WO1997020682A1 - Verfahren und elektroschweissgerät zum selbsttätigen schweissen von heizwendel-fittingen - Google Patents

Verfahren und elektroschweissgerät zum selbsttätigen schweissen von heizwendel-fittingen Download PDF

Info

Publication number
WO1997020682A1
WO1997020682A1 PCT/EP1996/005351 EP9605351W WO9720682A1 WO 1997020682 A1 WO1997020682 A1 WO 1997020682A1 EP 9605351 W EP9605351 W EP 9605351W WO 9720682 A1 WO9720682 A1 WO 9720682A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
preheating
power
fitting
dehumidifying
Prior art date
Application number
PCT/EP1996/005351
Other languages
English (en)
French (fr)
Inventor
Bernd Merle
Original Assignee
Hürner Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7779219&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997020682(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hürner Gmbh filed Critical Hürner Gmbh
Priority to AT96941643T priority Critical patent/ATE194543T1/de
Priority to EP96941643A priority patent/EP0868290B1/de
Publication of WO1997020682A1 publication Critical patent/WO1997020682A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0242Heating, or preheating, e.g. drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91214Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods by measuring the electrical resistance of a resistive element belonging to one of the parts to be welded, said element acting, e.g. as a thermistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9131Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux
    • B29C66/91311Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux by measuring the heat generated by Joule heating or induction heating
    • B29C66/91317Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux by measuring the heat generated by Joule heating or induction heating by measuring the electrical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • B29C66/91645Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91653Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the voltage, i.e. the electric potential difference or electric tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91655Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the current intensity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91951Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/953Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the humidity
    • B29C66/9532Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the humidity of the parts to be joined, i.e. taking the humidity of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/967Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes
    • B29C66/9672Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving special data inputs or special data outputs, e.g. for monitoring purposes involving special data inputs, e.g. involving barcodes, RFID tags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams

Definitions

  • the invention relates to a method for the automatic welding of heating coil fittings, essentially made of plastic, according to the preamble of claim 1.
  • a variant of the invention relates to a corresponding electro-welding device for the automatic welding of heating coil fittings, essentially made of plastic, according to the preamble of claim 7.
  • fittings made of plastic tubes in particular gas conduit tubes made of plastic, are frequently used, which likewise essentially consist of plastic and which have an electrical coil made of conductive material on their inner surface.
  • the coil is subjected to such a large welding current that the plastic in the fitting and on the pipe ends can fuse and then harden.
  • the plastic parts consist in particular of polyethylene.
  • the ambient temperature was already supplied before or during the welding process for dimensioning the welding coil during the welding process electrical energy or work billed.
  • the welding time is predetermined as a function of the data of the pipe and the fitting to be welded and of the ambient temperature, which is variably formed from the ambient temperature from an incrementally formed basic time.
  • the welding voltage which drives the welding current through the coil of the fitting, is dependent on the data of the Fittings, in particular the diameter of which is specified and kept constant regardless of the formation of the welding time.
  • the welding voltage is switched off in a time-controlled manner independently of this.
  • the fitting and pipe data are entered manually. This also applies to entering the ambient temperature. For this reason, it is additionally disadvantageous in this electric welding device that there is a risk of incorrect input by means of keys that the welding is not carried out optimally without an immediate input
  • an ambient temperature sensor known (FR-A-25 72 326).
  • the barcode is included on an identification card which is connected to the heating coil fitting.
  • the data sampled by the scanner is fed into an input of a control device via a pulse shaper and a decoder and via a test circuit.
  • 2Q lers entered, which regulates a measuring current.
  • the controller should regulate the intensity and duration of the heating process or welding.
  • the welding program is changed according to the measured temperature. However, it is always a question of a single welding step without any other temperature
  • 3 0 can regulate the welding current and the welding time.
  • the latter electric welding machine like all other known electric welding machines, is also subject to the restriction that the welding quality is not optimal in the temperature range of typically 10 ° C. to -30 ° C. when used in areas with high air humidity and relatively low temperature is. This makes repairing by welding 0 particularly problematic during the winter. This means that at temperatures lower than 5 ° C to about -10 ° C the welding may only be carried out with additional measures such as a heated assembly room, usually a tent, the additional measures being a temperature of the welding point, ie the 2 5 welding surfaces of the fitting and the pipe to be welded, as well as the air in between, of at least 5 ° C. However, despite the additional measures, it is not certain that this minimum temperature will be reached at the welding point. 0
  • the present invention is therefore based on the object of improving a method for the automatic welding of heating coil fittings essentially made of plastic of the type mentioned at the outset in such a way that, without a heated assembly space, reliable welding even at low ambient temperatures and high atmospheric humidity is guaranteed.
  • This object is achieved by further developing the method with the method steps specified in the characterizing part of claim 1.
  • Both the method and the electric welding device contain a control or regulation that is based on the specification of a
  • the parameters required to form the preheating power are determined by measuring the ambient temperature and recording the barcode data 5 specific for the fitting, for which the heating coil resistance can also be measured .
  • the heating coil resistance in conjunction with its temperature coefficient and the ambient temperature measured at the time of measurement temperature is an option for checking and correcting the other data or the assumptions on which it is based.
  • there is practically no temperature increase when measuring the heating coil resistance In contrast to the preheating and dehumidifying step, however, there is practically no temperature increase when measuring the heating coil resistance.
  • the preheating energy required is calculated from these data, which in turn, when the preheating power is fixed, gives the preheating and dehumidifying duration.
  • the preheating and dehumidifying time can be influenced in a further development in accordance with the voltage applied to the heating winding during preheating.
  • the increased temperature to which the welding surfaces of the fitting and an adjacent pipe with which the fitting is to be welded and the air between the welding surfaces are preheated during the preheating and dehumidifying period are to be preheated according to claim 2 ⁇ range from 25 - 50 ° C. This also ensures that existing moisture at the welding point evaporates with relatively low preheating work or preheating energy.
  • the preheating power is expedient according to claim 3 10-30% of the welding power that is applied during the actual welding step.
  • the preheating energy introduced into the fitting with the preheating and dehumidifying step is deducted from the welding energy in order not to falsify its optimum value. If according to claim 5 is preheated to a predetermined temperature, that is to say not fluctuating within a defined temperature range, the same initial conditions are always present for the welding. In this case, the welding energy can be determined from the outset in such a way that no adaptation, ie reduction of the welding work or welding energy, has to take place depending on the preheating energy applied.
  • the preheating energy and preheating and dehumidifying time required for the preheating and dehumidifying step depend in particular on the ambient temperature of the welding surfaces
  • Fig. 2 is a flowchart of the method for automatic welding
  • Fig. 3 is a timing diagram showing the time dependence of the electrical power with which a heating coil of a fitting is applied.
  • the preheating and dehumidifying step which precedes the actual welding step is largely independent of the manner in which the welding step is carried out.
  • the following exemplary embodiment is based on an electric welding device for carrying out the welding step, in which the target welding work data of the fitting are entered into a controller for comparison with signals from the welding work, and for the limit data of permissible welding times of the fitting into a welding time monitoring device are fed by the controller.
  • the controller is connected to circuits on a computer which generate signals of the actual welding work from the recorded welding power and from the actual welding time.
  • the welding time monitoring device compares the current welding time with the limit data of permissible welding times. If the permissible welding times are exceeded or undershot, a blocking device for stopping the welding current and / or a signaling device is triggered.
  • a heating coil fitting provided for welding with plastic tubes is designated by 1. It has connections h1 and h2 connected to its heating coil.
  • a label 2 with data in the form of a bar code is applied to its outside.
  • the data can be picked up by a scanner 3 belonging to the electric welding device.
  • An output of the scanner is connected to a converter 4, which converts the converted and decoded data for further processing.
  • Outputs of the converter are denoted by XO to X9. Each of these outputs is assigned specific data by the internal organization of the converter.
  • the converter can be implemented in particular by a small central computer unit.
  • Another input of the converter is connected to a temperature sensor 5, which detects the respective ambient temperature.
  • the scanner 3 uses the bar code of the label in particular to scan a normalized target welding work for the fitting in question, which is fed from the output XO of the converter 4 into a computer 6 for forming a target welding work.
  • the temperature sensor 5 which detects the ambient temperature of the fitting and feeds it via the converter 4 into the computer 6 via the line X t .
  • Signals corresponding to the possibly temperature-corrected target welding work are input into a first input 7 as the target value input of a controller 8 which controls the welding power P Schw for a welding duration and thus the actual welding work A Schw , cf. Fig. 3, regulates.
  • the regulation is expediently carried out by checking the effective value of the welding current while checking by returning the welding current and the welding voltage.
  • the effective values of the welding current and the welding voltage are formed with integrated circuits 9, 10 and fed into the controller 8 connected to a computer 11 for calculating the actual welding work. Further inputs of the controller are located on an interface 12 between the computer 11 and the controller 8.
  • the computer 6 for the target welding work, the computer 11 for the actual welding work and the controller 8 and others, below Functional groups explained can be implemented by a microprocessor unit with internal memories (EPROM and RAM) and a sequence control.
  • An output of the controller 8 is connected to a power stage 13 which emits the welding current I Schw specified by the controller and the welding voltage U Schw and thus the welding line P Schu .
  • the controller 8 and the power stage 13 are connected to a locking device 14 which, after actuation of a start button 15 and further steps (see below), triggers the welding current in accordance with a sequence control, not shown, until a signal from the controller 8 which switches off the welding current or another blocking signal reaches the blocking device via a blocking input 16.
  • a counter 17 fed by a clock generator (not shown) counts up the welding time as long as the welding current ⁇ schw is emitted by the power stage 13. The counting process is ended when the welding current is stopped by the blocking device 14.
  • a welding time signal is fed into the computer 11 from an output ZO of the counter. An identical welding time signal is available at the output Z1 of the counter for an additional, secondary monitoring process.
  • a resistance correction and comparison device 18 as well as monitoring devices 19 - 22 for the input voltage from which the welding voltage is formed, the frequency, the welding time and the welding voltage is provided. The outputs of these monitoring devices are connected via an AND gate 23 to a signaling device 24, a printer 25 and to the locking device 14 via a locking input 16.
  • the resistance correction and comparison device 18 checks whether the value scanned by the label 2 of the resistance of the heating coil fitting coincides with the actual resistance value, which is measured with a resistance measuring circuit 27. It should be noted that for measuring the resistance in the heating coil such a small measuring current flows that practically no heating of the heating coil occurs.
  • the resistance correction and comparison device 18 which is connected internally to a memory 29, in which data of the reference resistance of the fitting related to a reference temperature, as well as a temperature factor of the resistance, read in from the converter from the label, is only used to determine whether the actual resistance, which is measured and which is based on a constant reference temperature of, for example, 20 ° C., corresponds to the target resistance within predefined limit values.
  • the following are also monitored: the input voltage with the voltage monitoring device 19 by comparison with predetermined limit values of the input voltage that are input from a memory X3, and the frequency of the input voltage with the frequency monitoring device 20 by comparison with the limit values stored in a memory X4 the frequency.
  • the welding voltage monitoring device 22 compares the effective value of the welding voltage U Schw with limit values of the welding voltage which are present at the output X6 of the converter 4.
  • the welding time monitoring device 21 monitors that the actual welding time counted with the counter 17 lies within limit values of the welding time which are introduced into the welding time monitoring device by an output X5 of the converter 4.
  • the printer 25 can be used, among other things, to log deviations of the monitored operating parameters or welding parameters that exceed the limit values.
  • a preheating line and preheating time control device 32 which is acted upon by outputs X7 and X8 of the converter 4 with signals of a preheating power and a preheating time, which is picked up as data by the scanner 3 from the label 2 were.
  • the preheating power and preheating time control device 32 is connected to the converter via a line X t , which carries a signal corresponding to the ambient temperature detected by the temperature sensor 5.
  • the sequence control is also influenced, in such a way that the welding process step discussed above is preceded by a preheating and dehumidifying step, which is denoted by S4 in the flow chart according to FIG. 2.
  • This preheating and dehumidifying step is activated when the ambient temperature drops below a predetermined value, for example 20 ° C. This is indicated by decision point S3 in FIG. 2.
  • the preheating and preheating time control device 32 in FIG. 1 is activated by the sequence control according to the signals of the preheating power and preheating time or preheating time fed in 32.
  • the preheating power and preheating time control device 32 then emits via the power stage 13 a preheating power P Vorw which is reduced compared to the welding power P Schw during the time period t 1 -t 2 , cf. Fig. 3.
  • the pre The heat output and / or preheating and dehumidifying duration is additionally monitored by a preheating monitoring device 33, which receives the corresponding actual signals via a line C x from the preheating power and preheating time control device 32. If the preheating output or the preheating and dehumidifying duration are not within the specified tolerance range, the preheating monitoring device 33 reports this error via the AND gate 23 to the signaling device 24 and the printer 25.
  • the selection device corresponding to decision point S3 in the flow chart is designated by 34 in the block diagram according to FIG. 1. It is connected to an output X9 of the converter, from which a signal is sent to the selection
  • direction 34 is fed which corresponds to the predetermined lower
  • the selection device receives a signal from line X t for comparison with this predetermined value
  • __ which represents the current ambient temperature. If the current ambient temperature falls below the predetermined value of, for example, 20 ° C., not only is the preheating power and preheating time control device 32 activated, but also one via the output 35 of the selection device
  • Welding energy adjustment device 36 is activated, specifically when the target welding work is not related as a constant value based on a predetermined specific temperature of the fitting, for example 25 ° C., which represents a constant initial condition for the welding. If, however, with the
  • the welding energy adjustment device 36 takes into account whether a preheating and dehumidifying step takes place before the welding step or
  • the target welding work can be reduced by the preheating and dehumidifying work.
  • work is synonymous with electrical energy.
  • the preheating is carried out with a preheating power P Vo ⁇ rw reduced compared to the welding power P Schw , which can amount to 10-30% of the welding power.
  • the preheating and dehumidifying time t x - t 3 is long enough to reliably evaporate all moisture even in the worst case at low temperatures and a lot of condensate in the area of the welding surfaces. Only then does the actual welding step take place with the welding power P Schw during the welding time t 2 - t 3 .
  • the total energy or work supplied to the fitting consisting of the preheating work A Vorw between t ⁇ and t 2 5 and the welding work A Schu between t x and t 3, is sufficient to ensure reliable welding under all ambient conditions, in particular at low ambient temperatures, to ensure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

Bei einem Verfahren zum selbsttätigen Schweißen von Heizwendel-Fittingen im wesentlichen aus Kunststoff werden Daten des Fittings, insbesondere von einem Datenträger des Fittings, selbsttätig abgelesen. Aufgrund dieser Daten sowie unter Berücksichtigung der Umgebungstemperatur wird die Schweißleistungszufuhr an den Heizwendel gesteuert. Damit eine sichere Schweißung auch bei niedriger Umgebungstemperatur und hoher Luftfeuchte ohne beheizten Montageraum erfolgen kann, wird bei Unterschreiten eines vorgegebenen Werts der Umgebungstemperatur dem Schritt der Schweißleistungszufuhr (PSchw) an den Heizwendel ein Vorwärm- und Entfeuchtungsschritt vorgeschaltet. Bei letzterem Schritt wird der Heizwendel mit einer gegenüber der Schweißleistung (PSchw) reduzierten Vorwärmleistung (PVorw) beaufschlagt, bis die Schweißflächen des Fittings (1) und eines benachbarten Rohrs sowie die zwischen den Schweißflächen befindliche Luft auf eine gegenüber der Umgebungstemperatur erhöhte Temperatur, bei welcher der Kunststoff noch nicht plastifiziert wird, während einer vorgegebenen Vorwärm- und Entfeuchtungsdauer (t1 - t2) vorgewärmt werden.

