で、 前記静電容量 物体に伝達することを特徴とする請求項 5 に記載の光マルチスイ ツ チ。 7. One electrode of each capacitance object is a good conductor electrode, the photoconductor is joined to the good conductor electrode, and the opposite side of the photoconductor from the good conductor electrode is made of a transparent conductor. The optical multi-switch according to claim 5, wherein a signal of an electric circuit connected to the transparent conductor is transmitted to the capacitance object by an optical switch effect of the photoconductor. Tsuchi.
8 . 前記静電容量物体を圧電体により構成したことを特徴とする 請求項 1 〜 7のいずれか 1 項に記載の光スィ ツチ。  8. The optical switch according to any one of claims 1 to 7, wherein the capacitance object is formed of a piezoelectric body.
9 . 前記光導電体の光スィ ッチ効果で、 前記圧電体に伝達される 信号により該圧電体を変形させ、 該変形を機械的出力と して取り出 すように構成したことを特徴とする請求項 8項に記載の光スィ ッ チ  9. The piezoelectric body is deformed by a signal transmitted to the piezoelectric body by an optical switch effect of the photoconductor, and the deformation is taken out as a mechanical output. An optical switch according to claim 8,
1 0. 圧電体を用いたイ ンク噴射機構を複数個並列に配置し、 各圧 電体の一方の電極を各々独立して光導電体に接続し、 且つ各圧電体 の他方の電極を隣接する圧電体の他方の電極と互いに接続し、 光走 査手段により前記複数の光導電体に選択的に光照射を行う ことによ り、 対応する前記圧電体を変形させて、 前記イ ン ク噴射機構よりィ ンクを噴射するように構成したことを特徴とする、 光スィ ッ チを用 いたイ ンク ジ エ ツ 卜プ リ ン夕装置。 10. A plurality of ink jetting mechanisms using piezoelectric bodies are arranged in parallel, one electrode of each piezoelectric body is connected to the photoconductor independently, and the other electrode of each piezoelectric body is adjacent. By connecting the other photoconductor to the other electrode of the piezoelectric body to be irradiated and selectively irradiating the plurality of photoconductors with light by a light scanning means, the corresponding piezoelectric body is deformed, and the ink is deformed. An ink jet printer using an optical switch, characterized in that the ink is ejected from an ejection mechanism.
1 1. 前記光走査手段と して、 レーザ光源、 回転鏡或いは振動鏡、 音響偏向、 等のレーザ光学系を用いたことを特徴とする請求項 1 0に 記載の光スィ ッチを用いたイ ンク ジヱ ッ トプリ ンタ装置。  11. The optical switch according to claim 10, wherein a laser optical system such as a laser light source, a rotating mirror or a vibrating mirror, and acoustic deflection is used as the optical scanning means. Ink jet printer device.
1 2. L ED アレイよりのレーザ光をセルフ ォ ッ ク スレンズを介して 前記複数の光導電体に選択的に光照射を行う ことを特徴とする請求 項 1 1に記載の光スィ ツチを用いたィ ンク ジヱ ッ トプリ ンタ装置。12. A method of selectively irradiating a plurality of photoconductors with laser light from a LED array via a self-ox lens. Item 11. An ink jet printer using the optical switch according to Item 11.
1 3. 各圧電体の前記一方の電極を個別のダイオー ドを介して、 ァ 一スに接続された共通のァーススイ ツチを接続したことを特徵とす る請求項 1 0に記載の光スィ ツチを用いたイ ンク ジヱ ッ トプリ ンタ装 置 o 13. The optical switch according to claim 10, wherein the one electrode of each piezoelectric body is connected to a common ground switch connected to the ground via an individual diode. Ink jet printer using o
1 4. イ ンク供給路、 イ ンク圧力室、 イ ンクノズル及び圧電素子か らなる画像形成装置の該圧電素子に感光層を接続し、 該感光層を画 像パターンに応じて光照射することにより、 該圧電素子を変形せし めて、 該圧電素子を機械的変動により該イ ンクノズルからイ ンクを 噴射せしめるように構成した、 光スィ ッ チを用いたイ ン ク ジヱ ッ ト プリ ンタ装置において、 該圧電素子の一方の電極と他方の電極との 間のスィ ッチ回路を接続し、 且つ前記感光眉に、 該感光層が光に感 応できるような極性の電圧を印加したことを特徴とするプリ ンタ装 置 o  1 4. By connecting a photosensitive layer to the piezoelectric element of an image forming apparatus including an ink supply path, an ink pressure chamber, an ink nozzle, and a piezoelectric element, and irradiating the photosensitive layer with light according to an image pattern. An ink jet printer using an optical switch, wherein the piezoelectric element is deformed and the ink is ejected from the ink nozzle by mechanical fluctuation. Wherein a switch circuit is connected between one electrode and the other electrode of the piezoelectric element, and a voltage having a polarity such that the photosensitive layer can respond to light is applied to the photosensitive eyebrows. Characteristic printer equipment o
15. 前記圧電素子にほぼ 0 V近傍の電圧が印加された際に、 イ ン ク圧力室が膨張し、 イ ンク供給路よりイ ンクを吸収し、 逆に前記圧 電素子に前記感光層に印加された高電圧が印加された際には、 ィ ン ク圧力室が縮むよう構成したことを特徵とする請求項 1 2に記載のプ リ ンタ装置。  15. When a voltage of about 0 V is applied to the piezoelectric element, the ink pressure chamber expands and absorbs ink from the ink supply path, and conversely, the piezoelectric element applies the ink to the photosensitive layer. 13. The printer device according to claim 12, wherein the ink pressure chamber is configured to contract when the applied high voltage is applied.
16. 前記圧電素子にほぼ 0 V近傍の電圧が印加された際に、 イ ン ク圧力室が膨張し、 イ ンク供給路よりイ ンクを吸収し、 逆に前記圧 電素子に前記感光層に印加された高電圧が印加された際には、 ィ ン ク室が縮むよう構成したことを特徴とする請求項 1 2に記載のプリ ン タ装置。  16. When a voltage of about 0 V is applied to the piezoelectric element, the ink pressure chamber expands, absorbs ink from the ink supply path, and conversely applies the piezoelectric element to the photosensitive layer. 13. The printer device according to claim 12, wherein the ink chamber is configured to contract when the applied high voltage is applied.
PCT/JP1997/000384 1996-02-16 1997-02-13 Optical switch and ink-jet printer WO1997029914A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19780213T DE19780213T1 (en) 1996-02-16 1997-02-13 Optical switch and inkjet printer
JP9529188A JP3030787B2 (en) 1996-02-16 1997-02-13 Optical switch and inkjet printer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/29595 1996-02-16
JP2959596 1996-02-16

