WO1997021818A1 - Novel fructosyl amino acid oxidase originating in fungi of the genus penicillium - Google Patents

Novel fructosyl amino acid oxidase originating in fungi of the genus penicillium Download PDF

Info

Publication number
WO1997021818A1
WO1997021818A1 PCT/JP1996/003651 JP9603651W WO9721818A1 WO 1997021818 A1 WO1997021818 A1 WO 1997021818A1 JP 9603651 W JP9603651 W JP 9603651W WO 9721818 A1 WO9721818 A1 WO 9721818A1
Authority
WO
WIPO (PCT)
Prior art keywords
faod
amino acid
dna
host cell
amount
Prior art date
Application number
PCT/JP1996/003651
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuo Kato
Yasuyoshi Sakai
Yoshiki Tani
Hiroshi Fukuya
Original Assignee
Kyoto Daiichi Kagaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Daiichi Kagaku Co., Ltd. filed Critical Kyoto Daiichi Kagaku Co., Ltd.
Publication of WO1997021818A1 publication Critical patent/WO1997021818A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)

Definitions

  • the present invention relates to the production of a novel fructosylamino acid oxidase by DNA recombinant technology. More specifically, the present invention relates to a DNA encoding fructosyl amino acid oxidase (hereinafter referred to as FAOD-P) derived from Penicillium genus (Penicil_liuffi), containing the DNA and being functional in host cells. Expression vector, host cell transformed by the expression vector, production of novel FA0DP by culturing the obtained transformant, FAOD-P thus obtained, FAOD-P The present invention relates to an Amadori compound analysis method using P and a reagent or kit useful for the analysis method.
  • FAOD-P fructosyl amino acid oxidase
  • Amadori compounds are non-enzymatic when an amino group such as protein, peptide and amino acid and a reducing sugar such as aldose coexist. It is a substance produced by irreversibly binding and translocating Amadori, and is contained in foods such as soy sauce and body fluids such as blood. Since the rate of formation is a function of the concentration of the reactive substance, the contact time, the temperature, and the like, measuring the amount of the generated substance can provide various information on the substance containing the reactive substance.
  • a fructosylamine derivative which is an amadori compound composed of glucose and amino acids
  • Fructosylamine derivatives in which hemoglobin in blood is glycated are derivatives in which glycated hemoglobin and albumin are glycated.
  • Glycoalbumin is called glycated albumin
  • fructosamine the derivative of glycated protein in blood is called fructosamine.
  • reaction of an amadori compound with an oxidoreductase can be represented by the following general formula.
  • R is an aldose residue and R 2 is an amino acid, protein or peptide residue
  • the present applicant has purified fructosylamino acid oxidase (FAOD-P) derived from Penicillium as an enzyme suitable for the above purpose, and has clarified its usefulness (Japanese Patent Application No. 7-146575; EP-A-0737744, published: October 16, 1996)
  • the enzyme obtained by the purification method contains impurities such as proteins specific to strains of the genus Penicillium. It is highly probable that such impurities may contain substances that have an adverse effect on FAOD-P activity, and the reliability of the measurement may not be sufficiently ensured.
  • Such an enzyme is obtained by cloning DNA encoding FAOD-P derived from the genus Niscilium, constructing an appropriate expression vector containing the DNA, and transforming a host cell with the expression vector.
  • the transformant can be obtained by culturing the transformant in an appropriate medium to produce a recombinant FA0D-P.
  • there has been no cloning of DNA encoding FAOD-P from P. genus and it was necessary to clone such a DNA first.
  • the present inventors have conducted intensive studies in order to solve the above problems, cloned a DNA encoding FA0D-P derived from Penicilliura, and prepared an expression vector containing the DNA. It was constructed. When a host cell was transformed with the obtained expression vector and the obtained transformant was cultured, the transformant produced an expression product having fructosyl amino acid oxidase activity. That is, the transformant produced a recombinant FA0D-P having the same enzymatic activity as fructosylamino acid okinidase (FAOD-P) naturally produced by bacteria of the genus Penicillium.
  • FAOD-P fructosylamino acid okinidase
  • the nucleotide sequence of the DNA encoding FA0D-P of the present invention and the deduced amino acid sequence are shown in SEQ ID NO: 1.
  • DNA encoding FA OD-P exhibiting fructosylamino acid oxidase activity has been cloned and its nucleotide sequence has been determined. Therefore, the DNA sequence can be easily prepared by a method known in the art. 1. Insertion, substitution or substitution of one or more amino acids from the amino acid sequence described in 1. Has an amino acid sequence derived from the deletion, and it is easy for those skilled in the art to obtain a variant having substantially the same activity or function as FAOD-P having the amino acid sequence of SEQ ID NO: 1. It is. Therefore, the mutant thus obtained is also included in the scope of the present invention.
  • the present invention has an amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence derived by insertion, deletion or substitution of one or more amino acids with respect to the amino acid sequence, and in the presence of oxygen
  • An object of the present invention is to provide fructosylamino acid oxidase having an enzymatic activity to catalyze a reaction of oxidizing an Amadori compound to produce an ⁇ -keto aldehyde, an amine derivative and hydrogen peroxide.
  • the FAOD of the present invention is also characterized in that it does not substantially contain other proteins derived from bacteria of the genus Penicillium (Eenic_liy5).
  • the present invention also provides a DNA encoding the above FA ⁇ D-P.
  • the DNA may be either a complementary DNA or a synthetic DNA.
  • the DNA of the present invention can be represented by the nucleotide sequence of SEQ ID NO: 1 or a partial sequence thereof.
  • the present invention provides an expression vector containing a gene encoding FAOD-P and being functional in a host cell.
  • the gene preferably encodes a FAOD-P derived from a bacterium of the genus Penicillium, more preferably a Penicillium ′ Jansinerum strain S-341 (Penicillium iant inellum S-3413; FERM BP-5475). bacteria of the preferred c above it is a gene, have been deposited with the Ministry of International Trade and industry Agency of raw life of industrial Science and technology Research Institute of Tsukuba City, Ibaraki Prefecture Higashi 1-chome 1-chome No. 3 (original date of deposit: 1995 March 28 Date; transfer date to international deposit: March 14, 1996).
  • the expression vector being "functional" in a host cell means that when the vector is introduced into the host cell, the obtained transformant is transformed into an appropriate medium. Means that it can produce FA ⁇ D-P contained in the vector.
  • the term FAOD-P is used as a term representing both fructosylaminoacid okinidase obtained by the DNA recombination technique of the present invention and natural fructosylaminoacid okinidase derived from bacteria belonging to the genus Penicillium. However, it is clear from the context which enzyme FAOD-P refers to.
  • the present invention also provides a host cell transformed by the above expression vector.
  • the present invention provides a method for producing FAOD-P, which comprises culturing the thus obtained transformant in a medium and recovering fructosylamino acid oxidase from the culture. It is.
  • the present invention is characterized in that a sample containing an Amadori compound is brought into contact with a culture obtained by the above culture or a processed product thereof, and the amount of consumed oxygen or the amount of generated hydrogen peroxide is measured.
  • the present invention provides a method for analyzing Amadori compounds in a sample.
  • the analysis method of the present invention is preferably a mosquito or a biological component applicable to all of the samples containing the Amadori compound. In this case, it is preferable to measure the amount and / or saccharification rate of the glycated protein in the biological component, or to determine the amount of fructosamine.
  • the present invention also provides a reagent or a kit for analyzing an Amadori compound containing a culture of the above transformant or a processed product thereof.
  • the reagent and the kit preferably contain the amount of glycated protein in the biological component and Z Alternatively, it is used for measuring the saccharification rate or for quantifying fructosamine.
  • the present invention also provides an analytical reagent or kit for an amadori compound containing the culture obtained by the above culture or a processed product thereof.
  • the “treated product” of the culture is a substance obtained from the culture, which enhances the enzyme activity for catalyzing the reaction represented by the above formula (I), and uses Z or the enzyme activity. Refers to materials that have been processed by methods common in the art to make them easier.
  • FIG. 1 is an explanatory diagram showing the relationship between a primer used for PCR and a partial amino acid sequence of FAOD-P.
  • FIG. 2 is a restriction map of plasmid pFAP1 containing DNA encoding FAOD-P.
  • FIG. 3 is a mimetic diagram showing the results of agarose electrophoresis in RT-PCR, in which lane 1 is 0X174 / HincII (marker); lane 2 is a PCR using primers 1 and 2. The product electrophoresis pattern is shown.
  • FIG. 4 is a mimetic diagram showing the results of electrophoresis in the subcloning of the PCR fragment of about 690 bp in FIG. 3.
  • lane 1 is labeled with S / EcoTl 41 (marker) and lane 2 Represents the migration pattern of the BamHI digest of plasmid PFPP.
  • FIG. 5 is a graph showing the time course of FAOD-P production by Escherichia coli transformants transformed with plasmid pFAP1.
  • the horizontal axis shows the time after induction by IPTG, the vertical axis shows the degree of proliferation (ODeon measurement), the black circles show the total activity (U / 1 culture), and the white circles show the specific activity (U / nig).
  • Figure 6 shows Penicillium ′ Jansinerum strain S-3413 (PenicUlium janthin 11 is a photograph showing a migration pattern obtained by applying purified FAOD-P derived from ellum S-3413; FERM BP-5475) to SDS-PAGE (sodium dodecyl sulfate 'polyacrylamide gel electrophoresis).
  • FIG. 7 is a graph showing the results of molecular weight measurement of F AOD-P by gel filtration using Superdex 20 Opg as in FIG.
  • FIG. 8 is a graph showing the relationship between the amount of saccharified hemoglobin and the amount of hydrogen peroxide (absorbance at 727 nm) generated by the F AOD action.
  • FIG. 9 is a graph showing the relationship between the hemoglobin A 1 c value and the amount of hydrogen peroxide generated by the FAOD action (absorbance at 727 ⁇ ).
  • FIG. 10 is a restriction map of the vector pNFP1 for expression of FAOD-P in yeast.
  • Cloning of DNA encoding FAOD-P can be performed according to methods known in the art.
  • FAOD-1P was purified from a culture of P. janthinellum S-3413CFERM BP-5475), and the N-terminal amino acid was determined therefrom.
  • the amino acid sequence of the intermediate portion was determined from the peptide fragment obtained by subjecting FAOD-P to limited digestion, and an oligonucleotide primer was designed based on the amino acid sequence.
  • the determined N-terminal amino acid sequence is shown in SEQ ID NO: 2 in the sequence listing, and the amino acid sequence of the intermediate portion is shown in SEQ ID NO: 3.
  • the nucleotide sequences of oligonucleotide primers 1 and 2 are shown in SEQ ID NOs: 4 and 5, respectively.
  • FIG. 1 shows the relationship between these peptide fragments of SEQ ID NOs: 2 and 3 and primers 1 and 2.
  • RT-PCR reverse transcription polymerase chain reaction
  • FAOD-P having the entire amino acid sequence shown in SEQ ID NO: 1 but also amino acids having one or more amino acids inserted, deleted or substituted in the sequence. Mutants having a sequence and similar enzymatic activity are also useful.
  • the FAOD-P expression vector pFAP1 capable of replicating in an E. coli host of the present invention confers lac promoter, SD sequence, and ampicillin resistance.
  • the DNA encoding FAOD-P contained in this plasmid pFAPl is inserted into the downstream of the promoter of another appropriate expression vector to obtain various hosts.
  • a FAOD-P expression vector that expresses FAOD-P can be constructed.
  • the above-described expression vector and host cell are merely examples of many vectors and host cells suitable for expressing the DNA encoding FAOD-P of the present invention.
  • FAOD-P expression vectors that are functional in any host cell can be constructed using methods that are routine in the art.
  • the promoter that can be used for such a vector may be any of those that are appropriately selected from known ones, or those that are newly prepared.
  • the expression vector of the present invention is not limited to the plasmids described in the present specification, but can be modified (for example, by exchanging a promoter) by using ordinary techniques to obtain different types of microorganisms.
  • an expression vector that is functional in other cells and can produce Z or FAOD-P at a high level can be constructed.
  • the host cell used for transformation with the expression vector carrying the DNA encoding FAOD-P of the present invention may be any of prokaryotic cells such as Escherichia coli and eukaryotic cells such as yeast. Commonly used cells of higher organisms are also suitable.
  • host cells include microorganisms [prokaryotes (eg, bacteria such as Escherichia coli and Bacillus subtilis), eukaryotes (eg, yeast)], animal cells, and cultured plant cells.
  • microorganisms include prokaryotes, particularly strains belonging to the genus Escherichia (eg, E. coli), yeasts, particularly strains belonging to Saccharomyces ⁇ (eg, S—. Cerevisiae) and strains belonging to Candida ⁇ ( For example, C. boidinii), and preferably, a methanol yeast (a methylotrophic yeast or a methanol-utilizing yeast) It is.
  • Preferred animal cell lines include, for example, mouse L929 cells, Chinese hamster ovary (CHO) cells, and the like.
  • Expression vectors suitable for using bacteria, particularly Escherichia coli, as host cells are known, and examples thereof include those having a conventional promoter such as a lac promoter or a TAC promoter.
  • a vector containing a promoter such as a GAL motor or an AOD promoter is preferable.
  • Examples of expression vectors for expressing FAOD-P in mammalian cells include those having a promoter such as the SV40 promoter.
  • a multicopy expression vector can be constructed using a multicopy type plasmid known in the art.
  • Prokaryotic hosts are preferred in terms of ease of operation and availability, and E. coli is particularly preferred.
  • There are many books on prokaryotic host-vector systems eg, Molecular Cloning: A LABOLATORY MANUAL Cold Single Harbor Laboratory Press, which are known in the art and are briefly described below.
  • the DNA is inserted downstream of the promoter of an expression plasmid suitable for transforming E. coli.
  • an expression plasmid suitable for transforming E. coli.
  • intracellular expression and secretory expression there are two types of expression: intracellular expression and secretory expression, and there are appropriate expression systems for each.
  • Expression products are usually accumulated in the E. coli host. If it is necessary to secrete extracellularly, the gene for the signal sequence of the secretory protein derived from E. coli is linked to the N-terminus of the DNA encoding FAOD-P. Construct an expression system so that the expression product is secreted into the periplasm.
  • the F AOD-P of the present invention is originally a eukaryotic microorganism of the genus Penicillium (eg, ⁇ Penicillium j anthinellum S-3413; FERM BP -5475)) has the advantage that problems that can occur with prokaryotic hosts can be avoided.
  • Penicillium eg, ⁇ Penicillium j anthinellum S-3413; FERM BP -5475
  • the gene for the signal sequence of the secretory protein derived from the host yeast is located at the N-terminus of the DNA encoding FAOD-P.
  • an expression system can be constructed so that the expression product is secreted into the periplasm.
  • a method for constructing an expression vector suitable for expression in yeast is shown below, but this is only an example, and the present invention is not limited to the following expression vectors.
  • an FAOD-P expression vector is constructed using plasmid pNOTel (Japanese Patent Application Laid-Open No.
  • the plasmid pNOTe1 contains the A0D promoter and the URA3 gene, and can provide a means for selecting a transformant transformed with the plasmid using Ura requirement as an index.
  • an Escherichia coli expression vector pFAP1 containing the cloned F AOD-Pc DNA was obtained from SOLR / FAP1 (FERM P-15227), which was then digested with the restriction enzymes Ec0RI and Xh0I. By digestion, a FAOD-Pc DNA fragment of about 1.3 kb was obtained and purified. On the other hand, plus After digestion of mid pNOTel with the restriction enzyme Notl, it is dephosphorylated with cyst intestinal phosphatase and used together with the F AOD-Pc 0 Ryohachi fragment described above. 1) Using NA Blunting Kit (Takara Shuzo) And smoothed.
  • Plasmid was prepared by arbitrarily selecting 84 strains from the obtained transformants. The plasmid was treated with the restriction enzyme Hindlll 2 to confirm the orientation of the insert, and a plasmid pNFFP in which the FA0D—PcDNA fragment was inserted downstream of the AOD promoter was obtained. .
  • Figure 10 shows the restriction map of plasmid pNFP1.
  • the plasmid pNFP1 described above was used to transform the Ura-requiring boidiniiTK62 strain.
  • Transformants are cultured in UNB-free YNB medium, strains arbitrarily selected from URA + -type transformants are cultured in a basal medium containing 1.5% methanol, and strains that produce FAOD-P are selected. did.
  • DNA encoding FAOD-P inserted into E. coli S OLR / FAP1 can be ligated to a suitable enzyme (eg, restriction enzyme, alkaline phosphatase, polynucleotide kinase, DNA ligase). , DNA polymerase, etc.) to obtain a DNA fragment encoding the enzymatic activity of FAOD-P, which is then inserted into an appropriate vector to produce a peptide having FAOD-P activity in various hosts. It can be expressed, and these FA OD-Ps are also included in the scope of the present invention.
  • a suitable enzyme eg, restriction enzyme, alkaline phosphatase, polynucleotide kinase, DNA ligase.
  • DNA polymerase DNA polymerase, etc.
  • Transformation of a host cell with an expression vector is known, and can be performed by the method described in Molecular Cloning: A Laboratories Manual, Cold Sling Harbor Laboratory Press.
  • the method can be carried out by a method of producing a pitent cell, in the case of a eukaryotic host, by a method of producing a cell, by a lithium modification method, and in the case of a mammalian cell, by a transfusion method.
  • the obtained transformant is cultured in an appropriate medium.
  • the medium contains a carbon source (eg, glucose, methanol, galactose, fructose, etc.) and an inorganic or organic nitrogen source (eg, ammonium sulfate, ammonium chloride, sodium nitrate, leptone, casamino acid, etc.). May be.
  • a carbon source eg, glucose, methanol, galactose, fructose, etc.
  • an inorganic or organic nitrogen source eg, ammonium sulfate, ammonium chloride, sodium nitrate, leptone, casamino acid, etc.
  • other nutrients eg, inorganic salts (sodium chloride, potassium chloride)
  • vitamins eg, vitamins, antibiotics (eg, ampicillin, tetracycline, kanamycin, etc.)
  • Eagle's medium is suitable for culturing animal cells.
  • FAOD- medium suitable for production of P of the present invention is 0.1 to 5.0%, preferably 0.5 to 2.0% of the NH 4 C 1 and / or 0.1 to 5.0%, preferably A basal medium containing 0.1% to 5.0%, preferably 1.5%, of methanol containing 1% of yeast extract.
  • the culture of the transformant may be carried out usually at pH 5.0 to 8.0, preferably at pH 5.5 to 6.0, at 25 to 40 ° C (preferably 28 ° C) for 16 to 96 hours. If the produced FA0D-P is present in the culture solution or culture filtrate (supernatant), filter or centrifuge the culture. From the culture filtrate, FAOD-P can be used to purify and isolate natural or synthetic proteins by conventional methods (eg, dialysis, gel filtration, affinity using anti-FAOD-P monoclonal antibodies). It can be purified by column chromatography, column chromatography using an appropriate adsorbent, high-performance liquid chromatography, etc.).
  • the cells are collected by filtration or centrifugation, and their cell walls and And / or disrupting the cell membrane, eg, by ultrasound and lysozyme treatment, to obtain debris. Dissolve the debris in an appropriate aqueous solution (eg, Tris-HCl buffer). From this solution, FAOD-P can be purified by a conventional method.
