WO1997024428A1 - Compositions detergentes contenant des enzymes psychrophiles/psychrotrophes - Google Patents

Compositions detergentes contenant des enzymes psychrophiles/psychrotrophes Download PDF

Info

Publication number
WO1997024428A1
WO1997024428A1 PCT/US1995/017101 US9517101W WO9724428A1 WO 1997024428 A1 WO1997024428 A1 WO 1997024428A1 US 9517101 W US9517101 W US 9517101W WO 9724428 A1 WO9724428 A1 WO 9724428A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
psychrophilic
psychrotrophic
enzymes
alkyl
Prior art date
Application number
PCT/US1995/017101
Other languages
English (en)
Inventor
Andre Cesar Baeck
Alfred Busch
Quamrul Hasan
Paul Elliott Correa
Philip Frederick Brode, Iii
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to AU46926/96A priority Critical patent/AU4692696A/en
Priority to PCT/US1995/017101 priority patent/WO1997024428A1/fr
Priority to BR9510677A priority patent/BR9510677A/pt
Priority to ZA9610820A priority patent/ZA9610820B/xx
Priority to ARP960105912A priority patent/AR005291A1/es
Priority to TR96/01063A priority patent/TR199601063A2/xx
Publication of WO1997024428A1 publication Critical patent/WO1997024428A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • A61Q11/02Preparations for deodorising, bleaching or disinfecting dentures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/66Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase

Definitions

  • the present invention relates to a variety of detergent compositions containing an enzyme produced by a psychrophilic or psychrotrophic organism and having an optimum activity between 5 and 40 °C, preferably between 5 and 30 °C.
  • Psychrophiles / psychrotrophs have been isolated in Arctic and Antarctic sites and were defined by Ingraham and Stokes (1959) as those which grew well at 0°C within 2 weeks.
  • Morita (1975) proposed that psychrophiles be defined as organisms having an minimum, optimum and maximum growth temperature of ⁇ 0°C, ⁇ 15 and ⁇ 20°C respectively. In comparison, those organisms which have cardinal temperatures of 0-5°C, >15°C and >20°C, should be regarded as being psychrotrophic.
  • a number of classification schemes have been proposed and various definition prevail in different areas of the food and milk industry.
  • Psychrophiles / psychrotrophs are considered to be a major cause of food spoilage and are carefully monitored in the meat, fish, fruit, vegetables and dairy products production and conservation(Spec. Publ. of Soc. Gen. Microbiol. 1986, R. Sharp et al . , US 3 830 947).
  • the use of psychrophilic enzymes is also reported in the milk industry in the lactose hydrolysis process.
  • Psychrophilic/psychrotrophic enzymes are also often used in environmental applications such as the detoxification of land contamined with pesticides (Spec. Publ. of Soc. Gen. Microbiol. 1986, R. Sharp et al.), the preparation of organic fertiliser (RU 2 017 705) , the composting of animal waste (J 06 199 585) and the biochemical purification of waste water (SU 0 895 930) .
  • the present invention relates to detergent compositions containing an enzyme produced by a psychrophilic / psychrotrophic (micro) organism or by any host (micro) organism in which the gene responsible in the psychrophilic / psychrotrophic (micro) organism for the production of the enzyme, has been cloned and expressed; and having an optimum activity between 5 and 40 °C, preferably between 5 and 30 ° C.
  • An essential component of the detergent compositions of the invention is an enzyme produced by a psychrophilic / psychrotrophic (micro) organism or by any host (micro) organism in which the gene responsible in the psychrophilic / psychrotrophic (micro) organism for the production of the enzyme, has been cloned and expressed; and having an optimum activity between 5 and 40 °C, preferably between 5 and 30 ° C.
  • compositions in accordance with the invention preferably at a level of from 0.0001 % to 2 %, more preferably from 0.0005% to 0.5%, most preferred from 0.001% to 0.05% active enzyme by weight of the composition.
  • Psychrophilic / psychrotrophic enzymes useful for the present invention belong to any category which contributes to washing - cleaning performances and/or fabric care benefits of the detergent composition.
  • a non-limiting list includes cellulases, hemicellulases, peroxidases, laccases, proteases, gluco-amylases, amylases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, chondroitinase, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ⁇ -glucanases, arabinosidases or mixtures thereof.
  • psychrophilic / psychrotrophic enzymes can be produced by psychrophilic/psychrotrophic (micro) organisms, the so called wild-type enzymes or by any host organism - e.g. mesophilic organisms - in which the gene responsible in the psychrophilic/psychrotrophic organism for the production of the enzyme, has been cloned and expressed.
  • psychrophilic/psychrotrophic organisms e.g. mesophilic organisms - in which the gene responsible in the psychrophilic/psychrotrophic organism for the production of the enzyme, has been cloned and expressed.
  • the variants may be designed such that the compatibility of the enzyme to commonly encountered ingredients of such compositions is increased.
  • the variant may be designed such that the optimal pH, bleach stability, catalytic activity and the like, of the enzyme variant is tailored to suit the particular cleaning application.
  • the isoelectric point of such enzymes may be modified by the substitution of some charged amino acids, e.g. an increase in isoelectric pointm may help to improve compatibility with anionic surfactants.
  • the stability of the enzymes may be further enhanced by the creation of e.g. additional salt bridges and enforcing calcium binding sites to increase chelant stability. Special care must be paid to the cellulases as most of the cellulases have separate binding domains(CBD) . Properties of such enzymes can be altered by modifications in these domains.
  • Psychrophilic / psychrotrophic protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.
  • Preferred psychrophilic protease is described in the Japanese Patent application H7-29904 and is characterised by the following physiochemical properties : - Specific activity and specificity on substrates : the protease decomposes casein and dimethylcasein but does not act on ribonuclease,
  • the protease has an optimal activity temperature of about 40°C
  • the present protease has also the following properties :
  • the protease is stable at a pH range of 6.0
  • Flavobacterium balustinum having the above described psychrophilic protease producing capability.
  • the corresponding process for preparing the psychrophilic protease comprises culturing Flavobacterium balustinum and collecting the psychrophilic protease from the culture.
  • Psychrophilic / psychrotrophic amylases can be included for removal of carbohydrate-based stains.
  • Said enzymes are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
  • the psychrophilic / psychrotrophic lipases and/or cutinases, esterases, phospholipases are normally incorporated in the detergent composition at levels from 0.0001 % to 2% of active enzyme by weight of the detergent composition.
  • Psychrophilic / psychrotrophic cellulases are the cellulases having benefits in e.g. color care, softness and cleaning.
  • Psychrophilic / psychrotrophic peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Said cellulases and/or peroxidases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
  • the psychrophilic/psychrotrophic enzymes can be added to the detergent compositions in any suitable form. It is common to use prilled / granular material for granular or powderous compositions and liquids for liquid compositions. Such additives can contain a single psychrophilic/psychrotrophic enzyme or a mixture of such enzymes. They can further comprises non-enzymatic material contributing to the enzyme stability, to the physical characteristics of the additive or to the performances of the cleaning compositions.
  • detergent compositions of the invention may also contain additional detergent components.
  • additional detergent components The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition, and the nature of the cleaning operation for which it is to be used.
  • compositions of the invention may for example, be formulated as hand and machine dishwashing compositions, hand and machine laundry detergent compositions including laundry additive compositions and compositions suitable for use in the soaking and/or pretreatment of stained fabrics, rinse added fabric softener compositions, and compositions for use in general household hard surface cleaning operations.
  • Compositions containing such psychrophilic / psychrotrophic enzymes can also be formulated as oral /dental care, sanitisation products and cosmetics.
  • compositions containing psychrophilic / psychrotrophic enzymes can provide fabric cleaning, stain removal, whiteness maintenance, softening, color appearance and dye transfer inhibition when formulated as laundry detergent compositions.
  • compositions of the invention When formulated as compositions for use in manual dishwashing methods the compositions of the invention preferably contain a surfactant and preferably other detergent compounds selected from organic polymeric compounds, suds enhancing agents, group II metal ions, solvents, hydrotropes and additional enzymes.
  • a surfactant preferably other detergent compounds selected from organic polymeric compounds, suds enhancing agents, group II metal ions, solvents, hydrotropes and additional enzymes.
  • compositions suitable for use in a laundry machine washing method preferably contain both a surfactant and a builder compound and additionally one or more detergent components preferably selected from organic polymeric compounds, bleaching agents, additional enzymes, suds suppressors, dispersants, lime-soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors.
  • Laundry compositions can also contain softening agents, as additional detergent components.
  • compositions of the invention can also be used as detergent additive products. Such additive products are intended to supplement or boost the performance of conventional detergent compositions.
  • the density of the laundry detergent compositions herein ranges from 550 to 1000 g/litre, preferably 600 to 950 g/litre of composition measured at 20°C.
  • compositions herein are best reflected by density and, in terms of composition, by the amount of inorganic filler salt; inorganic filler salts are conventional ingredients of detergent compositions in powder form; in conventional detergent compositions, the filler salts are present in substantial amounts, typically 17-35% by weight of the total composition.
