WO1997023424A1 - Glass article covered with ultraviolet-absorbing colored coat - Google Patents

Glass article covered with ultraviolet-absorbing colored coat Download PDF

Info

Publication number
WO1997023424A1
WO1997023424A1 PCT/JP1996/003759 JP9603759W WO9723424A1 WO 1997023424 A1 WO1997023424 A1 WO 1997023424A1 JP 9603759 W JP9603759 W JP 9603759W WO 9723424 A1 WO9723424 A1 WO 9723424A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
film
ultraviolet
glass article
glass
Prior art date
Application number
PCT/JP1996/003759
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuhiro Kawazu
Taro Miyauchi
Koichi Maeda
Tatsuya Noguchi
Original Assignee
Nippon Sheet Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co., Ltd. filed Critical Nippon Sheet Glass Co., Ltd.
Priority to US08/817,601 priority Critical patent/US5876854A/en
Priority to DE69615827T priority patent/DE69615827T2/en
Priority to EP96942625A priority patent/EP0811583B1/en
Priority to AU11730/97A priority patent/AU692121B2/en
Publication of WO1997023424A1 publication Critical patent/WO1997023424A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/217FeOx, CoOx, NiOx
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/219CrOx, MoOx, WOx
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/228Other specific oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/287Chalcogenides
    • C03C2217/288Sulfides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/287Chalcogenides
    • C03C2217/289Selenides, tellurides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/29Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/479Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/74UV-absorbing coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes

Definitions

  • the present invention relates to a glass article coated with an ultraviolet-absorbing colored film, particularly a glass article coated with an ultraviolet-absorbing colored film used for vehicles such as automobiles and windows of buildings. It relates to a glass plate.
  • a method for obtaining colored glass (1) by applying silver or copper as an inorganic salt to the glass surface and then baking, the ultra-fine particles of silver or copper as an inorganic salt penetrate into the glass substrate and form a transparent colloidal color.
  • Other methods include (3) producing a metal film deposited on a glass substrate using a sputtering method.
  • a metal oxide such as zinc oxide, titanium oxide, or cerium oxide, which is an ultraviolet absorbing component
  • a sol-gel method or a sputtering method There is a method of forming an absorption film.
  • the film on the glass substrate formed by the above-mentioned various methods is colored but does not have ultraviolet absorbing performance, or has ultraviolet absorbing performance but is not colored.
  • Japanese Laid-6-1 9 1 896 JP-colored film containing silicon oxide, titanium oxide and gold microparticles for example, as a preferred composition, T i 0 2 8 5 ⁇ 3 wt%, S i 0 4 0 Glass articles coated with a colored film in the range of 00% by weight and 185 1160% by weight are described.
  • An object of the present invention is to provide a glass article coated with an ultraviolet absorbing colored film, which can freely control the color tone, ultraviolet transmittance and visible light transmittance.
  • the present inventors have newly developed a glass article coated with an ultraviolet-absorbing colored film having a coloring function and a high ultraviolet ray blocking rate and capable of freely controlling the visible light transmittance in order to solve the above problems.
  • At least one fine particle for coloring selected from the group consisting of gold, silver, platinum, palladium, sulfurizing dome, and cadmium selenide
  • At least one coloring metal oxide selected from the group consisting of cobalt oxide, chromium oxide, copper oxide, manganese oxide, nickel oxide, and iron oxide
  • a UV-absorbing colored film containing as a main component is coated on a glass substrate.
  • Silicon oxide is necessary to maintain the strength of the film. If its content is too low, the strength of the film will be low and the visible light reflectance will be too high. Conversely, if the amount is too large, the transparency of the film decreases, and the ultraviolet absorbing performance also decreases. Therefore, the inclusion of silicon oxide
  • the content is 5 to 50% by weight, preferably 30 to 50% by weight, and more preferably 15 to 40% by weight in terms of Si0.
  • Titanium oxide is necessary for forming a film containing silicon oxide and cerium oxide. If the content is too low, the film forming property and transparency of the film are reduced, and the ultraviolet absorbing ability is also reduced. I do. Conversely, if it is too large, the film-forming property is reduced and the visible light reflectance is too high. Accordingly, the content ⁇ the titanium oxide is 5-7 0% by weight in terms of T i 0 2, preferably 5 to 4 5% by weight, more preferably 1 5-4 5 wt%.
  • Cerium oxide is a component necessary for absorbing ultraviolet rays, and if its content is too low, the ultraviolet absorbing ability is reduced and the film forming property is reduced. Conversely, if the amount is too large, the transparency of the film decreases. Therefore, the content of cerium oxide is 20 to 80% by weight, preferably 20 to 60% by weight, and more preferably 30 to 60% by weight in terms of Ce () 2. .
  • At least one type of coloring fine particles selected from the group consisting of gold, silver, platinum, palladium, sulfide dome and selenide dominate is necessary for obtaining a bright color, and its content is very low. If it is too high, sufficient coloring cannot be obtained, and if it is too high, the durability of the film decreases. Therefore, the content of the coloring fine particles (the total amount when a plurality of types are used in combination) is 5 to 30% by weight, preferably 10 to 20% by weight. Of these coloring fine particles, gold fine particles and a mixture of gold fine particles and palladium fine particles are preferably used because they are chemically stable, easily available, and inexpensive.
  • At least one coloring metal oxide selected from the group consisting of cobalt oxide, chromium oxide, copper oxide, manganese oxide, nickel oxide, and iron oxide shows a dark color by itself, but coexists with the above coloring fine particles.
  • the color tone can be adjusted to show a preferable color tone, and the visible light transmittance can be arbitrarily adjusted in the range of 20% to 80 (If the content is too large, the visible light reflectance of the film is reduced. Therefore, the content of the metal oxide for coloring (when a plurality of types are used in combination) is Co 0 and C r, respectively.
  • the thickness is preferably 30 to 200 nm, and more preferably 45 to 150 nm.
  • the UV-absorbing colored film has a refractive index of 6.3-3.20 so that the glass plate having the UV-absorbing colored film is on an automobile window, and the coating surface of the glass plate is on the inside of the vehicle.
  • the visible light reflectance from the inside of the vehicle is too high, which may obstruct the driver's view.
  • the ratio is preferably as small as possible, about 20% or less, 10% or less, and 8% or less.
  • the visible light reflectance of the glass plate viewed from the outside of the vehicle is too high, the glass plate has a glaring appearance, so that the visible light when the light is incident from the surface opposite to the coated surface of the glass plate is preferable.
  • the reflectivity is preferably as small as possible at about 20% or less, more preferably at most 10%, and more preferably at most 8%.
  • the value (saturation) of (a 2 + b 2 ) 1/2 calculated from the values of a and b in the color system is preferably 10 or less, more preferably 5.0 or less, and still more preferably 2. is 0 or less in. the present invention, during the UV absorbing colored film and the glass article substrate, an intermediate layer containing silicon oxide, i.e., silicon oxide, in terms of S i 0 2, 2 0 To 100% by weight, preferably 30 to 90% by weight, titanium oxide, dioxide Koniumu oxide parsley ⁇ beam, at least one gold ⁇ product selected from the group consisting of zinc oxide and evening tantalum (the total amount when used in combination of plural kinds are), respectively T i 0 2, Z r 0 in terms of 2, C e 0 2, Z n 0 and T a 2 0 5, 0 to 7 0 weight 9, more preferably 2 0-6 5 wt%, gold, silver, platinum, palladium, sulfide force 0 to 30% by weight, more preferably 5 to 20% by weight,
  • the intermediate layer has a refractive index of 1.45 to 2.05 and is at least 0.] 0, more preferably at least 0.2 lower than the refractive index of the ultraviolet absorbing film. It is adjusted by adding titanium oxide and other metal oxides and coloring fine particles as needed. By adjusting the refractive index and the film thickness of the intermediate layer having a low refractive index, the reflectance of visible light can be reduced, and the reflection color tone is adjusted to a color preferably close to neutral gray. be able to.
  • the intermediate layer preferably has an intermediate refractive index between the refractive index of the ultraviolet absorbing film and the refractive index of the base glass (usually 1.51 to 1.52 for soda-lime silicate glass).
  • the refractive index of the ultraviolet absorbing film is ⁇
  • the refractive index of the intermediate layer and the film thickness (nm) are n 2 and t, respectively. If the refractive index of the base glass is ⁇ 3 and ⁇ is a light wavelength (nm) in the range of 400 to 700 nm, then n satisfying the following equations (1) and (2): It is preferred to choose 2 and t.
  • the refractive index of the lower refractive index uppermost layer is such that the reflection color of the ultraviolet absorbing glass is made neutral and the reflection light at the interface between air and the lower refractive index uppermost layer is reduced in order to reduce the visible light reflectance. It is preferable to satisfy the condition that the reflected light at the interface between the uppermost layer and the ultraviolet absorbing film is canceled.
  • Refractive index eta 2 is antireflection effect be outside slightly from the equation of the low refractive Oriritsu uppermost layer is large, therefore, eta 4 9 0-1 1 0% of the square root of the refractive index of the ultraviolet absorbing film, i.e.,
  • the refractive index of the ultraviolet absorbing film is preferably 1.8 or more in order to obtain a non-reflection condition with the low refractive index uppermost layer.
  • the thickness t after firing of the low refractive index uppermost layer is an optical film thickness of a wavelength of 400 to 700 nm; Actually, it is preferable that the thickness is in the range of + 10% to 110% with respect to the thickness thereof.
  • the film thickness may be 0.95 to 1.05 times the 1/4 wavelength of visible light of 500 to 600 ⁇ m.
  • the coloring fine particles show different coloring depending on the value of the refractive index of the matrix, and when the matrix has a high refractive index, it is colored near blue, and when the matrix has a low refractive index. Color to a color close to pink.
  • the intermediate layer or the lower refractive index uppermost layer also contains coloring fine particles, particularly fine particles of the same type as the coloring fine particles in the ultraviolet absorbing film, the coloring fine particles in the intermediate layer (or the lower refractive index uppermost layer) , Middle layer
  • the film having the two-layer structure has a different coloration from the coloring fine particles in the ultraviolet absorbing film having a different refractive index, so that the film as a whole exhibits a composite transmitted light tone.
  • the reflectance of visible light from the coated surface side of the glass plate and from the glass surface is as low as about 20% or less.
  • the reflection tone from the side (glass side) is also preferably close to neutral gray, and is calculated from the values of a and b in the Lab color system (a 2 + b 2 ) 1 2 (saturation) Is preferably 10 or less, more preferably 5.0 or less, and even more preferably 2.0 or less.
  • Each of the straight lines preferably has a color tone in a sector ⁇ formed by connecting points A ′ and B ′ and points B ′ and C ′ with arcs of a circle centered on point 0 ′, respectively.
  • titanium oxide and cell oxide are 35-55,
  • the green color glass substrate, particularly the transmitted light has an a value of 1 10.0 to -4.0 in the Lab color system, and -1.0 to 4.0 b
  • the transmitted color close to neutral gray in particular, the transmitted light is represented by the Lab color system, where a is ⁇ 5.
  • To 5.0 and b is ⁇ A colored coated glass plate having a color tone in the range of 5.0 to 5.0 and a transmission color represented by a lightness in which L is 60 to 90 is obtained.
  • the UV-absorbing colored film itself having a refractive index of 1.65 to 1.76 shows reddish purple to purple coloring, but this color is combined with the green color of the glass substrate that has a complementary color relationship, resulting in neutral gray If the refractive index of the ultraviolet absorbing colored film is higher than 1.76, the color of the film itself becomes blue, and in combination with the green glass substrate described above. However, a color close to neutral gray cannot be obtained, and it becomes more turquoise. In the above, the case where the coloring particles are contained in the ultraviolet-absorbing colored film has been described. However, an intermediate layer having a low refractive index is provided between the ultraviolet-absorbing colored film and the glass article substrate, or the same composition as the intermediate layer is used.
  • the layer (hereinafter referred to as the “low-refractive-index top layer”) is provided on the above-mentioned ultraviolet-absorbing coloring film, instead of including the coloring fine particles in the ultraviolet-absorbing coloring film, the intermediate layer (or the low-refractive-index top layer) May be contained.
  • the second invention expresses, in terms of% by weight,
  • An ultraviolet-absorbing colored film containing, as a main component, between the ultraviolet-absorbing colored film and the glass substrate or on or above the ultraviolet-absorbing film, expressed in terms of% by weight: gold, silver, platinum, c ° At least one kind of coloring fine particles selected from the group consisting of radium, sulfurizing dome, and cadmium selenide
  • At least one metal oxide selected from the group consisting of titanium oxide, zirconium oxide, cerium oxide, zinc oxide, and tantalum oxide
  • At least one metal oxide for coloring selected from the group consisting of cobalt oxide, chromium oxide, copper oxide, manganese oxide, nickel oxide and iron oxide
  • the intermediate layer is a glass article coated with UV absorbing colored film was formed having a refractive index lower than the refractive index of the ultraviolet absorbing film (or
  • As the low refractive index top layer at least one selected from the group consisting of cobalt oxide, chromium oxide, copper oxide, manganese oxide, nickel oxide, and iron oxide, in addition to the colloidal fine particles for coloring and silicon oxide.
  • the color tone of the transmitted light can be adjusted by further adding the metal oxide of the present invention, and the visible light transmittance can be arbitrarily adjusted in the range of 20% to 80%.
  • the coloring metal oxide is contained in the intermediate layer (or the low refractive index uppermost layer) in a range of 0 to 30% by weight, preferably 0 to 18.0% by weight, and more preferably 0.2 to 1% by weight. 0.0% by weight. If the content is less than 0.2% by weight, the effect of reducing the coloring and the visible light transmittance is not produced. On the other hand, if it exceeds 30% by weight, the visible light transmittance becomes less than 20%, and the color tone is hardly seen, which is inconvenient.
  • the intermediate layer (or the uppermost layer having a low refractive index) is at least one selected from the group consisting of the coloring fine particles, silicon oxide, cobalt oxide, chromium oxide, copper oxide, manganese oxide, nickel oxide, and iron oxide.
  • at least one metal oxide selected from the group consisting of titanium oxide, zirconium oxide, cerium oxide, zinc oxide, and tantalum oxide in addition to one kind of coloring metal oxide, UV absorption performance can be enhanced and visible light transmittance can be arbitrarily adjusted within the range of 20 to 80%.
  • At least one metal oxide selected from the group consisting of titanium oxide, zirconium oxide, cerium oxide, zinc oxide, and tantalum oxide, when contained in the intermediate layer in a plurality, is 0 to 7 in total. It is contained in the range of 0% by weight, preferably 5 to 70% by weight. If the content is less than 5% by weight, the effect of enhancing the ultraviolet absorbing performance is not produced. Conversely, if the content exceeds 70% by weight, the film strength is disadvantageously reduced.
  • various colors such as red, blue, and yellow can be obtained.
  • a transparent color can be realized, and by containing at least one oxide selected from the group consisting of Co, Cr, Cu, Mn, Ni, and Fe, the visible light transmittance is 20%. It can be adjusted arbitrarily at about 80% .Furthermore, by adopting a two-layer structure using a low refractive index layer as an undercoat or the top layer, the reflectance can be lowered and the reflection color can be adjusted. can do.
  • chloride or nitrate such as chloroauric acid, silver nitrate, or palladium chloride is suitable as a raw material for fine particles of silver, platinum, or palladium, but is stable and soluble. If there is, there is no particular limitation.
  • Raw materials for the cadmium sulfide and cadmium selenide fine particles include acetic acid cadmium, nitric acid cadmium, cadmium chloride, and SeC (NH 2 ).
  • the ultraviolet absorbing colored film containing colored fine particles of the present invention comprises, on a substrate, a solution comprising a compound for forming colored fine particles, raw materials of silicon oxide, titanium oxide, and cerium oxide, and if necessary, a catalyst, an additive, and an organic solvent. It is obtained by drying after application and baking. Sulfurizing power The dough is obtained by performing a sulfurizing treatment in the above calcination process.
  • any material can be used as long as it can form a transparent film by a sol-gel method, and is specifically described below.
  • metal alkoxide is preferable, and examples thereof include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane. Condensates (n ⁇ 2) or mixtures of these condensates are also conveniently used.
  • alkoxy group is a linear or branched alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a 2-ethylbutyl group or an octyl group, a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, Alkenyl groups such as vinyl group, aryl group, y-methacryloxypropyl group and 7- acryloxypropyl group, aralkyl groups such as phenyl group, tolyl group and xylyl group, and aralkyl groups such as benzyl and phenethyl group.
  • alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a 2-ethylbutyl group or an octyl group
  • a cycloalkyl group such as
  • titanium oxide examples thereof include those substituted with a group or a mercaptopropyl group, an archloropropyl group, a 7 -aminopropyl group, or the like.
  • an organic compound of titanium such as titanium alkoxide, titanium acetyl acetate, or titanium carboxylate is preferably used.
  • the titanium alkoxide is generally represented by T i (OR) (R is an alkyl group having up to 4 carbon atoms), but titanium isopropoxide and titanium butoxide are preferable in view of reactivity. It has also been known that in the case of titanium, it is preferable to use acetyl acetate in view of its stability.
  • the titanium alkoxide may be converted to acetylacetonate with acetylacetone, or a commercially available titanium acetyl acetate may be used.
  • a carboxylate As a raw material for cerium oxide, organic compounds of cerium such as cerium alkoxide, cerium acetyl acetonate, and cerium carboxylate can be suitably used.
  • cerium inorganic compounds such as nitrates, chlorides, and sulfates can be used, but cerium nitrates and cerium acetyl acetate are preferred from the viewpoint of stability and availability.
  • the hydrolysis catalysts include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, oxalic acid, formic acid, propionic acid, and p-toluenesulfonic acid Organic acids such as are used.
  • the ultraviolet absorbing colored film As a raw material for oxides of Co, Cr, Cu, Mn, Ni, and Fe to be contained in the ultraviolet absorbing colored film in addition to the above-mentioned colored fine particles, silicon oxide, titanium oxide, and cell oxide.
  • the coating liquid for coating the ultraviolet absorbing colored film is obtained by dissolving each raw material in a solvent and mixing them at a predetermined ratio.
  • the organic solvent used in the present invention depends on the film forming method.
  • a solvent having a low evaporation rate is preferable.
  • the reason that a solvent with a low evaporation rate is preferable is that if a solvent with a high evaporation rate is used, the solvent will evaporate before sufficient leveling is performed.
  • the evaporation rate of the solvent is generally evaluated by a relative evaporation rate index with that of butyl acetate being 100. Solvents with a value of 40 or less are classified as solvents with "extremely slow" evaporation rates, and such solvents are preferred as organic solvents for gravure coating, flexographic printing and roll coating.
  • sorbet mouth solvent ethylene glycol monoethyl ether
  • butyl solvent mouth solvent ethylene glycol monobutyl ether
  • cellosolve acetate ethylene glycol monoethyl ether
  • carbitol diethylene glycol monoethyl ether-hexylene glycol, diethylene glycol, tripropylene glycol, diacetone alcohol, tetrahydrofurfuryl alcohol and the like.
  • the solvent of the coating solution used in the present invention desirably contains at least one such solvent. However, in order to adjust the viscosity, surface tension, etc. of the coating solution, a plurality of the above solvents are used. You may use it.
  • Solvents having a high evaporation rate and a relative evaporation rate exceeding 100 such as methanol (61 ()), ethanol (340), n-propanol (110), and isopropanol (300) ) May be added to the above-mentioned solvents having a relative evaporation rate index of 40 or less.
  • the coating method used in the present invention is not particularly limited, and examples thereof include a spin coating method, a dip coating method, a spray coating method, and a printing method. In particular, printing methods such as a gravure coating method, a flexographic printing method, a roll coating method, and a screen printing method are preferable because of high productivity and high use efficiency of the coating liquid composition.
  • the coating liquid for an ultraviolet absorbing colored film is applied on a glass substrate by the above-mentioned coating method, and then, in an oxidizing atmosphere, provided that the coating liquid forms a film containing cadmium sulfide fine particles.
  • heat treatment is performed at a temperature of 100 ° C. to 400 ° C. for 5 to 200 minutes to precipitate fine particles for coloring in the film.
  • baking at a temperature of 500 to 700 or more for 10 seconds to 5 minutes, an ultraviolet absorbing colored film having a thickness of 60 to 200 nm is formed.
  • the first layer is applied and dried by heat, the second layer is applied again and dried by heat, and the same operation is repeated.
  • the above-mentioned film firing can be used also in this bending and / or heat strengthening step, and no special film firing is required.
  • silicon oxide, titanium oxide and cell oxide are as described above. Since the raw materials for the ultraviolet absorbing colored film can be used, the raw materials for zirconium oxide, zinc oxide, and tantalum oxide are described below.
  • the raw materials of zirconium oxide include tetramethoxy zirconium, tetraethoxy zirconium, tetraisopropoxy zirconium, tetra n-propoxy zirconium, tetrisopropoxy zirconium isopropanol complex, tetraisobutoxy zirconium, tetra n-butoxy zirconium, and tetra sec-butoxy. Zirconium and tetra-t-butoxyzirconium can be conveniently used.
  • zirconium halide alkoxides such as zirconium monochloride trialkoxide and zirconium dichloride dialkoxide in which the alkoxy group of the compound represented by the general formula (4) is replaced by a halogen group.
  • an alkoxyzirconium organic acid salt in which at least one of the above alkoxy groups of the zirconium alkoxide is replaced with an organic acid such as acetic acid, propionic acid, butanoic acid, acrylic acid, methacrylic acid, and stearic acid is used. It can also be used.
  • a raw material of the zinc oxide those obtained by dispersing zinc oxide fine particles in an organic solvent, organic zinc such as zinc acetyl acetate or zinc ethylhexanoate, or organic zinc modified with alkanolamines are preferable.
  • organic zinc such as zinc acetyl acetate or zinc ethylhexanoate, or organic zinc modified with alkanolamines are preferable.
  • alkoxides and organic phthalates are preferred. At least one kind of these titanium, cerium, tantalum, zirconium, and silicon materials and their mixing ratios are compatible and stable with solvents, colored fine particles and transition metal compounds, and optically refractive index, color, reflection color
  • the mechanical is abrasion resistant, chemical durability Is preferably determined in consideration of the following.
  • an unreinforced glass plate, a tempered glass plate, a laminated glass plate, a double-layer glass plate, or the like having an uncolored or colored transparent soda lime silicate glass composition is used.
  • it is a colored glass plate that blocks heat rays, and its transmitted light has an a value of 11.0 to -2.0 in Lab display and a color of b of 14.0 to 4.0.
  • the transmittance of UV light of wavelength is 10 ⁇ 70%
  • the transmittance of visible light is 40 ⁇ 85%
  • the transmittance of sunlight is 20 ⁇ 80%
  • the thickness is 1.5 ⁇ 5.
  • a 5 mm automotive window pane is preferably used.
  • An example of a preferred composition of the glass plate is S i 0 2 72.4, ⁇
  • the transmittance of ultraviolet light having a wavelength of 370 nm is 10 to 70%, more preferably the transmittance of ultraviolet light (Tuv) by ISO 950; nm ⁇ 2 97.5
  • the value obtained by multiplying and multiplying the transmittance at 5 nm pitch interval at 5 nm by the determined weighting factor) is 15% or less and the visible light transmittance is 40 to 85.
  • the solar transmittance (also referred to as solar transmittance) is 20 to 80%, more preferably 40 to 65%, and the thickness is 1.5 mm-5 .5 mm automotive glass sheets are preferably used.
  • a colored glass having high ultraviolet absorbing ability can be obtained.
  • color and visible light can be obtained by combining coloring with metal fine particles and ultraviolet shielding by an ultraviolet absorbent. It is possible to control the transmittance and the UV transmittance freely, the UV transmittance is less than 55%, and the transmittance of UV at 370 nm is less than 55%.
  • a UV-shielding colored glass having the UV transmittance of 45% or less, particularly the UV transmittance (Tuv) of 12% or less can be produced. Also double layer coating thereby, it is possible to control the reflectance using interference due to the film configuration, and to realize fine color tone adjustment.
  • the visible light transmittance and the transmitted light can be changed by changing the concentrations of the colloid fine particles for coloring and other coloring raw materials and the concentrations of cerium oxide, titanium oxide and silicon oxide.
  • the color tone, reflected light color tone, and UV cutoff rate can be adjusted arbitrarily.
  • FIG. 1 is a graph showing the color tone of transmitted light according to an example of the present invention and a comparative example.
  • FIG. 2 is a graph showing the performance of the example of the present invention and the comparative example.
  • ethyl silicate (Echirun ligate 40" manufactured by Colcoat Co., Ltd.)
  • 6 g of 0.1 N hydrochloric acid and 44 g of ethyl ethyl solvent were added, and the mixture was stirred at room temperature for 2 hours.
  • This solution was used as a silicon oxide stock solution. This amounts to 20% at S i 0 solids.
  • chloroauric acid tetrahydrate was dissolved in an ethyl sorb solution to a concentration of 15%. Take 1.11 g of the cerium nitrate stock solution, 0.732 g of the titanium oxide stock solution, 0.65 g of the silicon oxide stock solution, and 6.2 g of ethylethyl cellosolve.
  • the characteristics of the colored film in terms of visible light transmittance, sunlight transmittance, color (transmitted light), and transmittance of ultraviolet light with a wavelength of 370 nm are described. The results are shown in Tables 1-3. The obtained colored film showed good results in chemical resistance and Taber resistance.
  • the neutral color tone of the reflection color ((a 2 + b 2) the value of saturation is Ru represented by 1 2 1 0 or less) were obtained.
  • the reflection characteristic is a value measured when light is incident from the surface side (glass surface side) opposite to the coating film of the glass substrate.
  • Example 2 Of the stock solutions prepared in Example 1, 1.12 g of a stock solution of cerium nitrate, 1.05 g of a stock solution of titanium oxide, 0.25 g of a stock solution of silicon oxide, and 6.2 g of an ethyl acetate solution were added thereto. 0 g was added, and finally 1.33 g of a solution of chloroauric acid tetrahydrate in ethyl chloride was added and mixed and stirred to prepare a coating solution.
  • Tables 1 to 3 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating solution prepared above in the same manner as in Example 1.
  • the obtained colored film showed good results in chemical resistance and Taber resistance.
  • a neutral reflection color was obtained ⁇
  • Example 1 Of the stock solutions prepared in Example 1 as the coating solution, 0.68 g of the stock solution of cerium nitrate, 0.68 g of the stock solution of titanium oxide, 0.12 g of the stock solution of silicon oxide, and the above 15% cobalt chloride Take 2.0 g of the hexahydrate solution, add 5.19 g of ethyl sorbate, and finally add 1.33 g of chloroauric acid tetrahydrate solution of ethyl sorbate, and mix and stir. A coating solution 3 was prepared. Tables 1 to 3 show the properties of the glass plate obtained by applying, air-drying, and heat-treating the coating solution 3 prepared above in the same manner as in Example 1. The obtained colored film showed good results in chemical resistance and taber resistance. In addition, a reflection color with a neutral color tone was obtained.
  • Ethylcet mouth solve was added to 15 g of chromium chloride hexahydrate, and the mixture was dissolved at 0 g. This results in a 15% chromium chloride hexahydrate solution.
  • Example II a stock solution of cerium nitrate was used.
  • Tables 1 to 3 show the properties of the glass plate obtained by applying, air-drying, and heat-treating the coating solution 4 prepared above in the same manner as in Example 1.
  • the obtained colored film showed good results in chemical resistance and taber resistance.
  • a reflection color with a neutral color tone was obtained.
  • the first-layer coating solution of the stock solution of Example 1, 2.5 g of the stock solution for silylation and 5.50 g of Solvent-Elusolve were added, and finally, 3-aminopropyltriethoxysilane was chlorided. 2.0 g of a 10% by weight ethyl chloride sorb solution of chloroauric acid tetrahydrate, which was equimolar to gold acid, was added and mixed and stirred to prepare a coating solution 5. The coating solution 6 used in Example] was used as the coating solution for the layer.
  • the above-prepared coating liquid 5 was spin-coated on an uncolored transparent glass substrate at 100 rpm for 10 seconds. After air drying, heat treatment was performed at 250 ° C. for 2 hours to produce an interlayer film. Next, a coating solution 6 was similarly formed on the intermediate film. further
  • Baking was performed at 720 ° C. for 120 seconds to obtain a glass substrate having a colored film. Characteristics of colored film Are shown in Tables 1-3. The obtained colored film showed good results in chemical resistance and Taber resistance. In addition, a reflection color having a neutral color tone was obtained.
  • a coating liquid 7 As the coating solution for the second layer, of the stock solutions prepared in Example II, 4 g of the stock solution of cerium nitrate, 1.13 g of the stock solution of titanium oxide, and 0.20 g of the stock solution of silicon oxide. 6.20 g of ethylcellosolve was added to the solution, and finally a solution of chloroauric acid tetrahydrate in ethyl ethyl acetate was added to the solution.
  • Example 5 In the same manner as in Example 5, except that the coating liquids 7 and 8 prepared above were used instead of the coating liquids 5 and 6 of Example 5, coating, air drying, and heat treatment of the glass plate obtained were performed. The characteristics are shown in Tables 1 to 3. The obtained colored film showed good results in chemical resistance and Taber resistance. In addition, a reflection color having a neutral color tone was obtained.
  • Example 8 Glass obtained by coating, air-drying, and heat-treating in the same manner as in Example 5 except that the above-mentioned coating liquids 5 and 9 were used instead of the coating liquids 5 and 6 in Example 5.
  • Tables 1 to 3 show the properties of the plate.
  • the obtained colored film showed good results in chemical resistance and Taber resistance.
  • a reflection color having a neutral color tone was obtained.
  • coating liquid 7 used in Example 6 and coating liquid 3 used in Example 3 were used, respectively.
  • Tables 1 to 3 show the characteristics of the glass plates obtained by air drying and heat treatment. The obtained colored film showed good results in chemical resistance and Taber resistance. In addition, a neutral reflection color was obtained.
  • Example 5 Same as Example 5 except that the coating liquids 5 and 6 of Example 5 were replaced with the coating liquid 7 used in Example 6 and the coating liquid 4 used in Example 4.
  • the properties of the glass plate obtained by coating, air drying and heat treatment are shown! 3 to 3.
  • the obtained colored film showed good results in chemical resistance and Taber resistance.
  • the thickness and the refractive index of this intermediate layer satisfied the above equations (1) and (2).
  • the optical thickness was equal to ⁇ ⁇ of the wavelength of light at a wavelength of 660 nm.
  • Example 1 Of the stock solutions prepared in Example 1 as the coating solution, 1.13 g of the stock solution of cerium nitrate, 1.13 g of the stock solution of titanium oxide, and 0.2 g of the stock solution of silicon oxide were added with ethyl acetate solution. 7.54 g was added and mixed and stirred to prepare a coating liquid 10.
  • the coating liquid 3 used in Example 3 and the above-mentioned coating liquid 10 were used, respectively, and coated, air-dried and heat-treated in the same manner as in Example 5.
  • Tables 1 to 3 show the characteristics of the obtained glass sheets. The obtained colored film showed good results in chemical resistance and Taber resistance.
  • Example 1 Of the stock solutions prepared in Example 1 as the coating solution, take 1-79 g of a stock solution of cerium nitrate, 0.254 g of a stock solution of titanium oxide, and 0.21 g of a stock solution of silicon oxide. To the mixture was added 6.42 g of ethyl ethyl solvate, and finally, 1.33 g of a solution of chloroauric acid tetrahydrate in ethyl ethyl cellosolve was added and mixed with stirring to prepare a coating solution.
  • Tables 1 to 3 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating solution prepared above in the same manner as in Example 1.
  • the obtained colored film showed good results in chemical resistance and fiber resistance.
  • Tables 1 to 3 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating solution prepared above in the same manner as in Example 1.
  • the obtained colored film showed good results in chemical resistance and Taber resistance.
  • the c the reflection color of the neutral tones are obtained
  • Tables 1 to 3 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating solution prepared above in the same manner as in Example 1.
  • the obtained colored film showed good results in chemical resistance and Taber resistance. In addition, a neutral color reflection was obtained.
  • Example 14 Except that the same green glass substrate used in Example 14 was used as the glass substrate, the same coating liquid as in Example 6 was used, and the coating, air drying, and heat treatment were performed in the same manner as in Example 6. Tables 1 to 3 show the properties of the obtained glass plate.
  • the obtained colored film showed good results in chemical resistance and Taber resistance. Also, a reflection color with a neutral color tone was obtained.
  • the coating liquid 11 prepared as described above was spin-coated on a non-colored transparent glass substrate at 1,000 rpm for 10 seconds. After air drying 2 50 at 2 Heat treatment was performed for a period of time to precipitate gold fine particles. Further, baking was performed at 720 for 120 seconds to obtain a glass substrate having a coloring film. Tables 4 and 5 show the properties of the colored film. The transmittance of the obtained colored film at 3700 nm was 63.6%, the ultraviolet absorbing ability was low, it was colorless and transparent, and no colored colored film was obtained.
  • a coating solution 2.5 g of the stock solution of Example 1 and 6.17 g of a solvent solution of ethyl acetate were added, and finally, 3-aminopropyltriethoxysilane was added to the chloroauric acid. 2.0 g of a 10% by weight solution of chloroauric acid tetrahydrate in ethyl acetate was added and mixed and stirred to prepare a coating solution 12.
  • Tables 4 and 5 show the properties of the glass plates obtained by coating, air-drying, and heat-treating the coating solution 2 prepared above in the same manner as in Comparative Example. Although the obtained colored film was colored pink, the transmittance at 370 nm was 74.5%, and the ultraviolet absorbing ability was low.
  • Example 2 Of the stock solutions of Example 1, 1.07 g of the stock solution, 1.73 g of the titania stock, and 5.87 g of the ethyl acetate solvent were used as the coating solution. 1.33 g of ethyl sorbate solution of acid tetrahydrate was added, mixed and stirred to prepare a coating solution 13.
  • Tables 4 and 5 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating liquid 13 prepared above in the same manner as in Comparative Example 1. Although the obtained colored film was colored purple, it had a transmittance of 370 nm of 61.7% and a low ultraviolet absorbing ability.
  • a coating solution As a coating solution, 3.03 g of a titania stock solution and 5.64 g of an ethyl sorb solution were taken out of the stock solution of Example], and finally, a solution of chloroauric acid tetrahydrate in an ethyl solution of 1. 33 g was added and mixed and stirred to prepare a coating solution 14.
  • Tables 4 and 5 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating liquid 14 prepared above in the same manner as in Comparative Example 1.
  • the obtained colored film is colored blue.
  • the transmittance at 370 nm was 5.5%, and the ultraviolet absorbing ability was high.
  • the color tone did not change except for blue.
  • Example 1 Of the stock solutions of Example 1, 0.50 g of the stock solution of silica, 2.42 g of the stock solution of titania, and 5.75 g of the solvent solution of ethyl acetate were used as the coating solution. 1.33 g of a solution of ethyl ether in the mouth was added and mixed with stirring to prepare a coating solution 15.
  • Tables 4 to 5 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating solution 15 prepared above in the same manner as in Comparative Example 1.
  • the obtained colored film was colored blue, but had a transmittance of 370 nm of 58.6% and a low ultraviolet absorbing ability.
  • the hue of the transmitted light (the positions of points where a and b are represented by rectangular coordinates in the Lab color system are polar coordinates, green is 180 degrees, blue is 270 degrees) Plotted on the abscissa and the transmittance of ultraviolet light (wavelength 370 nm) on the ordinate, the example has an ultraviolet transmittance of 55% or less and a transmitted light hue of 74 °. While a film that can be adjusted in a wide range can be obtained, in the comparative example, only a film that can adjust the transmitted light hue in a narrow range of about 15 degrees is obtained in a range having an ultraviolet transmittance of 55% or less. thing.
  • the transmitted light saturation (the value of (a 2 + b 2 ) 12 in the Lab color system) obtained in the examples is 1 for each of the examples 1, 2, 11, 1, 12, and 13. 0.1, 9.4, 10.3, 10.] and 9.4, which are relatively low values of 9 to 10 and are dark, whereas the comparative example is comparative example 3 , 4, and 5 are 15.0, 19.4, and 20.4, respectively, which are relatively high values of 15 to 20 and are bright colors.
  • the glass coated with a single-layer film containing Au fine particles of the present invention products having various hues as compared with the prior art can be obtained, and a product having a relatively low saturation can be obtained.
  • Example 5 having an ultraviolet absorbing film containing Au fine particles and an intermediate layer containing silicon oxide and Au fine particles, compared to Example 1 having only an ultraviolet absorbing film of the same composition, The hue of the transmitted light changes greatly due to the combination of the coloring by the Au fine particles of Example 1 and the coloring by the Au fine particles in the intermediate layer. Is as high as 16
  • Example 6 having an ultraviolet absorbing film containing Au fine particles and an intermediate layer containing silicon oxide and zirconium oxide
  • the reflection color tone was changed compared to Example 2 having only an ultraviolet absorbing film having the same composition.
  • Example 8 having an ultraviolet absorbing film containing Au fine particles and cobalt oxide and an intermediate layer containing silicon oxide and zirconia oxide, compared with Example 3 having only an ultraviolet absorbing film of the same composition,
  • the hue of the transmitted light is almost the same (188 degrees in both Example 8 and Example 3), but the saturation is high (9.7 in Example 8 and 4.6 in Example 3).
  • the light reflectance has decreased and the reflection color tone has also changed.
  • Example 9 having an ultraviolet absorbing film containing Au fine particles and chromium oxide and an intermediate layer containing silicon oxide and zirconium oxide, the intermediate layer satisfies the non-reflection condition as described above. However, as compared with Example 4 having only the ultraviolet absorbing film of the same composition, the visible light reflectance is very small.
  • Example 10 having an ultraviolet absorbing film containing Au fine particles and another ultraviolet absorbing film containing silicon oxide, titanium oxide, and cerium oxide and not containing Au fine particles, It is effectively used when it is desired to increase the ultraviolet absorption capacity without changing the color tone of the contained ultraviolet absorbing film.
  • Example 7 having an ultraviolet absorbing film containing no Au fine particles and an intermediate layer containing silicon oxide and Au fine particles, the transmitted light hue was a comparative example because the refractive index of the matrix of the Au fine particles in the intermediate layer was low. It is almost the same pink as 2, but has a higher ultraviolet absorbing ability than Comparative Example 2.
  • Example 10 having an ultraviolet absorbing film containing no Au fine particles and an intermediate layer containing silicon oxide, cerium oxide, Au fine particles and cobalt oxide, Example 10 did not contain cerium oxide and cobalt oxide in the intermediate layer. Compared with Example 7, it has much higher UV absorption capacity.
  • Example 14 which is a single-layer film containing Au fine particles and not containing cobalt oxide or the like (base material is green-colored glass), compared to Example 2 which differs only in that the base material is non-colored, Visible light transmittance is low, heat ray blocking performance and ultraviolet absorption performance are high, and the color tone of transmitted light and reflected light is changing.
  • Example 15 has an ultraviolet absorbing film containing Au fine particles, and an intermediate layer containing silicon oxide and zirconium oxide, and the substrate is a green colored glass. Compared with Example 6 which differs only in Example 6, the visible light transmittance is lower, the heat ray blocking performance and the ultraviolet absorbing power are higher, and the visible light hue is slightly changed.
  • Titanium oxide stock solution 0.64g 0.64g 0.76g
  • Silicon oxide stock solution 1.19g 1.I9g 0.94g
  • 9 LRAM (I) glass composition; S i 0 2 70. 4. A 1 2 0 a 1. 5, Total iron (F e 2 0 3 0. 6 2, ( inner F e O 0.] 8 5), C e 0 2 l. 67, T
  • Baking was performed at 20 ° C. for 120 seconds to obtain a glass plate having a colored film.
  • the glass plates with a colored film produced using the coating liquid 16 are Examples 16 and 17, and the glass plates with a colored film produced using the coating liquids 18 and 19 are Example 1 respectively. 8 and 19.
  • Tables 7 to 9 show the characteristics of the visible light transmittance, the sunlight transmittance, the color (transmitted light) of the colored film, and the transmittance of ultraviolet light having a wavelength of 370 nm.
  • the obtained coloring film showed good results in chemical resistance and Taber resistance.
  • the saturation of the transmitted color is 4.
  • the reflection characteristic is a value measured by applying light from the glass surface side of the glass substrate.
  • Visible light transmittance (Y a) of glass plate with colored film Tables 10 and 2 show the optical properties such as sunlight transmittance (Tg), color (transmitted light), and transmittance of ultraviolet light (Tuv), and the film compositions.
  • the obtained colored film showed good results in chemical resistance and Taber resistance.
  • the reflection characteristic is a value measured by applying light from the coated surface side of the glass substrate.
  • glass substrates two types of green glass substrates A and B having a size of 1 Ocm ⁇ 1 Ocm having a glass composition (% by weight), a plate thickness and optical characteristics shown in Table 13 are prepared.
  • the present invention is suitable for a glass article coated with an ultraviolet absorbing colored film, particularly a glass plate coated with an ultraviolet absorbing colored film used for vehicles such as automobiles and windows of buildings.