  • an appropriate aqueous solution eg, Tris-HCl buffer
  • a culture obtained by culturing the transformant obtained by the method of the present invention in an appropriate medium exhibits FAOD-P activity, which is further treated by a usual method known to those skilled in the art as described above to obtain the enzyme.
  • a processed product such as a solution can be prepared.
  • the culture is centrifuged to collect a FADPD-producing transformant, suspended in a phosphate buffer, and disrupted by sonication or the like.
  • the enzyme sample is obtained by centrifuging the supernatant.
  • the supernatant is filtered and further purified by chromatography or the like to obtain a purified enzyme.
  • a fragment having an enzymatic activity can be obtained by restriction enzyme treatment or exonuclease treatment.
  • the above cultures and their processed products have FAOD-P enzyme activity and are suitable for quantitative analysis of Amadori compounds.
  • Useful for The DNA encoding FAOD-P has been cloned according to the present invention. Based on the cloned DNA, FAOD-P activity is retained by adding, deleting, inserting, or substituting amino acids using ordinary genetic recombination techniques. It is easy for those skilled in the art to obtain such a derivative. Therefore, active derivatives of FAOD-P obtained by such conventional means are also included in the scope of the present invention.
  • a culture obtained by culturing the transformant of the present invention and a processed product thereof are represented by the following reaction formula: R 1 -C ⁇ 1 CH 2 -NH— R 2 + 0 2 + H 2 0 ⁇
  • R 1 represents an aldose residue
  • R 2 represents an amino acid, protein or peptide residue
  • R 1 gar OH one (CH 2) n -, or one [CH (OH)] (wherein, n an integer from 0- 6) n -CH 2 OH is, R 2 is - Amadori compounds represented by CHR 3 — [CONHR 3 ] ra COO H (where R 3 is a residue of one amino acid side chain and m is an integer of 1 to 480) are preferred as 15 as a substrate.
  • R 3 is a side chain residue of an amino acid selected from lysine, polylysine, palin, asparagine and the like, and n is 5 to 6 and m is 55 or less is preferable.
  • a sample suspected of containing an Amadori compound is brought into contact with a culture of a transformant expressing FAOD-P of the present invention or a processed product thereof in water or a buffer.
  • the Amadori compound in the sample is analyzed by measuring the amount of oxygen consumed or the amount of hydrogen peroxide generated.
  • the analysis method of the present invention is carried out based on measurement of the amount of glycated protein and Z or glycation rate in a biological component, or quantification of fructosamine.
  • a suspension (solution) of a culture or a processed product thereof in water or a buffer is added.
  • the reaction conditions such as pH, temperature and reaction time are not particularly limited, and may be appropriately selected from the conditions usually used for similar enzyme reactions. However, it is reacted at pH 4.0 to 12.0, preferably pH 7.0 to 8.5, more preferably at a pH of about 7.5, at a temperature of 25 to 50 ° C, preferably at 25 to 40 ° C, more preferably at 25 ° C. .
  • test solution used in the method of the present invention may be any solution containing an Amadori compound.
  • a sample solution can be used, and examples thereof include foods such as blood (whole blood, plasma or serum), urine and the like, as well as soy sauce.
  • a Tris-monohydrochloride buffer or the like is used as a buffer.
  • the amount of culture of a transformant expressing FAOD-P or FAOD-P or a processed product thereof is generally 0.1 units or more, preferably 1 to 100 units, in end-point analysis. It is.
  • any of the following methods for quantifying an Amadori compound is used.
  • the Amadori compound in the sample is quantified. Specifically, it is based on the titer measurement method described later. However, the amount of FAOD-1P is set to 1 kN, and an appropriately diluted sample is added, and the amount of generated hydrogen peroxide is measured.
  • 4-aminoaminoantipyrine ZN-ethyl-1 N-1 (2-hydroxy-13-sulfopropyl) 1 m-toluidine, 4-1-1 instead of 4-aminoantipyrine / funol system
  • a value obtained by subtracting the amount of oxygen at the end of the reaction from the amount of oxygen at the start of the reaction (oxygen consumption) is measured, and is compared with the standard curve created for the amount of oxygen consumption and the amount of the Amadori compound to determine the amount of Amadori in the sample.
  • Quantify compound Specifically Is performed according to the titer measurement method described later. However, the amount of FA ⁇ D-P used should be 1 unit / ⁇ 1, and the amount of oxygen absorbed by adding an appropriately diluted sample should be determined.
  • the method of the present invention can be carried out using a sample solution as it is, depending on the target, it is preferable to release the valine residue to which a sugar is bound beforehand.
  • protease for such purposes, there are cases where a protease is used (enzymatic method) and cases where a chemical substance such as hydrochloric acid is used (chemical method), the former being preferred.
  • Proteolytic enzymes that can be used in the method of the present invention are known to those skilled in the art, and include trypsin, carboxypeptidase B, papain, aminopeptidase, chymotribsine, thermolysin, subsiricin, proteinase, and proteinase. And the like.
  • Enzyme treatment methods are also known.
  • the protease treatment can be performed by the method described in the following Examples.
  • the culture of the transformant expressing the FAOD-P of the present invention or the processed product thereof has a high substrate specificity for fructosyl valin contained in the glycated protein. It is useful for the diagnosis of diabetes, including the measurement of glycated hemoglobin. In addition, since fructosyl lysine also has specificity, it is useful for measuring glycated proteins.
  • a blood sample whole blood, plasma or serum
  • the collected blood sample is used as it is or after being subjected to a treatment such as folding.
  • the culture of the transformant expressing FAOD-P used in the method of the present invention or a processed product thereof, or an enzyme such as peroxidase may be used in the form of a solution, but may be immobilized on a suitable solid support. You may. For example, by packing an enzyme immobilized on beads into a column and incorporating it into an automated device, routine analysis of a large number of samples, such as clinical tests, can be performed efficiently. I Alternatively, the immobilized enzyme can be reused, which is preferable in terms of economic efficiency.
  • Immobilization of the enzyme can be performed by a method known in the art. For example, it is carried out by a carrier binding method, a cross-linking method, an inclusive method, a complex method, or the like.
  • Carriers include polymer gels, microcapsules, agarose, alginic acid, and carrageenan. Coupling is performed by a method known to those skilled in the art, utilizing covalent bonding, ionic bonding, physical adsorption, and biochemical affinity.
  • immobilized enzymes are used, the analysis can be either column or batch. As noted above, immobilized enzymes are particularly useful for routine analysis (glycos) of glycated proteins in blood samples.
  • the criteria for diagnosis are to express the result as glycated protein concentration or the ratio of glycated protein concentration to total protein concentration in the sample.
  • the total protein concentration can be measured by a conventional method (eg, absorbance at 280 nm, Lowry method, or natural fluorescence of albumin).
  • the reagent for quantifying the Amadori compound of the present invention is a culture of a transformant expressing FAOD-P of the present invention or a processed product thereof, and preferably has a pH of 7.5-8.5. Consists of H7.5 buffer.
  • the solid support is selected from a polymer gel or the like, and is preferably alginic acid.
  • the amount of culture or processed material in the reagent is usually per sample; ⁇ 100 units Zml, and the buffer is preferably a Tris-monohydrochloride buffer (pH 7. ⁇ ).
  • the buffer is preferably a Tris-monohydrochloride buffer (pH 7. ⁇ ).
  • a kit can also be prepared by combining the Amadori compound analysis reagent of the present invention with an appropriate color former and a color standard or standard substance for comparison. Such a kit would be useful for preliminary diagnosis and testing.
  • Plasmids, various restriction enzymes, T4 DNA ligase, and other enzymes used in the following examples were obtained from commercial products and used according to the supplier's instructions.
  • DNA cloning, construction of each plasmid, transformation of host, culture of the transformant, and recovery of the enzyme from the culture were performed according to methods known to those skilled in the art or according to methods described in the literature.
  • the enzyme activity was measured according to the following titer measurement method.
  • a 10 OmM FV solution was prepared by dissolving a previously obtained FV with distilled water. 45 mM 4-aminoantipyrine, 60 units Zm1 peroxidase solution, 100 mM each of 6 OmM phenol solution, 0.1 M Tris-monohydrochloride buffer (pH 7.5) lm], and 50% enzyme solution Mix and make up to 3. Om 1 with distilled water. After equilibration at 25 ° C, 501 of a 10 OmM FV solution was added, and the absorbance at 505 nm was measured over time. From the molecular extinction coefficient (5.161 O'M-'cm- 1 ) of the generated quinone dye, calculate the micromol of hydrogen peroxide generated in one minute, and use this number as the enzyme activity unit. B. terminal law
  • P. Jansinerum strain S-3413 (FERM BP-5475) was transformed from FZL (fructosyl-N.-Z-lysine) 0.5%, glucose 1.0%, dipotassium phosphate 0.1%, sodium phosphate monobasic 0.1%, Inoculate 10 L of a medium (pH 6.0) containing 0.05% of magnesium sulfate, 0.01% of calcium chloride, and 0.2% of yeast extract, and use a jar fermenter to aerate at a rate of 2 L / min and a stirring speed of 40 Orpn. At 28 ° C for 24 hours. Cultures were collected by filtration.
  • FZL fructtosyl-N.-Z-lysine
  • Mycelium 270 g (wet weight), 0.1 M Tris The suspension was suspended in 80 Oml of a monohydrochloric acid buffer (pH 7.5), and the mycelium was disrupted with a Dino mill. The crushed liquid was centrifuged at 9,50 Orpm for 20 minutes, and the obtained liquid was used as a crude enzyme solution and purified by the following method.
  • Ammonium sulfate (hereinafter abbreviated as ammonium sulfate) was added to the crude enzyme solution so as to be 40% saturated, stirred, and centrifuged at 12.00 Orpm for 10 minutes. Ammonium sulfate was added to the obtained supernatant to 75% saturation, stirred, and centrifuged at 12,000 ⁇ m for 10 minutes. The precipitate was dissolved in 5 OmM Tris monohydrochloride buffer (pH 7.5) containing 2 mM DTT (hereinafter abbreviated as buffer A). An equal volume of buffer A containing 40% ammonium sulfate was added to the solution, and then about 20 Oral of butyl-TOYO PEARL resin was added, followed by gentle stirring.
  • buffer A OmM Tris monohydrochloride buffer
  • the obtained purified enzyme preparation was subjected to SDS-PAGE (sodium dodecyl sulfate 'polyacrylamide gel electrophoresis) to use phosphorylase B, bovine serum albumin, ovalbumin, and carbonic anhydride as standard proteins.
  • the molecular weight was measured using the enzyme and soybean tribune inhibitor according to the method of Davis. That is, using a 10% gel, electrophoresis was performed at 40 mA for 3 hours, and protein staining was performed with Coomassie Prilian Rebel G-250. The electrophoresis of several proteins of known molecular weight was carried out in the same manner, and the molecular weight was determined from the calibration curve. The result showed that the molecular weight of the subnet was about 48,700 daltons (Fig. 6).
  • the enzyme preparation purified by the above method was fragmented with V8 protease (manufactured by Sigma) and fragmented by the Cleveland method [D. Cleaveland, SGFisher, MW Kirschner and UK Laemnili, J, Biol, Chem., 252 , 1102 (1977) 3.
  • the PVDF polyvinylidene fluoride, manufactured by Millipore, trade name, Imopiron-P SQ
  • the protein sequencer 476A (Applied Biosystems) was used to determine the amino acid sequence by the Edman degradation method.
  • the amino acid sequences of 14 and 20 residues shown in SEQ ID NOs: 2 and 3 were determined from the two fragments of the N-terminal and internal peptides, respectively.
  • primers for use in PCR were designed as shown in FIG.
  • the codon usage of Penicillium was taken into consideration, and in order to facilitate subcloning, A BamHI recognition sequence was added to the end of the primer.
  • the nucleotide sequences of these primers 1 and 2 are shown in SEQ ID NOs: 4 and 5, respectively.
  • Primer 2 is synthesized from the C-terminal side based on the sequence shown in FIG. 1 so as to attach to DNA complementary to DNA to which primer 1 attaches.
  • RT-PCR reverse transcription polymerase tune reaction
  • FIG. 3 is a mimetic diagram showing the results of agarose electrophoresis.
  • lane 1 shows 0X174ZHincII (marker)
  • lane 2 shows the electrophoresis pattern of the PCR product when primers 1 and 2 were used. Electrophoresis was performed using a marker to determine the size of the fragment amplified by PCR.
  • the PCR fragment of about 690 bp obtained in step 2 above was cut out from the agarose gel, and the DNA was collected at 10,000 rpm.4 ° using a centrifuge tube with a filter for DNA recovery (pore size 0.22 ⁇ , Takara Shuzo Co., Code No. 9040). C. After centrifugation for 1 hour, purification was performed by ethanol precipitation.
  • PCR fragment (11), K buffer (11), BaniHI (1D and sterilized water (7 // 1)) were mixed and digested at 37 ° C for 4 hours.
  • the BamHI digested fragment was ligated (16 ° C for 30 minutes) to pBluescreipt II SK + (manufactured by STRATAGENE: an expression vector for Escherichia coli having a 1 ac promoter) also digested with BamBI.
  • STRATAGENE an expression vector for Escherichia coli having a 1 ac promoter
  • the resulting ligation mixture was used to transform E. coli JMl09 strain. Transformation was performed according to the Hanahan method (supra) using TaKaRa Ligation Kit Ver. 2.0 (Takara Shuzo).
  • a plasmid pFPP in which a PCR fragment of about 69 Obp was inserted into the BaniHI site of pBluescript II SK + was obtained.
  • lane 1 represents: I ZEcoT 141 (marker 1) and lane 2 represents a BamHI digest of plasmid pFPP.
  • its nucleotide sequence was determined by the dideoxy method, it was confirmed to be a partial sequence of FAOD-P cDNA.
  • cDNA Library and Plaque Hybridization was obtained from total RNA obtained by the method of 2.2) above using mRNA Purification Kit (Falman). From 5 g of the mRNA, a cDNA library was prepared using a ZAP-cDNA Synthesis Kit (manufactured by STRATAGENE). That is, cDNA is synthesized from 5 g of mRNA using reverse transcriptase, ligated to ⁇ II vector (manufactured by STRATAGENE), packaged in vitro using Gigapack III Gold (manufactured by STEATAGENE), and in vitro cloned into a cDNA library. (The conditions and the like were in accordance with the manual.) Then, the titer of cDNA was measured, and as a result, it was 1.8 ⁇ 10 5 piu / ⁇ g vector.
  • This phage library was infected with E. coli XLI-Blue MRF strain, and cultured at 37 ° C for 12 hours to form plaque.
  • the PCR fragment subcloned in step 3 was labeled with 32 P and used as a probe. And screened by plaque hybridization. That is, the obtained plaque was transferred to a nitrocellulose filter, and after denaturation, hybridized with a probe labeled with 32 P at 42 ° C. for 12 hours. After washing, X-ray film was exposed for 12 hours. As a result, five positive plaques were obtained from about 184,000 plaques.
  • FIG. 2 shows the restriction map of pFAP1. The nucleotide sequence and deduced amino acid sequence of this clone are shown in SEQ ID NO: 1.
  • Escherichia coli (. ⁇ L SOLR / FAP 1) transformed in Example 1 was transformed into LB medium (1% Bacto-Trypton, 0.5% Bacto -Yeast extract, 1% NaCI, pH7.2) 5 Oml. IPTG was added 2 hours after inoculation with E. coli.
  • the cells were collected by centrifugation (10,000 rpm, 4 ° C, 1 minute), and the pellet was washed with 0.85% KC1 and suspended in 0.1 M Tris-HCl buffer (pH 7.5). 3.800 rpm with MINI-BEAT BEATER (Japan Lambda) The beads were crushed 6 times in 30 seconds with ice cooling, and centrifuged (1,400 ⁇ ⁇ 4 ° C, 5 minutes) to prepare a cell-free extract. Subsequently, FAOD-P activity was measured by the A. rate method of the above titration method.
  • glycohemoglobin control E (Sigma) was dissolved in 100% distilled water. 1 ml of acetone hydrochloride (11/1 hydrochloric acid 7acetone: 1Z100) was added to these samples, and centrifuged at 12,000 rpm for 10 minutes. The precipitate was washed with getyl ether 5001, and dried under reduced pressure. Further, 8 M urea 1001 was added, heated in boiling water for 20 minutes, cooled, mixed with 5.4 unit Zml trypsin 3001, and incubated at 37 ° C for 3 hours. Thereafter, the sample was heated in boiling water for 5 minutes to prepare a sample.
  • acetone hydrochloride 11/1 hydrochloric acid 7acetone: 1Z100
  • the FA ⁇ D reaction solution was prepared as follows.
  • the 25 u / ml FA ⁇ D-P solution was prepared by diluting the FA0D-P obtained in the method of Example 2 with 0.1 M potassium phosphate buffer (pH 7.5) to 25 u / p. Prepared.
  • FIG. 8 shows the relationship between the amount of saccharified hemoglobin obtained by this method and the absorbance.
  • the vertical axis in the figure is the absorbance of 727 ⁇ (corresponding to the amount of hydrogen peroxide), and the horizontal axis is saccharified Represents the amount of The figure shows that there is a correlation between the amount of glycated hemoglobin and the amount of hydrogen peroxide generated.
  • Hemoglobin A0 reagent (Sigma) was dissolved in distilled water to make 2.3. This solution was fractionated using an automatic glycohemoglobin measuring device (Kyoto Daiichi Kagaku), and the hemoglobin A1c fraction and the hemoglobin A0 fraction were fractionated and purified. By mixing the two fractions in proportion, a base sample having an A1c value of 0% to 52.0% was obtained.
  • the F A 0 D reaction solution was prepared as follows.
  • FIG. 9 shows the relationship between the hemoglobin Ale value and the absorbance of the substrate obtained by this method.
  • the vertical axis in the figure represents the absorbance at 727 nm (corresponding to the amount of hydrogen peroxide), and the horizontal axis represents the hemoglobin Ale value.
  • the figure shows that there is a correlation between the hemoglobin A1c value and the amount of generated hydrogen peroxide.
  • the obtained pFAP1 was digested with restriction enzymes EcoRI and Xhol to obtain a FAOD-Pc DNA fragment of about 1.3 kb.
  • Plasmid pNOTel Japanese Patent Laid-Open No. 5-344895 is digested with restriction enzyme Not I, dephosphorylated using cyst intestinal phosphatase (Boehringer Mannheim), and DNA together with the FAOD-P cDNA fragment described above. Smoothing was performed using Blunting Kit (Takara Shuzo). These were ligated using a DN ligation Kit (Takara Shuzo Co., Ltd.) to obtain plasmid pNFP.
  • E. coli J109 strain was transformed by the Hanahan method (supra) using plasmid pNFP.
  • Plasmid was prepared by arbitrarily selecting 84 strains from the obtained transformants. Plasmid is treated with restriction enzyme Hindlll and inserted. After confirming the orientation, plasmid pNFFP, in which the FAOD-Pc DNA fragment was inserted downstream of the AOD promoter, was obtained.
  • the restriction map of the plasmid pNFP1 is shown in FIG.
  • the above plasmid pNFP1 was linearized with the restriction enzyme BamHI, and then transformed into the .boidiniiTK62 strain using a lithium modification method.
  • This TK62 strain is required for lira, and since the plasmid KpNOTel contains the URA3 gene, transformants can be selected based on the Ura requirement.
  • Eight transformants were arbitrarily selected from URA + -type transformants obtained by spreading the transformants on YNB medium without Ura, inoculated into a 1.5% methanol-containing basic medium, and incubated at 28 ° C for 3 days. The cells were cultured with shaking. After collection, the F AOD-P activity in the cells was measured by the A. rate method in the above titration method, and the results in Table 2 were obtained.
  • Sequence type nucleic acid
  • Organism name Penicillium j anthinellum S-3413CFERM BP-5475) Sequence
  • Lys leu lie Ser Val Pro Arg Ser His Ala Lys His Pro Thr Asp
  • Organism name Penicillium janthinellum S-3413 (FERM BP-5475) sequence
  • Organism name Penicillium janthinellum S-3413 (FERM BP-5475) Sequence
  • Sequence type nucleic acid Number of chains: single strand
  • Sequence type nucleic acid