  • the filler salt is present in amounts not exceeding 15% of the total composition, preferably not exceeding 10%, most preferably not exceeding 5% by weight of the composition.
  • the inorganic filler salts are selected from the alkali and alkaline-earth-metal salts of sulphates and chlorides.
  • a preferred filler salt is sodium sulphate.
  • Liquid detergent compositions according to the present invention can also be in a "concentrated form", in such case, the liquid detergent compositions according the present invention will contain a lower amount of water, compared to conventional liquid detergents.
  • the water content of the concentrated liquid detergent is less than 40%, more preferably less than 30%, most preferably less than 20% by weight of the detergent composition.
  • the detergent compositions according to the present invention comprise a surfactant system wherein the surfactant can be selected from nonionic and/or anionic and/or cationic and/or ampholytic and/or zwitterionic and/or semi-polar surfactants.
  • the surfactant is typically present at a level of from 0.1% to 60% by weight. More preferred levels of incorporation are 1% to 35% by weight, most preferably from 1% to 20% by weight of laundry and rinse added fabric softener compositions in accord with the invention.
  • the surfactant is preferably formulated to be compatible with enzyme components present in the composition.
  • the surfactant is most preferably formulated such that it promotes, or at least does not degrade, the stability of any enzyme in these compositions.
  • Preferred non-alkylbenzene sulfonate surfactant systems to be used according to the present invention comprise as a surfactant one or more of the nonionic and/or anionic surfactants described herein.
  • Polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use as the nonionic surfactant of the surfactant systems of the present invention, with the polyethylene oxide condensates being preferred.
  • These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 14 carbon atoms, preferably from about 8 to about 14 carbon atoms, in either a straight-chain or branched- chain configuration with the alkylene oxide.
  • the ethylene oxide is present in an amount equal to from about 2 to about 25 moles, more preferably from about 3 to about 15 moles, of ethylene oxide per mole of alkyl phenol.
  • nonionic surfactants of this type include IgepalTM CO-630, marketed by the GAF Corporation; and TritonTM X-45, X-114, X-100 and X-102, all marketed by the Rohm & Haas Company. These surfactants are commonly referred to as alkylphenol alkoxylates (e.g., alkyl phenol ethoxylates) .
  • the condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use as the nonionic surfactant of the nonionic surfactant systems of the present invention.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms.
  • About 2 to about 7 moles of ethylene oxide and most preferably from 2 to 5 moles of ethylene oxide per mole of alcohol are present in said condensation products.
  • nonionic surfactants of this type include TergitolTM 15-S-9 (the condensation product of C11-C15 linear alcohol with 9 moles ethylene oxide), TergitolTM 24-L-6 NMW (the condensation product of Ci2 ⁇ c 1 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution) , both marketed by Union Carbide Corporation; NeodolTM 45-9 (the condensation product of C14-C15 linear alcohol with 9 moles of ethylene oxide), NeodolTM 23-3 (the condensation product of Ci2 ⁇ c 13 linear alcohol with 3.0 moles of ethylene oxide), NeodolTM 45-7 (the condensation product of C14-C15 linear alcohol with 7 moles of ethylene oxide) , NeodolTM 45-5 (the condensation product of C14-C15 linear alcohol with 5 moles of ethylene oxide) marketed by Shell Chemical Company, KyroTM EOB (the condensation product of C13-C15 alcohol with 9 moles ethylene oxide) , marketed by The Procter &
  • nonionic surfactant of the surfactant systems of the present invention are the alkylpolysaccharides disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units.
  • a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units.
  • Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties (optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside) .
  • the intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • the preferred alkylpolyglycosides have the formula
  • R 2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7.
  • the glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position) . The additional glycosyl units can then be attached between their 1-position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2-position.
  • the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are also suitable for use as the additional nonionic surfactant systems of the present invention.
  • the hydrophobic portion of these compounds will preferably have a molecular weight of from about 1500 to about 1800 and will exhibit water insolubility.
  • the addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensation product, which corresponds to condensation with up to about 40 moles of ethylene oxide.
  • Examples of compounds of this type include certain of the commercially-available PluronicTM surfactants, marketed by BASF.
  • nonionic surfactant of the nonionic surfactant system of the present invention are the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine.
  • the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
  • This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 11,000.
  • this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.
  • Preferred for use as the nonionic surfactant of the surfactant systems of the present invention are polyethylene oxide condensates of alkyl phenols, condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide, alkylpolysaccharides, and mixtures thereof. Most preferred are Cg-C] ⁇ alkyl phenol ethoxylates having from 3 to 15 ethoxy groups and Cg- Ci alcohol ethoxylates (preferably C ⁇ Q avg.) having from 2 to 10 ethoxy groups, and mixtures thereof.
  • Highly preferred nonionic surfactants are polyhydroxy fatty acid amide surfactants of the formula.
  • R* is H, or R 1 is C ⁇ _4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R 2 is 05-31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
  • R 1 is methyl
  • R 2 is a straight C ⁇ _ ⁇ __i5 alkyl or C g_ ⁇ g alkyl or alkenyl chain such as coconut alkyl or mixtures thereof
  • Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
  • the nonionic surfactant systems of the present invention act to improve the greasy/oily stain removal properties of such laundry detergent compositions across a broad range of laundry conditions.
  • alkyl alkoxylated sulfate surfactants hereof are water soluble salts or acids of the formula R0(A) m S03M wherein R is an unsubstituted CIQ ⁇ C 24 alkyl or hydroxyalkyl group having a c 10 -c 24 alkyl component, preferably a Ci2 -C 20 alkyl or hydroxyalkyl, more preferably Ci2 ⁇ c 18 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.
  • R is an unsubstituted CIQ ⁇ C 24 alkyl or hydroxyalkyl group having a c 10 -c 24 alkyl component,
  • Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
  • Specific examples of substituted ammonium cations include methyl-, dimethyl, trimethyl-ammonium cations and quaternary ammonium cations such as tetramethyl-ammonium and dimethyl piperdinium cations and those derived from alkylamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.
  • Exemplary surfactants are i2 ⁇ c 18 alkyl polyethoxylate (1.0) sulfate (C 1 2 ⁇ C 1 gE (1.0)M) , alkyl polyethoxylate (2.25) sulfate (C 12 -C 18 E (2.25)M) , C 12 - Ci alkyl polyethoxylate (3.0) sulfate (C 12 -C ⁇ gE (3.0)M) , and c 12" c 18 alkyl polyethoxylate (4.0) sulfate (C 2-C ⁇ E (4.0)M) , wherein M is conveniently selected from sodium and potassium.
  • Suitable anionic surfactants to be used are alkyl ester sulfonate surfactants including linear esters of Cg-C2o carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous SO3 according to "The Journal of the American Oil Chemists Society", 52 (1975), pp. 323-329.
  • Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.
  • alkyl ester sulfonate surfactant especially for laundry applications, comprise alkyl ester sulfonate surfactants of the structural formula :
  • R 3 is a C -C20 hydrocarbyl, preferably an alkyl, or combination thereof
  • R 4 is a C ⁇ -Cg hydrocarbyl, preferably an alkyl, or combination thereof
  • M is a cation which forms a water soluble salt with the alkyl ester sulfonate.
  • Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as monoethanolamine, diethanolamine, and triethanolamine.
  • R 3 is C ⁇ o ⁇ Ci6 alkyl
  • R 4 is methyl, ethyl or isopropyl.
  • methyl ester sulfonates wherein R 3 is alkyl.
  • Other suitable anionic surfactants include the alkyl sulfate surfactants which are water soluble salts or acids of the formula ROSO3M wherein R preferably is a C10-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a c 10 ⁇ c 20 alkyl component, more preferably a Ci2 ⁇ c 18 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g.
  • alkyl chains of Ci2 ⁇ c 16 are preferred for lower wash temperatures (e.g. below about 50°C) and C ⁇ g-18 alkyl chains are preferred for higher wash temperatures (e.g. above about 50°C) .
  • anionic surfactants useful for detersive purposes can also be included in the laundry detergent compositions of the present invention.