Abstract

A glass article wherein the surface of the glass as the base is covered with an ultraviolet-absorbing colored coat mainly comprising 5 to 50 % by weight of silicon oxide, 5 to 70 % by weight of titanium oxide, 20 to 80 % by weight of cerium oxide, 5 to 30 % by weight of at least one particulate colorant selected from the group consisting of gold, silver, platinum, palladium, cadmium sulfide and cadmium selenide, and 0 to 30 % by weight of at least one coloring metal oxide selected from the group consisting of cobalt oxide, chromium oxide, copper oxide, manganese oxide, nickel oxide, and iron oxide. The glass article can be controlled at will in color tone and transmittances of ultraviolet and visible rays.

Description

明 細 書 紫外線吸収着色膜被覆ガラス物品 技術分野 本発明は、 紫外線吸収着色膜を被覆されたガラス物品、 特に自動車などの車両 用や建築物の窓などに使用される紫外線吸収着色膜が被覆されたガラス板に関す るものである。 背景技術  TECHNICAL FIELD The present invention relates to a glass article coated with an ultraviolet-absorbing colored film, particularly a glass article coated with an ultraviolet-absorbing colored film used for vehicles such as automobiles and windows of buildings. It relates to a glass plate. Background art
着色ガラスを得る方法として、 ①無機塩の銀や銅をガラス表面に塗布した後焼 成することにより、 無機塩の銀や銅の超微粒子がガラス基板内に浸透し、 透明に コロイ ド発色させるイオン交換法、 または②金属アルコキシド溶液に金イオンを 混ぜて基板に塗布後、 熱処理することにより金微粒子を析出させる方法がある。 また他には、 ③スパッタリング法を用いてガラス基板上に蒸着した金属の膜を作 製する方法がある。  As a method for obtaining colored glass, (1) by applying silver or copper as an inorganic salt to the glass surface and then baking, the ultra-fine particles of silver or copper as an inorganic salt penetrate into the glass substrate and form a transparent colloidal color. There are ion exchange methods, or (2) a method in which gold ions are mixed with a metal alkoxide solution, applied to a substrate, and then heat-treated to precipitate gold fine particles. Other methods include (3) producing a metal film deposited on a glass substrate using a sputtering method.
一方、 ガラス基板上に紫外線吸収膜を形成する方法としては、 紫外線吸収成分 である酸化亜鉛、 酸化チタン、 酸化セリウムなどの金属酸化物をゾルゲル法ゃス パッタリング法を用いてガラス基板上に紫外線吸収膜を形成する方法がある。 例 えば、 重量比で C 602 : 丁 1 02 : 8 1 02 を64 : 1 8 : ] 8の割合で含有す る紫外線吸収膜を、 ゾルゲル法でガラス基板上に形成する方法が、 特開平 6 - 1 9 25 98号公報に記載されている。 On the other hand, as a method of forming an ultraviolet absorbing film on a glass substrate, a metal oxide such as zinc oxide, titanium oxide, or cerium oxide, which is an ultraviolet absorbing component, is coated on a glass substrate using a sol-gel method or a sputtering method. There is a method of forming an absorption film. For example, C 60 2 in a weight ratio: Ding 1 0 2: 8 1 0 2 64: 1 8:] ultraviolet absorbing film you containing 8 ratio, a method of forming on a glass substrate by a sol-gel method, It is described in Japanese Patent Application Laid-Open No. 6-192598.
上記の各種方法で形成されたガラス基板上の膜は着色されているが紫外線吸収 性能を有しないか、 または紫外線吸収性能を有するが着色されていないものであ る。 また、 特開平 6— 1 9 1 896号公報には、 酸化珪素、 酸化チタンおよび金 微粒子を含有する着色膜、 例えば好ましい組成として、 T i 02 8 5〜 3重量%、 S i 0 4 0~0重量%、 八 11 5 ~ 6 0重量%の範囲の着色膜を被覆されたガ ラス物品が記載されている。 しかしこの着色膜被覆ガラス物品は、 T i 02 含有 量が多くないときには紫外線遮断性能が充分でなく、 また T i 0 2 含有量が多く すれば高い紫外線遮断性能が得られ、 青色〜ピンク色に着色するものの、 その透 過光色調および紫外線透過率、 そして可視光線透過率を自由に制御することがで きない。 発明の開示 The film on the glass substrate formed by the above-mentioned various methods is colored but does not have ultraviolet absorbing performance, or has ultraviolet absorbing performance but is not colored. Further, in Japanese Laid-6-1 9 1 896 JP-colored film containing silicon oxide, titanium oxide and gold microparticles, for example, as a preferred composition, T i 0 2 8 5~ 3 wt%, S i 0 4 0 Glass articles coated with a colored film in the range of 00% by weight and 185 1160% by weight are described. However, this colored film-coated glass article, T i 0 2 content When the amount is not much not sufficient ultraviolet shielding performance and T i 0 if many 2 content higher ultraviolet blocking performance is obtained, but colored in blue to pink, that transparently light color and UV transmittance In addition, the visible light transmittance cannot be freely controlled. Disclosure of the invention
本発明は色調、 紫外線透過率および可視光線透過率を自由にコントロールする ことができる紫外線吸収着色膜被覆ガラス物品を提供することを課題とする。 本発明者らは、 上記課題を解決するために新たに着色機能と高紫外線遮断率を 有し、 可視光線透過率を自由にコントロールできる紫外線吸収着色膜被覆ガラス 物品を開発した。  An object of the present invention is to provide a glass article coated with an ultraviolet absorbing colored film, which can freely control the color tone, ultraviolet transmittance and visible light transmittance. The present inventors have newly developed a glass article coated with an ultraviolet-absorbing colored film having a coloring function and a high ultraviolet ray blocking rate and capable of freely controlling the visible light transmittance in order to solve the above problems.
すなわち、 本発明は、 重量%で表して、  That is, the present invention, expressed in wt%,
酸化珪素 5 ~ 5 0、  Silicon oxide 5 to 50,
酸化チタン 5〜 7 0、  Titanium oxide 5 ~ 70,
酸化セリウム 2 0〜8 0、  Cerium oxide 20-80,
金、 銀、 白金、 パラジゥム、 硫化力 ドミゥム、 およびセレン化カ ドミゥムか らなる群から選ばれた少なく とも 1種の着色用微粒子  At least one fine particle for coloring selected from the group consisting of gold, silver, platinum, palladium, sulfurizing dome, and cadmium selenide
5〜 3 0、  5-30,
酸化コバルト、 酸化クロム、 酸化銅、 酸化マンガン、 酸化ニッケル、 および酸 化鉄からなる群から選ばれた少なくとも 1種の着色用金属酸化物  At least one coloring metal oxide selected from the group consisting of cobalt oxide, chromium oxide, copper oxide, manganese oxide, nickel oxide, and iron oxide
0 - 3 0 .  0-3 0.
を主成分として含有する紫外線吸収着色膜を、 ガラス基材に被覆した紫外線吸収 着色膜被覆ガラス物品である。 本発明における上記紫外線吸収着色膜の組成の各成分について、 以下に説明す る。 Is a glass article coated with a UV-absorbing colored film in which a UV-absorbing colored film containing as a main component is coated on a glass substrate. Each component of the composition of the ultraviolet absorbing colored film in the present invention will be described below.
酸化珪素は膜の強度を保っために必要であり、 その含有量があまり低すぎると 膜の強度が低くなり、 また可視光反射率が高くなり過ぎる。 逆に多すぎると膜の 透明性が低下するとともに、 紫外線吸収性能も低下する。 従って、 酸化珪素の含 有量は S i 0 に換算して 5〜5 0重量%であり、 好ましくは 3 0〜5 0重量%、 更に好ましくは 1 5〜4 0重量%である。 Silicon oxide is necessary to maintain the strength of the film. If its content is too low, the strength of the film will be low and the visible light reflectance will be too high. Conversely, if the amount is too large, the transparency of the film decreases, and the ultraviolet absorbing performance also decreases. Therefore, the inclusion of silicon oxide The content is 5 to 50% by weight, preferably 30 to 50% by weight, and more preferably 15 to 40% by weight in terms of Si0.
酸化チタンは、 酸化珪素および酸化セリゥムを含む膜の成膜のために必要であ り、 その含有量があまり低すぎると、 膜の成膜性および透明性が低下すると共に、 紫外線吸収能も低下する。 逆に多すぎると成膜性が低下するともに、 可視光反射 率が高くなりすぎる。 従って、 酸化チタンの含有^は T i 0 2 に換算して 5〜7 0重量%であり、 好ましくは 5 ~ 4 5重量%、 更に好ましくは 1 5〜4 5重量% である。 Titanium oxide is necessary for forming a film containing silicon oxide and cerium oxide. If the content is too low, the film forming property and transparency of the film are reduced, and the ultraviolet absorbing ability is also reduced. I do. Conversely, if it is too large, the film-forming property is reduced and the visible light reflectance is too high. Accordingly, the content ^ the titanium oxide is 5-7 0% by weight in terms of T i 0 2, preferably 5 to 4 5% by weight, more preferably 1 5-4 5 wt%.
酸化セリウムは、 紫外線を吸収するために必要な成分であり、 その含有量があ まり低すぎると、 紫外線吸収能が低下するとともに、 成膜性が低下する。 逆に多 すぎると膜の透明性が低下する。 従って、 酸化セリウムの含有量は、 C e () 2 に 換算して 2 0 ~ 8 0重量%であり、 好ましくは 2 0〜6 0重量%、 更に好ましく は 3 0〜 6 0重量%である。 Cerium oxide is a component necessary for absorbing ultraviolet rays, and if its content is too low, the ultraviolet absorbing ability is reduced and the film forming property is reduced. Conversely, if the amount is too large, the transparency of the film decreases. Therefore, the content of cerium oxide is 20 to 80% by weight, preferably 20 to 60% by weight, and more preferably 30 to 60% by weight in terms of Ce () 2. .
金、 銀、 白金、 パラジウム、 硫化力ドミゥムおよびセレン化力 ドミゥムからな る群から選ばれた少なくとも 1種の着色用微粒子は、 明るい着色を得るために必 要であり、 その含有量があまり低すぎると充分な着色が得られず、 逆に多すぎる と膜の耐久性が低下する。 従って、 上記着色用微粒子の含有量 (複数種を併用す るときはその合計量) は 5 ~ 3 0重量%であり、 好ましくは 1 0〜2 0重量%で ある。 これらの着色用微粒子のうち、 金微粒子および金微粒子 ·パラジウム微粒 子混合物が化学的に安定であり、 容易に入手でき安価であるので好ましく使用さ れる。  At least one type of coloring fine particles selected from the group consisting of gold, silver, platinum, palladium, sulfide dome and selenide dominate is necessary for obtaining a bright color, and its content is very low. If it is too high, sufficient coloring cannot be obtained, and if it is too high, the durability of the film decreases. Therefore, the content of the coloring fine particles (the total amount when a plurality of types are used in combination) is 5 to 30% by weight, preferably 10 to 20% by weight. Of these coloring fine particles, gold fine particles and a mixture of gold fine particles and palladium fine particles are preferably used because they are chemically stable, easily available, and inexpensive.
酸化コバルト、 酸化クロム、 酸化銅、 酸化マンガン、 酸化ニッケルおよび酸化 鉄からなる群から選ばれた少なくとも 1種の着色用金属酸化物は、 単独では暗い 着色を示すが、 上記着色用微粒子と共存して色調を調節し、 好ましい色調を示し、 かつ可視光線透過率を 2 0 %〜 8 0 の範囲で任意に調節せしめることができる ( その含有量があまり多すぎると、 膜の可視光反射率が大きくなり過ぎ、 また可視 光線透過率が 2 0 %未満となり不都合である。 従って、 上記着色用金属酸化物の 含有量 (複数種を併用するときはその合計量) はそれぞれ C o 0、 C r O、 C u 0、 1^1 11 0、 1^ 1 0、 ぉょび1^ 6 2 0 に換算して 0 ~ 3 0重量%であり、 好まし くは 0〜 1 8. 0重量%であり、 更に好ましくは 0. 2 ~ 1 0. 0重量%である ( 紫外線吸収着色膜の厚みは、 あまり小さすぎると紫外線吸収能が低くなり、 そ して所望の着色が得られなくなり、 逆にはあまり大きすぎると膜強度が低下する ので、 3 0〜 2 0 0 n mの厚みとすることが好ましく、 より好ましくは 4 5〜 1 5 0 n mである。 また紫外線吸収着色膜は、 】 . 6 3〜2. 2 0の屈折率を有す る。 上記紫外線吸収着色膜を有するガラス板が自動車窓に、 ガラス板の被覆表面が 車内側になるように、 取り付けられた場合、 車内側から見た可視光反射率があま り高いと運転者の視界を妨害するおそれがあるので、 ガラス板の被覆表面側から 光を入射したときの可視光の反射率は、 約 2 0 %以下でできるだけ小さい方が好 ましく、 1 0 %以下、 更に 8 %以下であることがより好ましい。 また車外側から 見た前記ガラス板の可視光反射率があまり高いとぎらぎらした外観となるので、 ガラス板の被覆表面とは反対の表面から光を入射したときの可視光の反射率は、 約 2 0 %以下でできるだけ小さい方が好ましく、 1 0 %以下、 更に 8 %以下であ ることがより好ましい。 そして反射色調は中性灰色に近いことが外観上好ましく、 L a b表色系で aおよび bの値から計算される ( a 2+ b 2) 1/2 の値 (彩度) が 1 0以下であることが好ましく、 より好ましくは 5. 0以下、 更に好ましくは 2. 0以下である。 本発明において、 前記紫外線吸収着色膜とガラス物品基材の間に、 酸化珪素を 含有する中間層、 すなわち、 酸化珪素を、 S i 02 に換算して、 2 0〜 1 0 0重 量%、 好ましくは 3 0〜 9 0重量%、 酸化チタン、 酸化ジルコニウム、 酸化セリ ゥム、 酸化亜鉛および酸化夕ンタルからなる群から選ばれた少なくとも 1種の金 厲酸化物 (複数種を併用するときはその合計量) を、 それぞれ T i 02、 Z r 0 2、 C e 02、 Z n 0および T a 205に換算して、 0〜7 0重量 9 、 より好ましく は 2 0 ~ 6 5重量%、 金、 銀、 白金、 パラジウム、 硫化力ドミゥム、 およびセレ ン化カ ドミゥムからなる群から選ばれた少なくとも 1種の着色用微粒子 (複数種 を併用するときはその合計量) を 0 ~ 3 0重量%、 より好ましくは 5〜 2 0重量 %を含有する、 前記紫外線吸収膜の屈折率よりも低い屈折率を有する中間層を形 成させることができる。 At least one coloring metal oxide selected from the group consisting of cobalt oxide, chromium oxide, copper oxide, manganese oxide, nickel oxide, and iron oxide shows a dark color by itself, but coexists with the above coloring fine particles. The color tone can be adjusted to show a preferable color tone, and the visible light transmittance can be arbitrarily adjusted in the range of 20% to 80 (If the content is too large, the visible light reflectance of the film is reduced. Therefore, the content of the metal oxide for coloring (when a plurality of types are used in combination) is Co 0 and C r, respectively. O, C u 0, 1 ^ 1 1 1 0, 1 ^ 1 0, in terms of Oyobi 1 ^ 6 2 0 0-3 0% by weight, preferably Ku is 0-1 8.0 wt%, more preferably from 2 to 1 0. 0% 0. (thickness of the ultraviolet absorbing colored film is lower is too much small ultraviolet absorptivity, Mr. Su Therefore, the thickness is preferably 30 to 200 nm, and more preferably 45 to 150 nm. The UV-absorbing colored film has a refractive index of 6.3-3.20 so that the glass plate having the UV-absorbing colored film is on an automobile window, and the coating surface of the glass plate is on the inside of the vehicle. If installed, the visible light reflectance from the inside of the vehicle is too high, which may obstruct the driver's view. The ratio is preferably as small as possible, about 20% or less, 10% or less, and 8% or less. Further, if the visible light reflectance of the glass plate viewed from the outside of the vehicle is too high, the glass plate has a glaring appearance, so that the visible light when the light is incident from the surface opposite to the coated surface of the glass plate is preferable. The reflectivity is preferably as small as possible at about 20% or less, more preferably at most 10%, and more preferably at most 8%. The value (saturation) of (a 2 + b 2 ) 1/2 calculated from the values of a and b in the color system is preferably 10 or less, more preferably 5.0 or less, and still more preferably 2. is 0 or less in. the present invention, during the UV absorbing colored film and the glass article substrate, an intermediate layer containing silicon oxide, i.e., silicon oxide, in terms of S i 0 2, 2 0 To 100% by weight, preferably 30 to 90% by weight, titanium oxide, dioxide Koniumu oxide parsley © beam, at least one gold厲酸product selected from the group consisting of zinc oxide and evening tantalum (the total amount when used in combination of plural kinds are), respectively T i 0 2, Z r 0 in terms of 2, C e 0 2, Z n 0 and T a 2 0 5, 0 to 7 0 weight 9, more preferably 2 0-6 5 wt%, gold, silver, platinum, palladium, sulfide force 0 to 30% by weight, more preferably 5 to 20% by weight, of at least one kind of coloring fine particles selected from the group consisting of a domeme and a selenized cadmium (when a plurality of kinds are used in combination). % Of the intermediate layer having a refractive index lower than the refractive index of the ultraviolet absorbing film.
中間層の屈折率は 1. 4 5 ~ 2. 05で、 かつ紫外線吸収膜の屈折率よりも少 なくとも 0. ] 0、 より好ましくは少なくとも 0. 2低い値になるように、 酸化 珪素に必要に応じて酸化チタンその他の金属酸化物および着色用微粒子を添加し て調節される。 上記の低い屈折率を有する中間層の屈折率及び膜厚みを調整する ことにより、 可視光の反射率を低くすることができ、 また反射色調を、 好ましく は中性灰色に近い色に、 調節することができる。 中間層は前記紫外線吸収膜の屈 折率と、 基材ガラスの屈折率 (ソーダ石灰珪酸塩ガラスの場合通常は 1. 5 1〜 1. 5 2) との中間の屈折率を有することが好ましく、 可視光の反射率を低く し、 近赤外線光の反射を高めるためには、 紫外線吸収膜の屈折率を η , 、 中間層の屈 折率及び膜厚み ( n m) をそれぞれ n 2および t , 基材ガラスの屈折率を η 3、 λ を 4 0 0〜 7 00 n mの範囲の光波長 ( n m) とすれば、 下記式 ( 1 ) および (2 ) の 2式を満足するように、 n 2および tを選ぶことが好ましい。 The intermediate layer has a refractive index of 1.45 to 2.05 and is at least 0.] 0, more preferably at least 0.2 lower than the refractive index of the ultraviolet absorbing film. It is adjusted by adding titanium oxide and other metal oxides and coloring fine particles as needed. By adjusting the refractive index and the film thickness of the intermediate layer having a low refractive index, the reflectance of visible light can be reduced, and the reflection color tone is adjusted to a color preferably close to neutral gray. be able to. The intermediate layer preferably has an intermediate refractive index between the refractive index of the ultraviolet absorbing film and the refractive index of the base glass (usually 1.51 to 1.52 for soda-lime silicate glass). In order to reduce the reflectance of visible light and enhance the reflection of near-infrared light, the refractive index of the ultraviolet absorbing film is η, and the refractive index of the intermediate layer and the film thickness (nm) are n 2 and t, respectively. If the refractive index of the base glass is η 3 and λ is a light wavelength (nm) in the range of 400 to 700 nm, then n satisfying the following equations (1) and (2): It is preferred to choose 2 and t.
(η + (η )/4 ≥(η )1/2-(ηΙ3)/4 ( 1 ) t二; 1/4π2 ( 2 ) 上記酸化珪素を含有する中間層を設ける代わりに、 その中間層と同じ組成の層 (低屈折率最上層という) を上記紫外線吸収着色膜の上に設けることにより可視 光の反射率を低くすることができ、 また反射色調を、 好ましくは中性灰色に近い 色になるように、 調節することができる。 (η + (η) / 4 ≥ (η) 1 /2-(η Ι3 ) / 4 (1) t 2; 1 / 4π 2 (2) Instead of providing the above-mentioned intermediate layer containing silicon oxide By providing a layer having the same composition as that of the intermediate layer (referred to as a low refractive index uppermost layer) on the ultraviolet absorbing colored film, the reflectance of visible light can be reduced, and the reflection color tone is preferably neutral. It can be adjusted to a color close to gray.
上記低屈折率最上層の屈折率は、 紫外線吸収ガラスの反射色調をニュートラル にし、 可視光反射率を低減するために、 空気と低屈折率最上層の間の界面での反 射光と、 低屈折率最上層と紫外線吸収膜の間の界面での反射光を打ち消し合う条 件を満たすことが好ましい。  The refractive index of the lower refractive index uppermost layer is such that the reflection color of the ultraviolet absorbing glass is made neutral and the reflection light at the interface between air and the lower refractive index uppermost layer is reduced in order to reduce the visible light reflectance. It is preferable to satisfy the condition that the reflected light at the interface between the uppermost layer and the ultraviolet absorbing film is canceled.
すなわち、 低屈折率最上層の屈折率を η 4、 紫外線吸収膜の屈折率を η ,、 空気 の屈折率を η 3とすると、 屈折率についての完全な無反射条件は η 4 = ( η , η 3 ) '/2であり、 η 1であるから、 完全な無反射条件は η 4 = η , 1/2 となる。 低屈 折率最上層の屈折率 η 2 はこの式から若干外れていても反射防止効果は大きく、 従って、 η4 は紫外線吸収膜の屈折率の平方根の 9 0〜 1 1 0%、 すなわち、 That is, assuming that the refractive index of the low refractive index uppermost layer is η 4 , the refractive index of the ultraviolet absorbing film is η, and the refractive index of air is η 3 , the perfect non-reflection condition for the refractive index is η 4 = (η, η 3 ) ' / 2 and η 1, the perfect non-reflection condition is η 4 = η, 1/2 . Refractive index eta 2 is antireflection effect be outside slightly from the equation of the low refractive Oriritsu uppermost layer is large, therefore, eta 4 9 0-1 1 0% of the square root of the refractive index of the ultraviolet absorbing film, i.e.,
1. 1 0 X η ι 1 /2≥ η 4≥ 0. 90 x η ( 3) の式 ( 3 ) を満足することが好ましく、 より好ましくは 9 5〜! 05 %、 である ことが好ましい。 そして紫外線吸収膜の屈折率は、 低屈折率最上層との無反射条 件を得るために 1. 8以上であることが好ましい。 1.10 X η ι 1/2 ≥ η 4 ≥ 0.90 x η It is preferable to satisfy the expression (3) of (3), more preferably 95 to! It is preferably 05%. The refractive index of the ultraviolet absorbing film is preferably 1.8 or more in order to obtain a non-reflection condition with the low refractive index uppermost layer.
もう一^ 3の条件は、 低屈折率最上層の焼成後膜厚 tが、 4 00 ~ 700 n mの 波長; Iの可視光線の 1 4波長の光学膜厚であることである。 実際にはその厚み を中心として、 + 1 0 %〜一 1 0 %の範囲内にあることが好ましく、 すなわち、  Another condition is that the thickness t after firing of the low refractive index uppermost layer is an optical film thickness of a wavelength of 400 to 700 nm; Actually, it is preferable that the thickness is in the range of + 10% to 110% with respect to the thickness thereof.
1. l x A /(4 n4)≥ t≥ 0. 9 X λ ,/ ( 4 n ) (4 ) となるように式 (4 ) を満足することである。 より好ましくは 500〜 60 0 η mの可視光線の 1 /4波長の 0. 95 ~ 1. 0 5倍の膜厚であればよい。 1. lx A / (4 n 4 ) ≥ t ≥ 0.9 X λ, / (4 n) (4). More preferably, the film thickness may be 0.95 to 1.05 times the 1/4 wavelength of visible light of 500 to 600 ηm.
