WO1997023025A1 - Surge absorber - Google Patents

Surge absorber Download PDF

Info

Publication number
WO1997023025A1
WO1997023025A1 PCT/JP1995/002589 JP9502589W WO9723025A1 WO 1997023025 A1 WO1997023025 A1 WO 1997023025A1 JP 9502589 W JP9502589 W JP 9502589W WO 9723025 A1 WO9723025 A1 WO 9723025A1
Authority
WO
WIPO (PCT)
Prior art keywords
surge
absorbing element
surge absorbing
semiconductor
wire
Prior art date
Application number
PCT/JP1995/002589
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Kurasawa
Sakae Koyata
Takeshi Soe
Nobuya Saruwatari
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Priority to PCT/JP1995/002589 priority Critical patent/WO1997023025A1/en
Priority to TW084114177A priority patent/TW281820B/en
Publication of WO1997023025A1 publication Critical patent/WO1997023025A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/042Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage comprising means to limit the absorbed power or indicate damaged over-voltage protection device

Definitions

  • the present invention is intended to prevent failure and malfunction of electronic devices due to induced lightning surge, AC power line contact, etc., provided in line input / output circuits of communication devices or other convenient places where surge voltage may occur. Regarding avoidance surge absorber. Background art
  • Japanese Unexamined Patent Application Publication No. Hei 3-232048 discloses an overvoltage / overcurrent protection function comprising a gap-type or micro-gap-type surge absorbing element and a low-melting metal wire provided in contact with the same.
  • a surge absorber is disclosed.
  • “gap-type or micro-gap-type surge absorbing element” will be collectively referred to as “discharge tube type surge absorbing element”.
  • FIG. 7 is an exploded perspective view of a conventional surge absorbing device for overvoltage and overcurrent protection.
  • Both terminals of a discharge tube type surge absorbing element (micro-gap type surge absorbing element in this example) 16 are connected to lead bins 11 and 13 respectively, and a low melting point metal is applied so as to surround the surge absorbing element 16.
  • a wire (here, a zinc wire) 17 is arranged, and both ends of the low-melting metal wire 17 are connected to lead pins 12 and 14, and a cover 18 is entirely covered.
  • the heat generated by the discharge is so small that a sufficient amount of heat cannot be obtained to melt the low-melting metal wire 17 in a short time, so that the interruption time may be long. is there.
  • the discharge type heat absorbing element 16 may be melted or ignited, or the outer resin case may be thermally deformed or ignited, due to the heat generated by the discharge.
  • the dimensions of the discharge type surge absorbing element 16 are substantially proportional to the surge current withstand capability, there is a limit to downsizing of the shape in order to secure a practically sufficient surge current withstand capability. For this reason, the shape of the discharge tube type surge absorbing element 16 is restricted, and it is difficult to reduce the size of a conventional surge absorbing element having an overvoltage / overcurrent protection function to a level that allows surface mounting. Disclosure of the invention
  • an object of the present invention is to provide a surge absorbing 1R device in which the risk of overheating and ignition due to spontaneous heat generation is prevented.
  • a surge absorbing device of the present invention is provided in a line, a hot-melting metal wire which is blown by a current flowing through the line, and a semiconductor-type surge absorbing element arranged between the lines. Are connected.
  • a thyristor having a PNPNP junction structure or an NPNNP junction structure can be used as the semiconductor surge absorber.
  • the hot-melt wire may be: .
  • heat-fused metal wire for example, a wire mainly made of aluminum or phosphor bronze having a diameter of 0.5 mm or less can be used.
  • the problem in the conventional example described above can be solved by using a semiconductor type surge absorbing element as the surge absorbing element and combining it with a heat-fused metal wire to form a small package. .
  • a semiconductor-type surge absorbing element particularly a two-terminal thyristor element having a PNPNP (or NPNPN) junction structure has a breakdown voltage (V bo) or more.
  • V bo breakdown voltage
  • the thyristor operates (ignites), and the terminal voltage (generally called the on-state voltage) at this time is suppressed to about 3 to 5 volts.
  • the heat generated by the surge absorbing element is proportional to the product of the terminal voltage at the time of absorbing the surge and the surge current flowing at that time. Therefore, when the same surge current flows, the lower the terminal voltage of the surge absorbing element, the lower the heat generation of the element.
  • the terminal voltage (arc voltage) during discharge is generally about 30 to 50 volts.
  • the on-voltage at the time of surge absorption is about 3 to 5 volts. Therefore, when comparing the calorific value when the same surge current flows, the semiconductor type surge absorbing element can be suppressed to about one tenth of that of the discharge tube type surge absorbing element. It is necessary to satisfy the following two points regarding the fusing characteristics of hot-melt gold wire.
  • the first item is the fusing characteristics when a relatively large overcurrent is applied, which far exceeds the current withstand capability of the semiconductor surge absorber used in combination (mainly the current withstand current with respect to AC current).
  • Instantaneous fusing when a large current is applied is required for safety.
  • safety standards that specify this required characteristic. For example, in the United States UL 497A standard (Secondary protectors for communication circuits), when applying AC 600 volts to 140 amps (effective value), It is required to blow and cut off the current before the fuse specified by the test circuit (Bussman, model name: MDQ-1.6A).
  • the Bussman fuse blows in about 0.035 seconds when this overvoltage overcurrent is applied, so the hot-melting wire used in the present invention must have the property of fusing within a shorter time. Is done.
  • the material and diameter of the heat-fused metal wire may be appropriately selected so as to satisfy the requirements of the breaking characteristics for a large current.
  • the second item is that if an overcurrent with a current value smaller than the current withstand capability of the semiconductor surge absorbing element used in combination (mainly the current withstand capability to withstand alternating current) is applied to the semiconductor
  • the type surge absorber operates normally without deteriorating the characteristics and without excessive heat generation, and it is possible to suppress overvoltage overcurrent. No need to do. Therefore, if a hot-melt wire with a current resistance equal to or greater than that of the semiconductor surge absorbing element is selected, the surge absorption of the overvoltage overcurrent protection function that can be used repeatedly for the application of a relatively small current overcurrent can be achieved. The device becomes feasible.