Description

Verfahren und Elektroschweißgerät zum selbsttätigen Schweißen von Heizwendel-Fittingen
Die Erfindung betrifft ein Verfahren zum selbsttätigen Schwei¬ ßen von Heizwendel-Fittingen im wesentlichen aus Kunststoff gemäß dem Oberbegriff des Anspruchs 1.
Eine Variante der Erfindung betrifft ein entsprechendes Elek¬ troschweißgerät zum selbsttätigen Schweißen von Heizwendel- Fittingen im wesentlichen aus Kunststoff gemäß dem Oberbegriff des Anspruchs 7.
Zum Verbinden aus Kunststoffröhren, insbesondere Gasleitungs¬ rohren aus Kunststoff, dienen nach dem Stand der Technik häu¬ fig Fittinge, die ebenfalls im wesentlichen aus Kunststoff bestehen und die auf ihrer Innenfläche eine elektrische Spule aus leitendem Material aufweisen. Die Spule wird zum Verbinden der Rohrenden mittels des Fittings mit einem so großen Schweißstrom beaufschlagt, daß der Kunststoff im Fitting und auf den Rohrenden verschmelzen und anschließend aushärten kann. Die Kunststoffteile bestehen insbesondere aus Polyäthy¬ len.
Um auch bei verschiedenen Umgebungsbedingungen, insbesondere der Umgebungstemperatur, den richtigen Schmelzgrad des Kunst¬ stoffs des Fittings, welches mit einem Rohr zu verbinden ist, zu erreichen, wurde bereits die Umgebungstemperatur vor bzw. während des Schweißvorgangs zur Bemessung der dem Heizwendel wäherend des Schweißens zugeführten elektrischen Energie oder Arbeit in Rechnung gestellt.
Im einzelnen wird bei einem aus der Praxis bekannten Elektro¬ schweißgerät in Abhängigkeit von den Daten des zu schweißenden Rohrs und des Fittings sowie von der Umgebungstemperatur die Schweißzeit vorgegeben, die aus einer inkremental gebildeten Grundzeit von der Umgebungstemperatur variabel gebildet wird. Die Schweißspannung, welche den Schweißstrom durch die Spule des Fittings treibt, wird in Abhängigkeit von den Daten des Fittings, insbesondere dessen Durchmesser vorgegeben und unabhängig von der Bildung der Schweißzeit konstant gehalten. Die Abschaltung der Schweißspannung erfolgt von dieser unab¬ hängig zeitgesteuert. Die Eingabe der Daten des Fittings und des Rohrs wird manuell durchgeführt. Dies gilt auch für die Eingabe der Umgebungstemperatur. Deswegen ist bei diesem Elek- troschweißgerät zusätzlich nachteilig, daß durch falsche Ein¬ gabe mittels Tasten die Gefahr besteht, daß die Schweißung nicht optimal durchgeführt wird, ohne hierüber eine unmittel¬
1 0 bare Kontrolle zu erlauben.
Es ist aber auch eine weitgehend automatisierte Eingabe der Daten des Fittings durch Abtasten eines Strichcodes sowie eine selbsttätige Berücksichtigung der Umgebungstemperatur mit
15 einem Umgebungstemperaturfühler bekannt (FR-A-25 72 326) . Der Strichcode ist auf einer Kennkarte enthalten, die mit dem Heizwendelfitting verbunden ist. Die von dem Abtaster abgeta¬ steten Daten werden über einen Pulsformer und einen Decodierer sowie über einen PrüfSchaltkreis in einen Eingang eines Reg-
2Q lers eingegeben, welcher einen Meßstrom regelt. Generell soll der Regler die Intensität und die Dauer des Heizvorgangs bzw. der Schweißung regeln. Das Schweißprogramm wird entsprechend der gemessenen Temperatur geändert. Es handelt sich aber stets darum, einen einzigen Schweißschritt ohne sonstige Temperatur-
2g beeinflussung des Fittings oder des Rohrs durchzuführen. Ein zusätzlicher Nachteil dieses Elektroschweißgeräts besteht darin, daß eine Fülle von einzelnen Parametern einzugeben und mit dem Schweißprogramm zu verknüpfen sind, damit der Regler mit dem annäherend optimalen Schweißfaktor die Schweißleistung
30 über den Schweißstrom und die Schweißzeitdauer regeln kann.
Diesem Nachteil wurde abgeholfen, um wenigstens in einem be¬ stimmten Umgebungstemperaturbereich mit hoher Sicherheit eine ordungsgemäße Schweißung mit annähernd optimalem Schweißfaktor oc ohne umständliche Bildung bzw. Veränderung eines Schweißpro¬ gramms zu erreichen (EP 0 335 010 Bl) . Bei diesem bekannten Elektroschweißgerät wird die für den optimalen Schweißfaktor maßgebende Größe, nämlich die Soll-Schweißarbeit, direkt durch Abtastung in die Steuerungseinrichtung eingespeist, die einen Regler umfaßt, der diese Soll-Schweißarbeit mit der jeweils aktuellen Ist-Schweißarbeit vergleicht. Bei Gleichheit dieser Größen wird die Schweißung beendet. Zur Überwachung der Gren¬ zen der Schweißzeit ist zusätzlich eine Schweißzeitüberwa- chungseinrichtung vorgesehen, welche die von dem Fitting abge¬ tasteten Grenzdaten zulässiger Schweißzeiten aufnimmt, die Grenzen zulässiger Schweißzeiten mit der Ist-Schweißzeit ver¬
10 gleicht und bei Über- bzw. Unterschreiten der zulässigen Schweißzeiten eine Sperreinrichtung zum Stoppen des Schwei߬ stromes und/oder eine Meldeeinrichtung auslöst.
Auch dem letztgenannten Elektrogeschweißgerät wie allen ande- , r ren bekannten Elektroschweißgeräten haftet jedoch die Ein¬ schränkung an, daß die Schweißgüte beim Einsatz in Bereichen mit hoher Luftfeuchtigkeit und relativ niedriger Temperatur in dem Temperaturbereich von typisch 10°C bis -30°C nicht optimal ist. Dadurch wird insbesondere eine Reparatur durch Schweißen 0 während des Winters problematisch. Dies führt dazu, daß bei Temperaturen niedriger als 5°C bis etwa -10°C die Verschwei¬ ßung nur mit Zusatzmaßnahmen wie einem beheizten Montageraum, in der Regel einem Zelt, durchgeführt werden darf, wobei die Zuεatzmaßnahmen eine Temperatur der Schweißstelle, d.h. der 25 Schweißflächen des Fittings und des zu schweißenden Rohrs sowie der dazwischen befindlichen Luft, von mindestens 5°C sicherstellen sollen. Daε Erreichen dieser Mindesttemperatur an der Schweißstelle ist jedoch trotz der Zusatzmaßnahmen nicht sicher. 0
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum selbsttätigen Schweißen von Heizwendelfit- tingen im wesentlichen aus Kunststoff der eingangs genannten Gattung dahingehend zu verbessern, daß ohne beheizten Montage- r- räum eine sichere Schweißung auch bei niedriger Umgebungstem¬ peratur und hoher Luftfeuchte gewährleistet wird. , Diese Aufgabe wird durch die Weiterbildung des Verfahrens mit den in dem kennzeichnenden Teil des Anspruchs 1 angegebenen Verfahrensschritten erreicht.
5 Eine Elektroschweißgerät, welches sich besonders zur Durch¬ führung dieses Verfahrens eignet, ist in Anspruch 7 angegeben.