上記着色用微粒子は、 そのマ卜リ ッタスの屈折率の値によって異なる着色を示 し、 マトリ ックスの屈折率が高くなれば青色に近い色に着色し、 マ トリ ックスの 屈折率が低くなればピンク色に近い色に着色する。 中間層または低屈折率最上層 にも着色用微粒子、 特に前記紫外線吸収膜中の着色用微粒子と同種の微粒子を含 有させる場合、 中間層 (または低屈折率最上層) 中の着色用微粒子は、 中間層 The coloring fine particles show different coloring depending on the value of the refractive index of the matrix, and when the matrix has a high refractive index, it is colored near blue, and when the matrix has a low refractive index. Color to a color close to pink. When the intermediate layer or the lower refractive index uppermost layer also contains coloring fine particles, particularly fine particles of the same type as the coloring fine particles in the ultraviolet absorbing film, the coloring fine particles in the intermediate layer (or the lower refractive index uppermost layer) , Middle layer
(または低屈折率最上層) とは異なる屈折率を有する前記紫外線吸収膜中の着色 用微粒子とは異なる着色を示すので、 膜全体としては複合された透過光色調を示 す。 上記二層構造を有するガラス板が自動車窓に取り付けられた場合も、 上述と同 様に、 ガラス板の被覆表面側からおよびガラス面からの可視光の反射率は、 約 2 0 %以下でできるだけ小さい方が好ましく、 またガラス板の被覆表面とは反対の 側 (ガラス面側) からの反射色調も中性灰色に近いことが好ましく、 L a b表色 系で aおよび bの値から計算される (a 2+ b2) 1 2 の値 (彩度) が 1 0以下で あることが好ましく、 より好ましくは 5. 0以下、 更に好ましくは 2. 0以下で ある。 (Or the uppermost layer having a low refractive index) has a different coloration from the coloring fine particles in the ultraviolet absorbing film having a different refractive index, so that the film as a whole exhibits a composite transmitted light tone. As described above, when the glass plate having the two-layer structure is mounted on an automobile window, the reflectance of visible light from the coated surface side of the glass plate and from the glass surface is as low as about 20% or less. Smaller is preferable, and opposite to the coated surface of the glass plate The reflection tone from the side (glass side) is also preferably close to neutral gray, and is calculated from the values of a and b in the Lab color system (a 2 + b 2 ) 1 2 (saturation) Is preferably 10 or less, more preferably 5.0 or less, and even more preferably 2.0 or less.
本発明の紫外線吸収着色膜被覆ガラス物品は、 し a b表色系で表して点 0' (a = 0、 b = 0 ) 、 点 A' (a = 25、 b = 0) 、 点 B' ( a = 0、 b =— 2 5 ) 、 点 C' ( a = 0、 b = 2 5 ) 、 および点 0' をその順に、 点 0' と点 A' 、 および点 C' と点 0' をそれぞれ直線で、 点 A' と点 B' 、 および点 B' と点 C ' とをそれぞれ点 0' を中心とする円の円弧で結んでできる扇形の範囲內にある 色調を有することが好ましく、 より好ましくは L a b表色系で表して点 0 ( a = 0、 b = 0) 、 点 A ( a = 2 0、 b =— 6) 、 点 B ( a = 0、 b = - 2 0. 9 ) 、 点 C ( a = - 6、 b = 2 0 ) 、 および点 Oをその順に、 点 0と点 A、 および点 C と点 0をそれぞれ直線で、 点 Aと点 B、 および点 Bと点 Cとをそれぞれ点 0を中 心とする円の円弧で結んでできる扇形の範囲内にある透過光の色調を有する。 また、 本発明におけるガラス基材として、 グリーン色に着色された 1. 5〜5. 5 mmの厚みの透明ガラス基板を用いることにより、 中性灰色に近い透過色をも つ紫外線遮断ガラス板が得られる。 紫外線吸収着色膜中の着色用微粒子による透過光色調は膜のマトリ ックスの屈 折率によって変化する。 この膜の屈折率 1. 65〜 1. 76になるようにし、 ま た膜組成を  The glass article coated with an ultraviolet-absorbing colored film of the present invention has a point a ′ (a = 0, b = 0), a point A ′ (a = 25, b = 0), a point B ′ ( a = 0, b = — 2 5), point C '(a = 0, b = 2 5), and point 0' in that order, point 0 'and point A', and point C 'and point 0' Each of the straight lines preferably has a color tone in a sector 內 formed by connecting points A ′ and B ′ and points B ′ and C ′ with arcs of a circle centered on point 0 ′, respectively. More preferably, expressed in the Lab color system, point 0 (a = 0, b = 0), point A (a = 20, b = 6), point B (a = 0, b =-20. 9), point C (a = -6, b = 20) and point O in that order, point 0 and point A, and point C and point 0 as straight lines, respectively, point A and point B, and point B And the point C are connected by arcs of a circle centered on the point 0, respectively, and have a color tone of the transmitted light within a sector formed by the circle. Further, by using a 1.5-5.5 mm thick transparent glass substrate colored green as the glass substrate in the present invention, an ultraviolet shielding glass plate having a transmission color close to neutral gray can be obtained. can get. The color tone of the transmitted light due to the coloring particles in the ultraviolet absorbing colored film changes depending on the refractive index of the matrix of the film. The refractive index of this film should be 1.65 to 1.76, and the film composition should be
酸化珪素 30〜 50、  Silicon oxide 30-50,
酸化チタン 5〜 4 5、  Titanium oxide 5 ~ 4 5,
酸化セリウム 2 0〜60、  Cerium oxide 20-60,
ただし酸化チタンと酸化セリゥムの合計は 35〜 55、  However, the sum of titanium oxide and cell oxide is 35-55,
金の着色用微粒子 5〜 3 0、  Fine particles for gold coloring 5 ~ 30,
を主成分として含有するように選択し、 グリーン色のガラス基板、 特にその透過 光が、 L a b表色系で一 1 0. 0〜― 4. 0の aの値と、 — 1. 0〜 4. 0の b の色度を有するガラス板と組み合わせることにより、 中性灰色に近い透過色、 特 に透過光が、 L a b表色系で表して、 aがー 5 . () ~ 5 . 0、 bが- 5 . 0〜5 . 0の範囲の色調および Lが 6 0〜9 0の明度で表される透過色を有する着色被覆 ガラス板が得られる。 Is selected as a main component, and the green color glass substrate, particularly the transmitted light, has an a value of 1 10.0 to -4.0 in the Lab color system, and -1.0 to 4.0 b By combining with a glass plate having a chromaticity of, the transmitted color close to neutral gray, in particular, the transmitted light is represented by the Lab color system, where a is −5. () To 5.0 and b is − A colored coated glass plate having a color tone in the range of 5.0 to 5.0 and a transmission color represented by a lightness in which L is 60 to 90 is obtained.
この屈折率 1 . 6 5〜 1 . 7 6の紫外線吸収着色膜自体は赤紫〜紫色の着色を 示すが、 この色と補色関係にあるガラス基板のグリーン色とが複合されて、 中性 灰色に近い着色の着色被覆ガラス板が得られるが、 もし紫外線吸収着色膜の屈折 率が 1 . 7 6よりも高い場合には膜自体の着色は青色になり、 上記グリーン色の ガラス基板と組み合わせても、 中性灰色に近い色は得られず、 もっと青緑色にな る。 以上は、 紫外線吸収着色膜中に着色用微粒子を含有させる場合について述べた が、 紫外線吸収着色膜とガラス物品基材の間に低い屈折率を有する中間層を設け たり、 その中間層と同じ組成の層 (低屈折率最上層という) を上記紫外線吸収着 色膜の上に設けるときには、 着色微粒子を、 紫外線吸収着色膜中に含有させる代 わりに、 この中間層 (または低屈折率最上層) 中に含有させてもよい。  The UV-absorbing colored film itself having a refractive index of 1.65 to 1.76 shows reddish purple to purple coloring, but this color is combined with the green color of the glass substrate that has a complementary color relationship, resulting in neutral gray If the refractive index of the ultraviolet absorbing colored film is higher than 1.76, the color of the film itself becomes blue, and in combination with the green glass substrate described above. However, a color close to neutral gray cannot be obtained, and it becomes more turquoise. In the above, the case where the coloring particles are contained in the ultraviolet-absorbing colored film has been described. However, an intermediate layer having a low refractive index is provided between the ultraviolet-absorbing colored film and the glass article substrate, or the same composition as the intermediate layer is used. When the layer (hereinafter referred to as the “low-refractive-index top layer”) is provided on the above-mentioned ultraviolet-absorbing coloring film, instead of including the coloring fine particles in the ultraviolet-absorbing coloring film, the intermediate layer (or the low-refractive-index top layer) May be contained.
すなわち第 2の発明は、 ガラス基材の表面に、 重量%で表して、  In other words, the second invention expresses, in terms of% by weight,
酸化珪素 5〜5 0、  Silicon oxide 5 to 50,
酸化チタン 5〜 7 0、  Titanium oxide 5 ~ 70,
酸化セリウム 2 0〜8 0、  Cerium oxide 20-80,
を主成分として含有する紫外線吸収着色膜が被覆され、 前記紫外線吸収着色膜と 前記ガラス基材の間に、 または前記紫外線吸収膜の上に、 重量%で表して、 金、 銀、 白金、 ハ°ラジゥ厶、 硫化力 ドミゥム、 およびセレン化カ ドミゥムから なる群から選ばれた少なくとも 1種の着色用微粒子 An ultraviolet-absorbing colored film containing, as a main component, between the ultraviolet-absorbing colored film and the glass substrate or on or above the ultraviolet-absorbing film, expressed in terms of% by weight: gold, silver, platinum, c ° At least one kind of coloring fine particles selected from the group consisting of radium, sulfurizing dome, and cadmium selenide
5 ~ 3 0、  5-30,
酸化珪素 5〜 9 5、  Silicon oxide 5 ~ 95,
酸化チタン、 酸化ジルコニウム、 酸化セリウム、 酸化亜鉛、 および酸化 タン タルからなる群から選ばれた少なくとも 1種の金属酸化物  At least one metal oxide selected from the group consisting of titanium oxide, zirconium oxide, cerium oxide, zinc oxide, and tantalum oxide
(複数使用すときはその合計) 0〜7 0、 酸化コバルト、 酸化クロム、 酸化銅、 酸化マンガン、 酸化ニッケルおよび酸化 鉄からなる群から選ばれた少なくとも 1種の着色用金属酸化物 (To use multiple items, add them up) 0 ~ 70, At least one metal oxide for coloring selected from the group consisting of cobalt oxide, chromium oxide, copper oxide, manganese oxide, nickel oxide and iron oxide
(複数使用すときその合計) 0〜 3 0、  (Total when multiple items are used) 0 ~ 30,
を含有する、 前記紫外線吸収膜の屈折率よりも低い屈折率を有する中間層 (また は低屈折率最上層) を形成した紫外線吸収着色膜を被覆されたガラス物品である c 上記中間層 (または低屈折率最上層) としては前記着色用コロイ ド微粒子、 酸 化珪素の他に、 酸化コバルト、 酸化クロム、 酸化銅、 酸化マンガン、 酸化ニッケ ルおよび酸化鉄からなる群から選ばれた少なくとも 1種の金属酸化物を更に含有 させることにより透過光の色調を調節し、 かつ可視光線透過率で 2 0 %〜 8 0 % の範囲で任意に調節せしめることができる。 Containing, middle layer (or the low refractive index uppermost layer) c the intermediate layer is a glass article coated with UV absorbing colored film was formed having a refractive index lower than the refractive index of the ultraviolet absorbing film (or As the low refractive index top layer, at least one selected from the group consisting of cobalt oxide, chromium oxide, copper oxide, manganese oxide, nickel oxide, and iron oxide, in addition to the colloidal fine particles for coloring and silicon oxide. The color tone of the transmitted light can be adjusted by further adding the metal oxide of the present invention, and the visible light transmittance can be arbitrarily adjusted in the range of 20% to 80%.
前記着色用金属酸化物は中間層 (または低屈折率最上層) 中に 0 ~ 3 0重量% の範囲で含有させ、 好ましくは 0〜 1 8 . 0重量%、 更に好ましくは 0 . 2〜 1 0 . 0重量%含有させる。 その含有量が 0 . 2重量%未満では、 着色および可視 光線透過率を低くする効果が生じない。 また逆に 3 0重量%を越えると、 可視光 線透過率が 2 0 %未満となり、 色調が殆ど見えなくなり不都合である。  The coloring metal oxide is contained in the intermediate layer (or the low refractive index uppermost layer) in a range of 0 to 30% by weight, preferably 0 to 18.0% by weight, and more preferably 0.2 to 1% by weight. 0.0% by weight. If the content is less than 0.2% by weight, the effect of reducing the coloring and the visible light transmittance is not produced. On the other hand, if it exceeds 30% by weight, the visible light transmittance becomes less than 20%, and the color tone is hardly seen, which is inconvenient.
また上記中間層 (または低屈折率最上層) は、 前記着色用微粒子と、 酸化珪素 と、 酸化コバルト、 酸化クロム、 酸化銅、 酸化マンガン、 酸化ニッケルおよび酸 化鉄からなる群から選ばれた少なくとも 1種の着色用金属酸化物の他に、 酸化チ タン、 酸化ジルコニウム、 酸化セリウム、 酸化亜鉛、 および酸化タンタルからな る群から選ばれた少なくとも 1種の金属酸化物を更に含有させることにより、 紫 外線吸収性能を高め、 かつ可視光線透過率で 2 0 ~ 8 0 %の範囲で任意に調節 せしめることができる。  The intermediate layer (or the uppermost layer having a low refractive index) is at least one selected from the group consisting of the coloring fine particles, silicon oxide, cobalt oxide, chromium oxide, copper oxide, manganese oxide, nickel oxide, and iron oxide. By further containing at least one metal oxide selected from the group consisting of titanium oxide, zirconium oxide, cerium oxide, zinc oxide, and tantalum oxide, in addition to one kind of coloring metal oxide, UV absorption performance can be enhanced and visible light transmittance can be arbitrarily adjusted within the range of 20 to 80%.
酸化チタン、 酸化ジルコニウム、 酸化セリウム、 酸化亜鉛、 および酸化タンタ ルからなる群から選ばれた少なくとも 1種の金属酸化物は中間層中に、 複数含有 させるするときはその合計量で、 0 ~ 7 0重量%の範囲で含有させ、 好ましくは 5〜 7 0重量%含有させる。 含有量が 5重量%未満では、 紫外線吸収性能を高め る効果が生じない。 また逆に 7 0重量%を越えると、 膜強度が低下するので不都 合である。 本発明において、 着色コロイ ド微粒子の種類と量を変えたり、 酸化珪素、 酸化 チタンおよび酸化セリゥムの比率を変化させ膜の屈折率を変化させることにより、 赤系、 青系、 黄系まで種々の透過色が実現でき、 また C o、 C r、 C u、 M n、 N i、 F eからなる群から選ばれた少なくとも一種の酸化物を含有させることで、 可視光線透過率で 2 0 %〜8 0 %程度で任意に調節せしめることが可能で、 さら にまた、 低屈折率層をアンダーコートまたは最上層として用いる二層構成とする ことにより、 反射率を低くでき、 また反射色調を調節することができる。 本発明で使用される着色用微粒子のうち、 銀、 白金、 パラジウムの微粒子の原 料としては、 塩化金酸、 硝酸銀、 塩化パラジウム等の塩化物あるいは硝酸塩が適 当であるが、 安定で可溶性であれば特に限定しない。 硫化カ ドミウム、 およびセ レン化カドミゥ厶微粒子の原料としては、 酢酸力ドミゥ厶、 硝酸力 ドミゥム、 塩 化カ ドミウム、 S e C ( N H 2 ) 等が挙げられる。 本発明の着色微粒子含有紫外線吸収着色膜は、 着色微粒子を形成する化合物と、 酸化珪素、 酸化チタン、 および酸化セリウムの原料と必要に応じて触媒、 添加剤 及び有機溶剤からなる溶液を基板上に塗布後乾燥し、 焼成することによって得ら れる。 硫化力 ドミゥムは上記焼成過程で硫化処理することにより得られる。 At least one metal oxide selected from the group consisting of titanium oxide, zirconium oxide, cerium oxide, zinc oxide, and tantalum oxide, when contained in the intermediate layer in a plurality, is 0 to 7 in total. It is contained in the range of 0% by weight, preferably 5 to 70% by weight. If the content is less than 5% by weight, the effect of enhancing the ultraviolet absorbing performance is not produced. Conversely, if the content exceeds 70% by weight, the film strength is disadvantageously reduced. In the present invention, by changing the type and amount of the colored colloidal fine particles or changing the ratio of silicon oxide, titanium oxide, and cell oxide to change the refractive index of the film, various colors such as red, blue, and yellow can be obtained. A transparent color can be realized, and by containing at least one oxide selected from the group consisting of Co, Cr, Cu, Mn, Ni, and Fe, the visible light transmittance is 20%. It can be adjusted arbitrarily at about 80% .Furthermore, by adopting a two-layer structure using a low refractive index layer as an undercoat or the top layer, the reflectance can be lowered and the reflection color can be adjusted. can do. Among the fine particles for coloring used in the present invention, chloride or nitrate such as chloroauric acid, silver nitrate, or palladium chloride is suitable as a raw material for fine particles of silver, platinum, or palladium, but is stable and soluble. If there is, there is no particular limitation. Raw materials for the cadmium sulfide and cadmium selenide fine particles include acetic acid cadmium, nitric acid cadmium, cadmium chloride, and SeC (NH 2 ). The ultraviolet absorbing colored film containing colored fine particles of the present invention comprises, on a substrate, a solution comprising a compound for forming colored fine particles, raw materials of silicon oxide, titanium oxide, and cerium oxide, and if necessary, a catalyst, an additive, and an organic solvent. It is obtained by drying after application and baking. Sulfurizing power The dough is obtained by performing a sulfurizing treatment in the above calcination process.
また本発明で着色膜を形成する、 酸化珪素、 酸化チタン、 および酸化セリウム の原料としては、 ゾルゲル法により透明な膜を形成できるものなら何でもよく、 以下に具体的に述べる。 酸化珪素の原料としては、 金属アルコキシドが好適で、 例えばテトラメ トキシ シラン、 テトラエトキシシラン、 テトラプロボキシシラン、 テトラブトキシシラ ンなどが挙げられる。 またこれらの縮合体 (n≥ 2 ) 、 もしくは縮合体の混合物 も好便に用いられる。 たとえば縮合体としては、 へキサエトキシジシロキサン ( n = 2 ) 、 ォクタエトキシトリシロキサン (n = 3 ) 、 デカェトキシテトラシ ロキサン (n = 4 ) 、 エトキシポリシロキサン (n≥ 5 ) などが使用できる。 単 量体 ( n = 1 ) と縮合体 (n≥ 2 ) の混合物からなるェチルシリゲー ト 4 0 〔組 成は、 J . C i h 1 a rの文献、 Colloids and Surfaces A : Physicochera. Eng.In addition, as a raw material of silicon oxide, titanium oxide, and cerium oxide for forming a colored film in the present invention, any material can be used as long as it can form a transparent film by a sol-gel method, and is specifically described below. As a raw material of silicon oxide, metal alkoxide is preferable, and examples thereof include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane. Condensates (n≥2) or mixtures of these condensates are also conveniently used. For example, condensates include hexethoxydisiloxane (n = 2), octaethoxytrisiloxane (n = 3), decaethoxytetrasiloxane (n = 4), and ethoxypolysiloxane (n≥5). it can. single Silicate 40 composed of a mixture of a monomer (n = 1) and a condensate (n≥2) [Composition is described in J. Cih 1 ar, Colloids and Surfaces A: Physicochera. Eng.
Aspects 70 (1993年) 253頁から 268頁に記載されており、 重量分率で単量体 (n = 1 ) : 1 2. 8重量%、 2量体 ( n = 2 ) : 1 0. 2重量%、 3量体 ( n = 3 )Aspects 70 (1993), pp. 253 to 268, monomer (n = 1): 12.8% by weight, dimer (n = 2): 10.2 by weight fraction Wt%, trimer (n = 3)
: 1 2. 0重量%、 4量体 ( n = 4 ) : 7. 0重量%、 多量体 ( n≥ 5 ) : 56. 2重量%、 エタノール : 1. 8重量%) である〕 などが好適に使用できる。 また上記化合物のアルコキシ基が、 アルキル基と置換されたアルキルト リアル コキシシランなども使用可能である。 例えば、 アルコキシ基がメチル基、 ェチル 基、 プロピル基、 ブチル基、 2 -ェチルブチル基、 ォクチル基などの直鎖状ある いは分岐状のアルキル基、 シクロペンチル基、 シクロへキシル基等のシクロアル キル基、 ビニル基、 ァリル基、 y—メタク リロキシプロピル基、 7 -ァク リ ロキ シプロピル基などのようなアルケニル基、 フヱニル基、 トルィル基、 キシリル基 などのァリール基、 ベンジル、 フエネチル基などのァラルキル基またはァ—メル カプトプロピル基、 アークロロプロピル基、 7 —アミ ノプロピル基などに置換さ れたものが例示できる。 酸化チタンの原料としては、 チタンアルコキシ ド、 チタンァセチルァセ トネ一 ト、 チタンカルボキシレー トのようなチタンの有機化合物が好適に使用される。 チタンアルコキシ ドとしては、 一般に T i (OR) (Rは炭素数 4までのアル キル基) で表わされるが、 反応性から考えて、 チタンイソプロポキシ ド、 チタン ブトキシ ドが望ましい。 また、 チタンの場合にはァセチルァセ トネ一 卜を用いた 方が、 その安定性から好ましいことも従来から知られている。 この場合には一般 式として、 T i (OR) mLn (m+ n = 4 , n≠ 0 ) で表わされるが、 Lがァセ チルアセトンである。 この場合には、 チタンアルコキシ ドをァセチルアセトンに よってァセチルァセ トネー ト化しても構わないし、 市販のチタンァセチルァセ ト ネー トを使用しても構わない。 更には、 カルボン酸塩を使用することも考えられ る。 また酸化セリウムの原料としては、 セリウムアルコキシド、 セリウムァセチル ァセトネート、 セリゥムカルボキシレー トなどのセリゥム有機化合物が好適に使 用することができる。 その他に、 硝酸塩、 塩化物、 硫酸塩等のセリウム無機化合 物も使用することができるが、 安定性、 入手の容易さからセリ ウムの硝酸塩及び セリゥムァセチルァセトネ一 卜が好ましい。 酸化珪素原料、 酸化チタン原料および酸化セリゥム原料としてアルコキシド類 を用いる場合、 その加水分解触媒としては、 塩酸、 硝酸、 硫酸などの無機酸類、 酢酸、 しゅう酸、 蟻酸、 プロピオン酸、 p - トルエンスルホン酸などなどの有機 酸類が用いられる。 上記紫外線吸収着色膜に、 上述の着色微粒子、 酸化珪素、 酸化チタンおよび酸 化セリゥムの他に含有させる C o、 C r、 C u、 M n、 N i、 F eの酸化物の原 料としては、 硝酸塩、 塩化物などの無機化合物や、 酢酸、 プロピオン酸、 ブタン 酸、 アクリル酸、 メタクリル酸、 ステアリン酸などの有機酸類またはアルカノー ルァミ ン類で修飾した有機ァミ ン類等が好ましい。 紫外線吸収着色膜を被覆させるコーティ ング液は、 各原料をそれぞれ溶媒に溶 解しておき、 それらを所定の割合で混合することにより得られる。 : 12.0% by weight, tetramer (n = 4): 7.0% by weight, multimer (n≥5): 56.2% by weight, ethanol: 1.8% by weight] It can be suitably used. Further, an alkyl trialkoxysilane in which the alkoxy group of the above compound is substituted with an alkyl group can also be used. For example, when the alkoxy group is a linear or branched alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a 2-ethylbutyl group or an octyl group, a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, Alkenyl groups such as vinyl group, aryl group, y-methacryloxypropyl group and 7- acryloxypropyl group, aralkyl groups such as phenyl group, tolyl group and xylyl group, and aralkyl groups such as benzyl and phenethyl group. Examples thereof include those substituted with a group or a mercaptopropyl group, an archloropropyl group, a 7 -aminopropyl group, or the like. As a raw material of titanium oxide, an organic compound of titanium such as titanium alkoxide, titanium acetyl acetate, or titanium carboxylate is preferably used. The titanium alkoxide is generally represented by T i (OR) (R is an alkyl group having up to 4 carbon atoms), but titanium isopropoxide and titanium butoxide are preferable in view of reactivity. It has also been known that in the case of titanium, it is preferable to use acetyl acetate in view of its stability. In this case, the general formula is represented by T i (OR) mLn (m + n = 4, n ≠ 0), where L is acetylacetone. In this case, the titanium alkoxide may be converted to acetylacetonate with acetylacetone, or a commercially available titanium acetyl acetate may be used. Furthermore, it is conceivable to use a carboxylate. As a raw material for cerium oxide, organic compounds of cerium such as cerium alkoxide, cerium acetyl acetonate, and cerium carboxylate can be suitably used. In addition, cerium inorganic compounds such as nitrates, chlorides, and sulfates can be used, but cerium nitrates and cerium acetyl acetate are preferred from the viewpoint of stability and availability. When alkoxides are used as raw materials for silicon oxide, titanium oxide, and cell oxide, the hydrolysis catalysts include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, oxalic acid, formic acid, propionic acid, and p-toluenesulfonic acid Organic acids such as are used. As a raw material for oxides of Co, Cr, Cu, Mn, Ni, and Fe to be contained in the ultraviolet absorbing colored film in addition to the above-mentioned colored fine particles, silicon oxide, titanium oxide, and cell oxide. Preferred are inorganic compounds such as nitrates and chlorides, organic acids such as acetic acid, propionic acid, butanoic acid, acrylic acid, methacrylic acid and stearic acid, and organic amines modified with alkanolamines. The coating liquid for coating the ultraviolet absorbing colored film is obtained by dissolving each raw material in a solvent and mixing them at a predetermined ratio.