Publications (1)

Publication Number Publication Date
WO1997029914A1 true WO1997029914A1 (en) 1997-08-21

Family

ID=12280441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000384 WO1997029914A1 (en) 1996-02-16 1997-02-13 Optical switch and ink-jet printer

Country Status (2)

Country Link
DE (1) DE19780213T1 (en)
WO (1) WO1997029914A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369239A1 (en) * 2002-06-07 2003-12-10 Hewlett-Packard Development Company, L.P. Photosensor activation of an ejection element of a fluid ejection device
EP1369240A2 (en) * 2002-06-07 2003-12-10 Hewlett-Packard Development Company, L.P. Fluid ejection and scanning system with photosensor activation of ejection elements
US6747684B2 (en) 2002-04-10 2004-06-08 Hewlett-Packard Development Company, L.P. Laser triggered inkjet firing
US7083250B2 (en) 2002-06-07 2006-08-01 Hewlett-Packard Development Company, L.P. Fluid ejection and scanning assembly with photosensor activation of ejection elements
US7104623B2 (en) 2002-06-07 2006-09-12 Hewlett-Packard Development Company, L.P. Fluid ejection system with photosensor activation of ejection element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156634A (en) * 1978-05-31 1979-12-10 Fujitsu Ltd Ink jet recording head
JPS6179664A (en) * 1984-09-28 1986-04-23 Toshiba Corp Ink jet recording apparatus
JPH0664166A (en) * 1992-08-14 1994-03-08 Citizen Watch Co Ltd Driving method for ink jet head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156634A (en) * 1978-05-31 1979-12-10 Fujitsu Ltd Ink jet recording head
JPS6179664A (en) * 1984-09-28 1986-04-23 Toshiba Corp Ink jet recording apparatus
JPH0664166A (en) * 1992-08-14 1994-03-08 Citizen Watch Co Ltd Driving method for ink jet head