Sowohl das Verfahren als auch das Elektroschweißgerät beinhal¬ ten eine Steuerung bzw. Regelung, die von der Vorgabe einer
10 Vorwärm- und Entfeuchtungsenergiemenge ausgeht, die erforder¬ lich ist, um die Schweißzone am Rohr sowie am Fitting so weit vorzuwärmen, d.h. durchzuwärmen, daß sich eine Temperatur der Schweißflächen und der dazwischen befindlichen Luft in dem Bereich zwischen 25 - 50°C für eine definierte Zeit, welche
- r- insbesondere von der Außentemperatur, der Baugröße des Fit¬ tings und der Schweißflächen abhängig ist, einstellt. Dabei iεt wesentlich, daß es sich nicht um eine bloße Verlängerung bzw. Variation der Schweißzeit mit konstanter Schweißleistung handelt, sondern um einen der eigentlichen Schweißung vorange¬ 0 henden Vorwärm- und Entfeuchtungsschritt mit herabgesetzter Vorwärmleistung einer Vorwärm- und Entfeuchtungsdauer, die mit Sicherheit ausreicht, um auch bei hoher Luftfeuchtigkeit, die nicht erfaßt zu werden braucht, sämtliche kondensierte Feuchte von den Schweißflächen zu beseitigen.
25
Damit wird in weiter vorteilhafter Weise die Bildung von Gas- lunkern in der Schweißfläche durch eingeschlossenen Wasser¬ dampf verhindert.
0 Die erforderlichen Parameter zur Bildung der gegenüber der Schweißleistung reduzierten Vorwärmleistung, die über eine bestimmte Vorwärm- und Entfeuchtungsdauer den Heizwendel be¬ aufschlagt, werden durch Messung der Umgebungstemperatur und Erfassung der für das Fitting produktspezifischen Barcodedaten 5 ermittelt, wozu auch der Heizwendelwiderstand gemessen werden kann. Der Heizwendelwiderstand gibt in Verbindung mit dessen Temperaturbeiwert und der zum Meßzeitpunkt gemessenen Umge- bungstemperatur eine Prüfungs- und Korrekturmöglichkeit für die anderen Daten bzw. die ihnen zugrundeliegenden Annahmen. Bei der Messung des Heizwendelwiderstands tritt jedoch im Unterschied zu dem Vorwärm- und Entfeuchtungsschritt praktisch keine Temperaturerhöhung ein. Aus diesen Daten wird die erfor¬ derlich Vorwärmenergie errechnet, aus der sich wiederum, wenn die Vorwärmleistung festgelegt ist, die Vorwärm- und Entfeuch¬ tungsdauer ergibt. Die Vorwärm- und Entfeuchtungsdauer kann in einer Weiterbildung nach Maßgabe der während des Vorwärmens an der Heizwicklung anliegenden Spannung beeinflußt werden.
Weitere vorteilhafte Ausgestaltungen des Verfahrens ergeben sich aus den Ansprüchen 2 - 6.
Vorteilhafte Weiterbildungen des Elektroschweißgeräts sind in Ansprüchen 8 - 12 angegeben.
Im einzelnen soll nach Anspruch 2 die erhöhte Temperatur, auf welche die Schweißflächen des Fittings und eines benachbarten Rohrs, mit dem das Fitting zu verschweißen ist, sowie die zwischen den Schweißflächen befindliche Luft während der Vor¬ wärm- und Entfeuchtungsdauer vorgewärmt werden, in dem Tempe¬ raturbereich von 25 - 50°C liegen. Damit wird auch sicherge¬ stellt, daß vorhandene Feuchte an der Schweißstelle bei rela- tiv niedriger Vorwärmarbeit oder Vorwärmenergie verdampft.
Die Vorwärmleistung beträgt dabei zweckmäßig nach Anspruch 3 10 - 30 % der Schweißleistung, die während des eigentlichen Schweißschrittes aufgebracht wird.
Insoweit die Schweißenergie bzw. Schweißarbeit nach Maßgabe der Umgebungstemperatur ermittelt ist, wird nach Anspruch 4 die mit dem Vorwärm- und Entfeuchtungsschritt in das Fitting eingebrachte Vorwärmenergie von der Schweißenergie in Abzug gebracht, um deren optimalen Wert nicht zu verfälschen. Wenn gemäß Anspruch 5 auf eine vorgegebene Temperatur, die also nicht innerhalb eines definierten Temperaturbereichs schwankt, vorgewärmt wird, liegen für die Schweißung stets die gleichen Ausgangsbedingungen vor. Im diesem Fall kann von vornherein die Schweißenergie so ermittelt werden, daß keine Anpassung, d.h. Herabsetzung der Schweißarbeit oder Schwei߬ energie, abhängig von der aufgebrachten Vorwärmenergie zu erfolgen hat.
10 Eine zusätzliche Sicherung der optimalen Schweißung erfolgt gemäß Anspruch 6 dadurch, daß die Vorwärm- und Entfeuchtungs- arbeit auf die Einhaltung des Kriteriums selbsttätig überwacht wird, daß der Heizwendel mit der Vorwärm- und Entfeuchtungε- arbeit innerhalb eines vorgegebenen Zeitrahmens der Vorwärm- 15 und Entfeuchtungsdauer beaufschlagt wird.
Die für den Vorwärm- und Entfeuchtungsschritt erforderliche Vorwärmenergie und Vorwärm- und Entfeuchtungsdauer hängen im einzelnen von der Umgebungstemperatur der Schweißflächen an
n dem Rohr und an dem zu verschweißenden Fitting, dem Wärmeleit¬ wert der Materialien, der Stärke der Materialien bzw. der Größe der Schweißflächen, dem Spalt zwischen dem Rohr und dem Fitting in der Schweißzone, dem Heizwendeldrahtdurchmesser, dem Temperaturbeiwert des Heizwendeis, dem Heizwendelwider-
„-- stand, dem Abstand und der Lage des Heizwendeis in dem Fitting ab.
Die besonderen Merkmale des Elektroschweißgeräts nach den Ansprüchen 8 - 12 ergeben sich aus den erläuterten vorteilhaf¬
30 ten Verfahrensschritten sinngemäß. Sie werden mit einem gerin¬ gen apparatetechnischen Aufwand erreicht. Dabei können Bau¬ gruppen und Bauelemente einer üblichen Steuerung weitgehend mit genutzt werden, so daß nur wenige zusätzliche Elemente und Baugruppen erforderlich sind.
35
Die Erfindung wird im folgenden anhand einer Zeichnung mit drei Figuren erläutert. Es zeigt: Fig. 1 ein Blockschaltbild des schematisierten Elektro¬ schweißgeräts,
Fig. 2 ein Ablaufdiagramm des Verfahrens zum selbsttätigen Schweißen und
Fig. 3 ein Zeitdiagramm, welches die zeitliche Abhängigkeit der elektrischen Leistung darstellt, mit der ein Heizwendel eines Fittings beaufschlagt wird.
Es sei vorweggeschickt, daß der Vorwärm- und Entfeuchtungs- schritt, der dem eigentlichen Schweißschritt vorangeht, weit¬ gehend unabhängig von der Art und Weise ist, wie der Schwei߬ schritt durchgeführt wird. Das nachfolgende Ausführungsbei- spiel geht von einem Elektroschweißgerät zur Durchführung des Schweißschritts aus, bei dem Soll-Schweißarbeitdaten des Fit¬ tings in einen Regler zum Vergleich mit Signalen der Schwei߬ arbeit eingegeben werden und bei dem Grenzdaten zulässiger Schweißzeiten des Fittings in eine Schweißzeitüberwachungs- einrichtung von dem Regler eingespeist werden. Der Regler ist mit Schaltkreisen eines Rechners verbunden, welche Signale der Ist-Schweißarbeit aus der erfaßten Schweißleistung sowie aus der Ist-Schweißzeit erzeugen. Die Schweißzeitüberwachungsein- richtung vergleicht die aktuelle Schweißzeit mit den Grenz- daten zulässiger Schweißzeiten. Bei Über- oder Unterschreiten der zulässigen Schweißzeiten wird eine Sperreinrichtung zum Stoppen deε Schweißstromes und/oder eine Meldeeinrichtung ausgelöst .
In Fig. 1 ist ein zum Verschweißen mit Kunststoffröhren vor¬ gesehener Heizwendel-Fitting mit 1 bezeichnet. Er weist mit seinem Heizwendel verbundene Anschlüsse hl und h2 auf. Auf seiner Außenseite ist ein Etikett 2 mit Daten in Form eines Strichcodes aufgebracht.
Die Daten können von einem zu dem Elektroschweißgerät gehören¬ den Abtaster 3 abgegriffen werden. Ein Ausgang des Abtasters ist an einen Umsetzer 4 angeschlossen, welcher die abgetaste- ten Daten zur Weiterverarbeitung umsetzt und decodiert. Aus¬ gänge des Umsetzers sind mit XO bis X9 bezeichnet. Jeder die¬ ser Ausgänge ist bestimmten Daten durch die interne Organisa¬ tion des Umsetzers zugeordnet. Der Umsetzer kann insbesondere durch eine kleine Zentralrechnereinheit verwirklicht sein. Ein weiterer Eingang des Umsetzers ist mit einem Temperaturfühler 5 verbunden, der die jeweilige Umgebungstemperatur erfaßt.
Mit dem Abtaster 3 wird von dem Strichcode des Etiketts ins¬ besondere eine normierte Soll-Schweißarbeit für den betreffen¬ den Fitting abgetastet, der von dem Ausgang XO des Umsetzers 4 in einen Rechner 6 zur Bildung einer Soll-Schweißarbeit eingespeist wird.
Insoweit die Soll-Schweißarbeit temperaturkorrigiert sein soll, wird von dem Temperaturfühler 5 Gebrauch gemacht, wel¬ cher die Umgebungstemperatur des Fittings erfaßt und über den Umsetzer 4 in den Rechner 6 über die Leitung Xt einspeist .
Signale entsprechend der gegebenenfalls temperaturkorrigierten Soll-Schweißarbeit werden in einen ersten Eingang 7 als Soll- werteingang eines Reglers 8 eingegeben, der die Schweißlei¬ stung PSchw für eine Schweißdauer steuert und damit die Ist- Schweißarbeit ASchw, vgl. Fig. 3, einregelt.
Die Regelung erfolgt zweckmäßig durch Kontrolle des Effektiv¬ werts des Schweißεtroms bei gleichzeitiger Kontrolle durch Rückführung des Schweißstroms und der Schweißspannung. Dazu werden die Effektivwerte des Schweißstroms und der Schwei߬ spannung mit integrierten Schaltkreisen 9,10 gebildet und in den mit einem Rechner ll zu Errechnung der Ist-Schweißarbeit verbundenen Regler 8 eingespeist. Weitere Eingänge des Reglers befinden sich an einer Schnittstelle 12 zwischen dem Rechner 11 und dem Regler 8.
Der Rechner 6 für die Soll-Schweißarbeit, der Rechner 11 für die Ist-Schweißarbeit sowie der Regler 8 und weitere, unten erläuterte Funktionsgruppen können durch eine Mikroprozessor¬ einheit mit internen Speichern (EPROM und RAM) sowie eine Ablaufsteuerung realisiert sein.
Ein Ausgang des Reglers 8 steht mit einer Leistungsstufe 13 in Verbindung, die den von dem Regler vorgegebenen Schweißstrom ISchw sowie die Schweißspannung USchw und damit die Schweißlei- εtung PSchu abgibt. Der Regler 8 und die Leistungsεtufe 13 stehen mit einer Sperreinrichtung 14 in Verbindung, die nach Betätigung eines Startknopfes 15 und weiteren Schritten (siehe unten) nach Maßgabe einer nicht dargestellten Ablaufsteuerung den Schweißstrom auslöst, bis ein den Schweißstrom abschal¬ tendes Signal von dem Regler 8 oder ein anderes sperrendes Signal über einen Sperreingang 16 in die Sperreinrichtung gelangt.
Ein von einem nicht dargestellen Taktgenerator gespeister Zähler 17 zählt die Schweißzeit hoch, solange der Schweißεtrom ϊschw von der Leistungsstufe 13 abgegeben wird. Der ZählVorgang wird beendet, wenn der Schweißstrom durch die Sperreinrichtung 14 gestoppt wird. Von einem Ausgang ZO des Zählers wird ein Schweißzeitsignal in den Rechner 11 eingespeist. Ein gleiches Schweißzeitsignal steht an dem Ausgang Zl des Zählers für einen zusätzlichen, sekundären Überwachungsvorgang zur Ver- fügung. Zur sekundären Überwachung verschiedener Größen, wel¬ che die Güte der Schweißung beeinflussen, sind eine Wider¬ standskorrektur- und Vergleichseinrichtung 18 sowie Überwa¬ chungseinrichtungen 19 - 22 für die Eingangsspannung, aus dem die Schweißspannung gebildet wird, die Frequenz, die Schwei߬ zeit und die Schweißspannung vorgesehen. Die Ausgänge dieser Überwachungseinrichtungen sind über ein UND-Glied 23 zusammen¬ geführt an eine Meldeeinrichtung 24, einen Drucker 25 sowie an die Sperreinrichtung 14 über einen Sperreingang 16 angeschlos¬ sen.
Mit der Widerstandskorrektur- und Vergleichseinrichtung 18 wird kontrolliert, ob der von dem Etikett 2 abgetastete Wert des Widerstands des Heizwendel-Fittings mit dem tatsächlichen Widerstandswert übereinstimmt, der mit einem Widerεtandsmeß- kreis 27 gemessen wird. Es sei vermerkt, daß zur Messung des Widerstands in dem Heizwendel ein so geringer Meßstrom fließt, daß praktisch keine Erwärmung des Heizwendeis eintritt.
Wenn bei größeren Abweichungen deε abgetasteten Widerstands- werts von dem tatsächlichen Widerstandswert keine zuverlässige Schweißung garantiert werden kann, wird der Schweißvorgang verhindert und der Fehler gemeldet. Dieser Ablauf ist in Fig. 2 bei S2 dargestellt. In dem vorangehenden Bereich des Ablauf- diagramms Sl sind die Vorbereitungsarbeiten einschließlich des geschilderten Einlesens des Codes von dem Etikett 2 in den Umsetzer 4 und eine nicht in Fig. 1 dargestellte Anzeige der Strichcodeeingabe angedeutet.
Die Widerstandskorrektur- und Vergleichseinrichtung 18, die intern mit einem Speicher 29 in Verbindung steht, in welchen aus dem Umsetzer von dem Etikett erfaßte Daten des auf eine Bezugstemperatur bezogenen Soll-Widerstands des Fittings sowie ein Temperaturfaktor des Widerstands eingelesen werden, dient nur dazu festzustellen, ob der Ist-Widerstand, der gemessen wird und auf eine stets gleiche Bezugstemperatur von bei¬ spielsweiεe 20°C bezogen wird, innerhalb vorgegebener Grenz- werte mit dem Soll-Widerεtand übereinstimmt.
Weiterhin werden überwacht: die EingangsSpannung mit der Span- nungsüberwachungseinrichtung 19 durch Vergleich mit vorgegebe¬ nen Grenzwerten der Eingangsspannung, die von einem Speicher X3 eingegeben werden, und die Frequenz der Eingangsspannung mit der Frequenzüberwachungseinrichtung-20 durch Vergleich mit den von einem Speicher X4 gespeicherten Grenzwerten der Fre¬ quenz. Die Schweißεpannungsüberwachungseinrichtung 22 ver¬ gleicht den Effektivwert der Schweißspannung USchw mit Grenzwer- ten der Schweißspannung, die an dem Ausgang X6 des Umsetzers 4 anstehen. Die Schweißzeitüberwachungseinrichtung 21 über¬ wacht, daß die mit dem Zähler 17 gezählte Iεt-Schweißzeit innerhalb von Grenzwerten der Schweißzeit liegt, welche von einem Ausgang X5 des Umsetzers 4 in die Schweißzeitüberwa- chungseinrichtung eingeleitet werden.
Mit dem Drucker 25 können unter anderem die Grenzwerte über¬ schreitenden Abweichungen der überwachten Betriebsparameter bzw. Schweißparameter protokolliert werden.
Wesentlicher Bestandteil der Weiterbildung des beschriebenen Elektroschweißgeräts ist eine Vorwärmleiεtungs- und Vorwärm¬ zeitsteuereinrichtung 32, die von Ausgängen X7 und X8 des Umsetzers 4 mit Signalen einer Vorwärmleistung und einer Vor¬ wärmzeit beaufschlagt wird, die mittels des Abtasters 3 von dem Etikett 2 als Daten abgefaßt wurden. Außerdem steht die Vorwärmleistungε- und Vorwärmzeitεteuereinrichtung 32 über eine Leitung Xt mit dem Umsetzer in Verbindung, die ein Signal entsprechend der von dem Temperaturfühler 5 erfaßten Umge¬ bungstemperatur führt.
Mit der das Temperatursignal führenden Leitung Xt wird auch die nicht dargestellte Ablaufsteuerung beeinflußt, und zwar so, daß dem oben erörterten Verfahrensschritt des Schweißens ein Vorwärm- und Entfeuchtungsschritt vorgeschaltet wird, der in dem Ablaufdiagramm nach Fig. 2 mit S4 bezeichnet ist. Dieser Vorwärm- und Entfeuchtungsschritt wird aktiviert, wenn die Umgebungstemperatur unter einen vorgegebenen Wert von bei¬ spielsweise 20°C sinkt. Dies ist mit der Entscheidungsεtelle S3 in Fig. 2 angedeutet.
Zur Aktivierung des Vorwärm- und Entfeuchtungsschnttε wird die Vorwärmleiεtungε- und Vorwärmzeitεteuereinrichtung 32 in Fig. 1 durch die Ablaufεteuerung gemäß den in 32 eingespeisten Signalen der Vorwärmleistung und Vorwärmzeit bzw. Vorwärmzeit¬ dauer aktiviert. Die Vorwärmleistungs- und Vorwärmzeitεteuer¬ einrichtung 32 gibt dann über die Leiεtungsstufe 13 eine ge¬ genüber der Schweißleistung PSchw herabgesetzte Vorwärmleistung PVorw während der Zeitdauer t1 - t2 ab, vgl. Fig. 3. Die Vor- wärmleistung und/oder Vorwärm- und Entfeuchtungsdauer wird mit einer Vorwärmüberwachungseinrichtung 33 zusätzlich überwacht, welche die entsprechenden Ist-Signale über eine Leitung Cx von der Vorwärmleistungs- und Vorwärmzeitsteuereinrichtung 32 er¬ hält. Wenn die Vorwärmleistung oder die Vorwärm- und Entfeuch¬ tungsdauer nicht in dem vorgegebenen Toleranzbereich liegen, meldet die Vorwärmüberwachungseinrichtung 33 diesen Fehler über das UND-Glied 23 an die Meldeeinrichtung 24 und den Drucker 25.
1 0
Die der Entscheidungsstelle S3 in dem Ablaufdiagramm entspre¬ chende Auswahleinrichtung ist in dem Blockschaltbild gemäß Fig. 1 mit 34 bezeichnet. Sie steht mit einem Ausgang X9 des Umsetzers in Verbindung, von dem ein Signal in die Auswahlein-
, r- richtung 34 eingespeist wird, welches den vorgegebenen unteren
Grenzwert der Umgebungstemperatur darstellt, welcher mittels des Abtasters 3 von dem Strichcode auf dem Etikett 2 abgelesen wurde. Außerdem erhält die Auswahleinrichtung zum Vergleich mit diesem vorgegebenen Wert ein Signal von der Leitung Xt,
__ welches die aktuelle Umgebungstemperatur darstellt. Wenn die aktuelle Umgebungstemperatur den vorgegebenen Wert von bei¬ spielsweise 20°C unterschreitet, wird nicht nur die Vorwärm¬ leistungs- und Vorwärmzeitsteuereinrichtung 32 aktiviert, sondern über den Ausgang 35 der Auswahleinrichtung auch eine
„-. Schweißenergieanpaßeinrichtung 36 aktiviert, und zwar dann, wenn die Soll-Schweißarbeit nicht als konstanter Wert bezogen auf eine vorgegebene bestimmte Temperatur des Fittings von beispielεweise 25°C bezogen ist, die eine konstante Anfangs¬ bedingung für die Schweißung darεtellt. Wenn hingegen bei der
30 Vorgabe der Soll-Schweißarbeit nicht von einer konεtanten Anfangstemperatur ausgegangen wird, sondern von einer varia¬ blen Anfangstemperatur des Fittings, wird mit der Schweißener¬ gieanpaßeinrichtung 36 berücksichtigt, ob ein Vorwärm- und Entfeuchtungsεchritt vor dem Schweißschritt stattfindet oder
35 nicht, und zwar so, daß dem Heizwendel insgesamt die zur ord¬ nungsgemäßen Schweißung erforderliche Schweißarbeit zugeführt wird. Mit anderen Worten, im Falle des Vorwärm- und Entfeuch- tungsschrittε kann die Soll-Schweißarbeit um die Vorwärm- und Entfeuchtungsarbeit reduziert sein. Der Ausdruck "Arbeit" steht hier synonym für elektrische Energie.
In dem Ablaufdiagramm nach Fig. 2 ist die Anpassung der Schweißarbeit bzw. Schweißenergie an die Vorwärm- und Ent¬ feuchtungsarbeit in dem Block S5 angedeutet. In dem Ablaufbe¬ reich S6 findet dann der eigentliche Schweißschritt statt, wenn die Schweißung nicht gestört wird. Eine Störung würde mit
10 der Meldeeinrichtung 24 und dem Drucker 25 in Fig. 1 protokol¬ liert werden.
Das Wesentliche des erfindungsgemäßen Verfahrens geht aus dem Zeitdiagramm gemäß Fig. 3 hervor, in dem der Verlauf der dem . ,. Heizwendel zugeführten elektrischen Leistung P in Abhängigkeit von der Zeit (t) dargestellt ist:
In dem Zeitraum t0 - tτ finden Vorbereitungsschritte statt, während denen der Heizwendel mit keiner oder einer so geringen
9 Leistung beaufschlagt wird - wie im Falle der Messung des Widerstands des Heizwendelε-, daß praktisch keine Erwärmung stattfindet, im Unterschied zu dem nachfolgenden Vorwärm- und Entfeuchtungsschritt in dem Zeitabschnitt tx - t2. Dieser Zeit¬ abschnitt wird auch als Vorwärm- und Entfeuchtungsdauer be-
„c zeichnet. Das Vorwärmen erfolgt mit gegenüber der Schweißlei¬ stung PSchw reduzierten Vorwärmleistung PVoιrw, die 10 - 30 % der Schweißleistung betragen kann. Die Vorwärm- und Entfeuchtungs¬ dauer tx - t3 iεt lange genug, um auch im ungünεtigen Fall bei niedrigen Temperaturen und viel Kondenεat im Bereich der 0 Schweißflächen sämtliche Feuchtigkeit zuverlässig zu verdamp¬ fen. Erst daran anschließend findet der eigentliche Schwei߬ schritt mit der Schweißleistung PSchw während der Schweißzeit t2 - t3 statt. Die gesamte, dem Fitting zugeführte Energie bzw. Arbeit bestehend aus der Vorwärmarbeit AVorw zwischen tλ und t2 5 und der Schweißarbeit ASchu zwischen tx und t3 reicht auε, um eine sichere Schweißung unter allen Umgebungεbedingungen, inεbesondere bei niedriger Umgebungstemperatur, zu gewährleisten.