本発明で使用される有機溶剤は膜形成方法に依存する。 例えば、 グラビアコー ト法、 フレキソ印刷法、 ロールコート法の有機溶剤は蒸発速度の遅い溶媒が好適 である。 蒸発速度の遅い溶媒が好ましい理由は、 蒸発速度が速い溶媒を用いた場 合、 十分にレべリ ングが行われないうちに溶媒が蒸発してしまうためである。 溶 媒の蒸発速度は、 酢酸ブチルのそれを 1 0 0とした相対蒸発速度指数で一般的に 評価されている。 この値が 4 0以下の溶媒は "きわめて遅い" 蒸発速度をもつ溶 媒として分類されており、 このような溶媒がグラビアコート法、 フレキソ印刷法、 ロールコート法の有機溶媒として好ましい。 例えば、 ェチルセ口ソルブ (ェチレ ングリコールモノェチルエーテル) 、 プチルセ口ソルブ (エチレングリコールモ ノブチルエーテル) 、 セロソルブアセテート (エチレングリコールモノェチルェ 一テルアセテー ト) 、 カルビトール (ジエチレングリコールモノェチルエーテル) - へキシレングリコール、 ジエチレングリコール、 トリプロピレングリコール、 ジ アセ トンアルコール、 テトラヒ ドロフルフリルアルコールなどが挙げられる。 本 発明に使用されるコ一ティ ング液の溶媒は、 このような溶媒を少なくとも 1種含 むことが望ましいが、 コーティ ング液の粘度、 表面張力などを調節するために、 上記の溶媒を複数用いても構わない。 また蒸発速度が速くて 1 0 0を越える相対 蒸発速度を有する溶媒、 例えばメタノール ( 6 1 () ) 、 エタノール ( 3 4 0 ) 、 n 一プロパノール ( 1 1 0 ) 、 ィソプロパノール ( 3 0 0 ) のような溶媒を、 上 記の 4 0以下の相対蒸発速度指数を有する溶媒に添加してもよい。 本発明で使用するコーティ ング方法は、 特に限定されるものではないが、 例え ばスピンコー ト法、 ディ ップコート法、 スプレーコート法、 印刷法等が挙げられ る。 特に、 グラビアコー ト法、 フレキソ印刷法、 ロールコート法、 スクリーン印 刷法などの印刷法は、 生産性が高くコーティ ング液組成物の使用効率がよいので 好適である。 上記紫外線吸収着色膜用コ一ティング液は、 上記コーティング法によりガラス 基材上に塗布され、 その後、 酸化性雰囲気下、 ただしコーティ ング液が硫化カド ミゥム微粒子含有膜を形成させるものである場合は硫黄雰囲気下で、 1 0 0 °C〜 4 0 0ての温度で 5〜 2 0 0分熱処理して膜中に着色用微粒子を析出させる。 更 に、 5 0 0 ~ 7 0 0 以上の温度で 1 0秒〜 5分間焼成することにより、 厚みが 6 0 - 2 0 0 n mの紫外線吸収着色膜が形成される。 また二層コ一ティングするときは、 第一層目を塗布して熱乾燥し、 再び第二層 目を塗布して熱乾燥して、 あとは同様の操作を繰り返す。 The organic solvent used in the present invention depends on the film forming method. For example, as the organic solvent for the gravure coating method, flexographic printing method, and roll coating method, a solvent having a low evaporation rate is preferable. The reason that a solvent with a low evaporation rate is preferable is that if a solvent with a high evaporation rate is used, the solvent will evaporate before sufficient leveling is performed. The evaporation rate of the solvent is generally evaluated by a relative evaporation rate index with that of butyl acetate being 100. Solvents with a value of 40 or less are classified as solvents with "extremely slow" evaporation rates, and such solvents are preferred as organic solvents for gravure coating, flexographic printing and roll coating. For example, sorbet mouth solvent (ethylene glycol monoethyl ether), butyl solvent mouth solvent (ethylene glycol monobutyl ether), cellosolve acetate (ethylene glycol monoethyl ether) Tert-acetate), carbitol (diethylene glycol monoethyl ether)-hexylene glycol, diethylene glycol, tripropylene glycol, diacetone alcohol, tetrahydrofurfuryl alcohol and the like. The solvent of the coating solution used in the present invention desirably contains at least one such solvent. However, in order to adjust the viscosity, surface tension, etc. of the coating solution, a plurality of the above solvents are used. You may use it. Solvents having a high evaporation rate and a relative evaporation rate exceeding 100, such as methanol (61 ()), ethanol (340), n-propanol (110), and isopropanol (300) ) May be added to the above-mentioned solvents having a relative evaporation rate index of 40 or less. The coating method used in the present invention is not particularly limited, and examples thereof include a spin coating method, a dip coating method, a spray coating method, and a printing method. In particular, printing methods such as a gravure coating method, a flexographic printing method, a roll coating method, and a screen printing method are preferable because of high productivity and high use efficiency of the coating liquid composition. The coating liquid for an ultraviolet absorbing colored film is applied on a glass substrate by the above-mentioned coating method, and then, in an oxidizing atmosphere, provided that the coating liquid forms a film containing cadmium sulfide fine particles. In a sulfur atmosphere, heat treatment is performed at a temperature of 100 ° C. to 400 ° C. for 5 to 200 minutes to precipitate fine particles for coloring in the film. Further, by baking at a temperature of 500 to 700 or more for 10 seconds to 5 minutes, an ultraviolet absorbing colored film having a thickness of 60 to 200 nm is formed. In the case of two-layer coating, the first layer is applied and dried by heat, the second layer is applied again and dried by heat, and the same operation is repeated.
上記コーティ ング液を塗布、 乾燥し、 必要に応じて第二層用コーティ ング液を 塗布、 乾燥したガラス板に、 必要に応じてマスキング塗装をした後、 曲げおよび Zまたは熱強化工程を行う場合には、 上記膜焼成はこの曲げおよび/ または熱強 化工程で兼用することができ、 特別な膜焼成は不要である。 前記中間層 (または低屈折率最上層) 用の、 酸化珪素、 酸化チタン、 酸化ジル コニゥム、 酸化セリウム、 酸化亜鉛および酸化タンタルの原料のうち、 酸化珪素、 酸化チタンおよび酸化セリゥムについては、 上記の紫外線吸収着色膜用の原料を 用いることができるので、 以下に酸化ジルコニウム、 酸化亜鉛、 および酸化タン タルの原料について述べる。 When applying the above coating liquid, drying it, applying the coating liquid for the second layer as necessary, applying the masking coating to the dried glass plate as necessary, and then performing the bending, Z, or heat strengthening steps. In this case, the above-mentioned film firing can be used also in this bending and / or heat strengthening step, and no special film firing is required. Of the raw materials of silicon oxide, titanium oxide, zirconium oxide, cerium oxide, zinc oxide and tantalum oxide for the intermediate layer (or the lower refractive index uppermost layer), silicon oxide, titanium oxide and cell oxide are as described above. Since the raw materials for the ultraviolet absorbing colored film can be used, the raw materials for zirconium oxide, zinc oxide, and tantalum oxide are described below.
酸化ジルコニウムの原料としては、 テ トラメ トキシジルコニウム、 テトラエト キシジルコニウム、 テトライソプロポキシジルコニウム、 テトラ n—プロポキシ ジルコニウム、 テ トライソプロポキシジルコニウムイソプロパノール錯体、 テト ライソブトキシジルコニウム、 テトラ n -ブトキシジルコニウム、 テトラ sec-ブ トキシジルコニウム、 テトラ t —ブ卜キシジルコニウムなどが好便に使用できる。 一般式 ( 4 ) で表わされる化合物のアルコキシ基が、 ハロゲン基で置き換わった ジルコニウムモノ クロリ ド ト リアルコキシ ド、 ジルコニウムジクロリ ドジアルコ キシ ドなどのジルコニウムハロゲン化物のアルコキシ ドなどを使用することもで きる。 また上記のジルコニウムアルコキシ ドのアルコキシ基のうちの少なく とも 一つが酢酸、 プロピオン酸、 ブタン酸、 アク リル酸、 メタク リル酸、 ステアリ ン 酸などの有機酸類で置き換わつたアルコキシジルコニウム有機酸塩類を用いるこ とも可能である。 酸化亜鉛の原料としては、 酸化亜鉛微粒子を有機溶剤に分散させたものや亜鉛 ァセチルァセ トネー トまたはェチルへキサン酸亜鉛などの有機酸亜鉛またはアル カノールァミ ン類で修飾した有機亜鉛等が好ましい。 酸化夕ンタルの原料としては、 夕ン夕ルアルコキシ ドゃ有機夕ンタル化合物等 が好ま しい。 これらチタン、 セリウム、 タンタル、 ジルコニウム、 珪素の少なく とも一種の 原料の種類や混合割合は溶剤、 着色微粒子および遷移金属化合物との混和性や安 定性と、 光学的には屈折率、 色、 反射色調を機械的には耐摩耗性、 化学的耐久性 を考慮して決定するのが好ましい。 本発明におけるガラス基材としては、 無着色のまたは着色された透明なソーダ ライム珪酸塩ガラス組成を有する、 強化されていないガラス板、 強化ガラス板、 合わせガラス板、 複層ガラス板等が用いられ、 好ましくは熱線を遮断する着色ガ ラス板で、 その透過光が、 L a b表示で一 1 0. 0〜― 2. 0の aの値と、 一 4. 0 ~ 4. 0の bの色度、 より好ましくは— 1 0. 0〜― 4. 0の aの値と、 一 1. 0〜 4. 0の bの色度、 を有し、 薄緑色に着色され、 3 7 0 n mの波長の紫外光 の透過率が 1 0〜7 0 %で、 可視光線透過率が 4 0〜 8 5 %、 太陽光線透過率が 2 0〜 8 0 %であり、 厚みが 1. 5~5. 5 mmの自動車窓用ガラス板が好まし く用いられる。 このガラス板の好ましい組成の一例は、 S i 02 7 2. 4、 Λ The raw materials of zirconium oxide include tetramethoxy zirconium, tetraethoxy zirconium, tetraisopropoxy zirconium, tetra n-propoxy zirconium, tetrisopropoxy zirconium isopropanol complex, tetraisobutoxy zirconium, tetra n-butoxy zirconium, and tetra sec-butoxy. Zirconium and tetra-t-butoxyzirconium can be conveniently used. It is also possible to use zirconium halide alkoxides such as zirconium monochloride trialkoxide and zirconium dichloride dialkoxide in which the alkoxy group of the compound represented by the general formula (4) is replaced by a halogen group. . In addition, an alkoxyzirconium organic acid salt in which at least one of the above alkoxy groups of the zirconium alkoxide is replaced with an organic acid such as acetic acid, propionic acid, butanoic acid, acrylic acid, methacrylic acid, and stearic acid is used. It can also be used. As a raw material of the zinc oxide, those obtained by dispersing zinc oxide fine particles in an organic solvent, organic zinc such as zinc acetyl acetate or zinc ethylhexanoate, or organic zinc modified with alkanolamines are preferable. As a raw material for the oxidized phthalate, alkoxides and organic phthalates are preferred. At least one kind of these titanium, cerium, tantalum, zirconium, and silicon materials and their mixing ratios are compatible and stable with solvents, colored fine particles and transition metal compounds, and optically refractive index, color, reflection color The mechanical is abrasion resistant, chemical durability Is preferably determined in consideration of the following. As the glass substrate in the present invention, an unreinforced glass plate, a tempered glass plate, a laminated glass plate, a double-layer glass plate, or the like having an uncolored or colored transparent soda lime silicate glass composition is used. Preferably, it is a colored glass plate that blocks heat rays, and its transmitted light has an a value of 11.0 to -2.0 in Lab display and a color of b of 14.0 to 4.0. Degree, more preferably —10.0 to −4.0, a value of a and 1.0 to 4.0 b value, and is colored light green, The transmittance of UV light of wavelength is 10 ~ 70%, the transmittance of visible light is 40 ~ 85%, the transmittance of sunlight is 20 ~ 80%, and the thickness is 1.5 ~ 5. A 5 mm automotive window pane is preferably used. An example of a preferred composition of the glass plate is S i 0 2 72.4, Λ
0. ] 3、 F e 203 (全鉄) 0. 558、 F e O 0. 1 3 5. C a 0 8. 77, M g 0 3. 84. N a 20 1 3. 8各重量%である。 ガラス基材として、 37 0 n mの波長の紫外光の透過率 (T 370 n m) が 1 0〜70%、 より好ましくは I SO 9 0 50による紫外光の透過率 (Tuv) ; 波長 377. 5 n m~ 2 9 7. 5 n mにおける 5 n mピッチ間隔での透過率にあ る決められた重価係数をかけて積和した値) が 1 5 %以下で、 可視光線透過率が 4 0〜85 %、 より好ましくは 70~8 5%、 太陽光線透過率 (日射透過率とも いう) が 2 0 ~ 8 0 %、 より好ましくは 4 0 ~ 6 5 %であり、 厚みが 1. 5 mm - 5. 5 mmの自動車用ガラス板が好ましく用いられる。 このようなガラス基板 にコーティ ングすることにより高 、紫外線吸収能をもった着色ガラスが得られる c 本発明においては、 金属微粒子による着色と紫外線吸収剤による紫外線遮断を 組み合わせることにより、 色および可視光線透過率と紫外線透過率を自由にコン トロールすることができ、 太陽光線透過率が 5 5 %以下であり、 また 370 nm の波長の紫外線の透過率が 5 5 %以下の紫外線遮断着色ガラス、 より好ましくは 上記紫外線透過率が 4 5 %以下、 特に紫外線透過率 (Tuv) が 1 2%以下である 紫外線遮断着色ガラスを作製することができる。 また二層コーティ ングすること により、 膜構成による干渉を利用した反射率の制御、 微妙な色調調整を実現する ことができる。 以上のように本発明の紫外線吸収着色ガラスによれば、 着色用コロイ ド微粒子 その他の着色原料の濃度、 酸化セリウム、 酸化チタンおよび酸化珪素の濃度を変 えることにより、 可視光線透過率、 透過光色調、 反射光色調、 および紫外線遮断 率を任意に調節することができる。 図面の簡単な説明 0.] 3, F e 2 0 3 ( total iron) 0. 558, F e O 0. 1 3 5. C a 0 8. 77, M g 0 3. 84. N a 2 0 1 3. 8 each % By weight. As a glass substrate, the transmittance of ultraviolet light having a wavelength of 370 nm (T370 nm) is 10 to 70%, more preferably the transmittance of ultraviolet light (Tuv) by ISO 950; nm ~ 2 97.5 The value obtained by multiplying and multiplying the transmittance at 5 nm pitch interval at 5 nm by the determined weighting factor) is 15% or less and the visible light transmittance is 40 to 85. %, More preferably 70 to 85%, the solar transmittance (also referred to as solar transmittance) is 20 to 80%, more preferably 40 to 65%, and the thickness is 1.5 mm-5 .5 mm automotive glass sheets are preferably used. By coating on such a glass substrate, a colored glass having high ultraviolet absorbing ability can be obtained. C In the present invention, color and visible light can be obtained by combining coloring with metal fine particles and ultraviolet shielding by an ultraviolet absorbent. It is possible to control the transmittance and the UV transmittance freely, the UV transmittance is less than 55%, and the transmittance of UV at 370 nm is less than 55%. Preferably, a UV-shielding colored glass having the UV transmittance of 45% or less, particularly the UV transmittance (Tuv) of 12% or less can be produced. Also double layer coating Thereby, it is possible to control the reflectance using interference due to the film configuration, and to realize fine color tone adjustment. As described above, according to the ultraviolet absorbing colored glass of the present invention, the visible light transmittance and the transmitted light can be changed by changing the concentrations of the colloid fine particles for coloring and other coloring raw materials and the concentrations of cerium oxide, titanium oxide and silicon oxide. The color tone, reflected light color tone, and UV cutoff rate can be adjusted arbitrarily. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の実施例と比較例の透過光色調を示すグラフである。  FIG. 1 is a graph showing the color tone of transmitted light according to an example of the present invention and a comparative example.
第 2図は本発明の実施例と比較例の性能を示すグラフである。 実施の形態  FIG. 2 is a graph showing the performance of the example of the present invention and the comparative example. Embodiment
次に、 本発明を具体的な実施例により更に詳細に説明する。  Next, the present invention will be described in more detail with reference to specific examples.
[実施例 1 ]  [Example 1]
硝酸セリゥム 6水和物 1モルに対し 3モルのァセチルァセトンを加え、 攪拌し ながら 9 0 °Cに加温し一時間処理した。 この溶液を硝酸セリウム原液とした。 こ れは C e 0 2固形分で 2 3 . 2 96になる。 3 mol of acetylaceton was added to 1 mol of cerium nitrate hexahydrate, and the mixture was heated to 90 ° C. with stirring and treated for 1 hour. This solution was used as a cerium nitrate stock solution. This is made in 2 3. 2 96 C e 0 2 solids.
撹拌しているチタンイソプロボキシ ド 1モルに、 ァセチルァセ トン 2モルを滴 下ロー卜で滴下した。 この溶液を酸化チタン原液とした。 これは T i 0 2 固形分 で 1 6 . 5 %になる。 To 1 mol of titanium isopropoxide being stirred, 2 mol of acetyl acetone was added dropwise using a dropping funnel. This solution was used as a titanium oxide stock solution. This becomes 1-6. 5% T i 0 2 solids.
ェチルシリケー ト (コルコート社製 「ェチルンリゲー ト 4 0」 ) 5 0 gに、 0 . 1 N塩酸 6 gとェチルセ口ソルブを 4 4 g加え、 室温で 2時間攪拌した。 この溶 液を酸化珪素原液とした。 これは S i 0 固形分で 2 0 %になる。 また塩化金酸 4水和物を 1 5 %になるように、 ェチルセ口ソルブに溶かした。 上記のように作製した試料をそれぞれ硝酸セリウム原液 1 . 1 1 g、 酸化チタ ン原液を 0 . 7 3 2 g、 酸化珪素原液を 0 . 6 0 5 gとり、 これにェチルセロソ ルブを 6 . 2 2 g加え、 最後に塩化金酸 4水和物のェチルセ口ソルブ溶液を 1 . 3 3 g加えて混合攪拌し、 コーティ ング液 1を作製した。 上記作製したコ一ティ ング液を、 無着色透明ガラス基板上に回転数 1 0 0 0 r p m / 1 0秒間スピンコ一ティングを行った。 風乾後 2 5 0 °Cで 2時間熱処理し、 金微粒子を析出させた。 さらに 7 2 0 °Cで 1 2 0秒焼成を行い、 着色膜をもつガ ラス板を得た。 着色膜の可視光線透過率、 太陽光線透過率、 色 (透過光) 、 およ び 3 7 0 n mの波長の紫外光の透過率 (以下、 3 7 0 n mの透過率ともいう) の 特性を表 1 ~ 3に示す。 得られた着色膜は耐薬品性、 耐テーバー性について良好 な結果を示した。 またニュー トラルな色調の反射色 ( ( a 2 + b 2 ) 1 2 で表され る彩度の値が 1 0以下) が得られた。 なお反射特性は、 ガラス基板の被覆膜とは 反対の面側 (ガラス面側) から光を入射させて測定した値である。 To 50 g of ethyl silicate ("Echirun ligate 40" manufactured by Colcoat Co., Ltd.), 6 g of 0.1 N hydrochloric acid and 44 g of ethyl ethyl solvent were added, and the mixture was stirred at room temperature for 2 hours. This solution was used as a silicon oxide stock solution. This amounts to 20% at S i 0 solids. In addition, chloroauric acid tetrahydrate was dissolved in an ethyl sorb solution to a concentration of 15%. Take 1.11 g of the cerium nitrate stock solution, 0.732 g of the titanium oxide stock solution, 0.65 g of the silicon oxide stock solution, and 6.2 g of ethylethyl cellosolve. Add 2 g, and finally add a solution of chloroauric acid tetrahydrate in Echilse mouth solution. 33 g was added and mixed and stirred to prepare a coating solution 1. The above-prepared coating liquid was spin-coated on a non-colored transparent glass substrate at a rotation speed of 1000 rpm for 10 seconds. After air drying, heat treatment was performed at 250 ° C. for 2 hours to precipitate gold fine particles. Further, baking was performed at 720 ° C. for 120 seconds to obtain a glass plate having a colored film. The characteristics of the colored film in terms of visible light transmittance, sunlight transmittance, color (transmitted light), and transmittance of ultraviolet light with a wavelength of 370 nm (hereinafter also referred to as 370 nm transmittance) are described. The results are shown in Tables 1-3. The obtained colored film showed good results in chemical resistance and Taber resistance. The neutral color tone of the reflection color ((a 2 + b 2) the value of saturation is Ru represented by 1 2 1 0 or less) were obtained. The reflection characteristic is a value measured when light is incident from the surface side (glass surface side) opposite to the coating film of the glass substrate.
[実施例 2 ] [Example 2]
実施例 1で調製した原液のうち、 硝酸セリゥム原液 1 . 1 2 g、 酸化チタン原 液を 1 . 0 5 g、 酸化珪素原液を 0 . 2 5 gとり、 これにェチルセ口ソルブを 6 . 2 0 g加え、 最後に塩化金酸 4水和物のェチルセ口ソルブ溶液を 1 . 3 3 g加え て混合攪拌し、 コーティ ング液を作製した。  Of the stock solutions prepared in Example 1, 1.12 g of a stock solution of cerium nitrate, 1.05 g of a stock solution of titanium oxide, 0.25 g of a stock solution of silicon oxide, and 6.2 g of an ethyl acetate solution were added thereto. 0 g was added, and finally 1.33 g of a solution of chloroauric acid tetrahydrate in ethyl chloride was added and mixed and stirred to prepare a coating solution.
上記作製したコーティ ング液を実施例 1と同様に、 塗布、 風乾、 熱処理して得 られたガラス板の特性を表 1 〜 3に示す。 得られた着色膜は耐薬品性、 耐テーバ 一性について良好な結果を示した。 またニュートラルな色調の反射色が得られた <  Tables 1 to 3 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating solution prepared above in the same manner as in Example 1. The obtained colored film showed good results in chemical resistance and Taber resistance. In addition, a neutral reflection color was obtained <
[実施例 3 ] [Example 3]
塩化コバルト 6水和物 1 5 gにェチルセ口ソルブを加え 1 0 0 gにして溶解さ せた。 これは 1 5 %塩化コバルト 6水和物溶液となる。  To ethyl chloride, 15 g of cobalt chloride was added 100 mL of ethyl acetate and dissolved to make 100 g. This results in a 15% cobalt chloride hexahydrate solution.
コーティング液として実施例 1で調製した原液のうち、 硝酸セリゥム原液 0 . 6 8 g、 酸化チタン原液を 0 . 6 8 g、 酸化珪素原液を 0 . 1 2 g、 さらに上記 の 1 5 %塩化コバルト 6水和物溶液を 2 . 0 gとり、 これにェチルセ口ソルブを 5 . 1 9 g加え、 最後に塩化金酸 4水和物のェチルセ口ソルブ溶液を 1 . 3 3 g 加えて混合攪拌し、 コーティ ング液 3を作製した。 上記作製したコーティング液 3を実施例 1 と同様に、 塗布、 風乾、 熱処理して 得られたガラス板の特性を表 1 〜 3に示す。 得られた着色膜は耐薬品性、 耐テー バー性について良好な結果を示した。 またニュートラルな色調の反射色が得られ た。 Of the stock solutions prepared in Example 1 as the coating solution, 0.68 g of the stock solution of cerium nitrate, 0.68 g of the stock solution of titanium oxide, 0.12 g of the stock solution of silicon oxide, and the above 15% cobalt chloride Take 2.0 g of the hexahydrate solution, add 5.19 g of ethyl sorbate, and finally add 1.33 g of chloroauric acid tetrahydrate solution of ethyl sorbate, and mix and stir. A coating solution 3 was prepared. Tables 1 to 3 show the properties of the glass plate obtained by applying, air-drying, and heat-treating the coating solution 3 prepared above in the same manner as in Example 1. The obtained colored film showed good results in chemical resistance and taber resistance. In addition, a reflection color with a neutral color tone was obtained.
[実施例 4 ] [Example 4]
塩化クロム 6水和物 1 5 gにェチルセ口ソルブを加え】 0 ϋ gにして溶解させ た。 これは 1 5 %塩化クロム 6水和物溶液となる。  Ethylcet mouth solve was added to 15 g of chromium chloride hexahydrate, and the mixture was dissolved at 0 g. This results in a 15% chromium chloride hexahydrate solution.
コ一ティ ング液として実施例〗で調製した原液のうち、 硝酸セリゥム原液 0 . Among the stock solutions prepared in Example I as the coating solution, a stock solution of cerium nitrate was used.
6 8 g、 酸化チタン原液を 0 . 6 8 g、 酸化珪素原液を 0 . 1 2 g、 さらに上記 の 1 5 %塩化クロム 6水和物溶液を 2 . () gとり、 これにェチルセ口ソルブを 5 . 1 9 g加え、 最後に塩化金酸 4水和物のェチルセ口ソルブ溶液を 1 . 3 3 g加え て混合攪拌しコーティ ング液 4を作製した。 Take 68 g, 0.68 g of the titanium oxide stock solution, 0.12 g of the silicon oxide stock solution, and 2. () g of the above 15% chromium chloride hexahydrate solution. Was added, and finally 1.33 g of a solution of chloroauric acid tetrahydrate in ethyl acetate was added and mixed and stirred to prepare a coating solution 4.
上記作製したコーティ ング液 4を実施例 1 と同様に、 塗布、 風乾、 熱処理して 得られたガラス板の特性を表 1 〜 3に示す。 得られた着色膜は耐薬品性、 耐テー バー性について良好な結果を示した。 またニュートラルな色調の反射色が得られ た。  Tables 1 to 3 show the properties of the glass plate obtained by applying, air-drying, and heat-treating the coating solution 4 prepared above in the same manner as in Example 1. The obtained colored film showed good results in chemical resistance and taber resistance. In addition, a reflection color with a neutral color tone was obtained.
[実施例 5 ] [Example 5]
第一層目のコーティ ング液として、 実施例 1の原液のうち、 シリ力原液を 2 . 5 g、 ェチルセ口ソルブを 5 . 5 0 g加え、 最後に 3 -ァミノプロピルトリエト キシシランが塩化金酸に対して等モル人った塩化金酸 4水和物 1 0重量%のェチ ルセ口ソルブ溶液を 2 . 0 0 g加えて混合攪拌し、 コーティ ング液 5を作製した c 第二層目のコーティ ング液として、 実施例】で使用したコーティ ング液 6を使用 した。  As the first-layer coating solution, of the stock solution of Example 1, 2.5 g of the stock solution for silylation and 5.50 g of Solvent-Elusolve were added, and finally, 3-aminopropyltriethoxysilane was chlorided. 2.0 g of a 10% by weight ethyl chloride sorb solution of chloroauric acid tetrahydrate, which was equimolar to gold acid, was added and mixed and stirred to prepare a coating solution 5. The coating solution 6 used in Example] was used as the coating solution for the layer.
上記作製したコーティ ング液 5を無着色透明ガラス基板上に 1 0 0 0 r p m , 1 0秒スピンコーティ ングを行った。 風乾後 2 5 0 °Cで 2時間熱処理し、 中間膜 を作製した。 次にコーティ ング液 6を中間膜の上に同様にして形成した。 さらに The above-prepared coating liquid 5 was spin-coated on an uncolored transparent glass substrate at 100 rpm for 10 seconds. After air drying, heat treatment was performed at 250 ° C. for 2 hours to produce an interlayer film. Next, a coating solution 6 was similarly formed on the intermediate film. further
7 2 0 °Cで 1 2 0秒焼成を行い、 着色膜をもつガラス基板を得た。 着色膜の特性 を表 1 〜 3に示す。 得られた着色膜は耐薬品性、 耐テーバー性について良好な結 果を示した。 またニュートラルな色調の反射色が得られた。 Baking was performed at 720 ° C. for 120 seconds to obtain a glass substrate having a colored film. Characteristics of colored film Are shown in Tables 1-3. The obtained colored film showed good results in chemical resistance and Taber resistance. In addition, a reflection color having a neutral color tone was obtained.
[実施例 6 ] [Example 6]
テトラブトキシジルコニウム 3 8 8 . 6 8 gに、 ェチルァセチルアセテート 2 6 0 . 2 8 gを加え 2時問攪拌した。 この溶液はジルコニウム原液として使 用した。 これは Z r 0 2固形分で 1 7 . 8 %である。 To 388.68 g of tetrabutoxyzirconium, 260.28 g of ethyl acetylacetyl acetate was added and stirred for 2 hours. This solution was used as a zirconium stock solution. This is 1-7. 8% Z r 0 2 solids.
第一層目のコ一ティ ング液として、 実施例 ] の原液のうちシリ力原液を 1 . 5 As the first-layer coating solution, 1.5% of the stock solution of Example 1 was used.
2 g、 ェチルセ口ソルブを 7 . 3 8 g加え、 最後に上記のジルコニウム原液を 1 .Add 2 g and 7.38 g of ethyl acetate solvent, and finally add the above zirconium stock solution to 1.
1 0 g加えて混合攪拌し、 コーティング液 7を作製した。 第二層目のコーティ ン グ液として、 実施例〗で調製した原液のうち、 硝酸セリゥム原液 1 . 】 4 g、 酸 化チタン原液を 1 . 1 3 g、 酸化珪素原液を 0 . 2 0 gとりこれにェチルセロソ ルブを 6 . 2 0 g加え、 最後に塩化金酸 4水和物のェチルセ口ソルブ溶液を 1 .10 g was added and mixed and stirred to prepare a coating liquid 7. As the coating solution for the second layer, of the stock solutions prepared in Example II, 4 g of the stock solution of cerium nitrate, 1.13 g of the stock solution of titanium oxide, and 0.20 g of the stock solution of silicon oxide. 6.20 g of ethylcellosolve was added to the solution, and finally a solution of chloroauric acid tetrahydrate in ethyl ethyl acetate was added to the solution.
3 3 g加えて混合攪拌し、 コーティング液 8を作製した。 33 g was added and mixed and stirred to prepare a coating liquid 8.
実施例 5のコ一ティ ング液 5および 6の代わりに、 上記作製したコーティ ング 液 7および 8をそれぞれ用いて、 実施例 5と同様に、 塗布、 風乾、 熱処理して得 られたガラス板の特性を表〗〜 3に示す。 得られた着色膜は耐薬品性、 耐テーバ —性について良好な結果を示した。 またニュートラルな色調の反射色が得られた。  In the same manner as in Example 5, except that the coating liquids 7 and 8 prepared above were used instead of the coating liquids 5 and 6 of Example 5, coating, air drying, and heat treatment of the glass plate obtained were performed. The characteristics are shown in Tables 1 to 3. The obtained colored film showed good results in chemical resistance and Taber resistance. In addition, a reflection color having a neutral color tone was obtained.
[実施例 7 ] [Example 7]
第一層目のコ一ティング液として、 実施例 5で第一層目に使用したコーティン グ液 5を、 第二層目のコーティング液として実施例 1で調製した原液のうち、 硝 酸セリウム原液を 1 . 1 4 g、 酸化チタン原液を 1 . 1 3 g、 酸化珪素原液を 0 . 2 0 gとり、 これにェチルセ口ソルブを 7 . 5 3 g加えて混合攪拌し、 コ一ティ ング液 9を作製した。  Coating solution 5 used in the first layer in Example 5 as the first layer coating solution, and cerium nitrate undiluted solution in the stock solution prepared in Example 1 as the second layer coating solution 1.14 g, 1.13 g of the titanium oxide stock solution, and 0.20 g of the silicon oxide stock solution, and 7.53 g of ethyl acetate solvent were added thereto, followed by mixing and stirring. 9 was produced.
実施例 5のコ一ティ ング液 5および 6の代わりに、 上記のコ一ティ ング液 5お よび 9をそれぞれ用いて、 実施例 5と同様に、 塗布、 風乾、 熱処理して得られた ガラス板の特性を表 1 〜 3に示す。 得られた着色膜は耐薬品性、 耐テーバー性に ついて良好な結果を示した。 またニュー 卜ラルな色調の反射色が得られた。 [実施例 8 ] Glass obtained by coating, air-drying, and heat-treating in the same manner as in Example 5 except that the above-mentioned coating liquids 5 and 9 were used instead of the coating liquids 5 and 6 in Example 5. Tables 1 to 3 show the properties of the plate. The obtained colored film showed good results in chemical resistance and Taber resistance. In addition, a reflection color having a neutral color tone was obtained. [Example 8]
実施例 5のコーティ ング液 5および 6の代わりに、 実施例 6で使用したコーテ ィ ング液 7および実施例 3で使用したコーティ ング液 3をそれぞれ用いて、 実施 例 5と同様に、 塗布、 風乾、 熱処理して得られたガラス板の特性を表 1 〜 3に示 す。 得られた着色膜は耐薬品性、 耐テーバー性について良好な結果を示した。 ま たニュートラルな色調の反射色が得られた。  Instead of the coating liquids 5 and 6 of Example 5, coating liquid 7 used in Example 6 and coating liquid 3 used in Example 3 were used, respectively. Tables 1 to 3 show the characteristics of the glass plates obtained by air drying and heat treatment. The obtained colored film showed good results in chemical resistance and Taber resistance. In addition, a neutral reflection color was obtained.
[実施例 9 ] [Example 9]
実施例 5のコ一ティ ング液 5および 6の代わりに、 実施例 6で使用したコ一テ ィ ング液 7および実施例 4で使用したコーティ ング液 4をそれぞれ用いて、 実施 例 5と同様に、 塗布、 風乾、 熱処理して得られたガラス板の特性を表!〜 3に示 す。 得られた着色膜は耐薬品性、 耐テーバー性について良好な結果を示した。 こ の中間層の厚みおよび屈折率は、 上記式 ( 1 ) および ( 2 ) を満足していた。 な お、 その光学厚みは波長 6 6 0 n mの光の波長の 4分の】に等しかった。  Same as Example 5 except that the coating liquids 5 and 6 of Example 5 were replaced with the coating liquid 7 used in Example 6 and the coating liquid 4 used in Example 4. The properties of the glass plate obtained by coating, air drying and heat treatment are shown! 3 to 3. The obtained colored film showed good results in chemical resistance and Taber resistance. The thickness and the refractive index of this intermediate layer satisfied the above equations (1) and (2). The optical thickness was equal to 分 の of the wavelength of light at a wavelength of 660 nm.
た。 Was.
[実施例 1 0 ] [Example 10]
コーティ ング液として実施例 1で調製した原液のうち、 硝酸セリゥム原液 1 . 1 3 g、 酸化チタン原液を 1 . 1 3 g、 酸化珪素原液を 0 . 2 gとり、 これにェ チルセ口ソルブを 7 . 5 4 g加えて混合攪拌し、 コーティング液 1 0を作製した。 実施例 5のコーティング液 5および 6の代わりに、 実施例 3で使用したコーテ ィング液 3および上記のコーティング液 1 0をそれぞれ用いて、 実施例 5と同様 に、 塗布、 風乾、 熱処理して得られたガラス板の特性を表 1 〜 3に示す。 得られ た着色膜は耐薬品性、 耐テーバー性について良好な結果を示した。  Of the stock solutions prepared in Example 1 as the coating solution, 1.13 g of the stock solution of cerium nitrate, 1.13 g of the stock solution of titanium oxide, and 0.2 g of the stock solution of silicon oxide were added with ethyl acetate solution. 7.54 g was added and mixed and stirred to prepare a coating liquid 10. Instead of the coating liquids 5 and 6 of Example 5, the coating liquid 3 used in Example 3 and the above-mentioned coating liquid 10 were used, respectively, and coated, air-dried and heat-treated in the same manner as in Example 5. Tables 1 to 3 show the characteristics of the obtained glass sheets. The obtained colored film showed good results in chemical resistance and Taber resistance.
[実施例 1 1 ] [Example 11]
コーティング液として実施例 1で調製した原液のうち、 硝酸セリゥム原液 1 - 7 9 g、 酸化チタン原液を 0 . 2 5 4 g、 酸化硅素原液を 0 . 2 1 gとり、 これ にェチルセ口ソルブを 6. 4 2 g加え、 最後に塩化金酸 4水和物のェチルセロソ ルブ溶液を 1. 3 3 g加えて混合攪拌し、 コーティ ング液を作製した。 Of the stock solutions prepared in Example 1 as the coating solution, take 1-79 g of a stock solution of cerium nitrate, 0.254 g of a stock solution of titanium oxide, and 0.21 g of a stock solution of silicon oxide. To the mixture was added 6.42 g of ethyl ethyl solvate, and finally, 1.33 g of a solution of chloroauric acid tetrahydrate in ethyl ethyl cellosolve was added and mixed with stirring to prepare a coating solution.
上記作製したコーティ ング液を実施例 1と同様に塗布、 風乾、 熱処理して得ら れたガラス板の特性を表 1〜 3に示す。 得られた着色膜は耐薬品性、 耐テ一バー 性について良好な結果を示した。  Tables 1 to 3 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating solution prepared above in the same manner as in Example 1. The obtained colored film showed good results in chemical resistance and fiber resistance.
[実施例 1 2 ] [Example 12]
上記のように作製した試料をそれぞれ硝酸セリゥム原液 1. 378 g、 酸化チ タン原液を 0. 5 4 6 g、 酸化珪素原液を 0. 4 5 2 gとり、 これにェチルセ口 ソルブを 6. 2 9 g加え、 最後に塩化金酸 4水和物のェチルセ口ソルブ溶液を 1. 3 3 g加えて混合攪拌し、 コーティ ング液を作製した。  Take 1.378 g of a stock solution of cerium nitrate, 0.546 g of a stock solution of titanium oxide, 0.452 g of a stock solution of silicon oxide, and 6.2 g of an ethyl acetate solution. 9 g was added, and finally 1.33 g of a solution of chloroauric acid tetrahydrate in ethyl chloride was added and mixed and stirred to prepare a coating solution.
上記作製したコーティ ング液を実施例 1と同様に、 塗布、 風乾、 熱処理して得 られたガラス板の特性を表 1〜 3に示す。 得られた着色膜は耐薬品性、 耐テーバ 一性について良好な結果を示した。 またニュートラルな色調の反射色が得られた c Tables 1 to 3 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating solution prepared above in the same manner as in Example 1. The obtained colored film showed good results in chemical resistance and Taber resistance. The c the reflection color of the neutral tones are obtained
[実施例 1 3 ] [Example 13]
上記のように作製した試料をそれぞれ硝酸セリウム原液 1. 59 6 g、 酸化チ タン原液を 0. 3 9 5 g、 酸化珪素原液を 0. 3 27 gとり、 これにェチルセ口 ソルブを 6. 3 5 g加え、 最後に塩化金酸 4水和物のェチルセ口ソルブ溶液を 1. 3 3 g加えて混合攪拌し、 コーティ ング液を作製した。  Take 1.596 g of the cerium nitrate stock solution, 0.395 g of titanium oxide stock solution, and 0.327 g of silicon oxide stock solution, and prepare 6.3 g of ethyl chloride solution. 5 g was added, and finally 1.33 g of a solution of chloroauric acid tetrahydrate in ethyl chloride was added and mixed and stirred to prepare a coating solution.
上記作製したコーティ ング液を実施例 1と同様に、 塗布、 風乾、 熱処理して得 られたガラス板の特性を表 1 ~ 3に示す。 得られた着色膜は耐薬品性、 耐テーバ 一性について良好な結果を示した。 またニュートラルな色調の反射色が得られた  Tables 1 to 3 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating solution prepared above in the same manner as in Example 1. The obtained colored film showed good results in chemical resistance and Taber resistance. In addition, a neutral color reflection was obtained.
[実施例 1 4 ] [Example 14]
ガラス基材として、 厚み 3. 4 mmのグリーンガラス基板 (ガラス組成; S i 0 7 1. 0、 A I 2O3 1. 53、 F e 2O3 0. 52、 C a O 8. 6 2、 M g 0 4. 0 6、 N a 2O 1 2. 3、 K20 0. 7 6、 屈折率 1. 5 1、 視感透 過率 Y a = 8 1. 2 %、 日射透過率 T g = 6 0. 996、 可視光反射率 R g = 7. 1 %、 紫外線透過率 (T 37 0 nm) = 62. 5%、 紫外線透過率 (Tuv) 3 1. 4 %、 透過色調; 薄緑、 し a b表色系の色度で表して透過光色度 a = - 4. 7、 b = 0. 9、 透過光明度 L = 9 1、 反射光色度 a =— 1. 3、 b = - 0. 2 ) を 用い、 実施例 2と全く同じコーティング液を使用し、 このコーティ ング液を上記 グリ一ンガラス基板上に 1 0 00 r p m / 1 0秒スピンコ一ティ ングを行った。 風乾後 2 5 0 °Cで 2時間熱処理し、 金微粒子を析出させた。 さらに 7 20 °Cの電 気炉で 1 2 0秒保持した後に引き上げてプレス成形を行い、 その直後に風冷強化 して自動車用曲げ強化ガラス板を得た。 曲げ形状も設計通りの形が得られ、 透視 歪みも観察されなかった。 着色膜の特性を表 1〜 3に示す。 得られた着色膜は耐 薬品性、 耐テーバー性について良好な結果を示した。 As the glass substrate, the thickness 3. 4 mm green glass substrate (glass composition; S i 0 7 1. 0, AI 2 O 3 1. 53, F e 2 O 3 0. 52, C a O 8. 6 2 , M g 0 4. 0 6, N a 2 O 1 2. 3, K 2 0 0. 7 6, refractive index 1.5 1, luminous transparently rate Y a = 8 1. 2%, the solar radiation transmittance T g = 60.996, visible light reflectance R g = 7. 1%, UV transmittance (T370 nm) = 62.5%, UV transmittance (Tuv) 31.4%, transmission color tone: light green, and then transmitted light color expressed in chromaticity of ab color system degree a = - 4. 7, b = 0. 9, transmitted light bright degree L = 9 1, the reflected light chromaticity a = - 1. 3, b = - 0. 2) using exactly the same coating as in example 2 Using this solution, this coating solution was spin-coated on the green glass substrate at 100 rpm for 10 seconds. After air drying, heat treatment was performed at 250 ° C. for 2 hours to precipitate gold fine particles. After holding for 120 seconds in an electric furnace at 720 ° C, the glass was pulled up and press-formed, and immediately thereafter, it was air-cooled and tempered to obtain a bent glass sheet for automobiles. The bending shape was as designed, and no perspective distortion was observed. Tables 1 to 3 show the characteristics of the colored film. The obtained colored film showed good results in chemical resistance and Taber resistance.
[実施例 1 5 ] [Example 15]
ガラス基材として、 実施例 1 4で使用したのと同じグリーンガラス基板を用い た以外は、 実施例 6と全く同じコーティ ング液を使用し、 実施例 6と同様に塗布、 風乾、 熱処理して得られたガラス板の特性を表 1 ~ 3に示す。 得られた着色膜は 耐薬品性、 耐テーバー性について良好な結果を示した。 またニュートラルな色調 の反射色が得られた。 Except that the same green glass substrate used in Example 14 was used as the glass substrate, the same coating liquid as in Example 6 was used, and the coating, air drying, and heat treatment were performed in the same manner as in Example 6. Tables 1 to 3 show the properties of the obtained glass plate. The obtained colored film showed good results in chemical resistance and Taber resistance. Also, a reflection color with a neutral color tone was obtained.
(表】 ) 実施例 膜 膜組成 (重量%) (Table)) Example film Film composition (% by weight)
I 1U2 し eU2 AU し OU し ru f flit  I 1U2 then eU2 AU then OU then ru f flit
1 紫外線吸収膜 ί U. L 43 b lfa. u  1 UV absorbing film ί U. L 43 b lfa.u
2 同上 U. / 46.4 16.0  2 Same as above U. / 46.4 16.0
07 0 00 c  07 0 00 c
ά b. 41.9 o (J.0 ά b. 41.9 o (J.0
7 Q o 0  7 Q o 0
4 b. o ώ ί . O 41.9 U.4  4 b.o ώ O .O 41.9 U.4
0 0  0 0
5 U. ί 43. D lb. U  5 U. ί 43. D lb. U
5 中間層 84.0 16.0  5 Middle layer 84.0 16.0
6 紫外線吸収膜 D. ϋ 30.7 46.4 16 0  6 UV absorbing film D. ϋ 30.7 46.4 16 0
H  H
b 中間層 9- 4 bu. b M nft Hft- 紫外源吸収膜 c>b. b 55.  b Intermediate layer 9-4 bu.b M nft Hft- UV absorbing film c> b.b 55.
7 中間層 84.0 16.0 7 Middle layer 84.0 16.0
Figure imgf000025_0001
6.3 27.8 41.9 23.5 0.5
Figure imgf000025_0001
6.3 27.8 41.9 23.5 0.5
o n  o n
8 中間層 39.4 DU. b 8 Middle layer 39.4 DU.b
9
Figure imgf000025_0002
6.3 7.8 41.9 23.5 0.4
9
Figure imgf000025_0002
6.3 7.8 41.9 23.5 0.4
r n r n
9 中H間眉 oU. D c 9 Medium H eyebrows oU.D c
10 紫外線吸収膜 8.2 36. 6 55.2  10 UV absorbing film 8.2 36.6 55.2
10 中間層 6.3 27. 8 41.9 23.5 0.5  10 Middle layer 6.3 27.8 41.9 23.5 0.5
11 紫外線吸収膜 7.9 7. 9 68.2 16.0  11 UV absorbing film 7.9 7.9 68.2 16.0
12 同上 15. 1 15.0 53.9 16.0  12 Same as above 15.1 15.0 53.9 16.0
13 10.9 10.8 62.3 16.0  13 10.9 10.8 62.3 16.0
14 6.0 30. 7 46.4 16.0  14 6.0 30. 7 46.4 16.0
15 6.0 30.7 46.4 16.0  15 6.0 30.7 46.4 16.0
15 中間層 39.4 60.6 (表 2 ) 実施例 紫外線吸収膜 中間層 膜厚 屈折率 膜厚 屈折率15 Middle class 39.4 60.6 (Table 2) Example UV absorbing film Intermediate layer Thickness Refractive index Thickness Refractive index
(nm) (nm) (nm) (nm)
1 130 1.9 1 130 1.9
2 120 2.0  2 120 2.0
3 90 2.0  3 90 2.0
4 90 2.0  4 90 2.0
5 130 1.9 120 I.5 5 130 1.9 120 I.5
6 120 2.0 100 1.656 120 2.0 100 1.65
7 130 2.0 120 1.57 130 2.0 120 1.5
8 90 2.0 110 1.78 90 2.0 110 1.7
9 90 2.0 100 1.659 90 2.0 100 1.65
10 130 2.0 90 2.010 130 2.0 90 2.0
11 70 2.1 11 70 2.1
12 120 1.9  12 120 1.9
13 120 2.0  13 120 2.0
14 120 2.0  14 120 2.0
15 120 2.0 100 1.65 15 120 2.0 100 1.65
(表 3) 実施 Y a T a 透過色調 透過色度 可視光 反射色度 370nm 例 (%) (%) (a/b) 反射率 (a/b) 透過率 (Table 3) Implementation Y a T a Transmission color tone Transmission chromaticity Visible light Reflection chromaticity 370nm Example (%) (%) (a / b) Reflectance (a / b) Transmittance
(力"ラス面)(%) (力"ラス面) (%)  (Force "lath surface") (%) (force "lath surface") (%)
1 55.2 63.8 濃青 0.37/- 10.13 12.07 3.98/ 7.13 45.21 55.2 63.8 Dark blue 0.37 /-10.13 12.07 3.98 / 7.13 45.2
2 68.0 65.5 緑青 - 8· 95/ 2.85 13.22 3.35/ -3.95 45.62 68.0 65.5 Patina-895 / 2.85 13.22 3.35 / -3.95 45.6
3 65.9 66.4 暗緑 4· 53/ -0.64 16.18 -0.50/ 1.18 47.53 65.9 66.4 Dark green 4 53 / -0.64 16.18 -0.50 / 1.18 47.5
