WO1997015871A1 - Hologram recording method and apparatus - Google Patents

Hologram recording method and apparatus Download PDF

Info

Publication number
WO1997015871A1
WO1997015871A1 PCT/JP1996/003024 JP9603024W WO9715871A1 WO 1997015871 A1 WO1997015871 A1 WO 1997015871A1 JP 9603024 W JP9603024 W JP 9603024W WO 9715871 A1 WO9715871 A1 WO 9715871A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
intensity
hologram
reference light
ratio
Prior art date
Application number
PCT/JP1996/003024
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyuki Wakai
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1997015871A1 publication Critical patent/WO1997015871A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms

Definitions

  • the present invention provides a method for recording a plurality of objects by recording interference fringes between a plurality of object beams and reference beams.
  • the present invention relates to a hologram recording method and a hologram recording apparatus for recording a wavefront of an object beam on a hologram.
  • the hologram records the wavefronts of the plurality of object lights by recording interference fringes between the plurality of object lights and the reference light.
  • a silver salt photosensitive material, a photosensitive polymer, or the like is usually used, and the above-described interference fringes are recorded.
  • the photosensitive latitude exposure range
  • strong fringes or weak fringes have characteristics that cannot be recorded because they are out of latitude.
  • the light intensity ratio between the object light and the reference light is usually set between 1: 1 and 1: 4 so that the object light will interfere with the reference light on average.
  • FIG. 6 is a schematic diagram showing a three-dimensional shape measuring apparatus to which a confocal optical system is applied.
  • the hologram 3 functions as a point light source array of an optical system and an optical component that transmits received light.
  • the hologram 3 is used as a point light source generating means, When the reference light from the laser oscillator 9 as a light source is incident, the light is reproduced as if the light were emitted from each of the pinholes pl to pn of the pinhole array PH.
  • the hologram 3 reproduces the object light by the reference light.
  • the object light is a plurality of wavefronts emitted from each of the pinholes p1 to pn of the pinhole array PH.
  • a plurality of parallel lights converted by the lens 4 are assumed.
  • the reconstructed multiple object lights are focused on the inspection surface of the measured object 7 by the lens 5, and the light reflected by the object 7 is converted into a pinhole array through the lens 5, hologram 3, and lens 4. Detected by photodetector array 8 behind PH.
  • each photodetector of the photodetector array 8 is input to a three-dimensional measuring unit (not shown). In the three-dimensional measuring unit, the movement of the moving stage 6 in the Z direction is controlled by a moving control unit (not shown). The output of each detector of the photodetector array 8 is sequentially sampled along with the movement of the object, and the position in the Z direction when each output becomes maximum is detected as the surface position of the measured object 7.
  • FIG. 1 shows an apparatus configuration for exposing a hologram 3 used in the apparatus of FIG.
  • the light having the characteristic of linearly polarized light emitted from the laser oscillator 9 has its polarization direction rotated by the 12-wavelength plate 12, and is incident on the polarization half mirror 14.
  • the rotational position of the 12-wavelength plate 12 it is possible to adjust the splitting ratio of the light split in two directions in the polarization half mirror 14 to a desired value. That is, the intensity ratio between the object light and the reference light can be adjusted.
  • the light used as the object light split by the polarization half mirror 14 is adjusted to light having the same polarization direction as the reference light by the 12-wave plate 13.
  • a similar wave plate may be inserted on the reference light side to adjust the polarization direction of the reference light according to the object light, or it may be inserted in both sides and adjusted so that the polarization directions of both become the same. You may. In short, as long as the polarization directions of the reference light and the object light match, such a configuration may be adopted.
  • the object light is incident on the hologram 3 via the mirrors 15 and 16, the lenses 17 and 18, the pinholes pl to pn of the pinhole array PH, and the lens 4, and as object light having different angles. Be recorded.
  • the hologram 3 is arranged at the positions indicated by * 1 and 2 in FIG.
  • optical systems are also disclosed, they are all equivalent in that a plurality of non-parallel light wavefronts are recorded on the hologram 3.
  • components used only for three-dimensional measurement such as the lens 5, the object to be measured 7, the moving stage 6, and the like.
  • the interference fringes between a plurality of wavefronts of the object light are, for example, assuming that two wavefronts, A and B, are assumed as the object light, as shown in Fig. 4, the wavefronts of A and B interfere with each other.
  • the reference light is shown by a broken line and is omitted for the sake of simplicity.
  • the hologram 3 has characteristics as shown in FIGS. 5 (a) to 5 (c).
  • the interference fringe C has the property of reproducing the object light B with the object light A at the same time as reproducing the object light B with the object light A.
  • the following three types of interference fringes are recorded in the hologram 3 within the latitude ude of the hologram material.
  • the interference fringe ( ⁇ ) reproduces the object light, but the interference fringes () and (y) reproduce the light different from the object light. I will. For this reason,
  • the light transmitted through the hologram 3 is caused by interference fringes (/ 3) recorded by a plurality of wavefronts of the object light.
  • An object of the present invention is to solve the above problems (1) to (4).
  • a method of recording a mouthgram that records the wavefronts of the plurality of object lights on a hologram by recording interference fringes between the plurality of object lights and the reference light
  • Interference fringes caused by the object light and the reference light have an appropriate first intensity within the latitude of the hologram
  • the ratio of the second intensity of the interference fringes due to the plurality of wavefronts of the object light to the first intensity is equal to or less than a predetermined value
  • the ratio of the third intensity of the interference fringes due to the secondary light and the reference light reproduced by the interference fringes between the plurality of wavefronts of the object light to the first intensity is equal to or less than a predetermined value.
  • the intensity of the reference light and the ratio of the intensity of the reference light to the intensity of the object light at the time of recording the oral gram are determined.