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747684B2 (en) 2002-04-10 2004-06-08 Hewlett-Packard Development Company, L.P. Laser triggered inkjet firing
EP1369239A1 (en) * 2002-06-07 2003-12-10 Hewlett-Packard Development Company, L.P. Photosensor activation of an ejection element of a fluid ejection device
EP1369240A2 (en) * 2002-06-07 2003-12-10 Hewlett-Packard Development Company, L.P. Fluid ejection and scanning system with photosensor activation of ejection elements
US6705701B2 (en) 2002-06-07 2004-03-16 Hewlett-Packard Development Company, L.P. Fluid ejection and scanning system with photosensor activation of ejection elements
EP1369240A3 (en) * 2002-06-07 2004-06-09 Hewlett-Packard Development Company, L.P. Fluid ejection and scanning system with photosensor activation of ejection elements
US6799819B2 (en) 2002-06-07 2004-10-05 Hewlett-Packard Development Company, L.P. Photosensor activation of an ejection element of a fluid ejection device
US6893113B2 (en) 2002-06-07 2005-05-17 Hewlett-Packard Development Company, L.P. Fluid ejection and scanning system with photosensor activation of ejection elements
US7083250B2 (en) 2002-06-07 2006-08-01 Hewlett-Packard Development Company, L.P. Fluid ejection and scanning assembly with photosensor activation of ejection elements
US7104623B2 (en) 2002-06-07 2006-09-12 Hewlett-Packard Development Company, L.P. Fluid ejection system with photosensor activation of ejection element

Also Published As

Publication number Publication date
DE19780213T1 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
JP3303901B2 (en) Electric field drive type ink jet recording head and driving method thereof
US7575306B2 (en) Discharge head, method of manufacturing discharge head, and liquid discharge apparatus
WO1997029914A1 (en) Optical switch and ink-jet printer
JP3030787B2 (en) Optical switch and inkjet printer
KR100982840B1 (en) Photosensor activation of an ejection element of a fluid ejection device
KR100957896B1 (en) Fluid ejection and scanning system with photosensor activation of ejection elements
JPH08238774A (en) Electrostatic suction type ink-jet recorder and its drive method
JPH05212869A (en) Electrostatic ink jet recording apparatus
JP4067891B2 (en) Electrostatic actuator, droplet discharge head, ink jet recording apparatus
EP1369237B1 (en) Fluid ejection system with photosensor activation of ejection element
EP0829356A2 (en) Ink jet recording apparatus
JPH04246542A (en) Photo-writing type ink jet printer
KR100996068B1 (en) Fluid ejection and scanning assembly with photosensor activation of ejection elements
JP2003276194A (en) Electrostatic actuator, liquid drop ejection head and ink jet recorder
JPH10235868A (en) Recording head
JP6638790B2 (en) Image forming apparatus and image forming method
JP2003245897A (en) Electrostatic actuator, drop discharge head, and inkjet recording device
JP3909948B2 (en) Recording head
JPH02143863A (en) Ink-jet printer
JPH03219759A (en) Photoelectric converter and picture processor provided with the same
JPH106506A (en) Recording device and recording unit employed in the device and recording head
JP2003246056A (en) Electrostatic actuator, liquid drop discharge head and inkjet recorder
JP2003266696A (en) Electrostatic actuator, liquid drop discharge head and inkjet recorder
JPH02196661A (en) Ink recorder
JPH02196660A (en) Ink recorder and recording method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

RET De translation (de og part 6b)

Ref document number: 19780213

Country of ref document: DE

Date of ref document: 19980402

WWE Wipo information: entry into national phase

Ref document number: 19780213

Country of ref document: DE