WO1997027191A1 - Novel polymorphic forms of troglitazone having enhanced anti-diabetic activity and a process for their preparation - Google Patents

Novel polymorphic forms of troglitazone having enhanced anti-diabetic activity and a process for their preparation Download PDF

Info

Publication number
WO1997027191A1
WO1997027191A1 PCT/US1997/002577 US9702577W WO9727191A1 WO 1997027191 A1 WO1997027191 A1 WO 1997027191A1 US 9702577 W US9702577 W US 9702577W WO 9727191 A1 WO9727191 A1 WO 9727191A1
Authority
WO
WIPO (PCT)
Prior art keywords
troglitazone
polymorphic form
range
onset
medium
Prior art date
Application number
PCT/US1997/002577
Other languages
French (fr)
Inventor
Krishnamurthi Vyas
Chebiyyam Prabhakar
Sreenivas Dharmaraja Rao
Mamillapalli Ramabadhara Sarma
Om Gaddam Reddy
Rajagopalan Ramanujam
Ranjan Chakrabarti
Original Assignee
Dr. Reddy's Research Foundation
Reddy-Cheminor, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/665,867 external-priority patent/US5700820A/en
Application filed by Dr. Reddy's Research Foundation, Reddy-Cheminor, Inc. filed Critical Dr. Reddy's Research Foundation
Priority to JP09527134A priority Critical patent/JP2000511875A/en
Priority to AU23164/97A priority patent/AU700976B2/en
Priority to EP97915839A priority patent/EP0844997A1/en
Publication of WO1997027191A1 publication Critical patent/WO1997027191A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • This invention relates to a discovery of the preparation of novel polymorphic/pseudopolymorphic forms of Troglitazone and process for the preparation of various polymorphic/pseudopolymorphic forms of Troglitazone.
  • Troglitazone is 5- [ [4- [3 (3,4-dihydro-6- hydroxy-2,5,7,8-tetramethyl-2H-l-benzopyran-2-yl) methoxy] phenyl] methyl] 2,4-thiazolidinedione, having the Formula I shown below.
  • the polymorphic forms prepared by the process of the present invention are more active, as an antidiabetic agent, than the hitherto known Troglitazone.
  • Aldose reductase is the enzyme which reduces aldose present in the humans and animals into corresponding polyols which, in turn, are stored or accumulated in the kidneys, peripheral nerves, eye lens of the diabetic patients and manifest themselves in the above mentioned complications.
  • Troglitazone hitherto known is being considered today as one of the most effective antidiabetic drugs which has a multipurpose activity not only acting on diabetes itself but also on the reduction of the triglycerides and also on the accompanying complications mentioned above. Indeed, the said Troglitazone is emerging a ⁇ the first drug candidate of euglycemic class of antidiabetic agents.
  • polymorphism we mean to include different physical forms, crystal forms, crystalline/ liquid crystalline/non-crystalline (amorphous) forms. This has especially become very interesting after observing that many antibiotics, antibacterials, tranquilizers etc., exhibit polymorphism and some/one of the polymorphic forms of a given drug exhibit superior bio-availability and consequently show much higher activity compared to other polymorph ⁇ .
  • Sertraline, Frentizole, Ranitidine, Sulfathiazole, Indomethacine etc. are some of the important examples of pharmaceuticals which exhibit polymorphism.
  • EP 490648 and EP 022527 also deal with the subject of polymorphism in drugs.
  • Our observations and results form the subject matter of the present invention.
  • Troglitazone can be prepared in different polymorphic forms possessing anti-diabetic activity.
  • DSC of the polymorphic Form-1 and polymorphic Form-3 have one melting endotherm each at -180°C. and -186°C. (Figs. 1 & 2 ) respectively.
  • Polymorphic Form-2 exhibits an endotherm, in the temperature region 110-120°C. (hereafter referred as Peak 1) before the melting endotherm in the region 165- 190°C. as shown in Fig-3. It was also observed that when the polymorphic Form-2 is heated to 150°C. and cooled, the rerecorded DSC thermogram showed the reduction and absence of the peak 1 as represented by Figs. 4 & 5 respectively, indicating the conversion of the polymorphic Form-2 into another polymorphic form completely/partially.
  • Fig. 15 gives the powder X-ray diffraction pattern of the Forms 1,2,3,5 and 6 to facilitate easy comparison.
  • Fig. 1 is a characteristic differential scanning calorimetric thermogram of Form 1.
  • Fig. 2 is a characteristic differential scanning calorimetric thermogram of Form 3.
  • Fig. 3 is a characteristic differential scanning calorimetric thermogram of Form 2.
  • Fig. 4 is a characteristic differential scanning calorimetric thermogram of Form 2 showing the reduction of peak 1 after heating.
  • Fig. 5 is a characteristic differential scanning calorimetric thermogram of Form 2 showing the absence of peak 1 after heating.
  • Fig. 6 is a characteristic differential scanning calorimetric thermogram of Form 4.
  • Fig. 7 is a characteristic differential scanning calorimetric thermogram of Form 5.
  • Fig. 8 is a characteristic differential scanning calorimetric thermogram of Form .
  • Fig. 9 is a characteristic X-ray powder diffraction pattern of Form 1.
  • Fig. 10 is a characteristic X-ray powder diffraction pattern of Form 2.
  • Fig. 11 is a characteristic X-ray powder diffraction pattern of Form 3.
  • Fig. 12 is a characteristic X-ray powder diffraction pattern of Form 5.
  • Fig. 13 is a characteristic X-ray powder diffraction pattern of Form 6.
  • Fig. 14 is a characteristic X-ray powder diffraction pattern of Form 4.
  • Fig. 15 is the multi-plot of X-ray powder diffraction patterns of Forms 1,2,3,5,6.
  • Fig. 16 is a characteristic infrared absorption spectrum of Form 1 in potassium bromide) . (KBr) .
  • Fig. 17 is a characteristic infrared absorption spectrum of Form 2 in KBr.
  • Fig. 18 is a characteristic infrared absorption spectrum of Form 3 in KBr.
  • Fig. 19 is a characteristic infrared absorption spectrum of Form 4 in KBr.
  • Fig. 20 is a characteristic infrared absorption spectrum of Form 5 in KBr.
  • Fig. 21 is a characteristic infrared absorption spectrum of Form 6 in KBr.
  • Fig.22 is the multi-plot of infrared absorption spectra of Forms 1,2,3,4,5,6 (4000-500 cm " ) .
  • Common color code for Figs. 22-26 Black - Form 1; Orange - Form 2; Red - Form 3; Violet - Form 4; Blue - Form 5; Green - Form 6.
  • Fig. 23 is the multi-plot of infrared absorption spectra of Forms 1,2,3,4,5,6 (3800-2400 cm )
  • Fig. 24 is the multi-plot of infrared absorption spectra of Forms 1,2,3,4,5,6 (1800-1500
  • Fig. 25 is the multi-plot of infrared absorption spectra of Forms 1,2,3,4,5,6 (1500-1100 cm ) .
  • Fig. 26 is the multi-plot of infrared absorption spectra of Forms 1,2,3,4,5,6 (1125-500 cm "1 ) .
  • the present invention provides a process for the preparation of novel polymorphic Form-1 of Troglitazone having the Formula I shown in the drawing accompanying this specification which comprise ⁇ (i) synthesizing Troglitazone, in crude form employing known methods,
  • step (ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%, (iii) dissolving the partially purified
  • step (ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
  • step (iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent, and
  • step (ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
  • step (iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent, and
  • step (v) dissolving the polymorphic Form-2 of Troglitazone so obtained in step (iv) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent, and
  • step (iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent
  • step (iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent, (iv) scratching the resulting solution, while cooling rapidly to a temperature in the range of 0 to -20°C. at a rate of 2 to 10°C./minute, over a period in the range of 10-30 min. to precipitate the polymorphic Form-2 of Troglitazone,
  • step (v) dissolving the polymorphic Form-2 of Troglitazone so obtained in step (iv) , in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent, (vi) heating the resulting solution preferably on steam bath and cooling the solution slowly to room temperature at a rate of 0.1 to 1°C./minute, over a period in the range of 24-72 h to crystallize the polymorphic Form-3 of Troglitazone, (vii) filtering the product and melting it by heating,
  • step (ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%, (iii) dissolving the partially purified
  • step (viii) subjecting the polymorphic Form-4 of Troglitazone so obtained in step (vii) to isothermal heating in the range of 60 to 170°C. preferably at 130°C, for a period in the range of 5 min. to 4 h, cooling to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h, followed by grinding the flake to a fine powder to yield the polymorphic Form 5 of Troglitazone which i ⁇ characterized by the following data.
  • step (ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
  • step (iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent
  • step (viii) subjecting the polymorphic Form-4 of Troglitazone so obtained in step (vii) to isothermal heating in the range of 60 to 170°C. preferably at 130°C. for a period in the range of 5 min. to 4 h, cooling to ambient temperature at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h followed by grinding the flake to a fine powder to yield the polymorphic Form-5 of Troglitazone which is characterized by the data presented in the previous method.
  • step (iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent
  • step (v) dissolving the polymorphic Form-2 of Troglitazone so obtained in step (iv) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent,
  • step (x) subjecting the polymorphic Form-4 of Troglitazone obtained in step (ix) to isothermal heating in the range of 60 to 170°C. preferably at 130°C. for a period in the range of 5 min. to 4 h, cooling to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h followed by grinding the flake to a fine powder to yield the polymorphic Form-5 of Troglitazone which is characterized by the data presented in the previous method.
  • step (iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and adding a non-polar solvent to the resulting solution and
  • step (iv) subjecting the polymorphic Form-4 of Troglitazone obtained in step (iii) to isothermal heating in the range of 60 to 170°C. preferably at 130°C. for a period in the range of 5 min. to 4 h, cooling to ambient temperature slowly at a rate of 0.1 to 1 C C./minute, over a period in the range of 1-4 h followed by grinding the flake to a fine powder to yield the polymorphic Form-5 of Troglitazone which is characterized by the data presented in the previous method.
  • the organic polar and/or medium polar solvents are selected from acetonitrile, ethanol, methanol, acetone, 1,4-dioxane, methyl ethyl ketone, ethylacetate, chloroform, tetrahydrofuran, n-propanol, isopropanol, 1,2-dichloroethane, dichloromethane, diethylether, benzene, etc. while the non-polar solvents are selected from hexane, heptane, cyclohexane, carbontetrachloride, toluene, xylene, etc.
  • the present invention is described in detail with examples given below that are provided by way of illustration only and therefore should not be construed to limit the scope of the invention.
  • Example-4 5 g of crude Troglitazone obtained by the process as described in Example-1 was taken in -100 ml benzene and heated on steam bath till the solid completely dissolved and the clear solution wa ⁇ allowed to cool to room temperature at a rate of 0.1 to 1°C./minute during a period ⁇ 36 h to give 2.5 g of > 99% pure polymorphic Form-1 of Troglitazone.
  • Examples 5-8 illustrate the process for the preparation of the polymorphic Form-2 of Troglitazone
  • Example-5 5 g of crude Troglitazone obtained by the process as described in Example-1 was taken in -100 ml benzene and heated on steam bath till the solid completely dissolved and the clear solution wa ⁇ allowed to cool to room temperature at a rate of 0.1 to 1°C./minute during a period ⁇ 36 h to give 2.5 g of > 99% pure polymorphic Form-1 of Troglitazone.
  • Examples 5-8 illustrate the process for the preparation of the polymorphic Form-2 of Troglitazone
  • Examples 20-21 illustrate the process for the preparation of the polymorphic Form- of Troglitazone
  • W ⁇ rample-21 15.5g of 5 [4- (6-hydroxy-2,5,7,8-tetramethyl chroman-2yl-methoxy) benzyl] -2-iminothiasolidine-4-one, prepared by the process as described in Example-1, was added to a mixture of 225 ml of acetic acid, 75 ml of cone, hydrochloric acid and 40 ml of water and the mixture was refluxed for 12 hrs. The reaction mixture was cooled to room temperature and 66.2 g of sodium bicarbonate was added and once the evolution of carbondioxide had ceased, the solvent was distilled off applying high vacuum.
  • the polymorphic forms of Troglitazone are more active/bio-available.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Novel polymorphic forms of Troglitazone and methods for preparing the polymorphic forms of Troglitazone. The polymorphic forms of Troglitazone can be used to treat diabetic ailments.