  • the hologram at the time of hologram recording, by adjusting the intensity of the reference light and the ratio of the intensity of the reference light to the intensity of the object light to an appropriate value, the hologram has the above-mentioned ( ⁇ ) Only the interference fringes due to the object light and the reference light are recorded, and are reproduced by the interference fringes between the plurality of wavefronts of the object light ( ⁇ ) and the interference fringes between the plurality of wavefronts of the object light ( ⁇ ) above.
  • the interference fringes due to the secondary light and the reference light have low intensity and cannot be recorded.
  • FIG. 1 is a diagram showing a configuration example of an optical system used for implementing a hologram recording method and a recording apparatus according to the present invention.
  • FIG. 2 is a flowchart showing a processing procedure for determining the ratio of the intensity of the reference light and the intensity of the object light incident on the hologram to the intensity of the reference light in the apparatus of FIG. It is.
  • FIG. 3 is a graph showing the ratio of the intensity of the object light to the intensity of the reference light on the horizontal axis, and the ratio of the intensity of the noise light to the intensity of the reproduced object light on the vertical axis.
  • FIG. 4 is a diagram illustrating interference fringes recorded on a hologram.
  • FIGS. 5 (a), (b), and (c) are diagrams illustrating the secondary light reproduced by the interference fringes shown in FIG.
  • FIG. 6 is a diagram showing a configuration of a confocal optical device that performs three-dimensional shape measurement using a hologram.
  • the apparatus configuration for exposing the hologram 3 is as shown in FIG. 1 described above.
  • the light emitted from the laser oscillator 9 passes through the polarizing half mirror 14 through the 12-wavelength plate 12 and further passes through the lenses 10 and 11 as the reference light.
  • the hologram 3 Further, the light emitted from the laser oscillator 9 is reflected by the polarization half mirror 14 via the one-two-wave plate 12, and further reflected by the 1 Z two-wave plate 13, the mirrors 15, 16, and the lens 1. 7, 18 and incident on the hologram 3 as object light via the pinholes pl to pn and the lens 4 of the pinhole array PH.
  • the intensity (light amount) R of the reference light can be adjusted by adjusting the oscillation output of the laser oscillator 9.
  • the adjustment of the oscillation output of the laser oscillator 9 may be controlled by adjusting the oscillation intensity of the laser oscillator 9 itself, or by disposing a filter having a variable transmittance at the emission port of the laser oscillator 9. You can control it.
  • the ratio r of the intensity of the object light to the intensity of the reference light is obtained by adjusting the rotation position of the half-wave plate 12 and adjusting the splitting ratio of the light split in two directions in the polarizing half mirror 14. , Can be adjusted.
  • the adjustment of the intensity R and the intensity ratio r of the reference light may be automatically performed by a controller that controls the laser oscillator 9 and the 1Z two-wavelength plate 12, or may be performed manually.
  • the intensity of such stripes changes according to the intensity of the reference light and the object light during recording.
  • a is the diffraction efficiency of the secondary light reproduced by the interference fringe of (/ 3) during exposure, and is a small value of 1 or less.
  • Equation Z (6) Equation ar R / m 2 Decreases monotonically, and
  • Equation (6) > Equation (7)> Equation (8)
  • the intensity R of the reference light is selected to be an appropriate value so that the intensity of the interference pattern ( ⁇ ) to be originally recorded on the hologram 3 is within the latitude of the hologram material, and the intensity ratio r is set.
  • ( ⁇ ) r R 2 is the appropriate strength within the latitude of the hologram material
  • the device configuration when exposing the hologram 3 is assumed to be that in FIG. 1 described above.
  • the adjustment of the intensity R and the intensity ratio r of the reference light is automatically performed by a controller that controls the laser oscillator 9 and the 1Z two-wave plate 12.
  • the one-two-wavelength plate 13 may also be automatically controlled so that the polarization directions of the reference light and the object light match.
  • Fig. 3 shows that, when the intensity R of the reference light is constant, the intensity ratio r of the object light to the reference light is changed by a small value of 1 or less (see the horizontal axis) and recorded on the hologram 3 and recorded.
  • This shows the intensity ratio NZS R (vertical axis) of the intensity N of the noise light to the intensity SR of the reproduced object light when.
  • the scale on the horizontal axis is an example value.
  • the intensity SR is the intensity of light reproduced by the ( ⁇ ) interference fringes that should be originally recorded on the hologram 3, and the intensity ⁇ is the cause of noise light (/ 3), (y ) Is the intensity of light reproduced by the interference fringes.
  • the intensity ratio NZS R of the noise light N to the reproduction object light SR becomes smaller than the force critical value rc.
  • the intensity of R2 becomes the intensity outside (under) the latitude of the hologram material, so that it is impossible to record the ( ⁇ ) interference fringes to be recorded.
  • the intensity ratio of the noise light intensity ⁇ ⁇ ⁇ ⁇ to the reproduction object light intensity SR can be reduced to a predetermined value Nc or less (the intensity of the interference fringes of ( ⁇ ) and ( ⁇ ) is lower than the latitude of the hologram material).
  • Nc the intensity of the interference fringes of ( ⁇ ) and ( ⁇ ) is lower than the latitude of the hologram material.
  • the intensity R of the reference light is set to a predetermined value (step 101), and the intensity ratio r is changed within r opt, and (a) r R 2 is the hologram material. (Steps 102, 103, 105).
  • the intensity ratio r falls within the range of r opt, and (a) r R 2 force; becomes an appropriate intensity within the latitude of the hologram 3, (determination YE in step 103) S), the intensity ratio r at that time and the intensity R of the reference light finally set in step 101 are determined as final values (step 104).