  • the semiconductor-type surge absorbing element When an overvoltage overcurrent that is equal to or higher than the breakover voltage of the semiconductor-type surge absorbing element is applied, the semiconductor-type surge absorbing element operates and the applied overvoltage is suppressed to the on-voltage (several volts). At the same time, a surge current flows through the thermal fusion wire. If the current value at this time is larger than the current capacity of the hot-melt metal wire, the hot-melt gold wire will melt and prevent intrusion of overcurrent into the subsequent circuit.
  • the overcurrent at this time is smaller than the current withstand capability of the hot-melt metal wire, the hot-melt gold wire does not blow, and only the semiconductor-type surge absorbing element operates to suppress the overvoltage. Protect the protected circuit from overvoltage and overcurrent. The overcurrent at this time flows into the semiconductor surge absorbing element in the operating state and the low impedance state, and therefore does not flow into the protected circuit.
  • the heat generated by the semiconductor surge absorbing element when absorbing overvoltage and overcurrent is about 1/10 of that of the discharge tube surge absorbing element.There is no risk of abnormal overheating or fire of the element itself, There is no danger of adversely affecting other mounted components or boards.
  • the use of a small semiconductor-type surge absorbing element makes it possible to reduce the overall shape, so that the mounting area can be reduced and the surface can be formed into a shape that can be surface-mounted.
  • Combining the semiconductor-type surge absorbing element described above with a hot-melt wire solves the problem of overheating and ignition due to self-heating, and also allows other parts and components mounted around It is possible to provide a small surge absorbing element for overvoltage / overcurrent protection that does not thermally affect the mounting board.
  • FIG. 1 is a configuration diagram of a first embodiment of a surge absorbing device of the present invention.
  • FIG. 2 is a circuit diagram showing a state where the surge absorbing device of the first embodiment shown in FIG. 1 is connected to a communication line.
  • FIG. 3 is a configuration diagram of a second embodiment of the surge absorbing device of the present invention.
  • FIG. 4 is a circuit diagram showing a state where the surge absorbing device of the second embodiment shown in FIG. 3 is connected to a communication line.
  • FIG. 5 is a configuration diagram of a third embodiment of the surge absorbing device of the present invention.
  • FIG. 6 is a circuit diagram showing a state where the surge absorbing device of the third embodiment shown in FIG. 5 is connected to a communication line.
  • FIG. 7 is an exploded perspective view of a conventional surge absorbing device for overvoltage and overcurrent protection.
  • FIG. 1 is a configuration diagram of a first embodiment of a surge absorbing device of the present invention.
  • a semiconductor surge absorbing element 1 having a breakover voltage (V bo) of about 300 V is used.
  • V bo breakover voltage
  • a phosphor bronze wire is used as the hot-melt wire 2 as the hot-melt wire 2.
  • a semiconductor surge absorbing element 1 (external 3 mm square, thickness 1 mm) is joined to the lead frame 3 by soldering (not shown), and a thermal bronze wire made of phosphor bronze with a diameter of 0.17 mm 2 This is soldered with a solder 4, wired from the semiconductor type surge absorbing element 1 using the connection conductor 5, and sealed with a resin 6.
  • FIG. 2 is a circuit diagram showing a state where the surge absorbing device of the first embodiment shown in FIG. 1 is connected to a communication line.
  • terminals a and b and c correspond to the terminals a, b and c in FIG.
  • the heat-fused metal wire 2 is disposed in one of the two lines 21 and 22 connected to the protected circuit 7, and the current flowing through the line 21 is Blows more.
  • the semiconductor type surge absorbing element 1 is disposed between two lines 21 and 22.
  • Table 1 shows that the conventional example shown in Fig. 7 and the first embodiment shown in Figs. 1 and 2 show AC 600 V—40 A, 2.2 A, 1 A (all The results of a test that applies three types of overvoltage and overcurrent (effective values) are shown.
  • the overvoltage overcurrent is applied by connecting the microgap type surge absorbing element and the low melting point gold wire in series, and in the case of the first embodiment, the overvoltage is applied between the terminals a and c in FIG. Overcurrent was applied.
  • the first embodiment can be significantly reduced in size, and compared with the mounting area, only one third or less of the conventional example, which is superior to high-density mounting on a board .
  • the surge absorbing element is different from the initial stage where it deteriorates.
  • the characteristics of the surge absorbing element are poor because of the characteristics of the surge absorbing element.
  • FIG. 3 shows a configuration diagram of the second embodiment. Elements that are the same as the elements of the first embodiment are indicated by the numbers assigned to FIGS. 1 and 2 with the addition of a and b.
  • This is a configuration in which two sets of constituent circuits using semiconductor surge absorbing elements 1a and 1b having the same specifications as those of the first embodiment and heat-fused gold wires 2a and 2b are configured in one package.
  • FIG. 4 shows an example of a surge protection circuit in which the surge absorber of the second embodiment is connected to a communication line.
  • the terminals a to h in the figure correspond to the terminals a to h shown in FIG. 3, respectively.
  • FIG. 5 shows a configuration diagram of the third embodiment.
  • the semiconductor type surge absorbing element 1 in which three semiconductor type surge absorbing elements having the same operating voltage as the first embodiment are formed in one semiconductor chip, and the heat-fused gold wires 2a and 2b, It is configured into individual packages.
  • FIG. 6 is an example of a surge protection circuit in which the surge absorber of the third embodiment is connected to a communication line.
  • the terminals a to h in the figure correspond to the terminals a to h shown in FIG. 5, respectively.

Abstract

A surge absorber provided in input/output circuits or in any other portion of communication equipment where surge voltage may occur, in order to protect electronic devices from trouble or erroneous operation due to lighting surge or interference in the AC power source line. The device has a structure in which a metal wire, arranged in a line and fusible by a current flowing through the line, is connected to a semiconductor surge-absorbing element arranged between the lines.