Description

NOVEL POLYMORPHIC FORMS OF TROGLITAZONE
HAVING ENHANCED ANTI-DIABETIC ACTIVITY
AND A PROCESS FOR THEIR PREPARATION
BACKGROUND OF THE INVENTION This invention relates to a discovery of the preparation of novel polymorphic/pseudopolymorphic forms of Troglitazone and process for the preparation of various polymorphic/pseudopolymorphic forms of Troglitazone. Troglitazone is 5- [ [4- [3 (3,4-dihydro-6- hydroxy-2,5,7,8-tetramethyl-2H-l-benzopyran-2-yl) methoxy] phenyl] methyl] 2,4-thiazolidinedione, having the Formula I shown below. The polymorphic forms prepared by the process of the present invention are more active, as an antidiabetic agent, than the hitherto known Troglitazone.
Figure imgf000003_0001
(D
Out of the many drugs available for the treatment of diabetic ailments, the thiazolidinedione derivatives are very prominent and are considered as much superior effective-constituents compared to the sulphonyl ureas. Troglitazone, one such thiazo¬ lidinedione, which exhibited euglycemic effect, was reported in the year 1983 by Sankyo Co. Ltd., Japan (Japanese Patent No. 60-051189/Australian Patent
No. 570067) and created interest in the field, ever since.
Previously, the oral diabetic medicines consisting of sulphonyl urea were believed to be effective in bringing down the sugar level in blood (Hypoglycemic) but they lacked efficiency in preventing/reducing diabetes related complications like cataract, nervous break down, retinopathia etc. (which are usually the chronic ailments accompanied by diabetes) . Aldose reductase is the enzyme which reduces aldose present in the humans and animals into corresponding polyols which, in turn, are stored or accumulated in the kidneys, peripheral nerves, eye lens of the diabetic patients and manifest themselves in the above mentioned complications.
With a view to prevent/cure the chronic complications of diabetes, research is being conducted round the world in recent times. Troglitazone hitherto known is being considered today as one of the most effective antidiabetic drugs which has a multipurpose activity not only acting on diabetes itself but also on the reduction of the triglycerides and also on the accompanying complications mentioned above. Indeed, the said Troglitazone is emerging aε the first drug candidate of euglycemic class of antidiabetic agents.
The latest trend that has, of late, crept into the pharmaceutical industry is the studies on polymorphism in drugs and the difference in the activity of different polymorphic forms of a given drug. By the term polymorphism we mean to include different physical forms, crystal forms, crystalline/ liquid crystalline/non-crystalline (amorphous) forms. This has especially become very interesting after observing that many antibiotics, antibacterials, tranquilizers etc., exhibit polymorphism and some/one of the polymorphic forms of a given drug exhibit superior bio-availability and consequently show much higher activity compared to other polymorphε. Sertraline, Frentizole, Ranitidine, Sulfathiazole, Indomethacine etc. are some of the important examples of pharmaceuticals which exhibit polymorphism. SUMMARY OF THE INVENTION
Sankyo Co. Ltd, Japan states in its annual report (Annu. Rep. Sankyo. Res. lab., 46, pp. 1-57, 1994) that the relative configurations of the diastereomers have been determined by X-ray crystallographic analysis and that the crystal and molecular structure of Troglitazone is under preparation. The report does not touch upon the possibility/observation that Troglitazone exists in different polymorphic forms. There is no published literature regarding such an observation till date. Polymorphism in drugs is a topic of current interest and is evident from the host of patents being granted. To cite a few, U.S. 5,248,699 discusses about five polymorphic forms of Sertraline hydrochloride while EP 014590 describes four polymorphic forms of Frentizole. EP 490648 and EP 022527 also deal with the subject of polymorphism in drugs. The fact that polymorphism in Troglitazone has not been studied earlier coupled with the current interest in the field of polymorphism in drugs prompted us to take up this investigation. Our observations and results form the subject matter of the present invention.
We have, due to our sustained research directed towards finding out effective antidiabetic drugs, observed that Troglitazone can be prepared in different polymorphic forms possessing anti-diabetic activity. We have, in the course of research, prepared and studied at least six polymorphic forms of Troglitazone. These polymorphs have been designated, by us, as Forms 1,2,3,4,5 & 6.
Our present invention relates to an observation that Troglitazone exhibits polymorphism, which has not been reported till date. Polymorphic Forms 1,2,3 and 6 are obtained by different modes of recrystallization while the polymorphic Forms 4 and 5 are derived from melting/heating any of the polymorphic Forms 1,2,3 and 6. A slow recrystallization of the crude Troglitazone gives the polymorphic Form-1. On the other hand, a fast recrystallization of the same crude Troglitazone gives the polymorphic Form-2. This Form-2 of 99% High Pressure Liquid Chromatography (HPLC) purity upon slow recrystallization gives the polymorphic Form-3. Polymorphic Forms 1,2,3 and 6 when melted, produce a glossy/transparent material which on thorough grinding gives a fine powder. This pale yellow powder does not give any peaks due to X-Ray Diffraction (XRD) . This could be amorphous/liquid crystalline in nature. This amorphous/liquid crystalline form is designated as Form-4. Interestingly, the non-crystalline Form-4 on isothermal heating at 130°C. yields the crystalline form, designated as Form 5.
All these polymorphic forms were proved to be identical in solution as evident from Nuclear Magnetic Resonance (NMR) , Ultra Violet (UV) & Mass spectral data. On the other hand, solid state techniques like Differential Scanning Calorimetry (DSC) , Powder X-Ray Diffractometry (XRD) and Infra Red spectroscopy (IR) revealed the difference among these forms.
DSC of the polymorphic Form-1 and polymorphic Form-3 have one melting endotherm each at -180°C. and -186°C. (Figs. 1 & 2 ) respectively. Polymorphic Form-2 exhibits an endotherm, in the temperature region 110-120°C. (hereafter referred as Peak 1) before the melting endotherm in the region 165- 190°C. as shown in Fig-3. It was also observed that when the polymorphic Form-2 is heated to 150°C. and cooled, the rerecorded DSC thermogram showed the reduction and absence of the peak 1 as represented by Figs. 4 & 5 respectively, indicating the conversion of the polymorphic Form-2 into another polymorphic form completely/partially. It was confirmed by Thermo Gravimetry (TG) - Mass spectroscopic studies that the Peak 1 present in polymorphic Form-2 is not due to any volatile material as there was no weight loss in TG and no mass was detected by analyzing the evolved gases from TG, using mass spectrometry. However, the possibility of mixture of poly orphβ constituting this polymorphic Form-2 can not be ruled out.
Interestingly, DSC studies on polymorphic Form-4 exhibited (Fig. 6) a small endotherm at ~57°C, an exotherm at -100-130°C. and a melting endotherm at -177°C. The endotherm at --57°C. could be because of phase transition/loss of some volatile material. The exotherm at -100-130°C. is due to crystallization while the endotherm at -177CC. is due to melting. Hence, in principle, if the amorphous/liquid crystalline polymorphic Form-4 when heated at -130°C, should result in a crystalline form. It is reasonable to expect the amorphous/liquid crystalline polymorphic Foπn-4 to acquire crystallinity when heated at -130°C. Indeed, when the polymorphic Form-4 was heated at 130°C, it attained crystallinity and the DSC of this material exhibited only the melting endotherm (Fig. 7) at -177°C, indicating the absence of phase transition and the disappearance of liquid crystalline nature. The new crystalline form thus obtained is designated as polymorphic Form 5. The DSC study also reveals that the polymorphic Form-4 is not only noncrystalline/ liquid crystalline but also metastable in nature. The plausible reason for the enhanced activity of the polymorphic Form-4 may be due to the thermodynamically less stable nature of noncrystalline/liquid crystalline form. The polymorphic Form-6 exhibits a single melting endotherm at -105°C. (Fig. 8). The XRD of the crystalline polymorphic Forms
1,2,3,5 & 6 were found to be different from each other (Figs. 9-13) while the polymorphic Form-4 showed no XRD pattern confirming its amorphous/liquid crystalline nature as shown in the (Fig. 14) . Fig. 15 gives the powder X-ray diffraction pattern of the Forms 1,2,3,5 and 6 to facilitate easy comparison.
The Infrared absorption spectra of Forms 1 to 6 in potassium bromide are different from one another which become apparent only after closer examination. The spectra are depicted in Figs. 16-21 respectively. The overlapped IR spectra of all the Forms 1 - 6 (Fig. 22) and the sectional expansions (Figs. 23-26) are also provided. A qualitative comparison of such spectra, (Figs. 22-26) reveals the following differences. a. Forms 2 & 6 exhibit absorption bands of medium intensity at -3650 cm while no absorption is observed for the others (Fig. 23) . b. Form 1 exhibits a strong absorption with a shoulder at -3450 cm while Forms 3 & 5 absorb without a shoulder. On the other hand Form 2 exhibits
-1 -1 a band at -3550 cm , while Form 4 has it at -3500 cm
(Fig. 23) . c. Forms 1 & 2 have a weak absorption at -3300 cm" , Form 3 has a strong band while no absorption for the rest (Fig. 23) . d. Forms 1 & 3 have a strong absorption at
-2980 cm -1 with a shoulder at -2925 cm-1, while Forms
2, 4 and 5 show only a weak peak at -2980 cm' with no shoulder. Form 6 shows no absorption in this region (Fig. 23) . e. All the forms, show absorption -1750 cm and -1700 cm" . Only Form 5 shows a shoulder in both these wavenumbers while Form 1 has a shoulder in the latter (Fig. 24) . f. Forms 2 & 6 have a strong peak at -1255 cm" , while the rest have it at -1240 cm (Fig. 25) g. Form 3 has a weak absorption at -700 cm -1 while others have no absorption. (Fig. 26) . h. Form 6 exhibits three weak absorption bands while the others have negligible absorption (Fig. 26) . BRIEF DESCRIPTION OF THE FIGURES
Fig. 1 is a characteristic differential scanning calorimetric thermogram of Form 1.
Fig. 2 is a characteristic differential scanning calorimetric thermogram of Form 3. Fig. 3 is a characteristic differential scanning calorimetric thermogram of Form 2.
Fig. 4 is a characteristic differential scanning calorimetric thermogram of Form 2 showing the reduction of peak 1 after heating. Fig. 5 is a characteristic differential scanning calorimetric thermogram of Form 2 showing the absence of peak 1 after heating.
Fig. 6 is a characteristic differential scanning calorimetric thermogram of Form 4. Fig. 7 is a characteristic differential scanning calorimetric thermogram of Form 5.
Fig. 8 is a characteristic differential scanning calorimetric thermogram of Form .
Fig. 9 is a characteristic X-ray powder diffraction pattern of Form 1.
Fig. 10 is a characteristic X-ray powder diffraction pattern of Form 2.
Fig. 11 is a characteristic X-ray powder diffraction pattern of Form 3. Fig. 12 is a characteristic X-ray powder diffraction pattern of Form 5.
Fig. 13 is a characteristic X-ray powder diffraction pattern of Form 6.
Fig. 14 is a characteristic X-ray powder diffraction pattern of Form 4.
Fig. 15 is the multi-plot of X-ray powder diffraction patterns of Forms 1,2,3,5,6.
Fig. 16 is a characteristic infrared absorption spectrum of Form 1 in potassium bromide) . (KBr) .
Fig. 17 is a characteristic infrared absorption spectrum of Form 2 in KBr.
Fig. 18 is a characteristic infrared absorption spectrum of Form 3 in KBr.
Fig. 19 is a characteristic infrared absorption spectrum of Form 4 in KBr. Fig. 20 is a characteristic infrared absorption spectrum of Form 5 in KBr.
Fig. 21 is a characteristic infrared absorption spectrum of Form 6 in KBr.
Fig.22 is the multi-plot of infrared absorption spectra of Forms 1,2,3,4,5,6 (4000-500 cm" ) . Common color code for Figs. 22-26: Black - Form 1; Orange - Form 2; Red - Form 3; Violet - Form 4; Blue - Form 5; Green - Form 6.
Fig. 23 is the multi-plot of infrared absorption spectra of Forms 1,2,3,4,5,6 (3800-2400 cm )
Fig. 24 is the multi-plot of infrared absorption spectra of Forms 1,2,3,4,5,6 (1800-1500
Figure imgf000010_0001
Fig. 25 is the multi-plot of infrared absorption spectra of Forms 1,2,3,4,5,6 (1500-1100 cm ) .
Fig. 26 is the multi-plot of infrared absorption spectra of Forms 1,2,3,4,5,6 (1125-500 cm"1) .
DETAILED DESCRIPTION OF THE INVENTION
Accordingly, the present invention provides a process for the preparation of novel polymorphic Form-1 of Troglitazone having the Formula I shown in the drawing accompanying this specification which compriseε (i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%, (iii) dissolving the partially purified
Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent and
(iv) cooling the resulting solution slowly to room temperature at a rate of 0.1 to 1°C./minute over a period in the range of 24-72 h to produce the polymorphic Form-1 of Troglitazone which is characterized by the following data.
DSC: Endotherm at 179.3°C. (onset at 169.3°C.) (Fig. 1)
X-ray powder diffraction (2Θ) : 5.56, 11.10, 11.66, 15.72, 16.62, 17.62, 18.24, 19.70, 21.20, 21.42, 22.32, 23.40, 23.70, 24.06, 24.36, 26.26. (Fig. 9)
Infrared absorption bands (cm" ) : 3442 (w) , 3218 (w), 2921(w), 1748( ) , 1686 (s) , 1610 (w) , 1582 (w) , 1513(e), 1454 (w), 1420 (w) , 1382 (w) , 1302 (m) , 1244 (s), 1169 (m), 1118 (w), 1086 (w) , 1048 ( ) , 931 (w) , 863 (w) , 827 (w), 798 (w), 720 (w) , 509 (w) . (Fig. 16) w = weak, m = medium, s = strong According to another feature of the invention, there is provided a process for the preparation of novel polymorphic Form-2 of Troglitazone having the Formula I which comprises
(i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent, and
(iv) scratching the resulting solution, while cooling rapidly to a temperature between 0 to - 20°C. at a rate of 2 to 10°C./minute over a period in the range of 10-30 min. to precipitate the polymorphic Form-2 of Troglitazone which is characterized by the following data.