  • the method of resetting the reference light intensity R in step 101 is as follows.
  • ( ⁇ ) r R 2 is an intensity that exceeds the latitude of the hologram 3, the reset value R is reduced and the value is set lower. In the case of strength, it is conceivable to increase the reset value R.
  • the controller sets the laser oscillator 9 and the one- and two-wavelength plate 12 so that the intensity ratio r determined in step 104 and the intensity R of the reference light finally set in step 101 are obtained. Control.
  • the reference light is assumed to be parallel light, but may be diffuse light.
  • the hologram 3 may be arranged at the positions indicated by * 1 and * 2 in FIG.
  • the plurality of object lights are not limited to parallel light, diffused light, or light emitted from a pinhole.
  • a plurality of slit lights, a plurality of spot lights by a lens array, and others may be used.
  • the present invention can be applied not only to a three-dimensional shape measuring apparatus to which a confocal optical system is applied, but also to optical apparatuses using holograms.

Abstract

A high-quality hologram in which substantially no noise light occurs during the reproduction and permeation thereof is put on the market. The intensity of reference light during the recording of a hologram and a ratio r of the intensity of the reference light to that of object light are determined so that an interference fringe formed by the object light and reference light constitutes a suitable first intensity SR within the latitude of a hologram; a ratio N/SR of a second intensity of an interference fringe formed by a plurality of wave fronts of the object light to the first intensity becomes not higher than a predetermined level Nc; and a ratio N/SR of a third intensity of an interference fringe formed by the secondary light, which is reproduced by the interference fringe formed by a plurality of wave fronts of the object light, and reference light to the first intensity becomes not higher than the predetermined level Nc.

Description

ホログラムの記録方法および記録装置 技術分野  Hologram recording method and recording apparatus
本発明は、 複数の物体光と参照光との干渉縞を記録することによって当該複数 明  The present invention provides a method for recording a plurality of objects by recording interference fringes between a plurality of object beams and reference beams.
の物体光の波面をホログラムに記録するホログラムの記録方法および記録装置に 関する。 TECHNICAL FIELD The present invention relates to a hologram recording method and a hologram recording apparatus for recording a wavefront of an object beam on a hologram.
書 背景技術  Background art
ホログラムには、 複数の物体光と参照光との干渉縞が記録されることによって 当該複数の物体光の波面が記録される。  The hologram records the wavefronts of the plurality of object lights by recording interference fringes between the plurality of object lights and the reference light.
ここに、 ホログラムの材料としては、 通常、 銀塩感光材、 感光ポリマ一などが 使用され、 上記干渉縞が記録されるのであるが、 感光材料ごとに感光のラテイチ ユード (露光範囲) が定まっている。 このため、 強度の強い干渉縞や、 強度の弱 い干渉縞は、 ラティチュード外となるため記録できない特性を持っている。  Here, as the material of the hologram, a silver salt photosensitive material, a photosensitive polymer, or the like is usually used, and the above-described interference fringes are recorded. The photosensitive latitude (exposure range) is determined for each photosensitive material. I have. For this reason, strong fringes or weak fringes have characteristics that cannot be recorded because they are out of latitude.
したがって、 ホログラムに記録する際、 物体光が参照光によって平均して干渉 しゃすくなるように、 通常、 物体光と参照光の光量強度比は、 1対 1から 1対 4 の間に設定される。  Therefore, when recording on a hologram, the light intensity ratio between the object light and the reference light is usually set between 1: 1 and 1: 4 so that the object light will interfere with the reference light on average. .
複数の物体光の波面が、 参照光との干渉によつて記録されるホ口グラムの利用 例として、 特願平 7— 2 4 7 6 5 8号 (特願平 6— 2 3 7 8 0 4号) に開示され たものがある。  As an example of the use of a photogram in which the wavefronts of multiple object beams are recorded by interference with a reference beam, see Japanese Patent Application No. 7-2 4 7 6 5 No. 4).
図 6は、 その概略図であり、 共焦点光学系を応用した 3次元形状計測装置を示 している。  FIG. 6 is a schematic diagram showing a three-dimensional shape measuring apparatus to which a confocal optical system is applied.
この装置において、 ホログラム 3は、 光学系の点光源アレイと受光光を透過す る光学部品として機能する。  In this device, the hologram 3 functions as a point light source array of an optical system and an optical component that transmits received light.
すなわち、 ホログラム 3は、 点光源光の発生手段として用いられるものであり、 光源であるレーザ発振器 9からの参照光が入射されることによって、 あたかもピ ンホールアレイ P Hの各ピンホール p l〜p nから光が出射したような光を再生 する。 That is, the hologram 3 is used as a point light source generating means, When the reference light from the laser oscillator 9 as a light source is incident, the light is reproduced as if the light were emitted from each of the pinholes pl to pn of the pinhole array PH.
このようにしてホログラム 3は参照光によって、 物体光を再生する。 物体光は、 ピンホールアレイ P Hの各ピンホール p 1から p nより出射される複数の波面で ある。 この実施の形態では、 レンズ 4によって変換された複数の平行光を想定し ている。  Thus, the hologram 3 reproduces the object light by the reference light. The object light is a plurality of wavefronts emitted from each of the pinholes p1 to pn of the pinhole array PH. In this embodiment, a plurality of parallel lights converted by the lens 4 are assumed.
再生された複数の物体光は、 レンズ 5によつて被計測物体 7の検査面に集光さ れ、 物体 7で反射された光が、 レンズ 5、 ホログラム 3、 レンズ 4を介してピン ホールアレイ P Hの背後の光検出器アレイ 8で検出される。  The reconstructed multiple object lights are focused on the inspection surface of the measured object 7 by the lens 5, and the light reflected by the object 7 is converted into a pinhole array through the lens 5, hologram 3, and lens 4. Detected by photodetector array 8 behind PH.
