WO1997028422A1 - Foreign matter detector/analyzer and method thereof - Google Patents

Foreign matter detector/analyzer and method thereof Download PDF

Info

Publication number
WO1997028422A1
WO1997028422A1 PCT/JP1997/000244 JP9700244W WO9728422A1 WO 1997028422 A1 WO1997028422 A1 WO 1997028422A1 JP 9700244 W JP9700244 W JP 9700244W WO 9728422 A1 WO9728422 A1 WO 9728422A1
Authority
WO
WIPO (PCT)
Prior art keywords
foreign matter
laser
inspection object
scanning
laser beam
Prior art date
Application number
PCT/JP1997/000244
Other languages
French (fr)
Japanese (ja)
Inventor
Eiji Kanou
Takashi Kido
Yasuhiro Maeda
Kouji Honma
Masayoshi Tsuchiya
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP8171226A external-priority patent/JPH11125602A/en
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to DE19780186T priority Critical patent/DE19780186T1/en
Publication of WO1997028422A1 publication Critical patent/WO1997028422A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers

Definitions

  • the present invention detects, for example, a semiconductor wafer on which a semiconductor integrated circuit is formed, a semiconductor wafer during the formation of the semiconductor integrated circuit, and a minute foreign matter attached to the surface of another object, and analyzes the shape, components, and the like of the foreign matter.
  • the present invention relates to a folding device and a method thereof. With the recent increase in the degree of integration of semiconductor integrated circuits, it is indispensable to increase the performance of their production technologies and increase their reliability. Foreign matter may adhere to the circuit wafer surface. There is a close relationship between the amount of foreign matter deposited during manufacturing, whether the manufacturing line is operating stably, and the product yield.
  • the conventional foreign matter in-line measuring device is merely a particle counter that counts the number of foreign matter that does not have a function of analyzing the composition of the foreign matter, or can measure the composition of the foreign matter.
  • the analysis time was long, the analysis was not automated, and furthermore, the position information needed by a particle counter was required, making it a measurement device that was not practical for inline use.
  • a conventional apparatus for analyzing foreign matter adhering to the surface of an object will be described with reference to FIG.
  • the XY stage 11 is mounted on the base 10, and the XY stage 11 is moved on the base 10 in the X-axis movable section 1 1 X and the X-axis movable section 1 1 X.
  • a Y-axis movable section 1 1 y is movably movable in the Y-axis direction, and an inspection object 12 such as a semiconductor device is mounted on the XY stage 11.
  • the driving means for moving the XY stage 11 is not shown in the figure, but the position on the X axis of the XY stage 11 is detected by the X stage generator 13 X, and the position on the Y axis is the Y stage encoder 13 y
  • Is detected by A foreign matter inspection device 14 and an electronic analysis device 15 are arranged in the X-axis direction and located above the XY stage 11 within the movement range of the XY stage 11.
  • the electronic analyzer 15 irradiates the inspection object 12 with an electron beam from the electron gun 16, and secondary electrons generated at that time are emitted. Is detected by the secondary electron detector 17, and or X-ray energy generated by the irradiation of the electron beam is separated by the energy dispersive X-ray diffraction device 18.
  • the XY stage 11 is driven and controlled in the X and Y directions by a drive control device (not shown) to be disposed below the foreign matter inspection device 14.
  • the foreign matter inspection device 14 irradiates, for example, a laser beam and detects the scattered light.
  • a laser beam is radiated from the foreign object inspection device 14 to the surface of the substrate 12 while finely moving 11 in the X and Y directions, and the scattered light caused by the minute foreign particles adhering to the surface is observed by the laser light detector. Detect foreign matter adhering to the surface.
  • the readings of the X stage generator 13 X and the Y stage encoder 13 y at this time indicate the surface position where the foreign matter has adhered.
  • the XY stage 11 is again driven and controlled in the XY directions, and is disposed below the electronic analyzer 15. Then, the XY stage 11 is finely moved in the XY direction while referring to the surface position of the foreign matter detected earlier, so that the foreign matter attached to the focal point of the electron beam lens of the electron gun 16 coincides with the XY stage 1. Position 1 As a result, the foreign matter to be observed falls within the field of view of the secondary electron detector 17.
  • the external shape can be observed from the secondary electron image of the foreign matter generated by the electron beam irradiated by the electron gun 16.
  • X-rays generated by electron beam irradiation can be analyzed by the X-ray spectrometer 18 to analyze the composition of the foreign matter.
  • An electronic diffraction device 15 is located above the stage 21 and a laser beam is applied to a point where the electron beam irradiates the wafer 12.
  • the laser beam from the laser source 25 is reflected by the reflecting mirror via the optical system 26 and is applied to the wafer 12.
  • the optical system 26 is driven by the motor 27 to rotate the screw 2. 8 is rotated and moved in the horizontal direction, so that the irradiation point of the laser beam can be made coincident with or shifted from the irradiation point of the electron beam.
  • Stage 21 is not an XY stage but an XS stage.
  • the stage 21 is moved in the X direction and rotated, thereby scanning the wafer 12.
  • the laser beam is irradiated on the wafer 12, and the scattered light is detected.
  • the position of the foreign matter is detected by the detector 29, and then the optical system 26 is moved so that the electron beam is irradiated to the position where the foreign matter was detected first without disturbing the irradiation of the electron beam.
  • the SEM image at that position is detected. That is, the electron beam is scanned in a plane to detect the SEM image. In this case, it was not possible to detect the true foreign matter detection position composition, etc., instead of the SEM image.
  • an electron beam can have a thickness of about 0.1 m, for example, and can significantly increase the resolution compared to abnormal detection by a laser beam.
  • the composition of the detected abnormal deposit could not be known.
  • the spot size of the laser beam depends on its wavelength, for example, a diameter of 1
  • the electron beam can be made extremely thin with a diameter of about 0.1 m, and therefore, it is possible to analyze foreign components and the like on the wafer 12 with a positional resolution of 0.1 m. Therefore, in order to analyze the foreign material component with a positional accuracy of 0.1 m, an electron beam with a spot size of 0.1 m can be obtained by measuring a 10 mx 10 m square or a 10 m circle of the optically detected foreign material position. Since it is necessary to perform detection analysis by scanning at, the detection scan took time.
  • An object of the present invention is to provide an apparatus and a method for detecting foreign matter at high speed. Another object of the invention is the provide a device and method for detecting foreign matter with high positional accuracy 0
  • Still another object of the present invention is to provide an apparatus and a method for detecting and analyzing foreign matter at high speed and with high accuracy.
  • the object to be inspected is roughly scanned with a laser beam having a large spot size, a rough foreign matter position is detected, and the range of the large foreign matter position, which is the rough foreign matter position, is set to 10%.
  • the range of the large foreign matter position which is the rough foreign matter position, is set to 10%.
  • Approximately 200 times smaller spot size laser beam is used for coarse particle scanning to detect foreign matter position. This significantly speeds up foreign object detection compared to scanning with only a small spot size.
  • the position that is, the range of the spot size of the laser beam is adjusted to a pitch smaller than the spot size, that is, the target accuracy. Scanning is performed at the appropriate pitch, and at that time, the position where the laser scattered light based on the foreign matter is maximized is determined. Foreign object position can be detected.
  • the position of the detected foreign matter may be scanned in the range of the resolution, and the time required for the separation can be significantly reduced. Therefore, a scanning pitch of the laser beam that is smaller than the spot size may be selected according to the scanning range of the electron beam for analysis. Further, in the case of performing analysis using an electron beam, it is preferable that the irradiation point of the laser beam to the test object and the irradiation point of the electron beam be set in advance while the test object is fixed. As soon as a foreign object is detected, the analysis can be performed immediately, and the alignment time and accuracy are not required, and high-speed and high-accuracy analysis can be performed. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a view schematically showing a conventional foreign matter detection / fractionation apparatus.
  • FIG. 2 is a side view showing another conventional foreign matter detecting and separating apparatus.
  • FIG. 3A is a plan view showing an embodiment of the present invention.
  • FIG. 3B is a front view of FIG. 3A.
  • FIG. 4 shows the relationship between the laser detector 34, the scattered light detector 35, the X-ray diffractometer 37, the secondary electron detector 17 and the supporting plate for supporting the same in the embodiment of FIG. It is a top view.
  • FIG. 5 is a cross-sectional view of the laser projector 34 in FIG.
  • FIG. 6 is a sectional view of the scattered light detector 35 in FIG.
  • FIG. 7 is a cross-sectional view of the X-ray diffractometer 37 in FIG.
  • FIG. 8 is a sectional view of the backscattered electron detector 36 in FIG.
  • FIG. 9 is a flowchart showing the operation procedure of the embodiment of the present invention.
  • FIG. 10 is a diagram showing another example of a switching portion between a laser beam and an electron beam.
  • FIG. 11 is a diagram schematically showing another embodiment of the present invention.
  • FIG. 12 is a diagram showing an outline of still another embodiment.
  • FIG. 13 is a diagram showing an outline of still another embodiment.
  • FIG. 14 is a diagram showing an example in which the incident angles of the two laser beams are different.
  • FIG. 15 is a diagram showing a state of a position detection error due to the laser beam due to the convex portion of the inspection object in FIG.
  • FIG. 16 is a diagram showing an example in which a laser source is built in an electron gun.
  • FIG. 17 is a diagram showing another example.
  • FIG. 18 is a diagram showing still another example.
  • any of the above foreign substance separation apparatuses can detect foreign substances adhering to an object and observe and analyze the external shape of the detected foreign substance. It was not possible to perform in-line observation and analysis operations of the work and external shape, and it took a long time to perform all the operations, and the operations themselves were complicated and difficult. Best form to do
  • FIG. 3 shows an embodiment of the present invention.
  • the inside of the vacuum vessel 30 is indicated by a dotted line.
  • a movable stage 32 such as an XY stage or an X0 stage is provided on a base 31, and an object to be inspected, for example, 1 2 will be mounted.
  • the movable stage 32 is an XY stage in this example, and is provided with an X stage encoder 13x and a Y stagegen coder 13y.
  • Foreign substance inspection device consisting of laser projector 34 and laser diffusion detector 35 and electron gun consisting of electron gun 16, secondary electron detector 17, reflected electron detector 36, X-ray analyzer 37
  • a device 15 is provided.
  • a plurality of columns 38 are erected on the base 31 in the vacuum vessel 30, and a support plate 39 is horizontally supported on these columns 38.
  • the support plate 39 supports the electron gun 16, secondary electron detector 17, backscattered electron detector 36, X-ray analyzer 37, laser detector 34, laser scattered light detector 35, etc. I have.
  • the inside of the electron gun 16 is evacuated through the exhaust part 30a.
  • Fig. 4 shows the arrangement of the support plate 39 and the secondary electron detector 17, the backscattered electron detector 36, the laser projector 34, and the laser scattered light detector 35 supported by the support plate 39.
  • a central hole 4 1 is formed in the center of 3 9, and a radial cutout 4 2,
  • notch 4 3 is formed, notch 4 2 laser scattering light detector 3 5 force notch 4 3 X-ray detector 3 7 force, notch 4 4 secondary electron detector 17 is located I have. Further, a laser beam detector 34 is located in a notch 45 extending from the center hole 41 to the outer periphery ⁇ of the support plate 39, and a backscattered electron detector 36 is located in a radial hole 46 relative to the center hole 41. Is located. In FIG. 2, the electron gun 16 is omitted.
  • the point 50 at which the electron beam of the electron gun 16 irradiates the wafer 12 coincides with the point at which the laser beam from the laser projector 34 irradiates the wafer 12.
  • the laser projector 34 emits a relatively large laser beam having a spot size of, for example, 1 mm ⁇ 40 m as shown in FIG. 5, and the spot size is smaller than this.
  • Illustration for example, a laser projector 52 having a diameter of 10 // m is provided. The laser projector 52 is held movably in the horizontal direction by a support portion 53 provided on the bottom surface of the support plate 39.
  • An arm is attached to the side of the laser projector 5 2 so as to extend to the center hole 41, and a mirror 55 is fixed to the end of the arm 54.
  • the laser emitted from the laser projector 52 is reflected by the mirror 55.
  • the light is reflected and is incident on the ⁇ ⁇ C 12.
  • the rear end of the laser projector 52 is driven by the air cylinder 56 attached to the bottom of the support plate 39, and the center of the irradiation point on the laser beam 12 of the laser projector 52 is focused on the electron beam. It can be made to coincide with the irradiation point 50 on 12 or shifted from this.
  • the laser projector 51 is mounted diagonally with respect to the horizontal plane on the holder 57 attached to the laser projector 52, and the irradiation point on the center of the laser beam of the laser projector 51 and the laser projector 5
  • the center of the laser beam of No. 2 is always coincident with the irradiation point on C 1 2.
  • Each of the laser projectors 51 and 52 has a lens system so that the focal position of the laser beam and the radiation direction of the laser beam can be finely adjusted.
  • the tip of the laser projector 34 When the tip of the laser projector 34 is positioned in the electron beam path, it is important that the center of the laser beam irradiates the irradiation point 50 on the electron beam 12.