DSC: Endotherms at 110.1°C. (onset at 102.4°C.) and at 175.1°C. (onset at 155.9°C.) (Fig. 3) X-ray powder diffraction (2θ) : 5.40, 10.24,
10.70, 11.70, 12.18, 12.44, 12.66, 13.20, 15.60, 16.02, 16.50, 17.58, 18.16, 18.82, 19.62, 20.40, 20.64, 21.44, 22.22, 23.30, 23.68, 24.16, 24.44, 26.54, 27.82, 29.20, 31.48 (Fig. 10) Infrared absorption bands (cm" ) : 3506 (w) ,
3187 (w), 3061 (w), 2931 (w), 1751 (m), 1688 (s) , 1610 (w) , 1583 (w), 1512 (B) , 1454 (w) , 1419 (w) , 1381 (w), 1334 (w), 1301 (m), 1252 (B) , 1165 (m), 1088 (w) , 1047 (w) , 932 (w) , 828 (w), 722 (w), 511 (w) (Fig. 17) w = weak, m = medium, s = strong
According to yet another embodiment of the present invention, there is provided a process for the preparation of a novel polymorphic Form-3 of Troglitazone, having the Formula I, which comprises (i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent, and
(iv) scratching the resulting solution, while cooling rapidly to a temperature between 0 to -20°C. at a rate of 2 to 10°C./minute over a period in the range of 10-30 min. to precipitate the polymorphic Form-2 of Troglitazone.
(v) dissolving the polymorphic Form-2 of Troglitazone so obtained in step (iv) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent, and
(vi) heating the resulting solution on steam bath and cooling the solution slowly to room temperature at a rate of 0.1 to 1°C./minute over a period in the range of 24-72 h to crystallize the polymorphic Form-3 of Troglitazone which iε characterized by the following data.
DSC: Endotherm at 185.8°C. (onset at 175.4°C.) (Fig. 2) X-ray powder diffraction (2Θ) : 5.45, 11.76,
13.24, 15.63, 16.03, 17.58, 18.13, 19.66, 21.42, 23.37, 23.67, 24.45, 26.53. (Fig. 11)
Infrared absorption bands (cm" ): 3439 (w) , 3295 (w), 2972 (w), 2932 (w) 1747 (m) , 1690 (s), 1611 (w) , 1582 (w), 1512 (s), 1453 (m) , 1384 (w), 1302 (m), 1245 (s), 1221(e), 1169 (s), 1143 (w), 1119 (w) , 1089 (w), 1049 (w) , 931 (w), 828 (w), 722 (w), 510 (w) (Fig. 18) w = weak, m =- medium, s = εtrong According to yet another embodiment of the present invention, there is provided a process for the preparation of a novel polymorphic Form-4 of Troglitazone, having the Formula I, which comprises
(i) synthesizing Troglitazone, in crude form employing known methods, (ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60 -70% ,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent,
(iv) cooling the resulting solution slowly to room temperature at a rate of 0.1 to 1°C. /minute over a period in the range of 24-72 h to produce the polymorphic Form-1 of Troglitazone, (v) filtering the product and melting it by heating,
(vi) cooling the melt to ambient temperature slowly at a rate of 0.1 to 1°C./minute over a period in the range of 1-4 h to give a glossy transparent material,
(vii) grinding the transparent flake to a fine powder to yield the polymorphic Form-4 of Troglitazone which is characterized by the following data. DSC: Endotherm at 56.6°C, exotherm at
110.4°C. (onset at 93.6°C.) and endotherm 177.1°C. (onset at 153.7°C.) (Fig. 6)
X-ray powder diffraction (2Θ) : No diffraction peaks due to its amorphous nature (Fig. 14) Infrared absorption bands (cm" ) : 3473 (w) ,
3204 (w), 3060 (w), 2924 (w) , 1754 (m) , 1696 (s) , 1610 (w) , 1583 (w), 1512(B) , 1457 (m) , 1420 (w), 1378 (w), 1333 ( ) , 1301 (m), 1243 (s), 1162 ( ) , 1115 (w) , 1085 (w), 1041 (w), 928 (w), 849 (w), 827 (w) , 715 (w) , 664 (w), 512 (w) (Fig. 19) w = weak, m = medium, s = strong According to yet another embodiment of the present invention, there is provided a process for the preparation of the novel polymorphic Form-4 of Troglitazone, having the Formula I, which comprises
(i) synthesizing Troglitazone, in crude form employing known methods, (ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%, (iii) dissolving the partially purified
Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent,
(iv) scratching while cooling rapidly to a temperature in the range of 0 to -20°C. at a rate of 2 to 10°C./minute, over a period in the range of 10-30 min. to precipitate the polymorphic Form-2 of Troglitazone,
(v) filtering the product and melting it by heating,
(vi) cooling the melt to ambient temperature slowly at a rate of 0.1 to 1°C./minute over a period in the range of 1-4 h to give a glossy transparent material, (vii) grinding the transparent flake to a fine powder to yield the polymorphic Form-4 of Troglitazone which is characterized by the data presented in the previous method.
According to yet another embodiment of the present invention, there is provided a process for the preparation of the novel polymorphic Form-4 of Troglitazone, having the Formula I, which comprises
(i) synthesizing Troglitazone, in crude form employing known methods, (ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent, (iv) scratching the resulting solution, while cooling rapidly to a temperature in the range of 0 to -20°C. at a rate of 2 to 10°C./minute, over a period in the range of 10-30 min. to precipitate the polymorphic Form-2 of Troglitazone,
(v) dissolving the polymorphic Form-2 of Troglitazone so obtained in step (iv) , in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent, (vi) heating the resulting solution preferably on steam bath and cooling the solution slowly to room temperature at a rate of 0.1 to 1°C./minute, over a period in the range of 24-72 h to crystallize the polymorphic Form-3 of Troglitazone, (vii) filtering the product and melting it by heating,
(viii) cooling the melt to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h to give a glossy transparent material
(ix) grinding the transparent flake to a fine powder to yield the polymorphic Form-4 of Troglitazone which is characterized by the data presented in the previous method. According to a further embodiment of the present invention, there is provided a process for the preparation of a novel polymorphic Form-5 of Troglitazone having the Formula I, which comprises
(i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%, (iii) dissolving the partially purified
Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent,
(iv) cooling the resulting solution slowly to room temperature at a rate of 0.1 to 1°C./minute, over a period in the range of 24-72 h to produce the polymorphic Form-1 of Troglitazone,
(v) filtering the product and melting it by heating,
(vi) cooling the melt to ambient temperature at a rate of 0.1 to 1°C./minute over a period in the range of 1-4 h to give a glossy transparent material,
(vii) grinding the transparent flake to a fine powder to yield the polymorphic Form-4 of Troglitazone,
(viii) subjecting the polymorphic Form-4 of Troglitazone so obtained in step (vii) to isothermal heating in the range of 60 to 170°C. preferably at 130°C, for a period in the range of 5 min. to 4 h, cooling to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h, followed by grinding the flake to a fine powder to yield the polymorphic Form 5 of Troglitazone which iε characterized by the following data.
DSC: Endotherm at 180.5°C. (onset at 157.9°C.) (Fig. 7) X-ray powder diffraction (2Θ) : 5.56, 11.02,
11.58, 15.38, 15.80, 16.42, 18.08, 18.34, 21.06, 21.84, 22.14, 23.32. (Fig. 12)
Infrared absorption bands (cm" ) : 3462 (w) , 3211 (w), 3060 (w), 2921(w) 1756 (m) , 1685 (s), 1610 (w) , 1583 (w), 1513 (s), 1454 ( ) , 1419 (w) , 1381(w), 1303 (m) , 1244 (s), 1168 (m), 1117 (w) , 1085 (w) , 1047 (m) , 929 (w), 861 (w), 825 (w), 718 (w), 665 (w), 564 (w) , 509 (w) (Fig. 20) . w = weak, m = medium, s = strong According to a further embodiment of the present invention, there is provided a process for the preparation of a novel polymorphic Form-5 of Troglitazone having the Formula I, which comprises
(i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent,
(iv) scratching while cooling rapidly to a temperature in the range of 0 to -20°C. at a rate of 2 to 10°C./minute, over a period in the range of 10-30 min. to precipitate the polymorphic Form-2 of Troglitazone,
(v) filtering the product and melting it by heating,
(vi) cooling the melt to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h to give a glossy transparent material,
(vii) grinding the transparent flake to a fine powder to yield the polymorphic Form-4 of Troglitazone,
(viii) subjecting the polymorphic Form-4 of Troglitazone so obtained in step (vii) to isothermal heating in the range of 60 to 170°C. preferably at 130°C. for a period in the range of 5 min. to 4 h, cooling to ambient temperature at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h followed by grinding the flake to a fine powder to yield the polymorphic Form-5 of Troglitazone which is characterized by the data presented in the previous method.
According to a further embodiment of the present invention, there is provided a process for the preparation of a novel polymorphic Form-5 of Troglitazone having the Formula I, which comprises
(i) synthesizing Troglitazone, in crude form employing known methods, (ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent,
(iv) scratching the resulting solution, while cooling rapidly to a temperature in the range of 0 to -20°C. at a rate of 2-10°C./minute, over a period in the range of 10-30 min. to precipitate the polymorphic Form-2 of Troglitazone,
(v) dissolving the polymorphic Form-2 of Troglitazone so obtained in step (iv) in an organic polar and/or medium polar solvent and heating the resulting solution with a non-polar solvent,
(vi) heating the resulting solution preferably on a steam bath and cooling the solution slowly to room temperature at a rate of 0.1 to 1°C./minute, over a period in the range of 24-72 h to crystallize the polymorphic Form-3 of Troglitazone,
(vii) filtering the product and melting it by heating,
(viii) cooling the melt to ambient temperature at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h to give a glossy transparent material,
(ix) grinding the transparent flake to a fine powder to yield the polymorphic Form-4 of Troglitazone,
(x) subjecting the polymorphic Form-4 of Troglitazone obtained in step (ix) to isothermal heating in the range of 60 to 170°C. preferably at 130°C. for a period in the range of 5 min. to 4 h, cooling to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h followed by grinding the flake to a fine powder to yield the polymorphic Form-5 of Troglitazone which is characterized by the data presented in the previous method.
According to yet another embodiment of the present invention there is provided a process for the preparation of novel polymorphic Form-6 of Troglitazone having the Formula I which comprises
(i) synthesizing Troglitazone, in crude form employing known methods, (ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar and/or medium polar solvent and adding a non-polar solvent to the resulting solution and
(iv) cooling the resulting solution rapidly to ~5°C. at a rate of 10°C./minute and maintaining the temperature "at -5°C. for a period of 10-16 h to produce the polymorphic Form-6 of Troglitazone which is characterized by the following data.
DSC: Endotherm at 105.4°C. (onset at 94.8°C.) (Fig. 8) X-ray powder diffraction (2Θ) : 8.54, 10.24,
10.70, 11.24, 12.48, 12.68, 14.04, 14.70, 14.74, 15.00, 15.58, 18.52, 18.84, 19.48, 19.74, 20.24, 20.58, 21.38, 21.56, 22.18, 23.20, 23.30, 23.62, 24.10, 25.16, 27.76, 27.86, 28.88, 28.92, 29.12, 31.02 (Fig. 13) Infrared absorption bands (cm ) : 3634 (w),
3514 (w), 3176 (w), 3060 (w), 2930 (w), 1753 (m) , 1686 (s) , 1610 (w), 1512 (s), 1459 (w), 1418 (w) , 1380 (w), 1335 (m), 1300 (m), 1253(e), 1164 (B) , 1106 (w) , 1087 (w) , 1058 (w) , 1048 (w), 937 (w), 828 (m), 723 (w) , 673 (w) , 606 (w) , 568 (w) , 515 (w) (Fig. 21) w = weak, = medium, s = strong According to yet another embodiment of the present invention, there is provided a process for the preparation of the novel polymorphic Form-4 of Troglitazone, having the Formula I, which comprises (i) melting the polymorphic Form-5 of Troglitazone prepared by any one of the processes described above, by heating.
(ii) cooling the melt to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h to give a glossy transparent material,
(iii) grinding the transparent flake to a fine powder to yield the polymorphic Form-4 of Troglitazone which is characterized by the data presented earlier. According to yet another embodiment of the present invention, there is provided a process for the preparation of the novel polymorphic Form-4 of Troglitazone, having the Formula I, which comprises (i) melting the polymorphic Form-6 of Troglitazone prepared by the process described above, by heating.
(ii) cooling the melt to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h to give a glossy transparent material,
(iii) grinding the transparent flake to a fine powder to yield the polymorphic Form-4 of Troglitazone which is characterized by the data presented earlier. According to yet another embodiment of the present invention, there is provided a process for the preparation of the novel polymorphic Form-5 of Troglitazone, having the Formula I, which comprises
(i) melting the polymorphic Form-6 of Troglitazone prepared by the process described above, by heating. (ii) cooling the melt to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h to give a glossy transparent material.
(iii) grinding the transparent flake to a fine powder to yield the polymorphic Form-4 of Troglitazone.
(iv) subjecting the polymorphic Form-4 of Troglitazone obtained in step (iii) to isothermal heating in the range of 60 to 170°C. preferably at 130°C. for a period in the range of 5 min. to 4 h, cooling to ambient temperature slowly at a rate of 0.1 to 1CC./minute, over a period in the range of 1-4 h followed by grinding the flake to a fine powder to yield the polymorphic Form-5 of Troglitazone which is characterized by the data presented in the previous method.
The organic polar and/or medium polar solvents are selected from acetonitrile, ethanol, methanol, acetone, 1,4-dioxane, methyl ethyl ketone, ethylacetate, chloroform, tetrahydrofuran, n-propanol, isopropanol, 1,2-dichloroethane, dichloromethane, diethylether, benzene, etc. while the non-polar solvents are selected from hexane, heptane, cyclohexane, carbontetrachloride, toluene, xylene, etc. The present invention is described in detail with examples given below that are provided by way of illustration only and therefore should not be construed to limit the scope of the invention.