なお、 光検出器アレイ 8の各光検出器の出力は、 図示せぬ 3次元計測部に入力 され、 この 3次元計測部では、 図示せぬ移動制御部の制御による移動ステージ 6 の Z方向への移動に伴って光検出器ァレイ 8の個々の検出器の出力を順次サンプ リングし、 それぞれの出力が最大になったときの Z方向位置を被計測物体 7の表 面位置として検出する。  The output of each photodetector of the photodetector array 8 is input to a three-dimensional measuring unit (not shown). In the three-dimensional measuring unit, the movement of the moving stage 6 in the Z direction is controlled by a moving control unit (not shown). The output of each detector of the photodetector array 8 is sequentially sampled along with the movement of the object, and the position in the Z direction when each output becomes maximum is detected as the surface position of the measured object 7.
図 1は、 図 6の装置に使用されるホログラム 3を露光する際の装置構成を示し ている。  FIG. 1 shows an apparatus configuration for exposing a hologram 3 used in the apparatus of FIG.
同図 1に示すように、 レーザ発振器 9から出射される直線偏光の特性を持つ光 は、 1 2波長板 1 2で偏光方向が回転され、 偏光ハーフミラー 1 4に入射され る。  As shown in FIG. 1, the light having the characteristic of linearly polarized light emitted from the laser oscillator 9 has its polarization direction rotated by the 12-wavelength plate 12, and is incident on the polarization half mirror 14.
したがって、 1 2波長板 1 2の回転位置を調節することにより、 偏光ハーフ ミラ一 1 4において 2方向に分岐される光の分岐比を所望の値に調節することが できる。 つまり、 物体光と参照光の強度比を調節することができる。  Therefore, by adjusting the rotational position of the 12-wavelength plate 12, it is possible to adjust the splitting ratio of the light split in two directions in the polarization half mirror 14 to a desired value. That is, the intensity ratio between the object light and the reference light can be adjusted.
偏光ハーフミラ一 1 4で分岐された物体光として用いられる光は、 1 2波長 板 1 3によって参照光と同じ偏光方向の光に調節される。 なお、 参照光側に同様 の波長板を入れて、 物体光に合わせて参照光の偏光方向を調節してもよいし、 両 方に入れて、 両方を偏光方向が同じになるように調節してもよい。 要は参照光と 物体光の偏光方向が一致しさえすれば、 、かなる構成をとってもよい。 物体光は、 ミラー 1 5、 1 6、 レンズ 1 7、 1 8、 ピンホールアレイ P Hの各 ピンホール p l〜p n、 レンズ 4を介してホログラム 3に入射され、複数の角度の 異なる物体光として記録される。 なお、 上記特願平 7— 2 4 7 6 5 8号 (特願平 6— 2 3 7 8 0 4号) では、 図 1の * 1、 2に示される位置にホログラム 3が配 置される光学系も開示されているが、 いずれもホログラム 3に、 平行光でない複 数の波面が記録される点で同等である。 また、 ホログラム露光時には、 レンズ 5、 被計測物体 7、 移動ステージ 6等、 3次元計測にのみ使用する部品を配置する必 要はない。 The light used as the object light split by the polarization half mirror 14 is adjusted to light having the same polarization direction as the reference light by the 12-wave plate 13. Note that a similar wave plate may be inserted on the reference light side to adjust the polarization direction of the reference light according to the object light, or it may be inserted in both sides and adjusted so that the polarization directions of both become the same. You may. In short, as long as the polarization directions of the reference light and the object light match, such a configuration may be adopted. The object light is incident on the hologram 3 via the mirrors 15 and 16, the lenses 17 and 18, the pinholes pl to pn of the pinhole array PH, and the lens 4, and as object light having different angles. Be recorded. In the above-mentioned Japanese Patent Application No. Hei 7-246758 (Japanese Patent Application No. Hei 6-237804), the hologram 3 is arranged at the positions indicated by * 1 and 2 in FIG. Although optical systems are also disclosed, they are all equivalent in that a plurality of non-parallel light wavefronts are recorded on the hologram 3. Further, at the time of hologram exposure, it is not necessary to arrange components used only for three-dimensional measurement, such as the lens 5, the object to be measured 7, the moving stage 6, and the like.
さて、 こうして露光されるホログラム 3においては、 記録時の物体光と参照光 との光量強度比を上述したような通常の値に設定すると、 物体光と参照光の干渉 による縞と同時に、 物体光の複数の波面同士の干渉による縞も記録されてしまう。 ここで、 物体光の複数の波面同士の干渉縞とは、 図 4に示すように、 例えば物 体光として A、 Bという 2つの波面を想定した場合、 これら Aと Bの波面が干渉 してできる縞 Cのことである。 なお、 図 4では、 説明を簡単にするため参照光は 破線で示し省略してある。  By the way, in the hologram 3 exposed in this manner, if the intensity ratio of the object light and the reference light at the time of recording is set to the normal value as described above, the fringes due to the interference between the object light and the reference light are simultaneously generated. The fringes due to the interference between the plurality of wavefronts are also recorded. Here, the interference fringes between a plurality of wavefronts of the object light are, for example, assuming that two wavefronts, A and B, are assumed as the object light, as shown in Fig. 4, the wavefronts of A and B interfere with each other. A possible stripe C. In FIG. 4, the reference light is shown by a broken line and is omitted for the sake of simplicity.
ここで、 物体光 A、 Bによってホログラム 3に記録される干渉縞 Cによって、 このホログラム 3は、 図 5 ( a ) 〜 (c ) に示すような特性を持つ。  Here, due to interference fringes C recorded on the hologram 3 by the object lights A and B, the hologram 3 has characteristics as shown in FIGS. 5 (a) to 5 (c).