  • the laser projector 34 when the laser projector 34 is moved inward, the outer flange 91 of the laser projector 34 is engaged with the support portion 53 and positioned.
  • the laser projector 34 has a built-in optical system adjusting mechanism as described above, and adjusts this to irradiate the electron beam irradiation point 50 with the center of the laser beam. To be adjusted in advance.
  • a mechanism for finely adjusting the entire laser projector 34 with respect to the support plate 39 in the X, ⁇ , and Z axis directions is provided, thereby irradiating the irradiation point at the center of the laser beam. It can be made to coincide with the point 50.
  • the support bin 61 is set up on the support plate 39 at an appropriate interval on the support plate 39 around the center hole 41, and The support ring 62 is fixed on the pin 61, the flange of the electron gun 16 is engaged on the support ring 62, and the electron gun 16 is supported by the support plate 39.
  • 0 ring between the cylindrical part of the support ring 62 and the outer periphery of the electron gun 16 Ring 63 is interposed, and is kept airtight with the outside.
  • Fig. 6 shows the mounting structure of the laser scattered light detector 35.
  • the laser scattered light detector 35 is mounted on the fixed base 65 on the support plate 39 so as to be able to rotate slightly in the vertical plane around the center 666, and the focal point is located on the base ⁇ ⁇ of the electron beam. It is adjusted so as to coincide with the irradiation point 50 of.
  • Figure 7 shows the mounting structure of the X-ray component analyzer 37.
  • an opening portion of the X-ray component analyzer 37 is formed in the vacuum container 30, and the X-ray component analyzer 37 is inserted into the insertion portion.
  • the tip is at a position where the laser beam projector 34, the laser scattered light detector 35, the secondary electron detector 17, etc. do not obstruct the electron beam irradiation point 50 on the wafer 12 relatively close to the irradiation point 50.
  • the middle part of the X-ray component analyzer 37 is inserted and held in the cylindrical holder 71 by screw connection, and the cylindrical holder 71 is fixed outside the vacuum vessel 30.
  • the adjustment handle 72 When the adjustment handle 72 is rotated, the intermediate portion of the X-ray component splitter 37 inside the cylindrical holder 71 is moved by a gear connection not shown in the figure, and based on the screw connection, The position is adjusted back and forth.
  • a liquid vaginal element tank # 3 is attached to the outer end of the X-ray component analyzer 37, and the liquid vaginal element cools the X-ray component analyzer 37 to perform a desired analyzing action.
  • An O-ring 74 is interposed between the outer periphery of the X-ray component analyzer 37 and its vacuum container insertion part.
  • Fig. 8 shows the mounting structure of the backscattered electron detector 36.
  • the backscattered electron detector 36 is movably mounted on the lower side of the support plate 39 in a horizontal plane, and a backscattered electron detection sensor is mounted at the bottom of the tip.
  • a small hole 95 through which the electron beam passes is formed at this tip.
  • the support bridge 76 is shown across the rectangular hole 46 of the support plate 39, and on the support bridge 76. (The upper part of the line segmenter 36 engages with the keyway. Thus, it is held movably in the horizontal direction.
  • An electron beam passage hole is formed at the tip of the backscattered electron detector 36, which is removed from the position when irradiating the laser beam. Therefore, the backscattered electron detector 36 is movable in the radiation direction. Positioning is performed by 9 3 and 9 4. This movement is not shown in the figure, but is performed by, for example, an air cylinder in the same manner as for the laser projector 34.
  • the laser irradiation point of the laser projector 34 is matched with the electron beam irradiation point 50, and the XY stage 32 is moved in the XY direction by the control driving device (not shown) of the control unit 40.
  • the laser beam is emitted from the projector 51 to the laser beam 12 (S 1).
  • the XY stage 32 is moved so that the laser beam can run on the entire surface of the laser 12.
  • the X-direction encoder 13 when the scattered light from the foreign object is observed by the laser scattered light detector 35
  • the X-direction encoder 13 The reading of 13 y is stored in the storage unit 81 in the control unit 40 every time scattered light is detected (S 2, S 3). At this time, it is assumed that the spot size of the laser of the laser projector 51 used is about 100 ⁇ m, in this example 1 mm ⁇ 40 ⁇ m, and the movement pitch of the XY stage 32 is also 1 in the X direction.
  • the time required to scan the entire surface of the wafer 12 is about 1 to 2 minutes, and a foreign object detection map on the wafer 12 can be obtained at high speed.
  • S4 in this example, the mesh of the foreign object detection map is 100mX40m.
  • the resolution is too poor and it is not known where the detected foreign matter is located in the range of 100 / mX40m.
  • the laser projector 51 is turned off, and the laser beam is emitted from the laser projector 52 by the laser projector 52 having a small spot size (for example, a diameter of about 10 m).
  • a small spot size for example, a diameter of about 10 m.
  • the XY stage 32 is moved (S6) so that the laser beam can scan within the range of 100 ⁇ mX40 ⁇ ⁇ m on the wafer stored in the storage unit 81 earlier (S6), and the scattered light from the foreign matter is reduced.
  • the readings of the X-direction encoder 13 and the X-direction encoder 13 when observed by the laser scattered light detector 35 are stored again.
  • the moving pitch of the XY stage 32 is set to 10 ⁇ m, which is almost the same as the laser beam spot size of the laser projector 52, the time required to move in the range of 100 ⁇ mx 40 m is 1, It is about 2 seconds.
  • the detected foreign object is located within the range of 10m x 10 ⁇ m.
  • the present invention it is possible to detect a foreign object position with a higher resolution. This For this reason, a laser beam is emitted from the laser projector 52 with a small spot size to the foreign object positioned within the range of 10m X 10m, and the moving pitch of the XY stage 32 is set to 1m. (S7, S8). Even if the spot size of the laser beam from the laser projector 52 is 10 ⁇ m, the intensity distribution in the cross section of the laser beam is generally not constant within this spot, but has a certain distribution (Gaussian distribution). The more you go to the center, the stronger the strength.
  • the foreign substance position can be detected within a range of 1 mx 1 m. (S9). It takes about 3 seconds to move the range of 10 / mx10m in 1 ⁇ m bitches. With the above operation, the foreign object position can be detected with a resolution of 1 mx 1 m. Further, when performing foreign particle analysis, a scanning electron gun 16 irradiates an electron beam to scan a range of 1 mx 1 / m at the detected foreign particle position, thereby enlarging the component analysis within this range.
  • the flow can be performed in about one minute using the dispersive X-ray detector 37 (S10).
  • the irradiation point 50 of the electron beam is aligned with the irradiation point of the laser beam, it is possible to shift the laser projector 34 from the center to the outside, immediately irradiate the electron beam, and start scanning.
  • a secondary electron image that is, a scanning electron microscope
  • Image SEM image can be obtained. If there is a next stored foreign object detection position (S11), the flow returns to step S6 to scan the stored position.
  • foreign matter detection and separation on the wafer can be performed at high speed. For example, if there are 5 to 6 foreign matter on the wafer, analysis can be obtained within 10 minutes and automatically. It can be carried out. In other words, there is no factor for the operator to make a decision in the above operation.
  • a small hole 83 is passed through the mirror 56 of the support arm 54 in the laser projector 34 as shown by a dotted line, so that the laser projector 34 does not move.
  • the electron beam may be applied to the wafer 12.
  • the mirror 55 is attached to the support arm 5 so as to be rotatable about a shaft 84, and the mirror 55 is rotated as necessary to beam May be removed from the irradiation path.
  • the laser projector 51 having a large beam spot and the laser projector 52 having a small beam spot may be arranged on the same straight line.
  • the laser beam from the laser source 51a is formed into an elongated rectangle by the optical parts 51b such as prisms and apertures, and the parallel beam 51d of the thick beam is formed by the lens 51c.
  • the beam is narrowed at 34a, and is incident on the irradiation point 50 with a desired spot size and shape.
  • the laser projector 52 is held at the axial center position in the outer cylinder 34b of the projector 34, and the narrow beam 52b of the narrow beam is formed by the lens 52a.
  • the beam is narrowed at 4a, and is incident on the irradiation point 50 with a desired spot size and shape.
  • the projection of the laser beam on the wafer 12 by the laser projector 34 and the irradiation of the electron beam on the wafer 12 by the electron gun 16 may be performed in different places. That is, as described above, after detecting foreign matter by irradiating the laser beam, the movable stage 32 is moved to a position immediately below the electron gun 16, and in the above example, the foreign matter detection position is set to an accuracy of 1 m and the electron beam It can also be used to analyze foreign components with an electron beam, and to obtain SEM images and backscattered electron images.
  • the mirror 85 is irradiated, and the reflected light scans on a straight line passing through the irradiation point 50 of the electron beam so that a scanning line 86 is formed.
  • the foreign object can be detected at a high speed by moving the movable stage 32 by a distance corresponding to the spot size of the laser beam in a direction perpendicular to the scanning line 86.
  • Scanning the wafer 12 by oscillating (reciprocatingly rotating) the laser beam in this manner is not limited to the use of the polygon mirror 85, but may be performed, for example, by a mirror attached to a movable coil used in a force ruvanometer. Can also.
  • the scanning line 86 of the laser beam is, for example, as shown in FIG.
  • Electron beam irradiation point 50 force, constant distance d! May be separated.
  • a laser beam projection angle 0, from the laser projector 51 to the laser beam 12 is different from a laser beam projection angle 02 from the laser projector 52 to the laser beam 12. This is also the case with the example shown in FIG. 5, and the laser projectors 51 and 52 can be integrally held as shown in FIG.
  • ⁇ ⁇ ⁇ ⁇ , - ⁇ ⁇ ⁇
  • each correction value can be obtained.
  • a x, rum x 'tan 2 / (tan 6? Z -t.
  • An (9 i) "-() Assuming that the electron beam from the scanning electron gun 16 irradiates the wafer 12 almost vertically, the position of the foreign matter may be corrected based on the correction values ⁇ ,, ⁇ ⁇ 2 described above. Also, if the irradiation angle of the electron beam from the scanning electron gun 16 and the irradiation angle of the laser projector 52 having the smaller beam spot are made the same, the detection position of the laser projector 52 and the laser projector 51 The deviation ⁇ X from the detection position due to the above becomes the correction value as it is. The appropriate difference between ⁇ 1 and 2 is between 20 ° and 80 °.
  • a laser projector 34 is attached to the upper part of the electron gun 16 where the electron beam is not spread, and the laser beam from the laser projector 34 is mirrored.
  • a laser projector 34 is arranged in a space where the electron beam 91 in the middle of the electron gun 16 is narrowed by being narrowed so as not to interfere with the electron beam 91, and The laser beam from the laser projector 34 is reflected by the mirror 92 formed with a small hole through which the electron beam 91 passes at the place where the electron beam 91 is narrowed so that the laser beam enters the irradiation point 50. It may be.
  • a surface moving mirror 93 is provided as shown in FIG. 18, and when the laser beam is incident on the wafer 12, the mirror 93 is connected to the electron beam 9.
  • a thick laser beam with a square cross section such as 100 ⁇ m x 400 ⁇ m
  • the inside is further searched when a narrow laser beam is used to search for a foreign object.
  • the cross-sectional shape of this thick laser beam may be circular.
  • the ratio of the spot size of the thick laser beam to that of the narrow laser beam may be about 10 to 200.
  • the scanning pitch of the laser beam for obtaining high accuracy is, for example, 0.2 i ir! About 3.0 m is appropriate.
  • scanning pitch is, for example, 0.2 i ir! About 3.0 m is appropriate.
  • the detection speed can be remarkably improved as compared with the case where a foreign substance is detected by scanning only with a thin laser beam.
  • scanning at a pitch smaller than the spot size finding the position where the laser scattered light has the maximum intensity, and detecting foreign matter with high positional accuracy.
  • the two-stage scanning of beam scanning and narrow laser beam scanning need not be performed, that is, thick laser beam scanning may be omitted as in the related art.
  • the foreign substance detection and the composition analysis of the foreign substance need not be performed in the same place.
  • electron beam It is preferable that an electron gun and a laser projector be provided so that the irradiation point 50 on the substrate and the irradiation point of the laser beam coincide.
  • the present invention is applied to the detection and analysis of foreign substances in wafers, but the secondary electron detector 17 and the reflected electron detector 36 may be omitted. In the case of detecting foreign matter only, the electron gun 16 and the X-ray component analyzer 37 can be omitted.
  • fine scanning is performed with a thick laser beam, and a portion where a foreign object is detected is finely scanned with a narrow laser beam only in a portion of the spot range of the laser beam. Since foreign matter is detected, it can be detected faster than when foreign matter is detected only by fine scanning.
  • the spot detected by the fine scanning is finely scanned only at the spot size portion at a pitch smaller than the spot size of the laser beam, and at this time, the spot where the laser scattered light detected is the largest is the foreign matter position.
  • the foreign substance position can be detected only with the resolution of the spot size of the laser beam, but the foreign substance position can be detected with a resolution equal to or smaller than the spot size of the laser beam.
  • a foreign matter position can be detected with a resolution of about 1 by a laser beam having a diameter of 10 / m, and the detection position is, for example, 0.1 m. Scanning only the range of 0'mxl.0m with an electron beam, X-ray analysis or S image or backscattered electron image can be obtained for high-speed analysis. can do.