Process for the preparation of crude Troglitazone of -70% HPLC purity, the starting material for the preparation of novel polymorphic forms according to the present invention A mixture of 70 g of ethyl-3- [4- (6-acetoxy- 2,5,7, 8-tetramethylchroman-2-yl-methoxy)phenyl] -2- chloropropionate, 13.12 g of thiourea and 80.2 ml of sulpholane was reacted for 80 min., under a nitrogen stream at 115-120°C. Subsequently, a 656.2 ml Acetic acid, 218.7 ml cone, hydrochloric acid and 109.4 ml water was added to this and the resulting mixture was further heated for 12 hrs at 85-90°C. The reaction mixture was cooled to room temperature and 196.8 g of sodium bicarbonate was added and once the evolution of carbondioxide had ceased, the solvent was distilled off applying high vacuum. A 10:1 by volume mixture of benzene and ethyl acetate was added to the residue and the crude product was washed with a mixture of equal volumes of a saturated aq. sodium bicarbonate solution & water. The organic layer was dried over anhydrous sodium sulphate and the solvent was distilled off. The resulting crude product was quickly eluted from a silica gel column with 50% ethylacetate-hexane to furnish 40 g of the required 5-{ (4- (6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-yl-methoxy) benzyl) thiazolidine-2,4-dione (Troglitazone) with a HPLC purity of -67-70%. The elution of column was continued further to yield 5- [4- (6-hydroxy-2,5,7, 8- tetramethylchroman-2-yl-methoxy)benzyl] 2- iminothiazolidine-4-one with HPLC purity of -70%. Examples 2-4 illustrate the process for the preparation of the polymorphic Foπn-1 of Troglitazone Example-2:
55 g of the crude Troglitazone obtained by the process as described in Example-1 was adsorbed on 60-120 mesh silica gel and extracted first with hexane using a soxhlet and then with benzene. Hexane extract mostly contained the less polar impurities while the benzene extract contained the required product. The benzene extract was concentrated and dried so as to remove traces of benzene. The gummy material was taken up in dichloromethane and stirred vigorously to obtain a clear solution. The solution was allowed to stand at room temperature for a period of 48 hrs to yield 40 g of > 99% pure polymorphic Form-I of Troglitazone. Examp">«->-"**
15.5 g of 5- [4 (6-hydroxy-2, 5, 7, 8-tetramethyl chro an-2-yl-methoxy) benzyl] -2-iminothiazolidine-4- one, prepared by the process as described in Example- 1, was added to a mixture of 225 ml of acetic acid, 75 ml of cone, hydrochloric acid and 40 ml of water and the mixture was refluxed for 12 hrs. The reaction mixture was cooled to room temperature and 66.2 g of sodium bicarbonate was added and once the evolution of carbondioxide had ceased, the solvent was distilled off applying high vacuum. A 10:1 by volume mixture of benzene and ethyl acetate was added to the residue and the crude product was washed with a mixture of equal volumes of a saturated aq. sodium bicarbonate solution & water. The organic layer was dried over anhydrous sodium sulphate and the solvent was distilled off. The resulting crude product was quickly eluted from a silica gel column with 50% ethylacetate-hexane to finish 12.5 g of the required 5-{4- (6-hydro-2, 5, 7, 8- tetramethylchroman-2yl-methoxy) benzyl) thiazolidine-
2,4-dione (Troglitazone) with a HPLC purity of -67-70%.
5 g of crude Troglitazone so obtained was taken in - 1ml of acetone and -100 ml benzene was added and heated on a steam bath till the solid dissolved completely. The clear solution was filtered and allowed to cool to room temperature at a rate of 0.1 to 1°C./minute over a period of 48 h to yield 2.5 g of > 99% pure polymorphic Form-1 of Troglitazone. Example-4: 5 g of crude Troglitazone obtained by the process as described in Example-1 was taken in -100 ml benzene and heated on steam bath till the solid completely dissolved and the clear solution waε allowed to cool to room temperature at a rate of 0.1 to 1°C./minute during a period ~ 36 h to give 2.5 g of > 99% pure polymorphic Form-1 of Troglitazone. Examples 5-8 illustrate the process for the preparation of the polymorphic Form-2 of Troglitazone Example-5:
55 g of the crude Troglitazone obtained by the process as described in Example-1 was adsorbed on 60-120 mesh silica gel and extracted first with hexane using a soxhlet and then with benzene. Hexane extract mostly contained the less polar impurities while the benzene extract contained the required product. The benzene extract was concentrated and dried so as to remove traces of benzene. The gummy material was taken up in dichloromethane and εtirred vigorously to obtain a clear solution. The solution waε rapidly cooled to -10°C, at a rate of 10°C./minute, over a period of 15 min. while scratching to field 40 g of > 99% pure polymorphic Form-2 of Troglitazone. g-g-aτnple-6:
15.5 g of 5 [4- (6-hydroxy-2,5,7, 8-tetramethyl chroman-2-yl-methoxy) benzyl] -2-iminothiazolidine-4- one, prepared by the process as described in Example-1, was added to a mixture of 225 ml of acetic acid, 75 ml of cone, hydrochloric acid and 40 ml of water and the mixture was refluxed for 12 hrs. The reaction mixture was cooled to room temperature and 66.2 g of sodium bicarbonate was added and once the evolution of carbondioxide had ceased, the solvent was distilled off applying high vacuum. A 10:1 by volume mixture of benzene and ethyl acetate was added to the residue and the crude product was washed with a mixture of equal volumes of a saturated aq. sodium bicarbonate solution & water. The organic layer was dried over anhydrous sodium sulphate and the solvent was distilled off. The resulting crude product was quickly eluted from a silica gel column with 50% ethylacetate-hexane to furnish 12.5 g of the required 5-{4- (6-hydroxy-2, 5, 7, 8-tetramethylchroma-2yl-methoxy) benzyl) thiazolidine- 2,4-dione (Troglitazone) with a HPLC purity of -67-70%.
5 g of crude Troglitazone so obtained was taken in -1ml of acetone and -100 ml benzene was added and heated on a steam bath till the solid dissolved completely. The solution was rapidly cooled to -10°C, at a rate of 10°C./minute, over a period of 15 min. while scratching to yield 2.5 g of > 99% pure polymorphic Form-2 of Troglitazone. Example-7:
5 g of crude Troglitazone obtained by the process as described in Example-1 was taken in -100 ml benzene and heated on steam bath till the solid completely dissolved. The solution was rapidly cooled to -10°C, at a rate of 10°C./minute, over a period of 15 min. while scratching to yield 40 g of > 99% pure polymorphic Form-2 of Troglitazone. Example-8:
5 g of crude Troglitazone obtained by the process as described in Example-1 and 5 ml acetone were taken in 100 ml round bottom flask and stirred on a magnetic stirrer till all the solid dissolved in acetone. Acetone was completely removed under vacuum at 50°C, and then -25 ml dichloromethane was added to the gummy residue and stirred at 5°C. for .-1 hr. -50 ml. of Pet ether was added and scratched the walls of the container. Stirring at 5°C. was continued for another 1 hr. The solid was filtered and dried to yield 2.7 g > 99% pure polymorphic Form-2 of Troglitazone. Example 9 illustrates the process for the preparation of the polymorphic Form-3 of Troglitazone ie--.w le-9:
10 g of the polymorphic Form-2 of Troglitazone obtained by the process as described in Example-8, was dissolved in 25 ml acetone and the solvent was completely removed. -50 ml benzene was added to the gummy mass and heated on a steam bath for 15-30 min. The clear solution waε cooled to 5°C. at a rate of 1°C./minute during a period of 24 h to yield 5 g of > 99% pure polymorphic Form-3 of Troglitazone. Examples 10-14 illustrate the process for the preparation of the polymorphic Form-4 of Troglitazone
R-gatir I.e-lO;
5 g the polymorphic Form-1 of Troglitazone obtained by the process described in Example-2, was heated to melt and the resulting transparent flake was crushed to give a yellowish white fine powder of the polymorphic Form-4 of Troglitazone in near quantitative yield. This material exhibited typical liquid crystalline/amorphous nature. EXAMPLE-11: 5 g of the polymorphic Form-2 of Troglitazone obtained by the process described in Example-5, was heated to melt and the resulting transparent flake was crushed to yield a yellowish white powder of the polymorphic Form-4 of Troglitazone in near quantitative yield which was found to be similar in all respects to the product obtained in Example-10. Example-12:
5 g of the polymorphic Form-3 of Troglitazone obtained by the process described in Example-9, was heated to melt and the resulting transparent flake was crushed to yield a yellowish white powder of the polymorphic Form-4 of Troglitazone in near quantitative yield which was found to be similar in all respects to the product obtained in Example-10 and 11. Bτra- l^-13:
5 g of the polymorphic Form-5 of Troglitazone was heated to melt and the resulting transparent flake was crushed to yield a yellowish white powder of the polymorphic Form-4 of Troglitazone in near quantitative yield which was found to be similar in all respects to the product obtained in Examples 10-12. EXAMPLE-14:
5 g of the polymorphic Form-6 of Troglitazone was heated to melt and the resulting transparent flake was crushed to yield a yellowish white powder of the polymorphic Form-4 of Troglitazone in near quantative yield which was found to be similar in all respects to the product obtained in Examples 10-13.
Examples 15-19 illustrate the process for the preparation of the polymorphic Form-5 of Troglitazone EXAMPLE-15:
5 g of the polymorphic Form-1 of Troglitazone obtained by the process described in Example-1, was heated to melt and the resulting transparent flake was crushed to give a yellowish white fine powder of the polymorphic Form-4 of Troglitazone in near quantitative yield. The polymorphic Form-4 of Troglitazone thus obtained was heated isothermally at a temperature in the range of 60 to 170°C. preferably 130°C. for a period in the range of 5 min. to 4 h, cooled to room temperature at a rate of 0.1 to 1°C./minute and crushed the resulting material to give the polymorphic Form-5 of Troglitazone in near quantitative yield. EXAMPLE 16:
5 g of the polymorphic Form-2 of Troglitazone, obtained by the process described in Example-5, was heated to melt and the resulting transparent flake was crushed to give a yellowish white fine powder of the polymorphic Form-4 of Troglitazone in near quantitative yield. The polymorphic Form-4 of Troglitazone thus obtained was heated isothermally at a temperature in the range of 60 to 170°C. preferably 130°C. for a period in the range of 5 min. to 4 h, cooled to room temperature at a rate of 0.1 to 1°C./minute and crushed the resulting material to give the polymorphic Form-5 of Troglitazone in near quantitative yield. EXAMPLE-17:
5 g of the polymorphic Form-3 of Troglitazone obtained by the process described in Example- , was heated to melt and the resulting transparent flake was crushed to give a yellowish white fine powder of the polymorphic Form-4 of Troglitazone in near quantitative yield. The polymorphic Form-4 of Troglitazone thus obtained was heated isothermally at a temperature in the range of 60 to 170°C. preferably 130°C. for a period in the range of 5 min. to 4 h, cooled to room temperature at a rate of 0.1 to 1°C./minute and crushed the resulting material to give the polymorphic Form-5 of Troglitazone in near quantitative yield. Example-18:
5 g of the polymorphic Form-4 of Troglitazone obtained by the process described in Example-11, was heated isothermally at a temperature in the range of 60 to 170°C. preferably 130°C. for a period in the range of 5 min. to 4 h, cooled to room temperature at a rate of 0.1 to 1°C./minute and crushed the resulting material to give the polymorphic Form-5 of Troglitazone in near quantitative yield. Example-19:
5 g of the polymorphic Form-6 of Troglitazone, was heated to melt and the resulting transparent flake was crushed to give a yellowish white fine powder of the polymorphic Form-4 of Troglitazone in near quantitative yield. The polymorphic Form-4 of Troglitazone thus obtained was heated isothermally at a temperature in the range of 60 to 170°C. preferably 130°C. for a period in the range of 5 min. to 4 h, cooled to room temperature at a rate of 0.1 to 1°C./minute and crushed the resulting material to give the polymorphic Form-5 of Troglitazone in near quantitative yield.
Examples 20-21 illustrate the process for the preparation of the polymorphic Form- of Troglitazone
Example-20:
5 g of crude Troglitazone obtained by the process as described in Example-1 was dissolved in 25 ml of acetone and to this was added 100 ml of benzene. The clear solution thus obtained waε rapidly cooled to 5°C. at the rate of 10°C./minute and allowed to stand at 5°C. for 12 h to yield 2.5 g of > 99.0% pure polymorphic Form-6 of Troglitazone.
Wτrample-21 : 15.5g of 5 [4- (6-hydroxy-2,5,7,8-tetramethyl chroman-2yl-methoxy) benzyl] -2-iminothiasolidine-4-one, prepared by the process as described in Example-1, was added to a mixture of 225 ml of acetic acid, 75 ml of cone, hydrochloric acid and 40 ml of water and the mixture was refluxed for 12 hrs. The reaction mixture was cooled to room temperature and 66.2 g of sodium bicarbonate was added and once the evolution of carbondioxide had ceased, the solvent was distilled off applying high vacuum. A 10:1 by volume mixture of benzene and ethyl acetate was added to the residue and the crude product was washed with a mixture σf equal volumes of a saturated aq. sodium bicarbonate solution & water. The organic layer was dried over anhydrous sodium sulphate and the solvent was distilled off. The resulting crude product was quickly eluted from a silica gel column with 50% ethylacetate-hexane to finish 12.5 g of the required 5-{4- (6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-yl-methoxy) benzyl) thiazolidine-2,4-dione (Troglitazone) with a HPLC purity of- 67-70%.
5 g of crude Troglitazone as obtained above was dissolved in 25 ml of acetone and to this was added 100 ml of benzene. The clear solution thus obtained was rapidly cooled to 5°C. at the rate of 10°C./minute and allowed to stand at 5°C. for 12 h to yield 2.5 g of > 99.0% pure polymorphic Form-6 of Troglitazone. ADVANTAGES OF THE INVENTION
The polymorphic forms of Troglitazone are more active/bio-available.
Ease in formulation reεulting in higher activity/bio-availability, in terms of lowering plasma blood sugar and plasma triglycerides.