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

An expression vector that contains a gene coding for a fructosyl amino acid oxidase originating in the genus Penicillium (FAOD-P) and that is functional in host cells; host cells transformed by said vector; a process for preparing a novel FAOD-P by culturing the obtained transformant; the FAOD-P thus prepared; a method for analyzing Amadori compounds with said FAOD-P; and reagents and kits useful therefor.

Description

明 細 書  Specification
新規なぺニシリゥム属の菌由来のフルク トシルァミノ酸ォキシダ一ゼ 技術分野  Fructosylamino acid oxidase derived from a new fungus of the genus Penicillium
本発明は、 D N A組換え技術による新規なフルク トシルアミノ酸ォキシ ダーゼの製造に関する。 より詳しくは、 本発明は、 ぺニシリウム属 (Peni cil_liuffi)由来のフルク トシルアミノ酸ォキシダ一ゼ (以下、 F A O D— P と称する) をコードする D N A、 該 D N Aを含有し、 宿主細胞内で機能的 な発現ベクター、 該発現べクタ一により形質転換された宿主細胞、 得られ た形質転換体を培養することによる新規な F A 0 D— Pの製造、 そのよう にして得られる F A O D— P、 該 F A O D— Pを用いるアマドリ化合物の 分析法及び該分析法に有用な試薬又はキッ 卜に関する。  The present invention relates to the production of a novel fructosylamino acid oxidase by DNA recombinant technology. More specifically, the present invention relates to a DNA encoding fructosyl amino acid oxidase (hereinafter referred to as FAOD-P) derived from Penicillium genus (Penicil_liuffi), containing the DNA and being functional in host cells. Expression vector, host cell transformed by the expression vector, production of novel FA0DP by culturing the obtained transformant, FAOD-P thus obtained, FAOD-P The present invention relates to an Amadori compound analysis method using P and a reagent or kit useful for the analysis method.
背景技術 Background art
アマ ドリ化合物は、 夕ンパク質、 ぺプチド及びァ ミノ酸のようなァ ミ ノ 基を有する物質と、 アルドースのような還元性の糖が共存する場合、 アミ ノ基とアルデヒ ド基が非酵素的かつ非可逆的に結合し、 アマドリ転移する ことにより生成される物質であり、 醤油等の食品、 及び血液等の体液に含 有されている。 その生成速度は、 反応性物質の濃度、 接触時間、 温度など の関数であることから、 生成量を測定することにより、 それら反応性物質 を含有する物質に関する様々な情報を得ることができる。  Amadori compounds are non-enzymatic when an amino group such as protein, peptide and amino acid and a reducing sugar such as aldose coexist. It is a substance produced by irreversibly binding and translocating Amadori, and is contained in foods such as soy sauce and body fluids such as blood. Since the rate of formation is a function of the concentration of the reactive substance, the contact time, the temperature, and the like, measuring the amount of the generated substance can provide various information on the substance containing the reactive substance.
例えば、 生体内では、 グルコースとアミノ酸が結台したアマドリ化合物 であるフルク トシルァミ ン誘導体が生成しており、 血液中のへモグロビン が糖化されたフルク トシルァミン誘導体はグリコヘモグロビン、 アルブミ ンが糖化された誘導体はグリコアルブミン、 血液中の夕ンパクが糖化され た誘導体はフルク 卜サミ ンと呼ばれる。 これらの血中濃度は、 過去の一定 期間の平均血糖値を反映しており、 その測定値は、 糖尿病の症状の重要な 指標となり得るために、 測定手段の確立は臨床上、 極めて有用である。 ま た、 食品中のアマドリ化合物を定量することにより、 その食品の製造後の 保存状況や期間を知ることができ、 品質管理に役立つと考えられる。 For example, in a living body, a fructosylamine derivative, which is an amadori compound composed of glucose and amino acids, is produced.Fructosylamine derivatives in which hemoglobin in blood is glycated are derivatives in which glycated hemoglobin and albumin are glycated. Glycoalbumin is called glycated albumin, and the derivative of glycated protein in blood is called fructosamine. These blood levels reflect the average blood glucose level over a period of time in the past, and the measured values are important indicators of diabetes symptoms. Establishing a measurement tool is extremely clinically useful because it can serve as an indicator. In addition, by quantifying Amadori compounds in foods, it is possible to know the storage status and period of the foods after production, which will be useful for quality control.
このように、 アマドリ化合物の定量分析は医学及び食品を含む広範な分 野で有用である。  Thus, quantitative analysis of Amadori compounds is useful in a wide range of fields including medicine and food.
従来、 アマドリ化合物を含有する試料に酸化還元酵素を作用させ、 酸素 の消費量又は過酸化水素の発生量を測定することにより、 定量する分析法 が提案されている (例えば、 特公平 5— 33997号公報、 特開昭 61— 268178号公報、 特開平 2— 195900号公報、 特開平 3— 155 780号公報) 。 さらに、 糖尿病の診断のための糖化タンバグの定量法も 開示されている (特開平 2— 195899号公報、 特開平 2— 19590 0号公報) 。  Conventionally, an analysis method has been proposed in which a redox enzyme is allowed to act on a sample containing an Amadori compound, and the amount of oxygen consumed or the amount of hydrogen peroxide generated is measured to determine the amount (for example, Japanese Patent Publication No. 5-33997). JP-A-61-268178, JP-A-2-195900, JP-A-3-155780). Furthermore, a method for quantifying saccharified tanbugs for diagnosing diabetes has also been disclosed (JP-A-2-195899, JP-A-2-195900).
ァマドリ化合物の酸化還元酵素による反応は下記の一般式で表すことが できる。  The reaction of an amadori compound with an oxidoreductase can be represented by the following general formula.
R1-CO-CH2-NH-R2 + 02 + H20→ R 1 -CO-CH 2 -NH-R 2 + 0 2 + H 20
R'-CO-CHO + R2-NH2 + H202 R'-CO-CHO + R 2 -NH 2 + H 2 0 2
(式中、 Rリまアルドース残基、 R2はアミノ酸、 タンパク質又はペプチド 残基を表す) (Where R is an aldose residue and R 2 is an amino acid, protein or peptide residue)
本出願人は、 上記の目的に適う酵素として、 ぺニシリウム属 (Penicill ium 由来のフルク トシルァミノ酸ォキシダーゼ (F AOD— P) を精製 し、 その有用性を明らかにした (特願平 7- 146575; EP-A- 0737744、 公開曰 1996年 10月 16曰)  The present applicant has purified fructosylamino acid oxidase (FAOD-P) derived from Penicillium as an enzyme suitable for the above purpose, and has clarified its usefulness (Japanese Patent Application No. 7-146575; EP-A-0737744, published: October 16, 1996)
しかしながら、 微生物を培養し、 培地から該酵素を抽出して製造する方 法は、 多くの労力と時間を必要とし、 非効率的である。 また、 精製法で得 られる酵素には、 ぺニシリゥム属の菌株固有のタンパク質等の不純物が付 随する確立が高く、 そのような不純物には、 F AOD— P活性に悪影響を 及ぼす物質が混在する可能性があり、 測定の信頼性が十分に確保できない 恐れがあった。 However, a method of culturing a microorganism and extracting the enzyme from the culture medium to produce the enzyme requires a lot of labor and time and is inefficient. In addition, the enzyme obtained by the purification method contains impurities such as proteins specific to strains of the genus Penicillium. It is highly probable that such impurities may contain substances that have an adverse effect on FAOD-P activity, and the reliability of the measurement may not be sufficiently ensured.
従って、 ぺニシリウム属の菌に由来する不純物を伴わない F A OD—P を効率よく製造する方法の開発が求められていた。 そのような酵素は、 ぺ ニシリゥム属由来の F AOD— Pをコードする DN Aをクローニングし、 該 DN Aを含有する適当な発現ベクターを構築し、 該発現べクタ一で宿主 細胞を形質転換し、 該形質転換体を適当な培地で培養して組換え体 F A 0 D— Pを産生させることにより得ることができる。 しかしながら、 ぺニシ リゥム属由来の F AOD— Pをコ一ドする DNAがクローニングされた例 はなく、 まず、 そのような DN Aのクローニングが必要であった。  Therefore, there has been a demand for the development of a method for efficiently producing FAOD-P without impurities derived from bacteria of the genus Penicillium. Such an enzyme is obtained by cloning DNA encoding FAOD-P derived from the genus Niscilium, constructing an appropriate expression vector containing the DNA, and transforming a host cell with the expression vector. The transformant can be obtained by culturing the transformant in an appropriate medium to produce a recombinant FA0D-P. However, there has been no cloning of DNA encoding FAOD-P from P. genus, and it was necessary to clone such a DNA first.
発明の開示 Disclosure of the invention
本発明者らは、 上記課題を解決するために鋭意研究を行い、 ぺニシリウ ム属 (Penicilliura) 由来の F A 0 D— Pをコードする D N Aをクロー二 ングし、 該 DNAを含有する発現ベクターを構築した。 得られた発現べク ターで宿主細胞を形質転換し、 得られた形質転換体を培養したところ、 該 形質転換体は、 フルク トシルアミノ酸ォキシダーゼ活性を有する発現産物 を生産していた。 すなわち、 形質転換体は、 ぺニシリウム属の菌が天然に 生産するフルク トシルァミノ酸ォキンダーゼ (F AOD— P) と同様の酵 素活性を有する組換え F A 0 D— Pを産生した。 本発明の F A 0 D— Pを コードする DN Aの塩基配列及び推定のァミノ酸配列は配列番号 1に示さ れている。 本発明により、 フルク トシルァミノ酸ォキシダーゼ活性を示す F A OD— Pをコードする DN Aがクローニングされ、 その塩基配列が明 らかにされたので、 当該技術分野で既知の方法により、 容易に、 配列番号 1に記載のアミノ酸配列から、 1又はそれ以上のアミノ酸の挿入、 置換又 は欠失により導かれるアミノ酸配列を有し、 しかも、 該配列番号 1のアミ ノ酸配列を有する F A O D— Pと実質的に同等の活性又は機能を有する変 異体を得ることは、 当業者にとって容易である。 従って、 そのようにして 得られる変異体もまた、 本発明の範囲に包含されるものである。 Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above problems, cloned a DNA encoding FA0D-P derived from Penicilliura, and prepared an expression vector containing the DNA. It was constructed. When a host cell was transformed with the obtained expression vector and the obtained transformant was cultured, the transformant produced an expression product having fructosyl amino acid oxidase activity. That is, the transformant produced a recombinant FA0D-P having the same enzymatic activity as fructosylamino acid okinidase (FAOD-P) naturally produced by bacteria of the genus Penicillium. The nucleotide sequence of the DNA encoding FA0D-P of the present invention and the deduced amino acid sequence are shown in SEQ ID NO: 1. According to the present invention, DNA encoding FA OD-P exhibiting fructosylamino acid oxidase activity has been cloned and its nucleotide sequence has been determined. Therefore, the DNA sequence can be easily prepared by a method known in the art. 1. Insertion, substitution or substitution of one or more amino acids from the amino acid sequence described in 1. Has an amino acid sequence derived from the deletion, and it is easy for those skilled in the art to obtain a variant having substantially the same activity or function as FAOD-P having the amino acid sequence of SEQ ID NO: 1. It is. Therefore, the mutant thus obtained is also included in the scope of the present invention.
従って、 本発明は配列番号 1記載のァミノ酸配列又は該ァミノ酸配列に 対する 1又はそれ以上のァミノ酸の挿入、 欠失又は置換により導かれるァ ミノ酸配列を有し、 酸素の存在下でアマドリ化合物を酸化して、 α—ケト アルデヒ ド、 ァミン誘導体及び過酸化水素を生成する反応を触媒する酵素 活性を有するフルク トシルァミノ酸ォキシダーゼを提供するものである。 本発明の F A O D— Ρはぺニシリゥム属 (Eenic_ liy5)の菌由来の他の タンパク質を実質上含有しないという特徴をも有する。  Accordingly, the present invention has an amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence derived by insertion, deletion or substitution of one or more amino acids with respect to the amino acid sequence, and in the presence of oxygen An object of the present invention is to provide fructosylamino acid oxidase having an enzymatic activity to catalyze a reaction of oxidizing an Amadori compound to produce an α-keto aldehyde, an amine derivative and hydrogen peroxide. The FAOD of the present invention is also characterized in that it does not substantially contain other proteins derived from bacteria of the genus Penicillium (Eenic_liy5).
本発明はまた、 上記 F A〇D— Pをコ一ドする D N Aを提供するもので ある。 該 D N Aは、 相補 D N A、 合成 D N Aのいずれでもよい。 本発明の D N Aは、 1つの実施態様として、 配列番号 1記載の塩基配列又はその部 分配列で示すことができる。  The present invention also provides a DNA encoding the above FA〇D-P. The DNA may be either a complementary DNA or a synthetic DNA. In one embodiment, the DNA of the present invention can be represented by the nucleotide sequence of SEQ ID NO: 1 or a partial sequence thereof.
さらに、 本発明は F A O D— Pをコードする遺伝子を含有し、 宿主細胞 内で機能的な発現ベクターを提供するものである。 該遺伝子は、 好ましく はぺニシリウム属 (Penicillium) の菌、 より好ましくはぺニシリウム ' ヤンシネルム菌株 S— 3 4 1 3 (Penicillium iant inellum S- 3413 ; FERM BP - 5475) 由来の F A O D— Pをコードする遺伝子であることが好ましい c 上記の菌は、 茨城県つくば市東 1丁目 1丁目 3号の通商産業省工業技術院生 命工学工業技術研究所に寄託されている (原寄託日: 1995年 3月 28日;国際 寄託への移管日: 1996年 3月 14日) 。 Further, the present invention provides an expression vector containing a gene encoding FAOD-P and being functional in a host cell. The gene preferably encodes a FAOD-P derived from a bacterium of the genus Penicillium, more preferably a Penicillium ′ Jansinerum strain S-341 (Penicillium iant inellum S-3413; FERM BP-5475). bacteria of the preferred c above it is a gene, have been deposited with the Ministry of International Trade and industry Agency of raw life of industrial Science and technology Research Institute of Tsukuba City, Ibaraki Prefecture Higashi 1-chome 1-chome No. 3 (original date of deposit: 1995 March 28 Date; transfer date to international deposit: March 14, 1996).
本明細書中、 発現べクタ一が宿主細胞内で 「機能的」 であるとは、 該べ クタ一を宿主細胞に導入したとき、 得られた形質転換体が適当な培地で增 殖し、 該ベクターに含有されている F A〇D— Pを生産しうることを意味 する。 なお、 F A O D— Pなる語句は、 本発明の D N A組換え技術により 得られたフルク 卜シルァミノ酸ォキンダーゼ及びぺニシリゥ厶属の菌由来 の天然のフルク 卜シルァミノ酸ォキンダーゼの両方を表す語句として用い られているが、 F A O D— Pがいずれの酵素を指すかは、 文脈から明らで ある。 In the present specification, the expression vector being "functional" in a host cell means that when the vector is introduced into the host cell, the obtained transformant is transformed into an appropriate medium. Means that it can produce FA〇D-P contained in the vector. The term FAOD-P is used as a term representing both fructosylaminoacid okinidase obtained by the DNA recombination technique of the present invention and natural fructosylaminoacid okinidase derived from bacteria belonging to the genus Penicillium. However, it is clear from the context which enzyme FAOD-P refers to.
また、 「遺伝子」 及び 「D N A」 なる語句は、 起源に関係なく、 目的の F A O D— P活性を有するぺプチドをコ一ドすることを条件として、 相互 変換可能に用いられる。  The terms “gene” and “DNA” are used interchangeably, irrespective of their origin, provided that they encode a peptide having the desired FAODP activity.
本発明はまた、 上記発現べクターによつて形質転換された宿主細胞を提 供するものである。  The present invention also provides a host cell transformed by the above expression vector.
さらに、 本発明は、 このようにして得られた形質転換体を培地に培養し、 培養物からフルク トシルァミノ酸ォキシダ一ゼを回収することを特徴とす る F A O D— Pの製造法を提供するものである。  Furthermore, the present invention provides a method for producing FAOD-P, which comprises culturing the thus obtained transformant in a medium and recovering fructosylamino acid oxidase from the culture. It is.
さらに、 本発明は、 アマドリ化合物を含有する試料と、 上記培養で得ら れた培養物又はその処理物を接触させ、 酸素の消費量又は過酸化水素の発 生量を測定することを特徴とする、 試料中のアマドリ化合物の分析法を提 供するものである。  Furthermore, the present invention is characterized in that a sample containing an Amadori compound is brought into contact with a culture obtained by the above culture or a processed product thereof, and the amount of consumed oxygen or the amount of generated hydrogen peroxide is measured. The present invention provides a method for analyzing Amadori compounds in a sample.
本発明の分析法は、 アマドリ化合物を含有する試料の全てに適用可能で あるカ、 生体成分であることが好ましい。 また、 その場合、 該生体成分中 の糖化タンパクの量及び/又は糖化率の測定、 あるいはフルク 卜サミンの 定量により行うことが好ましい。  The analysis method of the present invention is preferably a mosquito or a biological component applicable to all of the samples containing the Amadori compound. In this case, it is preferable to measure the amount and / or saccharification rate of the glycated protein in the biological component, or to determine the amount of fructosamine.
本発明はまた、 上記の形質転換体の培養物またはその処理物を含有する アマドリ化合物の分析のための試薬又はキッ トを提供するものである。 該試薬及びキッ トは、 好ましくは生体成分中の糖化タンパクの量及び Z 又は糖化率の測定、 あるいはフルク 卜サミンの定量のために用いられるも のである。 The present invention also provides a reagent or a kit for analyzing an Amadori compound containing a culture of the above transformant or a processed product thereof. The reagent and the kit preferably contain the amount of glycated protein in the biological component and Z Alternatively, it is used for measuring the saccharification rate or for quantifying fructosamine.
また、 本発明は上記培養で得られた培養物又はその処理物を含有するァ マドリ化合物の分析試薬又はキッ トを提供するものである。  The present invention also provides an analytical reagent or kit for an amadori compound containing the culture obtained by the above culture or a processed product thereof.
本明細書中、 培養物の「処理物」とは培養物から得られる物質であって、 上記式( I )で示される反応を触媒する酵素活性を高め、 及び Z又は酵素活 性の利用をより容易にするために、 当該技術分野で通常の方法により処理 された物質を指す。  In the present specification, the “treated product” of the culture is a substance obtained from the culture, which enhances the enzyme activity for catalyzing the reaction represented by the above formula (I), and uses Z or the enzyme activity. Refers to materials that have been processed by methods common in the art to make them easier.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は P CRに用いるためのプライマーの、 FAOD— Pの部分ァミ ノ酸配列との関係を示す説明図である。  FIG. 1 is an explanatory diagram showing the relationship between a primer used for PCR and a partial amino acid sequence of FAOD-P.
第 2図は FAOD— Pをコードする DN Aを含むプラスミ ド p F A P 1 の制限地図である。  FIG. 2 is a restriction map of plasmid pFAP1 containing DNA encoding FAOD-P.
第 3図は RT— P CRにおけるァガロース電気泳動の結果を示す模写図 であって、 図中、 レーン 1は 0X 1 74/HincII (マーカー) ; レーン 2はプライマ一 1及び 2を用いた P CR産物電気泳動パターンを表す。 第 4図は第 3図の約 690 bpの P CR断片のサブクローニングにおける 電気泳動の結果を示す模写図であって、 図中、 レーン 1はス /EcoT l 4 1 (マ一カー) 、 レーン 2はプラスミ ド P F P Pの BamH I消化物の泳動 パターンを表す。  FIG. 3 is a mimetic diagram showing the results of agarose electrophoresis in RT-PCR, in which lane 1 is 0X174 / HincII (marker); lane 2 is a PCR using primers 1 and 2. The product electrophoresis pattern is shown. FIG. 4 is a mimetic diagram showing the results of electrophoresis in the subcloning of the PCR fragment of about 690 bp in FIG. 3. In the figure, lane 1 is labeled with S / EcoTl 41 (marker) and lane 2 Represents the migration pattern of the BamHI digest of plasmid PFPP.
第 5図はプラスミ ド pFAP 1で形質転換された大腸菌形質転換体によ る FAOD— Pの生産の経時変化を示すグラフ。 横軸は I PTGによる誘 導後の時間、 縦軸は増殖の程度 (ODeon測定値) 、 黒丸は全活性 (U/ 1培養) 、 そして白丸は比活性 (U/nig) を表す。  FIG. 5 is a graph showing the time course of FAOD-P production by Escherichia coli transformants transformed with plasmid pFAP1. The horizontal axis shows the time after induction by IPTG, the vertical axis shows the degree of proliferation (ODeon measurement), the black circles show the total activity (U / 1 culture), and the white circles show the specific activity (U / nig).
第 6図はぺニシリウム ' ヤンシネル厶菌株 S- 3413(PenicUlium janthin ellum S-3413; FERM BP- 5475) 由来の精製 FAOD— Pを SDS— PAG E (ドデシル硫酸ナトリウム 'ポリアクリルアミ ドゲル電気泳動) に力、け て得た移動パターンを示す写真である。 Figure 6 shows Penicillium ′ Jansinerum strain S-3413 (PenicUlium janthin 11 is a photograph showing a migration pattern obtained by applying purified FAOD-P derived from ellum S-3413; FERM BP-5475) to SDS-PAGE (sodium dodecyl sulfate 'polyacrylamide gel electrophoresis).
第 7図は第 6図と同様の F AOD— Pの、 スーパ一デックス 20 Opgを 用いたゲルろ過による分子量測定の結果を示すグラフである。  FIG. 7 is a graph showing the results of molecular weight measurement of F AOD-P by gel filtration using Superdex 20 Opg as in FIG.
第 8図は糖化へモグロビン量と F A OD作用により生成された過酸化水 素量 (727nmにおける吸光度) との関係を示すグラフである。  FIG. 8 is a graph showing the relationship between the amount of saccharified hemoglobin and the amount of hydrogen peroxide (absorbance at 727 nm) generated by the F AOD action.
第 9図はヘモグロビン A 1 c値と FAOD作用により生成された過酸化 水素量 (727ππιにおける吸光度) との関係を示すグラフである。  FIG. 9 is a graph showing the relationship between the hemoglobin A 1 c value and the amount of hydrogen peroxide generated by the FAOD action (absorbance at 727ππι).
第 10図は酵母での FAOD— Pの発現のためのベクター p NF P 1の 制限地図である。  FIG. 10 is a restriction map of the vector pNFP1 for expression of FAOD-P in yeast.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
FAOD— Pをコ一ドする DN Aのクロ一ニングは、 当該技術分野で既 知の方法に従って行うことができる。  Cloning of DNA encoding FAOD-P can be performed according to methods known in the art.