Description

明 細 書 サージ吸収装置 技術分野  Description Surge absorber Technical field
本発明は、 サージ電圧が発生する可能性のある、 通信機器等の回線入 出力回路またはその他の簡所に設けられる、 誘導雷サージや、 A C電源 線の混触等による電子機器の故障及び誤動作を回避するサージ吸収装置 に関する。 背景技術  The present invention is intended to prevent failure and malfunction of electronic devices due to induced lightning surge, AC power line contact, etc., provided in line input / output circuits of communication devices or other convenient places where surge voltage may occur. Regarding avoidance surge absorber. Background art
特開平 3— 2 3 0 4 8 5号公報には、 ギャ ップ式またはマイ クロギ ャ ップ式サージ吸収素子およびそれに接して設けた低融点金属線からな る、 過電圧過電流保護機能を有するサージ吸収装置が開示されている。 以降、 「ギャ ップ式またはマイクロギャ ップ式サージ吸収素子」 を総 称して 「放電管型サージ吸収素子」 と呼ぶこととする。  Japanese Unexamined Patent Application Publication No. Hei 3-232048 discloses an overvoltage / overcurrent protection function comprising a gap-type or micro-gap-type surge absorbing element and a low-melting metal wire provided in contact with the same. A surge absorber is disclosed. Hereinafter, “gap-type or micro-gap-type surge absorbing element” will be collectively referred to as “discharge tube type surge absorbing element”.
第 7図は、 従来の過電圧過電流保護用のサージ吸収装置の分解斜視図 である。  FIG. 7 is an exploded perspective view of a conventional surge absorbing device for overvoltage and overcurrent protection.
放電管型サージ吸収素子 (この例ではマイクロギヤップ式サージ吸収 素子) 1 6の両端子がそれぞれリ一ドビン 1 1 , 1 3に接続され、 その サージ吸収素子 1 6を取り巻く ように低融点金厲線 (ここでは亜鉛線) 1 7が配置されてその低融点金属線 1 7の両端がリードピン 1 2, 1 4 に接続されており、 全体にカバー 1 8が被冠されている。  Both terminals of a discharge tube type surge absorbing element (micro-gap type surge absorbing element in this example) 16 are connected to lead bins 11 and 13 respectively, and a low melting point metal is applied so as to surround the surge absorbing element 16. A wire (here, a zinc wire) 17 is arranged, and both ends of the low-melting metal wire 17 are connected to lead pins 12 and 14, and a cover 18 is entirely covered.
この第 7図に示す、 放電管型サージ吸収素子 1 6と低融点金厲線 1 7 の組合せによる従来例の動作原理を説明すると、 放電管型サージ吸収素 子 1 6に過電圧過電流が印加された際、 その放電による発熱を利用し て、 熱的に結合するように設けた低融点金属線 1 7を溶断し、 過電圧過 電流を遮断するものである。 The operating principle of the conventional example based on the combination of the discharge tube type surge absorbing element 16 and the low melting point gold wire 17 shown in Fig. 7 will be described. When it is used, Thus, the low-melting metal wire 17 provided so as to be thermally coupled is blown to cut off the overvoltage and overcurrent.
しかしながら、 印加された電流値が比較的小さい場合、 放電による発 熱が小さいため低融点金属線 1 7を短時間で溶融するのに充分な発熱量 が得られず、 遮断時間が長くかかる場合がある。 その結果、 放電による 発熱に起因して、 放電型サージ吸収素子 1 6の溶融または発火、 あるい は外装樹脂ケースの熱変形または発火が生じる場合がある。 また、 周囲 に実装されている他の部品や、 実装基板に悪影響を及ぼすおそれがあ り 、 安全性に問題がある。  However, when the applied current value is relatively small, the heat generated by the discharge is so small that a sufficient amount of heat cannot be obtained to melt the low-melting metal wire 17 in a short time, so that the interruption time may be long. is there. As a result, the discharge type heat absorbing element 16 may be melted or ignited, or the outer resin case may be thermally deformed or ignited, due to the heat generated by the discharge. In addition, there is a risk of adversely affecting other components mounted on the surroundings and the mounting board, and there is a problem in safety.
また、 放電型サージ吸収素子 1 6の寸法は、 サージ電流耐量に概ね比 例するため、 実用上充分なサージ電流耐量を確保するためには、 形状の 小型化には限界がある。 このため、 放電管型サージ吸収素子 1 6の形状 が制約となって、 従来の過電圧過電流保護機能を有するサージ吸収素子 を、 表面実装が可能なレベルまで小型化することは困難である。 発明の開示  In addition, since the dimensions of the discharge type surge absorbing element 16 are substantially proportional to the surge current withstand capability, there is a limit to downsizing of the shape in order to secure a practically sufficient surge current withstand capability. For this reason, the shape of the discharge tube type surge absorbing element 16 is restricted, and it is difficult to reduce the size of a conventional surge absorbing element having an overvoltage / overcurrent protection function to a level that allows surface mounting. Disclosure of the invention
本発明は、 上記事情に鑑み、 自然発熱による過熱 · 発火のおそれが防 止されたサージ吸 1R装置を提供することを目的とする。  In view of the above circumstances, an object of the present invention is to provide a surge absorbing 1R device in which the risk of overheating and ignition due to spontaneous heat generation is prevented.
この目的を達成する本発明のサージ吸収装置は、 ライ ン内に配置さ れ、 該ライ ンに流れる電流により溶断する熱溶断金厲線と、 ライ ン間に 配置される半導体型サージ吸収素子とが接続されてなることを特徴とす る。  In order to achieve the above object, a surge absorbing device of the present invention is provided in a line, a hot-melting metal wire which is blown by a current flowing through the line, and a semiconductor-type surge absorbing element arranged between the lines. Are connected.
ここで、 上記本発明のサージ吸収装置においては、 上記半導体型サー ジ吸収装置として、 P N P N P接合構造あるいは N P N P N接合構造を もつサイ リスタを使用することができる。  Here, in the surge absorber of the present invention, a thyristor having a PNPNP junction structure or an NPNNP junction structure can be used as the semiconductor surge absorber.
また、 上記本発明のサージ吸収装置において、 上記熱溶断金厲線が、 . Further, in the surge absorbing device of the present invention, the hot-melt wire may be: .
97/23025 97/23025