Claims

Patentansprüche.-
1. Verfahren zum selbsttätigen Schweißen von Heizwendel-Fit¬ tingen im wesentlichen aus Kunststoff nach Maßgabe von Daten des Fittings, die insbesondere von einem Datenträ¬ ger des Fittings selbstätig abgelesen werden, sowie unter Berücksichtigung der Umgebungstemperatur, mit einem nach¬ folgenden Schritt einer Schweißleistungszufuhr an den Heizwendel,
10 d a d u r c h g e k e n n z e i c h n e t , daß bei Unterschreiten eines vorgegebenen Werts der Umge¬ bungstemperatur dem Schritt der Schweißleistungszufuhr (PSchw) an den Heizwendel ein Vorwärm- und Entfeuchtungs¬ schritt vorgeschaltet wird, bei dem der Heizwendel mit ιr- einer gegenüber der Schweißleistung (P3ch„) reduzierten Vorwärmleistung (PVorv) beaufschlagt wird, bis die Schwei߬ flächen des Fittings (1) und eines benachbarten Rohrs sowie die zwischen den Schweißflächen befindliche Luft auf eine gegenüber der Umgebungstemperatur erhöhte Tempe¬ 0 ratur, bei welcher der Kunstεtoff noch nicht plastifi- ziert wird, während einer vorgegebenen Vorwärm- und Ent¬ feuchtungsdauer (ti - t2) vorgewärmt wird.
2. Verfahren nach Anspruch 1,
25 d a d u r c h g e k e n n z e i c h n e t , daß die erhöhte Temperatur, auf welche die Schweißflächen des Fittings (1) und eines benachbarten Rohrs sowie die zwischen den Schweißflächen befindlichen Luft während der Vorwärm- und Entfeuchtungεdauer vorgewärmt wird, in dem 0 Temperaturbereich von 25 - 30°C liegt.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Vorwärmleistung 10 bis 30% der Schweißleistung 5 beträgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß bei Vorschalten des Vorwärm- und Entfeuchtungs- schritts vor dem Schritt der Schweißleistungszufuhr eine Herabsetzung der Schweißarbeit (A3chw) nach Maßgabe der Vorwärm- und Entfeuchtungsarbeit (AVor>;) erfolgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t ,
10 daß die Schweißflächen des Fittings (1) und eines benach¬ barten Rohrs sowie die zwischen den Schweißflächen be¬ findliche Luft auf eine vorgegebene Temperatur vorgewärmt wird.
, r
6. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Vorwärm- und Entfeuchtungsarbeit (AVorJ auf die Einhaltung des Kriteriums selbsttätig überwacht wird, daß der Heizwendel mit der Vorwärm- und Entfeuchtungsarbeit 0 (AVorH) innerhalb eines vorgegebenen Zeitrahmens der Vor¬ wärm- und Entfeuchtungsdauer {tλ - t2) beaufschlagt wird.
7. Elektroschweißgerät zum selbsttätigen Schweißen von Hei¬ zwendelfittingen im wesentlichen aus Kunststoff, mit 5 einer Eingabeeinrichtung, insbesondere einem Codebar- Abtaεter für Fittingdaten sowie einem Umgebungstempera¬ turfuhler, die mit dem Eingang einer Schweißεteuerungs- einrichtung in Verbindung stehen, die Schaltkreise auf¬ weist, in denen aus den Fittingdaten und der Umgebungs¬ 0 temperatur Signale von Soll-Schweißparametern wie Schweißstrom, Schweißzeit, Schweißleiεtung und/oder Schweißarbeit gebildet werden, nach deren Maßgabe eine Leiεtungsstufe, die mit dem Fitting elektrisch verbunden ist, gesteuert wird, sowie mit einer Ablaufsteuerung, 5 d a d u r c h g e k e n n z e i c h n e t , daß der Umgebungstemperaturfühler (5) mit einem Eingang einer Vorwärmleistungs- und Vorwärmzeitsteuereinrichtung (32) in Verbindung steht, von deren Ausgang die Lei¬ stungsstufe (13) gesteuert wird, und daß die Vorwärmlei- stungε- und Vorwärmzeitsteuereinrichtung (32) sowie die Ablaufsteuerung dergestalt aufgebaut sind, daß vor einer Schweißleistungsabgabe an den Heizwendel (1) dieser mit einer gegenüber der Schweißleistung (P3cnw) herabgesetzten Vorwärmleistung (PVorw) durch die Leistungsstufe (13) be¬ aufschlagt wird, bis die Schweißflächen des Fittings (1) und eines benachbarten Rohrs sowie die zwischen den Schweißflächen befindliche Luft auf eine gegenüber der Umgebungstemperatur erhöhte Temperatur während einer vorgegebenen Vorwärm- und Entfeuchtungsdauer (t. - t2) vorgewärmt ist.
8. Elektroschweißgerät nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß die Vorwärmleistungs- und Vorwärmzeitsteuereinrich¬ tung (32) über eine von dem Umgebungstemperaturfühler (5) umsteuerbare Auswahleinrichtung (34) mit dem Eingang der Leistungεεtufe (13) in Verbindung steht, welche ge¬ eignet ist, die Vorwärmleistungs- und VorwärmzeitSteue¬ rung mit der Leistungsstufe (13) zu verbinden, wenn die Umgebungstemperatur einen vorgegebenen Wert unterschrei¬ tet.
9. Elektroschweißgerät nach Anspruch 7 oder 8, d a d u r c h g e k e n n z e i c h n e t , daß die Vorwärmleistungs- und Vorwärmzeitsteuerung (32) mit einer Schweißenergieanpaßeinrichtung (36) in Verbin¬ dung steht, welche über die Leistungsstufe (13) die Schweißarbeit (ASchw) nach Maßgabe der Vorwärm- und Ent¬ feuchtungsarbeit (AVoιrw) herabsetzt.
10. Elektroschweißgerät nach einem der Ansprüche 6 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß eine Vorwärmüberwachungseinrichtung (33) vorgesehen ist, deren Eingang mit einem Ausgang der Vorwärmlei- stungs- und Vorwärmzeitsteuereinrichtung (32) verbunden iεt und die ein Signal abgibt, wenn die Vorwärm- und Ent¬ feuchtungszeitdauer (tj. - t2) außerhalb eines vorgegebenen Zeitrahmens liegt.
11. Elektroschweißgerät nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , daß das von der Vorwärmüberwachungseinrichtung (33) abge¬ gebene Signal ein Meldesignal ist.
12. Elektroschweißgerät nach Anspruch 10 oder 11, d a d u r c h g e k e n n z e i c h n e t , daß daε von der Vorwärmüberwachungseinrichtung (33) abge¬ gebene Signal den Schweißvorgang unterbindet.
PCT/EP1996/005351 1995-12-05 1996-12-03 Verfahren und elektroschweissgerät zum selbsttätigen schweissen von heizwendel-fittingen WO1997020682A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT96941643T ATE194543T1 (de) 1995-12-05 1996-12-03 Verfahren und elektroschweissgerät zum selbsttätigen schweissen von heizwendel-fittingen
EP96941643A EP0868290B1 (de) 1995-12-05 1996-12-03 Verfahren und elektroschweissgerät zum selbsttätigen schweissen von heizwendel-fittingen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19545317.4 1995-12-05
DE19545317A DE19545317C2 (de) 1995-12-05 1995-12-05 Verfahren und Elektroschweißgerät zum selbsttätigen Schweißen von Heizwendel-Fittingen

Publications (1)

Publication Number Publication Date
WO1997020682A1 true WO1997020682A1 (de) 1997-06-12

Family

ID=7779219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/005351 WO1997020682A1 (de) 1995-12-05 1996-12-03 Verfahren und elektroschweissgerät zum selbsttätigen schweissen von heizwendel-fittingen

Country Status (4)

Country Link
EP (1) EP0868290B1 (de)
AT (1) ATE194543T1 (de)
DE (1) DE19545317C2 (de)
WO (1) WO1997020682A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924053A2 (de) * 1997-12-18 1999-06-23 Friatec Aktiengesellschaft Elektro-Schweisseinrichtung
US6563087B1 (en) * 2001-11-14 2003-05-13 Hakko Corporation Automated soldering system
WO2005023522A1 (de) * 2003-09-01 2005-03-17 Pf-Schweisstechnologie Gmbh Induktionskompensation für heizwendelschweissgeräte

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2516301B (en) * 2013-07-18 2016-06-08 Pioneer Lining Tech Ltd Improved electrofusion fitting methods