すなわち、 ホログラム 3に記録される干渉縞 Cは 1つであるが、 この干渉縞 C は、 物体光 Aで物体光 Bを再生すると同時に物体光 Bで物体光 Aを再生する特性 を持っているので、  In other words, although there is one interference fringe C recorded on the hologram 3, the interference fringe C has the property of reproducing the object light B with the object light A at the same time as reproducing the object light B with the object light A. So
( a ) 物体光 Aの入射によって、 物体光 Bが再生されるのに加えて、 物体光 Bに よって物体光 Aを再生する特性を持つ干渉縞に、 物体光 Aが入射されることによ つて、 複次光 (破線) も再生されてしまう (図 5 ( a ) 参照) 。 また、  (a) In addition to the reproduction of the object light B due to the incidence of the object light A, the object light A is incident on the interference fringe that has the characteristic of reproducing the object light A by the object light B. Thus, the secondary light (dashed line) is also regenerated (see Fig. 5 (a)). Also,
( b ) 物体光 Bの入射によって、 物体光 Aが再生されるのに加えて、 物体光 Aに よつて物体光 Bを再生する特性を持つ干渉縞に、 物体光 Bが入射されることによ つて、 複次光 (破線) も再生されてしまう (図 5 ( b ) 参照) 。 また、  (b) In addition to the reproduction of the object light A due to the incidence of the object light B, the object light B is incident on the interference fringe that has the characteristic of reproducing the object light B by the object light A. As a result, the double-order light (dashed line) is also reproduced (see Fig. 5 (b)). Also,
( c ) 物体光 A、 Bの同時の入射によって、 物体光 Aが回折した物体光 Bと複次 光 (破線) 、 および物体光 Bが回折した物体光 Aと複次光 (破線) の計 4つの光 が再生されることになる (図 5 (c) 参照) 。 (c) Due to the simultaneous incidence of the object beams A and B, the total of the object beam B and the secondary beam (dashed line) where the object beam A is diffracted, and the object beam A and the secondary beam (dashed line) where the object beam B is diffracted Four lights Is reproduced (see Fig. 5 (c)).
物体光 A、 Bの数を增やしていくと、 このような複次光は爆発的に増加する。 なお、 図 5 (a) 〜 (c) では、 説明を簡単にするために物体光 A、 Bの透過光 は省略してある。  As the number of object beams A and B decreases, such secondary light explosively increases. In FIGS. 5 (a) to 5 (c), the transmitted lights of the object lights A and B are omitted for simplicity.
このような複次光は、 ホログラム 3の記録中にも、 物体光の複数の波面同士の 干渉縞 cが記録されるにしたがって次第に物体光によって再生されるようになる ので、 この複次光も参照光によって記録されてしまう。 つまり、 複次光 (破線) と参照光の干渉による縞も記録されることになる。  Even during the recording of the hologram 3, such a secondary light is gradually reproduced by the object light as the interference fringes c between a plurality of wavefronts of the object light are recorded. It is recorded by the reference light. That is, fringes due to interference between the secondary light (dashed line) and the reference light are also recorded.
結局、 ホログラム 3には、 つぎの 3種類の干渉縞が、 ホログラム材のラテイチ ユード内に収まって記録されることになる。  As a result, the following three types of interference fringes are recorded in the hologram 3 within the latitude ude of the hologram material.
(α) 物体光と参照光による干渉縞 (反射型ホログラム)  (α) Interference fringes caused by object light and reference light (reflection hologram)
( β ) 物体光の複数の波面同士による干渉縞 (透過型ホログラム)  (β) Interference fringes caused by multiple wavefronts of object light (transmission hologram)
( y ) 物体光の複数の波面同士による干渉縞によつて再生される複次光と参照光 による干渉縞 (反射型ホログラム)  (y) Interference fringes due to multiple-order light and reference light reproduced by interference fringes due to multiple wavefronts of object light (reflection hologram)
ここで、 このホログラム 3を参照光によって再生する場合、 (α) の干渉縞は、 物体光を再生するが、 ( ) 、 ( y ) の干渉縞は、 物体光とは異なる光を再生し てしまう。 このため、 Here, when the hologram 3 is reproduced by the reference light, the interference fringe ( α ) reproduces the object light, but the interference fringes () and (y) reproduce the light different from the object light. I will. For this reason,
( 1 ) 参照光の一部が回折して再生物体光に対するノィズ光として観測される。 (1) Part of the reference light is diffracted and observed as noise light with respect to the reproduction object light.
(2) 参照光の一部をノイズ光として回折してしまうため、 再生物体光の回折効 率が低くなる。 (2) Since a part of the reference light is diffracted as noise light, the diffraction efficiency of the reproduction object light decreases.
という問題があった。 There was a problem.
また、 このようなホログラム 3を透過する光は、 物体光の複数の波面同士によ つて記録された干渉縞 (/3) によって、  The light transmitted through the hologram 3 is caused by interference fringes (/ 3) recorded by a plurality of wavefronts of the object light.
(3) 透過光の一部が回折して、 透過光に対するノイズ光として観測される。 そして、 干渉縞 (/3) 、 (y ) によって、  (3) Part of the transmitted light is diffracted and observed as noise light for the transmitted light. And, by the interference fringes (/ 3) and (y),
(4) 透過光の一部がノイズ光として回折してしまうため、 透過光の透過率が低 くなる。  (4) Since a part of the transmitted light is diffracted as noise light, the transmittance of the transmitted light is reduced.