まず、 P. janthinellum S-3413CFERM BP - 5475) の培養物から FAOD 一 Pを精製し、 それより N末端アミノ酸を決定した。 次いで FAOD— P を限定分解することにより得られたぺプチド断片より、 中間部分のァミノ 酸配列を決定し、 該ァミノ酸配列に基づいてォリゴヌクレオチドプライマ 一を設計した。 決定された N—末端アミノ酸配列を配列表の配列番号 2に、 中間部分のアミノ酸配列を配列番号 3に示す。 また、 オリゴヌクレオチド プライマ一 1及び 2のヌクレオチド配列を配列番号 4及び 5に示す。 更に、 これら配列番号 2及び 3のべプチド断片と、 プライマ一 1及び 2との関係 を第 1図に示す。  First, FAOD-1P was purified from a culture of P. janthinellum S-3413CFERM BP-5475), and the N-terminal amino acid was determined therefrom. Next, the amino acid sequence of the intermediate portion was determined from the peptide fragment obtained by subjecting FAOD-P to limited digestion, and an oligonucleotide primer was designed based on the amino acid sequence. The determined N-terminal amino acid sequence is shown in SEQ ID NO: 2 in the sequence listing, and the amino acid sequence of the intermediate portion is shown in SEQ ID NO: 3. The nucleotide sequences of oligonucleotide primers 1 and 2 are shown in SEQ ID NOs: 4 and 5, respectively. FIG. 1 shows the relationship between these peptide fragments of SEQ ID NOs: 2 and 3 and primers 1 and 2.
一方、 褐変化培地 (特願平 7— 85261号; EP-A-0737744) で培養し て F A 0 D— Pを誘導した?, janthinellum S- 3413株の菌体の totalR N Aから、 mRNA Purification Kit (ファルマンァ社) を用いて、 mRN Aを得、 該 mRN Aを逆転写して cDN Aを得、 ス Z A P IIベクターを用い て cDNAライブラリ一を構築した。 On the other hand, did cultivation in a browning medium (Japanese Patent Application No. 7-85261; EP-A-0737744) induce FA 0DP? , janthinellum S-3413 totalR N From mRNA A, mRNA was obtained using mRNA Purification Kit (Falman), and the mRNA was reverse-transcribed to obtain cDNA, and a cDNA library was constructed using the cDNA ZAPII vector.
また、 total RNAと上記プライマ一を用いて RT— P CR (逆転写ポ リメラーゼチェーン反応) を行い、 約 690 b pの P CR産物を得た。 こ の P CR産物をサブクローニングし、 該断片をプローブとして用いて上記 c DNAライブラリーをスクリ一二ングしたところ、 5つのポジティブプ ラ一クが得られた。 これらが含有する c DN A断片をプラスミ ド p Blues criptllS K—にサブクローニングし、 発現べクタ一を構築した。 次に該発 現ベクターを用いて大腸菌宿主 (Escherichia coli S 0 L R) を形質転 換し、 得られた形質転換体を培養し、 その培養物の内、 FAOD— Pの N 一末端ァミノ酸配列に相当する塩基配列を持つプラスミ ド p FAP 1を有 するクローンを 1株得た。 該発現プラスミ ド p FAP lの制限地図を第 2 図に示す。 プラスミ ド p F AP 1を導入した大腸菌、 coli SOLRZ FAP 1は、 茨城県つくば巿東 1丁目 1丁目 3号の通商産業省工業技術院生 命工学工業技術研究所に受託番号 FEKM BP- 5762の下で寄託されている (原 寄託曰: 1995年 10月 4日:国際寄託への移管日:1996年 12月 2日) 。  In addition, RT-PCR (reverse transcription polymerase chain reaction) was performed using the total RNA and the above primer to obtain a PCR product of about 690 bp. This PCR product was subcloned, and the above cDNA library was screened using the fragment as a probe. As a result, five positive plaques were obtained. The cDNA fragment contained therein was subcloned into the plasmid pBluescriptllSK- to construct an expression vector. Next, an E. coli host (Escherichia coli S0LR) is transformed using the expression vector, and the resulting transformant is cultured. Among the culture, the N-terminal amino acid sequence of FAOD-P One clone having the plasmid pFAP1 having a nucleotide sequence corresponding to the above was obtained. A restriction map of the expression plasmid pFAPl is shown in FIG. Escherichia coli, coli SOLRZ FAP1, into which plasmid pFAP1 has been introduced, is under contract number FEKM BP-5762 at Tsukuba-Higashi 1-chome 3-chome, Ibaraki Pref. (Hara Deposit: October 4, 1995: Transfer to International Deposit: December 2, 1996).
次いで、 得られたクローンの塩基配列を決定し、 FAOD— Pのァミ ノ 酸配列を推定した。 これらを配列番号 1に示す。  Next, the nucleotide sequence of the obtained clone was determined, and the amino acid sequence of FAOD-P was estimated. These are shown in SEQ ID NO: 1.
既述のごとく、 本発明の目的には、 配列番号 1に示した全アミノ酸配列 を有する FAOD— Pのみならず、 該配列に 1又はそれ以上のァミノ酸が 挿入、 欠失又は置換されたアミノ酸配列を有し、 同様の酵素活性を有する 変異体も同様に有用である。  As described above, for the purpose of the present invention, not only FAOD-P having the entire amino acid sequence shown in SEQ ID NO: 1 but also amino acids having one or more amino acids inserted, deleted or substituted in the sequence. Mutants having a sequence and similar enzymatic activity are also useful.
本発明の、 大腸菌宿主内で複製可能な FAOD— P発現ベクター p F A P 1は、 lacプロモーターと S D配列、 並びにアンピシリン耐性を付与す る DNA配列を含有しているカ^ このプラスミ ド p FAP lに含有されて いる FAOD— Pをコードする DNAを、 他の適当な発現ベクターのプロ モーターの下流に挿入することにより、 様々な宿主内で F AO D— Pを発 現する F A OD— P発現ベクターを構築することができる。 The FAOD-P expression vector pFAP1 capable of replicating in an E. coli host of the present invention confers lac promoter, SD sequence, and ampicillin resistance. The DNA encoding FAOD-P contained in this plasmid pFAPl is inserted into the downstream of the promoter of another appropriate expression vector to obtain various hosts. A FAOD-P expression vector that expresses FAOD-P can be constructed.
なお、 上記の発現べクタ一及び宿主細胞は、 本発明の FAOD— Pをコ -ドする DNAの発現に適した多くのベクター及び宿主細胞の 1例にすぎ ず、 当業者ならば、 当該技術分野で通常の方法により、 任意の宿主細胞内 で機能的な FAOD— P発現べクタ一を構築することができる。 そのよう なベクターに用い得るプロモーターは既知のものから適宜選択する力、、 あ るいは新たに調製したもののいずれでもよい。  The above-described expression vector and host cell are merely examples of many vectors and host cells suitable for expressing the DNA encoding FAOD-P of the present invention. FAOD-P expression vectors that are functional in any host cell can be constructed using methods that are routine in the art. The promoter that can be used for such a vector may be any of those that are appropriately selected from known ones, or those that are newly prepared.
このように、 本発明の発現ベクターは本明細書記載の例示のプラスミ ド に限定されず、 これらを通常の技術を用いて修飾(例えば、 プロモーター を交換する)することによって、 異なる種類の微生物、 また他の細胞内で 機能的であり、 及び Z又は FAOD— Pを高レベルに産生させることがで きる発現ベクターを構築することができる。  As described above, the expression vector of the present invention is not limited to the plasmids described in the present specification, but can be modified (for example, by exchanging a promoter) by using ordinary techniques to obtain different types of microorganisms. In addition, an expression vector that is functional in other cells and can produce Z or FAOD-P at a high level can be constructed.
本発明の FAOD— Pをコードする DN Aを担持する発現べクタ一で形 質転換するために用いられる宿主細胞は、 大腸菌等の原核細胞、 酵母等の 真核細胞のいずれでもよく、 さらには一般的に利用されている高等生物の 細胞も適する。  The host cell used for transformation with the expression vector carrying the DNA encoding FAOD-P of the present invention may be any of prokaryotic cells such as Escherichia coli and eukaryotic cells such as yeast. Commonly used cells of higher organisms are also suitable.
宿主細胞としては、 微生物 [原核生物 (細菌、 例えば大腸菌や枯草菌等)、 真核生物 (例えば酵母) ] 、 動物細胞又は培養植物細胞が挙げられる。 微 生物の好ましい例は、 原核生物、 とくに Escherichia属に属する菌株(例え ば、 E.coli等) 、 酵母、 特に Saccharomyces厲に属する株 (例えば、 S— . cerevisiae)や Candida厲に厲する株 (例えば、 C.boidinii) であり、 好 ましくはメタノール酵母 (メチ口 トロフ酵母またはメ夕ノール資化性酵母) である。 好ましい動物細胞株は例えば、 マウス L 929細胞、 チヤィニ一 ズハムスター卵巣(CHO)細胞などである。 Examples of host cells include microorganisms [prokaryotes (eg, bacteria such as Escherichia coli and Bacillus subtilis), eukaryotes (eg, yeast)], animal cells, and cultured plant cells. Preferred examples of microorganisms include prokaryotes, particularly strains belonging to the genus Escherichia (eg, E. coli), yeasts, particularly strains belonging to Saccharomyces 厲 (eg, S—. Cerevisiae) and strains belonging to Candida 厲 ( For example, C. boidinii), and preferably, a methanol yeast (a methylotrophic yeast or a methanol-utilizing yeast) It is. Preferred animal cell lines include, for example, mouse L929 cells, Chinese hamster ovary (CHO) cells, and the like.
宿主細胞として細菌、 特に大腸菌を使用するのに適した、 発現ベクター は既知であり、 例えば、 lacプロモーターや t a cプロモータ一等の慣用 のプロモーターを有するものを挙げることができる。  Expression vectors suitable for using bacteria, particularly Escherichia coli, as host cells are known, and examples thereof include those having a conventional promoter such as a lac promoter or a TAC promoter.
酵母での FAOD— Pの発現のための発現べクタ一としては、 G A Lプ 口モーターや AO Dプロモーター等のプロモーターを含有するものが好ま しい。  As an expression vector for the expression of FAOD-P in yeast, a vector containing a promoter such as a GAL motor or an AOD promoter is preferable.
又、 哺乳動物細胞での FAOD— P発現のための発現べクタ一としては、 S V 40プロモーター等のプロモーターを有するものが挙げられる。  Examples of expression vectors for expressing FAOD-P in mammalian cells include those having a promoter such as the SV40 promoter.
また、 発現効率を高めるために、 当該技術分野で既知の多コピー型ブラ スミ ドを用いて、 多コピー型発現べクタ一を構築することもできる。  In order to enhance the expression efficiency, a multicopy expression vector can be constructed using a multicopy type plasmid known in the art.
原核性宿主は、 操作及び入手の容易さの点で好ましく、 中でも大腸菌が 好ましい。 原核性宿主一ベクター系については、 多くの成書 (例えば Mol ecular Cloning: A LABOLATORY MANUAL Cold S ring Harbor Labor atory Press) があり、 当該技術分野で既知であるが、 以下に簡単に説明 する。  Prokaryotic hosts are preferred in terms of ease of operation and availability, and E. coli is particularly preferred. There are many books on prokaryotic host-vector systems (eg, Molecular Cloning: A LABOLATORY MANUAL Cold Single Harbor Laboratory Press), which are known in the art and are briefly described below.
例えば、 FAOD— Pをコードする DN Aを大腸菌に発現させるには、 該 DNAを大腸菌の形質転換に適した発現プラスミ ドのプロモーターの下 流に挿入する。 通常、 発現には菌体内発現と分泌発現の 2種類があるが、 各々について適当な発現系が存在する。 発現産物は通常、 大腸菌宿主内に 蓄積される力^ 細胞外に分泌させる必要があれば、 FAOD— Pをコード する DN Aの N末端に大腸菌由来の分泌蛋白質のシグナル配列の遺伝子を 連結させて、 発現産物をペリプラスムに分泌させるよう、 発現系を構築す る。 一方、 真核性宿主の場合、 本発明の F AOD— Pが本来、 真核生物であ るぺニシリウム属の菌 (例、 ^ ヤンシネル厶菌株 S- 3413 (Penicillium j anthinellum S-3413; FERM BP- 5475)) に由来することから、 原核性宿主 の場合に起こり得る問題を回避しうるという利点がある。 即ち、 原核生物 に真核性物質を生産させると、 インクルージョンボディ (封入体) が形成 され、 効率的な酵素の生産を確保できない場合があることが知られている (ラボニュアル遺伝子工学増補版、 丸善株式会社 187頁参照) 。 しかし、 真核性宿主を用いることで、 このような封入体の形成を予防しうると考え られる。 For example, to express DNA encoding FAOD-P in E. coli, the DNA is inserted downstream of the promoter of an expression plasmid suitable for transforming E. coli. Usually, there are two types of expression: intracellular expression and secretory expression, and there are appropriate expression systems for each. Expression products are usually accumulated in the E. coli host. If it is necessary to secrete extracellularly, the gene for the signal sequence of the secretory protein derived from E. coli is linked to the N-terminus of the DNA encoding FAOD-P. Construct an expression system so that the expression product is secreted into the periplasm. On the other hand, in the case of a eukaryotic host, the F AOD-P of the present invention is originally a eukaryotic microorganism of the genus Penicillium (eg, ^ Penicillium j anthinellum S-3413; FERM BP -5475)) has the advantage that problems that can occur with prokaryotic hosts can be avoided. In other words, it is known that when prokaryotes produce eukaryotic substances, an inclusion body (inclusion body) is formed and efficient enzyme production may not be ensured (Laboratory Genetic Engineering Enhancement Edition, Maruzen (See page 187). However, it is thought that the use of a eukaryotic host can prevent the formation of such inclusion bodies.
酵母を宿主細胞として用いる場合、 発現産物を細胞外に分泌させる必要 があれば、 既述のごとく、 F AOD— Pをコードする DNAの N末端に、 宿主酵母由来の分泌蛋白質のシグナル配列の遺伝子を連結させて、 発現産 物をペリプラス厶に分泌させるよう、 発現系を構築することができる。 以下に酵母での発現に適した発現ベクターの構築方法を示すが、 これは 1例にすぎず、 本発明は以下の発現ベクターに限定されるものではない。 酵母での F AOD— P遺伝子の発現のために、 id niiの染色体挿入 型発現ベクターであるプラスミ ド pNOTel (特開平 5— 344895 ; ) を用い、 F AOD— P発現ベクターを構築する。 このプラスミ ド pNOTe 1は、 A 0Dプロモーターと UR A 3遺伝子を含んでおり、 該プラスミ ド で形質転換された形質転換体を、 Ura要求を指標として選抜する手段を与 えることができる。  When yeast is used as a host cell, if it is necessary to secrete the expression product extracellularly, as described above, the gene for the signal sequence of the secretory protein derived from the host yeast is located at the N-terminus of the DNA encoding FAOD-P. And an expression system can be constructed so that the expression product is secreted into the periplasm. A method for constructing an expression vector suitable for expression in yeast is shown below, but this is only an example, and the present invention is not limited to the following expression vectors. For expression of the FAOD-P gene in yeast, an FAOD-P expression vector is constructed using plasmid pNOTel (Japanese Patent Application Laid-Open No. 5-344895;), which is a chromosome insertion type expression vector of id nii. The plasmid pNOTe1 contains the A0D promoter and the URA3 gene, and can provide a means for selecting a transformant transformed with the plasmid using Ura requirement as an index.
まず、 クローン化 F AOD— P c DNAを含む大腸菌発現ベクター p F AP 1を、 旦. SOLR/FAP 1 (FERM P— 15227) から得、 これを制限酵素 E c 0 R I及び X h 0 Iで消化することにより、 約 1.3 k bの FAOD— P c DNA断片を得、 精製した。 他方、 プラス ミ ド pNOTelを制限酵素 Notlにより消化した後、 ゥシ腸ホスファターゼ を用いて脱リン酸化処理し、 上記の、 F AOD— P c 0 了八断片と共に1) NA Blunting Kit (宝酒造株式会社) を用いて平滑化した。 これらを D NA ligation Kit (宝酒造株式会社) を用いて連結しプラスミ ド pNF Pを得た。 これを大腸菌に Hanahan法 (Hanahan, D, Techniques for Transformation of E . coli. In : D N A Cloning, vol I , G lover, D.M.(ed), ppl09-136, I RL Press, 1985) で形質転換し、 得られ た形質転換体から任意に 84株を選択してプラスミ ドを調製した。 プラス ミ ドを制限酵素 H indlllで処理し 2て挿入片の方向性を確認し、 F A 0 D— P c DN A断片が AO Dプロモータ一の下流に挿入されているプラスミ ド pNFP lを得た。 プラスミ ド pNFP 1の制限地図を第 10図に示す。 上記のプラスミ ド p NF P 1を用い、 U r a要求性の boidiniiTK 62株を形質転換した。形質転換体を U r aを含まない YNB培地で培養 し、 URA +型形質転換体から任意に選んだ株をメタノール 1.5%を含有 する基本培地で培養し、 F AOD— Pを生産する株を選択した。 First, an Escherichia coli expression vector pFAP1 containing the cloned F AOD-Pc DNA was obtained from SOLR / FAP1 (FERM P-15227), which was then digested with the restriction enzymes Ec0RI and Xh0I. By digestion, a FAOD-Pc DNA fragment of about 1.3 kb was obtained and purified. On the other hand, plus After digestion of mid pNOTel with the restriction enzyme Notl, it is dephosphorylated with cyst intestinal phosphatase and used together with the F AOD-Pc 0 Ryohachi fragment described above. 1) Using NA Blunting Kit (Takara Shuzo) And smoothed. These were ligated using DNA Ligation Kit (Takara Shuzo Co., Ltd.) to obtain plasmid pNFP. This was transformed into E. coli by the Hanahan method (Hanahan, D, Techniques for Transformation of E. coli. In: DNA Cloning, vol I, Glover, DM (ed), ppl09-136, IRL Press, 1985). Plasmid was prepared by arbitrarily selecting 84 strains from the obtained transformants. The plasmid was treated with the restriction enzyme Hindlll 2 to confirm the orientation of the insert, and a plasmid pNFFP in which the FA0D—PcDNA fragment was inserted downstream of the AOD promoter was obtained. . Figure 10 shows the restriction map of plasmid pNFP1. The plasmid pNFP1 described above was used to transform the Ura-requiring boidiniiTK62 strain. Transformants are cultured in UNB-free YNB medium, strains arbitrarily selected from URA + -type transformants are cultured in a basal medium containing 1.5% methanol, and strains that produce FAOD-P are selected. did.
さらに、 E. coli S OLR/F AP 1 (FERM P- 15227) に挿入されている F AOD— Pをコ一ドする DNAを適当な酵素 (例えば 制限酵素、 アルカリホスファターゼ、 ポリヌクレオチドキナーゼ、 DNA リガーゼ、 D N Aポリメラーゼなど) で処理することにより FAOD— P の酵素活性をコードする DN A断片を得、 これを適当なベクターに組み込 むことにより様々な宿主で F A OD— P活性を有するぺプチドを発現させ ることができ、 これらの F A OD—Pも本発明の範囲に含まれる。  In addition, DNA encoding FAOD-P inserted into E. coli S OLR / FAP1 (FERM P-15227) can be ligated to a suitable enzyme (eg, restriction enzyme, alkaline phosphatase, polynucleotide kinase, DNA ligase). , DNA polymerase, etc.) to obtain a DNA fragment encoding the enzymatic activity of FAOD-P, which is then inserted into an appropriate vector to produce a peptide having FAOD-P activity in various hosts. It can be expressed, and these FA OD-Ps are also included in the scope of the present invention.
発現ベクターによる宿主細胞の形質転換は既知であり、 Molecular C1 oning: A LABOLATORY MANUAL, Cold S ring Harbor Laboratory Pre ssに記載の方法で行うことができる。 例えば、 原核性宿主の場合は、 コン ピテン トセル作製法、 真核性宿主の場合は、 コンビテン トセル作製法、 リ チウム改変法、 哺乳動物細胞の場合はトランスフユクション法により行う ことができる。 Transformation of a host cell with an expression vector is known, and can be performed by the method described in Molecular Cloning: A Laboratories Manual, Cold Sling Harbor Laboratory Press. For example, for prokaryotic hosts, The method can be carried out by a method of producing a pitent cell, in the case of a eukaryotic host, by a method of producing a cell, by a lithium modification method, and in the case of a mammalian cell, by a transfusion method.
次いで、 得られた形質転換体を適当な培地に培養する。  Next, the obtained transformant is cultured in an appropriate medium.
該培地は、 炭素源 (例えばグルコース、 メタノール、 ガラク トース、 フ ルク トース等) 及び無機また有機窒素源 (例えば硫酸アンモニゥム、 塩化 アンモニゥム、 硝酸ナ卜リウム、 ぺプトン、 カザミノ酸等) を含有してい てよい。 所望により、 培地に他の栄養源 (例えば無機塩類 (塩化ナトリウ ム、 塩化力リウム) 、 ビタミン類 (例えばビタミン 、 抗生物質 (例 えばアンピシリン、 テトラサイクリン、 カナマイシン等)) を加えてもよ い。 哺乳動物細胞の培養には、 イーグル培地が適当である。  The medium contains a carbon source (eg, glucose, methanol, galactose, fructose, etc.) and an inorganic or organic nitrogen source (eg, ammonium sulfate, ammonium chloride, sodium nitrate, leptone, casamino acid, etc.). May be. If desired, other nutrients (eg, inorganic salts (sodium chloride, potassium chloride)) and vitamins (eg, vitamins, antibiotics (eg, ampicillin, tetracycline, kanamycin, etc.)) may be added to the medium. Eagle's medium is suitable for culturing animal cells.
宿主細胞が真核細胞であるとき、 本発明の FAOD— Pの製造に適した 培地は、 0.1〜5.0%、 好ましくは0.5〜2.0%のNH4C 1及び/ 又は 0.1〜5.0%、 好ましくは 1 %の酵母エキスを含有する、 メタノー ル 0.1〜5.0%、 好ましくは 1.5%を含有する基本培地である。 When the host cell is a eukaryotic cell, FAOD- medium suitable for production of P of the present invention is 0.1 to 5.0%, preferably 0.5 to 2.0% of the NH 4 C 1 and / or 0.1 to 5.0%, preferably A basal medium containing 0.1% to 5.0%, preferably 1.5%, of methanol containing 1% of yeast extract.
形質転換体の培養は、 通常、 pH5.0~8.0、 好ましくは pH 5.5〜 6.0、 25〜40°C (好ましくは 28°C)で 16〜96時間行えばよい。 生産された F A 0 D— Pが培養溶液、 培養濾液(上澄み)中に存在してい るときは、 培養物を濾過又は遠心分離する。 培養瀘液から、 FAOD—P を天然又は合成のタンパク質の精製、 単離に一般的に用いられる常法 (例 えば透析、 ゲル濾過、 抗 FAOD— Pモノクロナ一ル抗体を用いてのァフィ 二ティカラムクロマトグラフィー、 適当な吸着剤を用いてのカラムクロマ トグラフィー、 高速液体クロマ卜グラフィ一等) によって精製できる。 生 産された FAOD— Pが培養形質転換体のペリブラズム及び細胞質中に存 在するときは、 濾過や遠心分離によって細胞を集め、 それらの細胞壁及び /又は細胞膜を、 たとえば超音波及びノ又はリゾチーム処理によって、 破 壊して、 デブリス (細胞破砕物) を得る。 デブリスを適当な水溶液 (例え ば卜リス一塩酸緩衝液) に溶解させる。 この溶液から、 常法によって、 F A O D— Pを精製することができる。 The culture of the transformant may be carried out usually at pH 5.0 to 8.0, preferably at pH 5.5 to 6.0, at 25 to 40 ° C (preferably 28 ° C) for 16 to 96 hours. If the produced FA0D-P is present in the culture solution or culture filtrate (supernatant), filter or centrifuge the culture. From the culture filtrate, FAOD-P can be used to purify and isolate natural or synthetic proteins by conventional methods (eg, dialysis, gel filtration, affinity using anti-FAOD-P monoclonal antibodies). It can be purified by column chromatography, column chromatography using an appropriate adsorbent, high-performance liquid chromatography, etc.). When the produced FAOD-P is present in the periplasm and cytoplasm of the cultured transformant, the cells are collected by filtration or centrifugation, and their cell walls and And / or disrupting the cell membrane, eg, by ultrasound and lysozyme treatment, to obtain debris. Dissolve the debris in an appropriate aqueous solution (eg, Tris-HCl buffer). From this solution, FAOD-P can be purified by a conventional method.