  • These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, C -C22 primary of secondary alkanesulfonates, Cg-C2 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
  • alkyl glycerol sulfonates alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinates (especially saturated and unsaturated Ci2 ⁇ c 18 monoesters) and diesters of sulfosuccinates (especially saturated and unsaturated Cg- C ⁇ 2 diesters) , acyl sarcosinates, sulfates of alkylpolysaccharides such as the
  • the laundry detergent compositions of the present invention typically comprise from about 1% to about 40%, preferably from about 3% to about 20% by weight of such anionic surfactants.
  • the laundry detergent compositions of the present invention may also contain cationic, ampholytic, zwitterionic, and semi-polar surfactants, as well as the nonionic and/or anionic surfactants other than those already described herein.
  • Cationic detersive surfactants suitable for use in the laundry detergent compositions of the present invention are those having one long-chain hydrocarbyl group.
  • cationic surfactants include the ammonium surfactants such as alkyltrimethylammonium halogenides, and those surfactants having the formula :
  • R 2 is an alkyl or alkyl benzyl group having from about 8 to about 18 carbon atoms in the alkyl chain
  • each R 3 is selected from the group consisting of -CH2CH2-, CH 2 CH(CH 3 )-, -CH 2 CH(CH 2 OH)-, -CH 2 CH 2 CH 2 -, and mixtures thereof
  • each R 4 is selected from the group consisting of c l -c 4 alkyl, C1-C hydroxyalkyl, benzyl ring structures formed by joining the two R 4 groups, -CH2CHOH- CHOHCOR 6 CHOHCH2 ⁇ H wherein R 6 is any hexose or hexose polymer having a molecular weight less than about 1000, and hydrogen when y is not 0
  • R 5 is the same as R 4 or is an alkyl chain wherein the total number of
  • Highly preferred cationic surfactants are the water ⁇ soluble quaternary ammonium compounds useful in the present composition having the formula :
  • R ⁇ is Cg-Cig alkyl, each of R2.
  • R3 and R4 is independently C1-C4 alkyl, C1-C hydroxy alkyl, benzyl, and -(C2H Q) ⁇ H where x has a value from 2 to 5, and X is an anion.
  • Not more than one of R , R3 or R4 should be benzyl.
  • the preferred alkyl chain length for R ⁇ is Ci2 ⁇ 15 particularly where the alkyl group is a mixture of chain lengths derived from coconut or palm kernel fat or is derived synthetically by olefin build up or 0X0 alcohols synthesis.
  • R2 R 3 and R 4 are methyl and hydroxyethyl groups and the anion X may be selected from halide, methosulphate, acetate and phosphate ions.
  • suitable quaternary ammonium compounds of formulae (i) for use herein are : coconut trimethyl ammonium chloride or bromide; coconut methyl dihydroxyethyl ammonium chloride or bromide; decyl triethyl ammonium chloride; decyl dimethyl hydroxyethyl ammonium chloride or bromide; c 12-15 dimethyl hydroxyethyl ammonium chloride or bromide; coconut dimethyl hydroxyethyl ammonium chloride or bromide; myristyl trimethyl ammonium methyl sulphate; lauryl dimethyl benzyl ammonium chloride or bromide; lauryl dimethyl (ethenoxy)4 ammonium chloride or bromide; choline esters (compounds of formula
  • the laundry detergent compositions of the present invention typically comprise from 0.2% to about 25%, preferably from about 1% to about 8% by weight of such cationic surfactants.
  • Ampholytic surfactants are also suitable for use in the laundry detergent compositions of the present invention. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight- or branched- chain.
  • One of the aliphatic substituents contains at least about 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water- solubilizing group, e.g. carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, lines 18-35, for examples of ampholytic surfactants.
  • the laundry detergent compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such ampholytic surfactants.
  • Zwitterionic surfactants are also suitable for use in laundry detergent compositions. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, line 38 through column 22, line 48, for examples of zwitterionic surfactants.
  • the laundry detergent compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such zwitterionic surfactants.
  • Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; water ⁇ soluble phosphine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms.
  • Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula
  • R 3 (OR )xN(R 5 )2 wherein R 3 is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures therof containing from about 8 to about 22 carbon atoms; R 4 is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof; x is from 0 to about 3; and each R ⁇ is an alkyl or hydroxyalkyl group containing from about 1 to about 3 carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups.
  • the R 5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
  • amine oxide surfactants in particular include C ⁇ alkyl dimethyl amine oxides and C -Ci2 alkoxy ethyl dihydroxy ethyl amine oxides.
  • the laundry detergent compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such semi-polar nonionic surfactants.
  • the detergent compositions can in addition to psychrophilic/psychrotrophic enzymes further comprise one or more enzymes which provide cleaning performance and/or fabric care benefits.
  • a psychrophilic / psychrotrophic enzyme with its corresponding mesophilic enzyme such as a combination of a psychrophilic / psychrotrophic protease with a mesophilic protease, are recommended to cover a broader range of enzymatic activity.
  • Said enzymes include enzymes selected from cellulases, hemicellulases, peroxidases, proteases, gluco-amylases, amylases, xylanases, lipases, esterases, cutinases, pectinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ⁇ -glucanases, arabinosidases chondroitinase, laccase or mixtures thereof.
  • a preferred combination is a cleaning composition having cocktail of conventional applicable enzymes like protease, amylase, lipase, cutinase and/or cellulase in conjunction with one or more plant cell wall degrading enzymes.
  • the cellulases usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, which discloses fungal cellulase produced from Humicola insolens. Suitable cellulases are also disclosed in GB-A- 2.075.028; GB-A-2.095.275 and DE-OS-2.247.832. Examples of such cellulases are cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea) , particularly the Humicola strain DSM 1800.
  • Humicola insolens Humicola grisea var. thermoidea
  • suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about 50KDa, an isoelectric point of 5.5 and containing 415 amino acids. Especially suitable cellulases are the cellulases having color care benefits. Examples of such cellulases are cellulases described in European patent application No. 91202879.2, filed November 6, 1991 (Novo) .
  • Peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase.
  • Microperoxidase or peptide fragments containing heme wit peroxidase activity allows to lower the required level of such catalysts. Therefore, similar dye transfer inhibition benefits can be obtained together with reducing problematic catalysts' deposition on fabrics and enhancing catalysts' colour compatibility with HDL aesthetics.
  • Such microperoxidase and peptide fragments are disclosed in WO 91/05858 and DE 3 134 526.
  • Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813 and in European Patent application EP No. 91202882.6, filed on November 6, 1991.
  • Said cellulases and/or peroxidases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
  • protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Nordisk A/S (Denmark), those sold under the tradename Maxatase, Maxacal, Maxapem and Properase by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes.
  • proteases described in our co-pending application USSN 08/136,797 can be included in the detergent composition of the invention.
  • Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034.
  • Suitable lipases include those which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescent IAM 1057. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano, " hereinafter referred to as "Amano-P".
  • lipases such as Ml Lipase R and Lipomax R (Gist-Brocades) and Lipolase R and Lipolase Ultra R (Novo) which have found to be very effective when used in combination with the compositions of the present invention.
  • cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to detergent compositions have been described in e.g. WO-A- 88/09367 (Genencor) .
  • the lipases and/or cutinases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
  • Amylases (& and/or ⁇ ) can be included for removal of carbohydrate-based stains.
  • Suitable amylases are Termamyl R ' (Novo Nordisk) , Fungamyl R and BAN R (Novo Nordisk) .
  • the above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin.
  • Said enzymes are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
  • enzyme oxidation scavengers which are described in Copending European Patent application 92870018.6 filed on January 31, 1992.
  • enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
  • Especially preferred detergent ingredients are combinations with technologies which also provide a type of color care benefit.
  • technologies which also provide a type of color care benefit.
  • metallo catalysts for color maintenance are described in copending European Patent Application No. 92870181.2.