Abstract

A laser beam from a projector (51) having a beam spot of 1,000 x 40 νm scans a wafer (12), and the positions of foreign matter is detected and stored by a scatter detector (35). When a portion near this stored position is scanned by a laser beam having a beam spot of 10 νm from a projector (52) and any foreign matter is detected, the range of the beam spot is scanned by a pitch of 1 νm. The position at which the output from the scatter detector becomes maximal is defined as the position of a foreign matter. A range of 1 x 1 νm having the center thereof at the defined position is scanned by an electron beam of 0.1 νm, and the resulting X-rays are detected and the composition is analyzed. The electron beam and the laser beam are arranged in such a manner as to radiate the same point while the wafer (12) is fixed.

Description

明 細 書 異物検出 ·分析装置及びその方法  Description Foreign matter detection / analysis device and method
技術分野 Technical field
この発明は、 例えば半導体集積回路が形成された半導体ゥュハ、 その半導体集 積回路形成途中における半導体ウェハ、 その他の物体の表面に付着した微小異物 を検出し、 その形状、 成分などを分析する異物分折装置及びその方法に関する。 近年の半導体集積回路の高集積化に伴って、 その生産技術を高性能化し、 信頼 性を高めることは必要不可欠なことであるが、 これらを左右する重要な問題とし ては製造途中において半導体集積回路ウェハ表面に異物が付着することが挙げら れる。 製造途中における異物の付着量と、 製造ライ ンが安定に動作しているか否 かおよび製品の歩留りとの間には密接な関係がある。 製造途中における異物の付 着量を少なくなるには、 製造途中において異物を検出する必要がある上に、 検出 した異物の成分、 形状その他の特徴を分析して異物を特定する必要がある。 しか し、 従来の異物のインライ ン計測装置は、 異物の組成分折の機能を有しない異物 の数を計数する単なるパーティクルカウンタに過ぎないものであったり、 或は組 成分圻をすることができても分析時間が長く、 分析も自動化されてはおらず、 更 にパーティクルカウンタによる位置情報を必要とするものであったりして、 イ ン ライ ン用としては実用的ではない計測装置であった。 以下、 図 1を参照して物体 の表面に付着した異物を分析する従来の装置を説明する。  The present invention detects, for example, a semiconductor wafer on which a semiconductor integrated circuit is formed, a semiconductor wafer during the formation of the semiconductor integrated circuit, and a minute foreign matter attached to the surface of another object, and analyzes the shape, components, and the like of the foreign matter. The present invention relates to a folding device and a method thereof. With the recent increase in the degree of integration of semiconductor integrated circuits, it is indispensable to increase the performance of their production technologies and increase their reliability. Foreign matter may adhere to the circuit wafer surface. There is a close relationship between the amount of foreign matter deposited during manufacturing, whether the manufacturing line is operating stably, and the product yield. In order to reduce the amount of foreign matter attached during manufacturing, it is necessary to detect foreign matter during manufacturing, and to identify the foreign matter by analyzing the components, shape, and other characteristics of the detected foreign matter. However, the conventional foreign matter in-line measuring device is merely a particle counter that counts the number of foreign matter that does not have a function of analyzing the composition of the foreign matter, or can measure the composition of the foreign matter. However, the analysis time was long, the analysis was not automated, and furthermore, the position information needed by a particle counter was required, making it a measurement device that was not practical for inline use. Hereinafter, a conventional apparatus for analyzing foreign matter adhering to the surface of an object will be described with reference to FIG.
基台 1 0上に X Yステージ 1 1が取付けられ、 X Yステージ 1 1は基台 1 0上 を X蚰方向に移動自在の X軸可動部 1 1 Xと、 X蚰可動部 1 1 X上を Y蚰方向に 移動自在に Y軸可動部 1 1 yとよりなり、 X Yステージ 1 1上に、 半導体ゥヱハ のごとき被検査物 1 2が搭載される。 X Yステージ 1 1を移動させる駆動手段は 図に示していないが X Yステージ 1 1の X軸上の位置が Xステージェンコーダ 1 3 Xで検出され、 Y蚰上の位置が Yステージエンコーダ 1 3 yで検出される。 X Yステージ 1 1の移動範囲内においてその上側に位置して、 異物検査装置 1 4 と 、 電子式分析装置 1 5とが X軸方向に配列されて設けられる。 電子式分析装置 1 5は電子銃 1 6より電子ビームを被検査物 1 2に照射し、 その時生じる 2次電子 を 2次電子検出器 1 7で検出し、 または および電子ビームの照射により生じる X線エネルギをエネルギ分散型 X線分折装置 1 8で分圻するものである。 The XY stage 11 is mounted on the base 10, and the XY stage 11 is moved on the base 10 in the X-axis movable section 1 1 X and the X-axis movable section 1 1 X. A Y-axis movable section 1 1 y is movably movable in the Y-axis direction, and an inspection object 12 such as a semiconductor device is mounted on the XY stage 11. The driving means for moving the XY stage 11 is not shown in the figure, but the position on the X axis of the XY stage 11 is detected by the X stage generator 13 X, and the position on the Y axis is the Y stage encoder 13 y Is detected by A foreign matter inspection device 14 and an electronic analysis device 15 are arranged in the X-axis direction and located above the XY stage 11 within the movement range of the XY stage 11. The electronic analyzer 15 irradiates the inspection object 12 with an electron beam from the electron gun 16, and secondary electrons generated at that time are emitted. Is detected by the secondary electron detector 17, and or X-ray energy generated by the irradiation of the electron beam is separated by the energy dispersive X-ray diffraction device 18.
ここで、 異物分析装置を構成する以上の各装置は、 すべて、 図示されない真空 容器内に収容されているものとする。 この異物分折装置による異物の検出、 観察 および分析動作は次のように行う。 以下は被検査物 1 2が半導体ウェハの場合で 単にウェハ 1 2と記す。  Here, it is assumed that all of the devices constituting the foreign substance analyzer are housed in a vacuum vessel (not shown). The foreign substance detection, observation and analysis operations of this foreign substance separating apparatus are performed as follows. Hereinafter, the case where the inspection object 12 is a semiconductor wafer is simply referred to as a wafer 12.
先ず、 X Yステージ 1 1を図示されない駆動制御装置により X Y方向に駆動制 御して異物検査装置 1 4の下方に配置せしめる。 異物検査装置 1 4は例えばレー ザビームを照射し、 その散乱光を検出するものであって、 ここで、 X Yステージ First, the XY stage 11 is driven and controlled in the X and Y directions by a drive control device (not shown) to be disposed below the foreign matter inspection device 14. The foreign matter inspection device 14 irradiates, for example, a laser beam and detects the scattered light.
1 1を X Y方向に微動させながら異物検査装置 1 4からレーザビームをゥヱハ 1 2の表面に放射し、 表面に付着している微小異物に起因する散乱光をレーザ光検 出部により観測して表面に付着した異物を検出する。 ウェハ 1 2の表面の異物を 検出したところで X Yステージ 1 1を止めると、 このときの Xステージェンコ一 ダ 1 3 Xおよび Yステージエンコーダ 1 3 yの読みが異物の付着した表面位置を 示す。 A laser beam is radiated from the foreign object inspection device 14 to the surface of the substrate 12 while finely moving 11 in the X and Y directions, and the scattered light caused by the minute foreign particles adhering to the surface is observed by the laser light detector. Detect foreign matter adhering to the surface. When the XY stage 11 is stopped when foreign matter on the surface of the wafer 12 is detected, the readings of the X stage generator 13 X and the Y stage encoder 13 y at this time indicate the surface position where the foreign matter has adhered.
次に、 異物検査装置 1 4により異物の付着した表面位置を検出したところで、 再び X Yステージ 1 1を X Y方向に駆動制御して電子式分析装置 1 5の下方に配 置せしめる。 そして、 先に検出した異物の付着した表面位置を参照しながら X Y ステージ 1 1を X Y方向に微動させ、 電子銃 1 6の電子ビームレンズの焦点に付 着した異物が一致する様に X Yステージ 1 1を位置决めする。 これにより観察さ れるべき異物は 2次電子検出器 1 7の視野内にも納まる。 ここで、 電子銃 1 6の 照射する電子ビームにより発生せしめられる異物の 2次電子像によりその外形形 状を観察することができる。 同様に電子ビーム照射により発生する X線を X線分 圻装置 1 8を分折することにより異物の組成を分折することができる。  Next, when the position of the surface to which the foreign matter adheres is detected by the foreign matter inspection device 14, the XY stage 11 is again driven and controlled in the XY directions, and is disposed below the electronic analyzer 15. Then, the XY stage 11 is finely moved in the XY direction while referring to the surface position of the foreign matter detected earlier, so that the foreign matter attached to the focal point of the electron beam lens of the electron gun 16 coincides with the XY stage 1. Position 1 As a result, the foreign matter to be observed falls within the field of view of the secondary electron detector 17. Here, the external shape can be observed from the secondary electron image of the foreign matter generated by the electron beam irradiated by the electron gun 16. Similarly, X-rays generated by electron beam irradiation can be analyzed by the X-ray spectrometer 18 to analyze the composition of the foreign matter.
ここで、 Xステージエンコーダ 1 3 Xおよび Yステージエンコーダ 1 3 yをレ 一ザ干涉計に置き換えることにより、 X Yステージ 1 1の位置検出精度を向上さ せ電子式分析装置 1 5の視野へ移動させるに必要とされる位置再現時間を短縮さ せる分析方法も開発されている (以上、 詳細は日本国特許公開平 6— 3 0 8 0 3 9号公報参照) 。 更に日本国特許公開昭 6 0 - 2 1 8 8 4 5号公報の第 6図には図 2に示すよう に可動ステージ 2 1上にウェハ 1 2が搭載され、 ステージ 2 1はモータ 2 2によ り回動され、 その回転角度位置がエンコーダ 2 3で検出され、 エンコーダ 2 3は 可動部 1 1 Xがモータ 2 3 Xによりねじ 2 4が回転されて、 X軸方向に移動され る。 ステージ 2 1の上側に電子式分折装置 1 5が位置されると共にその電子ビー ムがウェハ 1 2に照射する点に、 レーザビームが照射するようにされる。 つまり レーザ源 2 5よりのレーザビームは光学系 2 6を介し、 反射鏡で反射されて、 ゥ ェハ 1 2上に照射される力、 その光学系 2 6はモータ 2 7の回転によりねじ 2 8 が回転されて、 水平方向に移動し、 レーザビームの照射点が電子ビームの照射点 と一致させられたり、 これよりずらされたりすることができる。 なおステージ 2 1は X Yステージではなく X Sステージである。 Here, by replacing the X-stage encoder 13 X and the Y-stage encoder 13 y with a laser tachometer, the position detection accuracy of the XY stage 11 is improved and the XY stage 11 is moved to the field of view of the electronic analyzer 15. Analytical methods have also been developed to reduce the time required for position reproduction, which is required for the analysis (for details, see JP-A-6-38009). Further, in FIG. 6 of Japanese Patent Application Laid-Open No. 60-218845, a wafer 12 is mounted on a movable stage 21 as shown in FIG. The rotation angle position is detected by the encoder 23, and the movable portion 11X of the encoder 23 is moved in the X-axis direction by rotating the screw 24 by the motor 23X. An electronic diffraction device 15 is located above the stage 21 and a laser beam is applied to a point where the electron beam irradiates the wafer 12. In other words, the laser beam from the laser source 25 is reflected by the reflecting mirror via the optical system 26 and is applied to the wafer 12. The optical system 26 is driven by the motor 27 to rotate the screw 2. 8 is rotated and moved in the horizontal direction, so that the irradiation point of the laser beam can be made coincident with or shifted from the irradiation point of the electron beam. Stage 21 is not an XY stage but an XS stage.
この従来技術においてはステージ 2 1を X紬方向へ移動させると共に回転させ ることにより、 ウェハ 1 2上を走査することができ、 まずレーザビームをウェハ 1 2上に照射し、 その散乱光を検出器 2 9で検出して、 異物の位置を検出し、 そ の後光学系 2 6を移動させ、 電子ビームの照射に邪魔にならないようにして電子 ビームを先に異物を検出した位置に照射して、 その位置における S E M像を検出 する。 つまり電子ビームを平面走査して S E M像を検出する。 この場合は S E M 像ではなく、 真の異物検出位置の組成などを検出することはできなかった。 つま り、 レーザビームはその波長により決る分解能以上とすることはできないから、 現在では 1 0 / m程度より分解能を上げることはできなかった。 一方、 電子ビー ムは例えば 0 . 1 m程度の太さとすることができ、 レーザビームによる異常検 出と比較して、 分解能を著しく上げることができる力、'、 この分解能で、 レーザビ —ムにより検出した異常付着物の組成を知ることはできなかった。  In this conventional technique, the stage 21 is moved in the X direction and rotated, thereby scanning the wafer 12. First, the laser beam is irradiated on the wafer 12, and the scattered light is detected. The position of the foreign matter is detected by the detector 29, and then the optical system 26 is moved so that the electron beam is irradiated to the position where the foreign matter was detected first without disturbing the irradiation of the electron beam. Then, the SEM image at that position is detected. That is, the electron beam is scanned in a plane to detect the SEM image. In this case, it was not possible to detect the true foreign matter detection position composition, etc., instead of the SEM image. In other words, since the resolution of a laser beam cannot be higher than the resolution determined by its wavelength, it has not been possible to improve the resolution beyond about 10 / m at present. On the other hand, an electron beam can have a thickness of about 0.1 m, for example, and can significantly increase the resolution compared to abnormal detection by a laser beam. The composition of the detected abnormal deposit could not be known.