形質転換体中で生産された F A O D— Pを再生 (リフォールディング) する必要があるときは、 これを常法によって行なうことができる。  When it is necessary to regenerate (refold) F AOD-P produced in the transformant, this can be performed by a conventional method.
本発明方法で得られる形質転換体を適当な培地で培養して得られる培養 物は F A O D— P活性を示すが、 このものを上記のごとく当業者既知の通 常の方法でさらに処理して酵素溶液等の処理物を調製することができる。 また、 所望により精製してもよい。 例えば、 培養物を遠心して F A O D— P産生一形質転換体を収穫し、 りん酸緩衝液に懸濁し、 音波処理等によつ て細胞を破壊する。 次いで、 上清を遠心分離することにより、 酵素標品を 得る。 さらに、 上清を透折し、 クロマトグラフィー等でさらに精製すれば 精製酵素が得られる。 次いで、 制限酵素処理ゃェキソヌクレアーゼ処理等 により、 酵素活性を有するフラグメントを得ることができる。  A culture obtained by culturing the transformant obtained by the method of the present invention in an appropriate medium exhibits FAOD-P activity, which is further treated by a usual method known to those skilled in the art as described above to obtain the enzyme. A processed product such as a solution can be prepared. Moreover, you may refine | purify as needed. For example, the culture is centrifuged to collect a FADPD-producing transformant, suspended in a phosphate buffer, and disrupted by sonication or the like. Then, the enzyme sample is obtained by centrifuging the supernatant. Furthermore, the supernatant is filtered and further purified by chromatography or the like to obtain a purified enzyme. Subsequently, a fragment having an enzymatic activity can be obtained by restriction enzyme treatment or exonuclease treatment.
上記の培養物、 その処理物 (精製酵素標品及び酵素活性を有するフラグ メ ントを含む) は、 F A O D— P酵素活性を有し、 アマドリ化合物の定量 分析に適しており、 例えば、 糖尿病の診断に有用である。 本発明により F A O D— Pをコ一ドする D N Aがクローニングされたので、 それに基づき、 通常の遺伝子組換え技術を用いて、 アミノ酸の付加、 欠失、 挿入、 置換等 により、 F A O D— P活性を保持している誘導体を得ることは当業者にと- て容易である。 故に、 そのような常套手段で得られる F A O D— Pの活性 な誘導体も本発明の範囲に包含されるものである。  The above cultures and their processed products (including purified enzyme preparations and fragments having enzyme activity) have FAOD-P enzyme activity and are suitable for quantitative analysis of Amadori compounds. Useful for The DNA encoding FAOD-P has been cloned according to the present invention. Based on the cloned DNA, FAOD-P activity is retained by adding, deleting, inserting, or substituting amino acids using ordinary genetic recombination techniques. It is easy for those skilled in the art to obtain such a derivative. Therefore, active derivatives of FAOD-P obtained by such conventional means are also included in the scope of the present invention.
既述のごとく、 本発明の形質転換体を培養して得られる培養物及びその 処理物は以下の反応式: R1 - C〇一 CH2 - NH— R2 + 02 + H20→ As described above, a culture obtained by culturing the transformant of the present invention and a processed product thereof are represented by the following reaction formula: R 1 -C〇1 CH 2 -NH— R 2 + 0 2 + H 2 0 →
R1— C〇一 CHO + R2-NH2 + H202 R 1 — C〇 CHO + R 2 -NH 2 + H 2 0 2
(式中、 R1はアルド一ス残基、 R2はアミノ酸、 タンパク質又はペプチド 残基を表す) (Wherein, R 1 represents an aldose residue, and R 2 represents an amino acid, protein or peptide residue)
で示されるアマドリ化合物の酸化還元反応を触媒する。 上記式において、 R1がー OH、 一 (CH2) n—、 又は一 [CH (OH) ] n—CH2OH (式 中、 nは 0— 6の整数)であり、 R2が— CHR3— [CONHR3]raCOO H (式中、 R3は 一アミノ酸側鎖残基、 mは 1— 480の整数を表す)で 示されるアマドリ化合物が基質と 1 5して好ましい。 中でも、 R3がリ ジン、 ポリ リジン、 パリン、 ァスパラギン等から選択されるアミノ酸の側鎖残基 であり、 また nが 5〜6、 mが 55以下である化合物が好ましい。 Catalyzes the oxidation-reduction reaction of the Amadori compound represented by In the above formula, R 1 gar OH, one (CH 2) n -, or one [CH (OH)] (wherein, n an integer from 0- 6) n -CH 2 OH is, R 2 is - Amadori compounds represented by CHR 3 — [CONHR 3 ] ra COO H (where R 3 is a residue of one amino acid side chain and m is an integer of 1 to 480) are preferred as 15 as a substrate. Among them, a compound in which R 3 is a side chain residue of an amino acid selected from lysine, polylysine, palin, asparagine and the like, and n is 5 to 6 and m is 55 or less is preferable.
本発明の分析法を行うには、 アマドリ化合物を含有すると考えられる試 料と本発明の F AOD-Pを発現する形質転換体の培養物又はその処理物 を、 水又は緩衝液中で接触させ、 酸素の消費量又は過酸化水素の発生量を 測定することにより、 試料中のアマドリ化合物を分析する。 本発明の分析 法は、 生体成分中の、 糖化タンパクの量及び Z又は糖化率の測定、 あるい はフルク トサミンの定量に基づいて行われる。  To carry out the analysis method of the present invention, a sample suspected of containing an Amadori compound is brought into contact with a culture of a transformant expressing FAOD-P of the present invention or a processed product thereof in water or a buffer. The Amadori compound in the sample is analyzed by measuring the amount of oxygen consumed or the amount of hydrogen peroxide generated. The analysis method of the present invention is carried out based on measurement of the amount of glycated protein and Z or glycation rate in a biological component, or quantification of fructosamine.
例えばアマドリ化合物を含有する緩衝液中の試料に、 培養物又はその処 理物の水又は緩衝液中懸濁液(溶液)を加える。 pH、 温度及び反応時間等 の反応条件は特に限定されるものでなく、 同様の酵素反応に通常用いられ る条件から適宜選択するとよい。 しかしながら、 pH4.0〜12.0、 好ましくは pH 7.0〜8.5であり、 より好ましくは p H約 7.5、 温度 25〜50°C、 好ましくは 25〜40°C、 より好ましくは 25°Cで反応さ せる。  For example, to a sample in a buffer containing an Amadori compound, a suspension (solution) of a culture or a processed product thereof in water or a buffer is added. The reaction conditions such as pH, temperature and reaction time are not particularly limited, and may be appropriately selected from the conditions usually used for similar enzyme reactions. However, it is reacted at pH 4.0 to 12.0, preferably pH 7.0 to 8.5, more preferably at a pH of about 7.5, at a temperature of 25 to 50 ° C, preferably at 25 to 40 ° C, more preferably at 25 ° C. .
本発明方法に用いる被検液としては、 アマドリ化合物を含有する任意の 試料溶液を用いることができ、 例えば、 血液 (全血、 血漿又は血清) 、 尿 等の生体由来の試料の外、 醤油等の食品が挙げられる。 The test solution used in the method of the present invention may be any solution containing an Amadori compound. A sample solution can be used, and examples thereof include foods such as blood (whole blood, plasma or serum), urine and the like, as well as soy sauce.
緩衝液としてはトリス一塩酸緩衝液等を用いる。 FAOD— P、 F AO D— Pを発現する形質転換体の培養物又はその処理物の使用量は、 終点分 析法においては通常、 0. 1単位 Zml以上、 好ましくは 1〜100単位 Zm 1である。  As a buffer, a Tris-monohydrochloride buffer or the like is used. The amount of culture of a transformant expressing FAOD-P or FAOD-P or a processed product thereof is generally 0.1 units or more, preferably 1 to 100 units, in end-point analysis. It is.
本発明の分析法では、 下記のいずれかのアマドリ化合物の定量法を用い る。  In the analysis method of the present invention, any of the following methods for quantifying an Amadori compound is used.
(1) 過酸化水素発生量に基づく方法  (1) Method based on the amount of hydrogen peroxide generated
当該技術分野で既知の過酸化水素の定量法、 例えば、 発色法、 過酸化水 素電極を用いる方法等で測定し、 過酸化水素及びアマドリ化合物の量に関 して作成した標準曲線と比較することにより、 試料中のアマドリ化合物を 定量する。 具体的には、 後述の力価の測定法に準じる。 ただし、 FAOD 一 P量は 1ュニッ トノ m 1 とし適当に希釈した試料を添加し、 生成する過 酸化水素量を測定する。 過酸化水素発色系としては、 4一ァミ ノアンチピ リ ン /フユノール系のかわりに 4—アミ ノアンチピリ ン ZN—ェチル一 N 一 (2—ヒ ドロキシ一 3—スルホプロピル) 一m— トルイジン, 4一アミ ノアンチピリ ン ZN, N—ジメチルァニリ ン, 4ーァミ ノアンチピリ ン/ N, N—ジェチルァニリ ン, MBTH/N, N—ジメチルァニリ ン, 4ーァ ミ ノアンチピリ ン/ 2, 4—ジクロロフヱノール等の組み合わせが可能で める。  Measured by a method known in the art for determining hydrogen peroxide, for example, a coloring method, a method using a hydrogen peroxide electrode, etc., and compared with a standard curve prepared for the amounts of hydrogen peroxide and Amadori compounds. As a result, the Amadori compound in the sample is quantified. Specifically, it is based on the titer measurement method described later. However, the amount of FAOD-1P is set to 1 kN, and an appropriately diluted sample is added, and the amount of generated hydrogen peroxide is measured. As the hydrogen peroxide coloring system, 4-aminoaminoantipyrine ZN-ethyl-1 N-1 (2-hydroxy-13-sulfopropyl) 1 m-toluidine, 4-1-1 instead of 4-aminoantipyrine / funol system Aminoantipyrine ZN, N-Dimethylaniline, 4-Aminoantipyrine / N, N-Jetylaniline, MBTH / N, N-Dimethylaniline, 4-Aminoantipyrine / 2, 4-Dichlorophenol, etc. It is possible.
(2) 酸素の消費量に基づく方法  (2) Method based on oxygen consumption
反応開始時の酸素量から反応終了時の酸素量を差し引いた値 (酸素消費 量) を測定し、 酸素消費量とアマドリ化合物の量に関して作成した標準曲 線と比較することにより、 試料中のアマドリ化合物を定量する。 具合的に は、 後述の力価の測定法に準じて行う。 但し用いる F A〇D— P量は 1ュ ニッ ト/ ^1とし、 適当に希釈した試料を添加して吸収される酸素量を求め る A value obtained by subtracting the amount of oxygen at the end of the reaction from the amount of oxygen at the start of the reaction (oxygen consumption) is measured, and is compared with the standard curve created for the amount of oxygen consumption and the amount of the Amadori compound to determine the amount of Amadori in the sample. Quantify compound. Specifically Is performed according to the titer measurement method described later. However, the amount of FA〇D-P used should be 1 unit / ^ 1, and the amount of oxygen absorbed by adding an appropriately diluted sample should be determined.
本発明方法は試料溶液をそのまま用いて行うこともできるが、 対象によつ ては、 あらかじめ糖が結合したバリン残基を遊離させてから行うことが好 ましい。  Although the method of the present invention can be carried out using a sample solution as it is, depending on the target, it is preferable to release the valine residue to which a sugar is bound beforehand.
そのような目的には、 タンパク質分解酵素を用いる場合 (酵素法) と、 塩酸等の化学物質を用いる場合(化学法)があるが、 前者が好ましい。 本発 明方法に用いることができるタンパク質分解酵素は、 当業者に既知であり、 トリプシン、 カルボキシぺプチダーゼ B、 パパイン、 アミノぺプチダ一ゼ、 キモ トリブシン、 サーモリ シン、 ズブシリシン、 プロティナ一ゼ 、 プロ ナーゼ等を挙げることができる。 酵素処理の方法も既知であり、 例えばプ 口テアーゼ処理は、 下記実施例に記載の方法で行うことができる。  For such purposes, there are cases where a protease is used (enzymatic method) and cases where a chemical substance such as hydrochloric acid is used (chemical method), the former being preferred. Proteolytic enzymes that can be used in the method of the present invention are known to those skilled in the art, and include trypsin, carboxypeptidase B, papain, aminopeptidase, chymotribsine, thermolysin, subsiricin, proteinase, and proteinase. And the like. Enzyme treatment methods are also known. For example, the protease treatment can be performed by the method described in the following Examples.
この様に、 本発明の F A O D - Pを発現する形質転換体の培養物又はそ の処理物は、 糖化タンパクに含まれるフルク トシルバリ ンに高い基質特異 性を有するものであることから、 血液試料中の糖化へモグロビンを測定す ることを含む、 糖尿病の診断などに有用である。 また、 フルク 卜シルリジ ンにも特異性を有することから、 糖化タンパクの測定にも有用である。 なお、 検体として血液試料 (全血、 血漿又は血清) を用いる場合、 採血 した試料をそのまま、 あるいは透折等の処理をした後用いる。  As described above, the culture of the transformant expressing the FAOD-P of the present invention or the processed product thereof has a high substrate specificity for fructosyl valin contained in the glycated protein. It is useful for the diagnosis of diabetes, including the measurement of glycated hemoglobin. In addition, since fructosyl lysine also has specificity, it is useful for measuring glycated proteins. When a blood sample (whole blood, plasma or serum) is used as the specimen, the collected blood sample is used as it is or after being subjected to a treatment such as folding.
さらに、 本発明方法に用いる F A O D— Pを発現する形質転換体の培養 物又はその処理物、 あるいはパーォキシダーゼ等の酵素は、 溶液状態で用 いてもよいが、 適当な固体支持体に固定化してもよい。 例えば、 ビーズに 固定化した酵素をカラムに充填し、 自動化装置に組み込むことにより、 臨 床検査など、 多数の検体の日常的な分析を効率的に行うことができる。 し かも、 固定化酵素は再使用が可能であることから、 経済効率の点でも好ま しい。 Furthermore, the culture of the transformant expressing FAOD-P used in the method of the present invention or a processed product thereof, or an enzyme such as peroxidase may be used in the form of a solution, but may be immobilized on a suitable solid support. You may. For example, by packing an enzyme immobilized on beads into a column and incorporating it into an automated device, routine analysis of a large number of samples, such as clinical tests, can be performed efficiently. I Alternatively, the immobilized enzyme can be reused, which is preferable in terms of economic efficiency.
さらには、 酵素と発色色素とを適宜組み合わせ、 臨床分析のみならず、 食品分析にも有用なアマドリ化合物の分析のためのキッ トを得ることがで さる。  Furthermore, by appropriately combining enzymes and coloring pigments, it is possible to obtain a kit for the analysis of Amadori compounds useful not only for clinical analysis but also for food analysis.
酵素の固定化は当該技術分野で既知の方法により行うことができる。 例 えば、 担体結合法、 架橋化法、 包括法、 複合法等によって行う。 担体とし ては、 高分子ゲル、 マイクロカプセル、 ァガロース、 アルギン酸、 カラギ —ナンなどがある。 結合は共有結合、 イオン結合、 物理吸着法、 生化学的 親和力を利用し、 当業者既知の方法で行う。  Immobilization of the enzyme can be performed by a method known in the art. For example, it is carried out by a carrier binding method, a cross-linking method, an inclusive method, a complex method, or the like. Carriers include polymer gels, microcapsules, agarose, alginic acid, and carrageenan. Coupling is performed by a method known to those skilled in the art, utilizing covalent bonding, ionic bonding, physical adsorption, and biochemical affinity.
固定化酵素を用いる場合、 分析はカラム又はバッチ方式のいずれでもよ い。 上記のごとく、 固定化酵素は、 血液試料中の糖化タンパクの日常的な 分析 (臨床検査) に特に有用である。 臨床検査が糖尿病診断を目的とする 場合、 診断の基準としては、 結果を糖化タンパク濃度として表すか、 試料 中の全夕ンパク質濃度に対する糖化タンパク質の濃度の比率で表される。 全タンパク質濃度は、 通常の方法 (2 8 0 nmの吸光度、 Lowry法あるいは、 アルブミンの自然蛍光など)で測定することができる。  If immobilized enzymes are used, the analysis can be either column or batch. As noted above, immobilized enzymes are particularly useful for routine analysis (glycos) of glycated proteins in blood samples. When the laboratory test is aimed at diagnosing diabetes, the criteria for diagnosis are to express the result as glycated protein concentration or the ratio of glycated protein concentration to total protein concentration in the sample. The total protein concentration can be measured by a conventional method (eg, absorbance at 280 nm, Lowry method, or natural fluorescence of albumin).
本発明のアマドリ化合物の定量のための試薬は、 本発明の F A O D— Pを発現する形質転換体の培養物又はその処理物、 及び好ましくは p H 7 . 5 - 8 . 5 . より好ましくは p H 7 . 5の緩衝液からなる。 該培養物又はそ の処理物が固定化されている場合、 固体支持体は高分子ゲルなどから選択 され、 好ましくはアルギン酸である。  The reagent for quantifying the Amadori compound of the present invention is a culture of a transformant expressing FAOD-P of the present invention or a processed product thereof, and preferably has a pH of 7.5-8.5. Consists of H7.5 buffer. When the culture or its processed product is immobilized, the solid support is selected from a polymer gel or the like, and is preferably alginic acid.
試薬中の培養物又はその処理物の量は、 終点分析を行う場合、 試料あた り、 通常;!〜 1 0 0単位 Zml、 バッファ一はトリス一塩酸緩衝液 (p H 7 . δ ) が好ましい。 過酸化水素の生成量に基づいてアマドリ化合物を定量する場合、 発色系 としては、 上記の各種の組み合わせを利用することが可能である。 When performing end-point analysis, the amount of culture or processed material in the reagent is usually per sample; ~ 100 units Zml, and the buffer is preferably a Tris-monohydrochloride buffer (pH 7.δ). When quantifying the Amadori compound based on the amount of hydrogen peroxide generated, various combinations of the above can be used as the color developing system.
本発明のアマドリ化合物の分析試薬と、 適当な発色剤ならびに比較のた めの色基準あるいは標準物質を組み合わせてキッ 卜とすることもできる。 そのようなキッ トは、 予備的な診断、 検査に有用であると考えられる。 実施例  A kit can also be prepared by combining the Amadori compound analysis reagent of the present invention with an appropriate color former and a color standard or standard substance for comparison. Such a kit would be useful for preliminary diagnosis and testing. Example
次下に実施例を挙げて本発明を詳しく説明するが、 これらは本発明を制 限するものではない。 以下の実施例において用いたプラスミ ド類、 様々な 制限酵素や T 4 DN Aリガーゼ、 その他の酵素類は、 市販品から入手し、 供給者の指示に従って使用した。 また、 DNAのクローニング、 各プラス ミ ドの構築、 宿主の形質転換、 形質転換体の培養及び培養物からの酵素の 回収は、 当業者既知の方法、 あるいは文献記載の方法に準じて行なった。 また、 酵素活性は以下の力価の測定法に従って測定した。  Hereinafter, the present invention will be described in detail with reference to examples, but these examples do not limit the present invention. Plasmids, various restriction enzymes, T4 DNA ligase, and other enzymes used in the following examples were obtained from commercial products and used according to the supplier's instructions. In addition, DNA cloning, construction of each plasmid, transformation of host, culture of the transformant, and recovery of the enzyme from the culture were performed according to methods known to those skilled in the art or according to methods described in the literature. The enzyme activity was measured according to the following titer measurement method.
力価測定法 Titration method
(1) 生成する過酸化水素を比色法により測定する方法。  (1) A method of measuring the generated hydrogen peroxide by a colorimetric method.
A.速度法  A. Speed method
10 OmM FV溶液はあらかじめ得られた FVを蒸留水で溶解するこ とによって調製した。 45mM 4—ァミノアンチピリン、 60ユニッ ト Z m 1パーォキシダーゼ溶液、 及び 6 OmM フヱノール溶液それぞれ 10 0 1と、 0.1M トリス一塩酸緩衝液 (pH7.5) lm】、 及び酵素 溶液 50 】を混合し、 全量を蒸留水で 3. Om 1 とする。 25°Cで平衡 化した後、 10 OmM F V溶液 50 1を添加し、 505 nmにおける 吸光度を経時的に測定した。 生成するキノ ン色素の分子吸光係数 (5. 1 6 1 O'M-'cm-1) から、 1分間に生成する過酸化水素のマイクロモル を算出し、 この数字を酵素活性単位とする。 B.終末法 A 10 OmM FV solution was prepared by dissolving a previously obtained FV with distilled water. 45 mM 4-aminoantipyrine, 60 units Zm1 peroxidase solution, 100 mM each of 6 OmM phenol solution, 0.1 M Tris-monohydrochloride buffer (pH 7.5) lm], and 50% enzyme solution Mix and make up to 3. Om 1 with distilled water. After equilibration at 25 ° C, 501 of a 10 OmM FV solution was added, and the absorbance at 505 nm was measured over time. From the molecular extinction coefficient (5.161 O'M-'cm- 1 ) of the generated quinone dye, calculate the micromol of hydrogen peroxide generated in one minute, and use this number as the enzyme activity unit. B. terminal law
上記 A法と同様に処理し、 基質添加後、 20分間 25°Cでインキュベー 卜した後の 505 nmにおける吸光度を測定し、 別にあらかじめ標準過酸 化水素溶液を用いて作成した検量線から生成した過酸化水素量を算出する ことにより、 酵素活性を測定する。  After treating in the same manner as in Method A above, adding the substrate, incubating at 25 ° C for 20 minutes, measuring the absorbance at 505 nm, and separately generating a standard curve prepared using a standard hydrogen peroxide solution in advance. Enzyme activity is measured by calculating the amount of hydrogen peroxide.
(2) 酵素反応による酸素吸収を測定する方法  (2) Method for measuring oxygen absorption by enzyme reaction
0. 1M トリスー塩酸緩衝液 lm 1 と酵素溶液 50 u 1を混合し、 蒸留 水で全量を 3.0m 1とし、 ランク ブラザーズ社の酸素電極のセルに入れ る。 25°Cで攪拌し、 溶存酸素と温度を平衡化した後、 50mM F V 1 00 1を添加し、 酸素吸収を記録計で連続的に計測し、 初速度を得る。 標準曲線から 1分間に吸収された酸素量を求め、 これを酵素単位とする。 実施例 1 FAOD— Pをコードする DNAのクローニング  0.1 lm 1 of Tris-HCl buffer and 50 u1 of the enzyme solution are mixed, and the total volume is adjusted to 3.0 ml with distilled water. The mixture is placed in the oxygen electrode cell of Rank Brothers. After stirring at 25 ° C to equilibrate the dissolved oxygen with the temperature, 50 mM FV1001 is added, and the oxygen absorption is continuously measured with a recorder to obtain the initial velocity. Calculate the amount of oxygen absorbed per minute from the standard curve, and use this as the enzyme unit. Example 1 Cloning of DNA encoding FAOD-P