3 実効値で 6 0 0 V、 4 O Aの交流で、 0 . 0 3 5秒以内で溶断する特性 を有するものであることが好ましい。 上記熱溶断金属線としては、 例え ば直径 0 . 5 m m以下の、 アルミニウムあるいはリ ン青銅を主材料とす るものを使用することができる。  (3) It is preferable to have a characteristic of fusing within 0.035 seconds with an alternating current of 600 V and 4 O A in effective value. As the above-mentioned heat-fused metal wire, for example, a wire mainly made of aluminum or phosphor bronze having a diameter of 0.5 mm or less can be used.
上記の従来例における問題は、 サージ吸収素子として、 半導体型サ一 ジ吸収素子を使用し、 これと熱溶断金属線を組合せて、 小型のパッケ一 ジ内に構成することによ り解決される。  The problem in the conventional example described above can be solved by using a semiconductor type surge absorbing element as the surge absorbing element and combining it with a heat-fused metal wire to form a small package. .
ここで本発明に用いる半導体型サージ吸収素子について簡単に説明す ると、 半導体型サージ吸収素子、 特に P N P N P (または N P N P N ) 接合構造の 2端子サイ リスタ素子は、 ブレークオーバー電圧 (V b o ) 以上の過電圧 (一般に、 サージともいう) が電極に印加されるとサイ リ スタが動作 (点弧) し、 この時の端子電圧 (一般に、 オン電圧という) は 3〜 5ボルト程度に抑制する。 この特性を利用して、 被保護回路と並 列に接続使用することにより、 被保護回路への過電圧印加を抑制 ·保護 することが可能である。  Here, the semiconductor-type surge absorbing element used in the present invention will be briefly described. A semiconductor-type surge absorbing element, particularly a two-terminal thyristor element having a PNPNP (or NPNPN) junction structure has a breakdown voltage (V bo) or more. When an overvoltage (generally called a surge) is applied to the electrode, the thyristor operates (ignites), and the terminal voltage (generally called the on-state voltage) at this time is suppressed to about 3 to 5 volts. By utilizing this characteristic and connecting and using it in parallel with the circuit to be protected, it is possible to suppress and protect the application of overvoltage to the circuit to be protected.
一般に、 サージ吸収素子の発熱は、 サージ吸収時の端子電圧と、 その 時に流れているサージ電流との積に比例する。 従って、 同じサージ電流 が流れ込んだ場合で比較すると、 サージ吸収素子の端子電圧が低いほ ど、 素子の発熱が低く なる。  Generally, the heat generated by the surge absorbing element is proportional to the product of the terminal voltage at the time of absorbing the surge and the surge current flowing at that time. Therefore, when the same surge current flows, the lower the terminal voltage of the surge absorbing element, the lower the heat generation of the element.
放電管型サージ吸収素子の場合、 一般に、 放電時の端子電圧 (アーク 電圧) が 3 0〜 5 0ボルト程度となる。 一方、 半導体型サージ吸収素子 の場合、 サージ吸 4 時のオン電圧は 3〜5ボルト程度である。 従って、 同じサージ電流が流れた場合での発熱量を比較すると、 半導体型サージ 吸収素子は放電管型サージ吸収素子の約 1 0分の 1程度に抑えられる。 熱溶断金厲線の溶断特性については、 次の 2点の事項を満足させる必 要がある。 第 1項目と しては、 比較的大きな過電流が印加された場合の溶断特性 で、 組合わせて使用する半導体型サージ吸収素子の電流耐量 (ここでは 主として交流電流に対する電流耐量) をはるかに超える大電流が印加さ れた場合に、 瞬間的に溶断することが安全性の上で要求される。 この要 求特性を規定している安全規格もあり、 一例として、 米国の U L 4 9 7 A規格 ( Secondary protectors for communication circuits)では、 A C 6 0 0ボルト一 4 0アンペア (実効値) 印加時に、 試験回路で指定 されたヒューズ (Bussman 製、 型名 : M D Q— 1 . 6 A ) よ りも先に溶 断し電流遮断することが要求される。 ここで Bussman 製ヒューズはこの 過電圧過電流印加時には 0. 0 3 5秒程度で溶断するため、 本発明に使 闬する熱溶断金厲線はそれより短い時間内に溶断する特性であることが 要求される。 熱溶断金属線の材質や線径等は、 まず、 大電流に対する遮 断特性の要求を満足するように適宜選定すればよい。 In the case of a discharge tube type surge absorbing element, the terminal voltage (arc voltage) during discharge is generally about 30 to 50 volts. On the other hand, in the case of a semiconductor-type surge absorbing element, the on-voltage at the time of surge absorption is about 3 to 5 volts. Therefore, when comparing the calorific value when the same surge current flows, the semiconductor type surge absorbing element can be suppressed to about one tenth of that of the discharge tube type surge absorbing element. It is necessary to satisfy the following two points regarding the fusing characteristics of hot-melt gold wire. The first item is the fusing characteristics when a relatively large overcurrent is applied, which far exceeds the current withstand capability of the semiconductor surge absorber used in combination (mainly the current withstand current with respect to AC current). Instantaneous fusing when a large current is applied is required for safety. There are also safety standards that specify this required characteristic. For example, in the United States UL 497A standard (Secondary protectors for communication circuits), when applying AC 600 volts to 140 amps (effective value), It is required to blow and cut off the current before the fuse specified by the test circuit (Bussman, model name: MDQ-1.6A). Here, the Bussman fuse blows in about 0.035 seconds when this overvoltage overcurrent is applied, so the hot-melting wire used in the present invention must have the property of fusing within a shorter time. Is done. First, the material and diameter of the heat-fused metal wire may be appropriately selected so as to satisfy the requirements of the breaking characteristics for a large current.