59.5 66.4 -6.22/ -3.09 20.43 1.76/ - 0.40 44.8 a 61.6 62.7 赤紫 15.08/ -6.27 lz.55 -2.61/ 3.56 41.259.5 66.4 -6.22 / -3.09 20.43 1.76 /-0.40 44.8 a 61.6 62.7 Magenta 15.08 / -6.27 lz.55 -2.61 / 3.56 41.2
6 68.0 65.5 青緑 9.55/ -3.30 13.22 3.62/ -4.16 43.16 68.0 65.5 Blue-green 9.55 / -3.30 13.22 3.62 / -4.16 43.1
7 63.3 68.7 ピンク 9.52/ 4.85 13.55 -0.60 2.23 50.17 63.3 68.7 Pink 9.52 / 4.85 13.55 -0.60 2.23 50.1
8 65.6 64.7 淡青緑 9.65/ -1.29 14.24 7.29/ -2.86 46.78 65.6 64.7 Light blue-green 9.65 / -1.29 14.24 7.29 / -2.86 46.7
9 72.6 74.8 淡青綠 -6.72/ -0.22 6.67 10.72/ - 3.09 44.79 72.6 74.8 Pale blue -6.72 / -0.22 6.67 10.72 /-3.09 44.7
10 62.7 63.7 淡青綠 - 6.26/ 4.93 13.49 -0.95/- 13.25 27.810 62.7 63.7 Pale blue-6.26 / 4.93 13.49 -0.95 /-13.25 27.8
11 60.2 65.7 緑青 -6.53/ 7.93 6.75 1.07/ 0.97 45.811 60.2 65.7 Patina -6.53 / 7.93 6.75 1.07 / 0.97 45.8
12 65.0 54.4 緑青 \.20/- 10.00 13.69 5.57/ 0.84 51.512 65.0 54.4 Patina \ .20 /-10.00 13.69 5.57 / 0.84 51.5
13 66.5 56.3 緑青 -2.21/ -9.15 9.76 5.52/ 2.28 48.013 66.5 56.3 Patina -2.21 / -9.15 9.76 5.52 / 2.28 48.0
14 49.5 43.6 青緑 -13.53/ -6.19 15.13 2.14/ -7.11 32.314 49.5 43.6 Blue-green -13.53 / -6.19 15.13 2.14 / -7.11 32.3
15 52.7 45.0 肯緑 12.42/ -5.58 10.83 0.56/ 2.15 33.8 15 52.7 45.0 Positive green 12.42 / -5.58 10.83 0.56 / 2.15 33.8
[比較例 1 ] [Comparative Example 1]
実施例 1で作製した硝酸セ リ ウム原液 1. 1 1 g、 酸化チタン原液を 0. 7 3 2 g、 酸化珪素原液を 0. 6 0 5 gとり、 これにェチルセ口ソルブを 7. 5 5 g 加えて混合攪拌し、 ティ ング液 1 1を作製した。  Take 1.11 g of the cerium nitrate stock solution prepared in Example 1, 0.732 g of the titanium oxide stock solution, and 0.605 g of the silicon oxide stock solution, and add the ethyl acetate solution to 7.55. g was added and mixed and stirred to prepare a tinting solution 11.
上記作製したコーティング液 1 1を実施例 1 と同様に、 無着色透明ガラス基板 上に 1 000 r p m/ 1 0秒スピン ティングを行った。 風乾後 2 50 で 2 時間熱処理し金微粒子を析出させた。 さらに 7 2 0てで 1 2 0秒焼成を行い、 着 色膜をもつガラス基板を得た。 着色膜の特性を表 4〜 5に示す。 得られた着色膜 の 3 7 0 n mの透過率は 6 3 . 6 %であり紫外線吸収能は低く、 無色透明であつ て着色着色膜は得られなかった。 In the same manner as in Example 1, the coating liquid 11 prepared as described above was spin-coated on a non-colored transparent glass substrate at 1,000 rpm for 10 seconds. After air drying 2 50 at 2 Heat treatment was performed for a period of time to precipitate gold fine particles. Further, baking was performed at 720 for 120 seconds to obtain a glass substrate having a coloring film. Tables 4 and 5 show the properties of the colored film. The transmittance of the obtained colored film at 3700 nm was 63.6%, the ultraviolet absorbing ability was low, it was colorless and transparent, and no colored colored film was obtained.
[比較例 2 ] [Comparative Example 2]
コ一ティ ング液として実施例 1の原液のうちシリ力原液を 2 . 5 g、 ェチルセ 口ソルブを 6 . 1 7 g加え、 最後に 3 -ァミノプロピルトリエトキシシランが塩 化金酸に対して等モル入った塩化金酸 4水和物 1 0重量%のェチルセ口ソルブ溶 液を 2 . 0 0 g加えて混合攪拌し、 コーティング液 1 2を作製した  As a coating solution, 2.5 g of the stock solution of Example 1 and 6.17 g of a solvent solution of ethyl acetate were added, and finally, 3-aminopropyltriethoxysilane was added to the chloroauric acid. 2.0 g of a 10% by weight solution of chloroauric acid tetrahydrate in ethyl acetate was added and mixed and stirred to prepare a coating solution 12.
上記作製したコーティ ング液〗 2を比較例】 と同様に、 塗布、 風乾、 熱処理し て得られたガラス板の特性を表 4〜 5に示す。 得られた着色膜はピンク色に着色 していたが、 3 7 0 n mの透過率は 7 4 . 5 %であり紫外線吸収能は低かった。  Tables 4 and 5 show the properties of the glass plates obtained by coating, air-drying, and heat-treating the coating solution 2 prepared above in the same manner as in Comparative Example. Although the obtained colored film was colored pink, the transmittance at 370 nm was 74.5%, and the ultraviolet absorbing ability was low.
[比較例 3 ] [Comparative Example 3]
コ一ティ ング液として実施例 1の原液のうち、 シリ力原液を 1 . 0 7 g、 チタ 二ァ原を 1 . 7 3 gおよびェチルセ口ソルブを 5 . 8 7 gとり、 最後に塩化金酸 4水和物のェチルセ口ソルブ溶液を 1 . 3 3 g加えて混合攪拌し、 コーティ ング 液 1 3を作製した。  Of the stock solutions of Example 1, 1.07 g of the stock solution, 1.73 g of the titania stock, and 5.87 g of the ethyl acetate solvent were used as the coating solution. 1.33 g of ethyl sorbate solution of acid tetrahydrate was added, mixed and stirred to prepare a coating solution 13.
上記作製したコ一ティ ング液 1 3を比較例 1と同様に、 塗布、 風乾、 熱処理し て得られたガラス板の特性を表 4〜 5に示す。 得られた着色膜は紫色に着色して いたが、 3 7 0 n mの透過率 6 1 . 7 %で紫外線吸収能は低かった。  Tables 4 and 5 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating liquid 13 prepared above in the same manner as in Comparative Example 1. Although the obtained colored film was colored purple, it had a transmittance of 370 nm of 61.7% and a low ultraviolet absorbing ability.
[比較例 4 ] [Comparative Example 4]
コーティ ング液として実施例】の原液のうち、 チタニア原液を 3 . 0 3 g、 ェ チルセ口ソルブを 5 . 6 4 gとり、 最後に塩化金酸 4水和物のェチルセ口ソルブ 溶液を 1 . 3 3 g加えて混合攪拌し、 コーティ ング液 1 4を作製した。 As a coating solution, 3.03 g of a titania stock solution and 5.64 g of an ethyl sorb solution were taken out of the stock solution of Example], and finally, a solution of chloroauric acid tetrahydrate in an ethyl solution of 1. 33 g was added and mixed and stirred to prepare a coating solution 14.
上記作製したコ一ティ ング液 1 4を比較例 1と同様に、 塗布、 風乾、 熱処理し て得られたガラス板の特性を表 4〜 5に示す。 得られた着色膜は青に着色してお り、 3 7 0 n mの透過率は 5. 5 %であり紫外線吸収能は高かった。 し力、し、 コ —ティ ング液 1 4中のチタニア原液、 および塩化金酸 4水和物のェチルセ口ソル ブ溶液の量を変化させても、 色調は青以外に変化しなかった。 Tables 4 and 5 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating liquid 14 prepared above in the same manner as in Comparative Example 1. The obtained colored film is colored blue. As a result, the transmittance at 370 nm was 5.5%, and the ultraviolet absorbing ability was high. Even when the amount of the titania stock solution in the coating solution 14 and the amount of the solution of chloroauric acid tetrahydrate in ethyl acetate solution were changed, the color tone did not change except for blue.
[比較例 5 ] [Comparative Example 5]
コーティ ング液として実施例 1の原液のうち、 シリカ原液を 0. 5 0 g、 チタ 二ァ原液を 2. 4 2 gおよびェチルセ口ソルブを 5. 7 5 gとり、 最後に塩化金 酸 4水和物のェチルセ口ソルブ溶液を 1. 3 3 g加えて混合攪拌し、 コーティ ン グ液 1 5を作製した。  Of the stock solutions of Example 1, 0.50 g of the stock solution of silica, 2.42 g of the stock solution of titania, and 5.75 g of the solvent solution of ethyl acetate were used as the coating solution. 1.33 g of a solution of ethyl ether in the mouth was added and mixed with stirring to prepare a coating solution 15.
上記作製したコーティング液 1 5を比較例 1と同様に、 塗布、 風乾、 熱処理し て得られたガラス板の特性を表 4 ~ 5に示す。 得られた着色膜は青色に着色して いたが、 3 7 0 n mの透過率 5 8. 6 %で紫外線吸収能は低かった。 Tables 4 to 5 show the properties of the glass plates obtained by applying, air-drying, and heat-treating the coating solution 15 prepared above in the same manner as in Comparative Example 1. The obtained colored film was colored blue, but had a transmittance of 370 nm of 58.6% and a low ultraviolet absorbing ability.
(表 4 ) 比較例 膜組成 (重量%) 膜厚 屈折率 (Table 4) Comparative example Film composition (% by weight) Film thickness Refractive index
Si02 TiOz Ce02 Au CoO CrO Zr02 (nm) Si0 2 TiO z Ce0 2 Au CoO CrO Zr0 2 (nm)
1 24.1 24.0 51.9 ― … 110 1.91 24.1 24.0 51.9 ―… 110 1.9
2 84.0 16.0 一 --- --- 180 1.52 84.0 16.0 1 --- --- 180 1.5
3 36.1 47.9 16.0 --- ——― ― 1 10 1.83 36.1 47.9 16.0 --- ------- 1 10 1.8
4 84.0 16.0 - 一- 100 2.24 84.0 16.0-100-2.2
5 16.8 67.2 16.0 -— --- 一 80 2.0 5 16.8 67.2 16.0 ---- --- One 80 2.0
(表 5) 比 Y a T a 透過色調 透過色度 可視光 反射色度 370nra 較 (%) (%) (a/b) 反射率 (a/b) 透過率 例 (力"ラス面)(%) (力"ラス面) (%) (Table 5) Ratio Y a T a Transmission color tone Transmission chromaticity Visible light Reflection chromaticity 370nra Comparison (%) (%) (a / b) Reflectivity (a / b) Transmittance Example (force lath surface) (% ) (Force lath surface) (%)
1 81.4 77.4 無色透明 -0.55/ -1.34 19.5 - 1.81/ 3.71 63.61 81.4 77.4 Colorless and transparent -0.55 / -1.34 19.5-1.81 / 3.71 63.6
2 73.6 78.1 ピンク 10.30/ -4.33 6.7 3.62/- -0.96 74.52 73.6 78.1 Pink 10.30 / -4.33 6.7 3.62 /--0.96 74.5
3 67.0 66.3 紫 2.88/- 14.69 11.3 4.69/ 5.09 61.73 67.0 66.3 Purple 2.88 /-14.69 11.3 4.69 / 5.09 61.7
4 54.8 57.7 青 - 15.88/ 11.07 13.7 3.19/ 6.12 51.54 54.8 57.7 Blue-15.88 / 11.07 13.7 3.19 / 6.12 51.5
5 50.2 61.7 -11.01/- 17.27 13.4 0.66/ 8.49 58.6 5 50.2 61.7 -11.01 /-17.27 13.4 0.66 / 8.49 58.6
次に上記実施例、 比較例の透過光の色調を図 2に、 し 3 13表色系で3、 bを直 角座標上に点で表した。 実施例、 比較例を比較して説明する。 Next, the color tone of the transmitted light in the above Examples and Comparative Examples is shown in FIG. 2, and 3 and b are represented by points on rectangular coordinates in the 313 color system. Examples and comparative examples will be described.
実施例 1、 2、 1 1、 1 2、 1 3を比較例 3, 4, 5と比較すると、 いずれも A u微粒子を含有し、 酸化コバルト等を含有しない単層膜 (基材無着色) である が、 以下のような差異がある。 When Examples 1, 2, 11, 11, 12, and 13 are compared with Comparative Examples 3, 4, and 5, a single-layer film containing Au fine particles and containing no cobalt oxide or the like (uncolored base material) Is However, there are the following differences.
( 1 ) 図 2に示すように、 透過光の色相 (L a b表色系で a、 bを直角座標で表 した点の位置を極座標の角度で、 緑色を 1 80度、 青色を 2 7 0度として表示) を横軸に、 紫外線 (波長 3 7 0 nm) の透過率を縦軸にプロッ トすると、 実施例 では 5 5 %以下の紫外線透過率を有し、 透過光色相が 74度の広い範囲で調節で きる膜が得られるのに対して、 比較例では 5 5 %以下の紫外線透過率を有する範 囲では約 1 5度の狭い範囲で透過光色相を調節できる膜しか得られないこと。 ( 2 ) 実施例で得られる透過光彩度 (L a b表色系で (a 2+ b 2) 1 2の値) は、 実施例 1、 2、 1 1、 1 2、 1 3について、 それぞれ 1 0. 1 , 9. 4, 1 0. 3, 1 0. 】, 9. 4であって 9~ 1 0の相対的に低い値であり暗色であるに対 して、 比較例では比較例 3, 4, 5について、 それぞれ 1 5. 0, 1 9. 4, 2 0. 4であって 1 5〜2 0の相対的に高い値であり明色である。 本発明の A u微粒子含有の単層膜被覆ガラスによれば、 従来技術に比して種々 の色相のものが得られ、 かつ比較的に彩度の小さい製品が得られる。 (1) As shown in Fig. 2, the hue of the transmitted light (the positions of points where a and b are represented by rectangular coordinates in the Lab color system are polar coordinates, green is 180 degrees, blue is 270 degrees) Plotted on the abscissa and the transmittance of ultraviolet light (wavelength 370 nm) on the ordinate, the example has an ultraviolet transmittance of 55% or less and a transmitted light hue of 74 °. While a film that can be adjusted in a wide range can be obtained, in the comparative example, only a film that can adjust the transmitted light hue in a narrow range of about 15 degrees is obtained in a range having an ultraviolet transmittance of 55% or less. thing. (2) The transmitted light saturation (the value of (a 2 + b 2 ) 12 in the Lab color system) obtained in the examples is 1 for each of the examples 1, 2, 11, 1, 12, and 13. 0.1, 9.4, 10.3, 10.] and 9.4, which are relatively low values of 9 to 10 and are dark, whereas the comparative example is comparative example 3 , 4, and 5 are 15.0, 19.4, and 20.4, respectively, which are relatively high values of 15 to 20 and are bright colors. According to the glass coated with a single-layer film containing Au fine particles of the present invention, products having various hues as compared with the prior art can be obtained, and a product having a relatively low saturation can be obtained.
A u微粒子の他に、 更に酸化コバルトまたは酸化クロムを含有する単層膜 (基 材無着色) である実施例 3, 4では、 透過光彩度はそれぞれ 4. 6および 7. 0 と更に低くてより暗色で、 反射光の彩度も 1. 3および 1. 8であり、 彩度が 2 以下のきわめてニュートラルな色調の反射色のものが得られる。  In Examples 3 and 4 in which a single-layer film (uncolored base material) further contains cobalt oxide or chromium oxide in addition to the Au fine particles, the transmitted light chroma was as low as 4.6 and 7.0, respectively. Darker colors with reflected light saturation of 1.3 and 1.8, and very neutral reflections with a saturation of 2 or less are obtained.
A u微粒子を含有する紫外線吸収膜および酸化珪素と A u微粒子とを含有する 中間層を有する実施例 5では、 同じ組成の紫外線吸収膜のみを有する実施例 1に 比して、 紫外線吸収膜中の A u微粒子による着色と中間層中の A u微粒子による 着色とが複合して透過光の色相が大きく変わり、 また実施例 1の透過光の彩度約 1 0に対して透過光の彩度が約 1 6と高くなつている。 In Example 5 having an ultraviolet absorbing film containing Au fine particles and an intermediate layer containing silicon oxide and Au fine particles, compared to Example 1 having only an ultraviolet absorbing film of the same composition, The hue of the transmitted light changes greatly due to the combination of the coloring by the Au fine particles of Example 1 and the coloring by the Au fine particles in the intermediate layer. Is as high as 16
A u微粒子を含有する紫外線吸収膜および酸化珪素と酸化ジルコニウムとを含 有する中間層を有する実施例 6では、 同じ組成の紫外線吸収膜のみを有する実施 例 2と比較して、 反射色調が変わっている。 A u微粒子と酸化コバルトとを含有する紫外線吸収膜および酸化珪素と酸化ジ ルコニゥムとを含有する中間層を有する実施例 8では、 同じ組成の紫外線吸収膜 のみを有する実施例 3と比較して、 透過光の色相はほぼ同じ (実施例 8、 実施例 3ともに 1 8 8度) であるが彩度は高くなつており (実施例 8は 9 . 7、 実施例 3は 4 . 6 ) 、 可視光反射率が小さくなり、 反射色調も変わっている。 In Example 6 having an ultraviolet absorbing film containing Au fine particles and an intermediate layer containing silicon oxide and zirconium oxide, the reflection color tone was changed compared to Example 2 having only an ultraviolet absorbing film having the same composition. I have. Example 8 having an ultraviolet absorbing film containing Au fine particles and cobalt oxide and an intermediate layer containing silicon oxide and zirconia oxide, compared with Example 3 having only an ultraviolet absorbing film of the same composition, The hue of the transmitted light is almost the same (188 degrees in both Example 8 and Example 3), but the saturation is high (9.7 in Example 8 and 4.6 in Example 3). The light reflectance has decreased and the reflection color tone has also changed.
A u微粒子と酸化クロムとを含有する紫外線吸収膜および酸化珪素と酸化ジル コニゥムとを含有する中間層を有する実施例 9では、 上述のように中間層が無反 射条件を満足しているため、 同じ組成の紫外線吸収膜のみを有する実施例 4 と比 較して、 可視光反射率が非常に小さくなつている。 In Example 9 having an ultraviolet absorbing film containing Au fine particles and chromium oxide and an intermediate layer containing silicon oxide and zirconium oxide, the intermediate layer satisfies the non-reflection condition as described above. However, as compared with Example 4 having only the ultraviolet absorbing film of the same composition, the visible light reflectance is very small.
A u微粒子を含有する紫外線吸収膜と、 その外側に酸化珪素、 酸化チタンおよ び酸化セリゥムを含有し A u微粒子を含有しない別の紫外線吸収膜を有する実施 例 1 0は、 A u微粒子を含有する紫外線吸収膜の色調を変えずに紫外線吸収能の みを高めたいときに有効に使用される。 Example 10 having an ultraviolet absorbing film containing Au fine particles and another ultraviolet absorbing film containing silicon oxide, titanium oxide, and cerium oxide and not containing Au fine particles, It is effectively used when it is desired to increase the ultraviolet absorption capacity without changing the color tone of the contained ultraviolet absorbing film.
A u微粒子を含有しない紫外線吸収膜および酸化珪素と A u微粒子を含有する 中間層を有する実施例 7では、 中間層の A u微粒子のマトリ ックスの屈折率が低 いために透過光色相が比較例 2とほぼ同じピンクであるが、 比較例 2に比して高 い紫外線吸収能を有する。 In Example 7 having an ultraviolet absorbing film containing no Au fine particles and an intermediate layer containing silicon oxide and Au fine particles, the transmitted light hue was a comparative example because the refractive index of the matrix of the Au fine particles in the intermediate layer was low. It is almost the same pink as 2, but has a higher ultraviolet absorbing ability than Comparative Example 2.
A u微粒子を含有しない紫外線吸収膜および酸化珪素、 酸化セリウム、 A u微 粒子と酸化コバルトを含有する中間層を有する実施例 1 0は、 中間層に酸化セリ ゥムと酸化コバルトを含有しない実施例 7と比べて、 非常に高い紫外線吸収能を 有する。 In Example 10 having an ultraviolet absorbing film containing no Au fine particles and an intermediate layer containing silicon oxide, cerium oxide, Au fine particles and cobalt oxide, Example 10 did not contain cerium oxide and cobalt oxide in the intermediate layer. Compared with Example 7, it has much higher UV absorption capacity.
A u微粒子を含有し酸化コバルト等を含有しない単層膜 (基材は緑着色ガラス) である実施例 1 4では、 基材が無着色である点でのみ異なる実施例 2に比べて、 可視光透過率が低くなり、 熱線遮断性能および紫外線吸収能が高く、 透過光およ び反射光の色調が変化している。 In Example 14, which is a single-layer film containing Au fine particles and not containing cobalt oxide or the like (base material is green-colored glass), compared to Example 2 which differs only in that the base material is non-colored, Visible light transmittance is low, heat ray blocking performance and ultraviolet absorption performance are high, and the color tone of transmitted light and reflected light is changing.
A u微粒子を含有する紫外線吸収膜、 および酸化珪素と酸化ジルコニウムとを 含有する中間層を有し、 基材が緑着色ガラスである実施例 1 5では、 基材が無着 色である点でのみ異なる実施例 6に比べて、 可視光透過率が低くなり、 熱線遮断 性能および紫外線吸収能が高く、 可視光色相が若干変化している。 Example 15 has an ultraviolet absorbing film containing Au fine particles, and an intermediate layer containing silicon oxide and zirconium oxide, and the substrate is a green colored glass. Compared with Example 6 which differs only in Example 6, the visible light transmittance is lower, the heat ray blocking performance and the ultraviolet absorbing power are higher, and the visible light hue is slightly changed.
[実施例 1 6〜 1 9 ] [Examples 16 to 19]
下記の表 6に示すようにそれぞれ実施例 1で調製した硝酸セリゥ厶原液、 酸化 チタン原液、 および酸化珪素原液をとり、 これにェチルセ口ソルブを加え、 最後 に実施例 1で調製した塩化金酸 4水和物のェチルセ口ソルブ溶液を加えて混合攪 拌し、 コーティ ング液 1 6、 1 8および 1 9を作製した。  As shown in Table 6 below, take the cerium nitrate stock solution, titanium oxide stock solution, and silicon oxide stock solution prepared in Example 1 respectively, add Ethylse mouth solve, and finally add chloroauric acid prepared in Example 1 A solution of tetrahydrate in ethyl acetate was added and mixed with stirring to prepare coating solutions 16, 18, and 19.
(表 6 ) コ一ティ ング液 (Table 6) Coating liquid
1 6 18 1 9 硝酸セリウム原液 0.68g 0.68g 0.80g  1 6 18 1 9 Cerium nitrate stock solution 0.68 g 0.68 g 0.80 g
酸化チタン原液 0.64g 0.64g 0.76g Titanium oxide stock solution 0.64g 0.64g 0.76g
酸化珪素原液 1. 19g 1. I9g 0.94g Silicon oxide stock solution 1.19g 1.I9g 0.94g
ェチノレセ口ソノレブ 6.50g 6.16g 6.16g Etinolace mouth sonolev 6.50g 6.16g 6.16g
塩化金酸 4水和物 Chloroauric acid tetrahydrate
のェチルセ πゾルフ"溶液 I. OOg 33g 1.33g Echilse π Solf "solution I. OOg 33g 1.33g
上記作製した各コーティ ング液を厚み 3. 9 lramで 1 Ocmx 1 Ocmの寸法のグ リーンガラス基板 (ィ) (ガラス組成; S i 02 70. 4. A 120 a 1. 5、 全鉄 (F e 203 0. 6 2、 (内 F e O 0. 】 8 5 ) 、 C e 02 l . 67、 TGreen glass substrate of dimensions 1 Ocmx 1 Ocm each Koti ing solution prepared above to a thickness 3. 9 LRAM (I) (glass composition; S i 0 2 70. 4. A 1 2 0 a 1. 5, Total iron (F e 2 0 3 0. 6 2, ( inner F e O 0.] 8 5), C e 0 2 l. 67, T