1. ぺニシリウム ·ヤンシネルム菌株 S— 3413 (Penicillium janthi nellum S- 3413; FERM BP - 5475) の F A 0 D— Pの部分アミ ノ酸配列の決 定 1. Determination of the partial amino acid sequence of F A 0D-P of Penicillium janthinellum S-3413 (FERM BP-5475)
1) P. janthinellum S-3413 (FERM BP- 5475)の培養及び F A 0 D— P の精製  1) Culture of P. janthinellum S-3413 (FERM BP-5475) and purification of F A 0 D— P
P.ヤンシネルム菌株 S- 3413 (FERM BP- 5475) を FZL (フルク トシルー N。一 Z—リジン) 0.5%、 グルコース 1.0%、 リ ン酸二カリウム 0. 1%、 リン酸一ナ トリウム 0.1 %、 硫酸マグネシウム 0.05%、 塩化 カルシウム 0.01%, イース トエキス 0.2%を含有した培地 (pH6. 0)10 Lに植菌し、 ジャーファーメンターを用いて通気量 2 L/分、 攢 拌速度 40 Orpnの条件で 28°C、 24時間攪拌培養した。 培養物は瀘過 して集めた。  P. Jansinerum strain S-3413 (FERM BP-5475) was transformed from FZL (fructosyl-N.-Z-lysine) 0.5%, glucose 1.0%, dipotassium phosphate 0.1%, sodium phosphate monobasic 0.1%, Inoculate 10 L of a medium (pH 6.0) containing 0.05% of magnesium sulfate, 0.01% of calcium chloride, and 0.2% of yeast extract, and use a jar fermenter to aerate at a rate of 2 L / min and a stirring speed of 40 Orpn. At 28 ° C for 24 hours. Cultures were collected by filtration.
菌糸体 270 g (湿重量) を、 の0丁丁を含む、 0.1 Mトリス 一塩酸緩衝液 (pH 7.5)80 Omlに懸濁し、 ダイノ · ミルにより菌糸体 を破砕した。 破砕液を 9, 50 Orpmで 20分間遠心分離し、 得られた液を 粗酵素液とし、 以下の方法で精製した。 Mycelium 270 g (wet weight), 0.1 M Tris The suspension was suspended in 80 Oml of a monohydrochloric acid buffer (pH 7.5), and the mycelium was disrupted with a Dino mill. The crushed liquid was centrifuged at 9,50 Orpm for 20 minutes, and the obtained liquid was used as a crude enzyme solution and purified by the following method.
粗酵素液に 40%飽和になるように硫酸アンモニゥム (以下、 硫安と略 す) を加え、 攪拌し、 12.00 Orpmで 10分間遠心分離した。 得られた 上清に 75 %飽和になるように硫安を加え、 撹拌し、 12, 000卬 mで 1 0分間遠心分離した。 沈殿を 2mMの DTTを含有する 5 OmM 卜リス 一塩酸緩衝液 (pH7.5) (以下、 緩衝液 Aと略す) に溶解した。 その 溶液に硫安 40%を含む緩衝液 Aを等量加え、 次いで、 約 20 Oralのプチ ルートヨパール (butyl- TOYO PEARL) 樹脂を加え、 穏やかに撹拌 した。 同緩衝液で洗浄後、 緩衝液 Aを用い、 バッチ法で溶出した。 溶出液 を硫安濃縮し、 25%飽和硫安を含む緩衝液 Aで平衡化したフユ二ルー ト ョパール (pheny卜 TO YOP E AR L) カラムに吸着した。 同緩衝液に て洗浄した後、 硫安濃度 25— 0%飽和の直線勾配で溶出した。 活性画分 を集め、 硫安濃縮後、 40%飽和硫安を緩衝液 Aで平衡化したプチルー ト ョパールカラムに吸着した。 同緩衝液にて洗浄した後、 硫安濃度 40— 0 %飽和の直線濃度勾配にて溶出した。 活性画分を統合し、 緩衝液 Aで平衡 ィ匕した DE AE—トヨパールカラムに供した。 活性画分は同緩衝液による 洗浄画分に認められたので、 これを集め、 硫安濃縮した。 続いて得られた 酵素溶液を 0. 1M N a Cl、 2mM 0丁丁を含む0.1Mトリスー塩酸緩 衝液 (pH7.5) にて平衡化したセファクリル S— 300カラムにより ゲル瀘過を行い、 70〜100ュニッ トの精製酵素を得た。  Ammonium sulfate (hereinafter abbreviated as ammonium sulfate) was added to the crude enzyme solution so as to be 40% saturated, stirred, and centrifuged at 12.00 Orpm for 10 minutes. Ammonium sulfate was added to the obtained supernatant to 75% saturation, stirred, and centrifuged at 12,000 で m for 10 minutes. The precipitate was dissolved in 5 OmM Tris monohydrochloride buffer (pH 7.5) containing 2 mM DTT (hereinafter abbreviated as buffer A). An equal volume of buffer A containing 40% ammonium sulfate was added to the solution, and then about 20 Oral of butyl-TOYO PEARL resin was added, followed by gentle stirring. After washing with the same buffer, elution was carried out with the buffer A using the batch method. The eluate was concentrated with ammonium sulfate, and adsorbed on a FUJI TORTO YOP EARL column equilibrated with buffer A containing 25% saturated ammonium sulfate. After washing with the same buffer, elution was performed with a linear gradient of ammonium sulfate concentration of 25-0% saturation. The active fractions were collected, concentrated with ammonium sulfate, and adsorbed on a butyl toe pearl column equilibrated with buffer A with 40% saturated ammonium sulfate. After washing with the same buffer, elution was carried out with a linear concentration gradient of ammonium sulfate concentration of 40-0% saturation. The active fractions were combined and applied to a DE AE-Toyopearl column equilibrated with buffer A. The active fraction was found in the fraction washed with the same buffer, which was collected and concentrated with ammonium sulfate. Subsequently, the obtained enzyme solution was subjected to gel filtration using a Sephacryl S-300 column equilibrated with a 0.1 M Tris-HCl buffer solution (pH 7.5) containing 0.1 M NaCl and 2 mM 0-chome. 100 units of purified enzyme were obtained.
得られた精製酵素標品を SD S— PAGE (ドデシル硫酸ナトリウム ' ポリアクリルアミ ドゲル電気泳動) において、 標準タンパクとしてホスホ リラーゼ B、 牛血清アルブミ ン、 オボアルブミ ン、 カルボニックアンヒ ド ラーゼ、 大豆卜リブシンインヒビターを用い、 デービスの方法に従って分 子量を測定した。 即ち、 10%ゲルを用いて、 40mAで 3時間泳動し、 クーマシープリ リアン卜ブル一 G— 250でタンパク染色を行った。 分子 量既知の数種のタンパクについて同様に泳動し、 検量線から分子量を求め た結果、 サブュニッ 卜の分子量は約 48, 700ダルトンであることが示 された (第 6図) 。 The obtained purified enzyme preparation was subjected to SDS-PAGE (sodium dodecyl sulfate 'polyacrylamide gel electrophoresis) to use phosphorylase B, bovine serum albumin, ovalbumin, and carbonic anhydride as standard proteins. The molecular weight was measured using the enzyme and soybean tribune inhibitor according to the method of Davis. That is, using a 10% gel, electrophoresis was performed at 40 mA for 3 hours, and protein staining was performed with Coomassie Prilian Rebel G-250. The electrophoresis of several proteins of known molecular weight was carried out in the same manner, and the molecular weight was determined from the calibration curve. The result showed that the molecular weight of the subnet was about 48,700 daltons (Fig. 6).
また、 スーパ一デックス 200 p gによるゲルろ過による分子量測定で は、 第 7図の検量線図から明らかなように、 約 38, 700ダル卜ンであつ た。  In addition, the molecular weight measurement by gel filtration using 200 pg of Superdex showed a value of about 38,700 daltons, as is clear from the calibration curve shown in FIG.
2) 部分アミノ酸配列の決定  2) Determination of partial amino acid sequence
上記の方法で精製した酵素標品を V 8プロテアーゼ (シグマ社製) によ り断片化し、 クリーブランド法 [D. . Cleaveland, S.G.Fisher, M. W. Kir schner and U. K. Laemnili, J, Biol, Chem. , 252, 1102 (1977)3 によりさ らに断片化した。 次いで、 PVDF (ポリビニリデン フルオリ ド、 ミ リ ポア社製、 商品名, ィモピロン一P SQ) 膜にトランスファ一 (14 Vで —晚 (12時間) ) し、 プロティンシーケンサー 476 A (アプライ ドバ ィォシステムズ社) を用い、 エドマン分解法によりアミノ酸配列を決定し た。 その結果、 N—末端及び内部ペプチドの 2断片からそれぞれ、 配列番 号 2及び 3に示す 14及び 20残基のァミノ酸配列が決定された。  The enzyme preparation purified by the above method was fragmented with V8 protease (manufactured by Sigma) and fragmented by the Cleveland method [D. Cleaveland, SGFisher, MW Kirschner and UK Laemnili, J, Biol, Chem., 252 , 1102 (1977) 3. Next, the PVDF (polyvinylidene fluoride, manufactured by Millipore, trade name, Imopiron-P SQ) is transferred to the membrane (at 14 V— 晚 (12 hours)), and the protein sequencer 476A (Applied Biosystems) Was used to determine the amino acid sequence by the Edman degradation method. As a result, the amino acid sequences of 14 and 20 residues shown in SEQ ID NOs: 2 and 3 were determined from the two fragments of the N-terminal and internal peptides, respectively.
2. RT— P CRによる部分 c DNA断片の增幅  2. Width of partial cDNA fragment by RT-PCR
1) オリゴヌクレオチドプライマ一の調製  1) Preparation of oligonucleotide primer
上記 1. 2) で得たアミノ酸配列から推定される塩基配列を基に、 P C R (ポリメラーゼチェーン反応) に用いるためのプライマーを、 第 1図に 示すように設計した。 このプライマ一の設計に際して、 ぺニシリウ厶属の コ ドン使用率を考慮に入れ、 またサブクローニングを容易にするために、 プライマーの端に BamH I認識配列を付加した。 これらプライマー 1及び 2の塩基配列をそれぞれ、 配列番号 4及び 5に示す。 なお、 プライマー 2 は、 プライマー 1が付着する DNAに相補な DNAに付着するよう、 第 1 図に記載の配列に基づき、 その C末端側から合成されている。 Based on the nucleotide sequence deduced from the amino acid sequence obtained in 1.2) above, primers for use in PCR (polymerase chain reaction) were designed as shown in FIG. In designing this primer, the codon usage of Penicillium was taken into consideration, and in order to facilitate subcloning, A BamHI recognition sequence was added to the end of the primer. The nucleotide sequences of these primers 1 and 2 are shown in SEQ ID NOs: 4 and 5, respectively. Primer 2 is synthesized from the C-terminal side based on the sequence shown in FIG. 1 so as to attach to DNA complementary to DNA to which primer 1 attaches.
2 ) totalRNAの調製  2) Preparation of total RNA
上記 1. 1 ) の方法で培養した P. janthinelluro S-3413株の菌糸体 1 g からグァニジン/フユノール/クロ口ホルム法(Chomczynski, P. and Sacc hi, N. (1987) Single-step method of RNA isolation by acid guanidini um thiocyanate - PhOiト chloroform extraction, Anal. _Biochem. 162, 156 -159) に従って、 totalRNA 5mgを得た。  From 1 g of the mycelium of P. janthinelluro S-3413 cultured by the method described in 1.1) above, the guanidine / fuyunol / cloguchi-form method (Chomczynski, P. and Sacc hi, N. (1987) Single-step method of According to RNA isolation by acid guanidini um thiocyanate-PhOi chloroform extraction, Anal. _Biochem. 162, 156-159), 5 mg of total RNA was obtained.
3 ) RT- P CR  3) RT-PCR
上記 1. 2 ) で設計したプライマーと、 2. 2) で調製した totalRN Aを用い、 以下の手順で逆転写ポリメラーゼチューン反応 (R T— P C R) を行った。 a) totalRNA (5 ^g/^l) 2 1に滅菌水 3 6 1を加 え、 6 5°C、 5分加温した後、 氷上で急冷する。  Using the primer designed in 1.2) above and the total RNA prepared in 2.2), a reverse transcription polymerase tune reaction (RT-PCR) was performed according to the following procedure. a) Add sterile water 361 to total RNA (5 ^ g / ^ l) 21, heat at 65 ° C for 5 minutes, and quench on ice.
b) a ) の溶液に以下の溶液を加える。  b) Add the following solution to the solution of a).
5 X buffer 20 ul  5 X buffer 20 ul
d NT Pmix (各 2 OmM) 5 j l  d NT Pmix (2 OmM each) 5 j l
RNase inhibitor ( 1 1 5 U/ml) 2 ju l  RNase inhibitor (1 1 5 U / ml) 2 ju l
Oligo dt (0. 4 2 fig/fil 2 A nl  Oligo dt (0.4.2 fig / fil 2 A nl
R Tase ( L V) (2 0 0 UZ/ 1) 1 l  R Tase (L V) (2 0 0 UZ / 1) 1 l
D TT (0. 1 M) 1 0〃1  D TT (0.1 M) 1 0〃1
c ) a ) + b ) の溶液を 2 5°C、 1 0分放置した後、 4 2 °Cで一夜反応 させる。 そして、 9 5 で 5分加熱した後、 氷上で急冷すると c DNAが 得られる。 d) c) で合成した c DNA2 nに以下の溶液を加える。 c) Leave the solution of a) + b) at 25 ° C for 10 minutes, and react at 42 ° C overnight. Then, after heating at 95 for 5 minutes, quench on ice to obtain cDNA. d) Add the following solution to cDNA2n synthesized in c).
10 P C R buffer 2.5 / 1  10 P C R buffer 2.5 / 1
d NTP m i x 1.8 / 1  d NTP mi x 1.8 / 1
プラィマー 1 1 1  Primer 1 1 1
プライマー 2 1 i 1  Primer 2 1 i 1
減菌水 16.575 1 e) d) の溶液を 95 °Cで 5分加熱した後、 氷上で急冷した後、 Taq DNA Polymerase (5 U/m】) を 0. 125〃 1加える。  Sterile water 16.575 1 e) Heat the solution of d) at 95 ° C for 5 minutes, cool rapidly on ice, and add 0.125〃 1 of Taq DNA Polymerase (5 U / m).
f ) e) にミネラルオイルを重層して以下の条件で P CR反応を行う。  f) Overlay mineral oil on e) and perform PCR under the following conditions.
(95。C, 1分; 62°C, 1分; 72°C, 2分) からなる一連の処 理を 30サイクル行った後、 72°Cで 3分処理する。  (95. C, 1 minute; 62 ° C, 1 minute; 72 ° C, 2 minutes) After a series of 30 cycles, treat at 72 ° C for 3 minutes.
g) 次いで、 ァガロースゲル電気泳動にかける。  g) Then, run on agarose gel electrophoresis.
その結果、 プライマー 1と 2を用いたとき、 第 3図に示すように約 69 0 bpの断片の增幅が確認できた。 第 3図は、 ァガロース電気泳動の結果を 示す模写図である。 図中、 レーン 1は 0X 174ZHincII (マーカー)、 レーン 2はプライマ一 1及び 2を用いた時の P CR産物の電気泳動パター ンである。 P CRにより增幅した断片のサイズを判断するためにマーカ一 を用いて泳動を行った。  As a result, when primers 1 and 2 were used, a fragment width of about 690 bp was confirmed as shown in FIG. FIG. 3 is a mimetic diagram showing the results of agarose electrophoresis. In the figure, lane 1 shows 0X174ZHincII (marker), and lane 2 shows the electrophoresis pattern of the PCR product when primers 1 and 2 were used. Electrophoresis was performed using a marker to determine the size of the fragment amplified by PCR.
3. P CR断片のサブクロ一ニング  3. Sub-cloning of PCR fragment
上記 2. で得た約 690 bpの P CR断片をァガロースゲルから切り出し、 DN A回収用フィルター付遠心チューブ (孔径 0.22 μπι、 宝酒造社製 Code No.9040) を用いて、 10 , 000 rpm. 4°C. 1時間の遠心の 後、 エタノール沈殿を行うことで精製した。  The PCR fragment of about 690 bp obtained in step 2 above was cut out from the agarose gel, and the DNA was collected at 10,000 rpm.4 ° using a centrifuge tube with a filter for DNA recovery (pore size 0.22 μπι, Takara Shuzo Co., Code No. 9040). C. After centrifugation for 1 hour, purification was performed by ethanol precipitation.
次いで、 P CR断片 (1 1) 、 K buffer (1 1) 、 BaniH I ( 1 D 及び減菌水 (7 //1) を混合し、 37 °Cで 4時間の消化を行った。 得られ た BamH I消化断片を、 同じく BamBIで消化した pBluescreipt II SK+ (S TRATAGENE社製: 1 a cプロモーターを有する大腸菌用発現べクタ一) に、 ライゲーシヨ ン (16°C · 30分) し、 得られたライゲーショ ン混合物を 用いて大腸菌 J Ml 09株を形質転換した。 形質転換は、 TaKaR a Ligation Kit Ver. 2.0 (宝酒造) を使用し、 Hanahan法 (前掲) に 従って行った。 Next, the PCR fragment (11), K buffer (11), BaniHI (1D and sterilized water (7 // 1)) were mixed and digested at 37 ° C for 4 hours. The BamHI digested fragment was ligated (16 ° C for 30 minutes) to pBluescreipt II SK + (manufactured by STRATAGENE: an expression vector for Escherichia coli having a 1 ac promoter) also digested with BamBI. The resulting ligation mixture was used to transform E. coli JMl09 strain. Transformation was performed according to the Hanahan method (supra) using TaKaRa Ligation Kit Ver. 2.0 (Takara Shuzo).
その結果、 第 4図に示すように、 約 69 Obpの P CR断片が pBluescrei pt II SK+の BaniH Iサイ 卜に挿入されたプラスミ ド p F P Pを得た。 第 4図において、 レーン 1は; I ZEcoT 141 (マーカ一) を、 レーン 2は プラスミ ド p F P Pの BamH I消化物を表す。 その塩基配列をジデォキシ 法により決定したところ、 FAOD— Pの cDNAの部分配列であること が確認された。  As a result, as shown in FIG. 4, a plasmid pFPP in which a PCR fragment of about 69 Obp was inserted into the BaniHI site of pBluescript II SK + was obtained. In FIG. 4, lane 1 represents: I ZEcoT 141 (marker 1) and lane 2 represents a BamHI digest of plasmid pFPP. When its nucleotide sequence was determined by the dideoxy method, it was confirmed to be a partial sequence of FAOD-P cDNA.
4. cDNAライブラリーの作成及びプラークハイプリダイゼ一ション 上記の 2. 2) の方法で得た total RNAからmRNA Purification Kit (ファルマンァ社) を用いて mRNAを得た。 該 mRNA 5 gか ら、 ZAP- cDNA Synthesis Kit (STRATAGENE社製) を用いて cDN Aライブラリーを作成した。 即ち mRNA 5 gから逆転写酵素を用いて cDNAを合成し、 λ ΖΑΡ I Iベクター (STRATAGENE社製) に連結し、 Gigapack III Gold (STEATAGENE社製) を用いてインビトロでパッケージ ングして c DNAライブラリ一を得た(条件等はマニュアルに従った。) 次いで、 c DN Aのタイターを測定した結果、 1.8 X 105piu/〃gベ クタ一であった。 4. Preparation of cDNA Library and Plaque Hybridization mRNA was obtained from total RNA obtained by the method of 2.2) above using mRNA Purification Kit (Falman). From 5 g of the mRNA, a cDNA library was prepared using a ZAP-cDNA Synthesis Kit (manufactured by STRATAGENE). That is, cDNA is synthesized from 5 g of mRNA using reverse transcriptase, ligated to λII vector (manufactured by STRATAGENE), packaged in vitro using Gigapack III Gold (manufactured by STEATAGENE), and in vitro cloned into a cDNA library. (The conditions and the like were in accordance with the manual.) Then, the titer of cDNA was measured, and as a result, it was 1.8 × 10 5 piu / 〃g vector.
このファージライブラリ一を大腸菌 X L I - Blue MR F株に感染さ せ、 37°Cで 12時間培養することによりプラークを形成させた。 次いで、 3.でサブクローニングした P CR断片を32 Pで標識してプローブとして 用い、 プラークハイプリダイゼーションによりスクリ一ニングした。 即ち、 得られたプラークをニ トロセルロースフィルターに転写し、 アル力リ変性 後、 42°Cで32 Pで標識したプローブと 12時間ハイプリダイズさせた。 洗浄後、 X線フィルムに 12時間露光させた。 その結果、 約 184, 00 0プラークから 5つの陽性プラークを得た。 This phage library was infected with E. coli XLI-Blue MRF strain, and cultured at 37 ° C for 12 hours to form plaque. Next, the PCR fragment subcloned in step 3 was labeled with 32 P and used as a probe. And screened by plaque hybridization. That is, the obtained plaque was transferred to a nitrocellulose filter, and after denaturation, hybridized with a probe labeled with 32 P at 42 ° C. for 12 hours. After washing, X-ray film was exposed for 12 hours. As a result, five positive plaques were obtained from about 184,000 plaques.
5. F A〇D— Pをコードする DNAのサブクローニング 5. Subcloning of DNA encoding F A〇D—P
FAOD— Pをコードする DN Aのプラスミ ドへのサブクローニングは インビト口切除法で行った。 5個の陽性プラークから ExAssistヘルパーファ ージ (STRATAGENE社製) を用いて添付のマニュアルに従い、 大腸菌 S 0 L Rに形質転換した。 得られた形質転換体からプラスミ ドを抽出し塩基配列 を決定した。 その結果、 F AOD— Pの N末端アミノ酸配列に相当する塩 基配列を有する約 1.5 k bの DNA断片が挿入されたプラスミ ド p FA P 1を保持するクローンを 1株得た (大腸菌形質転換体 (且. ^I SOL RZFAP 1))。 この p FA P 1の制限地図を第 2図に示す。 該クローン の塩基配列及び推定のァミノ酸配列を配列番号 1に示す。  Subcloning of DNA encoding FAOD-P into plasmid was performed by in vivo excision. Escherichia coli S0LR was transformed from five positive plaques using ExAssist helper phage (manufactured by STRATAGENE) according to the attached manual. Plasmid was extracted from the obtained transformant and the nucleotide sequence was determined. As a result, one clone containing the plasmid pFAP1 into which an approximately 1.5 kb DNA fragment having a nucleotide sequence corresponding to the N-terminal amino acid sequence of FAOD-P was inserted (E. coli transformant) was obtained. (And. ^ I SOL RZFAP 1)). FIG. 2 shows the restriction map of pFAP1. The nucleotide sequence and deduced amino acid sequence of this clone are shown in SEQ ID NO: 1.
実施例 2 大腸菌形質転換体 (E.coli SOLRノ FAP 1) の FAOD 一 Pの活性 Example 2 Activity of FAOD-1P of Escherichia coli transformant (E. coli SOLR-NO FAP 1)
実施例 1で形質転換した大腸菌 ( .^l SOLR/FAP 1) を 0. 1 mM I P TG (ィソプロピル一 /?— D—チォガラク トビラノシッ ド)を 含む LB培地 (1% Bacto-Trypton, 0.5% Bacto- yeast extract, 1% Na CI, pH7.2)5 Omlで培養した。 I PTGは大腸菌を接種した後、 2時間後 に加えた。  Escherichia coli (. ^ L SOLR / FAP 1) transformed in Example 1 was transformed into LB medium (1% Bacto-Trypton, 0.5% Bacto -Yeast extract, 1% NaCI, pH7.2) 5 Oml. IPTG was added 2 hours after inoculation with E. coli.
培養後、 遠心分離 (10, 000rpm、 4°C、 1分) により集菌し、 ペレツ トを 0.85%KC 1で洗浄し、 0. 1M トリス—塩酸緩衝液 (pH 7.5)に 懸濁した。 MINI- BEAT BEATER (ジャパンラムダ社) で菌体を 3.800 rpm. 30秒で氷冷をはさみながら 6回ビーズ破碎し、 遠心分離 ( 1, 400卬 π 4°C、 5分) して無細胞抽出液を調製した。 次いで、 前記の力価測定法の A. 速度法により F AOD— P活性を測定した。 対照として、 プラスミ ド pBluescreipt II SKで形質転換した大腸菌を同様に培養して得られた無細 胞抽出液を用いた。 結果を、 P. janthinellum S- 3413の培養物から検出さ れる活性と共に表 1に示す。 After the culture, the cells were collected by centrifugation (10,000 rpm, 4 ° C, 1 minute), and the pellet was washed with 0.85% KC1 and suspended in 0.1 M Tris-HCl buffer (pH 7.5). 3.800 rpm with MINI-BEAT BEATER (Japan Lambda) The beads were crushed 6 times in 30 seconds with ice cooling, and centrifuged (1,400 卬 π 4 ° C, 5 minutes) to prepare a cell-free extract. Subsequently, FAOD-P activity was measured by the A. rate method of the above titration method. As a control, a cell-free extract obtained by similarly culturing Escherichia coli transformed with the plasmid pBluescreipt II SK was used. The results are shown in Table 1 together with the activity detected from the culture of P. janthinellum S-3413.
1_ プラスミ ド p FAP 1で形質転換された大腸菌 SOL Rによる F AOD— Pの発現  Expression of FAOD-P by E. coli SOL R transformed with 1_ plasmid p FAP1
株 比活性 (UZmg)  Strain specific activity (UZmg)
U/nig • タンパク  U / nig • Protein
SOLR/p F AP 1 0. 0953  SOLR / p F AP 1 0.0953
S 0 L R pBluescript II SK . D.  S 0 L R pBluescript II SK .D.