第 2項目と しては、 組合わせて使用する半導体サージ吸収素子の電流 耐量 (ここでは主として交流電流に耐する電流耐量) よ りも小さい電流 値の過電流が印加された場合には、 半導体型サージ吸収素子が特性劣化 することなく、 また過大な発熱を伴うことなく正常に動作し、 過電圧過 電流を抑制することが可能であるため、 あえて熱溶断金厲線を溶断し過 電流を遮断する必要がない。 従って、 半導体型サージ吸収素子と同等以 上の電流耐量をもつ熱溶断金厲線を選定すれば、 比較的小電流の過電流 印加に対しては繰り返し使用可能な過電圧過電流保護機能のサージ吸収 素子が実現可能となる。  The second item is that if an overcurrent with a current value smaller than the current withstand capability of the semiconductor surge absorbing element used in combination (mainly the current withstand capability to withstand alternating current) is applied to the semiconductor The type surge absorber operates normally without deteriorating the characteristics and without excessive heat generation, and it is possible to suppress overvoltage overcurrent. No need to do. Therefore, if a hot-melt wire with a current resistance equal to or greater than that of the semiconductor surge absorbing element is selected, the surge absorption of the overvoltage overcurrent protection function that can be used repeatedly for the application of a relatively small current overcurrent can be achieved. The device becomes feasible.
半導体型サージ吸収素子のブレークオーバー電圧以上の過電圧過電流 が印加されると、 半導体型サージ吸収素子が動作し、 印加された過電圧 はオン電圧 (数ボルト) まで抑制される。 同時に、 熱溶断金厲線を介し てサージ電流が流れ込む。 この時の電流値が熱溶断金属線の電流耐量よりも大きい場合、 熱溶断 金厲線が溶断し、 後段回路への過電流侵入を防止する。 When an overvoltage overcurrent that is equal to or higher than the breakover voltage of the semiconductor-type surge absorbing element is applied, the semiconductor-type surge absorbing element operates and the applied overvoltage is suppressed to the on-voltage (several volts). At the same time, a surge current flows through the thermal fusion wire. If the current value at this time is larger than the current capacity of the hot-melt metal wire, the hot-melt gold wire will melt and prevent intrusion of overcurrent into the subsequent circuit.
逆にこの時の過電流が熱溶断金属線の電流耐量よりも小さい場合、 熱 溶断金厲線は溶断せず、 半導体型サージ吸収素子のみが動作することに よ り過電圧を抑制し、 後段の被保護回路を過電圧過電流から保護する。 この時の過電流は、 動作状態となり低イ ンビーダンス状態になっている 半導体サージ吸収素子に流れ込むため、 被保護回路には流れ込むことが ない。  Conversely, if the overcurrent at this time is smaller than the current withstand capability of the hot-melt metal wire, the hot-melt gold wire does not blow, and only the semiconductor-type surge absorbing element operates to suppress the overvoltage. Protect the protected circuit from overvoltage and overcurrent. The overcurrent at this time flows into the semiconductor surge absorbing element in the operating state and the low impedance state, and therefore does not flow into the protected circuit.
半導体型サージ吸収素子および熱溶断金属線の電流耐量を適宜選択す ることにより、 各囷の各種安全規格への対応が可能となる。  By appropriately selecting the current withstand capability of the semiconductor surge absorbing element and the heat-fused metal wire, it becomes possible to comply with various safety standards of each category.
過電圧過電流吸収時の半導体型サージ吸収素子の発熱は、 放電管サー ジ吸収素子に比較して 1 0分の 1程度であり、 素子自体の異常過熱や発 火の恐れはなく、 また周囲に実装された他の部品や基板等に熱的悪影響 を及ぼす恐れもない。  The heat generated by the semiconductor surge absorbing element when absorbing overvoltage and overcurrent is about 1/10 of that of the discharge tube surge absorbing element.There is no risk of abnormal overheating or fire of the element itself, There is no danger of adversely affecting other mounted components or boards.
また小型の半導体型サージ吸収素子の使用により、 全体の形状を小型 化することができるため、 実装面積を低減させることが可能となり、 ま た表面実装可能な形状とすることも可能となる。  In addition, the use of a small semiconductor-type surge absorbing element makes it possible to reduce the overall shape, so that the mounting area can be reduced and the surface can be formed into a shape that can be surface-mounted.
以上に述べたような半導体型サージ吸収素子と熱溶断金厲線を組み合 わせることによ り、 自己発熱による過熱 ' 発火の問題を解決し、 また周 囲に実装された他の部品や実装基板への熱的影響を及ぼすことのない、 小型の過電圧過電流保護のサージ吸収素子を提供することができる。  Combining the semiconductor-type surge absorbing element described above with a hot-melt wire solves the problem of overheating and ignition due to self-heating, and also allows other parts and components mounted around It is possible to provide a small surge absorbing element for overvoltage / overcurrent protection that does not thermally affect the mounting board.
また、 本発明によれば、 通信回線の過電圧過電流に対する各種安全規 格、 例えば米国の U L規格や、 カナダの C S A規格等、 を満足すること が可能である。 図面の簡単な説明 第 1図は、 本発明のサージ吸収装置の第 1実施形態の構成図である。 第 2図は、 第 1 図に示す第 1実施形態のサージ吸収装置が通信ライ ン に接続された状態を示す回路図である。 Further, according to the present invention, it is possible to satisfy various safety standards for overvoltage and overcurrent of communication lines, for example, UL standards in the United States and CSA standards in Canada. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a configuration diagram of a first embodiment of a surge absorbing device of the present invention. FIG. 2 is a circuit diagram showing a state where the surge absorbing device of the first embodiment shown in FIG. 1 is connected to a communication line.
第 3図は、 本発明のサージ吸収装置の第 2実施形態の構成図である。 第 4図は、 第 3図に示す第 2実施形態のサージ吸収装置が通信ライ ン に接続された状態を示す回路図である。  FIG. 3 is a configuration diagram of a second embodiment of the surge absorbing device of the present invention. FIG. 4 is a circuit diagram showing a state where the surge absorbing device of the second embodiment shown in FIG. 3 is connected to a communication line.
第 5図は、 本発明のサージ吸収装置の第 3実施形態の構成図である。 第 6図は、 第 5図に示す第 3実施形態のサージ吸収装置が通信ライ ン に接続された状態を示す回路図である。  FIG. 5 is a configuration diagram of a third embodiment of the surge absorbing device of the present invention. FIG. 6 is a circuit diagram showing a state where the surge absorbing device of the third embodiment shown in FIG. 5 is connected to a communication line.