Claims

C L A I M S 1. A polymorphic form 1 of
Troglitazone having the formula 1,
Figure imgf000032_0001
characterized by the data: DSC: Endotherm at 179.3°C. (onset at
169.3°C.) ;
X-ray powder diffraction (2Θ) : 5.56, 11.10,
11.66, 15.72, 16.62, 17.62, 18.24, 19.70, 21.20, 21.42,
23.40, 23.70; and Infrared absorption bands (cm-1) : 3442 (w) ,
3218 (w), 2921(w), 1748 (m) , 1686 (s) , 1610 (w) 1582 (w) ,
1513 (s), 1454(w), 1420 (w) , 1382 (w), 1302 ( ) 1244 (s) ,
1169 (m), 1118 (w), 1086 (w) , 1048 (m) , 931 (w) , 863 (w) ,
827 (w), 798 (w), 720 (w), 509 (w) wherein w = weak, m = medium, and s = strong
2. A polymorphic form 2 of Troglitazone having the formula I,
Figure imgf000032_0002
characterized by the data:
DSC: Endotherms at 110.1°C. (onset at 102.4°C.) and at a 175.1°C. (onset at 155.9°C);
X-ray powder diffraction (2Θ) : 5.42, 10.24, 10.72, 11.58, 11.72, 15.60, 17.56, 18.16, 19.48, 19.58, 19.68, 21.44, 22.20, 23.28, 23.66, 24.14, 24.38; and Infrared absorption bands (cm.-*!1>) : 3506 (w) , 3187 (w) , 3061 (w), 2931 (w), 1751 (m), 1688 (s), 1610 (w) , 1583 (w) , 1512 (s), 1454 (w), 1419 (w) , 1381 (w), 1334 (w) , 1301 (m), 1252 (s), 1165 (m), 1088 (w) , 1047 (w) , 932 (w) , 828 (w), 722 (w) , 511 (w) wherein w = weak, m = medium, and s = strong 3. A polymorphic form 3 of Troglitazone having the formula 1;
Figure imgf000033_0001
characterized by the data: DSC: Endotherm at 185.8°C. (onset at
175.4°C.) ;
X-ray powder diffraction (2Θ) : 5.44, 11.74,
13.24, 15.62, 16.02, 17.56, 18.12, 19.65, 21.41, 23.00,
23.31, 23.65, 24.43, 26.51; and Infrared absorption bands (cm-1) : 3439 (w) ,
3295 (w), 2972 (w), 2932 (w) , 1747 (m) , 1690 (s) , 1611 (w),
1582 (w), 1512(8), 1453 (m) , 1384 (w), 1302 (m) , 1245(B) ,
1221(ε), 1169(B) , 1143 (w), 1119 (w) , 1089 (w) , 1049 (w),
931 (w), 828 (w), 722 (w), 510 (w) wherein w s weak, m = medium, and s = strong
4. A polymorphic form 4 of Troglitazone having the formula I,
Figure imgf000033_0002
characterized by the data:
DSC: Endotherm at 56.6°C, exotherm at 110.4°C. (onset at 93.6°C.) and endotherm 177.1°C. (onset at 153.7°C);
X-ray powder diffraction (2Θ) : No diffraction peaks due to its amorphous nature; and
Infrared absorption bands (cm"1): 3473 (w) , 3204 (w), 3060 (w), 2924 (w), 1754 (m) , 1696(B), 1610 (w) , 1583 (w) , 1512(B), 1457 ( ) , 1420 (w), 1378 (w), 1333 (m) , 1301 (m), 1243(B) , 1162 (m) , 1115 (w) , 1085 (w) , 1041 (w) , 928 (w), 849 (w), 827 (w) , 715 (w) ,' 664 (w) , 512 (w) wherein w = weak, m = medium, and s = strong 5. A polymorphic form 5 of Troglitazone having the formula I,
Figure imgf000034_0001
characterized by the data:
DSC: Endotherm at 180.5°C, (onset at 157.9°C.) ;
X-ray powder diffraction (2Θ) : 5.60, 11.06, 11.62, 15.48, 15.78, 16.48, 18.12, 18.34, 21.06, 21.90, 23.34, 23.58; and
Infrared absorption bands (cm-1) : 3462 (w) ,
3211 (w) 3060 (w), 2921 (w), 1756 (m) , 1685 (s), 1610 (w) , 1583 (w) 1513(8), 1454 (m), 1419 (w) , 1381 (w), 1303 ( ) , 1244 (s) 1168 ( ), 1117 (w), 1085 (w) , 1047 (m) , 929 (w) , 861 (w), 825 (w), 718 (w) , 665 (w) , 564 (w) , 509 (w) wherein w = weak, m = medium, and s = strong 6. A polymorphic form 6 of Troglitazone having the formula I,
Figure imgf000035_0001
characterized by the data:
DSC: Endotherm at 105.4°C. (onset at 94.8°C.) ;
X-ray powder diffraction (2θ) : 5.36, 8.54, 10.24, 10.70, 11.24, 12.48, 12.68, 15.58, 18.84, 19.48, 19.74, 20.58, 21.38, 21.56, 22.18; and
Infrared absorption bands (cm-1) : 3634 (w) ,
3514 (w) 3176 (w), 3060 (w), 2930 (w), 1753 (m) , 1686 (s), 1610 (w) 1512 (s), 1459 (w), 1418 (w) , 1380 (w) , 1335 (m), 1300 (m) 1253 (s), 1164(B) , 1106 (w) , 1087 (w) , 1058 (w). 1048 (w) 937 (w), 828 (m), 723 (w) , 673 (w) , 606 (w) , 568 (w), 515 (w) wherein w = weak, m = medium, and s = strong 7. A pharmaceutical composition comprising a polymorphic form 1 of Troglitazone having the formula I,
Figure imgf000035_0002
characterized by the data:
DSC: Endotherm at 179.3°C. (onset at 169.3°C.) ;
X-ray powder diffraction (2Θ) : 5.56, 11.10, 11.66, 15.72, 16.62, 17.62, 18.24, 19.70, 21.20, 21.42, 23.40, 23.70; and Infrared absorption bands (cm-1) : 3442 (w) , 3218 (w), 2921 (w), 1748 (m) , 1686(B) , 1610 (w) , 1582 (w) , 1513 (s), 1454 (w), 1420 (w) , 1382 (w) , 1302 (m) , 1244 (s), 1169 (m), 1118 (w), 1086 (w), 1048 (m) , 931(w), 863 (w) , 827 (w), 798 (w), 720 (w) , 509 (w) wherein w = weak, m = medium, and s = strong and a pharmaceutically acceptable carrier diluent or solvent, 8. A pharmaceutical composition comprising a polymorphic form 2 of Troglitazone having the formula I,
Figure imgf000036_0001
characterized by the data:
DSC: Endotherms at 110.1°C. (onset at 102.4°C.) and at 175.1°C. (onset at 155.9°C);
X-ray powder diffraction (2Θ) : 5.42, 10.24, 10.72, 11.58, 11.72, 15.60, 17.56, 18.16, 19.48, 19.58, 19.68, 21.44, 22.20, 23.28, 23.66, 24.14, 24.38; and Infrared absorption bands (cm ) : 3506 (w) , 3187 (w), 3061(w), 2931 (w), 1751 (m), 1688 (s) , 1610 (w) , 1583 (w), 1512 (s), 1454 (w) , 1419 (w) , 1381 (w), 1334 (w) , 1301 ( ), 1252 (s), 1165 (m), 1088 (w) , 1047 (w) , 932 (w) , 828(w), 722 (w), 511(w) wherein w = weak, m = medium, and s = strong and a pharmaceutically acceptable carrier, diluent or solvent. 9. A pharmaceutical composition comprising a polymorphic form 3 of Troglitazone having the formula I,
Figure imgf000037_0001
characterized by the data:
DSC: Endotherm at 185.8°C. (onset at 175.4°C.) ;
X-ray powder diffraction (2Θ) : 5.44, 11.74, 13.24, 15.62, 16.02, 17.56, 18.12, 19.65, 21.41, 23.00, 23.31, 23.65, 24.43, 26.51; and
Infrared absorption bands (cm-1) : 3439 (w) , 3295 (w), 2972 (w), 2932 (w) , 1747 (m) , 1690 (s) 1611 (w) , 1582 (w), 1512 (s), 1453 (m) , 1384 (w), 1302 (m) 1245(B) , 1221 (s), 1169(8), 1143 (w) , 1119 (w) , 1089 (w) 104 (w) , 931 (w), 828 (w), 722 (w), 510 (w) wherein w = weak, m = medium, and s = strong and a pharmaceutically acceptable carrier, diluent or solvent.
10. A pharmaceutical composition comprising a polymorphic form 4 of Troglitazone having the formula I,
Figure imgf000037_0002
characterized by the data:
DSC: Endotherm at 56.6°C, exotherm at 110.4°C. (onset at 93.6°C.) and endotherm 177.1°C. (onset at 153.7°C);
X-ray powder diffraction (2Θ) : No diffraction peaks due to its amorphous nature; and Infrared absorption bands (cm-1): 3473 (w) , 3204 (w), 3060 (w), 2924 (w), 1754 (m) , 1696 (s), 1610 (w) , 1583 (w) 1512 (s), 1457 (m) , 1420 (w) , 1378 (w) , 1333 (m) , 1301 (m), 1243 (s), 1162 (m) , 1115 (w) , 1085 (w), 1041 (w) , 928 (w), 849 (w), 827 (w) , 715 (w) , 664 (w) , 512 (w) wherein w = weak, m = medium, and s = strong and a pharmaceutically acceptable carrier, diluent or solvent.
11. A pharmaceutical composition comprising a polymorphic form 5 of Troglitazone having the formula I,
Figure imgf000038_0001
characterized by the data:
DSC: Endotherm at 180.5°C. (onset at
157.9°C.) ; X-ray powder diffraction (2Θ) : 5.60, 11.06,
11.62, 15.48, 15.78, 16.48, 18.12, 18.34, 21.06, 21.90,
23.34, 23.58; and
Infrared absorption bands (cm ) : 3462 (w) ,
3211 (w), 3060 (w), 2921 (w) , 1756 (m) , 1685 (s) , 1610 (w) , 1583, 1513 (s), 1454 (m) , 1419 (w) , 1381 (w), 1303 (m) ,
1244(B) , 1168 (m), 1117 (w) , 1085 (w) , 1047 (m) , 929 (w),
861 (w), 825 (w), 718 (w), 665(w), 564 (w) , 509 (w) wherein w = weak, m = medium, and s = strong and a pharmaceutically acceptable carrier, diluent or solvent.
12. A pharmaceutical composition comprising a polymorphic form 6 of Troglitazone having the formula
I,
Figure imgf000039_0001
characterized by the data:
DSC: Endotherm at 105.4°C. (onset at 94.8°C.) ;
X-ray powder diffraction (2Θ) : 5.36, 8.54, 10.24, 10.70, 11.24, 12.48, 12.68, 15.58, 18.84, 19.48, 19.74, 20.58, 21.38, 21.56, 22.16; and
Infrared absorption hands (cm ) : 3634 (w) , 3514 (w), 3176 (w), 3060 (w), 2930 (w), 1753 (m) , 1686 (s), 1610 (w), 1512(e), 1459 (w), 1418 (w) , 1380 (w), 1335 (m), 1300 (m), 1253 (s), 1164 (s), 1106 (w) , 1087 (w) , 1058 (w) , 1048 (w), 937 (w), 828 (m) , 723 (w) , 673 (w) , 606 (w) , 568 (w), 515 (w) wherein w = weak, m = medium, and s = strong and a pharmaceutically acceptable carrier, diluent or solvent.
13. A medicine for testing diabetic ailments, the medicine comprising a polymorphic form 1 of Troglitazone having the formula I,
Figure imgf000039_0002
characterized by the data: DSC: Endotherm at 179.3°C. (onset at
169.3°C.) ;
X-ray powder diffraction (2Θ) : 5.56, 11.10, 11.66, 15.72, 16.62, 17.62, 18.24, 19.70, 21.20, 21.42, 23.40, 23.70; and
Infrared absorption bands (cm-1) : 3442 (w) , 3218 (w), 2921 (w), 1748 (m), 1686 (s) , 1610 (w) , 1582 (w) , 1513 (s), 1454(w), 1420 (w) , 1382 (w), 1302 (m), 1244(e), 1169 (m), 1118 (w), 1086 (w), 1048 (m) , 931(w), 863 (w) , 827 (w), 798 (w), 720 (w), 509 (w) wherein w = weak, m = medium, and s = strong and a pharmaceutically acceptable carrier, diluent or solvent. 14. A medicine for treating diabetic ailments, the medicine comprising a polymorphic form 2 of Troglitazone having the formula I,
Figure imgf000040_0001
characterized by the data:
DSC: Endotherms at 110.1°C. (onset at 102.4°C.) and at 175.1°C. (onset at 155.9°C);
X-ray powder diffraction (2Θ) : 5.42, 10.24, 10.72, 11.58, 11.72, 15.60, 17.56, 18.16, 19.48, 19.58, 19.68, 21.44, 22.20, 23.28, 23.66, 24.14, 24.38; and
Infrared absorption bands (cm-1) : 3106 (w) , 3187 (w), 3061(w), 2931 (w), 1751 (m) , 1688(e), 1610 (w) , 1583 (w), 1512(8), 1454 (w) , 1419 (w) , 1381 (w), 1334 (w) , 1301 (m), 1252 (s) , 1165 (m) , 1088 (w), 1047 (w) , 932 (w) , 828 (w), 722 (w), 511 (w) wherein w = weak, m = medium, and s = strong and a pharmaceutically acceptable carrier, diluent or solvent.
15. A medicine for treating diabetic ailments, the medicine comprising a polymorphic form 3 of Troglitazone having the formula I, 39 -
Figure imgf000041_0001
characterized by the data:
DSC: Endotherm at 185.8°C. (onset at 175.4°C.) ;
X-ray powder, diffraction (2Θ) : 5.44, 11.74, 13.24, 15.62, 16.02, 17.56, 18.12, 19.65, 21.41, 23.00, 23.31, 23.65, 24.43, 26.51; and
Infrared absorption bands (cm-1) : 3439 (w) , 3295 (w), 2972 (w), 2932 (w) , 1747 (m) , 1690 (s), 1611(w), 1582 (w), 1512(B) , 1453 (m) , 1384 (w), 1302 (m) , 1245 (s) , 1221(B) , 1169(B) , 1143 (w) , 1119 (w) , 1089 (w) , 1049 (w) , 931 (w), 828 (w), 722 (w), 510 (w) wherein w = weak, m = medium, and s = strong and a pharmaceutically acceptable carrier, diluent or solvent.
16. A medicine for treating diabetic ailments, the medicine comprising a polymorphic form 4 of Troglitazone having the formula I,
Figure imgf000041_0002
characterized by the data:
DSC: Endotherm at 56.6°C, exotherm at 110.4°C. (onset at 93.6°C.) and endotherm 177.1°C. (onset at 153.7°C.) ;
X-ray powder diffraction (2Θ) : No diffraction peaks due to its amorphous nature; and Infrared absorption bands (cm-1) : 3473 (w) , 3204 (w), 3060 (w), 2924 (w), 1754 (m) , 1696(B) , 1610 (W) , 1583 (w), 1512 (s), 1457 ( ) , 1420 (w), 1378 (w) , 1333 (m) , 1301 (m), 1243 (s), 1162 (m) , 1115 (w) , 1085 (w) , 1041 (w) , 928 (w), 849 (w), 827 (w) , 715 (w) , 664 (w) , 512 (w) wherein w = weak, m = medium, and s = strong and a pharmaceutically acceptable carrier, diluent or solvent.
17. A medicine for treating diabetic ailments, the medicine comprising a polymorphic form 5 of Troglitazone having the formula I,
Figure imgf000042_0001
characterized by the data:
DSC: Endotherm at 180.5°C.) (onset at
157.9°C.) ; X-ray powder diffraction (2Θ) : 5.60, 11.06,
11.62, 15.48, 15.78, 16.48, 18.12, 18.34, 21.06, 21.90,
23.34, 23.58; and
Infrared absorption bands (cm ) : 3462 (w) ,
3211 (w), 3060 (w), 2921 (w), 1756 (m) , 1685 (s), 1610 (w) , 1583 (w), 1513(B), 1454 (m) , 1419 (w) , 1381 (w), 1303 (m),
1244(B) , 1168 (m), 1117 (w) , 1085 (w) , 1047 (m) , 929 (w) ,
861 (w), 825 (w), 718 (w), 665 (w) , 564 (w) , 509 (w) wherein w = weak, m = medium, and s = strong and a pharmaceutically acceptable carrier, diluent or solvent.
18. A medicine for treating diabetic ailments, the medicine comprising a polymorphic form 6 of
Troglitazone having the formula I,
Figure imgf000043_0001
characterized by the data:
DSC: Endotherm at 105.4°C. (onset at 94.8' C.) ;
X-ray powder diffraction (2Θ) : 5.36, 8.54, 10.24, 10.70, 11.24, 12.48, 12.68, 15.58, 18.84, 19.48, 19.74, 20.58, 21.38, 21.56, 22.18; and
Infrared absorption bands (cm ) : 3634 (w), 3514 (w), 3176 (w), 3060 (w), 2930 (w), 1753 (m) , 1686(B) , 1610 (w), 1512 (s), 1459 (W) , 1418 (w) , 1380 (w) , 1335 (m), 1300 (m), 1253 (s), 1164 (ε) , 1106 (w) , 1087 (w) , 1058 (w) , 1048 (w), 937 (w), 828 (m), 723 (w) , 673 (w) , 606 (w) , 568 (w), 515 (w) wherein w = weak, = medium, and ε = strong and a pharmaceutically acceptable carrier, diluent or solven .
19. Use of a polymorphic form 1 of Troglitazone having the form I,
Figure imgf000043_0002
characterized by the data:
DSC: Endotherm at 179.3°C. (onset at 169.3°C);
X-ray powder diffraction (2Θ) : 5.56, 11.10, 11.66, 15.72, 16.62, 17.62, 18.24, 19.70, 21.20, 21.42, 23.40, 23.70; and Infrared absorption bands (cm-1) : 3442 (w) ,
3218 (w), 2921(w), 1748 (m), 1686 (s), 1610 (w) , 1582 (w) ,
1513 (s), 1454 (w), 1420 (w) , 1382 (w) , 1302 ( ), 1244 (s) ,
1169 (m), 1118(w), 1086 (w) , 1048(m) , 931(w), 863 (w) , 827 (w), 798 (w), 720 (w) , 509 (w) wherein w = weak, m = medium, and s = strong for the treatment of diabetic ailments.
20. Use of a polymorphic form 2 of Troglitazone having the formula I,
Figure imgf000044_0001
characterized by the data:
DSC: Endotherms at 110.1°C. (onset at 102.4°C.) and at 175.1°C. (onset at 155.9°C);
X-ray powder diffraction (2Θ) : 5.42, 10.24, 10.72, 11.58, 11.72, 15.60, 17.56, 18.16, 19.48, 19.58, 19.68, 21.44, 22.20, 23.28, 23.66, 24.14, 24.38; and
Infrared absorption bands (cm ) : 3506 (w) , 3187 (w), 3061 (w), 2931 (w), 1751 ( ) , 1688 (s), 1610 (w) , 1583 (w), 1512(B) , 1454 (w) , 1419 (w) , 1381 (w), 1334 (w), 1301 (m), 1252(B) , 1165 (m) , 1088 (w), 1047 (w) , 932 (w) , 828 (w), 722 (w), 511(w) wherein w = weak, m = medium, and s = strong for the treatment of diabetic ailments.
21. Use of a polymorphic form 3 of Troglitazone having the formula I, characterized by the data:
DSC: Endotherm at 185.8°C. (onset at 175.4°C.) ;
X-ray powder diffraction (2Θ) : 5.44, 11.74, 13.24, 15.62, 16.02, 17.56, 18.12, 19.65, 21.41, 23.00, 23.31, 23.65, 24.43, 26.51; and
Infrared absorption bands (cm-1) : 3439 (w) , 3295 (w), 2972 (w), 2932 (w), 1747 (m) , 1690 (s) 1611 (w) , 1582 (w), 1512(e), 1453 (m) , 1384(w), 1302 (m) 1245(s) , 1221(8), 1169 (s), 1143 (w), 1119 (w) , 1089 (w) 1049 (w) , 931 (w), 828 (w), 722 (w), 510 (w) wherein w = weak, m = medium, and s = strong for the treatment of diabetic ailments.
22. Use of a polymorphic form 4 of Troglitazone having the formula I,
Figure imgf000045_0001
characterized by the data:
DSC: Endotherm at 56.6°C, exotherm at
110.4°C. (onset at 93.6°C.) and endotherm 177.1°C.
(onset at 153.7°C); X-ray powder diffraction (2Θ) : No diffraction peaks due to its amorphous nature; and
Infrared absorption bands (cm-1) : 3473 (w) ,
3204 (w), 3060 (w), 2924 (w), 1754 (m) , 1696(B) , 1610 (w) ,
1583 (w), 1512(B) , 1457 ( ) , 1420 (w), 1378 (w) , 1333 (m) , 1301 (m), 1243(B) , 1162 (m) , 1115 (w) , 1085 (w) , 1041 (w),
928 (w), 849 (w), 827 (w) , 715 (w) , 664 (w) , 512 (w) wherein w = weak, m = medium, and s = strong for the treatment of diabetic ailments.
23. Use of a polymorphic form 5 of Troglitazone having the formula I,
Figure imgf000046_0001
characterized by the data:
DSC: Endotherm at 180.5 °C. (onset at 157.9 °C.) ;
X-ray powder diffraction (2Θ) : 5.60, 11.06, 11.62, 15.48, 15.78, 16.48, 18.12, 18.34, 21.06, 21.90, 23.34, 23.58; and
Infrared absorption bands (cm ll) 3462 (w) ,
3211 (w) 3060(w), 2921(w), 1756 (m) , 1685(B) 1610 (w) , 1583 (w) 1513 (s), 1454 ( ), 1419 (w) , 1381 (w) 1303 (m) , 11224444((Bs)) , 1168 (m), 1117 (w) , 1085 (w), 1047 (m) 929 (w) ,
861 (w), 825 (w), 718 (w), 665 (w) , 564 (w) , 509 (w) wherein w = weak, m = medium, and s = strong for the treatment of diabetic ailments.
24. Use of a polymorphic form 6 of Troglitazone having the formula I,
Figure imgf000046_0002
characterized by the data:
DSC: Endotherm at 105.4°C. (onset at 94.8°C.) ;
X-ray powder diffraction (2Θ) : 5.36, 8.54, 10.24, 10.70, 11.24, 12.48, 12.68, 15.58, 18.84, 19.48, 19.74, 20.58, 21.38, 21.56, 22.18; and
Infrared absorption bands (cm-1): 3634 (w), 3514 (w), 3176 (w), 3060 (w), 2930(w), 1753 (m) , 1686 (s) , 1610 (w), 1512 (B) , 1459 (w), 1418 (w) , 1380 (w), 1335 (m) , 1300 (m), 1253(e), 1164 (s) , 1106 (w) , 1087 (w) , 1058 (w) , 1048 (w), 937 (w) , 828 (m), 723 (w) , 673 (w) , 673 (w) , 606 (w), 568 (w), 515 (w) wherein w = weak, m = medium, and s = strong for the treatment of diabetic ailments.
25. Use of a polymorphic form 1 of Troglitazone having the formula I,
Figure imgf000047_0001
characterized by the data: DSC: Endotherm at 179°C. (onset at
169.3°C.) ;
X-ray powder diffraction (2Θ) : 5.56, 11.10,
11.66, 15.72, 16.62, 17.62, 18.24, 19.70, 21.20, 21.42,
23.40, 23.70; and Infrared absorption bands (cm-1) : 3442 (w) ,
3218 (w), 2921 (w), 1748 (m), 1686 (s), 1610 (w) , 1582 (w) ,
1513 (s) , 1454 (w), 1420 (w) , 1382 (w) , 1302 (m), 1244 (s),
1169 ( ), 1118 (w), 1086 (w), 1048 (m) , 931 (w), 863 (w) ,
827 (w), 798 (w), 720 (w), 509 (w) wherein w = weak, m = medium, and s - strong for the manufacture of a medicament for the treatment of diabetic ailments.
26. Use of a polymorphic form 2 of Troglitazone having the formula I,
Figure imgf000047_0002
characterized by the data:
DSC: Endotherms at 110.1°C. (onset at 102.4°C.) and at 175.1°C. (onset at 155.9°C);
X-ray powder diffraction (2Θ) : 5.42, 10.24, 10.72, 11.58, 11.72, 15.60, 17.56, 18.16, 19.48, 19.58, 19.68, 21.44, 22.20, 23.28, 23.66, 24.14, 24.38; and
Infrared absorption bands (cm-1) : 3506 (w) , 3187 (w), 3061 (w), 2931 (w) , 1751 (m) , 1688 (s), 1610 (w) , 1583 (w), 1512(B) , 1454 (w) , 1419 (w) , 1381 (w), 1334 (w), 1301( ), 1252(B) , 1165(m), 1088(w), 1047 (w) , 932 (w) , 828 (w), 722 (w) , 511 (w) wherein w = weak, m = medium, and s = strong for the manufacture of a medicament for the treatment of diabetic ailments.
27. Use of a polymorphic form 3 of Troglitazone having the formula I,
Figure imgf000048_0001
characterized by the data:
DSC: Endotherm at 185.8°C. (onset at 175.4°C.) ; X-ray powder diffraction (2Θ) : 5.44, 11.74,
13.24, 15.62, 16.02, 17.56, 18.12, 19.65, 21.41, 23.00, 23.31, 23.65, 24.43, 26.51; and
Infrared absorption bands (cm-1) : 3439 (w), 3295 (w), 2972 (w), 2932 (w) , 1747 (m) , 1690 (s) , 1611 (w), 1582 (w), 1512(B) , 1453 (m) , 1384 (w), 1302 ( ) , 1245(B) , 1221 (s), 1169(e), 1143 (w) , 1119 (w) , 1089 (w) , 1049 (w) , 931(w), 828 (w), 722 (w), 510 (w) wherein w = weak, m = medium, and s = strong for the manufacture of a medicament for the treatment of diabetic ailments. 28. Use of a polymorphic form 4 of Troglitazone having the formula I,
Figure imgf000049_0001
characterized by the data:
DSC: Endotherm at 56.6°C, exotherm at 110.4°C. (onset at 93.6°C.) and endotherm 177.1°C. (onset at 153.7°C);
X-ray powder diffraction (2Θ) : No diffraction peaks due to its amorphous nature; and
Infrared absorption bands (cm-1) : 3473 (w) , 3204 (w), 3060 (w), 2924 (w) , 1754 (m) , 1696(B) , 1610 (w) ,
1583 (w), 1512(8), 1457 (m) , 1420 (w), 1378 (w), 1333 (m) ,
1301 (m), 1243 (s), 1162 (m) , 1115 (w) , 1085 (w) , 1041(w),
928 (w), 849 (w), 827 (w) , 715(w) , 664 (w), 512 (w) wherein w = weak, =medium, and s = strong for the manufacture of a medicament for the treatment of diabetic ailments.
29. Use of a polymorphic form 5 of Troglitazone having the formula I,
Figure imgf000049_0002
characterized by the data: DSC: Endotherm at 180.5°C. (onset at
157.9°C.) ;
X-ray powder diffraction (2Θ) : 5.60, 11.06, 11.62, 15.48, 15.78, 16.48, 18.12, 18.34, 21.06, 21.90, 23.34, 23.58; and
Infrared absorption bands (cm-1) : 3462 (w) , 3211(w), 3060 (w), 2921 (w) , 1756 (m) , 1685(B) , 1610 (w) , 1583 (w), 1513(B) , 1454 (m) , 1419 (w) , 1381 (w), 1303 (m) , 1244(B) , 1168(m), 1117 (w) , 1085 (w) , 1047 (m) , 929 (w) , 861(w), 825 (w), 718 (w), 665(w), 564 (w) , 509 (w) wherein w = weak, m = medium, and s = strong for the manufacture of a medicament for the treatment of diabetic ailments.
30. Use of a polymorphic form 6 of Troglitazone having the formula I,
Figure imgf000050_0001
characterized by the data:
DSC: Endotherm at 105.4°C. (onset at 94.8°C.) ; X-ray powder diffraction (2Θ) : 5.36, 8.54,
10.24, 10.70, 11.24, 12.48, 12.68, 15.58, 18.84, 19.48, 19.74, 20.58, 21.38, 21.56, 22.18; and
Infrared absorption bands (cm'1) : 3634 (w) , 3514 (w), 3176 (w), 3060 (w), 2930 (w), 1753 (m) , 1686(e), 1610 (w), 1512 (s), 1459 (w) , 1418 (w) , 1380 (w), 1335 (m) , 1300 ( ), 1253 (s), 1164 (s) , 1106 (w) , 1087 (w) , 1058 (w) , 1048 (w), 937 (w), 828 (m), 723 (w) , 673 (w) , 606 (w) , 568 (w), 515 (w) wherein w =weak, m = medium, and s = strong for the manufacture of a medicament for the treatment of diabetic ailments.
31. A process for preparing the polymorphic form 1 of Troglitazone of claim 1, which comprises:
(i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60 - 70%.
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and heating the resulting solution with an organic non-polar solvent and
(iv) cooling the resulting solution slowly to room temperature at a rate of 0.1 to 1°C./minute over a period in the range of 24-72 h to produce the polymorphic form 1 of Troglitazone. 32. A process for preparing the polymorphic form
2 of Troglitazone of claim 2, which comprises:
(i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60 - 70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and heating the resulting solution with an organic non-polar solvent and
(iv) scratching the resulting solution, while cooling rapidly to a temperature between 0 to -20°C. at a rate of 2 to 10°C./minute over a period in the range of 10-30 min. to precipitate the polymorphic form 2 of Troglitazone. 33. A process for preparing the polymorphic form
3 of Troglitazone of claim 3, which comprises: (i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60 - 70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and heating the resulting solution with an organic non-polar solvent and
(iv) scratching the resulting solution, while cooling rapidly to a temperature between 0 to - 20%C. at a rate of 2 to 10%C./minute over a period in the range of 10-30 min. to precipitate the polymorphic form 2 of Troglitazone,
(v) dissolving the polymorphic form 2 of Troglitazone obtained in step (iv) in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and heating the resulting solution with an organic non-polar solvent and
(vi) heating the resulting solution and cooling the solution slowly to room temperature at a rate of 0.1 to 1°C./minute over a period in the range of 24-72 h to crystallize polymorphic form 3 of Troglitazone.
34. A process for preparing the polymorphic form 4 of Troglitazone of claim 4, which comprises:
(i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and heating the resulting solution with an organic non-polar solvent,
(iv) cooling the resulting solution slowly to room temperature at a rate of 0.1 to 1°C./minute over a period in the range of 24-72 h to produce the polymorphic form 1 of Troglitazone,
(v) filtering the polymorphic form 1 of Troglitazone and melting it by heating,
(vi) cooling the melt to ambient temperature slowly at a rate of 0.1 to 1°C./minute over a period in the range of 1-4 h to give a glossy transparent material, (vii) grinding the transparent material to a fine powder to yield the polymorphic form 4 of Troglitazone.
35. A process for preparing the polymorphic form 4 of Troglitazone of claim 4, which comprises: (i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and heating the resulting solution with an organic non-polar solvent,
(iv) scratching the resulting solution while cooling rapidly to a temperature between 0 to -20°C. at a rate of 2 to 10°C./minute over a period in the range of 10-30 min. to precipitate the polymorphic form 2 of Troglitazone,
(v) filtering the polymorphic form 2 of Troglitazone and melting it by heating,
(vi) cooling the melt of step (v) to ambient temperature slowly at a rate of 0.1 to 1°C./minute over a period in the range of 1-4 h to give a glossy transparent material,
(vii) grinding the transparent material to a fine powder to yield the polymorphic form 4 of Troglitazone.
36. A process for preparing the polymorphic form 4 of Troglitazone of claim 4, which comprises: (i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and heating the resulting solution with an organic non-polar solvent,
(iv) scratching the resulting solution, while cooling rapidly to a temperature in the range of 0 to -20°C. at a rate of 2 to 10°C./minute over a period in the range of 10-30 min. to precipitate the polymorphic form 2 of Troglitazone,
(v) dissolving the polymorphic form 2 of Troglitazone obtained in step (iv) , in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and heating the resulting solution with an organic non-polar solvent,
(vi) heating the resulting solution and cooling the solution slowly to room temperature at a rate of 0.1 to 1°C./minute, over a period in the range of 24-72 h to crystallize polymorphic form 3 of Troglitazone,
(vii) filtering the polymorphic form 3 of Troglitazone and melting it by heating,
(viii) cooling the melt of step (vii) to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h to give a glossy transparent material,
(ix) grinding the transparent material to a fine powder to yield the polymorphic form 4 of Troglitazone.
37. A process for preparing the polymorphic form 5 Troglitazone of claim 5, which comprises: (i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and heating the resulting solution with an organic non-polar solvent,
(iv) cooling the resulting solution slowly to room temperature at a rate of 0.1 to 1°C./minute, over a period in the range of 24-72 h to produce polymorphic form 1 of Troglitazone, (v) filtering the polymorphic form 1 of
Troglitazone and melting it by heating,
(vi) cooling the melt of step (v) to ambient temperature at a rate in the range of 0.1 to l°C/minute over a period of 1-4 h to give a glossy transparent material,
(vii) grinding the transparent material to a fine powder to yield polymorphic form 4 of Troglitazone,
(viii) subjecting the polymorphic form 4 of Troglitazone as obtained in step (vii) to isothermal heating in the range of 60 to 170°C. for a period in the range of 5 min. to 4 h, cooling to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h, followed by grinding to a fine powder to yield the polymorphic form 5 of Troglitazone.
38. A process for preparing polymorphic form 5 of Troglitazone of claim 5, which comprises:
(i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60 - 70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and heating the resulting solution with an organic non-polar solvent,
(iv) scratching while cooling the rapidly to a temperature in the range of 0 to -20°C. at a rate of 2 to 10°C./minute, over a period in the range σf 10-30 min. to precipitate the polymorphic form 2 of Troglitazone,
(v) filtering the polymorphic form 2 of Troglitazone and melting it by heating, (vi) cooling the melt of step (v) to ambient temperature at a rate in the range of 0.1 to 1°C./minute over a period of 1-4 h to give a glossy transparent material,
(vii) grinding the transparent material to a fine powder to yield the polymorphic form 4 of Troglitazone,
(viii) subjecting the polymorphic form 4 of Troglitazone obtained' in step (vii) to isothermal heating in the range of 60 to 170°C. for a period in the range of 5 min. to 4 h, cooling to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h, followed by grinding to a fine powder to yield the polymorphic form 5 of Troglitazone. 39. A process for preparing polymorphic form 5 of Troglitazone of claim 5, which comprises:
(i) synthesizing Troglitazone, in crude form employing known methods,
(ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and heating the resulting solution with an organic non-polar solvent,
(iv) scratching the solution of step (iii) while cooling the rapidly to a temperature in the range of 0 to -20°C. at a rate of 2 to 10°C./minute, over a period in the range of 10-30 min. to precipitate the polymorphic form 2 of Troglitazone,
(v) dissolving the polymorphic form 2 of Troglitazone obtained in step (iv) in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and heating the resulting solutions with an organic non-polar solvent,
(vi) heating the resulting solution and cooling the solution slowly to room temperature at a rate of 0.1 to 1°C./minute, over a period in the range of 24-72 h to crystallize polymorphic form 3 of Troglitazone,
(vii) filtering the polymorphic form 3 of Troglitazone and melting it by heating,
(viii) cooling the melt of step (vii) to ambient temperature at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h to give a glossy transparent material,
(ix) grinding the transparent material to a fine powder to yield polymorphic form 4 of Troglitazone, (x) subjecting the polymorphic form 5 of
Troglitazone obtained in step (ix) to isothermal heating in the range of 60 to 170°C. for a period in - 56 - the range of 5 min. to 4 h, cooling to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h, followed by grinding to a fine powder to yield the polymorphic form 5 of Troglitazone.
40. A process for preparing polymorphic form 6 of Troglitazone of claim 6, which comprises:
(i) synthesizing Troglitazone, in crude form employing known methods, (ii) subjecting the crude Troglitazone obtained in step (i) to column chromatography to obtain a partially purified Troglitazone having HPLC purity in the range of 60-70%,
(iii) dissolving the partially purified Troglitazone obtained in step (ii) in an organic polar solvent, an organic solvent of medium polarity or a mixture thereof and adding an organic non-polar solvent to the resulting solution and
(iv) cooling the resulting solution rapidly to about 5°C. at a rate of 10°C./minute and maintaining the temperature at about 5°C. for a period of 10-16 h to produce the polymorphic form 6 of Troglitazone,
41. A process for preparing polymorphic form 4 of Troglitazone of claim 4, which comprises: (i) melting a polymorphic form 5 of
Troglitazone by heating,
(ii) cooling the melt of step (i) to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h to give a glossy transparent material, and
(iii) grinding the transparent material to a fine powder to yield the polymorphic form 4 of Troglitazone.
42. A process for preparing polymorphic form 4 of Troglitazone of claim 4, which compriseε:
(i) melting a polymorphic form 6 of Troglitazone by heating, (ii) cooling the melt of step (i) to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h to give a glossy transparent material, and (iii) grinding the transparent material to a fine powder to yield the polymorphic form 4 of Troglitazone.
43. A process for preparing polymorphic form 5 to Troglitazone of claim 5, which comprises: (i) melting polymorphic form 6 of
Troglitazone by heating,
(ii) cooling the melt of step (i) to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h to give a glossy transparent material,
(iii) grinding the transparent material to a fine powder to yield polymorphic form 4 of Troglitazone,
(iv) subjecting the polymorphic form 4 of Troglitazone obtained in step (iii) to isothermal heating in the range of 60 to 170°C. for a period in the range of 5 min. to 4 h, cooling to ambient temperature slowly in the range of 5 min. to 4 h, cooling to ambient temperature slowly at a rate of 0.1 to 1°C./minute, over a period in the range of 1-4 h followed by grinding to a fine powder to yield polymorphic form 5 of Troglitazone.
44. A pharmaceutical composition according to any one of claims 1-6, comprising at least one of a polymorphic form of Troglitazone selected from the group consisting of polymorphic form 1 of Troglitazone, polymorphic form 2 of Troglitazone, polymorphic form 3 of Troglitazone, polymorphic form 4 of Troglitazone, polymorphic form 5 of Troglitazone and polymorphic form 6 of Troglitazone and one or more pharmaceutically acceptable carriers, excipients, or diluents.
45. A method of treating diabetic ailments comprising administering to a patient in need thereof at least one of a polymorphic form of Troglitazone selected from the group consisting of polymorphic form 1 of Troglitazone, polymorphic form 2 of Troglitazone, polymorphic form 3 of Troglitazone, polymorphic form 4 of Troglitazone, polymorphic form 5 of Troglitazone, and polymorphic form 6 of Troglitazone.
PCT/US1997/002577 1996-02-20 1997-02-18 Novel polymorphic forms of troglitazone having enhanced anti-diabetic activity and a process for their preparation WO1997027191A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP09527134A JP2000511875A (en) 1996-06-19 1997-02-18 Novel polymorphic forms of troglitazone with enhanced antidiabetic activity and methods for their production
AU23164/97A AU700976B2 (en) 1996-02-20 1997-02-18 Novel polymorphic forms of troglitazone having enhanced anti-diabetic activity and a process for their preparation
EP97915839A EP0844997A1 (en) 1996-06-19 1997-02-18 Novel polymorphic forms of troglitazone having enhanced anti-diabetic activity and a process for their preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/665,867 1996-06-19
US08/665,867 US5700820A (en) 1996-02-20 1996-06-19 Polymorphic forms of troglitazone having enhanced anti-diabetic activity and a process for their preparation