1 02 0. 1 4. C a 0 8. 0、 Mg O 4. 0. N a 20 1 3. ϋ、 Κ20 0. 7 0各重量%、 屈折率 1. 5 1、 視感透過率 Y a = 7 1. 6%、 日射透 過率 T g = 4 4. 7 %、 可視光線反射率 R g = 6. 6 %、 透過色調 ;緑、 L a b 表色系の色度で表して透過光色度 a = - 8. 0、 b = 3. 4、 反射光色度 a =_ 1. 9、 b = - 0. 3) または厚み 3. 5關で 1 Ocmx 1 0cmの寸法のグリーン ガラス基板 (口) (ガラス組成は上記グリーンガラス基板 (ィ) の組成と同じ、 視感透過率 Y a = 7 3. 5 %、 日射透過率 T g = 4 8. 5 %、 可視光線反射率 R g = 6. 6 %、 透過色調;綠、 L a b表色系の色度で表して透過光色度 a = - 8. 0、 b = 3. 4、 反射光色度 a =— 1. 9、 b = - 0. 3、 透過光主波長 λ d = 5 2 2 n m、 透過光刺激純度 P e = 2. 29 %、 反射色色度 a = _ 1. 9、 b = — 0. 3 ) 上に回転数 1 00 0〜2 0 0 0 r pm 1 0秒間スピンコーティ ング を行った。 風乾後 2 50 °Cで 2時間熱処理し、 金微粒子を析出させた。 さらに 71 0 2 0 .1 4. C a 0 8.0, Mg O 4.0. N a 2 0 1 3. ϋ, Κ 2 0 0.70 wt%, refractive index 1.51, visual perception transmittance Y a = 7 1. 6%, solar transparently ratio T g = 4 4. 7%, visible light reflectance R g = 6. 6%, transmission color; green, L ab color system chromaticity Express the transmitted light chromaticity a = -8.0, b = 3.4, reflected light chromaticity a = _1.9, b = -0.3) or the thickness of 3.5 and 1 Ocmx 10cm Green glass substrate (mouth) (The glass composition is the same as that of the above green glass substrate (a), luminous transmittance Ya = 73.5%, solar transmittance Tg = 48.5%, visible light Reflectance R g = 6.6%, transmitted color tone: 綠, expressed as chromaticity of Lab color system, transmitted light chromaticity a = -8.0, b = 3.4, reflected light chromaticity a = — 1. 9, b =-0.3, transmitted light dominant wavelength λ d = 52 2 nm, transmitted light stimulus purity P e = 2.29%, reflected chromaticity a = _ 1.9, b = — 0. 3) Spin coating was performed on the top for 100 rpm to 200 rpm at 10 rpm. After air drying, heat treatment was performed at 250 ° C for 2 hours to precipitate gold fine particles. And 7 more
20°Cで 1 2 0秒焼成を行い、 着色膜をもつガラス板を得た。 コーティ ング液 1 6を用いて作製した着色膜付きガラス板は実施例 1 6および 1 7であり、 コーテ ィ ング液 1 8および 1 9を用いて作製した着色膜付きガラス板はそれぞれ実施例 1 8および 1 9である。 着色膜の可視光線透過率、 太陽光線透過率、 色 (透過光) - および 37 0 n mの波長の紫外光の透過率の特性を表 7〜 9に示す。 得られた着 色膜は耐薬品性、 耐テーバー性について良好な結果を示した。 透過色の彩度は 4.Baking was performed at 20 ° C. for 120 seconds to obtain a glass plate having a colored film. The glass plates with a colored film produced using the coating liquid 16 are Examples 16 and 17, and the glass plates with a colored film produced using the coating liquids 18 and 19 are Example 1 respectively. 8 and 19. Tables 7 to 9 show the characteristics of the visible light transmittance, the sunlight transmittance, the color (transmitted light) of the colored film, and the transmittance of ultraviolet light having a wavelength of 370 nm. The obtained coloring film showed good results in chemical resistance and Taber resistance. The saturation of the transmitted color is 4.
3 ~7. 8であり、 反射色の彩度は(). 8〜5. 5であり、 特に彩度が低く中性 灰色に近い色調の反射色が得られた。 なお反射特性は、 ガラス基板のガラス面側 から光を入射させて測定した値である。 3 to 7.8, and the saturation of the reflected color was (). 8 to 5.5. A reflected color with a low saturation and a color close to neutral gray was obtained. The reflection characteristic is a value measured by applying light from the glass surface side of the glass substrate.
(表 7 ) 膜 膜組成 (重量%) (Table 7) Membrane Membrane composition (% by weight)
実施例 SiO; TiO: Ce02 Au CoO CrO ZrO: Example SiO ; TiO: CeO 2 Au CoO CrO ZrO:
16 紫外線吸収膜 41.6 18.4 27.5 12.5 16 UV absorbing film 41.6 18.4 27.5 12.5
17 紫外線吸収膜 41.6 18.4 27.5 12.5  17 UV absorbing film 41.6 18.4 27.5 12.5
18 紫外線吸収膜 31.7 21.0 31.3 16.0  18 UV absorbing film 31.7 21.0 31.3 16.0
19 紫外線吸収膜 39.9 17.7 26.4 16.0  19 UV absorbing film 39.9 17.7 26.4 16.0
(表 8 ) ガラス 紫外線吸収膜 (Table 8) Glass UV absorbing film
実施例 基板(nm) 膜厚 屈折率  Example Substrate (nm) Film thickness Refractive index
16 (ィ) 72 し 70 16 (a) 72 then 70
17 (ィ) 48 し 70  17 (a) 48 70
18 (Π) 68 し 76  18 (Π) 68 then 76
19 (Π) 73 1. 70 19 (Π) 73 1.70
(表 9 ) 実 Ya Tg Tuv T370 透過色度 可視光 反射色度 (Table 9) Actual Ya Tg Tuv T370 Transmitted chromaticity Visible light Reflected chromaticity
施 (%) (¾) (¾) (¾) (a/b) 反射率 (a/b)  (%) (¾) (¾) (¾) (a / b) Reflectance (a / b)
例 (力"ラス面)(%) (力"ラス面)  Example (force lath) (%) (force lath)
16 55.9 40.0 6.3 18.0 -3.8/-2.1 10.7 -1.2/ 2.7 16 55.9 40.0 6.3 18.0 -3.8 / -2.1 10.7 -1.2 / 2.7
17 58.9 41.3 6.3 18.2 4.9/ 0.2 10.0 - 0.4/-0.7  17 58.9 41.3 6.3 18.2 4.9 / 0.2 10.0-0.4 / -0.7
18 46.6 36.6 5.7 -6.4/-4.4 15.4 4.9/ 2.3  18 46.6 36.6 5.7 -6.4 / -4.4 15.4 4.9 / 2.3
19 50.2 38.5 6.0 4.4/-3.3 12.6 4.5/ 3.2  19 50.2 38.5 6.0 4.4 / -3.3 12.6 4.5 / 3.2
[実施例 2 0 ] [Example 20]
P d原料の作製  Production of Pd raw material
塩化パラジウム 1モルに対し 2モルのァセチルァセ トンを加え、 攪拌しながら 9 0てに加温し数時間処理した。 沈殿物をろ過し、 濾液の固形分を測定し、 P d 含有量を確認したあとパラジゥ厶原液として使用した。  2 mol of acetylacetone was added to 1 mol of palladium chloride, and the mixture was heated to 90 with stirring and treated for several hours. The precipitate was filtered, the solid content of the filtrate was measured, and after confirming the Pd content, it was used as a palladium stock solution.
酸化珪素原液 0. 58、 酸化チタン原液 0. 93 g、 酸化セリウム原液 0. 9 9 gとった後、 ェチルソロソルブを 5. 8 5 g加え、 1 0重量%塩化金酸のェチ ルセ口ソルブ溶液 1. 5 gをとり、 最後に P d原液 0. 1 5 g加えてコ一ティ ン グ溶液とした。  Silicone stock solution 0.58, titanium oxide stock solution 0.93 g, cerium oxide stock solution 0.99 g, add ethyl sorbol 5.85 g, add 10 wt% chloroauric acid in ethyl chloride solution 1.5 g was taken, and finally 0.15 g of Pd stock solution was added to obtain a coating solution.
上記作製したコーティ ング液を基板に厚み 3. 5 3 ramで 1 Ocmx 1 0 eraの寸法 のグリーンガラス基板 (ガラス組成は実施例 1 7のグリ一ンガラス基板のものと 同じ、 視感透過率 Y a = 7 3. 5 %、 日射透過率 T g = 4 8. 5 %、 可視光線反 射率 R g = 7. 0 %、 透過色調;緑、 L a b表色系の色度で表して透過光色度 a = - 7. 2、 b = 3. 0、 反射光色度 a =— 2. 4、 b = _ 0. 1 ) を使用し、 20 0 0 r pm/ 1 0秒間スピンコ一ティングを行つた。 風乾後 250 °Cで 2時 間熱処理し、 金微粒子を析出させた。 さらに 7 20てで 1 2 0秒焼成を行い、 着 色膜をもつガラス板を得た。 着色膜付きガラス板の可視光線透過率 (Y a ) 、 太 陽光線透過率 (T g) 、 色 (透過光) 、 および紫外光の透過率 (Tuv) 等の光学 特性および膜組成を表 1 0〜 2に示す。 得られた着色膜は耐薬品性、 耐テーバ 一性について良好な結果を示した。 なお反射特性は、 ガラス基板の被覆面側から 光を入射させて測定した値である。 A green glass substrate having a thickness of 3.53 ram and a size of 1 Ocm × 10 era was coated on the substrate with the above prepared coating liquid (the glass composition was the same as that of the green glass substrate of Example 17; luminous transmittance Y a = 73.5%, solar transmittance T g = 48.5%, visible light reflectance R g = 7.0%, transmission color tone: green, transmission expressed in chromaticity of Lab color system Using light chromaticity a =-7.2, b = 3.0, reflected light chromaticity a =-2.4, b = _ 0.1.1), spin coating at 200 rpm / 10 seconds Went. After air drying, heat treatment was performed at 250 ° C for 2 hours to precipitate gold fine particles. Further, baking was performed at 720 times for 120 seconds to obtain a glass plate having a coloring film. Visible light transmittance (Y a) of glass plate with colored film Tables 10 and 2 show the optical properties such as sunlight transmittance (Tg), color (transmitted light), and transmittance of ultraviolet light (Tuv), and the film compositions. The obtained colored film showed good results in chemical resistance and Taber resistance. The reflection characteristic is a value measured by applying light from the coated surface side of the glass substrate.
(表 1 0 ) 実施例 膜組成 (重量%) 屈折率 膜厚 (Table 10) Example Film composition (% by weight) Refractive index Film thickness
Sif Ti02 Ce02 Au Pd (nra) Sif Ti0 2 Ce0 2 Au Pd (nra)
2 0 20.0 26.5 39.6 12.5 87 50 2 0 20.0 26.5 39.6 12.5 87 50
(表 1 1 ) 実施例 Y a T g Tuv 透過色度明度 ガラス面 (Table 11) Example Y a T g Tuv Transmission chromaticity lightness Glass surface
(%) (%) (%) (a/b/L) 可視光反射率(%)  (%) (%) (%) (a / b / L) Visible light reflectance (%)
20 57. 40.6 5.9 -6.2/3.8/76.1 13.2 20 57.40.6 5.9 -6.2 / 3.8 / 76.1 13.2
(表 1 2 ) ガラス面 flk面 1¾面 (Table 12) Glass surface flk surface 1¾ surface
実施例 反射色度 可視光反射率 反射色度明度  Example Reflected chromaticity Visible light reflectance Reflected chromaticity lightness
(a/b) (%) (a/b)  (a / b) (%) (a / b)
2 0 - 3.9/2. 17.3 0.4/-3.7 [実施例 2 〗 ~ 5 1 ] 2 0-3.9 / 2. 17.3 0.4 / -3.7 [Example 2 ~ 5 1]
ガラス基板として表 1 3に示すガラス組成 (重量%) 、 板厚みおよび光学特性 を有する 1 Ocmx 1 Ocmの寸法のグリ一ンガラス基板 A , Bの 2種を準備する。  As glass substrates, two types of green glass substrates A and B having a size of 1 Ocm × 1 Ocm having a glass composition (% by weight), a plate thickness and optical characteristics shown in Table 13 are prepared.
(表 1 3 )  (Table 13)
A B sio2 71.0 70.4 AB sio 2 71.0 70.4
1.53 1.5 1.53 1.5
Figure imgf000038_0001
Figure imgf000038_0001
(内 FeO) 0.185  (Of which FeO) 0.185
Ce02 0 1.67 Ce0 2 0 1.67
Ti02 0 0.14 Ti0 2 0 0.14
CaO 8.62 8.0  CaO 8.62 8.0
MgO 4.06 4.0  MgO 4.06 4.0
Na20 12.3 13.0Na 2 0 12.3 13.0
20 0.76 0.70 屈折率 1.51 1.51  20 0.76 0.70 Refractive index 1.51 1.51
板厚(ram) 4.9 3.5  Plate thickness (ram) 4.9 3.5
Ya(¾) 76.0 73.5  Ya (¾) 76.0 73.5
Tg(¾) 51.6 48.5  Tg (¾) 51.6 48.5
T370(¾) 53.1  T370 (¾) 53.1
Tuv(%) 24.3 9.7  Tuv (%) 24.3 9.7
可視光線  Visible light
反射率 Rg(%) 6.9 6.6  Reflectance Rg (%) 6.9 6.6
透過色調 緑 綠 (表 1 3 ) (続き) Transmission color Green 綠 (Table 13) (continued)
透 I色 a -6.5 8.0 Transparent I color a -6.5 8.0
過 I度 b 0.5 3.4 Excessive degree b 0.5 3.4
光 I主波長 Ad(nm) 500 522 Light I Dominant wavelength Ad (nm) 500 522
I刺激純度 Pe(¾) 2.49 2.29  I Stimulation purity Pe (¾) 2.49 2.29
反射光色度 Reflected light chromaticity
a 1.7 -1.9  a 1.7 -1.9
b -0.7 0.3  b -0.7 0.3
下記の表 1 4および表 1 5に示すような膜組成が得られるように、 それぞれ実 施例 1で調製した硝酸セリウム原液、 酸化チタン原液、 および酸化珪素原液をと り、 これにェチルセ口ソルブを加え、 最後に実施例 1で調製した塩化金酸 4水和 物のェチルセ口ソルブ溶液を加えて混合攪拌し、 6種のコーティング液を作製し、 ガラス基板 A , Bを用いて、 回転数 1 0 00~20 0 0 r pmでスピンコ一ティ ングして、 実施例 6と同様に塗布、 風乾、 熱処理して得られたガラス板の特性を 表 1 6 ~ 1 9に示す。 得られた着色膜は耐薬品性、 耐テーバー性について良好な 結果を示した。 またニュートラルな色調の反射色が得られた。 In order to obtain the film compositions shown in Tables 14 and 15 below, the cerium nitrate stock solution, titanium oxide stock solution, and silicon oxide stock solution prepared in Example 1, respectively, were taken and added to the ethyl acetate solution. Was added, and finally, a solution of chloroauric acid tetrahydrate prepared in Example 1 was added to the solution of ethyl acetate, and mixed and stirred to prepare six kinds of coating liquids. Tables 16 to 19 show the properties of the glass plates obtained by spin-coating at 100 to 200 rpm and coating, air-drying and heat-treating in the same manner as in Example 6. The obtained colored film showed good results in chemical resistance and Taber resistance. In addition, a reflection color having a neutral color tone was obtained.
(表 14 ) 上層 下層 実 屈 屈 施 膜組成 (重量%) 折 膜厚 膜組成 (重量%) 折 膜厚 例 Si02 Ti02 Ce02 Au 率 (nm) Si02 Ti02 Ce02 Au 率 (nra) (Table 14) Upper layer Lower layer Actual bending film composition (wt%) Fold film thickness Film composition (wt%) Fold film thickness Example Si0 2 Ti0 2 Ce0 2 Au ratio (nm) Si0 2 Ti0 2 Ce0 2 Au ratio (nra )
21 23.2 30.8 46.0 0 1.87 127 89.0 0 0 11.0 1.46 10821 23.2 30.8 46.0 0 1.87 127 89.0 0 0 11.0 1.46 108
22 上 同上 同上 同上 同上 104 同上 同上 同上 同上 同上 10822 Same as above Same as above Same as above 104 Same as above Same as above Same as above Same as above 108
23 〃 〃 〃 83 〃 〃 〃 〃 〃 10823 〃 〃 〃 83 〃 〃 〃 〃 〃 108
24 〃 〃 〃 104 〃 〃 〃 〃 〃 9024 〃 〃 〃 104 〃 〃 〃 〃 〃 90
25 7.3 32.4 48.3 12.0 2.02 123 41.9 18.5 27.6 12.0 1.70 12125 7.3 32.4 48.3 12.0 2.02 123 41.9 18.5 27.6 12.0 1.70 121
26 〃 〃 〃 〃 123 〃 〃 〃 〃 9926 〃 〃 〃 〃 123 〃 〃 〃 〃 99
27 〃 123 〃 〃 〃 〃 〃 7927 〃 123 〃 〃 〃 〃 〃 79
28 8.3 36.8 54.9 0 2.02 113 41.9 18.5 27.6 12.0 1.70 12128 8.3 36.8 54.9 0 2.02 113 41.9 18.5 27.6 12.0 1.70 121
29 〃 〃 113 〃 〃 9929 〃 〃 113 〃 〃 99
30 〃 〃 113 〃 〃 7930 〃 〃 113 〃 〃 79
31 7.3 32.4 48.3 12.0 2.02 123 47· 21.1 31.4 12.0 1.70 12131 7.3 32.4 48.3 12.0 2.02 123 4721.1 31.4 12.0 1.70 121
32 〃 〃 〃 〃 〃 123 〃 〃 〃 〃 〃 9932 〃 〃 〃 〃 〃 123 〃 〃 〃 〃 〃 99
33 〃 〃 〃 〃 〃 123 〃 〃 〃 〃 〃 7933 〃 〃 〃 〃 〃 123 〃 〃 〃 〃 〃 79
34 89.0 0 0 11.0 1.46 108 23.2 30.8 46.0 0 1.87 12734 89.0 0 0 11.0 1.46 108 23.2 30.8 46.0 0 1.87 127
35 7.3 36.8 54.9 0 2.02 82 89.0 0 0 11.0 1.46 10835 7.3 36.8 54.9 0 2.02 82 89.0 0 0 11.0 1.46 108
36 〃 〃 〃 〃 〃 56 〃 〃 〃 〃 〃 10836 〃 〃 〃 〃 〃 56 〃 〃 〃 〃 〃 108
37 〃 〃 〃 〃 45 〃 〃 〃 〃 〃 10837 〃 〃 〃 〃 45 〃 〃 〃 〃 〃 108
38 〃 〃 〃 〃 82 〃 〃 〃 〃 〃 9738 〃 〃 〃 〃 82 〃 〃 〃 〃 〃 97
39 〃 〃 〃 〃 56 〃 〃 〃 〃 〃 9739 〃 〃 〃 〃 56 〃 〃 〃 〃 〃 97
40 〃 〃 〃 〃 〃 45 〃 〃 〃 〃 〃 97 (表 1 5 ) 上層 下層 実 屈 屈 施 膜組成 (重量%) 折 膜厚 膜組成 (重量%) 折 膜厚 例 i U 2 T Li 2 JU 2 Au 率 (nm) 2 1 2 CVJ 2 Au 率 (nm) 40 〃 〃 〃 〃 〃 45 〃 〃 〃 〃 〃 97 (Table 15) Upper layer Lower layer Actual bending film composition (wt%) Fold film thickness Film composition (wt%) Fold film thickness Example i U 2 T Li 2 JU 2 Au ratio (nm) 2 1 2 CVJ 2 Au ratio (nm)
10 c 10 c
41 1 o.0 97  41 1 o.0 97
61.0 12.0 1.70 0 0  61.0 12.0 1.70 0 0
121 0. 0 uO. 0 0 2.02 113 121 0.0 uO. 0 0 2.02 113
42 1 J 1口」 同上 同上 121 ίπΐ卜 (Hi 1-42 1 J 1 port '' Same as above Same as above 121 ίπΐ
|oj 同上 同上 92| oj Same as above Same as above 92
43 121 7543 121 75
44 41.9 18.5 27. 6 12.0 1.70 121 7.3 32.4 48.3 12.0 2. 02 12344 41.9 18.5 27.6 12.0 1.70 121 7.3 32.4 48.3 12.0 2.02 123
45 99 12345 99 123
46 79 12346 79 123
47 41.9 18.5 27.6 12.0 1.70 99 8.3 36. 8 54.9 0 2.02 11347 41.9 18.5 27.6 12.0 1.70 99 8.3 36.8 54.9 0 2.02 113
48 79 11348 79 113
49 47.5 21. 1 31.4 0 1.70 121 7.3 32.4 48.3 12.0 2.02 12349 47.5 21. 1 31.4 0 1.70 121 7.3 32.4 48.3 12.0 2.02 123
50 99 12350 99 123
51 79 123 51 79 123
(表 1 6 ) 実施例 力'ラス Y a T g T uv T370 透過色度明度 基材 (%) ( ) (%) (%) (a/b/し) (Table 16) Example Example Lath Y a T g T uv T370 Transmission chromaticity lightness Base material (%) () (%) (%) (a / b / shi)
21 A 69.7 46.0 10.8 26.1 -5.9/ 4.4/83.921 A 69.7 46.0 10.8 26.1 -5.9 / 4.4 / 83.9
22 〃 64.9 45.2 12.0 29.3 -2.6/ 3.9/81.222 〃 64.9 45.2 12.0 29.3 -2.6 / 3.9 / 81.2
23 〃 62.6 44.6 13.6 33.0 - 1.1/-4.6/79.723 〃 62.6 44.6 13.6 33.0-1.1 / -4.6 / 79.7
24 〃 65.4 45.6 12.8 31.1 2.9/-4.2/81.624 〃 65.4 45.6 12.8 31.1 2.9 / -4.2 / 81.6
25 B 34.3 30.3 2.3 6.0 8.3/-7.0/60.125 B 34.3 30.3 2.3 6.0 8.3 / -7.0 / 60.1
26 〃 38.6 31.7 2.6 7.1 13.5/ - 3.5/64.126 〃 38.6 31.7 2.6 7.1 13.5 /-3.5 / 64.1
27 〃 39.9 32.4 2.7 7.3 -13.7/ - 4.7/65.327 〃 39.9 32.4 2.7 7.3 -13.7 /-4.7 / 65.3
28 〃 48.4 38.3 2.8 7.4 -2.4/- 1.4/70.028 〃 48.4 38.3 2.8 7.4 -2.4 /-1.4 / 70.0
29 〃 52.3 39.9 3.1 8.2 -5.7/ 0.2/73.129 〃 52.3 39.9 3.1 8.2 -5.7 / 0.2 / 73.1
30 54.5 40.8 3.1 8.3 -6.3/-0.8/74.730 54.5 40.8 3.1 8.3 -6.3 / -0.8 / 74.7
31 〃 48.2 35.2 3.1 8.4 - 20.7/ 1.0/71.931 〃 48.2 35.2 3.1 8.4-20.7 / 1.0 / 71.9
32 〃 47.5 35.4 3.4 9.3 -20.5/-0.7/71.532 〃 47.5 35.4 3.4 9.3 -20.5 / -0.7 / 71.5
33 〃 47.0 35.8 3.3 8.9 - 19.0/-2.5/71.133 〃 47.0 35.8 3.3 8.9-19.0 / -2.5 / 71.1
34 A 75.0 50.0 11.7 28.4 -7.8/ 1.9/87.434 A 75.0 50.0 11.7 28.4 -7.8 / 1.9 / 87.4
35 〃 57.2 42.0 31.4 12.9 0.8/ - 3.4/75.835 〃 57.2 42.0 31.4 12.9 0.8 /-3.4 / 75.8
36 〃 57.3 41.8 31.5 13.1 0.1/ 1.2/75.636 〃 57.3 41.8 31.5 13.1 0.1 / 1.2 / 75.6
37 〃 58.6 42.6 31.3 13.2 - 0.8/ 2.6/76.537 〃 58.6 42.6 31.3 13.2-0.8 / 2.6 / 76.5
38 〃 58.0 42.2 31.6 13.0 0.1/-2.7/76.438 〃 58.0 42.2 31.6 13.0 0.1 / -2.7 / 76.4
39 〃 58.4 42.2 31.9 13.3 -0.9/ 2.3/76.439 〃 58.4 42.2 31.9 13.3 -0.9 / 2.3 / 76.4
40 〃 60.2 43.2 31.1 13.1 -1.7/ 4.4/77.4
Figure imgf000043_0001
40 〃 60.2 43.2 31.1 13.1 -1.7 / 4.4 / 77.4
Figure imgf000043_0001
9 ' m Ί- ΎΙ- 9 'SI I '9 9 ·9ε ε·8^ OS 9 'm Ί- ΎΙ- 9' SI I '9 9
1 'ΖΙΙΙ / 'ΖΖ- Ζ 1 9'S ε 98 1 'ΖΙΙΙ /' ΖΖ- Ζ 1 9'S ε 98
ϊ ΈΑ/5 'S /0 'ト 9 '91 l ·9 6 ' 0 -2S 8 ΈΑ ΈΑ / 5 'S / 0' G 9 '91 l9 6 '0 -2S 8
9 /0' I '91 ε·9 6 '。 0 Ό9 9/0 'I '91 ε · 9 6'. 0 Ό9
Ζ 9/6 'I / '61 - 9 'Ζ\ o -g 6 •ιε 0 56 〃  Ζ 9/6 'I / '61-9' Ζ \ o -g 6 • ιε 0 56 〃
1 ·09/9 ·8- /ε'9卜 8Ί1 L 6 'οε 6 ε  1 09/9 8- / ε'9 8Ί1 L 6 'οε 6 ε
Ζ -IS/1 '{Ί -79 ·Π 0 Ό1 6 Έ 0 •οε 6 ·6Ζ Ζ -IS / 1 '{Ί -79 · Π 0 Ό1 6 Έ 0 • οε 6 · 6Ζ
ε 'ε 9 ·8Ι ^•L ·6ε Ζ'^ 〃 ε ε 'ε 9 · 8Ι ^ • L · 6ε Ζ' ^ 〃 ε
Ζ ·Ζ9/Ζ ·Ζ 71 Ί Ζ Ί\ 8 '9 I ·6ε 0' Ζ · Ζ9 / Ζ · Ζ 71 Ί Ζ Ί \ 8 '9 I · 6ε 0'
L '89/9 ·9 11 ·0- s ·ει S 'S I ·6ε 9 V  L '89 / 9 · 9 11 · 0- s · ει S 'S I · 6ε 9 V
(n/q/B) (%) (%) (%) (%) n (n / q / B) (%) (%) (%) (%) n
( S丄 ΛΠ丄 3 1 Ε 人 ■第  (S 丄 ΛΠ 丄 3 1 Ε people
( i ΐ SL€0/96df/X3d ZP£VL6 O (表 1 8 ) 力"ラス面 力"ラス面 面 膜面 実施例 可視光反射率 反射色度 可視光反射率 反射色度 (i ΐ SL € 0 / 96df / X3d ZP £ VL6 O (Table 18) Force "Las surface" Force "Las surface" Film surface Example Visible light reflectance Reflected chromaticity Visible light reflectance Reflected chromaticity
(%) (a/b) (%) (a/b)  (%) (a / b) (%) (a / b)
21 7.0 4.6/ 10.8 6.7 14.6/-19.0 22 9.5 3.0/ 5.3 13.0 0.2/ 11.8 23 11.3 0.9/ 6.4 16.1 4.1/ 12.4 24 9.7 2.8/ 6.0 13.5 -1.0/ 12.8 25 5.4 5.8/ 12.1 7.1 13.0/-21.0 26 7.6 7.3/ 5.6 7.9 20.5/- 20.8 27 8.2 3.5/ -1.1 13.0 16. II -3.1 28 6.9 8.9/ 8.7 9.0 18.6/-16.6 29 8.9 5.6/ -1.9 10.3 19.5/ -9.0 30 9.7 0.5/ 1.9 12.4 12.5/ 0.3 31 7.4 6.0/-10.9 6.0 6.0/-29.8 32 8.4 5.2/ 6.6 6.9 7.3ハ 23.2 33 9.0 0.5/ -2.1 7.6 1.2/- 15.2 34 4.6 0.2/ 0.4 6.1 2.1/ 3.2 35 15.6 -0.6/ 3.9 24.5 -6.3/ 7.1 36 16.0 -0.9/ -1.3 24.4 -4.4/ -2.4 37 15.4 1.1/ -3.4 22.7 -3.4/ -5.7 38 16.2 -2.2/ 4.8 24.4 -6.2/ 6.5 39 16.7 -2.6/ -1.3 24.1 -4.0/ -3.1 40 15.6 -2.9/ -4.1 21.8 2.2/ -8.4 (表 1 9 ) ガラス面 ガラス面 膜面 膜面 21 7.0 4.6 / 10.8 6.7 14.6 / -19.0 22 9.5 3.0 / 5.3 13.0 0.2 / 11.8 23 11.3 0.9 / 6.4 16.1 4.1 / 12.4 24 9.7 2.8 / 6.0 13.5 -1.0 / 12.8 25 5.4 5.8 / 12.1 7.1 13.0 / -21.0 26 7.6 7.3 / 5.6 7.9 20.5 /-20.8 27 8.2 3.5 / -1.1 13.0 16. II -3.1 28 6.9 8.9 / 8.7 9.0 18.6 / -16.6 29 8.9 5.6 / -1.9 10.3 19.5 / -9.0 30 9.7 0.5 / 1.9 12.4 12.5 / 0.3 31 7.4 6.0 / -10.9 6.0 6.0 / -29.8 32 8.4 5.2 / 6.6 6.9 7.3 c 23.2 33 9.0 0.5 / -2.1 7.6 1.2 /-15.2 34 4.6 0.2 / 0.4 6.1 2.1 / 3.2 35 15.6 -0.6 / 3.9 24.5 -6.3 / 7.1 36 16.0 -0.9 / -1.3 24.4 -4.4 / -2.4 37 15.4 1.1 / -3.4 22.7 -3.4 / -5.7 38 16.2 -2.2 / 4.8 24.4 -6.2 / 6.5 39 16.7 -2.6 / -1.3 24.1 -4.0 / -3.1 40 15.6 -2.9 / -4.1 21.8 2.2 / -8.4 (Table 19) Glass surface Glass surface Film surface Film surface
実施例 可視光反射率 反射色度 可視光反射率 反射色度 Example Visible light reflectance Reflective chromaticity Visible light reflectance Reflective chromaticity
(%) (a/b) (%) (a/b)  (%) (a / b) (%) (a / b)
41 6.4 9.2/-9.4 8.0 12.7/-12.1 41 6.4 9.2 / -9.4 8.0 12.7 / -12.1
42 10.0 2.3/ 7.0 12.2 8.2/ 7.9  42 10.0 2.3 / 7.0 12.2 8.2 / 7.9
43 11.6 2.7/11.0 13.7 2.0/ 14.0  43 11.6 2.7 / 11.0 13.7 2.0 / 14.0
44 6.1 4.0/-7.4 6.2 -4.5/ -8.6  44 6.1 4.0 / -7.4 6.2 -4.5 / -8.6
45 7.5 9.5/-9.6 6.7 14.8/ -23.0  45 7.5 9.5 / -9.6 6.7 14.8 / -23.0
46 7.5 7.9/ 7.7 8.6 21. - 13.4  46 7.5 7.9 / 7.7 8.6 21.- 13.4
47 10.3 7.4/-0.5 10.5 16.2/ -7.8  47 10.3 7.4 / -0.5 10.5 16.2 / -7.8
48 12.2 2.1/ 6.1 11.6 9. II 2.0  48 12.2 2.1 / 6.1 11.6 9. II 2.0
49 8.3 7.9/-8.9 7.6 7.3/-17.4  49 8.3 7.9 / -8.9 7.6 7.3 / -17.4
50 8.3 7.9/ - 8.5 8.7 16.9/- 19.9  50 8.3 7.9 /-8.5 8.7 16.9 /-19.9
51 8.1 0.3/ 0.2 10.5 9.4/ -3.0  51 8.1 0.3 / 0.2 10.5 9.4 / -3.0
産業上の利用分野 Industrial applications
本発明は、 紫外線吸収着色膜を被覆されたガラス物品、 特に自動車などの車両 用や建築物の窓などに使用される紫外線吸収着色膜が被覆されたガラス板に適し たものである。  INDUSTRIAL APPLICABILITY The present invention is suitable for a glass article coated with an ultraviolet absorbing colored film, particularly a glass plate coated with an ultraviolet absorbing colored film used for vehicles such as automobiles and windows of buildings.

Claims

1 . 重量%で表して、 1. Expressed as weight percent
酸化珪素 5〜 5 ()、  Silicon oxide 5-5 (),
酸化チタン 5〜 7 0、  Titanium oxide 5 ~ 70,
酸化セリウム 2 0〜 8 0、  Cerium oxide 20-80,
金、 銀、 白金、 パラジウム、 硫化  Gold, silver, platinum, palladium, sulfide
力ドミゥムおよびセレン化カ ドミ Force dome and cadmium selenide
ゥムからなる群から選ばれた少なく Selected from the group consisting of
とも】種の着色用微粒子 5〜3 0、 Tomo] 5-30 fine particles for seed coloring,
酸化コバルト、 酸化クロム、 酸化銅、  Cobalt oxide, chromium oxide, copper oxide,
酸化マンガン、 酸化ニッケルおよび Manganese oxide, nickel oxide and
酸化鉄からなる群から選ばれた少なく Fewer selected from the group consisting of iron oxide
とも 1種の着色用金属酸化物 0〜3 0、 With one kind of coloring metal oxide 0 ~ 30,
を主成分として含有する紫外線吸収着色膜をガラス基材表面に被覆した紫外線吸 収着色膜被覆ガラス物品。 A glass article coated with a UV-absorbing colored film comprising a glass substrate surface coated with a UV-absorbing colored film containing as a main component.
2 . 前記紫外線吸収着色膜と前記ガラス基材の間に、 または前記紫外線吸 収着色膜の上に、 2. Between the ultraviolet absorbing and coloring film and the glass substrate or on the ultraviolet absorbing and coloring film,
重量%で表して、 Expressed in weight%,
酸化珪素 2 0〜 1 () 0、  Silicon oxide 20-1 () 0,
酸化チタン、 酸化ジルコニウム、 酸  Titanium oxide, zirconium oxide, acid
化セリウム、 酸化亜鉛および酸化タン Cerium oxide, zinc oxide and tan oxide
タルからなる群から選ばれた少なくと At least selected from the group consisting of
も 1種の金属酸化物 0〜 7 0 Also one kind of metal oxide 0 ~ 70
金、 銀、 白金、 パラジウム、 硫化力  Gold, silver, platinum, palladium, sulfide power
ドミゥムおよびセレン化カ ドミゥムから  From dome and selenide cadmium
なる群から選ばれた少なくとも 1種の At least one selected from the group consisting of
着色用微粒子 0〜 3 0 Fine particles for coloring 0 to 30
を含有する、 前記紫外線吸収着色膜の屈折率よりも低い屈折率を有する中間層ま たは最上層を形成した請求の範囲 1記載の紫外線吸収着色膜被覆ガラス物品。 And an intermediate layer having a refractive index lower than the refractive index of the ultraviolet absorbing colored film. 2. The glass article coated with an ultraviolet absorbing colored film according to claim 1, wherein the glass article has an uppermost layer.
3. ガラス基材の表面に、 重量%で表して、 3. On the surface of the glass substrate, expressed as% by weight,
酸化珪素 5〜50、  Silicon oxide 5-50,
酸化チタン 5〜 70、  Titanium oxide 5-70,
酸化セリウム 20~80、  Cerium oxide 20-80,
を主成分として含有する紫外線吸収膜が被覆され、 前記紫外線吸収膜と前記ガラ ス基材の間に、 または前記紫外線吸収膜の上に、 重量%で表して、 An ultraviolet absorbing film containing, as a main component, between the ultraviolet absorbing film and the glass base material, or on the ultraviolet absorbing film, expressed in% by weight,
金、 銀、 白金、 パラジウム、 硫化力  Gold, silver, platinum, palladium, sulfide power
ドミゥムおよびセレン化カ ドミゥムから  From dome and selenide cadmium
なる群から選ばれた少なくとも 1種の着 At least one kind of clothing selected from the group
色用微粒子 5〜30、 Fine particles for color 5-30,
酸化珪素 5〜95、  Silicon oxide 5-95,
酸化チタン、 酸化ジルコニウム、 酸化セ  Titanium oxide, zirconium oxide, cerium oxide
リウ厶、 酸化亜鉛および酸化タンタルから From lithium, zinc oxide and tantalum oxide
なる群から選ばれた少なくとも 1種の金属 At least one metal selected from the group consisting of
酸化物 0~70、 Oxides 0-70,
酸化コバルト、 酸化クロム、 酸化銅、 酸  Cobalt oxide, chromium oxide, copper oxide, acid
化マンガン、 酸化ニッケルおよび酸化鉄か Manganese oxide, nickel oxide and iron oxide
らなる群から選ばれた少なく とも 1種の着 At least one piece of clothing selected from the group consisting of
色用金属酸化物 0〜 30、 Color metal oxides 0-30,
を含有する、 前記紫外線吸収膜の屈折率よりも低い屈折率を有する中間層または 最上層を形成した紫外線吸収着色膜被覆ガラス物品。 A UV-absorbing colored film-coated glass article having an intermediate layer or a top layer having a refractive index lower than the refractive index of the UV-absorbing film.
4. 前記ガラス基材が 1. 5 ~ 5. 5 mmの厚み、 L a b表色系で表して、 - 1 0. 0〜一 2. 0の aの値と、 一 4. 0〜4. 0の bの値の透過光色度、 1 0-70 %の紫外光透過率 ( 370 n mの波長で) 、 4 0〜 8 5 %の可視光線透 過率および 20〜 80 %の太陽光線透過率を有する請求の範囲】〜 3のいずれか に記載の着色膜被覆ガラス物品。 4. The glass substrate has a thickness of 1.5 to 5.5 mm, represented by the Lab color system, and a value of -1.0 to 1.0 and a value of 4.0 to 4. Transmitted light chromaticity with b value of 0, 10-70% ultraviolet light transmittance (at 370 nm wavelength), 40-85% visible light transmittance and 20-80% sunlight transmission The colored film-coated glass article according to any one of claims 1 to 3, wherein
5. 前記ガラス基材がし a b表色系で表して、 一 1 0. 0〜一 4. 0の a の値と、 - 1. 0 ~ 4. 0の bの値の透過光色度を有する請求の範囲 4記載の着 色膜被覆ガラス物品。 5. The glass substrate is represented by the ab color system, and the transmitted light chromaticity of the value of a from 10.0 to 14.0 and the value of b from -1.0 to 4.0 is calculated. The colored film-coated glass article according to claim 4, wherein
6. 前記ガラス基材が更に ] 5%以下の紫外光透過率 (Tuv) を有する請 求の範囲 4または 5記載の着色膜被覆ガラス物品。 6. The colored film-coated glass article according to claim 4, wherein said glass substrate further has an ultraviolet light transmittance (Tuv) of 5% or less.
7. 重量%で表して、 7. Expressed in% by weight,
酸化珪素 30~ 5 0、  Silicon oxide 30 ~ 50,
酸化チタン 5〜 4 5、  Titanium oxide 5 ~ 4 5,
酸化セリウ厶 2 0〜6 0、  Cerium oxide 20-60,
ただし酸化チタンと酸化セリゥムの合計は 3 5〜5 5、  However, the sum of titanium oxide and cell oxide is 35 to 55,
金の着色用微粒子 5〜3 0、 Fine particles for gold coloring 5 ~ 30,
を主成分として含有し、 1. 6 5〜 1. 7 6の屈折率を有する紫外線吸収着色膜 を、 1. 5〜 5. 5 mmの厚み、 し a b表色系で表して、 — 1 0. 0〜― 4. 0 の aの値と、 ― 】 . 0~4. 0の bの値の透過光色度、 1 0〜7 0%の紫外光透 過率 ( 37 0 n mの波長で) 、 4 0〜 8 5 %の可視光線透過率、 および 20〜 8 0 %の太陽光線透過率を有するガラス基材表面に被覆した紫外線吸収着色膜被覆 ガラス物品。 , As a main component, having a refractive index of 1.65 to 1.76, a UV-absorbing colored film having a thickness of 1.5 to 5.5 mm and an ab color system, A value of a from 0 to -4.0 and-]. A chromaticity of transmitted light with a value of b from 0 to 4.0, an ultraviolet light transmittance of 10 to 70% (at a wavelength of 370 nm) A UV-absorbing colored film-coated glass article coated on the surface of a glass substrate having a visible light transmittance of 40 to 85% and a solar light transmittance of 20 to 80%.
8. 前記ガラス物品の透過光が、 L a b表色系で表して点 0 (a = 0、 b = 0 ) 、 点 A ' ( a = 2 5、 b = () ) 、 点 B ' ( a = 0、 b = - 2 5 ) 、 点8. The transmitted light of the glass article is represented by a point of color 0 (a = 0, b = 0), a point A ′ (a = 25, b = ()), a point B ′ (a = 0, b =-2 5), point
(a = 0、 b = 2 5 ) , および点 0' をその順に、 点 0' と点 A' 、 および点 C ' と点 0' をそれぞれ直線で、 点 A' と点 B' 、 および点 B' と点 C' とをそれ ぞれ点 0' を中心とする円の円弧で結んでできる扇形の範囲内にある色調を有す る請求の範囲 1〜 7のいずれかに記載の紫外線吸収着色膜被覆ガラス物品。 (a = 0, b = 2 5), and point 0 'in that order, point 0' and point A ', and point C' and point 0 ', respectively, as straight lines, point A' and point B ', and point 8. The ultraviolet absorption according to any one of claims 1 to 7, having a color tone within a sector formed by connecting B 'and point C' with an arc of a circle centered at point 0 '. Glass article coated with colored film.
9. 前記ガラス物品の透過光が、 L a b表色系で表して、 aがー 5. 0~ 9. The transmitted light of the glass article is represented by a Lab color system,
5. 0、 bが— 5. 0〜 5. ()の範囲の色調および Lが 6 0 ~ 9 0の明度で表さ れる透過色を有する請求の範囲 1〜 7のいずれかに記載の着色被覆ガラス物品。 The coloring according to any one of claims 1 to 7, wherein 5.0 and b have a color tone in the range of 5.0 to 5. () and L has a transmission color represented by a lightness of 60 to 90. Coated glass articles.
1 0. 前記ガラス物品のガラス面側の反射光が、 L a b表色系で aおよび bの値から計算される ( a 2+ b 2) 1/2 の値が 1 0以下である請求の範囲 1 ~ 9 のいずれかに記載の紫外線吸収着色膜被覆ガラス物品。 10. The reflected light on the glass surface side of the glass article is calculated from the values of a and b in the Lab color system, and the value of (a 2 + b 2 ) 1/2 is 10 or less. 10. The glass article coated with an ultraviolet-absorbing colored film according to any one of ranges 1 to 9.
1 1. 前記ガラス物品のガラス面側の反射光が、 L a b表色系で aおよび bの値から計算される ( a 2+ b 2) 1 2 の値が 5. 0以下である請求の範囲 1 0 に記載の紫外線吸収着色膜被覆ガラス物品。 1 1. The reflected light on the glass surface side of the glass article is calculated from the values of a and b in the Lab color system. The value of (a 2 + b 2 ) 12 is 5.0 or less. The ultraviolet-absorbing colored film-coated glass article according to range 10.
1 2. 前記ガラス物品の太陽光線透過率が 5 5 %以下である請求の範囲 1 〜 1 1のいずれかに項に記載の着色被覆ガラス物品。 12. The colored coated glass article according to any one of claims 1 to 11, wherein the glass article has a sunlight transmittance of 55% or less.
1 3. 前記ガラス物品の紫外線透過率 (Tuv) が 1 2 %以下である請求の 範囲 1 〜 1 2のいずれかに記載の着色被覆ガラス物品。 1 3. The colored coated glass article according to any one of claims 1 to 12, wherein the glass article has an ultraviolet transmittance (Tuv) of 12% or less.
PCT/JP1996/003759 1995-12-26 1996-12-24 Glass article covered with ultraviolet-absorbing colored coat WO1997023424A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/817,601 US5876854A (en) 1995-12-26 1996-12-24 UV absorbing, colored film-covered glass articles
DE69615827T DE69615827T2 (en) 1995-12-26 1996-12-24 GLASS OBJECT PRINTED WITH A ULTRAVIOLATE ABSORBING COLORED LAYER
EP96942625A EP0811583B1 (en) 1995-12-26 1996-12-24 Glass article covered with ultraviolet-absorbing colored coat
AU11730/97A AU692121B2 (en) 1995-12-26 1996-12-24 Glass article covered with ultraviolet-absorbing colored coat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/338993 1995-12-26
JP33899395 1995-12-26

Publications (1)

Publication Number Publication Date
WO1997023424A1 true WO1997023424A1 (en) 1997-07-03

Family

ID=18323259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003759 WO1997023424A1 (en) 1995-12-26 1996-12-24 Glass article covered with ultraviolet-absorbing colored coat

Country Status (7)

Country Link
US (1) US5876854A (en)
EP (1) EP0811583B1 (en)
AU (1) AU692121B2 (en)
DE (1) DE69615827T2 (en)
ES (1) ES2164934T3 (en)
PT (1) PT811583E (en)
WO (1) WO1997023424A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0820966A1 (en) * 1996-07-23 1998-01-28 Nippon Sheet Glass Co. Ltd. Colored film-coated glass article

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455039B2 (en) * 1996-03-07 2003-10-06 日本板硝子株式会社 Automotive window glass and automotive window structure using this glass
DE19831610A1 (en) * 1997-07-15 1999-01-21 Central Glass Co Ltd Photocatalytic glass article and process for its manufacture
US6399229B1 (en) * 1997-07-22 2002-06-04 Nippon Sheet Glass Co., Ltd Light-transmitting color film, method for producing the same, and coating solution for forming the color film
GB2335201A (en) * 1998-03-10 1999-09-15 Pilkington Plc Glass coated with two doped oxide layers
US6760086B2 (en) * 1998-03-26 2004-07-06 Tomoegawa Paper Co., Ltd. Attachment film for electronic display device
WO2000007955A1 (en) * 1998-08-05 2000-02-17 Nippon Sheet Glass Co., Ltd. Antireflection colored film coated glass article and plasma display panel optical filter
US7507479B2 (en) * 1998-08-13 2009-03-24 Ppg Industries Ohio, Inc. Compositions and methods for forming coatings of selected color on a substrate and articles produced thereby
US6805960B1 (en) * 1999-06-08 2004-10-19 Turkiye Sise Ve Cam Fabrikalari Thermostable glazing
WO2001058681A1 (en) * 2000-02-11 2001-08-16 Denglas Technologies, Llc. Antireflective uv blocking multilayer coatings wherin film has cerium oxide
US6596399B2 (en) 2000-12-04 2003-07-22 Guardian Industries Corp. UV absorbing/reflecting silver oxide layer, and method of making same
US6689476B2 (en) 2001-06-27 2004-02-10 Guardian Industries Corp. Hydrophobic coating including oxide of Ni and/or Cr
US6919133B2 (en) * 2002-03-01 2005-07-19 Cardinal Cg Company Thin film coating having transparent base layer
EP1630142B1 (en) * 2002-03-01 2008-01-09 Cardinal CG Company Thin film coating having niobium-titanium layer
WO2004005975A2 (en) * 2002-07-10 2004-01-15 Denglas Technologies, L.L.C. Method of making stress-resistant anti-reflection multilayer coatings containing cerium oxide
KR20060117823A (en) * 2005-05-14 2006-11-17 삼성에스디아이 주식회사 An electron emission source, a preparing method thereof, and an electron emission device using the same
US7744951B2 (en) * 2006-04-13 2010-06-29 Guardian Industries Corp. Coated glass substrate with infrared and ultraviolet blocking characteristics
US8409663B2 (en) * 2007-04-27 2013-04-02 Guardian Industries Corp. Method of making a coated glass substrate with heat treatable ultraviolet blocking characteristics
WO2009132998A1 (en) * 2008-04-30 2009-11-05 Agc Flat Glass Europe Sa Solar-control glazing
US9272949B2 (en) 2010-07-09 2016-03-01 Guardian Industries Corp. Coated glass substrate with heat treatable ultraviolet blocking characteristics
TW201243384A (en) * 2011-04-27 2012-11-01 Hon Hai Prec Ind Co Ltd Touch screen
US10548234B2 (en) * 2015-10-22 2020-01-28 Corning Incorporated Ultraviolet light-resistant articles and methods for making the same
FR3045033B1 (en) * 2015-12-09 2020-12-11 Saint Gobain PROCESS AND INSTALLATION FOR OBTAINING COLORED GLAZING
US11001915B1 (en) * 2016-11-28 2021-05-11 Bloom Energy Corporation Cerium and cerium oxide containing alloys, fuel cell system balance of plant components made therefrom and method of making thereof
FR3065722B1 (en) * 2017-04-28 2021-09-24 Saint Gobain COLORED GLAZING AND ITS OBTAINING PROCESS
FR3065737B1 (en) * 2017-04-28 2019-06-07 Saint-Gobain Coating Solutions TARGET FOR OBTAINING A COLORED GLAZING
JP7149962B2 (en) * 2017-05-04 2022-10-07 エージーシー グラス ユーロップ coated substrate
CN108107489A (en) * 2017-12-19 2018-06-01 苏州中科纳福材料科技有限公司 Photonic crystal composition and its application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135746A (en) * 1992-10-28 1994-05-17 Asahi Glass Co Ltd Uv-absorbing glass
JPH06191896A (en) * 1992-10-07 1994-07-12 Asahi Glass Co Ltd Production of thin film-coated pane
JPH06191895A (en) * 1992-07-03 1994-07-12 Asahi Glass Co Ltd Ultraviolet absorbing glass

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480722A (en) * 1992-07-03 1996-01-02 Asahi Glass Company Ltd. Ultraviolet ray absorbent glass and method for preparing the same
EP0598472B1 (en) * 1992-08-20 1997-06-18 Mitsuboshi Belting Ltd. Ultra-fine-particles-dispersed glassy material and method for making the same
JPH0825766B2 (en) * 1993-09-29 1996-03-13 工業技術院長 Method for producing gold fine particle dispersed glass
JPH07330379A (en) * 1994-05-31 1995-12-19 Asahi Glass Co Ltd Colored transparent material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191895A (en) * 1992-07-03 1994-07-12 Asahi Glass Co Ltd Ultraviolet absorbing glass
JPH06191896A (en) * 1992-10-07 1994-07-12 Asahi Glass Co Ltd Production of thin film-coated pane
JPH06135746A (en) * 1992-10-28 1994-05-17 Asahi Glass Co Ltd Uv-absorbing glass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0811583A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0820966A1 (en) * 1996-07-23 1998-01-28 Nippon Sheet Glass Co. Ltd. Colored film-coated glass article

Also Published As

Publication number Publication date
ES2164934T3 (en) 2002-03-01
DE69615827T2 (en) 2002-04-04
AU692121B2 (en) 1998-05-28
US5876854A (en) 1999-03-02
EP0811583A4 (en) 1998-06-10
AU1173097A (en) 1997-07-17
PT811583E (en) 2002-03-28
EP0811583B1 (en) 2001-10-10
DE69615827D1 (en) 2001-11-15
EP0811583A1 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
WO1997023424A1 (en) Glass article covered with ultraviolet-absorbing colored coat
AU719985B2 (en) Colored film-coated glass article
US6790583B2 (en) Light absorbing pattern film coated article production method and light absorbing pattern film coated articles
US5976678A (en) Colored film-covered glass articles
WO1999025660A1 (en) Ultraviolet/infrared absorbing glass, ultraviolet/infrared absorbing glass sheet, ultraviolet/infrared absorbing glass sheet coated with colored film, and window glass for vehicles
WO2000007955A1 (en) Antireflection colored film coated glass article and plasma display panel optical filter
WO1999033759A1 (en) Ultraviolet/infrared absorbent glass, ultraviolet/infrared absorbent glass plate, ultraviolet/infrared absorbent glass plate coated with colored film, and window glass for vehicle
JPH09235141A (en) Uv rays absorbing colored film-coated glass article
JPH10291839A (en) Ultraviolet ray and heat ray reflecting glass article
JPH08268732A (en) Heat ray reflecting glass
WO1997031871A1 (en) Glass article covered with colored film
AU706945B2 (en) Colored film forming composition and method of manufacturing colored film coated glass product
JPH04357134A (en) Reflection-reduced glass for vehicle
JP2000109345A (en) Glass product coated with antireflection color film and optical filter for plasma display panel
JP3870538B2 (en) Colored film-forming composition and method for producing colored film-coated glass article
JP2877554B2 (en) Anti-reflection glass for vehicles
JPH1017336A (en) Ultraviolet ray and heat ray shielding antifouling film and its production
JPH09301743A (en) Colored film coated glass article
JP2001206736A (en) Method for manufacturing colored film-coated glass article and colored film-coated glass article
JP2000335940A (en) Low-reflecting glass article
JPH11228184A (en) Plate glass coated with heat ray shielding colored film
JP2000272935A (en) Production of colored membrane-covered glass material, and colored membrane-covered glass material
JPH1111985A (en) Glass article coated with ultraviolet ray absorbable colored film
JPH09227163A (en) Heat ray-screening colored coated glass article
JP2002145644A (en) Method for producing colored film-coated article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08817601

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996942625

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE DE ES FI FR GB IT LU SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996942625

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996942625

Country of ref document: EP