第 7図は、 従来の過電圧過電流保護用のサージ吸収装置の分解斜視図 である。 発明を実施するための最良の形態  FIG. 7 is an exploded perspective view of a conventional surge absorbing device for overvoltage and overcurrent protection. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態について説明する。 ただし本発明は、 以下の 実施形態の説明により限定されるものではない。  Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited by the following description of the embodiments.
(第 1実施形態)  (First Embodiment)
第 1図は、 本発明のサージ吸収装置の第 1実施形態の構成図である。 本実施形態では、 半導体サージ吸収素子 1 として、 ブレークオーバ一電 圧 (V b o ) が約 3 0 0 Vのものが使用されている。 また、 熱溶断金厲 線 2 として、 リ ン青銅線が使用されている。 リードフレーム 3に、 外形 3 m m角、 厚さ 1 m mの半導体サージ吸収素子 1をはんだ (図示してい ない) で接合し、 直径 0 . 1 7 m mのリ ン青銅製の熱溶断金厲線 2をは んだ 4ではんだ付けし、 半導体型サージ吸収素子 1から接続導体 5を用 いて配線し、 樹脂 6で封止したものである。  FIG. 1 is a configuration diagram of a first embodiment of a surge absorbing device of the present invention. In the present embodiment, a semiconductor surge absorbing element 1 having a breakover voltage (V bo) of about 300 V is used. Further, as the hot-melt wire 2, a phosphor bronze wire is used. A semiconductor surge absorbing element 1 (external 3 mm square, thickness 1 mm) is joined to the lead frame 3 by soldering (not shown), and a thermal bronze wire made of phosphor bronze with a diameter of 0.17 mm 2 This is soldered with a solder 4, wired from the semiconductor type surge absorbing element 1 using the connection conductor 5, and sealed with a resin 6.
第 2図は、 第 1図に示す第 1実施形態のサージ吸収装置が通信ライ ン に接続された状態を示す回路図である。 この第 2図において端子 a , b , cは第 1図の端子 a, b , c と相互に対応している。 FIG. 2 is a circuit diagram showing a state where the surge absorbing device of the first embodiment shown in FIG. 1 is connected to a communication line. In FIG. 2, terminals a and b and c correspond to the terminals a, b and c in FIG.
熱溶断金属線 2は、 被保護回路 7に接続された 2本のライ ン 2 1 , 2 2のうちの 1本のライ ン 2 1内に配置され、 そのライ ン 2 1 に流れる電 流によ り溶断する。 半導体型サージ吸収素子 1は、 2本のライ ン 2 1 , 2 2の間に配置されている。  The heat-fused metal wire 2 is disposed in one of the two lines 21 and 22 connected to the protected circuit 7, and the current flowing through the line 21 is Blows more. The semiconductor type surge absorbing element 1 is disposed between two lines 21 and 22.
第 1表に、 第 7図に示す従来例と、 第 1図、 第 2図に示す第 1実施形 態に、 交流 6 0 0 V— 4 0 A , 2 . 2 A , 1 A (いずれも実効値) の 3 種類の過電圧過電流を印加する試験を行った結果を示す。 過電圧過電流 は、 従来例の場合、 マイクロギャップ式サージ吸収素子と低融点金厲線 を直列接続して印加し、 第 1実施形態の場合、 第 1図中の端子 aと端子 c間に過電圧過電流を印加した。  Table 1 shows that the conventional example shown in Fig. 7 and the first embodiment shown in Figs. 1 and 2 show AC 600 V—40 A, 2.2 A, 1 A (all The results of a test that applies three types of overvoltage and overcurrent (effective values) are shown. In the case of the conventional example, the overvoltage overcurrent is applied by connecting the microgap type surge absorbing element and the low melting point gold wire in series, and in the case of the first embodiment, the overvoltage is applied between the terminals a and c in FIG. Overcurrent was applied.
第 1実施形態では、 大電流印加時の遮断特性と、 比較的小電流印加時 での保護機能の、 両面の要求特性を満足する結果が得られた。 即ち、 第 1実施形態では、 A C 6 0 0 V— 4 0 A印加時に 0 · 0 3秒で熱溶断金 属線が溶断し、 過電圧過電流を遮断した。 この時異常な発熱 · 発火等は 見られなかった。 A C 6 0 0 V— 2 . 2 A及び 1 A印加時には、 熱溶断 金厲線は溶断せず、 半導体サージ吸収素子が正常動作した。 過電圧過電 流印加中、 半導体サージ吸収素子の異常発熱は無く 、 安全性の面で問題 が無いことが確認された。 また、 印加後の特性劣化も無かった。 即ち、 これらの過電圧過電流印加条件では繰り返し動作が可能であることが確 認された。  In the first embodiment, a result was obtained that satisfies the required characteristics of both surfaces, that is, the cutoff characteristics when a large current is applied and the protection function when a relatively small current is applied. That is, in the first embodiment, when AC 600 V—40 A is applied, the thermal fusing metal wire is blown off in 0.3 seconds, thereby cutting off the overvoltage and overcurrent. No abnormal heat or ignition was observed at this time. When A C 600 V-2.2 A and 1 A were applied, the thermal fusing wire did not blow, and the semiconductor surge absorbing element operated normally. During the application of the overvoltage and overcurrent, there was no abnormal heating of the semiconductor surge absorbing element, and it was confirmed that there was no problem in terms of safety. In addition, there was no characteristic deterioration after application. That is, it was confirmed that the repetitive operation was possible under these overvoltage overcurrent application conditions.
これに対し、 従来例では、 A C 6 0 0 V— 4 0 A印加時の結果は第 1 実施形態と同等の特性であった。 しかしながら、 A C 6 0 0 V— 2 . 2 Aの印加条件では、 低融点金属線が溶断し所望の動作をしているもの の、 一回限りの動作しか使用できないことがわかった。 さらに A C 6 0 0 V - 1 Aの印加条件では、 低融点金属線が溶断する前に放電管型サー ジ吸収素子の発熱による悪影響が見られた。 またこの条件でも、 一回限 りの動作しか使用できないことがわかった。 On the other hand, in the conventional example, the result when AC 600 V—40 A was applied was the same characteristic as that of the first embodiment. However, it was found that under the application condition of AC 600 V—2.2 A, although the low melting point metal wire was blown and the desired operation was performed, only one-time operation could be used. In addition, under the conditions of AC 600 V-1 A, the discharge tube type An adverse effect due to heat generation of the di-absorbing element was observed. It was also found that only one-time operation can be used under this condition.