という問題があった。 発明の開示 There was a problem. Disclosure of the invention
本発明は上記 (1 ) ないし (4 ) の問題を解決することを目的とする。  An object of the present invention is to solve the above problems (1) to (4).
そこで、 この発明の主たる発明では、  Therefore, in the main invention of the present invention,
複数の物体光と参照光との干渉縞を記録することによって当該複数の物体光の波 面をホログラムに記録するホ口グラムの記録方法にぉレ、て、 A method of recording a mouthgram that records the wavefronts of the plurality of object lights on a hologram by recording interference fringes between the plurality of object lights and the reference light,
物体光と参照光とによる干渉縞が、 前記ホログラムのラティチュード内の適切 な第 1の強度となり、 かつ、  Interference fringes caused by the object light and the reference light have an appropriate first intensity within the latitude of the hologram; and
物体光の複数の波面同士による干渉縞の第 2の強度の、 前記第 1の強度に対す る比が所定値以下となり、 かつ、  The ratio of the second intensity of the interference fringes due to the plurality of wavefronts of the object light to the first intensity is equal to or less than a predetermined value, and
物体光の複数の波面同士の干渉縞によつて再生される複次光と参照光とによる 干渉縞の第 3の強度の、 前記第 1の強度に対する比が所定値以下となるように、 ホ口グラム記録時における参照光の強度と、 参照光の強度と物体光の強度との比 を、 決定するようにしている。  E, so that the ratio of the third intensity of the interference fringes due to the secondary light and the reference light reproduced by the interference fringes between the plurality of wavefronts of the object light to the first intensity is equal to or less than a predetermined value. The intensity of the reference light and the ratio of the intensity of the reference light to the intensity of the object light at the time of recording the oral gram are determined.
かかる構成によれば、 ホログラム記録時において、 参照光の強度と、 参照光の 強度と物体光の強度との比が、 適切な値に調整されることによって、 ホログラム には、 上記 (α ) の物体光と参照光による干渉縞のみが記録され、 上記 ( β ) の 物体光の複数の波面同士の干渉縞と、 上記 (γ ) の物体光の複数の波面同士の干 渉縞によって再生される複次光と参照光による干渉縞は、 強度が小さくなり、 記 録されなレ、。 According to this configuration, at the time of hologram recording, by adjusting the intensity of the reference light and the ratio of the intensity of the reference light to the intensity of the object light to an appropriate value, the hologram has the above-mentioned (α) Only the interference fringes due to the object light and the reference light are recorded, and are reproduced by the interference fringes between the plurality of wavefronts of the object light (β) and the interference fringes between the plurality of wavefronts of the object light ( γ ) above. The interference fringes due to the secondary light and the reference light have low intensity and cannot be recorded.
このため、 再生、 透過時において、 ノイズ光が少ない、 高品質のホログラムを 市場を提供することができる。 図面の簡単な説明  For this reason, a high-quality hologram with little noise light can be provided on the market during reproduction and transmission. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明に係るホログラムの記録方法および記録装置の実施に使用される 光学系の構成例を示す図である。  FIG. 1 is a diagram showing a configuration example of an optical system used for implementing a hologram recording method and a recording apparatus according to the present invention.
図 2は図 1の装置においてホログラムに入射される参照光の強度および物体光 の強度の、 参照光の強度に対する比を決定する処理の手順を示すフローチヤ一ト である。 FIG. 2 is a flowchart showing a processing procedure for determining the ratio of the intensity of the reference light and the intensity of the object light incident on the hologram to the intensity of the reference light in the apparatus of FIG. It is.
図 3は物体光の強度の、 参照光の強度に対する比を横軸とし、 ノイズ光の強度 の、 再生物体光の強度に対する比を縦軸として示すグラフである。  FIG. 3 is a graph showing the ratio of the intensity of the object light to the intensity of the reference light on the horizontal axis, and the ratio of the intensity of the noise light to the intensity of the reproduced object light on the vertical axis.
図 4はホログラムに記録される干渉縞を説明する図である。  FIG. 4 is a diagram illustrating interference fringes recorded on a hologram.
図 5 ( a ) 、 ( b ) 、 ( c ) は図 4に示す干渉縞によって再生される複次光を 説明する図である。  FIGS. 5 (a), (b), and (c) are diagrams illustrating the secondary light reproduced by the interference fringes shown in FIG.
図 6はホログラムを使用して 3次元形状計測を行う共焦点光学装置の構成を示 す図である。 発明を実施するための最良の形態  FIG. 6 is a diagram showing a configuration of a confocal optical device that performs three-dimensional shape measurement using a hologram. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明に係るホログラムの記録装置および記録方法の実 施の形態について説明する。  Hereinafter, embodiments of a hologram recording apparatus and recording method according to the present invention will be described with reference to the drawings.
ホログラム 3を露光する際の装置構成は、 上述した図 1の通りである。  The apparatus configuration for exposing the hologram 3 is as shown in FIG. 1 described above.
すなわち、 同図 1に示すように、 レーザ発振器 9から出射される光が、 1 2 波長板 1 2を介して偏光ハーフミラ一 1 4を透過し、 さらにレンズ 1 0、 1 1を 介して参照光としてホログラム 3に入射される。 また、 レーザ発振器 9から出射 される光は、 1ノ 2波長板 1 2を介して偏光ハーフミラー 1 4で反射され、 さら に 1 Z 2波長板 1 3、 ミラー 1 5、 1 6、 レンズ 1 7、 1 8、 ピンホールアレイ P Hの各ピンホール p l〜p n、 レンズ 4を介して、物体光としてホログラム 3に 入射される。  That is, as shown in FIG. 1, the light emitted from the laser oscillator 9 passes through the polarizing half mirror 14 through the 12-wavelength plate 12 and further passes through the lenses 10 and 11 as the reference light. To the hologram 3. Further, the light emitted from the laser oscillator 9 is reflected by the polarization half mirror 14 via the one-two-wave plate 12, and further reflected by the 1 Z two-wave plate 13, the mirrors 15, 16, and the lens 1. 7, 18 and incident on the hologram 3 as object light via the pinholes pl to pn and the lens 4 of the pinhole array PH.
よって、 参照光の強度 (光量) Rは、 レーザ発振器 9の発振出力を調節するこ とによって調整することができる。  Therefore, the intensity (light amount) R of the reference light can be adjusted by adjusting the oscillation output of the laser oscillator 9.
レーザ発振器 9の発振出力の調節は、 レーザ発振器 9自体の発振強度を調節す ることによって制御してもよいし、 レーザ発振器 9の出射口に透過率が可変のフ ィルタを配置して、 これを制御してもよレ、。  The adjustment of the oscillation output of the laser oscillator 9 may be controlled by adjusting the oscillation intensity of the laser oscillator 9 itself, or by disposing a filter having a variable transmittance at the emission port of the laser oscillator 9. You can control it.
物体光の強度の、 参照光の強度に対する比 rは、 1 / 2波長板 1 2の回転位置 を調節して偏光ハーフミラー 1 4において 2方向に分岐される光の分岐比を調節 することにより、 調整することができる。 こうした参照光の強度 Rおよび強度比 rの調整は、 レーザ発振器 9および 1Z 2波長板 12を制御するコントローラによって自動的に行うようにしてもよく、 また手動にて行うようにしてもよい。 The ratio r of the intensity of the object light to the intensity of the reference light is obtained by adjusting the rotation position of the half-wave plate 12 and adjusting the splitting ratio of the light split in two directions in the polarizing half mirror 14. , Can be adjusted. The adjustment of the intensity R and the intensity ratio r of the reference light may be automatically performed by a controller that controls the laser oscillator 9 and the 1Z two-wavelength plate 12, or may be performed manually.
つぎに、 上記強度 R、 強度比 rを決定する条件について説明する。  Next, conditions for determining the strength R and the strength ratio r will be described.
上述したように'、 ホログラム 3に記録される 3種類の干渉縞、 つまり、  As described above, the three types of interference fringes recorded on hologram 3,
(α) 物体光と参照光による干渉縞 (反射型ホログラム)  (α) Interference fringes caused by object light and reference light (reflection hologram)
( β ) 物体光の複数の波面同士による干渉縞 (透過型ホログラム)  (β) Interference fringes caused by multiple wavefronts of object light (transmission hologram)
( y ) 物体光の複数の波面同士による干渉縞によつて再生される複次光と参照光 による干渉縞 (反射型ホログラム)  (y) Interference fringes due to multiple-order light and reference light reproduced by interference fringes due to multiple wavefronts of object light (reflection hologram)
といった縞の強度は、 記録時の参照光、 物体光の強度に応じて、 変化する。 The intensity of such stripes changes according to the intensity of the reference light and the object light during recording.
いま、 1つの物体光の平均強度を s、 物体光の数を m、 物体光の総和強度を S とした場合、  Now, assuming that the average intensity of one object light is s, the number of object lights is m, and the total intensity of the object light is S,
¾ =∑ s ==m s ··· (1)  ¾ = ∑ s == m s (1)
S = r R … (2)  S = r R… (2)
が成立する。 ここで、 上記 3種類の干渉縞の相対強度のオーダーは、 Holds. Here, the order of the relative intensity of the above three types of interference fringes is
(a) S R ··· (3)  (a) SR (3)
( β ) s 2 … (4)  (β) s 2… (4)
(y ) a s 2 R … (5)  (y) a s 2 R… (5)
となる。 ここで、 aは、 露光中に (/3) の干渉縞によって再生される複次光の回 折効率であり、 1以下の小さな値である。 上記 (3) 〜 (5) 式に、 上記 (1) 、Becomes Here, a is the diffraction efficiency of the secondary light reproduced by the interference fringe of (/ 3) during exposure, and is a small value of 1 or less. In the above equations (3) to (5), the above (1),
(2) 式を代入して、 Substituting equation (2),
(a) r R 2 … (6)  (a) r R 2… (6)
( β ) r 2 R 2/m 2 … ( 7)  (β) r 2 R 2 / m 2… (7)
(7) a r 2 R 3/ 2 … (8)  (7) a r 2 R 3/2… (8)
を得る。 ここで、 参照光の強度 Rを一定として、 強度比 rを 1以下の数にすれば、 rが小さくなるほど、 Get. Here, assuming that the intensity R of the reference light is constant and the intensity ratio r is a number equal to or less than 1, as r becomes smaller,
( 7) 式ノ (6) 式- rZm2  (7) Equation (6) Equation-rZm2
(8) 式 Z (6) 式 = a r R/m 2 は、 単調減少し、 かつ (8) Equation Z (6) Equation = ar R / m 2 Decreases monotonically, and
(6) 式〉 (7) 式〉 (8) 式  Equation (6)> Equation (7)> Equation (8)
が成立するから、 (ひ) の干渉縞の強度に対する、 (3) の干渉縞の強度の比、 および (α) の干渉縞の強度に対する、 (γ) の干渉縞の強度の比は、 小さくな つていく。 Therefore, the ratio of the intensity of the interference fringes of (3) to the intensity of the interference fringes of ( h ), and the ratio of the intensity of the interference fringes of ( γ ) to the intensity of the ( α ) interference fringes are small. I will continue.