  • bleaching agents such as PB1, PB4 and percarbonate with a particle size of 400-800 microns.
  • These bleaching agent components can include one or more oxygen bleaching agents and, depending upon the bleaching agent chosen, one or more bleach activators. When present oxygen bleaching compounds will typically be present at levels of from about 1% to about 25%. In general, bleaching compounds are optional components in non-liquid formulations, e.g. granular detergents.
  • the bleaching agent component for use herein can be any of the bleaching agents useful for detergent compositions including oxygen bleaches as well as others known in the art.
  • the bleaching agent suitable for the present invention can be an activated or non-activated bleaching agent.
  • oxygen bleaching agent that can be used encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of meta-chloro perbenzoic acid, 4-nonylamino-4- oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781, U.S. Patent Application 740,446, European Patent Application 0,133,354 and U.S. Patent 4,412,934.
  • Highly preferred bleaching agents also include 6-nonylamino-6- oxoperoxycaproic acid as described in U.S. Patent 4,634,551.
  • bleaching agents that can be used encompasses the halogen bleaching agents.
  • hypohalite bleaching agents include trichloro isocyanuric acid and the sodium and potassium dichloroisocyanurates and N-chloro and N-bromo alkane sulphonamides. Such materials are normally added at 0.5-10% by weight of the finished product, preferably 1-5% by weight.
  • the hydrogen peroxide releasing agents can be used in combination with bleach activators such as tetraacetylethylenediamine (TAED) , nonanoyloxybenzene- sulfonate (NOBS, described in US 4,412,934), 3,5,- trimethylhexanoloxybenzenesulfonate (ISONOBS, described in EP 120,591) or pentaacetylglucose (PAG), which are perhydrolyzed to form a peracid as the active bleaching species, leading to improved bleaching effect.
  • bleach activators such as tetraacetylethylenediamine (TAED) , nonanoyloxybenzene- sulfonate (NOBS, described in US 4,412,934), 3,5,- trimethylhexanoloxybenzenesulfonate (ISONOBS, described in EP 120,591) or pentaacetylglucose (PAG), which are perhydrolyzed to
  • bleaching agents including peroxyacids and bleaching systems comprising bleach activators and peroxygen bleaching compounds for use in detergent compositions according to the invention are described in our co-pending applications USSN 08/136,626, PCT/US95/07823, W095/27772, W095/27773, W095/27774 and W095/27775.
  • the hydrogen peroxide may also be present by adding an enzymatic system (i.e. an enzyme and a substrate therefore) which is capable of generating hydrogen peroxide at the beginning or during the washing and/or rinsing process.
  • an enzymatic system i.e. an enzyme and a substrate therefore
  • Such enzymatic systems are disclosed in EP Patent Application 91202655.6 filed October 9, 1991.
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
  • One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. These materials can be deposited upon the substrate during the washing process. Upon irradiation with light, in the presence of oxygen, such as by hanging clothes out to dry in the daylight, the sulfonated zinc phthalocyanine is activated and, consequently, the substrate is bleached.
  • Preferred zinc phthalocyanine and a photoactivated bleaching process are described in U.S. Patent 4,033,718.
  • detergent compositions will contain about 0.025% to about 1.25%, by weight, of sulfonated zinc phthalocyanine.
  • compositions according to the present invention may further comprise a builder system.
  • a builder system Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates and fatty acids, materials such as ethylenediamine tetraacetate, diethylene triamine pentamethyleneacetate, metal ion sequestrants such as aminopolyphosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylenephosphonic acid.
  • phosphate builders can also be used herein.
  • Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B, HS or MAP.
  • SKS-6 is a crystalline layered silicate consisting of sodium silicate (Na2Si2 ⁇ s) .
  • Suitable polycarboxylates containing one carboxy group include lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831,368, 821,369 and 821,370.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycollic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegenschrift 2,446,686, and 2,446,687 and U.S. Patent No. 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623.
  • Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-l, 1, 3-propane tricarboxylates described in British Patent No. 1,387,447.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1, 1,2,2-ethane tetracarboxylates, 1, 1,3,3-propane tetracarboxylates and 1, 1,2, 3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,082,179, while polycarboxylates containing phosphone substituents are disclosed in British Patent No. 1,439,000.
  • Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydro- furan - cis, cis, cis-tetracarboxylates, 2,5-tetrahydro- furan -cis - dicarboxylates, 2,2,5,5-tetrahydrofuran tetracarboxylates, 1,2,3,4,5,6-hexane -hexacar-boxylates and and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol.
  • Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343. Of the above, the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • Preferred builder systems for use in the present compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A or of a layered silicate (SKS-6) , and a water-soluble carboxylate chelating agent such as citric acid.
  • a water-insoluble aluminosilicate builder such as zeolite A or of a layered silicate (SKS-6)
  • a water-soluble carboxylate chelating agent such as citric acid.
  • a suitable chelant for inclusion in the detergent compositions in accordance with the invention is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
  • EDDS compounds are the free acid form and the sodium or magnesium salt thereof. Examples of such preferred sodium salts of EDDS include Na2EDDS and Na4EDDS. Examples of such preferred magnesium salts of EDDS include MgEDDS and Mg2EDDS. The magnesium salts are the most preferred for inclusion in compositions in accordance with the invention.
  • Preferred builder systems include a mixture of a water- insoluble aluminosilicate builder such as zeolite A, and a watersoluble carboxylate chelating agent such as citric acid.
  • Suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of this type are disclosed in GB-A-l,596,756.
  • Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.
  • Detergency builder salts are normally included in amounts of from 10% to 80% by weight of the composition preferably from 20% to 70% and most usually from 30% to 60% by weight.
  • a suds suppressor exemplified by silicones, and silica-silicone mixtures.
  • Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the suds suppressor is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non- surface-active detergent impermeable carrier.
  • the suds suppressor can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
  • a preferred silicone suds controlling agent is disclosed in Bartollota et al. U.S. Patent 3 933 672.
  • Other particularly useful suds suppressors are the self- emulsifying silicone suds suppressors, described in German Patent Application DTOS 2 646 126 published April 28, 1977.
  • An example of such a compound is DC-544, commercially available from Dow Corning, which is a siloxane-glycol copolymer.
  • Especially preferred suds controlling agent are the suds suppressor system comprising a mixture of silicone oils and 2-alkyl-alcanols. Suitable 2-alkyl-alkanols are 2- butyl-octanol which are commercially available under the trade name Isofol 12 R.
  • compositions can comprise a silicone/silica mixture in combination with fumed nonporous silica such as Aerosil R .
  • the suds suppressors described above are normally employed at levels of from 0.001% to 2% by weight of the composition, preferably from 0.01% to 1% by weight.
  • detergent compositions may be employed, such as soil-suspending agents, soil-release agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and/or encapsulated or non-encapsulated perfumes.
  • encapsulating materials are water soluble capsules which consist of a matrix of polysaccharide and polyhydroxy compounds such as described in GB 1,464,616.
  • Suitable water soluble encapsulating materials comprise dextrins derived from ungelatinized starch acid- esters of substituted dicarboxylic acids such as described in US 3,455,838. These acid-ester dextrins are,preferably, prepared from such starches as waxy maize, waxy sorghum, sago, tapioca and potato. Suitable examples of said encapsulating materials include N-Lok manufactured by National Starch. The N-Lok encapsulating material consists of a modified maize starch and glucose. The starch is modified by adding monofunctional substituted groups such as octenyl succinic acid anhydride.
  • Antiredeposition and soil suspension agents suitable herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts.
  • Polymers of this type include the polyacrylates and maleic anhydride-acrylic acid copolymers previously mentioned as builders, as well as copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the copolymer. These materials are normally used at levels of from 0.5% to 10% by weight, more preferably from 0.75% to 8%, most preferably from 1% to 6% by weight of the composition.