外形形状についても、 第 1実施形態の方が著しく小型化が可能であ り、 実装面積で比較すると、 従来例の 3分の 1以下で済み、 基板上の高 密度実装の上で優位である。 また、 小型で表面実装可能なパッケージに 構成するこ と も可能であり、 実装工程の省力化を図るこ とが可能であ る。  Regarding the external shape, the first embodiment can be significantly reduced in size, and compared with the mounting area, only one third or less of the conventional example, which is superior to high-density mounting on a board . In addition, it is possible to configure a small package that can be surface-mounted, and it is possible to save labor in the mounting process.
以上の点で、 第 1実施形態の方が、 従来例よりも優れていることがわ かった。 From the above, it was found that the first embodiment is superior to the conventional example.
第 1表 從来例 本発明の実施例 1 サージ吸収素子 放電管 動作電圧 300 V ^体 ¾、 動作 ¾Ε=300ν 金 S線 亜鉛線 リン青銅線 Table 1 Conventional example Example 1 of the present invention 1 Surge absorbing element Discharge tube Operating voltage 300 V ^ body 動作, operation ¾Ε = 300ν Gold S wire Zinc wire Phosphor bronze wire
AC 600 V— 4 OA印加 0. 03秒て亜鉛線溶断 〇. 03秒てリ ン青銅線; 断 後の結果 ¾火は見られす'。 発火は見られす。 AC 600 V—4 OA applied 0.03 sec. To melt zinc wire 〇. 03 sec. To phosphor bronze wire; result after cutting ¾Fire is seen '. Ignition is seen.
d加 は再度使用不可 印加 ί は再度 ί吏用不可  d cannot be used again.
AC 600 V - 2. 2 Λ 2〜6秒て亜鉛線溶断 リ ン青銅線溶断せず。 AC 600 V-2.2 Λ Fusing zinc wire after 2 to 6 seconds.
30分印加後の結果 発火: ±見られす'。 ΕΠ加中は半導体 Sサージ吸収素 サ一ジ吸収素子は発熱のため印 子が正常に動作し. 過 ¾Εを約 加後特性劣化。 300 V以下に抑制。 Result after 30 minutes of application Ignition: ± seen. During heating, the semiconductor S surge absorber Surge absorber heats up, and the markings operate normally. The characteristics deteriorate after application of excess heat. Suppressed to 300 V or less.
£Π加後は再度使用不可能。 発 は殆ど無し。  Cannot be used again after £ Π. There is almost no departure.
サージ吸収素子は劣化せす初期 と変 it し。  The surge absorbing element is different from the initial stage where it deteriorates.
印力 0後も再度使用か可^。  Can be used again even after the printing force is 0 ^.
A C 600 V - 1 Λ 50秒後に ¾鉛綠溶断。 リン青銅線溶断せす。 A C 600 V-1 ¾ Lead melts after 50 seconds. Fuse the phosphor bronze wire.
30分印加後の結果 (旦 溶断する前:こ、 サージ吸収 印加中は^ I体型ヤーン吸収^ 素子のガラス管が発熟のため iき 子力 :正^に動作し, 過^ Eを ^ リ i口 J^f f¾月旨裂のカハ一あ J ϋ 0 以ト ? inリ。 Results after 30 minutes of application (Before fusing: this, during absorption of surge) ^ I-shaped yarn absorption ^ The glass tube of the element ripens, so the element force : positive ^ and the excess ^ E ^ Ri i mouth J ^ f f¾ month crack Kaha Ia J ϋ 0 or more?
よひ'ペースが溶けた。 サージ吸 発熱は殆ど無し。  Yohi 'pace has melted. There is almost no surge absorption and heat generation.
収素子は発 つ為印加後特性劣 サージ吸収素子は劣化せす初期 ί ti J.と変化無し。  The characteristics of the surge absorbing element are poor because of the characteristics of the surge absorbing element.
印加後は再度使用不可能。 印加後も再度 if用が可能。 外形寸 (縦横高). 1 8 9 1 L mm 1 0 5 1 1 mm  Cannot be used again after application. After application, if can be used again. Dimensions (height and height). 1 8 9 1 L mm 1 0 5 1 1 mm
'、ケース外形) ( 一ス外形) 基板実装面積 13 9= 162讓: 10 5 = 50 mm2 (第 2実施形態) ', Case outline) (1st outline) Board mounting area 13 9 = 162 Subrange: 10 5 = 50 mm 2 (Second embodiment)
第 3図に第 2実施形態の構成図を示す。 第 1実施形態の要素と同一の 要素には、 第 1 図、 第 2図に付した番号に、 a, bの添字を付して示 す。 第 1実施形態と同じ仕様の半導体サージ吸収素子 1 a, 1 bと、 熱 溶断金厲線 2 a , 2 bによる、 2組の構成回路を、 1個のパッケージに 構成したものである。  FIG. 3 shows a configuration diagram of the second embodiment. Elements that are the same as the elements of the first embodiment are indicated by the numbers assigned to FIGS. 1 and 2 with the addition of a and b. This is a configuration in which two sets of constituent circuits using semiconductor surge absorbing elements 1a and 1b having the same specifications as those of the first embodiment and heat-fused gold wires 2a and 2b are configured in one package.
第 4図は第 2実施形態のサ―ジ吸収装置を通信回線へ接続したサージ 保護回路の一例である。 図中端子 a〜hは、 第 3図に示した端子 a〜h にそれぞれ対応するものである。 FIG. 4 shows an example of a surge protection circuit in which the surge absorber of the second embodiment is connected to a communication line. The terminals a to h in the figure correspond to the terminals a to h shown in FIG. 3, respectively.
過電圧過電流印加に対する溶断特性は、 ここでは示さないが、 第 1実 施形態と同等であることが確認されている。  Although not shown here, the fusing characteristics with respect to the application of overvoltage and overcurrent are confirmed to be equivalent to those of the first embodiment.
(第 3実施形態)  (Third embodiment)
第 5図に第 3実施形態の構成図を示す。 第 1実施形態と同じ動作電圧 の 3素子の半導体型サージ吸収素子を 1個の半導体チッブに構成した半 導体型サージ吸収素子 1 と、 熱溶断金厲線 2 aおよび 2 bを用いて、 1 個のパッケージに構成したものである。  FIG. 5 shows a configuration diagram of the third embodiment. The semiconductor type surge absorbing element 1 in which three semiconductor type surge absorbing elements having the same operating voltage as the first embodiment are formed in one semiconductor chip, and the heat-fused gold wires 2a and 2b, It is configured into individual packages.
第 6図は第 3実施形態のサージ吸収装置を通信回線へ接続したサージ 保護回路の一例である。 図中端子 a〜hは、 第 5図に示した端子 a〜h にそれぞれ対応するものである。  FIG. 6 is an example of a surge protection circuit in which the surge absorber of the third embodiment is connected to a communication line. The terminals a to h in the figure correspond to the terminals a to h shown in FIG. 5, respectively.
過電圧過電流印加に対する溶断特性は、 ここでは示さないが、 第 1実 施形態と同等であることが確認されている。  Although not shown here, the fusing characteristics with respect to the application of overvoltage and overcurrent are confirmed to be equivalent to those of the first embodiment.