P. janthinellum S-3413 0. 0971 表から明らかに、 pFAP lは FAOD— Pをコードしている cDNA を含有しており、 該プラスミ ドで形質転換された大腸菌形質転換体は、 F A OD— Pを産生することが分かる。 このプラスミ ド p F AP Iを導入し た大腸菌旦.^ ii SOLR/FAP 1は、 茨城県つくば巿東 1丁目 1丁目 3 号の通商産業省工業技術院生命工学工業技術研究所に受託番号 FE BP - 57 62の下で寄託されている (原寄託曰: 1995年 10月 4曰;国際寄託への移管曰: 1996年 12月 2曰) 0  P. janthinellum S-3413 0. 0971 It is clear from the table that pFAPl contains a cDNA encoding FAOD-P, and the E. coli transformant transformed with the plasmid is FAOD-P Is produced. Escherichia coli transformed with this plasmid p F AP I. ^ ii SOLR / FAP 1 was contracted with Tsukuba-Higashi 1-chome 3-chome, Ibaraki Pref. Deposited under BP-57 62 (Original deposit: October 4, 1995; transfer to international deposit: December 2, 1996) 0
大腸菌形質転換体による FAOD— Pの生産は、 I PTG添加後 8時間 で最大となり、 親株である Penici^ium— janthinellum S- 3413株と同様の 生産性を示した (第 5図参照) 。 第 5図において、 横軸は I P TGによる 誘導後の時間、 縦軸は増殖の程度 (OD6Qo測定値) 、 黒丸は全活性 (ϋ Zl培養) 、 そして白丸は比活性 (UZmg) を表す。 The production of FAOD-P by E. coli transformants reached a maximum 8 hours after the addition of IPTG, and showed the same productivity as the parent strain, Penici ^ ium-janthinellum S-3413 (see Fig. 5). In FIG. 5, the horizontal axis is the time after induction with IPTG, the vertical axis is the degree of proliferation (OD 6 Qo measurement value), and the solid circle is the total activity (ϋ Zl culture) and open circles indicate specific activity (UZmg).
実施例 3 糖化ヘモグロビン量の測定 Example 3 Measurement of glycated hemoglobin amount
1 ) 試料の処理  1) Sample processing
0〜 15mgグリコヘモグロビンコントロール E (シグマ社) を 100〃 1の蒸留水で溶解した。 これらの試料に塩酸アセトン (11\1塩酸7ァセ卜 ン : 1Z100) 1mlを加え、 12000回転で 10分間遠心分離した。 沈殿物をジェチルエーテル 500 1で洗浄し、 減圧乾固した。 さらに 8 M尿素 100 1を加え、 20分間沸騰水中で加熱後冷却し、 5.4ュニッ ト Zmlトリプシン 300 1と混合、 37°Cで 3時間ィンキュベートした。 その後、 沸騰水中で 5分間加熱し、 試料を調製した。  0 to 15 mg glycohemoglobin control E (Sigma) was dissolved in 100% distilled water. 1 ml of acetone hydrochloride (11/1 hydrochloric acid 7acetone: 1Z100) was added to these samples, and centrifuged at 12,000 rpm for 10 minutes. The precipitate was washed with getyl ether 5001, and dried under reduced pressure. Further, 8 M urea 1001 was added, heated in boiling water for 20 minutes, cooled, mixed with 5.4 unit Zml trypsin 3001, and incubated at 37 ° C for 3 hours. Thereafter, the sample was heated in boiling water for 5 minutes to prepare a sample.
2) 活性測定  2) Activity measurement
F A〇D反応液は以下のようにして調製した。  The FA〇D reaction solution was prepared as follows.
3mM N—(カルボキシメチルァミ ノカルボニル)一  3 mM N— (carboxymethylaminocarbonyl)
4.4—ビス(ジメチルァミ ノ)ビフエニルァミ ン溶液 30 1 4.4—Bis (dimethylamino) biphenylamine solution 30 1
60ユニッ ト Zml パーォキシダーゼ溶液 30〃 160 units Zml peroxidase solution 30〃 1
0.1M トリス—塩酸緩衝液 (pH 8.0) 300 10.1 M Tris-HCl buffer (pH 8.0) 300 1
25ュニッ ト 1111 八00— 溶液 5 1 蒸留水で全量を lmlとした。 25 units 1111 8 00-solution 51 The total volume was adjusted to 1 ml with distilled water.
25ュニッ 卜/ ml F A〇D— P溶液は、 実施例 2の方法で得た F A 0 D— Pを 25ュニッ 卜/ mlになるよう、 0.1M リン酸カリゥム緩衝液 (pH 7.5) で希釈して調製した。  The 25 u / ml FA〇D-P solution was prepared by diluting the FA0D-P obtained in the method of Example 2 with 0.1 M potassium phosphate buffer (pH 7.5) to 25 u / p. Prepared.
F AOD反応液に上記の各処理基質を 150 1加え、 30°Cでィンキュ ペートし、 30分後の 727nmにおける吸光度を測定した。 この方法で得 られる糖化へモグロビンの量と吸光度との関係を第 8図に示す。 図中の縱 軸は 727ηπιの吸光度 (過酸化水素の量に対応) 、 横軸は糖化へモグロビ ンの量を表す。 図は、 糖化ヘモグロビンの量と過酸化水素発生量が相関関 係にあることを示している。 150 1 of each of the above treated substrates was added to the FAOD reaction solution, the mixture was incubated at 30 ° C, and the absorbance at 727 nm was measured 30 minutes later. FIG. 8 shows the relationship between the amount of saccharified hemoglobin obtained by this method and the absorbance. The vertical axis in the figure is the absorbance of 727ηπι (corresponding to the amount of hydrogen peroxide), and the horizontal axis is saccharified Represents the amount of The figure shows that there is a correlation between the amount of glycated hemoglobin and the amount of hydrogen peroxide generated.
実施例 4 へモグロビン A 1 c値の測定 Example 4 Measurement of hemoglobin A 1 c value
ヘモグロビン A 0試薬(シグマ社)を蒸留水で 2.3 になるように溶解 した。 この溶液を自動グリコへモグロビン測定装置(京都第一科学)を用い て分画し、 へモグロビン A 1 c画分とへモグロビン A 0画分を分取、 精製 した。 両画分を比率混合することにより、 A 1 c値 0%〜52.0%の基 質試料を得た。  Hemoglobin A0 reagent (Sigma) was dissolved in distilled water to make 2.3. This solution was fractionated using an automatic glycohemoglobin measuring device (Kyoto Daiichi Kagaku), and the hemoglobin A1c fraction and the hemoglobin A0 fraction were fractionated and purified. By mixing the two fractions in proportion, a base sample having an A1c value of 0% to 52.0% was obtained.
2 9  2 9
1 ) 試料の処理  1) Sample processing
基質試料 250 】 Substrate sample 250】
500ュニッ ト/^1 アミノぺプチダーゼ溶液 5 1 0.1M トリス—塩酸緩衝液 (pH 8.0) 15〃 】 これらを混合し、 蒸留水で全量 200 】 とした。 500 units / ^ 1 aminopeptidase solution 5 1 0.1M Tris-HCl buffer (pH 8.0) 15〃] These were mixed and made up to a total volume of 200] with distilled water.
この混合液を 30°Cで 30分間インキュベートした。 その後、 10%ト リクロロ酢酸を 200 α 1加えて撹拌し、 0°Cで 20分間静置した後 12 000回転で 10分間遠心分離を行った。 得られた上清に 5 N N a OH を約 40 】加え、 中性溶液にした。  This mixture was incubated at 30 ° C for 30 minutes. Thereafter, 10% trichloroacetic acid (200α1) was added and the mixture was stirred, allowed to stand at 0 ° C for 20 minutes, and centrifuged at 12,000 rpm for 10 minutes. About 40] of 5N NaOH was added to the obtained supernatant to make a neutral solution.
2) 活性測定  2) Activity measurement
F A 0 D反応液は以下のようにして調製した。  The F A 0 D reaction solution was prepared as follows.
3mM N— (カルボキシメチルァミノカルボニル)一  3mM N— (carboxymethylaminocarbonyl)
4.4-ビス(ジメチルァミノ)ビフェニルァミ ン溶液 100〃 】 4.4-Bis (dimethylamino) biphenylamine solution 100〃]
60ユニッ ト/ ml パーォキシダーゼ溶液 100 1 0. 1M トリスー塩酸緩衝液 (pH 8.0) 1000 1 16ユニッ ト Zml FAOD— P溶液 5 1 蒸留水で全量を 2.6 mlとした。 16ユニッ ト Zml FAOD— P溶液は、 実施例 2の方法で得た F A〇 D— Pを 16ュニッ ト Zmlになるよう、 0.1Mリン酸カリゥ厶緩衝液 (p H7.5) で希釈して調製した。 60 units / ml peroxidase solution 100 0.1 M Tris-HCl buffer (pH 8.0) 1000 116 units Zml FAOD-P solution 51 The total volume was adjusted to 2.6 ml with distilled water. The 16 units Zml FAOD-P solution was prepared by diluting the FA〇D-P obtained by the method of Example 2 with 0.1 M potassium phosphate buffer (pH 7.5) to 16 units Zml. Prepared.
F AOD反応液を 30°Cで 2分間ィンキュペートした後、 上記の各処理 基質を 400 1加え、 さらに 30分インキュベートした後の 727nmに おける吸光度を測定した。 この方法で得られる基質のへモブロビン Ale値 と吸光度との関係を第 9図に示す。 図中の縦軸は 727nmの吸光度 (過酸 化水素の量に対応) 、 横軸はヘモグロビン Ale値を表す。 図は、 へモグロ ビン A 1 c値と過酸化水素発生量が相関関係にあることを示している。 実施例 5 酵母での F AOD— Pの発現  After incubating the FAOD reaction solution at 30 ° C. for 2 minutes, 400 1 of each of the above treated substrates was added, and the absorbance at 727 nm was measured after further incubation for 30 minutes. FIG. 9 shows the relationship between the hemoglobin Ale value and the absorbance of the substrate obtained by this method. The vertical axis in the figure represents the absorbance at 727 nm (corresponding to the amount of hydrogen peroxide), and the horizontal axis represents the hemoglobin Ale value. The figure shows that there is a correlation between the hemoglobin A1c value and the amount of generated hydrogen peroxide. Example 5 Expression of FAOD-P in yeast
(1) FAOD— P発現べクタ一の構築  (1) Construction of FAOD-P expression vector
実施例 2で得た大腸菌旦. £2ϋ S OLR/F AP 1 (FERM BP- 5762) か ら、 ぺニシリウム .ヤンシネルム菌株 S— 3413由来のクローン化 c D NAを含む大腸菌発現ベクター p FAP 1を得た。  From the E. coli strain obtained in Example 2 and £ 2 cS OLR / FAP1 (FERM BP-5762), an Escherichia coli expression vector pFAP1 containing a cloned cDNA derived from Penicillium. Obtained.
得られた p F AP 1を制限酵素 E c 0 R I及び Xh o Iで消化すること により、 約 1.3 k bの FAOD— P c DNA断片を得た。  The obtained pFAP1 was digested with restriction enzymes EcoRI and Xhol to obtain a FAOD-Pc DNA fragment of about 1.3 kb.
プラスミ ド pNOTel (特開平 5— 344895) を制限酵素 Not Iに より消化した後、ゥシ腸ホスファターゼ (ベーリンガーマンハイム社) を 用いて脱リン酸化処理し、 上記の、 FAOD—P cDNA断片と共に DN A Blunting Kit (宝酒造株式会社) を用いて平滑化した。 これらを DN A ligation Kit (宝酒造株式会社) を用いて連結し、 プラスミ ド pNFP を得た。  Plasmid pNOTel (Japanese Patent Laid-Open No. 5-344895) is digested with restriction enzyme Not I, dephosphorylated using cyst intestinal phosphatase (Boehringer Mannheim), and DNA together with the FAOD-P cDNA fragment described above. Smoothing was performed using Blunting Kit (Takara Shuzo). These were ligated using a DN ligation Kit (Takara Shuzo Co., Ltd.) to obtain plasmid pNFP.
次いで、 プラスミ ド pNFPを用い、 Hanahan法 (前掲) で E. coli J 109株を形質転換した。 得られた形質転換体から任意に 84株を選択して プラスミ ドを調製した。 プラスミ ドを制限酵素 Hindlllで処理して挿入片 の方向性を確認し、 FA OD— P c DNA断片が AODプロモーターの下 流に挿入されているプラスミ ド pNFP lを得た。 該プラスミ ド pNFP 1の制限地図を第 10図に示す。 Next, E. coli J109 strain was transformed by the Hanahan method (supra) using plasmid pNFP. Plasmid was prepared by arbitrarily selecting 84 strains from the obtained transformants. Plasmid is treated with restriction enzyme Hindlll and inserted. After confirming the orientation, plasmid pNFFP, in which the FAOD-Pc DNA fragment was inserted downstream of the AOD promoter, was obtained. The restriction map of the plasmid pNFP1 is shown in FIG.
(2) 形質転換  (2) Transformation
上記のプラスミ ド pNFP 1を、 制限酵素 BamH Iにより直鎖状にした 後、 リチウム改変法を用いて . boidiniiTK62株に形質転換した。 この T K 62株は lira要求性であり、 プラスミ KpNOTelには U R A 3遺伝子が含 まれているので、 Ura要求を指標に形質転換体を選抜することができる。 形質転換体を U r aを含まない YNB培地に塗布することにより得られ た U R A +型の形質転換体から任意に 8株を選び、 1.5%メタノール含有 基本培地に接種し、 28 °Cで 3日間震盪培養した。 集菌後、 菌体内の F A OD— P活性を上記の力価測定法の A. 速度法により測定し、 表 2の結果 を得た。  The above plasmid pNFP1 was linearized with the restriction enzyme BamHI, and then transformed into the .boidiniiTK62 strain using a lithium modification method. This TK62 strain is required for lira, and since the plasmid KpNOTel contains the URA3 gene, transformants can be selected based on the Ura requirement. Eight transformants were arbitrarily selected from URA + -type transformants obtained by spreading the transformants on YNB medium without Ura, inoculated into a 1.5% methanol-containing basic medium, and incubated at 28 ° C for 3 days. The cells were cultured with shaking. After collection, the F AOD-P activity in the cells was measured by the A. rate method in the above titration method, and the results in Table 2 were obtained.
表 2 プラスミ ド pNF P 1で形質転換された £. boidiniiTK62株によるTable 2 From £ .boidiniiTK62 strain transformed with plasmid pNF P1
FAOD— Pの発現 FAOD-P expression
株 比 活 性  Share ratio activity
U/mg 'タンパク  U / mg 'protein
TK62/pNFP l-l 0.0816  TK62 / pNFP l-l 0.0816
TK62/pNFP 1-2 0.071 1 TK62 / pNFP 1-2 0.071 1
TK62/pNFP 1-3 0. 1070 TK62 / pNFP 1-3 0.10 70
TK62/pNFP 1-4 0.0268 TK62 / pNFP 1-4 0.0268
TK62/pNF P 1-5 0.0312 TK62 / pNF P 1-5 0.0312
TK62/pNF P 1-6 0.0394 TK62 / pNF P 1-6 0.0394
TK 62/pNF P 1-7 0.0409 TK 62 / pNF P 1-7 0.0409
TK62/pNFP l-8 0.0249 TK62 / pNFP l-8 0.0249
TK 62/pNOTel N. D. (対照) 表 2から明らかに、 8株に F AOD— P活性が認められ、 そのうち、 ς. boidiniiTK62/pN F P 1 - 3が最大の活性を示した。 TK 62 / pNOTel ND (control) It is clear from Table 2 that eight strains had FAOD-P activity, of which ς. BoidiniiTK62 / pNFP1-3 showed the highest activity.
配 列 表 Arrangement table
配列番号: 1  SEQ ID NO: 1
配列の長さ : 1 3 1 4  Array length: 1 3 1 4
配列の型:核酸  Sequence type: nucleic acid
鎖の数:二本鎖  Number of chains: double strand
トポロジー:直鎖状  Topology: linear
配列の種類: c D N A to m R N A  Sequence type: c D N A to m R N A
起源  Origin
生物名 : Penicillium j anthinellum S-3413CFERM BP- 5475) 配列  Organism name: Penicillium j anthinellum S-3413CFERM BP-5475) Sequence
AT  AT
Me  Me
GG GG
Gl  Gl
GG
Figure imgf000035_0001
2
GG
Figure imgf000035_0001
Two
2 Two
Gly Tyr Thr Pro Ser Asn He Thr Val Leu Asp Val Tyr Pro lie Gly Tyr Thr Pro Ser Asn He Thr Val Leu Asp Val Tyr Pro lie
35 40 45 35 40 45
CCA TCC TTG CAA TCC GCA GGA TAT GAT CTT AAC AAG ATC ATG AGC 180CCA TCC TTG CAA TCC GCA GGA TAT GAT CTT AAC AAG ATC ATG AGC 180
Pro Ser Leu Gin Ser Ala Gly Tyr Asp Leu Asn Lys lie Met Ser Pro Ser Leu Gin Ser Ala Gly Tyr Asp Leu Asn Lys lie Met Ser
50 55 60 50 55 60
ATC CGA TTA CGC AAC GGG CCT GAC TTG CAA CTT TCC CTG GAG GCT ATC CGA TTA CGC AAC GGG CCT GAC TTG CAA CTT TCC CTG GAG GCT
lie Arg Leu Arg Asn Gly Pro Asp Leu Gin Leu Ser Leu Glu Ala lie Arg Leu Arg Asn Gly Pro Asp Leu Gin Leu Ser Leu Glu Ala
65 70 75 CTC GAT ATG TGG Leu Asp Met Trp 65 70 75 CTC GAT ATG TGG Leu Asp Met Trp
AAC GTT GGC ATG AAC GTT GGC ATG
Asn Val Gly Met Asn Val Gly Met
AGC CTT CGA CGG AGC CTT CGA CGG
Ser Leu Arg Arg Ser Leu Arg Arg
CTA GAG AAG ACG CTA GAG AAG ACG
Leu Glu Lys Thr Leu Glu Lys Thr
GCA AAA GCC CCG GCA AAA GCC CCG
Ala し ys Ala Pro Ala then ys Ala Pro
GGC TTG TTT TGC GGC TTG TTT TGC
Gly leu Phe Cys Gly leu Phe Cys
ATC AAT GCG ATC ATC AAT GCG ATC
lie Asn Ala lie lie Asn Ala lie
GGA TTT GGA AGT GGA TTT GGA AGT
Gly Phe Gly Ser Gly Phe Gly Ser
GAT GGG GCG ACA
Figure imgf000036_0001
Asp Gly Ala Thr Cys Ser Gly Val Glu Thr Val Asp Gly Thr Lys
GAT GGG GCG ACA
Figure imgf000036_0001
Asp Gly Ala Thr Cys Ser Gly Val Glu Thr Val Asp Gly Thr Lys
200 205 210200 205 210
TAC TTC GCC GAC AAG GTG GTT TTG GCC GCT GGT GCT TGG AGT TCG TAC TTC GCC GAC AAG GTG GTT TTG GCC GCT GGT GCT TGG AGT TCG
Tyr Phe Ala Asp Lys Val Val し eu Ala Ala Gly Ala Trp Ser Ser Tyr Phe Ala Asp Lys Val Val then eu Ala Ala Gly Ala Trp Ser Ser
215 220 225 215 220 225
ACG TTA GTA GAT TTG GAG GAC CAA TGT GTT TCG AAG GCC TGG GTC 720 Thr Leu Val Asp Leu Glu Asp Gin Cys Val Ser Lys Ala Trp Val ACG TTA GTA GAT TTG GAG GAC CAA TGT GTT TCG AAG GCC TGG GTC 720 Thr Leu Val Asp Leu Glu Asp Gin Cys Val Ser Lys Ala Trp Val
230 235 240 230 235 240
TTC GCT CAT ATC CAA CTC ACG CCC CAA GAA TCG CCC CAG TAC AAG 765 Phe Ala His lie Gin Leu Thr Pro Gin Glu Ser Ala Gin Tyr Lys TTC GCT CAT ATC CAA CTC ACG CCC CAA GAA TCG CCC CAG TAC AAG 765 Phe Ala His lie Gin Leu Thr Pro Gin Glu Ser Ala Gin Tyr Lys
245 250 255 245 250 255
GAC GTG CCC GTA GTA TAC GAC GGT GAT TAT GGC TTT TTC TTC GAG 810 Asp Val Pro Val Val Tyr Asp Gly Asp Tyr Gly Phe Phe Phe Glu GAC GTG CCC GTA GTA TAC GAC GGT GAT TAT GGC TTT TTC TTC GAG 810 Asp Val Pro Val Val Tyr Asp Gly Asp Tyr Gly Phe Phe Phe Glu
260 265 270 260 265 270
CCC AAC GAA CAC GGA GTA ATC AAA GTC TGC GAT GAG TTC CCC GGG 855 Pro Asn Glu His Gly Val lie Lys Val Cys Asp Glu Phe Pro Gly CCC AAC GAA CAC GGA GTA ATC AAA GTC TGC GAT GAG TTC CCC GGG 855 Pro Asn Glu His Gly Val lie Lys Val Cys Asp Glu Phe Pro Gly
275 280 285 6  275 280 285 6
7 δ 7 δ
TTC TCC CGC TTC AAG CTG CAT CAA CCT TAC GGT GCC ACC TCT CCT 900 Phe Ser Arg Phe lys Leu His Gin Pro Tyr Gly Ala Thr Ser Pro TTC TCC CGC TTC AAG CTG CAT CAA CCT TAC GGT GCC ACC TCT CCT 900 Phe Ser Arg Phe lys Leu His Gin Pro Tyr Gly Ala Thr Ser Pro
290 295 300 290 295 300
AAG CTT ATA TCC GTT CCT CGA TCA CAC GCC AAG CAT CCC ACC GAT 945AAG CTT ATA TCC GTT CCT CGA TCA CAC GCC AAG CAT CCC ACC GAT 945
Lys leu l ie Ser Val Pro Arg Ser His Ala Lys His Pro Thr Asp Lys leu lie Ser Val Pro Arg Ser His Ala Lys His Pro Thr Asp
305 310 315 305 310 315
ACC TAC CCA GAT TCT TCT GAA GAG ACC ATT CGA AAA GCG ATT GCG 990 Thr Tyr Pro Asp Ser Ser Glu Glu Thr lie Arg Lys Ala lie Ala 320 325 330ACC TAC CCA GAT TCT TCT GAA GAG ACC ATT CGA AAA GCG ATT GCG 990 Thr Tyr Pro Asp Ser Ser Glu Glu Thr lie Arg Lys Ala lie Ala 320 325 330
AGG TTT ATG CCA CGC TTC AAG GAT AAG GAG CTT TTT AAT AGG AGC 1035 Arg Phe Met Pro Arg Phe lys Asp Lys Glu Leu Phe Asn Arg Ser AGG TTT ATG CCA CGC TTC AAG GAT AAG GAG CTT TTT AAT AGG AGC 1035 Arg Phe Met Pro Arg Phe lys Asp Lys Glu Leu Phe Asn Arg Ser
335 340 345 335 340 345
ATG TGC TGG TGC ACC GAT ACT GCT GAT GCC AAC TTG TTG ATC TGC 1080 Met Cys Trp Cys Thr Asp Thr Al a Asp Ala Asn Leu Leu He Cys ATG TGC TGG TGC ACC GAT ACT GCT GAT GCC AAC TTG TTG ATC TGC 1080 Met Cys Trp Cys Thr Asp Thr Al a Asp Ala Asn Leu Leu He Cys
350 355 360 350 355 360
GAG CAC CCC AAG TGG AAG AAC TTT ATC TTG GCC ACA GGA GAC AGC 1125 Glu His Pro Lys Trp Lys Asn Phe lie Leu Ala Thr Gly Asp Ser GAG CAC CCC AAG TGG AAG AAC TTT ATC TTG GCC ACA GGA GAC AGC 1125 Glu His Pro Lys Trp Lys Asn Phe lie Leu Ala Thr Gly Asp Ser
365 370 375 365 370 375
GGC CAT AGT TTC AAG GTT TTG CCC AAT ATA GGA AAA CAT GTC GTT 1170 Gly His Ser Phe Lys Val leu Pro Asn lie Gly Lys Hi s Val Val GGC CAT AGT TTC AAG GTT TTG CCC AAT ATA GGA AAA CAT GTC GTT 1170 Gly His Ser Phe Lys Val leu Pro Asn lie Gly Lys His Val Val
380 385 390 380 385 390
GAG TTG ATA GAA GGA CGC CTA CCA CAA GAC CTG GCT GGT GCG TGG 1215 Glu Leu l ie Glu Gly Arg leu Pro Gin Asp Leu Ala Gly Ala Trp GAG TTG ATA GAA GGA CGC CTA CCA CAA GAC CTG GCT GGT GCG TGG 1215 Glu Leu lie Glu Gly Arg leu Pro Gin Asp Leu Ala Gly Ala Trp
395 400 405 395 400 405
AGA TGG AGA CCA GGG GGA GAT GCC CTT AAG TCC AAA CGC AGT GCT 1260 Arg Trp Arg Pro Gly Gly Asp Ala Leu Lys Ser lys Arg Ser Ala AGA TGG AGA CCA GGG GGA GAT GCC CTT AAG TCC AAA CGC AGT GCT 1260 Arg Trp Arg Pro Gly Gly Asp Ala Leu Lys Ser lys Arg Ser Ala
410 415 420 410 415 420
CCG GCA AAG GAC CTT GCT GAA ATG CCG GGC TGG AAG CAT GAT GCG 1305 Pro Ala Lys Asp Leu Ala Glu Met Pro Gly Trp lys His Asp Ala CCG GCA AAG GAC CTT GCT GAA ATG CCG GGC TGG AAG CAT GAT GCG 1305 Pro Ala Lys Asp Leu Ala Glu Met Pro Gly Trp lys His Asp Ala
425 430 435 425 430 435
AAG CTC TGA 1314 Lys Leu AAG CTC TGA 1314 Lys Leu
437 配列番号: 2 437 SEQ ID NO: 2
配列の長さ : 1 4  Array length: 1 4
配列の型:アミノ酸  Sequence type: amino acid
トポロジー :直鎖状  Topology: linear
配列の種類:ペプチド  Sequence type: Peptide
起源  Origin
生物名 : Penicillium janthinellum S-3413(FERM BP - 5475) 配列  Organism name: Penicillium janthinellum S-3413 (FERM BP-5475) sequence
Ser Thr Lys lie Val lie Val Gly Gly Gly Gly Thr Met Gly  Ser Thr Lys lie Val lie Val Gly Gly Gly Gly Thr Met Gly
1 5 10 14 配列番号: 3  1 5 10 14 SEQ ID NO: 3
配列の長さ : 2 0  Array length: 20
配列の型:アミノ酸  Sequence type: amino acid
トポロジー :直鎖状  Topology: linear
配列の種類:ぺプチド  Sequence type: peptide
起源  Origin
生物名: Penicillium janthinellum S-3413(FERM BP - 5475) 配列  Organism name: Penicillium janthinellum S-3413 (FERM BP-5475) Sequence
Gly Val Glu Thr Val Asp Gly Thr Lys Tyr Phe Ala Asp Lys Val Val 1 5 10 16 Gly Val Glu Thr Val Asp Gly Thr Lys Tyr Phe Ala Asp Lys Val Val 1 5 10 16
Leu Ala Ala Gly Leu Ala Ala Gly
20  20
配列番号: 4  SEQ ID NO: 4
配列の長さ : 2 3  Array length: 2 3
配列の型:核酸 鎖の数:一本鎖 Sequence type: nucleic acid Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類:合成 DNA  Sequence type: synthetic DNA
配列 Array
ACNAARATHG TNATHGTNGG NGG 23 配列番号: 5  ACNAARATHG TNATHGTNGG NGG 23 SEQ ID NO: 5
配列の長さ : 35  Array length: 35
配列の型:核酸  Sequence type: nucleic acid
鎖の数:一本鎖  Number of chains: single strand
卜ポロジ一 :直鎖状  Topology: Linear
配列の種類:合成 DNA  Sequence type: synthetic DNA
配列 Array
ACNGTNGAYG GNACNAARTA YTTYGCNGAY AARGT 35  ACNGTNGAYG GNACNAARTA YTTYGCNGAY AARGT 35