Publications (1)

Publication Number Publication Date
WO1997027191A1 true WO1997027191A1 (en) 1997-07-31

Family

ID=24671883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/002577 WO1997027191A1 (en) 1996-02-20 1997-02-18 Novel polymorphic forms of troglitazone having enhanced anti-diabetic activity and a process for their preparation

Country Status (4)

Country Link
EP (1) EP0844997A1 (en)
JP (1) JP2000511875A (en)
CN (1) CN1196730A (en)
WO (1) WO1997027191A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025781A1 (en) * 1998-10-29 2000-05-11 Board Of Regents, The University Of Texas System Use of thiazolidinediones derivatives for preventing uterine contractions in premature labour or lactation
WO2000063191A1 (en) * 1999-04-16 2000-10-26 Dr. Reddy's Research Foundation Novel polymorphic forms of an antidiabetic agent: process for their preparation and a pharmaceutical composition containing them
WO2000063193A1 (en) * 1999-04-16 2000-10-26 Dr. Reddy's Research Foundation Novel polymorphic forms of an antidiabetic agent: process for their preparation and a pharmaceutical composition containing them
WO2000063192A1 (en) * 1999-04-16 2000-10-26 Dr. Reddy's Research Foundation Novel polymorphic forms of an antidiabetic agent: process for their preparation and pharmaceutical compositions containing them
WO2002026737A1 (en) * 2000-09-26 2002-04-04 Dr. Reddy's Research Foundation Novel polymorphic forms of 5-[4-[2-[n-methyl-n-(2-pyridyl)amino]ethoxy]benzyl] thiazolidine-2,4-dione maleate and process for their preparation
US6528507B1 (en) 1999-04-16 2003-03-04 Dr. Reddy's Laboratories Limited Polymorphic forms of an antidiabetic agent: process for their preparation and a pharmaceutical composition containing them
US6765013B2 (en) 1999-08-31 2004-07-20 Incyte San Diego Thiazolidinedione derivatives for the treatment of diabetes and other diseases
WO2005021541A2 (en) * 2003-08-29 2005-03-10 Cipla Limited Process for the production of polymorphs of rosiglitazone maleate
US7071218B2 (en) 2001-11-15 2006-07-04 Incyte San Diego Incorporated N-substituted heterocycles for the treatment of hypercholesteremia, dyslipidemia and other metabolic disorders; cancer, and other diseases
US7102000B2 (en) 2002-03-08 2006-09-05 Incyte San Diego Inc. Heterocyclic amide derivatives for the treatment of diabetes and other diseases
US7153875B2 (en) 2001-03-07 2006-12-26 Incyte San Diego Heterocyclic derivatives for the treatment of cancer and other proliferative diseases
US7196108B2 (en) 2002-03-08 2007-03-27 Incyte San Diego Inc. Bicyclic heterocycles for the treatment of diabetes and other diseases
US7241895B2 (en) 2000-09-26 2007-07-10 Dr. Reddy's Laboratories Limited Polymorphic forms of 5-[4-[2-[n-methyl-n-(2-pyridyl)amino[ethoxy]benzyl] thiazolidine-2,4-dione maleate and process for their preparation
US7265139B2 (en) 2001-03-08 2007-09-04 Incyte San Diego Inc. RXR activating molecules

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304213B6 (en) * 2001-03-23 2014-01-08 Richter Gedeon Vegyészeti Gyár Rt. Process for preparing monohydrate and crystalline modifications of fluconazole

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0139421A1 (en) * 1983-08-30 1985-05-02 Sankyo Company Limited Thiazolidine derivatives, their preparation and compositions containing them
JPS62234085A (en) * 1985-12-18 1987-10-14 Sankyo Co Ltd Remedy for diabetic complication comprising thiazolidine derivative as active ingredient
EP0297019A1 (en) * 1987-06-22 1988-12-28 Centro Marga Para La Investigacion S.A. Famotidine polymorphic form and preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0139421A1 (en) * 1983-08-30 1985-05-02 Sankyo Company Limited Thiazolidine derivatives, their preparation and compositions containing them
JPS62234085A (en) * 1985-12-18 1987-10-14 Sankyo Co Ltd Remedy for diabetic complication comprising thiazolidine derivative as active ingredient
EP0297019A1 (en) * 1987-06-22 1988-12-28 Centro Marga Para La Investigacion S.A. Famotidine polymorphic form and preparation thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 110, no. 8, 20 February 1989, Columbus, Ohio, US; abstract no. 63723y, page 394; XP002032814 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025781A1 (en) * 1998-10-29 2000-05-11 Board Of Regents, The University Of Texas System Use of thiazolidinediones derivatives for preventing uterine contractions in premature labour or lactation
US7528133B1 (en) 1998-10-29 2009-05-05 The Board Of Regents Of The University Of Texas System Use of thiazolidinediones derivatives for preventing uterine contractions in premature labour or lactation
WO2000063191A1 (en) * 1999-04-16 2000-10-26 Dr. Reddy's Research Foundation Novel polymorphic forms of an antidiabetic agent: process for their preparation and a pharmaceutical composition containing them
WO2000063193A1 (en) * 1999-04-16 2000-10-26 Dr. Reddy's Research Foundation Novel polymorphic forms of an antidiabetic agent: process for their preparation and a pharmaceutical composition containing them
WO2000063192A1 (en) * 1999-04-16 2000-10-26 Dr. Reddy's Research Foundation Novel polymorphic forms of an antidiabetic agent: process for their preparation and pharmaceutical compositions containing them
US6528507B1 (en) 1999-04-16 2003-03-04 Dr. Reddy's Laboratories Limited Polymorphic forms of an antidiabetic agent: process for their preparation and a pharmaceutical composition containing them
US7226940B2 (en) 1999-08-31 2007-06-05 Incyte San Diego, Inc. Substituted heterocycles for the treatment of diabetes and other diseases
US6765013B2 (en) 1999-08-31 2004-07-20 Incyte San Diego Thiazolidinedione derivatives for the treatment of diabetes and other diseases
US6974826B2 (en) 1999-08-31 2005-12-13 Incyte San Diego Inc. Imidazolidinedione derivatives for the treatment of diabetes and other diseases
WO2002026737A1 (en) * 2000-09-26 2002-04-04 Dr. Reddy's Research Foundation Novel polymorphic forms of 5-[4-[2-[n-methyl-n-(2-pyridyl)amino]ethoxy]benzyl] thiazolidine-2,4-dione maleate and process for their preparation
US7241895B2 (en) 2000-09-26 2007-07-10 Dr. Reddy's Laboratories Limited Polymorphic forms of 5-[4-[2-[n-methyl-n-(2-pyridyl)amino[ethoxy]benzyl] thiazolidine-2,4-dione maleate and process for their preparation
US7153875B2 (en) 2001-03-07 2006-12-26 Incyte San Diego Heterocyclic derivatives for the treatment of cancer and other proliferative diseases
US7265139B2 (en) 2001-03-08 2007-09-04 Incyte San Diego Inc. RXR activating molecules
US7071218B2 (en) 2001-11-15 2006-07-04 Incyte San Diego Incorporated N-substituted heterocycles for the treatment of hypercholesteremia, dyslipidemia and other metabolic disorders; cancer, and other diseases
US7102000B2 (en) 2002-03-08 2006-09-05 Incyte San Diego Inc. Heterocyclic amide derivatives for the treatment of diabetes and other diseases
US7196108B2 (en) 2002-03-08 2007-03-27 Incyte San Diego Inc. Bicyclic heterocycles for the treatment of diabetes and other diseases
WO2005021541A2 (en) * 2003-08-29 2005-03-10 Cipla Limited Process for the production of polymorphs of rosiglitazone maleate
GB2421504A (en) * 2003-08-29 2006-06-28 Cipla Ltd Process for the production of polymorphs of rosiglitazone maleate
GB2421504B (en) * 2003-08-29 2008-12-03 Cipla Ltd Process for the production of polymorphs of rosiglitazone maleate
WO2005021541A3 (en) * 2003-08-29 2005-05-06 Cipla Ltd Process for the production of polymorphs of rosiglitazone maleate

Also Published As

Publication number Publication date
JP2000511875A (en) 2000-09-12
EP0844997A1 (en) 1998-06-03
CN1196730A (en) 1998-10-21

Similar Documents

Publication Publication Date Title
US5700820A (en) Polymorphic forms of troglitazone having enhanced anti-diabetic activity and a process for their preparation
WO1997027191A1 (en) Novel polymorphic forms of troglitazone having enhanced anti-diabetic activity and a process for their preparation
EP3337485B1 (en) Crystalline forms of ibrutinib
AU2008237610A1 (en) Process for preparing a polymorph of rosiglitazone maleate
EP0304941B1 (en) Pharmaceutically useful polymorphic modification of buspirone
AU700976B2 (en) Novel polymorphic forms of troglitazone having enhanced anti-diabetic activity and a process for their preparation
JPH0788357B2 (en) Piperazine compound
KR970011294B1 (en) Process for buspirone hydrochloride polymorphic crysatlline form conversion
JP2007512240A (en) Method for producing thiazolidinedione
EP1305311B1 (en) Tartrate salt of thiazolidinedione derivative
AU2001262550B2 (en) 5-(4-(2-(n-methyl-n-(2-pyridyl)amino)ethoxy)benzyl)thiazolidine-2,4-dione hydriodide as pharmaceutical
KR20040062965A (en) Rosiglitazone edisylates and their use as antidiabetics
KR100917953B1 (en) Sodium Salts of 5-[4-[2-?-Methyl-?-2-PyridylAminoEthoxy]Benzyl]Thiazolidine-2,4-Dione
WO2023131017A1 (en) Crystal form of fused ring derivative, and preparation method therefor and use thereof
KR20030022356A (en) Tartrate Salts of Thiazolidinedione Derivative
AU2001292034B2 (en) A thiazolidinedione derivative and its use as antidiabetic
WO2006035293A1 (en) Polymorphic forms of quetiapine hemifumarate
JPH0344385A (en) 6- and 7-deoxyphosphochloline, its derivative and intermediate and their production
AU2005229694B2 (en) Tartrate salt of thiazolidinedione derivative
KR19990036917A (en) Dithiolylidene acetamide derivatives
WO2003050112A1 (en) Toluenesulfonate hydrates of a thiazolidinedione derivative
WO2003053963A1 (en) Novel pharmaceutical
WO2003050116A1 (en) A 5(-4-(2-(n-methyl-n-(2-pyridil)amino)ethoxy)benzyl)thiazolidine-2,4-dione (i) 10-camphorsulphonic acid salt and use against diabetes mellitus
US20040102485A1 (en) Tartrate salt of thiazolidinedione derivative
WO2003053964A1 (en) 5- (4- (2- (n-methyl-n- (2-pyridil) amino) ethoxy) benzyl) thiazolidine-2, 4-dione nephtalenesulfonate salt and use against diabetes mellitus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190733.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG

WWE Wipo information: entry into national phase

Ref document number: 1997915839

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2248810

Country of ref document: CA

Ref document number: 2248810

Country of ref document: CA

Kind code of ref document: A

Ref document number: 1997 527134

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997915839

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWR Wipo information: refused in national office

Ref document number: 1997915839

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997915839

Country of ref document: EP