  • Preferred optical brighteners are anionic in character, examples of which are disodium 4,4'-bis- (2-diethanolamino-4- anilino -s- triazin-6-ylamino)stilbene-2:2' disulphonate, disodium 4, - 4'-bis-(2-morpholino-4-anilino-s-triazin-6- ylamino-stilbene-2:2' - disulphonate, disodium 4,4' - bis- (2,4-dianilino-s-triazin-6-ylamino)stilbene-2:2' disulphonate, monosodium 4',4'' -bis- (2,4-dianilino-s-tri- azin-6 ylamino)stilbene-2-sulphonate, disodium 4,4' -bis- (2- anilino-4-(N-methyl-N-2-hydroxyethylamino)-s-triazin-6- ylamino)stilbene-2,2
  • polyethylene glycols particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000. These are used at levels of from 0.20% to 5% more preferably from 0.25% to 2.5% by weight. These polymers and the previously mentioned homo- or co-polymeric polycarboxylate salts are valuable for improving whiteness maintenance, fabric ash deposition, and cleaning performance on clay, proteinaceous and oxidizable soils in the presence of transition metal impurities.
  • Soil release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements. Examples of such polymers are disclosed in the commonly assigned US Patent Nos. 4116885 and 4711730 and European Published Patent Application No. 0 272 033. A particular preferred polymer in accordance with EP-A-0 272 033 has the formula
  • PEG is -(OC2H4)0-,PO is (OC3HgO) and T is (pcOCg ⁇ CO) .
  • polyesters as random copolymers of dimethyl terephthalate, dimethyl sulfoisophthalate, ethylene glycol and 1-2 propane diol, the end groups consisting primarily of sulphobenzoate and secondarily of mono esters of ethylene glycol and/or propane-diol.
  • the target is to obtain a polymer capped at both end by sulphobenzoate groups, "primarily", in the present context most of said copolymers herein will be end- 37
  • the selected polyesters herein contain about 46% by weight of dimethyl terephthalic acid, about 16% by weight of propane -1.2 diol, about 10% by weight ethylene glycol about 13% by weight of dimethyl sulfobenzoic acid and about 15% by weight of sulfoisophthalic acid, and have a molecular weight of about 3.000.
  • the polyesters and their method of preparation are described in detail in EPA 311 342.
  • Fabric softening agents can also be incorporated into laundry detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-l 400 898 and in USP 5,019,292. Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A1 514 276 and EP-B0 011 340 and their combination with mono C12- C14 quaternary ammonium salts are disclosed in EP-B-0 026 527 and EP-B-0 026 528 and di-long-chain amides as disclosed in EP-B-0 242 919. Other useful organic ingredients of fabric softening systems include high molecular weight polyethylene oxide materials as disclosed in EP-A-0 299 575 and 0 313 146.
  • Levels of smectite clay are normally in the range from 2% to 20%, more preferably from 5% to 15% by weight, with the material being added as a dry mixed component to the remainder of the formulation.
  • Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5% to 5% by weight, normally from 1% to 3% by weight whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1% to 2%, normally from 0.15% to 1.5% by weight.
  • These materials are normally added to the spray dried portion of the composition, although in some instances it may be more convenient to add them as a dry mixed particulate, or spray them as molten liquid on to other solid components of the composition.
  • the present invention also relates to a process for inhibiting dye transfer from one fabric to another of solubilized and suspended dyes encountered during fabric laundering operations involving colored fabrics.
  • the detergent compositions according to the present invention also comprise from 0.001% to 10 %, preferably from 0.01% to 2%, more preferably from 0.05% to 1% by weight of polymeric dye transfer inhibiting agents.
  • Said polymeric dye transfer inhibiting agents are normally incorporated into detergent compositions in order to inhibit the transfer of dyes from colored fabrics onto fabrics washed therewith. These polymers have the ability to complex or adsorb the fugitive dyes washed out of dyed fabrics before the dyes have the opportunity to become attached to other articles in the wash.
  • polymeric dye transfer inhibiting agents are polyamine N-oxide polymers, copolymers of N- vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone polymers, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.
  • polyamine N-oxide polymers suitable for use contain units having the following structure formula : P
  • R wherein P is a polymerisable unit, whereto the R-N-0 group can be attached to or wherein the R-N-0 group forms part of the polymerisable unit or a combination of both.
  • A is NC, CO, C, -0-,-S-, -N- ; x is 0 or 1; R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-0 group can be attached or wherein the nitrogen of the N-0 group is part of these groups.
  • the N-0 group can be represented by the following general structures :
  • Rl, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-0 group can be attached or wherein the nitrogen of the N-0 group forms part of these groups.
  • the N-0 group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
  • Suitable polyamine N-oxides wherein the N-0 group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
  • polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-0 group forms part of the R-group.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
  • Another class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-0 group is attached to the R-group.
  • polyamine N-oxides are the polyamine oxides whereto the N-0 group is attached to the polymerisable unit.
  • polyamine N-oxides are the polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional group is part of said R group.
  • R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional group is part of said R group.
  • polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
  • polyamine N-oxides are the polyamine oxides having the general formula (I) wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional group is attached to said R groups.
  • polyamine oxides wherein R groups can be aromatic such as phenyl.
  • Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
  • the amine N-oxide polymers of the present invention typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1000000.
  • the amount of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by appropriate degree of N- oxidation.
  • the ratio of amine to amine N-oxide is from 2:3 to 1:1000000. More preferably from 1:4 to 1:1000000, most preferably from 1:7 to 1:1000000.
  • the polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine N- oxide and the other monomer type is either an amine N-oxide or not.
  • the amine oxide unit of the polyamine N-oxides has a PKa ⁇ 10, preferably PKa ⁇ 7, more preferred PKa ⁇ 6.
  • the polyamine oxides can be obtained in almost any degree of polymerisation.
  • the degree of polymerisation is not critical provided the material has the desired water- solubility and dye-suspending power.
  • the average molecular weight is within the range of 500 to 1000,000; preferably from 1,000 to 50,000, more preferably from 2,000 to 30,000, most preferably from 3,000 to 20,000.
  • N-vinylimidazole N-vinylpyrrolidone polymers used in the present invention have an average molecular weight range from 5,000-1,000,000, preferably from 5,000-200,000.
  • Highly preferred polymers for use in detergent compositions according to the present invention comprise a polymer selected from N-vinylimidazole N-vinylpyrrolidone copolymers wherein said polymer has an average molecular weight range from 5,000 to 50,000 more preferably from 8,000 to 30,000, most preferably from 10,000 to 20,000.
  • the average molecular weight range was determined by light scattering as described in Barth H.G. and Mays J.W. Chemical Analysis Vol 113, "Modern Methods of Polymer Characterization".
  • N-vinylimidazole N-vinylpyrrolidone copolymers have an average molecular weight range from 5,000 to 50,000; more preferably from 8,000 to 30,000; most preferably from 10,000 to 20,000.
  • the N-vinylimidazole N-vinylpyrrolidone copolymers characterized by having said average molecular weight range provide excellent dye transfer inhibiting properties while not adversely affecting the cleaning performance of detergent compositions formulated therewith.
  • the N-vinylimidazole N-vinylpyrrolidone copolymer of the present invention has a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2, more preferably from 0.8 to 0.3, most preferably from 0.6 to 0.4 .
  • the detergent compositions of the present invention may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000.
  • PVP polyvinylpyrrolidone
  • Suitable polyvinylpyrrolidones are commercially vailable from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000) .
  • polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12; polyvinylpyrrolidones known to persons skilled in the detergent field (see for example EP-A-262,897 and EP-A- 256,696) .
  • the detergent compositions of the present invention may also utilize polyvinyloxazolidone as a polymeric dye transfer inhibiting agent.
  • Said polyvinyloxazolidones have an average molecular weight of from about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000.