また図 2に示す装置では、 光学系 2 6の全体を移動させるため、 構成が大がか りになり、 かつ高い精度を得ることが困難であった。  Further, in the apparatus shown in FIG. 2, since the entire optical system 26 is moved, the configuration becomes large and it is difficult to obtain high accuracy.
更に従来においてレーザビームを用いての異物検出は、 例えばスポッ トサイズ の直径が 1 0 〃mのレーザビームを用いて、 ゥヱハ 1 2上の全面を走査しており 、 異物検出に比較的長い時間がかかった。  Further, conventionally, foreign matter detection using a laser beam, for example, uses a laser beam having a spot size of 10 μm in diameter to scan the entire surface on the surface 12. It took.
しかも、 レーザビームのスポッ トサイズはその波長に依存し、 例えば直径を 1 0 ί/ m以下にすることは原理的にできなかった。 従って、 異物検出の分解能は高 々 1 0 〃 mに過ぎなかった。 Moreover, the spot size of the laser beam depends on its wavelength, for example, a diameter of 1 In principle, it was not possible to reduce it below 0 ί / m. Therefore, the resolution of foreign object detection was only 10 μm at most.
一方、 電子ビームは直径が 0 . 1 m程度の著しく細いものとすることができ 、 従って、 ウェハ 1 2の異物の成分などをを 0 . 1 mの位置分解能で分析する ことができる。 従って、 0 . 1 mの位置精度で異物成分を分析するには光学的 に検出した異物位置の 1 0 m x 1 0 m方形又は 1 0 mの円をスポッ トサイ ズが 0 . 1 mの電子ビームで走査して検出分析を行う必要があるため、 その検 出走査に時間がかかった。  On the other hand, the electron beam can be made extremely thin with a diameter of about 0.1 m, and therefore, it is possible to analyze foreign components and the like on the wafer 12 with a positional resolution of 0.1 m. Therefore, in order to analyze the foreign material component with a positional accuracy of 0.1 m, an electron beam with a spot size of 0.1 m can be obtained by measuring a 10 mx 10 m square or a 10 m circle of the optically detected foreign material position. Since it is necessary to perform detection analysis by scanning at, the detection scan took time.
この発明の目的は異物を高速で検出する装置及び方法を提供することにある。 この発明の他の目的は異物を高い位置精度で検出する装置及び方法を提供する と ある 0 An object of the present invention is to provide an apparatus and a method for detecting foreign matter at high speed. Another object of the invention is the provide a device and method for detecting foreign matter with high positional accuracy 0
この発明の更に他の目的は異物の検出分析を高速かつ高精度に行う装置及び方 法を提供することにある。  Still another object of the present invention is to provide an apparatus and a method for detecting and analyzing foreign matter at high speed and with high accuracy.
発明の開示 Disclosure of the invention
この発明によればスポッ トサイズの大きいレーザビームで被検査物を粗走査し て、 概略の異物位置を検出し、 その概略異物位置である、 その大きなスポッ トサ ィズの範囲を、 これより 1 0 2 0 0分の 1程度小さいスポッ トサイズのレーザ ビームで粗走査して異物位置を検出する。 これにより、 小さいスボッ トサイズで のみ走査する場合より異物検出が著しく高速化される。  According to the present invention, the object to be inspected is roughly scanned with a laser beam having a large spot size, a rough foreign matter position is detected, and the range of the large foreign matter position, which is the rough foreign matter position, is set to 10%. Approximately 200 times smaller spot size laser beam is used for coarse particle scanning to detect foreign matter position. This significantly speeds up foreign object detection compared to scanning with only a small spot size.
この発明の他の鑑点では小さいスポッ トサイズのレーザビームの走査により異 物位置を検出すると、 その位置、 即ちそのレーザビームのスボッ トサイズの範囲 を、 そのスポッ トサイズより小さいピッチつまり目的とする精度に応じたピッチ で走査し、 かつその時の、 異物にもとづく レーザ散乱光の最大となる位置を求め 、 従来ではスポッ トサイズより高い分解能で異物位置を検出できなかったが、 ス ポッ トサイズょり高い分解能で異物位置を検出できる。  According to another aspect of the present invention, when a foreign object position is detected by scanning with a laser beam having a small spot size, the position, that is, the range of the spot size of the laser beam is adjusted to a pitch smaller than the spot size, that is, the target accuracy. Scanning is performed at the appropriate pitch, and at that time, the position where the laser scattered light based on the foreign matter is maximized is determined. Foreign object position can be detected.
電子ビームにより異物の分析を行う場合はその検出した異物位置に対し、 その 分解能分の範囲について走査すればよく、 分折に要する時間を著しく短縮できる 。 従って分析のため電子ビームの走査範囲に応じて、 前記レーザビームのそのス ポッ トサイズ以下の走査ピッチを選定すればよい。 更に電子ビームにより分析する場合は、 その被検査物を固定したままで、 レー ザビームの被検查物への照射点と、 電子ビームの照射点とを予め一致するように 構成しておくことにより、 異物が検出されると直ちにその分折を行うことができ 、 位置合せの時間と、 精度が不必要になり高速高位置精度の分析が可能となる。 図面の簡単な説明 When analyzing foreign matter using an electron beam, the position of the detected foreign matter may be scanned in the range of the resolution, and the time required for the separation can be significantly reduced. Therefore, a scanning pitch of the laser beam that is smaller than the spot size may be selected according to the scanning range of the electron beam for analysis. Further, in the case of performing analysis using an electron beam, it is preferable that the irradiation point of the laser beam to the test object and the irradiation point of the electron beam be set in advance while the test object is fixed. As soon as a foreign object is detected, the analysis can be performed immediately, and the alignment time and accuracy are not required, and high-speed and high-accuracy analysis can be performed. BRIEF DESCRIPTION OF THE FIGURES
図 1は従来の異物検出 ·分折装置の概略を示す図である。  FIG. 1 is a view schematically showing a conventional foreign matter detection / fractionation apparatus.
図 2は従来の他の異物検出 ·分折装置を示す側面図である。  FIG. 2 is a side view showing another conventional foreign matter detecting and separating apparatus.
図 3 Aはこの発明の実施例を示す平面図である。  FIG. 3A is a plan view showing an embodiment of the present invention.
図 3 Bは図 3 Aの正面図である。  FIG. 3B is a front view of FIG. 3A.
図 4は図 3の実施例における各レーザ検出器 3 4、 散乱光検出器 3 5、 X線分 折器 3 7、 2次電子検出器 1 7とこれを支持する支持板との関係を示す平面図で ある。  FIG. 4 shows the relationship between the laser detector 34, the scattered light detector 35, the X-ray diffractometer 37, the secondary electron detector 17 and the supporting plate for supporting the same in the embodiment of FIG. It is a top view.
図 5は図 4中のレーザ投光器 3 4部分の断面図である。  FIG. 5 is a cross-sectional view of the laser projector 34 in FIG.
図 6は図 4中の散乱光検出器 3 5部分の断面図である。  FIG. 6 is a sectional view of the scattered light detector 35 in FIG.
図 7は図 4中の X線分折器 3 7部分の断面図である。  FIG. 7 is a cross-sectional view of the X-ray diffractometer 37 in FIG.
図 8は図 4中の反射電子検出器 3 6部分の断面図である。  FIG. 8 is a sectional view of the backscattered electron detector 36 in FIG.
図 9はこの発明の実施例の動作手順を示す流れ図である。  FIG. 9 is a flowchart showing the operation procedure of the embodiment of the present invention.
図 1 0はレーザビームと電子ビームの切替え部分の他の例を示す図である。 図 1 1はこの発明の他の実施例の概略を示す図である。  FIG. 10 is a diagram showing another example of a switching portion between a laser beam and an electron beam. FIG. 11 is a diagram schematically showing another embodiment of the present invention.
図 1 2はその更に他の実施例の概略を示す図である。  FIG. 12 is a diagram showing an outline of still another embodiment.
図 1 3はその更に他の実施例の概略を示す図である。  FIG. 13 is a diagram showing an outline of still another embodiment.
図 1 4は 2つのレーザビームの入射角度を異ならせた例を示す図である。 図 1 5は図 1 4における被検査物の凸部によるレーザビームによる位置検出誤 差の様子を示す図である。  FIG. 14 is a diagram showing an example in which the incident angles of the two laser beams are different. FIG. 15 is a diagram showing a state of a position detection error due to the laser beam due to the convex portion of the inspection object in FIG.
図 1 6はレーザ源を電子銃に内蔵した例を示す図である。  FIG. 16 is a diagram showing an example in which a laser source is built in an electron gun.
図 1 7はその他の例を示す図である。  FIG. 17 is a diagram showing another example.
図 1 8はその更に他の例を示す図である。  FIG. 18 is a diagram showing still another example.
以上の異物分圻装置は、 何れも、 物体に付着した異物の検出、 検出された異物 の外形形状の観察および分析をすることができる装置ではあるが、 これら検出操 作、 外形形状の観察操作および分析操作をィ ンライ ンで実施することができず、 全操作を実施するには長時間を要する上に、 操作自体も複雑困難なものであった 発明を卖施するための最良の形態 Any of the above foreign substance separation apparatuses can detect foreign substances adhering to an object and observe and analyze the external shape of the detected foreign substance. It was not possible to perform in-line observation and analysis operations of the work and external shape, and it took a long time to perform all the operations, and the operations themselves were complicated and difficult. Best form to do
図 3にこの発明の実施例を示す。 真空容器 3 0の内部は点線で示している。 真 空容器 3 0内において、 基台 3 1上に X Yステージ又は X 0ステージなどの可動 ステージ 3 2が設けられ、 可動ステージ 3 2上の試料搭載部 3 2 a上に被検査物 、 例えばゥヱハ 1 2が搭載される。 可動ステージ 3 2はこの例では X Yステージ であり Xステージエンコーダ 1 3 x、 Yステージェンコーダ 1 3 yが設けられて いる。 レーザ投光器 3 4及びレーザ拡散検出器 3 5よりなる異物検査装置と電子 銃 1 6と 2次電子検出器 1 7、 反射電子検出器 3 6、 X線分析器 3 7よりなる電 子式分圻装置 1 5とが設けられる。 真空容器 3 0内において基台 3 1上に複数支 柱 3 8が立てられ、 これら支柱 3 8上に支持板 3 9が水平に支持される。 支持板 3 9に電子銃 1 6、 2次電子検出器 1 7、 反射電子検出器 3 6、 X線分析器 3 7 、 レーザ検出器 3 4、 レーザ散乱光検出器 3 5などが支持されている。 電子銃 1 6は排気部 3 0 aを通じて内部が真空とされている。  FIG. 3 shows an embodiment of the present invention. The inside of the vacuum vessel 30 is indicated by a dotted line. In the vacuum container 30, a movable stage 32 such as an XY stage or an X0 stage is provided on a base 31, and an object to be inspected, for example, 1 2 will be mounted. The movable stage 32 is an XY stage in this example, and is provided with an X stage encoder 13x and a Y stagegen coder 13y. Foreign substance inspection device consisting of laser projector 34 and laser diffusion detector 35 and electron gun consisting of electron gun 16, secondary electron detector 17, reflected electron detector 36, X-ray analyzer 37 A device 15 is provided. A plurality of columns 38 are erected on the base 31 in the vacuum vessel 30, and a support plate 39 is horizontally supported on these columns 38. The support plate 39 supports the electron gun 16, secondary electron detector 17, backscattered electron detector 36, X-ray analyzer 37, laser detector 34, laser scattered light detector 35, etc. I have. The inside of the electron gun 16 is evacuated through the exhaust part 30a.
図 4に支持板 3 9とこれに支持されている 2次電子検出器 1 7、 反射電子検出 器 3 6、 レーザ投光器 3 4、 レーザ散乱光検出器 3 5の配置関係を示す。 支持板 Fig. 4 shows the arrangement of the support plate 39 and the secondary electron detector 17, the backscattered electron detector 36, the laser projector 34, and the laser scattered light detector 35 supported by the support plate 39. Support plate
3 9の中心部には中心穴 4 1が形成され、 中心穴 4 1から放射状に切欠き 4 2 ,A central hole 4 1 is formed in the center of 3 9, and a radial cutout 4 2,
4 3が形成され、 切欠き 4 2にレーザ散乱光検出器 3 5力 切欠き 4 3に X線分 圻器 3 7力、 切欠き 4 4に 2次電子検出器 1 7がそれぞれ位置されている。 更に 中心穴 4 1より支持板 3 9の外周緣に達する切欠き 4 5にレーザ光検出器 3 4が 位置され、 また、 中心穴 4 1に対し放射状の孔 4 6に反射電子検出器 3 6が位置 されている。 図 2には電子銃 1 6は省略してある。 4 3 is formed, notch 4 2 laser scattering light detector 3 5 force notch 4 3 X-ray detector 3 7 force, notch 4 4 secondary electron detector 17 is located I have. Further, a laser beam detector 34 is located in a notch 45 extending from the center hole 41 to the outer periphery 支持 of the support plate 39, and a backscattered electron detector 36 is located in a radial hole 46 relative to the center hole 41. Is located. In FIG. 2, the electron gun 16 is omitted.