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH529628A (de) * 1972-01-18 1972-10-31 Rollmaplast Ag Verfahren zum Schweissen von Kunststoffrohr-Muffenverbindungen unter Verwendung elektrischer Energiedosiergeräte
JPS527020A (en) * 1975-07-07 1977-01-19 Nippon Kokan Kk <Nkk> Dehumidification method of pipe joint
WO1979001000A1 (en) * 1978-04-28 1979-11-29 W Sturm Method and apparatus for connecting thermoplastic conductor elements
EP0067621A2 (de) * 1981-06-16 1982-12-22 Brintons Limited Verbinden von Textilmaterial
FR2572326A1 (fr) * 1984-10-31 1986-05-02 Gaz De France Procede et machine pour la realisation de soudures automatiques de pieces en matiere plastique comportant un bobinage integre.
US4684789A (en) * 1986-04-17 1987-08-04 Central Plastics Company Thermoplastic fitting electric welding method and apparatus
US4695335A (en) * 1985-11-08 1987-09-22 R. W. Lyall & Company, Inc. Method for developing a predetermined fusing temperature in thermoplastic items
CH668741A5 (en) * 1985-07-15 1989-01-31 West Electronic Ag Precise welding process for plastics - by heating work using resistance element up supplying heat in pulses according to set curve
EP0335010A2 (de) * 1988-03-30 1989-10-04 Hürner Gmbh Elektro-Schweissgerät zum selbsttätigen Schweissen von Heizwendel-Fittingen
WO1995016557A2 (en) * 1993-12-15 1995-06-22 Tokushu, Kogyo Kabushikigaisha Electrofusion fastening apparatus
DE4343449A1 (de) * 1993-12-20 1995-06-22 Friatec Keramik Kunststoff Verfahren zum Elektroschweißen

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH529628A (de) * 1972-01-18 1972-10-31 Rollmaplast Ag Verfahren zum Schweissen von Kunststoffrohr-Muffenverbindungen unter Verwendung elektrischer Energiedosiergeräte
JPS527020A (en) * 1975-07-07 1977-01-19 Nippon Kokan Kk <Nkk> Dehumidification method of pipe joint
WO1979001000A1 (en) * 1978-04-28 1979-11-29 W Sturm Method and apparatus for connecting thermoplastic conductor elements
EP0067621A2 (de) * 1981-06-16 1982-12-22 Brintons Limited Verbinden von Textilmaterial
FR2572326A1 (fr) * 1984-10-31 1986-05-02 Gaz De France Procede et machine pour la realisation de soudures automatiques de pieces en matiere plastique comportant un bobinage integre.
CH668741A5 (en) * 1985-07-15 1989-01-31 West Electronic Ag Precise welding process for plastics - by heating work using resistance element up supplying heat in pulses according to set curve
US4695335A (en) * 1985-11-08 1987-09-22 R. W. Lyall & Company, Inc. Method for developing a predetermined fusing temperature in thermoplastic items
US4684789A (en) * 1986-04-17 1987-08-04 Central Plastics Company Thermoplastic fitting electric welding method and apparatus
EP0335010A2 (de) * 1988-03-30 1989-10-04 Hürner Gmbh Elektro-Schweissgerät zum selbsttätigen Schweissen von Heizwendel-Fittingen
WO1995016557A2 (en) * 1993-12-15 1995-06-22 Tokushu, Kogyo Kabushikigaisha Electrofusion fastening apparatus
DE4343449A1 (de) * 1993-12-20 1995-06-22 Friatec Keramik Kunststoff Verfahren zum Elektroschweißen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 001, no. 055 (M - 020) 27 May 1977 (1977-05-27) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924053A2 (de) * 1997-12-18 1999-06-23 Friatec Aktiengesellschaft Elektro-Schweisseinrichtung
EP0924053A3 (de) * 1997-12-18 2001-07-04 Friatec Aktiengesellschaft Elektro-Schweisseinrichtung
DE19818130C2 (de) * 1997-12-18 2003-03-20 Friatec Ag Elektro-Schweißeinrichtung
US6563087B1 (en) * 2001-11-14 2003-05-13 Hakko Corporation Automated soldering system
WO2005023522A1 (de) * 2003-09-01 2005-03-17 Pf-Schweisstechnologie Gmbh Induktionskompensation für heizwendelschweissgeräte
US8653424B2 (en) 2003-09-01 2014-02-18 Pf-Schweisstechnologie Gmbh Compensation for induction heating in coil welding equipment

Also Published As

Publication number Publication date
DE19545317A1 (de) 1997-06-12
ATE194543T1 (de) 2000-07-15
DE19545317C2 (de) 2000-02-17
EP0868290B1 (de) 2000-07-12
EP0868290A1 (de) 1998-10-07

Similar Documents

Publication Publication Date Title
EP0335010B1 (de) Elektro-Schweissgerät zum selbsttätigen Schweissen von Heizwendel-Fittingen
DE3113250C2 (de) Verfahren zur Regelung des Schweißstroms bei Widerstandsschweißungen
EP0999441B1 (de) Sensor und Verfahren zum Messen der elektrischen Leitfähigkeit eines flüssigen Mediums
DE3832428A1 (de) Personen-erfassungsvorrichtung
CH677891A5 (de)
DE3012308A1 (de) Steuersystem fuer eine absorptionskaeltemaschine, absorptionskaeltemaschine und verfahren zu deren betrieb
DE102009008199A1 (de) Verfahren zum Regeln einer Schweißstromquelle sowie Schweißstromquelle zur Durchführung des Verfahrens
WO2003066492A1 (de) Verfahren und vorrichtung zur regelung einer bahnspannung
DE10031813C2 (de) Verfahren und Vorrichtung zum Bestimmen des Durchflusses eines Gasgemisches
WO1997020682A1 (de) Verfahren und elektroschweissgerät zum selbsttätigen schweissen von heizwendel-fittingen
DE10236165B4 (de) Verfahren und Vorrichtung zum Symmetrieren der Kondensatoren einer Kondensatorbatterie
EP0715555A1 (de) Verfahren zur ermittlung eines bewertungszeitintervalles sowie verfahren zur qualitätsbeurteilung einer punktschweissverbindung auf grundlage eines temperaturverlaufes in dem bewertungszeitintervall
DE102009019625B4 (de) Verfahren zum Ermitteln eines Typs einer Gasentladungslampe und elektronisches Vorschaltgerät zum Betreiben von mindestens zwei unterschiedlichen Typen von Gasentladungslampen
EP0924053B1 (de) Verwendung einer Elektro-Schweisseinrichtung
DE3922286A1 (de) Verfahren und einrichtung zum detektieren einer verminderung der eingangsspannung fuer eine stromversorgung
DE102010010509A1 (de) Verfahren zur Identifizierung leistungsschwacher Photovoltaikmodule in einer bestehenden PV-Anlage
DE19740169A1 (de) Verfahren und Vorrichtung zur Kontrolle der Temperaturregelung beheizbarer Vorrichtungen
CH668741A5 (en) Precise welding process for plastics - by heating work using resistance element up supplying heat in pulses according to set curve
DE2945196C1 (de) Vorrichtung zum Steuern der Schweissenergie beim Verbinden von Rohrleitungselementen aus schweissbarem Kunststoff
DE19712780A1 (de) Verfahren und Vorrichtung zum Verbinden mindestens zweier Lichtleitfasern mittels Lichtbogen-Schweißen
DE10340206B3 (de) Induktionskompensation für Heizwendelschweißgeräte
EP0919360A2 (de) Verfahren zum selbsttätigen Verbinden von thermoplastischen Kunststoffteilen mit integrierten Heizelementen
WO2007095890A1 (de) Vorrichtung zur überwachung eines serienschwingkreises einer antenne
DE4435393B4 (de) Verfahren zum automatischen Steuern des Schweißens von thermoplastischen Gegenständen
DE4036363C2 (de) Einrichtung zur thermischen Überwachung einer heizbaren Scheibe im Kraftfahrzeug

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA EE GE LT LV UA US UZ AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996941643

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996941643

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996941643

Country of ref document: EP