  • Polyvinylimidazole The detergent compositions of the present invention may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent. Said polyvinylimidazoles have an average about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000.
  • Cross-linked polymers are polymers whose backbone are interconnected to a certain degree; these links can be of chemical or physical nature, possibly with active groups n the backbone or on branches; cross-linked polymers have been described in the Journal of Polymer Science, volume 22, pages 1035-1039.
  • the cross-linked polymers are made in such a way that they form a three-dimensional rigid structure, which can entrap dyes in the pores formed by the three-dimensional structure.
  • the cross-linked polymers entrap the dyes by swelling.
  • the cleaning compositions according to the invention can be liquid, paste, gels, bars, tablets or granular forms.
  • Granular compositions can also be in "compact " form, the liquid compositions can also be in a "concentrated” form.
  • compositions of the invention may be formulated as hand and machine laundry cleaning compositions including laundry additive compositions and compositions suitable for use in the pretreatment or soaking of stained fabric, rinse added fabric softener compositions, and compositions for use in general household hard surface cleaning operations, sanitisation and dishwashing operations.
  • Additional cleaning compositions containing such psychrophilic / psychrotrophic enzymes include but are not limited to oral care, denture, contact lens and personal cleaning compositions.
  • compositions of the invention may be used in essentially any washing or cleaning methods, including soaking methods, pretreatment methods and methods with rinsing steps for which a separate rinse aid composition may be added.
  • the process described herein comprises contacting fabrics with a laundering solution in the usual manner and exemplified hereunder.
  • the process of the invention is conveniently carried out in the course of the cleaning process.
  • the method of cleaning is preferably carried out at 5 °C to 95 °C, especially between 10°C and 60°C.
  • the pH of the treatment solution is preferably from 7 to 11.
  • a preferred machine dishwashing method comprises treating soiled articles with an aqueous liquid having dissolved or dispensed therein an effective amount of the machine diswashing or rinsing composition.
  • a conventional effective amount of the machine dishwashing composition means from 8-60 g of product dissolved or dispersed in a wash volume from 3-10 litres.
  • soiled dishes are contacted with an effective amount of the diswashing composition, typically from 0.5-20g (per 25 dishes being treated) .
  • Preferred manual dishwashing methods include the application of a concentrated solution to the surfaces of the dishes or the soaking in large volume of dilute solution of the detergent composition.
  • TAS Sodium tallow alkyl sulphate
  • APG Alkyl polyglycoside surfactant of formula C12 ⁇ (glycosyl) x , where x is 1.5,
  • AEC Alkyl ethoxycarboxylate surfactant of formula C ⁇ 2 ethoxy (2) carboxylate.
  • Nonionic c 13 ⁇ c 15 mixed ethoxylated/propoxylated fatty alcohol with an average degree of ethoxylation of 3.8 and an average degree of propoxylation of 4.5 sold under the tradename Plurafax LF404 by BASF Gmbh
  • Paraffin Paraffin oil sold under the tradename Winog 70 by Wintershall.
  • MESOPHILIC Pectinase Pectolytic enzyme sold under the tradename Pectinex AR by Novo Nordisk A/S.
  • Xylanase Xylanolytic enzyme sold under the tradenames Pulpzyme HB or SP431 by Novo Nordisk A/S or Lyxasan (Gist- Brocades) or Optipulp or Xylanase (Solvay) .
  • Protease Proteolytic enzyme sold under the tradename Savinase, Alcalase, Maxacal by Novo Nordisk A/S and proteases described in patents WO91/06637 and/or US429882.
  • Lipase Lipolytic enzyme sold under the tradename Lipolase, Lipolase Ultra by Novo Nordisk A/S
  • HEDP 1, 1-hydroxyethane diphosphonic acid DETPMP Diethylene triamine penta (methylene phosphonic acid) marketed by Monsanto under the Trade name Dequest 2060
  • PEG-6 Polyethylene glycol having a molecular weight of 600.
  • Silica dental Precipitated silica identified as abrasive Zeodent 119 offered by J.M. Huber. Carboxyvinyl Carbopol offered by B.F. Goodrich polymer Chemical Company.
  • Carrageenan Iota Carrageenan offered by Hercules Chemical Company.
  • machine dishwashing detergent compositions were prepared (parts by weight) including psychrophilic / psychrotrophic enzymes in accord with the invention.
  • compositions provide good soil removal when used in a machine dishwashing process.
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • liquid manual dishwashing compositions containing psychrophilic / psychrotrophic enzymes in accord with the invention were prepared.
  • the pH of the compositions was adjusted to be in the range 7.0 to 7.4.
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • Granular fabric cleaning compositions containing psychrophilic / psychrotrophic enzymes in accord with the invention were prepared as follows:
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • Granular fabric cleaning compositions containing psychrophilic / psychrotrophic enzymes in accord with the invention were prepared as follows:
  • Zeolite A 26.0 26.0 26.0 26.0 26.0
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • Granular fabric cleaning compositions containing psychrophilic / psychrotrophic enzymes in accord with the invention which are especially useful in the laundering of coloured fabrics were prepared as follows :
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • Granular fabric cleaning compositions containing psychrophilic / psychrotrophic enzymes in accord with the invention were prepared as follows:
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • a compact granular fabric cleaning composition containing psychrophilic / psychrotrophic enzymes in accord with the invention was prepared as follows:
  • Granular suds suppressor 3.5 water/minors Up to 100%
  • the level of enzyme(s) is by weight of "pure enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • a granular fabric cleaning compositions containing psychrophilic / psychrotrophic enzymes in accord with the invention which provide "softening through the wash” capability were prepared as follows: 45AS - 10.0
  • the level of enzyme (s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme (s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • Heavy duty liquid fabric cleaning compositions suitable for use in the pretreatment of stained fabrics, containing psychrophilic / psychrotrophic enzymes, and for use in a machine laundering method, in accord with the invention were prepared as follows:
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • Heavy duty liquid fabric cleaning compositions containing psychrophilic / psychrotrophic enzymes in accord with the invention were prepared as follows:
  • Oleic acid 1.8 - 1.0 -
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • Carboxyvinyl polymer 0.300 0.300 0.300 0.300 0.300 0.300 0.300
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • Ethylene glycol distearate (EDTA) 1.50 Propylparaben 0.10 Methylparaben 0.20
  • the level of enzyme (s) is by weight of "pure” enzyme, either as psychrophilic / psychrotrophic enzyme (s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.
  • the level of enzyme(s) is by weight of "pure" enzyme, either as psychrophilic / psychrotrophic enzyme(s) or as a sum of psychrophilic / psychrotrophic and mesophilic enzymes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Birds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Detergent Compositions (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Cette invention concerne des compositions détergentes contenant une enzyme produite par un organisme ou un micro-organisme psychrophile/psychrotrophe, ou encore, une enzyme produite par un organisme ou un micro-organisme hôte, quel qu'il soit, dans lequel le gène responsable de la production de l'enzyme dans l'organisme ou micro-organisme psychrophile/psychrotrophe a été cloné puis exprimé. Ces compositions possèdent une activité optimale entre 5 et 40° C.
PCT/US1995/017101 1995-12-29 1995-12-29 Compositions detergentes contenant des enzymes psychrophiles/psychrotrophes WO1997024428A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU46926/96A AU4692696A (en) 1995-12-29 1995-12-29 Detergent compositions comprising psychrophilic/psychrotrophic enzymes
PCT/US1995/017101 WO1997024428A1 (fr) 1995-12-29 1995-12-29 Compositions detergentes contenant des enzymes psychrophiles/psychrotrophes
BR9510677A BR9510677A (pt) 1995-12-29 1995-12-29 Composições detergentes compreendendo enzimas psicrofílicas/psicotróficas
ZA9610820A ZA9610820B (en) 1995-12-29 1996-12-20 Detergent compositions comprising psychrophilic/psychrotrophic enzymes
ARP960105912A AR005291A1 (es) 1995-12-29 1996-12-27 Composicion detergente y aditivo, composicion para tratamiento de telas limpiador de superficies duras, composicion para lavado de vajilla ycomposicion limpiadora personal, que comprenden enzimas.
TR96/01063A TR199601063A2 (tr) 1995-12-29 1996-12-27 Psikrofilik / psikrotrofik enzimler iceren deterjan bilesimleri.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1995/017101 WO1997024428A1 (fr) 1995-12-29 1995-12-29 Compositions detergentes contenant des enzymes psychrophiles/psychrotrophes