この発明においては電子銃 1 6の電子ビームがゥヱハ 1 2上に照射する点 5 0 と、 レーザ投光器 3 4よりのレーザビームがウェハ 1 2上に照射する点とか一致 するようにされている。 またこの実施例ではレーザ投光器 3 4 としては図 5に示 すようにスボッ トサイズが例えば 1 m m x 4 0 mのように比較的大きなレーザ ビームを放射するレーザ投光器 5 1 と、 これよりスポッ トサイズが小さい、 例え ば直径 1 0 // mのレーザ投光器 5 2とが設けられる。 レーザ投光器 5 2は支持板 3 9の底面に設けられた支持部 5 3に水平方向に移動自在に保持される。 レーザ 投光器 5 2の側面にアームが中心穴 4 1の部分まで延長して取付けられ、 アーム 5 4の端部にミラー 5 5が固定され、 レーザ投光器 5 2から放射されたレーザは ミラー 5 5で反射されて、 ゥヱハ 1 2上に入射される。 支持板 3 9の底面に取付 けられたエアシリ ンダ 5 6によりレーザ投光器 5 2の後端が躯動されて、 レーザ 投光器 5 2のレーザビームのゥヱハ 1 2上の照射点の中心が、 電子ビームのゥヱ ハ 1 2上の照射点 5 0と一致させられたり、 これよりずらされたりすることがで きる。 In the present invention, the point 50 at which the electron beam of the electron gun 16 irradiates the wafer 12 coincides with the point at which the laser beam from the laser projector 34 irradiates the wafer 12. Further, in this embodiment, as shown in FIG. 5, the laser projector 34 emits a relatively large laser beam having a spot size of, for example, 1 mm × 40 m as shown in FIG. 5, and the spot size is smaller than this. , Illustration For example, a laser projector 52 having a diameter of 10 // m is provided. The laser projector 52 is held movably in the horizontal direction by a support portion 53 provided on the bottom surface of the support plate 39. An arm is attached to the side of the laser projector 5 2 so as to extend to the center hole 41, and a mirror 55 is fixed to the end of the arm 54.The laser emitted from the laser projector 52 is reflected by the mirror 55. The light is reflected and is incident on the ゥ ヱ C 12. The rear end of the laser projector 52 is driven by the air cylinder 56 attached to the bottom of the support plate 39, and the center of the irradiation point on the laser beam 12 of the laser projector 52 is focused on the electron beam. It can be made to coincide with the irradiation point 50 on 12 or shifted from this.
レーザ投光器 5 2に取付けられた保持体 5 7にレーザ投光器 5 1が水平面に対 して斜めに取付けられ、 レーザ投光器 5 1のレーザビームの中心のゥヱハ 1 2上 の照射点と、 レーザ投光器 5 2のレーザビームの中心のゥヱハ 1 2上の照射点と は常に一致させられている。 レーザ投光器 5 1 , 5 2は共にレンズ系を具備し、 レーザビームの焦点位置、 レーザビームの放射方向などを微調整することができ るようにされている。  The laser projector 51 is mounted diagonally with respect to the horizontal plane on the holder 57 attached to the laser projector 52, and the irradiation point on the center of the laser beam of the laser projector 51 and the laser projector 5 The center of the laser beam of No. 2 is always coincident with the irradiation point on C 1 2. Each of the laser projectors 51 and 52 has a lens system so that the focal position of the laser beam and the radiation direction of the laser beam can be finely adjusted.
レーザ投光器 3 4の先端を電子ビーム通路へ位置させた時、 レーザビームの中 心が、 電子ビームのゥヱハ 1 2上の照射点 5 0を照射するようにすることが重要 である。 この点でこの実施例ではレーザ投光器 3 4を内側へ移動させると、 レー ザ投光器 3 4の外周つば 9 1が支持部 5 3と係合して位置決めされる。 この状態 で、 レーザ投光器 3 4には図に示していないが、 前述したように光学系の調整機 構が内蔵され、 これを調整して電子ビームの照射点 5 0にレーザビームの中心が 照射するように予め調整しておく。 なお必要に応じてレーザ投光器 3 4の全体を 、 支持板 3 9に対し、 X , Υ , Zの各軸方向に微調整する機構を設け、 これによ りレーザビームの中心の照射点を照射点 5 0と一致するようにすることもできる 図 5に示すように中心穴 4 1の周辺において支持板 3 9上に適当な間隔で支持 ビン 6 1が支持板 3 9上に立てられ、 支持ピン 6 1上に支持リ ング 6 2が固定さ れ、 支持リ ング 6 2上に電子銃 1 6のフランジが係合されて、 電子銃 1 6が支持 板 3 9に支持される。 支持リ ング 6 2の筒状部と電子銃 1 6の外周との間に 0リ ング 6 3が介在され、 外部との気密に保持される。 When the tip of the laser projector 34 is positioned in the electron beam path, it is important that the center of the laser beam irradiates the irradiation point 50 on the electron beam 12. At this point, in this embodiment, when the laser projector 34 is moved inward, the outer flange 91 of the laser projector 34 is engaged with the support portion 53 and positioned. In this state, although not shown in the figure, the laser projector 34 has a built-in optical system adjusting mechanism as described above, and adjusts this to irradiate the electron beam irradiation point 50 with the center of the laser beam. To be adjusted in advance. If necessary, a mechanism for finely adjusting the entire laser projector 34 with respect to the support plate 39 in the X, Υ, and Z axis directions is provided, thereby irradiating the irradiation point at the center of the laser beam. It can be made to coincide with the point 50. As shown in Fig. 5, the support bin 61 is set up on the support plate 39 at an appropriate interval on the support plate 39 around the center hole 41, and The support ring 62 is fixed on the pin 61, the flange of the electron gun 16 is engaged on the support ring 62, and the electron gun 16 is supported by the support plate 39. 0 ring between the cylindrical part of the support ring 62 and the outer periphery of the electron gun 16 Ring 63 is interposed, and is kept airtight with the outside.
図 6にレーザ散乱光検出器 3 5の取付け構造を示す。 レーザ散乱光検出器 3 5 は支持板 3 9上の固定台 6 5に轴 6 6を中心に垂直面内でわずか回動できるよう に取付けられ、 その集光点は電子ビームのゥヱハ 1 2上の照射点 5 0と一致する ように調整される。  Fig. 6 shows the mounting structure of the laser scattered light detector 35. The laser scattered light detector 35 is mounted on the fixed base 65 on the support plate 39 so as to be able to rotate slightly in the vertical plane around the center 666, and the focal point is located on the base ゥ ヱ of the electron beam. It is adjusted so as to coincide with the irradiation point 50 of.
図 7に X線成分分析器 3 7の取付け構造を示す。 真空容器 3 0の電子銃 1 6の 挿入部と同様に真空容器 3 0に X線成分分析器 3 7の揷入部が形成され、 その挿 入部に X線成分分析器 3 7が挿入され、 その先端はゥュハ 1 2上の電子ビーム照 射点 5 0 と比較的接近する力 レーザ投光器 3 4、 レーザ散乱光検出器 3 5、 2 次電子検出器 1 7などが邪魔にならない位置にある。 この位置の初期調整のため 、 筒状保持体 7 1内に X線成分分析器 3 7の中間部がねじ結合で挿通保持され、 筒状保持体 7 1は真空容器 3 0の外部で固定され、 調整ハンドル 7 2を回動する と、 図に示していない歯車結合で、 筒状保持体 7 1の内部の X線成分分折器 3 7 の中間部が画動して前記ねじ結合にもとづき、 前後に位置調整される。 X線成分 分折器 3 7の外端に液体膣素タンク Ί 3が取付けられ、 その液体膣素により X線 成分分析器 3 7が冷却されて、 所望の分折作用を行う。 X線成分分析器 3 7の外 周とその真空容器挿入部との間に 0リ ング 7 4が介在されている。  Figure 7 shows the mounting structure of the X-ray component analyzer 37. Similarly to the insertion portion of the electron gun 16 of the vacuum container 30, an opening portion of the X-ray component analyzer 37 is formed in the vacuum container 30, and the X-ray component analyzer 37 is inserted into the insertion portion. The tip is at a position where the laser beam projector 34, the laser scattered light detector 35, the secondary electron detector 17, etc. do not obstruct the electron beam irradiation point 50 on the wafer 12 relatively close to the irradiation point 50. For the initial adjustment of this position, the middle part of the X-ray component analyzer 37 is inserted and held in the cylindrical holder 71 by screw connection, and the cylindrical holder 71 is fixed outside the vacuum vessel 30. When the adjustment handle 72 is rotated, the intermediate portion of the X-ray component splitter 37 inside the cylindrical holder 71 is moved by a gear connection not shown in the figure, and based on the screw connection, The position is adjusted back and forth. A liquid vaginal element tank # 3 is attached to the outer end of the X-ray component analyzer 37, and the liquid vaginal element cools the X-ray component analyzer 37 to perform a desired analyzing action. An O-ring 74 is interposed between the outer periphery of the X-ray component analyzer 37 and its vacuum container insertion part.
図 8に反射電子検出器 3 6の取付け構造を示す。 反射電子検出器 3 6は支持板 3 9の下側において、 これに水平面内で移動自在に取付けられ、 その先端の底で は反射電子検出センサが取付けられている。 この先端部分には電子ビームが通過 する小孔 9 5が形成されている。 図 6 Aに示すように支持板 3 9の方形孔 4 6を 横断して支持橋 7 6が図示され、 支持橋 7 6に) (線分折器 3 6の上部がキー溝と の係合により、 水平方向に移動自在に保持される。  Fig. 8 shows the mounting structure of the backscattered electron detector 36. The backscattered electron detector 36 is movably mounted on the lower side of the support plate 39 in a horizontal plane, and a backscattered electron detection sensor is mounted at the bottom of the tip. A small hole 95 through which the electron beam passes is formed at this tip. As shown in FIG. 6A, the support bridge 76 is shown across the rectangular hole 46 of the support plate 39, and on the support bridge 76. (The upper part of the line segmenter 36 engages with the keyway. Thus, it is held movably in the horizontal direction.
反射電子検出器 3 6の先端部に電子ビーム通過孔が形成され、 レーザビーム照 射時にその位置から外すため、 反射電子検出器 3 6は放射方向に移動自在とされ 、 その際ス トツバ 9 2と 9 3 , また 9 4により位置決めがなされる。 この移動は 図に示していないがレーザ投光器 3 4に対するものと同様に、 例えばエアシリ ン ダにより行う。  An electron beam passage hole is formed at the tip of the backscattered electron detector 36, which is removed from the position when irradiating the laser beam. Therefore, the backscattered electron detector 36 is movable in the radiation direction. Positioning is performed by 9 3 and 9 4. This movement is not shown in the figure, but is performed by, for example, an air cylinder in the same manner as for the laser projector 34.
次に、 この異物分折装置を用いた異物の検出及び分析動作について説明する '; 図 9 も参照) 。 まず、 レーザ投光器 3 4のレーザ照射点を電子ビーム照射点 5 0 と一致させ、 制御部 4 0の制御駆動装置 (不図示) により XYステージ 3 2を X Y方向に動かしながら、 スポッ トサイズの大きいレーザ投光器 5 1よりレーザビ —ムをゥヱハ 1 2に照射する ( S 1 ) 。 レーザビームがゥヱハ 1 2の全面を走查 できるように X Yステージ 3 2を動かし、 異物からの散乱光がレーザ散乱光検出 器 3 5で観測されたときの X方向エンコーダ 1 3 X及び Y方向エンコーダ 1 3 y の読みを、 散乱光が検出されるごとに制御部 4 0内の記憶部 8 1に記憶しておく ( S 2 , S 3 ) 。 このとき、 用いるレーザ投光器 5 1のレーザのスポッ トサイズ が 1 0 0 0 〃m程度、 この例では 1 mmx 4 0 〃 mの大きいものとし、 X Yステ ージ 3 2の移動ピッチも X方向に 1 0 0 0 〃m、 Y方向に 4 0 〃mにすれば、 ゥ ェハ 1 2の全面を走査する時間は 1〜 2分程度であり、 ウェハ 1 2上の異物検出 マップを高速に得ることができる (S 4 ) (この例の場合、 異物検出マップのメ ッシュは 1 0 0 0 mX 4 0 m) 。 ただし、 ゥヱハ 1 2の全面検査を高速に行 える半面、 分解能が悪過ぎ、 検出された異物は、 1 0 0 0 /mX 4 0 mの範囲 中のどこに位置するかはわからない。 Next, the operation of detecting and analyzing foreign matter using this foreign matter separating apparatus will be described. (See also Figure 9.) First, the laser irradiation point of the laser projector 34 is matched with the electron beam irradiation point 50, and the XY stage 32 is moved in the XY direction by the control driving device (not shown) of the control unit 40. The laser beam is emitted from the projector 51 to the laser beam 12 (S 1). The XY stage 32 is moved so that the laser beam can run on the entire surface of the laser 12. The X-direction encoder 13 when the scattered light from the foreign object is observed by the laser scattered light detector 35 The X-direction encoder 13 The reading of 13 y is stored in the storage unit 81 in the control unit 40 every time scattered light is detected (S 2, S 3). At this time, it is assumed that the spot size of the laser of the laser projector 51 used is about 100 μm, in this example 1 mm × 40 μm, and the movement pitch of the XY stage 32 is also 1 in the X direction. If the distance is set to 0 0 0 〃m and 40 に m in the Y direction, the time required to scan the entire surface of the wafer 12 is about 1 to 2 minutes, and a foreign object detection map on the wafer 12 can be obtained at high speed. (S4) (in this example, the mesh of the foreign object detection map is 100mX40m). However, although it is possible to perform the full inspection of (12) at high speed, the resolution is too poor and it is not known where the detected foreign matter is located in the range of 100 / mX40m.
次に前記走査で異物の検出があった場合は ( S 5 ) 、 レーザ投光器 5 1を消灯 し、 スポッ トサイズの小さい (直径が例えば 1 0 m程度) レーザ投光器 5 2よ りレーザビームをウェハ 1 2に照射する。 さきほど記憶部 8 1に記憶したウェハ 上の 1 0 0 0 〃mX 4 0 〃mの範囲内をレーザビームが走査できるように X Yス テージ 3 2を動かし ( S 6 ) 、 異物からの散乱光がレーザ散乱光検出器 3 5で観 測されたときの X方向エンコーダ 1 3 X及び Y方向エンコーダ 1 3 の読みを改 めて記憶する。 このとき、 XYステージ 3 2の移動ピッチをレーザ投光器 5 2の レーザビームスボッ トサイズと同程度の 1 0 〃 mにすれば、 1 0 0 0 〃mx 4 0 mの範囲を移動させる時間は 1、 2秒程度である。 この段階で、 検出された異 物は 1 0 m X 1 0 ^ mの範囲の中に位置する。 このように 2段階の走査を行う ことにより、 1 0 mの分解能で、 異物位置を 1段階の走査のみで行う場合と比 較して著しく短時間に検出することができる。 しかも比較的高 、分解能が得られ る。  Next, when a foreign substance is detected by the scanning (S5), the laser projector 51 is turned off, and the laser beam is emitted from the laser projector 52 by the laser projector 52 having a small spot size (for example, a diameter of about 10 m). Irradiate 2 The XY stage 32 is moved (S6) so that the laser beam can scan within the range of 100 〃mX40 上 の m on the wafer stored in the storage unit 81 earlier (S6), and the scattered light from the foreign matter is reduced. The readings of the X-direction encoder 13 and the X-direction encoder 13 when observed by the laser scattered light detector 35 are stored again. At this time, if the moving pitch of the XY stage 32 is set to 10 μm, which is almost the same as the laser beam spot size of the laser projector 52, the time required to move in the range of 100 × mx 40 m is 1, It is about 2 seconds. At this stage, the detected foreign object is located within the range of 10m x 10 ^ m. By performing the two-stage scanning in this way, it is possible to detect a foreign object position with a resolution of 10 m in a much shorter time than in the case of performing only one-stage scanning. In addition, a relatively high resolution can be obtained.
この発明では更に高い分解能で異物位置の検出をも可能とするものである。 こ のため 1 0 m X 1 0 mの範囲内に位置決めされた異物に対して、 スポッ トサ ィズの小さいレーザ投光器 5 2よりレーザビームを照射し、 X Yステージ 3 2の 移動ピッチを 1 mにする ( S 7 , S 8 ) 。 レーザ投光器 5 2のレーザビームの スポッ トサイズは 1 0 〃 mであっても、 一般的にレーザビームの横断面における 強度分布はこのスポッ ト内で一定ではなく、 ある分布 (ガウシアン分布) をもち 、 中心に行けば行くほど強度が強くなる。 したがって、 レーザ散乱孔検出器 3 5 で観測される異物からの散乱光強度が最大になるときに X Yステージ 3 2を止め れば、 1 m x 1 mの範囲内で異物位置を検出することができる ( S 9 ) 。 1 0 / m x 1 0 mの範囲を 1 ^ mビッチで移動させる時間は 3秒程度である。 以上の操作によって、 1 m x 1 mの分解能で異物位置検出することができ る。 更に異物分析を行う場合は、 検出した異物位置における 1 m X 1 / mの範 囲に対し走査型電子銃 1 6で電子ビームを照射して走査することにより、 この範 囲内の成分分析をエネルギ分散型 X線検出器 3 7を用いて 1分程度で行うことが できる ( S 1 0 ) 。 この場合電子ビームの照射点 5 0 とレーザビームの照射点と がー致しているから、 レーザ投光器 3 4を中心部から外側へずらして、 電子ビー ムを直ちに照射し、 走査を開始することができ、 検出位置がずれるおそれはない o また、 電子ビーム照射によって、 特性 X線と共に発生する 2次電子を 2次電子 検出器 1 7で検出すれば、 2次電子像 (すなわち、 走査型電子顕微鏡像 S E M像 ) を得ることができる。 次の記憶した異物検出位置があれば ( S 1 1 ) 、 ステツ プ S 6に戻りその記憶位置を走査する。 According to the present invention, it is possible to detect a foreign object position with a higher resolution. This For this reason, a laser beam is emitted from the laser projector 52 with a small spot size to the foreign object positioned within the range of 10m X 10m, and the moving pitch of the XY stage 32 is set to 1m. (S7, S8). Even if the spot size of the laser beam from the laser projector 52 is 10 μm, the intensity distribution in the cross section of the laser beam is generally not constant within this spot, but has a certain distribution (Gaussian distribution). The more you go to the center, the stronger the strength. Therefore, if the XY stage 32 is stopped when the intensity of the scattered light from the foreign substance observed by the laser scattering hole detector 35 is maximized, the foreign substance position can be detected within a range of 1 mx 1 m. (S9). It takes about 3 seconds to move the range of 10 / mx10m in 1 ^ m bitches. With the above operation, the foreign object position can be detected with a resolution of 1 mx 1 m. Further, when performing foreign particle analysis, a scanning electron gun 16 irradiates an electron beam to scan a range of 1 mx 1 / m at the detected foreign particle position, thereby enlarging the component analysis within this range. It can be performed in about one minute using the dispersive X-ray detector 37 (S10). In this case, since the irradiation point 50 of the electron beam is aligned with the irradiation point of the laser beam, it is possible to shift the laser projector 34 from the center to the outside, immediately irradiate the electron beam, and start scanning. O If the secondary electrons generated together with the characteristic X-rays by electron beam irradiation are detected by the secondary electron detector 17, a secondary electron image (that is, a scanning electron microscope) can be obtained. Image SEM image) can be obtained. If there is a next stored foreign object detection position (S11), the flow returns to step S6 to scan the stored position.
以上の操作によって、 ゥュハ上の異物検出、 分折を、 高速に、 例えば、 ゥ ハ 上に異物が 5〜 6個あった場合、 分析結果を得るまでで 1 0分以内に、 しかも自 動で行うことができる。 つまり上記の操作でオペレータが判断を下さなければな らない要素は全くない。  By the above operation, foreign matter detection and separation on the wafer can be performed at high speed. For example, if there are 5 to 6 foreign matter on the wafer, analysis can be obtained within 10 minutes and automatically. It can be carried out. In other words, there is no factor for the operator to make a decision in the above operation.
図 4中に、 レーザ投光器 3 4中の支持アーム 5 4のミラー 5 6の部分に点線で 示すように小孔 8 3を貫通させておく ことにより、 レーザ投光器 3 4を移動させ ることなく、 電子ビームをウェハ 1 2に照射することができるようにしてもよい 。 更に図 1 0に一部を示すように、 支持アーム 5 に対し、 ミラ一 5 5を軸 8 4 を中心に回動自在に取付け、 必要に応じてミラ一 5 5を回動させて、 電子ビーム の照射通路から外すようにしてもよい。 In FIG. 4, a small hole 83 is passed through the mirror 56 of the support arm 54 in the laser projector 34 as shown by a dotted line, so that the laser projector 34 does not move. The electron beam may be applied to the wafer 12. Further, as partially shown in FIG. 10, the mirror 55 is attached to the support arm 5 so as to be rotatable about a shaft 84, and the mirror 55 is rotated as necessary to beam May be removed from the irradiation path.
図 1 1に図 1 と対応する部分に同一符号を付けて示すように、 ビームスポッ ト の大きいレーザ投光器 5 1 とビームスポッ トの小さいレーザ投光器 5 2とが同一 直線上に配されてもよい。 つまりレーザ投光器 5 1ではそのレーザ源 5 1 aより のレーザがビーム断面がプリズム、 アパーチャなどの光学部品 5 1 bで細長い方 形とされ、 レンズ 5 1 cで太いビームの平行光 5 1 dとされ、 先端の集束レンズ As shown in FIG. 11 by assigning the same reference numerals to the portions corresponding to FIG. 1, the laser projector 51 having a large beam spot and the laser projector 52 having a small beam spot may be arranged on the same straight line. In other words, in the laser projector 51, the laser beam from the laser source 51a is formed into an elongated rectangle by the optical parts 51b such as prisms and apertures, and the parallel beam 51d of the thick beam is formed by the lens 51c. The tip focusing lens
3 4 aでビームが絞ぼられて、 照射点 5 0に所望のスポッ トサイズ、 形状で入射 される。 一方投光器 3 4の外筒 3 4 b内にレーザ投光器 5 2が軸心位置に保持さ れ、 レンズ 5 2 aで細いビームの平行光 5 2 bとされ、 更に先端の集束レンズ 3The beam is narrowed at 34a, and is incident on the irradiation point 50 with a desired spot size and shape. On the other hand, the laser projector 52 is held at the axial center position in the outer cylinder 34b of the projector 34, and the narrow beam 52b of the narrow beam is formed by the lens 52a.
4 aでビームが絞ぼられて、 照射点 5 0に所望のスボッ トサイズ、 形状で入射さ れる。 The beam is narrowed at 4a, and is incident on the irradiation point 50 with a desired spot size and shape.
この例に示すように、 レーザ投光器 3 4によるレーザビームのウェハ 1 2への 投光と、 電子銃 1 6による電子ビームのゥヱハ 1 2への照射とは、 異なる場所で 行ってもよい。 つまり前述のように、 レーザビームの照射で異物の検出を行った 後、 可動ステージ 3 2を電子銃 1 6の直下に移動して、 前記例では異物検出位置 を 1 mの精度で、 電子ビームの照射位置に位置決めして、 電子ビームによる異 物成分の分析や、 S E M像、 反射電子像を求めることもできる。  As shown in this example, the projection of the laser beam on the wafer 12 by the laser projector 34 and the irradiation of the electron beam on the wafer 12 by the electron gun 16 may be performed in different places. That is, as described above, after detecting foreign matter by irradiating the laser beam, the movable stage 32 is moved to a position immediately below the electron gun 16, and in the above example, the foreign matter detection position is set to an accuracy of 1 m and the electron beam It can also be used to analyze foreign components with an electron beam, and to obtain SEM images and backscattered electron images.
図 1 2に示すように、 例えば図 1 1に示した太いビームのレーザ投光器 5 1 と 細いビームのレーザ投光器 5 2とを機械的に一体化したレーザ投光器 3 4よりの レーザ光を、 いわゆるポリゴンミラー 8 5に照射し、 その反射光が、 電子ビーム の照射点 5 0を通る直線上を走査して走査線 8 6が形成されるようにする。 レー ザビームが 1走査するごとにその走査線 8 6と直角方向に可動ステージ 3 2をレ 一ザビームのスポッ トサイズ分移動させるごとにより、 異物検出を高速に行うこ とができる。 このようにレーザビームを振って (往復回動して) ウェハ 1 2上を 走査させるには、 ポリゴンミラ一 8 5に限らず、 例えば力ルバノメータに用いら れる可動コィルに取付けられたミラーによることもできる。  As shown in FIG. 12, for example, a laser beam from a laser projector 34 that mechanically integrates the thick-beam laser projector 51 and the narrow-beam laser projector 52 shown in FIG. The mirror 85 is irradiated, and the reflected light scans on a straight line passing through the irradiation point 50 of the electron beam so that a scanning line 86 is formed. Each time the laser beam performs one scan, the foreign object can be detected at a high speed by moving the movable stage 32 by a distance corresponding to the spot size of the laser beam in a direction perpendicular to the scanning line 86. Scanning the wafer 12 by oscillating (reciprocatingly rotating) the laser beam in this manner is not limited to the use of the polygon mirror 85, but may be performed, for example, by a mirror attached to a movable coil used in a force ruvanometer. Can also.
このようにレーザビームを振って (回動して) ウェハ 1 2上を走査する場合、 そのレーザビーム回動手動の配置の関係で例えば図 1 3に示すようにレーザビー ムの走査線 8 6が電子ビームの照射点 5 0力、ら一定距離 d! だけ離してもよい。 図 1 4に示すようにレーザ投光器 5 1よりゥヱハ 1 2に対するレーザビーム投 光角 0 , と、 レーザ投光器 5 2よりゥヱハ 1 2に対するレーザビーム投光角 02 とを異ならせる。 図 5に示した例もそうであり、 レーザ投光器 5 1 , 5 2を図 5 に示したように一体に保持することができる。 When scanning the wafer 12 by shaking (rotating) the laser beam in this manner, the scanning line 86 of the laser beam is, for example, as shown in FIG. Electron beam irradiation point 50 force, constant distance d! May be separated. As shown in FIG. 14, a laser beam projection angle 0, from the laser projector 51 to the laser beam 12 , is different from a laser beam projection angle 02 from the laser projector 52 to the laser beam 12. This is also the case with the example shown in FIG. 5, and the laser projectors 51 and 52 can be integrally held as shown in FIG.
一般に、 半導体集積回路ゥュハは、 その製造工程が進めば進むほど、 ゥュハ表 面に作成される配線や膜などが複雑になるので、 表面の凹凸も目立ってく る。 し たがって、 例えば図 1 5に示すように、 ゥヱハ 1 2の表面より厚み tだけ突出し ている部分に異物 8 8がある場合、 厚味 t , の凸部がない場合に比べて、 レーザ 投光器 5 2による検出では厶 X z 、 レーザ投光器 5 1による検出では△ X , だけ 位置ずれが生じる。 2つのレーザ投光器 5 1 , 5 2の同じ異物 8 8に対する検出 位置は、 照射角度をそれぞれ 6 , ヒ Θ z と互いに変えると、 凸部上に異物 8 8が ある場合、 Δ χ ( = Α χ , —厶 χ 2 ) のずれが観測される。 ここで、 観測された Δ χと、 既知である角度 0 , , θ ζ より、 レーザ光による異物検出位置から実際 に走査型電子统 1 6によって電子ビームが照射される位置を補正 (レーザ投光器 5 2の検出位置からだと Δ X ζ 、 レーザ投光器 5 1の検出位置からだと厶 X , ) することができる。 以下に、 その計算を説明する。 In general, as the manufacturing process of a semiconductor integrated circuit wafer progresses, wirings and films formed on the wafer surface become more complicated, and concavities and convexities on the surface become conspicuous. Therefore, as shown in Fig. 15, for example, when there is a foreign substance 88 in a portion that protrudes from the surface of 12 by the thickness t, the laser projector is compared with the case where there is no thick t, convex part. 5厶X z is a detection by 2, as detected by the laser projector 5 1 △ X, only the position shift occurs. The detection positions of the two laser projectors 5 1 and 52 with respect to the same foreign matter 8 8 are as follows. When the irradiation angles are changed to 6 and Θ z, respectively, when there is a foreign matter 8 8 on the convex part, Δ χ (= Α χ , — Χ 2 ) is observed. Here, based on the observed Δ χ and the known angles 0,, θ を, the position where the electron beam is actually irradiated by the scanning electron 统 16 from the position where the foreign matter is detected by the laser beam is corrected (laser projector 5 that it from the second detection position delta X zeta,厶that it from the detection position of the laser projector 5 1 X,) can be. The calculation is described below.