Claims

請 求 の 範 囲 The scope of the claims
1. ライ ン内に配置され、 該ライ ンに流れる電流により溶断する熱溶 断金属線と、 ライン間に配置される半導体型サージ吸収素子とが接続さ れてなることを特徵とするサージ吸収装置。 1. A surge absorber characterized in that a hot-melt metal wire that is arranged in a line and melts by an electric current flowing through the line and a semiconductor-type surge absorbing element that is arranged between the lines are connected. apparatus.
2. 前記半導体サージ吸収素子が、 P N P N P接合構造あるいは N P N P N接合構造をもつサイ リスタであることを特徴とする請求項 1記載 のサージ吸収装置。  2. The surge absorber according to claim 1, wherein the semiconductor surge absorbing element is a thyristor having a PNPNP junction structure or an NPNNP junction structure.
3. 前記熱溶断金属線が、 実効値で 6 0 0 V、 4 0 Aの交流で、 0. 03 5秒以内で溶断する特性を有するものであることを特徴とする 請求項 1記載のサージ吸収装置。  3. The surge according to claim 1, wherein the heat fusing metal wire has a characteristic of fusing within 0.035 seconds with an effective value of 600 V and 40 A alternating current. Absorber.
4. 前記熱溶断金厲線が、 直径 0. 5 mm以下の、 アルミニウムある いはリ ン青銅を主材料とするものであることを特徴とする請求項 1 また は 2記載のサージ吸収装置。  4. The surge absorber according to claim 1, wherein the hot-melt wire is mainly made of aluminum or phosphor bronze having a diameter of 0.5 mm or less.
PCT/JP1995/002589 1995-12-18 1995-12-18 Surge absorber WO1997023025A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1995/002589 WO1997023025A1 (en) 1995-12-18 1995-12-18 Surge absorber
TW084114177A TW281820B (en) 1995-12-18 1995-12-30 Surge arrester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/002589 WO1997023025A1 (en) 1995-12-18 1995-12-18 Surge absorber

Publications (1)

Publication Number Publication Date
WO1997023025A1 true WO1997023025A1 (en) 1997-06-26

Family

ID=14126542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002589 WO1997023025A1 (en) 1995-12-18 1995-12-18 Surge absorber

Country Status (2)

Country Link
TW (1) TW281820B (en)
WO (1) WO1997023025A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526981A (en) * 2003-06-04 2006-11-24 ベル−フューズ・インク Telecommunications circuit protection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175533A (en) * 1983-03-25 1984-10-04 大東通信機株式会社 Small-sized fuse
JPS63930A (en) * 1986-06-19 1988-01-05 住友電気工業株式会社 Fuse conductor
JPH03239367A (en) * 1990-02-16 1991-10-24 Shindengen Electric Mfg Co Ltd Bidirectional 2-terminal thyristor
JPH0568337A (en) * 1991-09-09 1993-03-19 Okaya Electric Ind Co Ltd Circuit breaker and overvoltage and overcurrent preventing device
JPH07184319A (en) * 1993-12-24 1995-07-21 Mitsubishi Materials Corp Protective circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175533A (en) * 1983-03-25 1984-10-04 大東通信機株式会社 Small-sized fuse
JPS63930A (en) * 1986-06-19 1988-01-05 住友電気工業株式会社 Fuse conductor
JPH03239367A (en) * 1990-02-16 1991-10-24 Shindengen Electric Mfg Co Ltd Bidirectional 2-terminal thyristor
JPH0568337A (en) * 1991-09-09 1993-03-19 Okaya Electric Ind Co Ltd Circuit breaker and overvoltage and overcurrent preventing device
JPH07184319A (en) * 1993-12-24 1995-07-21 Mitsubishi Materials Corp Protective circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526981A (en) * 2003-06-04 2006-11-24 ベル−フューズ・インク Telecommunications circuit protection device
JP4708338B2 (en) * 2003-06-04 2011-06-22 ベル−フューズ・インク Telecommunications circuit protection device

Also Published As

Publication number Publication date
TW281820B (en) 1996-07-21

Similar Documents

Publication Publication Date Title
TWI405234B (en) Integrated fuse device and integrated circuit protection device
US5311164A (en) Surge absorber
CA2060641C (en) Surge absorber
US5247273A (en) Surge absorber for protection of communication equipment connected to communication lines
US5200875A (en) Protection structure for a surge absorber
US4870386A (en) Fuse for use in high-voltage circuit
JPH0478104A (en) Excess current protective component
JPH09306319A (en) Overvoltage-overcurrent protective device
WO1997023025A1 (en) Surge absorber
JP2003189466A (en) Surge protector
JPH11341677A (en) Protective circuit and protector
JP2006179842A (en) Thunder protection equipment capable of separating body on breaking down metal oxide varistor
JPH0568337A (en) Circuit breaker and overvoltage and overcurrent preventing device
JPH0973848A (en) Overvoltage overcurrent protection device
JPH0748928B2 (en) Surge absorber
JP3088588U (en) Fuse composite varistor
JPH04244732A (en) Surge absorbing circuit and surge absorber formed thereof
JPS6399725A (en) Surge absorber for overvoltage and overcurrent protection
KR200267634Y1 (en) Thermal-cut-off varistor
JPH0648791Y2 (en) Surge absorber
JPS6318924A (en) Surge absorber for protection against over-voltage and over-current
US5442509A (en) Protection structure for surge absorbing element
JPH03169222A (en) Protective circuit
JPH03216927A (en) Electronic component protecting fuse
JPH071749Y2 (en) Substrate resistance and surge absorber with safety mechanism

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US