Publications (1)

Publication Number Publication Date
WO1997024428A1 true WO1997024428A1 (fr) 1997-07-10

Family

ID=22250406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/017101 WO1997024428A1 (fr) 1995-12-29 1995-12-29 Compositions detergentes contenant des enzymes psychrophiles/psychrotrophes

Country Status (5)

Country Link
AR (1) AR005291A1 (fr)
AU (1) AU4692696A (fr)
TR (1) TR199601063A2 (fr)
WO (1) WO1997024428A1 (fr)
ZA (1) ZA9610820B (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000764A2 (fr) * 1999-06-25 2001-01-04 The Penn State Research Foundation Composition eliminant les taches, contenant des enzymes proteolytiques particulieres isolees et pures
WO2003099987A1 (fr) * 2002-05-23 2003-12-04 Unilever N.V. Article et procede pour le nettoyage de tissus
DE102005028295A1 (de) * 2005-06-18 2006-11-16 Henkel Kgaa Proteasen aus psychrophilen Organismen
WO2013024143A1 (fr) * 2011-08-18 2013-02-21 Unilever Plc Système enzymatique
CN107922889A (zh) * 2015-08-28 2018-04-17 荷兰联合利华有限公司 改善的洗涤组合物
EP3740186A4 (fr) * 2018-01-18 2022-03-09 Nohbo, LLC Dosette de produit d'hygiène et ses procédés d'utilisation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830947A (en) * 1969-02-03 1974-08-20 Battelle Development Corp Preparation of creamed cottage cheese
SU895930A1 (ru) * 1979-12-21 1982-01-07 Войсковая Часть 25840 Способ биохимической очистки сточных вод
DD269862A1 (de) * 1988-01-05 1989-07-12 Akad Wissenschaften Ddr Verfahren zur kultivierung von mikroorganismen aus extremen umwelten zur gewinnung von biomasse
US5312748A (en) * 1986-11-25 1994-05-17 Novo Nordisk A/S Protease
JPH06199585A (ja) * 1993-01-05 1994-07-19 Kowa Sangyo Kk 堆肥化資材の製造方法とその装置
RU2017705C1 (ru) * 1990-11-01 1994-08-15 Вячеслав Николаевич Афанасьев Способ получения органического удобрения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830947A (en) * 1969-02-03 1974-08-20 Battelle Development Corp Preparation of creamed cottage cheese
SU895930A1 (ru) * 1979-12-21 1982-01-07 Войсковая Часть 25840 Способ биохимической очистки сточных вод
US5312748A (en) * 1986-11-25 1994-05-17 Novo Nordisk A/S Protease
DD269862A1 (de) * 1988-01-05 1989-07-12 Akad Wissenschaften Ddr Verfahren zur kultivierung von mikroorganismen aus extremen umwelten zur gewinnung von biomasse
RU2017705C1 (ru) * 1990-11-01 1994-08-15 Вячеслав Николаевич Афанасьев Способ получения органического удобрения
JPH06199585A (ja) * 1993-01-05 1994-07-19 Kowa Sangyo Kk 堆肥化資材の製造方法とその装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8244, Derwent World Patents Index; Class D15, AN 82-94781E, XP002011892 *
DATABASE WPI Section Ch Week 8950, Derwent World Patents Index; Class D16, AN 89-364570, XP002011890 *
DATABASE WPI Section Ch Week 9433, Derwent World Patents Index; Class C04, AN 94-269298, XP002011889 *
DATABASE WPI Section Ch Week 9515, Derwent World Patents Index; Class C04, AN 95-113634, XP002011891 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000764A2 (fr) * 1999-06-25 2001-01-04 The Penn State Research Foundation Composition eliminant les taches, contenant des enzymes proteolytiques particulieres isolees et pures
WO2001000764A3 (fr) * 1999-06-25 2001-03-29 Penn State Res Found Composition eliminant les taches, contenant des enzymes proteolytiques particulieres isolees et pures
US6326346B1 (en) 1999-06-25 2001-12-04 The Clorox Company Stain removing compositions containing particular isolated and pure proteolytic enzymes
WO2003099987A1 (fr) * 2002-05-23 2003-12-04 Unilever N.V. Article et procede pour le nettoyage de tissus
US7052520B2 (en) 2002-05-23 2006-05-30 Unilever Home & Personal Care Usa, A Division Of Conopco, Inc. Article and process for cleaning fabrics
DE102005028295A1 (de) * 2005-06-18 2006-11-16 Henkel Kgaa Proteasen aus psychrophilen Organismen
WO2013024143A1 (fr) * 2011-08-18 2013-02-21 Unilever Plc Système enzymatique
CN103748205A (zh) * 2011-08-18 2014-04-23 荷兰联合利华有限公司 酶体系
CN107922889A (zh) * 2015-08-28 2018-04-17 荷兰联合利华有限公司 改善的洗涤组合物
EP3740186A4 (fr) * 2018-01-18 2022-03-09 Nohbo, LLC Dosette de produit d'hygiène et ses procédés d'utilisation
US11744786B2 (en) 2018-01-18 2023-09-05 Nohbo, Inc. Hygiene product pod and methods of using same

Also Published As

Publication number Publication date
AR005291A1 (es) 1999-04-28
TR199601063A2 (tr) 1997-07-21
AU4692696A (en) 1997-07-28
ZA9610820B (en) 1997-06-24

Similar Documents

Publication Publication Date Title
US5707950A (en) Detergent compositions containing lipase and protease
US6147045A (en) Detergent compositions comprising specific amylase and a specific surfactant system
US6197070B1 (en) Detergent compositions comprising alpha combination of α-amylases for malodor stripping
US5837010A (en) Detergent compositions containing a lipase variant at low levels
EP0885285B1 (fr) Compositions de detergence comprenant des proteases et des amylases superieures
US5786316A (en) Cleaning compositions comprising xylanases
WO1996013568A1 (fr) Compositions de nettoyage contenant des xylanases
WO1998005748A1 (fr) Compositions detergentes comportant une amylase perfectionnee pour le nettoyage de tissus delaves
EP0883673A1 (fr) Compositions nettoyantes comprenant une endo-dextranase
US6140293A (en) Detergent compositions comprising a specific amylase and a protease
WO1997036977A1 (fr) Compositions detergentes contenant une amylase specifique et des agents tensioactifs de polyglucoside d'alkyle
WO1997024428A1 (fr) Compositions detergentes contenant des enzymes psychrophiles/psychrotrophes
EP0912682A1 (fr) Compositions detergentes comprenant une enzyme lipolytique et un systeme tensio-actif specifique
WO1995034627A1 (fr) Composition detergente contenant des proteases de haute alkalinite compatible avec la laine
US5965507A (en) Cleaning compositions comprising chondroitinase
WO1997043385A1 (fr) COMPOSITIONS DETERGENTES COMPRENANT UNE COMBINAISON D'α-AMYLASES POUR SUPPRIMER LES MAUVAISES ODEURS
EP0912683A1 (fr) Compositions de detergence comprenant une enzyme lipolytique specifique ainsi qu'un tensioactif a base de polyglucoside d'alkyle
EP0912681A1 (fr) Compositions detergentes comprenant une enzyme lipolytique specifique et un dispersant a base de savon de chaux
WO1997004066A1 (fr) Compositions detergentes comportant une amylase specifique et un systeme tensioactif specifique
WO1996041867A1 (fr) Compositions de nettoyage contenant de la keratanase
US5922082A (en) Detergent composition containing wool compatible high alkaline proteases
EP0931134A1 (fr) Compositions detergentes contenant un enzyme lipolytique specifique et un polymere facilitant le lavage
WO1996041861A1 (fr) Compositions de nettoyage contenant de la chondroitinase
WO1997004054A1 (fr) Compositions detergentes comprenant une amylase specifique et une protease
WO1997043380A1 (fr) Compositions detergentes comprenant une enzyme lipolytique specifique et une zeolite map

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KG KP KR KZ LK LR LT LU LV MD MG MK MN MX NO NZ PL PT RO RU SE SG SI SK TJ TM TT UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WA Withdrawal of international application
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/005319

Country of ref document: MX

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642