Claims

請 求 の 範 囲 The scope of the claims
1. 配列番号 1記載のァミノ酸配列又は該ァミノ酸配列に対する 1又はそ れ以上のァミノ酸の挿入、 欠失又は置換により導かれるァミノ酸配列を有 し、 酸素の存在下でアマドリ化合物を酸化して、 ひーケトアルデヒ ド、 ァ ミ ン誘導体及び過酸化水素を生成する反応を触媒する酵素活性を有するフ ルク トシルアミノ酸ォキシダーゼ。  1. Oxidizing an Amadori compound in the presence of oxygen, which has an amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence derived by inserting, deleting or substituting one or more amino acids with the amino acid sequence And a fructosyl amino acid oxidase having an enzymatic activity to catalyze a reaction for producing a ketoaldehyde, an amide derivative and hydrogen peroxide.
2. P. janthinellum S- 3413 (FERM BP- 5475)を褐変化培地で培養するこ とにより誘導されるフルク トシルァミノ酸ォキシダ一ゼをコ一ドする DN Aのクローニングにより得られたものである請求項 1記載のフルク トシル ァミノ酸ォキシダーゼ。  2. P. janthinellum S-3413 (FERM BP-5475) is obtained by cloning DNA encoding fructosylamino acid oxidase induced by culturing in browning medium. Item 7. The fructosylamino acid oxidase according to Item 1.
3. 請求項 1又は 2に記載のフルク トシルァミノ酸ォキシダ一ゼをコ一ド する DN A。  3. A DNA encoding the fructosylamino acid oxidase according to claim 1 or 2.
4. 配列番号 1に記載の DNA、 又は該 DNAとストリンジヱン卜な条件 下でハイプリダイズしうる DN Aであって、 酸素の存在下でアマドリ化合 物を酸化して、 ひーケトアルデヒ ド、 ァミン誘導体及び過酸化水素を生成 する反応を触媒する酵素活性を有するフルク トシルァミノ酸ォキシダ一ゼ をコードする DN A。  4. A DNA described in SEQ ID NO: 1 or a DNA capable of hybridizing with the DNA under stringent conditions, wherein the Amadori compound is oxidized in the presence of oxygen to produce a peak-aldehyde, an amine derivative and DNA encoding fructosylamino acid oxidase which has enzymatic activity to catalyze the reaction to produce hydrogen peroxide.
5. 請求項 3又は 4に記載の DN Aを含有する発現ベクター。  5. An expression vector containing the DNA according to claim 3 or 4.
6. 請求項 5に記載の発現べクタ一によつて形質転換された宿主細胞。 6. A host cell transformed by the expression vector according to claim 5.
7. 原核性又は真核性宿主である請求項 6記載の宿主細胞。 7. The host cell according to claim 6, which is a prokaryotic or eukaryotic host.
8. 大腸菌又は酵母である請求項 7記載の宿主細胞。  8. The host cell according to claim 7, which is Escherichia coli or yeast.
9. メタノール酵母である請求頊 8記載の宿主細胞。  9. The host cell according to claim 8, which is a methanol yeast.
10. 請求項 5~9のいずれかに記載の宿主細胞を培地に培養することを 特徴とする組換えフルク 卜シルァミノ酸ォキシダーゼの製造法。  10. A method for producing a recombinant fructosylamino acid oxidase, which comprises culturing the host cell according to claim 5 in a medium.
11. 培地が、 メタノール 0.1〜5.0%、 及び 0.1〜5.0%の NH4C1及び/ 又は 0. 1〜5. 0%の酵母エキスを含有するものである請求項 1 0記載の製造 法。 11. medium, methanol from 0.1 to 5.0%, and 0.1 to 5.0% of NH 4 C1 and / Or the production method according to claim 10, which comprises 0.1 to 5.0% of yeast extract.
1 2 . アマドリ化合物を含有する試料と、 請求項 1 0又は 1 1に記載の宿 主細胞の培養物又はその処理物を接触させ、 酸素の消費量又は過酸化水素 の発生量を測定することを特徴とする、 試料中のアマドリ化合物の分析法 c 12. Contacting a sample containing an Amadori compound with the culture of the host cell according to claim 10 or 11 or a processed product thereof, and measuring the amount of consumed oxygen or the amount of generated hydrogen peroxide. wherein the analysis method c Amadori compound in a sample
1 3 . 試料が生体成分であり、 アマドリ化合物の分析が、 該生体成分中の 糖化タンパクの量及び/又は糖化率の測定、 あるいはフルク トサミンの定 量によりなされることを特徴とする請求項 1 2記載の分析法。 13. The sample is a biological component, and the analysis of the Amadori compound is performed by measuring the amount and / or saccharification rate of the glycated protein in the biological component or by determining the amount of fructosamine. 2. The analytical method according to 2.
1 4 . 請求項 6〜 9いずれかに記載の宿主細胞の培養物またはその処理物 を含有するアマドリ化合物の分析のための試薬又はキッ 卜。  14. A reagent or kit for analyzing an Amadori compound comprising the culture of the host cell according to any one of claims 6 to 9 or a processed product thereof.
1 5 . 生体成分中の糖化タンパクの量及び/又は糖化率の測定、 あるいは フルク トサミンの定量のために用いられることを特徴とする請求項 1 4記 載の試薬又はキッ 卜。  15. The reagent or kit according to claim 14, wherein the reagent or kit is used for measuring the amount and / or saccharification rate of a glycated protein in a biological component or for quantifying fructosamine.
PCT/JP1996/003651 1995-12-14 1996-12-13 Novel fructosyl amino acid oxidase originating in fungi of the genus penicillium WO1997021818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32567295 1995-12-14
JP7/325672 1995-12-14

Publications (1)

Publication Number Publication Date
WO1997021818A1 true WO1997021818A1 (en) 1997-06-19

Family

ID=18179433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003651 WO1997021818A1 (en) 1995-12-14 1996-12-13 Novel fructosyl amino acid oxidase originating in fungi of the genus penicillium

Country Status (1)

Country Link
WO (1) WO1997021818A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291416A1 (en) * 2001-09-04 2003-03-12 Kikkoman Corporation Fructosyl peptide oxidase
WO2004104203A1 (en) * 2003-05-21 2004-12-02 Asahi Kasei Pharma Corporation Method of measuring glycolated hemoglobin a1c, enzyme to be used therefor and process for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268178A (en) * 1985-05-22 1986-11-27 Noda Sangyo Kagaku Kenkyusho Fructosylamino acid oxidase and production thereof
JPH03155781A (en) * 1989-10-20 1991-07-03 Bristol Myers Squibb Co Arylsulfatase
JPH044874A (en) * 1990-04-20 1992-01-09 Nakano Vinegar Co Ltd Fructosylamino acid hydrolase, production and utilization thereof
JPH05192193A (en) * 1991-07-29 1993-08-03 Genzyme Ltd Method for assay of non-enzymatic glycosylation protein
JPH0646846A (en) * 1992-06-05 1994-02-22 Nakano Vinegar Co Ltd Fructosylamine deglycase, its production and method for determining amadori compound using the same enzyme

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268178A (en) * 1985-05-22 1986-11-27 Noda Sangyo Kagaku Kenkyusho Fructosylamino acid oxidase and production thereof
JPH03155781A (en) * 1989-10-20 1991-07-03 Bristol Myers Squibb Co Arylsulfatase
JPH044874A (en) * 1990-04-20 1992-01-09 Nakano Vinegar Co Ltd Fructosylamino acid hydrolase, production and utilization thereof
JPH05192193A (en) * 1991-07-29 1993-08-03 Genzyme Ltd Method for assay of non-enzymatic glycosylation protein
JPH0646846A (en) * 1992-06-05 1994-02-22 Nakano Vinegar Co Ltd Fructosylamine deglycase, its production and method for determining amadori compound using the same enzyme

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPL. ENVIRONMENT. MICROBIOL., Vol. 61(12), 1995, YOSHIDA N. et al., "Distribution and Properties of Fructosyl Amino Acid Oxidase in Fungi", pages 4487-4489. *
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, Vol. 59(3), 1995, YOSHIDA N. et al., "Purification and Perperties of Fructosyl Lysine Oxidase from Fusarium Oxysporum S-1F4", pages 487-491. *
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, Vol. 60(1), 1996, YOSHIDA N. et al., "Production of Fructosyl Lysine Oxidase from Fusarium Oxysporum S-1F4 on Autoclave-Browned Medium", pages 150-151. *
J. BIOL. CHEM., Vol. 252(3), 1977, D.W. CLEAVELAND et al., "Peptide Mapping by Limited Proteolysis in Sodium Dodecyl Sulfate and Analysis by Gel Electro-Phoresis", pages 1102-1106. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291416A1 (en) * 2001-09-04 2003-03-12 Kikkoman Corporation Fructosyl peptide oxidase
US7018823B2 (en) 2001-09-04 2006-03-28 Kikkoman Corporation Fructosyl peptide oxidase
US7419813B2 (en) 2001-09-04 2008-09-02 Kikkoman Corporation Fructosyl peptide oxidase
WO2004104203A1 (en) * 2003-05-21 2004-12-02 Asahi Kasei Pharma Corporation Method of measuring glycolated hemoglobin a1c, enzyme to be used therefor and process for producing the same
US7588910B2 (en) 2003-05-21 2009-09-15 Asahi Kasei Pharma Corporation Hemoglobin A1c determination method, enzyme to be used therefor, and production method thereof
US7943337B2 (en) 2003-05-21 2011-05-17 Asahi Kasei Pharma Corporation Method for screening a protease

Similar Documents

Publication Publication Date Title
JP6868662B2 (en) Hemoglobin A1c measurement method and measurement kit
JPH1033177A (en) Fructosyl amino acid oxidase
JP2010148515A (en) METHOD FOR MEASURING HEMOGLOBIN A1c, ENZYME TO BE USED THEREFOR, AND METHOD FOR PRODUCING THE SAME
JP3742659B2 (en) DNA polymerase-related factors
WO2014002973A1 (en) Novel glucose dehydrogenase
CN111172142B (en) Cephalosporin C acylase mutant with high thermal stability
KR20050074313A (en) Cephalosporin c acylases
NZ225798A (en) Procaryotic xylose isomerase muteins and methods of increasing their stability
CA2045839C (en) Cloned n-methylhydantoinase
JP4133326B2 (en) Novel fructosyl amino acid oxidase
CN112175980A (en) Method for improving activity of polymerase large fragment by site-directed mutagenesis and application
JP3819969B2 (en) Recombinant fructosyl amino acid oxidase
WO1997021818A1 (en) Novel fructosyl amino acid oxidase originating in fungi of the genus penicillium
JPH05501651A (en) P. The oxidoreductase enzyme system obtained from Chrysogenum, the set of genes encoding it, and the use of the oxidoreductase enzyme system or the gene encoding it to increase the production of antibiotics.
CN117384873A (en) Glycerol phosphate oxidase mutant and screening method, preparation method and application thereof
Hopper et al. Cloning, sequencing and heterologous expression of the gene for lupanine hydroxylase, a quinocytochrome c from a Pseudomonas sp.
US7132253B2 (en) Modified sarcosine oxidases, modified sarcosine oxidase genes, and methods for preparing the modified sarcosine oxidases
WO2004029251A1 (en) Fructosylamine oxidase
EP2643457B1 (en) Compositions and methods of producing enterokinase in yeast
CN110846289A (en) Acinetobacter baumannii xanthine dehydrogenase mutant and application thereof
US20030157664A1 (en) Novel mutants of the formate dehydrogenase from Candida boidinii
EP2202304B1 (en) Modified creatinine amidohydrolase
KR100563820B1 (en) Triphenylmethane dye reductase and the gene thereof
CN117568322A (en) Recombinant creatininase with high yield and good stability as well as preparation method and application thereof
JP4066203B2 (en) Novel creatinine amide hydrolase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase