WO1997020695A1 - Journal printer paper feed fault detection system for automated teller machine - Google Patents
Journal printer paper feed fault detection system for automated teller machine Download PDFInfo
- Publication number
- WO1997020695A1 WO1997020695A1 PCT/US1996/017818 US9617818W WO9720695A1 WO 1997020695 A1 WO1997020695 A1 WO 1997020695A1 US 9617818 W US9617818 W US 9617818W WO 9720695 A1 WO9720695 A1 WO 9720695A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- paper
- printer
- detector
- spindle
- roll
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H75/00—Storing webs, tapes, or filamentary material, e.g. on reels
- B65H75/02—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
- B65H75/04—Kinds or types
- B65H75/08—Kinds or types of circular or polygonal cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J11/00—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J11/00—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
- B41J11/0095—Detecting means for copy material, e.g. for detecting or sensing presence of copy material or its leading or trailing end
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J15/00—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in continuous form, e.g. webs
- B41J15/04—Supporting, feeding, or guiding devices; Mountings for web rolls or spindles
- B41J15/042—Supporting, feeding, or guiding devices; Mountings for web rolls or spindles for loading rolled-up continuous copy material into printers, e.g. for replacing a used-up paper roll; Point-of-sale printers with openable casings allowing access to the rolled-up continuous copy material
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F19/00—Complete banking systems; Coded card-freed arrangements adapted for dispensing or receiving monies or the like and posting such transactions to existing accounts, e.g. automatic teller machines
- G07F19/20—Automatic teller machines [ATMs]
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F19/00—Complete banking systems; Coded card-freed arrangements adapted for dispensing or receiving monies or the like and posting such transactions to existing accounts, e.g. automatic teller machines
- G07F19/20—Automatic teller machines [ATMs]
- G07F19/201—Accessories of ATMs
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F19/00—Complete banking systems; Coded card-freed arrangements adapted for dispensing or receiving monies or the like and posting such transactions to existing accounts, e.g. automatic teller machines
- G07F19/20—Automatic teller machines [ATMs]
- G07F19/207—Surveillance aspects at ATMs
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07G—REGISTERING THE RECEIPT OF CASH, VALUABLES, OR TOKENS
- G07G5/00—Receipt-giving machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2553/00—Sensing or detecting means
- B65H2553/51—Encoders, e.g. linear
Definitions
- This invention relates to automated banking machines. Specifically, this invention relates to a system and method for detecting fault conditions which occur in the feeding of paper through a journal printer mechanism in an automated teller machine.
- Automated banking machines are well known in the prior art. In many types of automated banking machines, including automated teller
- ATMs machines
- the function of the journal printer is to make a paper record of each transaction that has been conducted at the ATM. This enables the institution that operates the ATM to verify its electronic records and to reconstruct them in the event of a failure.
- Journal printers typically involve recording transaction information on paper that is supplied from a paper roll.
- the paper from the roll is passed through the printer where the data is printed on the paper. After printing, the paper is rewound onto a take-up roll.
- As transactions are recorded blank paper on the supply roll is used and the diameter of the supply roll decreases.
- As paper upon which data has been recorded is
- the take-up roll increases in diameter. Eventually, when the amount of paper remaining on the supply roll is nearly
- the institution operating the ATM has a hardcopy record of all the transactions that have been conducted. It is undesirable for the supply roll of the journal printer to be depleted, as this results in transactions for which there may be no hardcopy record.
- the need to replace the supply roll is determined electronically by storing in the memory of the machine the number of data lines printed by the journal printer since
- a person servicing the ATM to replace the supply roll may forget to reset the system when the paper is replaced. This can result in the automated teller machine indicating that it is in a paper low condition when in fact no such problem exists. Also, a problem such as a paper jam may
- journal printer breaks at splices. In either case the journal printer will become inoperative and this condition may go undetected for some time. Problems may also result when a replacement roll has not been properly installed. The ATM may be run for an extended time before it is discovered that paper is not feeding through the journal printer. Thus there exists a need for a system and method for indicating fault conditions with paper feeding to a journal printer in an automated banking machine.
- It is a further object of the present invention to provide an apparatus for indicating fault conditions in a system including a journal printer in an automated banking machine which is supplied by a paper roll and which
- journal printer in an automated banking machine which detects the movement of a journal printer supply roll and which determines that such roll is moving in coordination with a journal printer.
- journal printer supply roll for detecting the proper movement of a journal printer supply roll which apparatus is engaged with said supply roll so as to indicate the movement thereof but which is readily disengagable from said supply roll to enable the replacement thereof.
- the system includes a journal printer that is supplied with paper from a paper supply.
- the printer operates to move paper from the supply and to print transaction data thereon.
- the paper with the printed data is rewound on to
- the paper supply roll is supported on a spindle.
- a wire spring extending from the spindle serves as a connecting member and connects the spindle to the supply roll.
- the spindle is rotatably engaged with the roll so as to move therewith.
- An encoder member is supported on one end of the spindle. The encoder member
- An optical detector is positioned adjacent to the encoder member.
- the detector operates to detect rotation of the encoder member which is
- a drag mechanism is associated with the spindle which prevents overrunning of the supply roll as paper is removed therefrom by the printer.
- paper is supplied to the printer from a roll or other type paper supply.
- the printer includes a printer drive mechanism which engages the paper and moves it through the printer in coordination with the printing on the paper.
- the paper with the printed data is rewound onto a take-up roll.
- the take-up roll is moved by a
- the paper is movable in the gap both in a direction of paper movement from the
- printer to the take-up roll, as well as in a direction that is generally pe ⁇ endicular to the direction of paper movement.
- the operations of the printer drive mechanism and the take-up roll drive mechanism are coordinated.
- the printer drive preferably first moves
- the take-up roll drive mechanism moves the take-up roll to take up the slack in the paper.
- An optical detector is positioned adjacent to the gap.
- the optical detector is positioned to detect movement of the paper in the pe ⁇ endicular direction. In this manner the detector operates to detect movement of the paper in a manner indicative of the proper operation of the printer drive and take-up roll drive mechanisms.
- Both embodiments of the system further include a second detector adjacent to the paper supply.
- the second detector serves as a paper low detector and preferably senses a side face portion of the paper roll, stack or
- the second detector is operative to provide a signal when the diameter or size of the supply has fallen to a predetermined level.
- An electronic circuit which includes a processor, is in operative connection with the printer and the first and second detectors.
- processor is programmed to provide fault signals when a combination of certain conditions are detected in accordance with the programming of the processor.
- a first fault signal representative of a paper jam condition is generated by the electronic circuit if the second detector senses sufficient paper, but the first detector has failed to sense movement of the paper after the printer has operated to print a number of lines. This may be a failure to sense rotation of the spindle shaft or cyclic movement of the paper in the pe ⁇ endicular direction in the gap. This first fault signal is indicative that the printer is attempting to print several lines of data on the
- the first fault signal is also generated in conditions where the paper has broken, such as at a splice, or when a replacement roll or stack has not been properly installed.
- the electronic circuit provides a paper low signal when the second detector senses that the paper supply has been reduced to a sufficiently small size that replacement is warranted.
- the paper low signal is given if the first detector is continuing to sense that the paper is still moving. This is indicative that the journal printer is still operating despite the paper running low.
- the electronic circuit further provides a paper out signal when the
- printer has printed the number of lines during which time movement of the paper should have been sensed, and if at the same time the second detector does not sense the presence of paper. This is indicative that the paper supply has been depleted and that a hardcopy record of transaction data is
- This second fault signal indicative of a paper out condition is also given in circumstances when a replacement roll or other supply was not installed or was improperly installed due to a mistake by a service technician.
- Figure 1 is an isometric view of a journal printer including a first embodiment of the fault indicating apparatus of the present invention.
- Figure 2 is a schematic view of a journal printer including the first embodiment of the fault indicating apparatus of the present invention.
- Figure 3 is a sectional side view of a paper supply roll, spindle and spindle rotation detector of the first embodiment of the present invention with the inside diameter of the paper roll core exaggerated to show the
- Figure 4 is an isometric view of the spindle of the first embodiment of the present invention shown with the spring arms extended.
- Figure 5 is an isometric view showing the spindle partially inserted
- Figure 6 is a flow chart of the computer program executed by the processor of the electronic circuit used in the fault indicating apparatus of the present invention.
- Figure 7 is a schematic view of a journal printer including a second embodiment of the fault indicating system of the present invention.
- Figure 8 is an enlarged cross sectional view of an optical detector of the second embodiment with paper in a first position adjacent the detector.
- Figure 9 is an enlarged cross sectional view similar to Figure 8 but with the paper in a second position disposed from the detector.
- the apparatus includes a journal printer generally indicated 12.
- Journal printer 12 includes mechanisms known in the prior art for producing printed data on paper in a conventional manner.
- Paper generally indicated 14, is fed from a paper supply roll 16 to printer 12.
- paper that has been printed on by the journal printer 12 is stored on a take-up roll 18.
- Printer
- Take-up roll 18 is also driven by a conventional mechanism so as to rewind and store on the take-up roll the paper that has been printed on by journal
- Paper supply roll 16 is supported on a spindle generally indicated 22.
- the spindle is shown in detail in Figures 4 and 5.
- Spindle 22 is supported on a first side by a first vertically extending wall 24.
- Spindle 22 is
- First wall 24 includes a first slot 28 therein.
- First slot 28 includes an open end and a closed end.
- the spindle is supported at the closed end of slot 28 when in the operative position as shown in Figure 3.
- Second wall 26 includes a second slot 30.
- Second slot 30 has open and closed ends.
- the spindle is supported at the closed end of the second slot when in the operative position as shown in Figure 3. Similarly, the spindle may be removed through the open end of the slot when the supply roll is depleted and reinstalled after the roll is replenished.
- Spindle 22 is shown in detail in Figure 4.
- Spindle 22 includes a
- a flange portion 34 is located at a first end of spindle shaft portion 32.
- a flange portion 34 includes a flat circular face 36, the pu ⁇ ose of which is later discussed.
- An encoder support shaft portion 38 extends axially outward from
- Encoder support shaft portion 38 supports an encoder member 40.
- encoder member 40 is an encoder wheel with a plurality of radially extending slotted openings positioned at a plurality of uniformly spaced radial increments thereon.
- a retainer member 42 is movably positioned between flange portion 34 and encoder member 40.
- Retainer member 42 is a generally hollow member with an opening (not shown) through which shaft portion 38 extends. The retainer member is enabled to move in an axial direction on the encoder support shaft portion 38.
- Retainer member 42 includes
- Generally frustoconical portion 46 includes the opening therethrough that enables retainer member 42 to move relative to shaft portion 38.
- a compression spring 48 is housed in a generally cylindrical pocket
- Compression spring 48 is a coil spring that extends coaxially with encoder support shaft portion 38. Spring 48 biases the generally frustoconical portion 46 of the retainer towards face 36 of the flange portion 34. However, in response to a separating force, the
- frustoconical portion 46 may be moved away from face 36.
- a guide shaft portion 50 is positioned at an opposite end of spindle
- Guide shaft portion 50 is smaller in diameter than spindle shaft portion 32.
- a radially extending step 52 extends between
- Spindle shaft portion 32 includes a diametrically extending opening 54 therethrough.
- a second opening 56 in spindle shaft portion 32 is axially disposed from opening 54 in the direction of flange portion 34.
- u-shaped wire spring 58 extends between openings 54 and 56.
- Spring 58 includes a pair of outwardly biased spring arms 60 which extend from a spring base 62.
- Spring base 62 extends through opening 54 in shaft portion 32 as shown in Figure 4.
- Spring arms 60 each include free ends generally indicated 64 which each have radially in-turned portions 66. In-turned portions 66 extend into opening 56 in spindle shaft portion 32.
- the spindle 22 is installed in the roll 16 by movement of the spindle in the direction of arrow I as shown in Figure 5 until flange portion 34
- Engaging encoder support shaft portion 38 in slot 28 necessitates the movement of retainer member 42 away from flange portion 34 a sufficient distance to enable wall 24 to extend therebetween. This is accomplished by engaging the tapered generally frustoconical portion 46 of the retainer in the open end of slot 28 and moving spindle 22 downward.
- retainer member 42 applies a biasing force against the outer
- the apparatus of the first embodiment of the present invention further includes a detector 70.
- detector 70 is an op to- interrupter sensor.
- Detector 70 is operable to detect the passage of a beam of light through the openings 72 in the encoder member 40 as the openings are aligned with the sensor. As spindle 22 rotates, detector 70 sequentially senses the passage and blockage of light as openings 72 are aligned in the sensor.
- detector 70 is electrically connected through an appropriate interface to an electronic circuit schematically indicated 74.
- Electronic circuit 74 includes a processor 76 which operates in accordance with the steps of a computer program hereinafter described.
- Electronic circuit 74 is also connected to journal printer 12 for pu ⁇ oses that are later discussed.
- the apparatus of the present invention further includes a second detector 78.
- Second detector 78 is also preferably an opto-electric detector.
- Second detector 78 is positioned between the spindle and the journal printer. Second detector 78 preferably operates to direct a light beam against a side face portion of paper supply roll 16 and to detect the light reflected from such surface. As a result, when the diameter of roll 16 has decreased so that the side face surface is no longer present in the area adjacent second detector 78, this condition may be sensed as shown in Figure 2. In other embodiments other types of detectors may be used instead of electro-optical detectors. Second detector 78 is electrically connected through an appropriate interface to the electronic circuit 74. Electronic circuit 74 operates as schematically indicated in Figure 2 to output electrical signals on a line schematically indicated 80.
- Electronic circuit 74 operates to output fault indication signals in response to a determination that there is a paper jam or a comparable condition, that the paper on the supply roll is low, or that the paper on the
- Printer mechanisms are generally set up such that each line of
- printed data occupies a predetermined width on the paper. This width extends in a transverse band.
- the drive 20 of the printer operates to attempt to move the paper forward a predetermined distance. Because the printer advance for each line of data is constant, but the amount of associated rotation of the spindle and the attached encoder member 40 varies, the processor of the present invention is
- the processor 76 is connected to printer 12 so
- a counter is then incremented at a step 84 to note that an additional line has been printed.
- the counter is checked to determine if the number of lines that have been printed is equal to a set number. This set
- the processor checks to determine if there has been a change in signal from detector 70. This would indicate that the spindle has rotated enough to indicate at least one change from "dark” to "light” or vice
- step 90 If in executing the computer program, it is determined in step 90 that
- step 98 the encoder has not changed condition since the last check, this is representative of a problem.
- the processor seeks to determine if paper is sensed adjacent to second detector 78. If paper is present, but the spindle is not moving, the processor indicates a first fault detection signal representative of a paper jam or a comparable fault condition at a step 100. As it is often not desirable to operate the ATM without a journal printer, in addition to giving a paper jam signal, the processor or the paper jam signal may also operate to stop further operation of the ATM after it has completed the pending transaction.
- the first fault detection signal may be generated in response to conditions other than paper jams.
- the signal will also be generated
- the first fault detection signal will also be generated if the supply roll has not been properly installed and seated in the slots in the side walls. This will cause the roll to bind and not unwind. In each case the first fault detection signal indicates that ample paper is present but paper is not being fed in response to the printer.
- a "paper out" signal is generated at a step 102.
- the processor or the fault signal may operate to discontinue operation of the paper out signal
- the "paper out” signal may also be given in other comparable situations. These would include situations in which a technician has taken out a spent roll and forgotten to put in a new roll, or when a new roll has been installed so improperly that its presence cannot be sensed. In these situations, the transaction information is not being recorded due to absence of paper. The force applied by the drag mechanism on the spindle insures that
- the encoder member accurately reflects the movement of paper through the journal printer. In the event of even a minor paper jam or paper feeding problem which prevents the proper operation of the printer, a fault indication signal is given.
- the present invention enables giving accurate signals representative of paper low and paper out conditions. This is superior to basing replacement of the paper supply roll on estimates on the amount of paper remaining. It is also not necessary to replace the roll and reset a paper counter after a paper or printer problem is corrected.
- An additional advantage is that while the apparatus of the present invention is highly reliable, it does not interfere with the replacement of the paper rolls or complicate the threading of the paper through the journal printer.
- rotation sensors may be successfully used in other embodiments. These include those detectors that sense other types of indicia or features on a member that is in connection with the spindle. While the spring arms of the wire spring serve as the connecting members in the preferred form of the first embodiment, other types of connecting members may be used to connect the paper roll and the spindle shaft. These include other types of spring members as well as ridges or other contours which serve to provide a rigid rotational connection between
- the journal printer by way of sensing the side surface of the supply roll or other paper feature.
- FIG. 7 An alternative embodiment of a fault indicating apparatus generally indicated 104 is shown in Figure 7. The second embodiment is similar to
- Printer 106 includes a printer drive mechanism schematically indicated 108.
- the printer drive mechanism 108 moves paper 110 through the printer in coordination with the printing of lines of characters thereon.
- the printer drive mechanism 108 causes paper to be pulled from a paper supply roll 112.
- Roll 112 rotates in the direction indicated by Arrow F responsive to movement of the paper by the printer drive mechanism.
- the paper supply roll may be rotatably supported on a spindle or in another suitable manner.
- another form of paper supply such as a stack of fanfold paper may be used instead of a supply
- Paper 110 that is moved by the printer drive mechanism is rewound on a take-up roll 114.
- the take-up roll is moved in the direction indicated by the Arrow T by a take-up roll drive mechanism schematically indicated 116.
- Electronic circuit 118 includes a processor 120.
- the second embodiment also includes a second detector 122 similar to detector 78, which is positioned adjacent the paper supply and is in communication with the electronic circuit 118.
- a detector 124 is positioned between an area where said printer drive mechanism 108 engages the paper and where the paper engages the take-up roll.
- the detector 124 is mounted adjacent to a gap 126.
- the paper 110 extends in the gap and is freely movable therein between the printer drive mechanism and the take-up roll.
- Gap 126 is
- the paper is movable in the gap in a direction that is generally pe ⁇ endicular to a plane of the paper and the direction of movement of the paper through the gap toward the take-up roll.
- Gap 126 is bounded at a first side by a first guide 128.
- Guide 128 includes a paper engaging surface that is preferably angled in a direction generally toward the take-up roll 114 as shown. The relative orientation of take-up roll 114 and guide 128 is such that the paper will generally be positioned adjacent to guide 128 when the paper is relatively taut between
- take-up roll to maintain the paper generally adjacent thereto when the paper is taut.
- Gap 126 is bounded at a side opposed from guide 128 by a guide 130.
- Guide 130 has a paper engaging surface that is preferably angled
- Guide 130 in the preferred embodiment is a tear bar which includes a se ⁇ ated edge 132 at its upper surface (see Figure 8). Edge 132 facilitates cutting the paper when that is desirable, such as when manually preparing a free end of the paper to engage take-up roll 114.
- Detector 124 preferably extends in an opening in guide 130.
- detector 124 is preferably of the electro-optical detector type previously discussed. In other embodiments other types of suitable detectors may be used.
- the apparatus of the second embodiment operates in a manner similar to the first embodiment except as otherwise explained.
- the printer
- the printer drive mechanism 108 moves the paper, generally one line width at a time, as printing is conducted.
- the take-up roll drive mechanism 116 is also operated responsive to the control of the electronic circuit 118 and the processor. In the second embodiment the operations of the printer drive mechanism 108 and the take- up roll drive mechanism 116 are coordinated so they operate in sequence. Specifically, the drive mechanisms are operated so that the printer drive
- the take-up roll drive mechanism 116 moves the take-up roll 114 to remove the slack from the paper in the area between the printer drive mechanism and the take-up roll.
- the coordinated movement of the printer drive mechanism 108 and the take-up roll drive mechanism 116 causes the paper 110 to move in the gap 126 between the positions shown in Figures 8 and 9.
- the printer drive mechanism 108 has moved the paper 110, and the take-up roll drive mechanism 116 has not yet
- the paper extends in the gap generally as shown in Figure 8.
- the slack in the paper and the orientation of guides 128 and 130 causes the paper to move adjacent to guide 130 and detector 124.
- the take-up roll drive mechanism 116 moves the paper a time increment after the printer drive mechanism, the paper moves in the pe ⁇ endicular direction in gap 126. As the take-up roll drive mechanism takes the slack out of the paper, the paper moves adjacent to guide 128 as shown in Figure 9. The paper remains in this position until the printer
- detector 124 is operative to output signals in a manner similar to detector 70 of the first embodiment responsive to paper movement. These signals from detector 124 are delivered to circuit 118.
- circuit 118 includes a self- calibrating triggering sub-circuit 134.
- Sub-circuit 134 is operative to provide a trigger signal to circuit 118 each time the paper moves between generally the positions shown in Figures 9 and 8.
- Sub-circuit 134 is operative to compensate for changes in signals from detector 124 due to changes in conditions such as paper color, paper weight, the diameter of the take-up roll, accumulation of dirt and other
- sub- circuit 134 is operative to adjust how much light must be sensed as reflected from the paper before it generates its signal during each cycle. This is accomplished based on the amount of light that is reflected from the paper in the area adjacent the detector.
- the detector 124 is preferably oriented so that when the paper moves in each cycle from generally the position shown in Figure 9 to generally the position shown in Figure 8, the area of the paper sensed by the detector when the paper was disposed from the detector is generally the same area that is sensed when the paper is moved closer to the detector.
- the generation of the trigger signal from sub-circuit 134 is based on a
- Sub-circuit 134 operates so that
- the threshold level at which the sub-circuit will trigger is appropriately adjusted each time the paper drives move the paper to the position shown in
- the threshold level for generating the signal is determined as a function of the delta or change in reflectance detected from the paper when the paper is disposed away from the detector.
- the threshold may be established as a percentage change in reflectance. However in other embodiments it may be a complex function. This depends on the printing and paper types used in the particular system.
- the threshold level for generating a signal is adjusted based on reflectance when the paper is disposed the extreme distances from the detector, in alternative embodiments the adjustment to the level may be based on the signals from the detector when the paper is in other positions.
- signals are generated by sub-circuit 134 responsive to the cyclical paper movement in coordination with movement of the printer and take-up roll drive mechanisms.
- the processor 120 executes a computer program which includes the steps described in connection with Figure 6 to detect and indicate fault
- step 86 is set to a number of lines that would be printed to produce at least one change of condition of the paper in the gap.
- the second embodiment of the invention avoids the need to employ a spindle in connection with the supply roll 112. Rather a supply roll can be supported in a cradle or other manner. Further, the second embodiment may be used with fanfold paper or another type of paper supply other than a roll. Of course when an alternative form of paper supply is used, detector 122 must be appropriately positioned to detect when the paper supply is
- take-up roll drive mechanism 116 is schematically shown in Figure 7 as electrically operated by the electronic circuit, it should be understood that in embodiments of the invention it may be mechanically operated.
- the take-up roll drive may be mechanically
- connection may include mechanical linkages which provide the coordinated operation of the printer
- the take-up roll drive operates responsive to the signals by the control circuit to the printer drive.
- the signals indicative of paper movement could be based on movement away from a detector or a detector may be placed in connection with guide 128.
- the detector could be positioned adjacent a location of the
- the new fault indicating apparatus of the present invention achieves the above stated objectives, eliminates difficulties encountered in the use of prior devices and systems, solves problems and attains the
- any feature described as a means for performing a function shall be construed as encompassing any means capable of performing the recited function, and shall not be limited to the particular means used for performing the function in the foregoing description, or mere equivalents.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
- Controlling Sheets Or Webs (AREA)
- Handling Of Sheets (AREA)
- Accessory Devices And Overall Control Thereof (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002230345A CA2230345C (en) | 1995-12-07 | 1996-11-07 | Journal printer paper feed fault detection system for automated teller machine |
BR9610762A BR9610762A (en) | 1995-12-07 | 1996-11-07 | Daily printer paper feed failure detection system for cash machine |
EP96939566A EP0873244B1 (en) | 1995-12-07 | 1996-11-07 | Journal printer paper feed fault detection system for automated teller machine |
DE69627889T DE69627889T2 (en) | 1995-12-07 | 1996-11-07 | SYSTEM FOR A MONEY MACHINE FOR DETECTING AN ERROR WHEN PUT PAPER INTO A JOURNAL PRINTER |
MXPA/A/1998/001249A MXPA98001249A (en) | 1995-12-07 | 1998-02-13 | Daily printer paper feeder failure detection system for automatic cash machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/568,887 US5725321A (en) | 1995-12-07 | 1995-12-07 | Journal printer paper feed fault detection system for automated teller machine |
US08/568,887 | 1995-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997020695A1 true WO1997020695A1 (en) | 1997-06-12 |
Family
ID=24273138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/017818 WO1997020695A1 (en) | 1995-12-07 | 1996-11-07 | Journal printer paper feed fault detection system for automated teller machine |
Country Status (9)
Country | Link |
---|---|
US (2) | US5725321A (en) |
EP (1) | EP0873244B1 (en) |
CN (1) | CN1079052C (en) |
BR (1) | BR9610762A (en) |
CA (1) | CA2230345C (en) |
DE (1) | DE69627889T2 (en) |
ES (1) | ES2196188T3 (en) |
RU (1) | RU2152311C1 (en) |
WO (1) | WO1997020695A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19755903A1 (en) * | 1997-12-16 | 1999-06-17 | Hoeft & Wessel Gmbh | Unit continuously measuring stock of paper wound on roll supplying printer |
WO2011098648A1 (en) * | 2010-02-10 | 2011-08-18 | Tkt Brainpower, S. L. | System for holding sheet material for plotters |
EP2093172B1 (en) * | 2008-02-22 | 2015-10-14 | Seiko Instruments Inc. | Paper Feeding Device |
WO2020028032A1 (en) * | 2018-07-30 | 2020-02-06 | Sealed Air Corporation (Us) | Mandrel for holding and aligning film supply rolls |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5725321A (en) * | 1995-12-07 | 1998-03-10 | Interbold | Journal printer paper feed fault detection system for automated teller machine |
DE19707657A1 (en) * | 1997-02-26 | 1998-09-10 | Heidelberger Druckmasch Ag | Sheet sensor for sheet printer with hollow cylindrical drum |
DE29716523U1 (en) * | 1997-09-05 | 1997-11-20 | Francotyp-Postalia AG & Co., 16547 Birkenwerder | Franking machine |
US5853253A (en) * | 1997-10-15 | 1998-12-29 | Eastman Kodak Company | Printer and method adapted to precisely position a dye receiver portion |
EP1033684A1 (en) * | 1999-03-01 | 2000-09-06 | Wayfarer Transit Systems Ltd | Paper dispenser |
US6684765B1 (en) | 1999-11-22 | 2004-02-03 | Seagate Technology Llc | Universal shaft design for automatic wiping |
US6547464B1 (en) * | 1999-12-01 | 2003-04-15 | Diebòld, Incorporated | Automated transaction machine printer |
SE0002533L (en) * | 2000-07-05 | 2001-06-11 | Nybohov Seal System Ab | Device for rational handling of a transmitted and printed message comprising a supply of closure material comprising pulse generating means |
US6648220B1 (en) * | 2000-11-14 | 2003-11-18 | Diebold, Incorporated | Cash dispenser and method |
DE10109882C1 (en) * | 2001-02-22 | 2002-08-01 | Espera Werke Gmbh | Device for printing a strip of tape or labels adhering to a strip of tape |
US7347782B2 (en) * | 2002-08-12 | 2008-03-25 | Futurelogic, Inc. | Paper motion detector in a gaming machine |
US7311245B2 (en) * | 2002-09-12 | 2007-12-25 | Diebold Self-Service Systems Division Of Diebold, Incorporated | Paper jam detection apparatus and method for automated banking machine |
US7007883B2 (en) * | 2003-02-05 | 2006-03-07 | Adalis Corporation | Apparatus and method for dispensing elongated material |
US7104493B2 (en) * | 2003-02-05 | 2006-09-12 | Adalis Corporation | Dispensing apparatus and method |
DE10317139A1 (en) * | 2003-04-14 | 2004-10-28 | Siemens Ag | Method and device for displaying information relating to a plant part of an industrial plant on a mobile display |
JP2006069789A (en) * | 2004-09-06 | 2006-03-16 | Brother Ind Ltd | Roll-shaped printing medium retaining device |
WO2006026839A2 (en) * | 2004-09-09 | 2006-03-16 | Mutoh Europe Nv | Device for attaching a printing media roll to a shaft |
US7258650B2 (en) * | 2005-06-23 | 2007-08-21 | Caterpillar Inc. | Systems and methods for controlling a powertrain |
US7168872B1 (en) | 2006-01-19 | 2007-01-30 | International Business Machines Corporation | Printer paper spooler with error condition detector |
US7878116B2 (en) * | 2007-03-16 | 2011-02-01 | Illinois Tool Works Inc. | Methods and apparatus for engaging web-material cores |
US8568046B2 (en) * | 2007-09-17 | 2013-10-29 | Avery Dennison Corporation | Mounting assembly and method of loading and/or unloading rolls |
JP2009143695A (en) * | 2007-12-14 | 2009-07-02 | Seiko Instruments Inc | Paper feeding device |
JP2011037155A (en) * | 2009-08-12 | 2011-02-24 | Seiko Epson Corp | Tape feeding apparatus and tape printer equipped with the same |
JP5544783B2 (en) * | 2009-08-12 | 2014-07-09 | セイコーエプソン株式会社 | Tape supply device and tape printer provided with the same |
US8424755B1 (en) * | 2010-09-02 | 2013-04-23 | Diebold Self-Service Systems Division Of Diebold, Incorporated | Banking apparatus operated responsive to data bearing records |
US9908737B2 (en) * | 2011-10-07 | 2018-03-06 | Perfectvision Manufacturing, Inc. | Cable reel and reel carrying caddy |
JP6118516B2 (en) * | 2012-07-24 | 2017-04-19 | 富士通コンポーネント株式会社 | Printer device |
JP6257981B2 (en) * | 2013-09-24 | 2018-01-10 | 富士通コンポーネント株式会社 | Near-end detection device, printer |
CN104647910A (en) * | 2015-02-26 | 2015-05-27 | 新石器龙码(北京)科技有限公司 | Printer with paper jam prevention function |
JP6597245B2 (en) * | 2015-12-02 | 2019-10-30 | 株式会社リコー | Conveying apparatus and image forming apparatus |
JP6705188B2 (en) * | 2016-02-01 | 2020-06-03 | 株式会社リコー | Roll body holding device, printing device |
WO2018074994A1 (en) * | 2016-10-17 | 2018-04-26 | Hewlett-Packard Development Company, L.P. | Media supply |
JP7030419B2 (en) * | 2017-04-06 | 2022-03-07 | 株式会社東芝 | Sheet processing equipment |
KR20210015870A (en) * | 2018-05-31 | 2021-02-10 | 킴벌리-클라크 월드와이드, 인크. | Toilet maintenance automation system |
US10479113B1 (en) * | 2018-07-12 | 2019-11-19 | Datamax-O'neil Corporation | Methods, systems, and apparatuses for detecting a media jam condition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3386673A (en) * | 1967-03-30 | 1968-06-04 | Teletype Corp | Wire spring paper spindle |
US4239404A (en) * | 1978-08-17 | 1980-12-16 | Scope Data Incorporated | Paper management system for a printing device |
US4925121A (en) * | 1986-07-01 | 1990-05-15 | Xerox Corporation | Sensing amount of medium and medium roll malfunction in a printer |
US5238198A (en) * | 1989-12-15 | 1993-08-24 | Ncr Corporation | Automatic take-up device for a continuous sheet of paper |
US5417783A (en) * | 1992-11-30 | 1995-05-23 | Moore Business Forms, Inc. | Linerless label dispenser |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA586556A (en) * | 1959-11-10 | Beaudoin Andre | Peg for hollow axle ends | |
US745500A (en) * | 1903-08-12 | 1903-12-01 | Harry Henry Juelg | Interchangeable roll for mechanical musical instruments. |
US1817134A (en) * | 1929-05-25 | 1931-08-04 | Fairchild Aerial Camera Corp | Film spool |
US3833180A (en) * | 1972-09-20 | 1974-09-03 | Carol Stamping And Mfg Inc | Paper roll holder |
JPS5816877A (en) * | 1981-07-24 | 1983-01-31 | Fuji Xerox Co Ltd | Rolled paper feeding mechanism for recorder |
DE3151932A1 (en) * | 1981-12-30 | 1983-07-07 | Agfa-Gevaert Ag, 5090 Leverkusen | DEVICE FOR TRANSPORTING A BAND-SHAPED COPY MATERIAL |
JPS6012466A (en) * | 1983-06-30 | 1985-01-22 | Toshiba Corp | Breaking device for paper |
DE3740806C2 (en) * | 1987-12-02 | 1996-07-25 | Agfa Gevaert Ag | Method for automatically feeding rolls of photographic paper to a photographic printer and apparatus using the method |
US4903100A (en) * | 1988-02-10 | 1990-02-20 | Fuji Photo Film Co., Ltd. | Long strip material handling apparatus |
US4909426A (en) * | 1988-02-10 | 1990-03-20 | Roll Systems, Inc. | Web feed apparatus |
US4892426A (en) * | 1988-06-30 | 1990-01-09 | Unisys Corporation | Paper movement monitor |
DE3833733A1 (en) * | 1988-10-04 | 1990-04-05 | Agfa Gevaert Ag | METHOD AND DEVICE FOR COUPLING DIFFERENT MACHINES FOR PROCESSING TAPE-SHAPED, LIGHT-SENSITIVE PHOTOGRAPHIC MATERIALS |
DE4027938A1 (en) * | 1990-09-04 | 1992-03-05 | Minnesota Mining & Mfg | DEVICE FOR MOVING RECORDING MATERIAL IN A PRINTER DEVICE |
DE4106901C2 (en) * | 1991-03-05 | 1994-05-26 | Kotterer Grafotec | Method and device for monitoring a web |
JPH08153143A (en) * | 1994-11-29 | 1996-06-11 | Fujitsu Ltd | Medium issuing device and automatic transaction device using the same |
US5725321A (en) * | 1995-12-07 | 1998-03-10 | Interbold | Journal printer paper feed fault detection system for automated teller machine |
-
1995
- 1995-12-07 US US08/568,887 patent/US5725321A/en not_active Expired - Fee Related
-
1996
- 1996-11-07 ES ES96939566T patent/ES2196188T3/en not_active Expired - Lifetime
- 1996-11-07 EP EP96939566A patent/EP0873244B1/en not_active Expired - Lifetime
- 1996-11-07 CN CN96197754A patent/CN1079052C/en not_active Expired - Fee Related
- 1996-11-07 DE DE69627889T patent/DE69627889T2/en not_active Expired - Lifetime
- 1996-11-07 RU RU98112344/12A patent/RU2152311C1/en not_active IP Right Cessation
- 1996-11-07 BR BR9610762A patent/BR9610762A/en not_active IP Right Cessation