レーザ投光器 5 2による位置ずれ Δ χ 2 と照射角度 02 及び表面凸部の厚さ t との関係式は次式で与えられる。 Relationship between the positional deviation delta chi 2 and irradiation angle 0 2 and a surface convex portion in the thickness t by the laser projector 5 2 is given by the following equation.
t a n 02 = t /厶 χ 2 ·'· ( 1 ) tan 0 2 = t / m χ 2
同様に、 レーザ投光器 5 1による位置ずれ Δ χ , と照射角度 6 , 及び表面凸部 の厚さ t との関係式は次式で与えられる。  Similarly, a relational expression between the positional deviation Δχ by the laser projector 51, the irradiation angle 6, and the thickness t of the surface convex portion is given by the following expression.
t a n ^ , = t / A x , ― ( 2 )  t a n ^, = t / A x, ― (2)
一方、 観測されるずれ Δ Xは次式で表すことができる。  On the other hand, the observed deviation ΔX can be expressed by the following equation.
Δ χ =Δ χ , -Δ χ ζ ··· ( 3 ) Δ χ = Δ χ, -Δ χ ζ
レーザ投光器 5 2を用いた検出位置からの補正値は Δ χ 2 であり、 レーザ投光 器 5 1を用いた検出位置からの補正値は Δ X , であり、 上式より tを消去するこ とにより、 各補正値を求めることができる。 The correction value from the detected position using a laser projector 5 2 a delta chi 2, a X, delta correction value from the detected position using a laser projection device 5 1, child erasing t from the above equation Thus, each correction value can be obtained.
Δ X z =厶 X · t a n ^ 1 / ( t a n ^ z — t a n ^ i ) Δ X z = mm X · tan ^ 1 / (tan ^ z — tan ^ i)
A x , =厶 x ' t a n 2 / ( t a n 6? z - t. a n (9 i ) "- ( ) 走査型電子銃 1 6からの電子ビームがほぼ垂直にゥュハ 1 2に照射されるとす れば、 上述の各補正値 Δ χ , , Δ χ 2 に基づいて異物の位置の補正を行えばよい し、 また、 走査型電子銃 1 6から電子ビームの照射角度とビームスボッ 卜が小さ い方のレーザ投光器 5 2の照射角度を同一にすれば、 レーザ投光器 5 2による検 出位置とレーザ投光器 5 1による検出位置とのずれ△ Xがそのまま補正値となる 。 θ 1 と 2 の差は 2 0 ° 〜 8 0 ° が適当である。 A x, = rum x 'tan 2 / (tan 6? Z -t. An (9 i) "-() Assuming that the electron beam from the scanning electron gun 16 irradiates the wafer 12 almost vertically, the position of the foreign matter may be corrected based on the correction values Δ,, Δ Δ 2 described above. Also, if the irradiation angle of the electron beam from the scanning electron gun 16 and the irradiation angle of the laser projector 52 having the smaller beam spot are made the same, the detection position of the laser projector 52 and the laser projector 51 The deviation ΔX from the detection position due to the above becomes the correction value as it is. The appropriate difference between θ 1 and 2 is between 20 ° and 80 °.
図 1 6に示すように電子銃 1 6内の上端部の電子ビームが広がっていない部分 に、 レーザ投光器 3 4を取付け、 レーザ投光器 3 4よりのレーザビームをミラー As shown in Fig. 16, a laser projector 34 is attached to the upper part of the electron gun 16 where the electron beam is not spread, and the laser beam from the laser projector 34 is mirrored.
8 9により、 電子銃 1 6内の電子ビーム 9 1 とほぼ平行に、 ゥヱハ 1 2上の照射 点 5 0に入射するようにしてもよい。 あるいは図 1 7に示すように、 電子銃 1 6 の中間部の電子ビーム 9 1が絞られて細くなった空間に電子ビーム 9 1に邪魔に ならないように、 レーザ投光器 3 4を配し、 かつ電子ビーム 9 1が絞られた個所 でその電子ビーム 9 1が通過する小孔が形成されたミラー 9 2により レーザ投光 器 3 4よりのレーザビームを反射させて照射点 5 0に入射するようにしてもよい 。 更に図 1 7でミラー 9 2を固定配置する代りに、 図 1 8に示すように面動ミラ - 9 3を設け、 レーザビームをウェハ 1 2に入射する時はミラー 9 3を電子ビー ム 9 1 の通路に位置させ、 電子ビーム 9 1をゥヱハ 1 2に照射する時は、 ミラーAccording to 89, it may be made to be incident on the irradiation point 50 on the substrate 12 substantially in parallel with the electron beam 91 in the electron gun 16. Alternatively, as shown in FIG. 17, a laser projector 34 is arranged in a space where the electron beam 91 in the middle of the electron gun 16 is narrowed by being narrowed so as not to interfere with the electron beam 91, and The laser beam from the laser projector 34 is reflected by the mirror 92 formed with a small hole through which the electron beam 91 passes at the place where the electron beam 91 is narrowed so that the laser beam enters the irradiation point 50. It may be. Further, instead of fixedly disposing the mirror 92 in FIG. 17, a surface moving mirror 93 is provided as shown in FIG. 18, and when the laser beam is incident on the wafer 12, the mirror 93 is connected to the electron beam 9. When irradiating the electron beam 9 1 to the laser beam 1 2
9 3を電子ビーム 9 1 の通路から外すようにしてもよい。 93 may be removed from the path of the electron beam 91.
上述において太いレーザビームとして、 1 0 0 0 〃m X 4 0 〃mのような方形 断面のものを用いると、 これにより異物検出した時に、 更にその内部を細いレー ザビームで異物を探す場合に探し易い。 この太いレーザビームの断面形状は円形 でもよい。 また太いレーザビームと、 細いレーザビームとのスポッ トサイ ズの大 きさの比は 1 0〜 2 0 0程度が考えられる。 細いレーザビームで異物を検出し、 更にそのスポッ トサイズよりも高い位置検出精度とするため前述したようにその スポッ トサイ ズより小さいピッチでレーザビームの走查を行う力 この移動ビッ チは、 目的とする検出精度に応じて決定し、 必ずしも 1 m単位とする必要はな い。 またこの検出後、 電子ビームの走査により成分分析を行う場合は、 その面積 が大きいとその分析時間が長くなる点から、 高い精度を得るためのレーザビーム 走查ピッチは例えば 0 . 2 i ir!〜 3 . 0 m程度が適当である。 上述においては細いレーザビームで走査後、 そのスポッ トサイズより小さいピ ツチで走査したが、 これを省略してもよい。 この場合も、 従来において、 細いレ 一ザビームでのみ走査して異物を検出する場合と比較して、 検出速度を著しく向 上させることができる。 更にレーザビームの断面の強度分布を利用し、 そのスポ ッ トサイズより小さいピッチで走査し、 レーザ散乱光が最大強度となる位置を求 めて高い位置精度で異物を検出できる力 この場合、 太いレーザビームの走査と 細いレーザビームの走査との 2段階の走査を行うことなく、 つまり従来と同様に 太いレーザビーム走査は省略してもよい。 In the above description, if a thick laser beam with a square cross section such as 100 〃m x 400 〃m is used, when a foreign object is detected, the inside is further searched when a narrow laser beam is used to search for a foreign object. easy. The cross-sectional shape of this thick laser beam may be circular. In addition, the ratio of the spot size of the thick laser beam to that of the narrow laser beam may be about 10 to 200. The power to detect a foreign object with a thin laser beam and run the laser beam at a pitch smaller than the spot size as described above in order to achieve a position detection accuracy higher than the spot size. It is determined according to the detection accuracy to be used, and it is not always necessary to use the unit of 1 m. When component analysis is performed by electron beam scanning after this detection, the analysis time is lengthened if the area is large. Therefore, the scanning pitch of the laser beam for obtaining high accuracy is, for example, 0.2 i ir! About 3.0 m is appropriate. In the above description, after scanning with a thin laser beam, scanning was performed with a pitch smaller than the spot size, but this may be omitted. Also in this case, the detection speed can be remarkably improved as compared with the case where a foreign substance is detected by scanning only with a thin laser beam. Furthermore, using the intensity distribution of the cross section of the laser beam, scanning at a pitch smaller than the spot size, finding the position where the laser scattered light has the maximum intensity, and detecting foreign matter with high positional accuracy. The two-stage scanning of beam scanning and narrow laser beam scanning need not be performed, that is, thick laser beam scanning may be omitted as in the related art.
また先に述べたように異物検出と、 異物の組成分折とは同一場所で行なわなく てもよい。 ただ、 特に高い位置精度で分析する場合は、 異物検出場所から組成分 析場所に可動ステージを移動させるのに高速に行うことが比較的困難であり、 高 速、 高精度の点から、 電子ビームのゥヱハ上の照射点 5 0とレーザビームの照射 点とがー致するように電子銃とレーザ投光器を設けておく ことが好ましい。 上述 ではこの発明をゥェハの異物検出 ·分析に適用したが 2次電子検出器 1 7や反射 電子検出器 3 6は省略してもよい。 また異物検出のみの場合は、 電子銃 1 6、 X 線成分分圻器 3 7も省略することができる。  Further, as described above, the foreign substance detection and the composition analysis of the foreign substance need not be performed in the same place. However, particularly when analyzing with high positional accuracy, it is relatively difficult to move the movable stage from the foreign matter detection location to the composition analysis location at high speed. From the viewpoint of high speed and high accuracy, electron beam It is preferable that an electron gun and a laser projector be provided so that the irradiation point 50 on the substrate and the irradiation point of the laser beam coincide. In the above description, the present invention is applied to the detection and analysis of foreign substances in wafers, but the secondary electron detector 17 and the reflected electron detector 36 may be omitted. In the case of detecting foreign matter only, the electron gun 16 and the X-ray component analyzer 37 can be omitted.
以上述べたように、 この発明によれば、 太いレーザビームにより粗走査し、 異 物を検出した個所を、 そのレーザビームのスポ ン ト範囲の部分程度のみを細いレ 一ザビームで細走査して異物を検出するため、 細走査のみで異物を検出する場合 より高速に検出できる。  As described above, according to the present invention, coarse scanning is performed with a thick laser beam, and a portion where a foreign object is detected is finely scanned with a narrow laser beam only in a portion of the spot range of the laser beam. Since foreign matter is detected, it can be detected faster than when foreign matter is detected only by fine scanning.
また細走査で検出した個所を、 そのレーザビームのスボッ トサイズより小さい ピッチで、 そのスポッ トサイズ部分程度のみを微走査し、 この時、 検出される レ 一ザ散乱光が最大となる個所を異物位置とすることにより、 従来、 レーザビーム のスポッ トサイズの分解能でしか異物位置を検出できなかったが、 レーザビーム のスポッ トサイズ以下の分解能で異物位置を検出することができる。  In addition, the spot detected by the fine scanning is finely scanned only at the spot size portion at a pitch smaller than the spot size of the laser beam, and at this time, the spot where the laser scattered light detected is the largest is the foreign matter position. Thus, the foreign substance position can be detected only with the resolution of the spot size of the laser beam, but the foreign substance position can be detected with a resolution equal to or smaller than the spot size of the laser beam.
従って、 電子ビームで異物の分断をする場合、 この発明では例えば直径が 1 0 / mのレーザビームにより、 1 程度の分解能で異物位置を検出でき、 その検 出位置を、 例えば 0 . 1 mの電子ビームで 0 ' m x l . 0 mの範囲のみ を走査して、 X線分析したり、 S 像や反射電子像を得ればよく、 高速に分析 することができる。 Therefore, when foreign matter is separated by an electron beam, in the present invention, for example, a foreign matter position can be detected with a resolution of about 1 by a laser beam having a diameter of 10 / m, and the detection position is, for example, 0.1 m. Scanning only the range of 0'mxl.0m with an electron beam, X-ray analysis or S image or backscattered electron image can be obtained for high-speed analysis. can do.
特に可動ステージ、 つまり被検査物と移動させることなく、 被検査物に対する 電子ビームの照射点とレーザビームの照射点とを一致させておく ことに、 異物検 出からその組成分析へ直に、 かつ高い位置精度を保持した状態で移ることができ 、 この点から高速化でき、 半導体集積回路ゥュハの製造現場でイ ンライ ンにある ウェハの異物 ·分折に適する。  In particular, by keeping the irradiation point of the electron beam and the irradiation point of the laser beam on the object without moving the movable stage, that is, the object to be inspected, it is possible to directly perform the process from the foreign substance detection to the composition analysis, and It is possible to move while maintaining high positional accuracy, and the speed can be increased from this point, and it is suitable for foreign matter / fractionation of in-line wafers at a semiconductor integrated circuit wafer manufacturing site.

Claims

請 求 の 範 囲 The scope of the claims
1 . 被検査物の表面に存在する異物を検出 ·分析する異物検出 ·分析装置であつ て、 1. A foreign substance detection and analysis device that detects and analyzes foreign substances on the surface of the inspection object.
真空容器内に配され、 上記被検査物が載置され、 被検査物を移動させることが できる可動ステージと、  A movable stage that is arranged in a vacuum vessel, on which the object to be inspected is mounted, and that can move the object to be inspected;
上記被検查物に第 1スボッ トサイズでレーザビームを照射する第 1 レーザ投光 器と、  A first laser projector for irradiating the test object with a laser beam at a first spot size;
上記第 1 スボッ トサイズより小さい第 2スポッ トサイズでレーザビームを上記 被検査物に照射する第 2 レーザ投光器と、  A second laser projector for irradiating the inspection object with a laser beam at a second spot size smaller than the first spot size;
上記被検査物の表面異物により散乱された上記照射レーザビームの散乱光を検 出するレーザ散乱光検出器と、  A laser scattered light detector for detecting scattered light of the irradiation laser beam scattered by foreign matter on the surface of the inspection object;
上記第 1 レーザ投光器のレーザビームと上記可動ステージとを相対的に移動さ せて走査する粗走査手段と、  Coarse scanning means for relatively moving and scanning the laser beam of the first laser projector and the movable stage;
上記粗走査手段による走査中において、 上記レーザ散乱光検出器が散乱光を検 出した上記被検査物の位置を記憶する記憶部と、  A storage unit that stores a position of the inspection object at which the laser scattered light detector detects scattered light during scanning by the coarse scanning unit;
上記記憶部に記憶された上記被検査物の位置を、 ほぼ上記第 1 スポッ トサイ ズ の範囲で上記可動ステージと上記第 2 レーザ投光器のレーザビームとを相対的に 移動させて走査する細走査手段と、  Fine scanning means for relatively moving the movable stage and the laser beam of the second laser projector within the range of the first spot size to scan the position of the inspection object stored in the storage unit. When,
上記細走査手段による走査中に上記レーザ散乱光検出器が散乱光を検出した上 記被検査物の位置を異物位置とする手段と、  Means for setting the position of the inspection object, in which the laser scattered light detector detects scattered light during scanning by the fine scanning means, as a foreign matter position,
を具備する異物検出 ·分折装置。 Foreign substance detection equipped with
2 . 請求の範囲 1記載の異物検出 ·分折装置において、  2. In the foreign matter detection / fractionation apparatus described in claim 1,
上記細走査手段による走査において上記レーザ散乱光が検出された近傍につい て上記第 2スポッ トサイズより小さいピツチで上記可動ステージと上記レーザビ ームを相対的に移動させて走査する微走査手段と、  Fine scanning means for relatively moving the movable stage and the laser beam with a pitch smaller than the second spot size in the vicinity where the laser scattered light is detected in the scanning by the fine scanning means;
上記微走査手段による走査中における上記レーザ散乱光検出器の検出出力が最 大となる走査位置を検出して異物位置とする手段とを具備する。  Means for detecting a scanning position at which the detection output of the laser scattered light detector is maximized during scanning by the fine scanning means and setting the position as a foreign matter position.
3 . 請求の範囲 2に記載の異物検出 ·分折装置において、 上記被検査物に電子ビームを照射する電子銃と、 3. In the foreign matter detection / fractionation apparatus according to claim 2, An electron gun for irradiating the inspection object with an electron beam;
上記電子ビームの照射により上記被検査物から発生した X線を検出して組成を 分折する X線分折器と、  An X-ray analyzer that detects X-rays generated from the inspection object by the irradiation of the electron beam and divides the composition;
上記被検査物の上記異物位置の近傍を上記電子ビームで走査する分圻走査手段 とを具備することを特徴とする。  Scanning means for scanning the vicinity of the foreign substance position of the inspection object with the electron beam.
4 . 請求の範囲 3記載の異物検出 ·分析装置において、  4. In the foreign matter detection / analysis device according to claim 3,
上記電子ビームの上記被検査物に対する照射点と、 上記レーザビームの上記被 検査物に対する照射点とが上記可動ステージを固定した状態で同一とされている ことを特徴とする。  An irradiation point of the electron beam on the inspection object and an irradiation point of the laser beam on the inspection object are the same with the movable stage fixed.
5 . 請求の範囲 1乃至 4の何れかに記載の異物検出 ·分圻装置において、 上記第 1 レーザ投光器と上記第 2 レーザ投光器は互いに機械的に固定され、 こ れらレーザ投光器からの各レーザビームの上記被検査物への照射点は一致されて いることを特徴とする。  5. In the foreign matter detection / separation device according to any one of claims 1 to 4, the first laser projector and the second laser projector are mechanically fixed to each other, and each laser from these laser projectors is fixed. The irradiation points of the beam on the object to be inspected are coincident.
6 . 請求の範囲 5記載の異物検出 ·分析装置において、  6. In the foreign matter detection / analysis device according to claim 5,
上記第 1 レーザ投光器からのレーザビーム及び上記第 2 レーザ投光器からのレ —ザビームを偏向して上記被検査物の表面を線状走査する手段が設けられている ことを特徴とする。  A means for deflecting a laser beam from the first laser projector and a laser beam from the second laser projector to linearly scan the surface of the inspection object is provided.
7 . 請求の範囲 5記載の異物検出 ·分折装置において、  7. In the foreign matter detection / fractionation apparatus according to claim 5,
上記第 1 レーザ投光器からのレーザビームが上記被検査物へ入射する角度と、 上記第 2 レーザ投光器からのレーザビームが上記被検査物へ入射する角度とが互 いに異なされていることを特徴とする。  The angle at which the laser beam from the first laser projector is incident on the object to be inspected is different from the angle at which the laser beam from the second laser projector is incident on the object to be inspected. And
8 . 被検査物の表面に存在する異物を検出 ·分析する異物検出 ·分折装置であつ て、  8. Foreign matter detection and analysis equipment that detects and analyzes foreign matter present on the surface of the inspection object.
真空容器内に配され、 上記被検査物が載置され、 被検査物を移動させることが できる可動ステージと、  A movable stage that is arranged in a vacuum vessel, on which the object to be inspected is mounted, and that can move the object to be inspected;
上記細走査手段による走査において上記レーザ散乱光が検出された近傍につい て上記第 2スポッ トサイズより小さいピッチで上記可動ステージと上記レーザビ ームを相対的に移動させて走査する微走査手段と、  Fine scanning means for relatively moving the movable stage and the laser beam at a pitch smaller than the second spot size in the vicinity where the laser scattered light is detected in the scanning by the fine scanning means;
上記微走査手段による走査中における上記レーザ散乱光検出器の検出出力が最 大となる走査位置を検出して異物位置とする手段とを具備する。 The detection output of the laser scattered light detector during scanning by the fine scanning means is Means for detecting a large scanning position and setting the position as a foreign matter position.
9 . 請求の範囲 8記載の異物検出 ·分折装置において、 9. In the foreign matter detection / fractionation apparatus according to claim 8,
上記被検査物に電子ビームを照射する電子銃と、  An electron gun for irradiating the inspection object with an electron beam;
上記電子ビームの照射により上記被検査物から発生した X線を検出して組成を 分析する X線分析器と、  An X-ray analyzer that detects X-rays generated from the inspection object by the irradiation of the electron beam and analyzes the composition;
上記被検査物の上記異物位置の近傍を上記電子ビームで走査する分析走査手段 とを具備することを特徴とする。  Analysis scanning means for scanning the vicinity of the foreign substance position of the inspection object with the electron beam.
1 0 . 請求の範面 9記載の異物検出 ·分折装置において、  10. In the foreign matter detection and separation device described in claim 9,
上記可動ステージを固定した状態で上記電子ビームの上記被検査物に対する照 射点と、. 上記レーザビームの上記被検査物に対する照射点とが同一とされている ことを特徴とする。  An irradiation point of the electron beam on the inspection object is the same as an irradiation point of the laser beam on the inspection object with the movable stage fixed.
1 1 . 被検査物の表面に存在する異物を検出,分析する異物検出 ·分折方法であ つて、  1 1. Foreign matter detection and analysis method for detecting and analyzing foreign matter present on the surface of the inspection object.
第 1 スポッ トサイズのレーザビームにより上記被検査物の表面を走査して異物 の概略位置を求める粗走査工程と、  A rough scanning step of scanning the surface of the inspection object with a laser beam of the first spot size to obtain an approximate position of the foreign matter;
上記粗走査工程で求められた上記概略位置の近傍を、 上記第 1 スボッ トサイズ より小さい第 2スポッ トサイズのレーザビームで走査して異物の位置を求める細 走査工程と、  A fine scanning step of scanning the vicinity of the approximate position obtained in the coarse scanning step with a laser beam having a second spot size smaller than the first spot size to obtain a position of a foreign substance;
を有することを特徴とする。 It is characterized by having.
1 2 . 請求の範囲 1 1記載の異物検出 ·分析方法において、  1 2. In the method for detecting and analyzing foreign matter described in claim 1,
上記細走査工程で求められた異物の位置の近傍を上記第 2スポッ トサイズより も小さいピッチで走査し、 上記被検査物の異物にもとづく レーザ散乱が最大とな る位置を求め異物の位置とする微走査工程を有することを特徴とする。  The vicinity of the position of the foreign matter determined in the fine scanning step is scanned at a pitch smaller than the second spot size, and the position where the laser scattering based on the foreign matter on the inspection object is maximized is determined as the position of the foreign matter. It has a fine scanning step.
1 3 . 請求の範囲 1 1又は 1 2記載の異物検出 ·分析方法において、  1 3. In the method for detecting and analyzing foreign matter described in claims 11 or 12,
上記求めた異物の位置の近傍を電子ビームで走査し、 その異物の分析を行う分 析工程を有することを特徴とする。  An electron beam is used to scan the vicinity of the position of the foreign matter thus obtained, and an analysis step of analyzing the foreign matter is provided.
1 . 請求の範囲 1 3に記載の異物検出 ·分析方法において、  1. In the method for detecting and analyzing foreign matter according to claim 13,
上記被検査物を移動することなく 、 上記レーザビームの上記被検査物の照射点 と、 上記電子ビームへの上記被検査物の照射点とを一致させていることを特徵と する。 It is characterized in that the irradiation point of the inspection object with the laser beam and the irradiation point of the inspection object with the electron beam coincide with each other without moving the inspection object. I do.
1 5 . 請求の範囲 1 3の異物検出 ·分析方法において、  1 5. In the foreign matter detection and analysis method of claim 13,
上記レーザビームによる走査は上記被検査物を移動させて行い、 上記電子ビー ムによる走査は被検査物を固定して行うことを特徴とする。  The scanning by the laser beam is performed by moving the inspection object, and the scanning by the electronic beam is performed by fixing the inspection object.
1 6 . 請求の範囲 1 3の異物検出 ·分折方法において、  1 6. In the foreign matter detection / fractionation method of claim 13,
上記第 1 スボッ トサイ ズのレーザビームのスポッ トサイズはほぼ細長い長方形 であることを特徴とする。  The spot size of the laser beam of the first spot size is substantially elongated and rectangular.
1 7 . 被検査物の表面に存在する異物を検出 ·分折する異物検出 *分折方法であ つて、  1 7. Foreign matter detection on the surface of the inspection object
レーザビームで被検査物の表面を走査して異物の位置を求める細走査工程と、 上記細走査工程で求められた異物の位置の近傍を上記レーザビームのスポッ ト サイズよりも小さいピッチで走査し、 上記被検査物の異物にもとづく レーザ散乱 が最大となる位置を求め異物の位置とする微走査工程を有することを特徴とする  A fine scanning step of scanning the surface of the inspection object with a laser beam to determine the position of the foreign matter; and scanning the vicinity of the position of the foreign matter determined in the fine scanning step at a pitch smaller than the spot size of the laser beam. A fine scanning step of finding a position where the laser scattering based on the foreign matter of the inspection object is maximized and setting the position of the foreign matter.
1 8 . 請求の範囲 1 7記載の異物検出 ·分析方法において、 18. In the foreign matter detection and analysis method described in claim 17,
上記求めた異物の位置の近傍を電子ビームで走査し、 その異物の分析を行う分 析工程を有することを特徴とする。  An electron beam is used to scan the vicinity of the position of the foreign matter thus obtained, and an analysis step of analyzing the foreign matter is provided.
1 9 . 被検査物の表面に存在する異物を検出 ·分析する異物検出 ·分折装置であ つて、  1 9. A foreign object detection / fractionation device that detects and analyzes foreign objects on the surface of the inspection object.
上記被検査物が載置される可動ステージと、  A movable stage on which the inspection object is placed,
上記被検査物にレーザビームを照射するレ一ザ源と、  A laser source for irradiating the inspection object with a laser beam,
上記被検査物の異物にもとづき散乱したレーザビーム散乱光を検出するレーザ 散乱光検出器と、  A laser scattered light detector that detects a laser beam scattered light scattered based on the foreign matter of the inspection object,
上記被検査物に電子ビームを照射する電子銃と、  An electron gun for irradiating the inspection object with an electron beam;
上記被検査物の電子ビームの照射にもとづく X線を検出して組成を分析する X 線分析器と、  An X-ray analyzer that detects X-rays based on the irradiation of the test object with the electron beam and analyzes the composition;
これを共通に収容する真空容器とを有し、  And a vacuum container for accommodating this in common,
上記レーザ源は上記電子銃内に設けられ、 上記電子ビーム及び上記レーザビー ムは上記被検査物の同一個所に照射されることを特徴とする。  The laser source is provided in the electron gun, and the electron beam and the laser beam are applied to the same portion of the inspection object.
PCT/JP1997/000244 1996-01-31 1997-01-31 Foreign matter detector/analyzer and method thereof WO1997028422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19780186T DE19780186T1 (en) 1996-01-31 1997-01-31 Method and device for the detection and analysis of foreign materials

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/15239 1996-01-31
JP1523996 1996-01-31
JP8/171226 1996-07-01
JP8171226A JPH11125602A (en) 1996-07-01 1996-07-01 Method and device for analyzing foreign matter

Publications (1)

Publication Number Publication Date
WO1997028422A1 true WO1997028422A1 (en) 1997-08-07

Family

ID=26351361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000244 WO1997028422A1 (en) 1996-01-31 1997-01-31 Foreign matter detector/analyzer and method thereof

Country Status (3)

Country Link
KR (1) KR19980703403A (en)
DE (1) DE19780186T1 (en)
WO (1) WO1997028422A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196644A (en) * 1984-10-17 1986-05-15 Hitachi Ltd Appearance examination device
JPS625547A (en) * 1985-07-01 1987-01-12 Ulvac Corp Apparatus for checking foreign matter on substrate surface
JPH0636016A (en) * 1992-06-15 1994-02-10 Orbot Instr Ltd Optical inspection method and device for fault of surface of body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196644A (en) * 1984-10-17 1986-05-15 Hitachi Ltd Appearance examination device
JPS625547A (en) * 1985-07-01 1987-01-12 Ulvac Corp Apparatus for checking foreign matter on substrate surface
JPH0636016A (en) * 1992-06-15 1994-02-10 Orbot Instr Ltd Optical inspection method and device for fault of surface of body

Also Published As

Publication number Publication date
KR19980703403A (en) 1998-11-05
DE19780186T1 (en) 1998-04-23

Similar Documents

Publication Publication Date Title
US5481109A (en) Surface analysis method and apparatus for carrying out the same
US10777383B2 (en) Method for alignment of a light beam to a charged particle beam
KR100808718B1 (en) Apparatus and method for reviewing defects on an object
US6373070B1 (en) Method apparatus for a coaxial optical microscope with focused ion beam
JP2690443B2 (en) Autofocus device
EP2591490B1 (en) Charged particle beam processing system with visual and infrared imaging
US7023954B2 (en) Optical alignment of X-ray microanalyzers
JPH08152430A (en) Microscope with aligning function
US5220169A (en) Surface analyzing method and apparatus
KR20130082334A (en) Equipment for inspecting semiconductor substrate and method for inspecting semiconductor substrate using the same
US6552341B1 (en) Installation and method for microscopic observation of a semiconductor electronic circuit
JPH05113418A (en) Surface analyzing apparatus
JP6410902B2 (en) Micro Raman spectroscopic device and micro Raman spectroscopic system
WO1997028422A1 (en) Foreign matter detector/analyzer and method thereof
JPH05332934A (en) Spectroscope
JPH11125602A (en) Method and device for analyzing foreign matter
JP2005055265A (en) X-ray analysis device, x-ray analysis method and surface inspection device
CN116660285B (en) Wafer characteristic spectrum on-line measuring device
JPH1123481A (en) Micro-object analyzing apparatus, and adjusting apparatus for micro-object detecting means used in the micro-object analyzing apparatus
JPH0961600A (en) Scanning x-ray microscope
JPH01213944A (en) Analyzing device with electron beam irradiation
JPH10160685A (en) Irradiation position adjusting method for laser beam and electron beam, foreign material detecting device using laser beam, and scan-type electron microscope and foreign material analyzing device
JPH11304420A (en) Method and plate for detecting light beam radiation position and foreign matter detecting device
JPH09293474A (en) Sample image measuring apparatus
JPH10300685A (en) Method and device for analyzing foreign object

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP KR US

ENP Entry into the national phase

Ref document number: 1997 913244

Country of ref document: US

Date of ref document: 19970910

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970706807

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 19780186

Country of ref document: DE

Date of ref document: 19980423

WWE Wipo information: entry into national phase

Ref document number: 19780186

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1019970706807

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019970706807

Country of ref document: KR