- 1996-11-07 WO PCT/US1996/017818 patent/WO1997020695A1/en active IP Right Grant
- 1996-11-07 CA CA002230345A patent/CA2230345C/en not_active Expired - Fee Related
-
1998
- 1998-01-29 US US09/015,142 patent/US5879092A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3386673A (en) * | 1967-03-30 | 1968-06-04 | Teletype Corp | Wire spring paper spindle |
US4239404A (en) * | 1978-08-17 | 1980-12-16 | Scope Data Incorporated | Paper management system for a printing device |
US4925121A (en) * | 1986-07-01 | 1990-05-15 | Xerox Corporation | Sensing amount of medium and medium roll malfunction in a printer |
US5238198A (en) * | 1989-12-15 | 1993-08-24 | Ncr Corporation | Automatic take-up device for a continuous sheet of paper |
US5417783A (en) * | 1992-11-30 | 1995-05-23 | Moore Business Forms, Inc. | Linerless label dispenser |
Non-Patent Citations (1)
Title |
---|
See also references of EP0873244A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19755903A1 (en) * | 1997-12-16 | 1999-06-17 | Hoeft & Wessel Gmbh | Unit continuously measuring stock of paper wound on roll supplying printer |
EP2093172B1 (en) * | 2008-02-22 | 2015-10-14 | Seiko Instruments Inc. | Paper Feeding Device |
WO2011098648A1 (en) * | 2010-02-10 | 2011-08-18 | Tkt Brainpower, S. L. | System for holding sheet material for plotters |
ES2371819A1 (en) * | 2010-02-10 | 2012-01-10 | Tkt Brainpower, S.L. | System for holding sheet material for plotters |
RU2570779C2 (en) * | 2010-02-10 | 2015-12-10 | ТиКейТи БРЭЙНПАУЭР, С.Л. | System for sheet material holding for plotters |
US9796553B2 (en) | 2010-02-10 | 2017-10-24 | Tkt Brainpower S.L. | System for holding sheet material for plotters |
WO2020028032A1 (en) * | 2018-07-30 | 2020-02-06 | Sealed Air Corporation (Us) | Mandrel for holding and aligning film supply rolls |
US11305961B2 (en) | 2018-07-30 | 2022-04-19 | Sealed Air Corporation (Us) | Mandrel for holding and aligning film supply rolls |
Also Published As
Publication number | Publication date |
---|---|
DE69627889T2 (en) | 2004-02-26 |
US5879092A (en) | 1999-03-09 |
EP0873244A1 (en) | 1998-10-28 |
RU2152311C1 (en) | 2000-07-10 |
CN1079052C (en) | 2002-02-13 |
EP0873244A4 (en) | 1999-05-19 |
BR9610762A (en) | 1999-07-13 |
CA2230345A1 (en) | 1997-06-12 |
DE69627889D1 (en) | 2003-06-05 |
US5725321A (en) | 1998-03-10 |
ES2196188T3 (en) | 2003-12-16 |
CA2230345C (en) | 2003-07-22 |
CN1200082A (en) | 1998-11-25 |
EP0873244B1 (en) | 2003-05-02 |
MX9801249A (en) | 1998-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0873244B1 (en) | Journal printer paper feed fault detection system for automated teller machine | |
US5779379A (en) | Receipt form handling system for automated banking machine | |
EP0944543B1 (en) | Receipt transport and retrieval system for automated banking machine | |
KR100360608B1 (en) | Paper ejector | |
US7311245B2 (en) | Paper jam detection apparatus and method for automated banking machine | |
US9004256B2 (en) | Medium storing device | |
RU2667587C1 (en) | Device for processing of carriers and carriers transaction device | |
JP2006240773A (en) | Roll paper delivery device, and roll paper delivery method | |
WO2002068965A2 (en) | Sheet movement sensor | |
CA2427875C (en) | Journal printer paper feed fault detection system for automated teller machine | |
MXPA98001249A (en) | Daily printer paper feeder failure detection system for automatic cash machine | |
US5685655A (en) | Security system for unattended printing mechanism | |
JPH04176674A (en) | Printing medium supplying device | |
RU2373069C1 (en) | Fault detection method in journal printer process of automatically bank machine | |
JPH0781801A (en) | Paper sheet carrying device | |
JP2000327196A (en) | Roll sheet supplying device and image forming device | |
EP0971820B1 (en) | automated banking machine | |
US7784680B1 (en) | Delayed annunciation of receipt jam for automated banking machine | |
KR101456717B1 (en) | Transaction process recording apparatus for automated machine | |
JP2954189B1 (en) | Paper feed detection mechanism of thermal printer | |
JPH02110064A (en) | Automatic setting system for roll paper | |
JPH05229721A (en) | Paper feeder | |
JPH04310774A (en) | Apparatus for processing automatic recovery of roll paper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 96197754.X Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CA CN MX RU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 09015142 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1998/001249 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2230345 Country of ref document: CA Ref document number: 2230345 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1996939566 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1996939566 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1996939566 Country of ref document: EP |