したがって、 本来、 ホログラム 3に記録されるべき (α) の干渉縞の強度が、 ホログラム材のラティチュ一ド内に収まるように、 参照光の強度 Rを適切な値に 選ぶとともに、 強度比 rを 1以下の適切な値に選んで、 (6) 式〉〉 (7) 式〉 (8) 式になるようにすれば、 ホログラム材には、 (α) の干渉縞のみが記録さ れ、 ノイズ光の原因である ( ) 、 ( y ) の干渉縞は、 強度が小さいので記録さ れないことになる。  Therefore, the intensity R of the reference light is selected to be an appropriate value so that the intensity of the interference pattern (α) to be originally recorded on the hologram 3 is within the latitude of the hologram material, and the intensity ratio r is set. By selecting an appropriate value less than or equal to 1 and satisfying Equations (6), (7), and (8), only the interference pattern (α) is recorded on the hologram material, The interference fringes () and (y), which cause light, are not recorded because of their low intensity.
つまり、  That is,
(α) の r R 2がホログラム材のラティチュード内の適切な強度となり、  (α) r R 2 is the appropriate strength within the latitude of the hologram material,
( β ) の r 2 R 2/m 2力;、 上記 r R 2よりも小さく、 ホログラム材のラテイチ ユード外 (アンダー) の強度となり、  (β) r 2 R 2 / m 2 force; smaller than the above r R 2, the strength of the hologram material is out of the lateral (under),
) の a r 2 R 3/m 2 力;、 上記 r R 2よりも小さく、 ホログラム材のラティ チユード外 (アンダー) の強度  ) A r 2 R 3 / m 2 force; smaller than the above r R 2, strength outside the latitude of the hologram material (under)
となるように、 参照光の強度 R、 強度比 rを調整し、 ホログラム 3の記録を行う ことにより、 ホログラム 3の再生、 透過時に、 ノイズ光を少なくすることができ る。 つまり、 高品質のホログラム 3を製造することができる。 By adjusting the intensity R of the reference light and the intensity ratio r so that the hologram 3 is recorded, noise light can be reduced when the hologram 3 is reproduced and transmitted. That is, a high-quality hologram 3 can be manufactured.
つぎに、 更に詳しい実施例について説明する。  Next, a more detailed embodiment will be described.
ホログラム 3を露光する際の装置構成は、 上述した図 1を想定する。  The device configuration when exposing the hologram 3 is assumed to be that in FIG. 1 described above.
ここで、 参照光の強度 Rおよび強度比 rの調整は、 レーザ発振器 9および 1Z 2波長板 12を制御するコントローラによって自動的に行われるものとする。 なお、 参照光と物体光の偏光の方向を一致させるべく、 1ノ2波長板 1 3も自 動的に制御してもよい。  Here, it is assumed that the adjustment of the intensity R and the intensity ratio r of the reference light is automatically performed by a controller that controls the laser oscillator 9 and the 1Z two-wave plate 12. Note that the one-two-wavelength plate 13 may also be automatically controlled so that the polarization directions of the reference light and the object light match.
コントローラには、 図 3に示すような関係が記憶されており、 図 2に示すよう な処理を実行する。 すなわち、 図 3は、 参照光の強度 Rが一定の場合において、 物体光の参照光に 対する強度比 rを、 1以下の小さな値で変化させて (横軸参照) 、 ホログラム 3 に記録しそれを再生していったときの、 再生された物体光の強度 S Rに対するノ ィズ光の強度 Nの強度比 NZS R (縦軸) を示したものである。 ただし、 横軸の スケールは例示の値である。 The controller stores the relationship as shown in FIG. 3, and executes the processing as shown in FIG. In other words, Fig. 3 shows that, when the intensity R of the reference light is constant, the intensity ratio r of the object light to the reference light is changed by a small value of 1 or less (see the horizontal axis) and recorded on the hologram 3 and recorded. This shows the intensity ratio NZS R (vertical axis) of the intensity N of the noise light to the intensity SR of the reproduced object light when. However, the scale on the horizontal axis is an example value.
ここで、 強度 S Rは、 本来ホログラム 3に記録されるべき (α) の干渉縞によ つて再生される光の強度であり、 強度 Νは、 ノイズ光の原因である (/3) 、 ( y ) の干渉縞によって再生される光の強度である。 Here, the intensity SR is the intensity of light reproduced by the ( α ) interference fringes that should be originally recorded on the hologram 3, and the intensity Ν is the cause of noise light (/ 3), (y ) Is the intensity of light reproduced by the interference fringes.
同図 3に示すように、 強度比 rを小さく していくと、 ノイズ光 Nの再生物体光 S Rに対する強度比 NZS Rは、 小さくなつていく力 臨界値 r cより小さくす ると、 本来記録されるべき (a) r R2の強度が、 ホログラム材のラティチュー ド外 (アンダー) の強度になってしまうので、 記録したい (α) の干渉縞自身を 記録することができなくなる。 As shown in Fig. 3, as the intensity ratio r is reduced, the intensity ratio NZS R of the noise light N to the reproduction object light SR becomes smaller than the force critical value rc. (A) r The intensity of R2 becomes the intensity outside (under) the latitude of the hologram material, so that it is impossible to record the ( α ) interference fringes to be recorded.
したがって、 ノイズ光の強度 Νの再生物体光の強度 S Rに対する強度比を所定 値 Nc以下に小さくできる ( (β) 、 (ν) の干渉縞の強度がホログラム材のラ テイチユード外 (アンダー) の強度となる) r optの範囲内であって、 かつ、 本 来記録されるべき (a) r R 2がホログラム材のラテイチユード内の適切な強度 になるように、 強度比 rを決定する必要がある。 Therefore, the intensity ratio of the noise light intensity に 対 す る to the reproduction object light intensity SR can be reduced to a predetermined value Nc or less (the intensity of the interference fringes of (β) and (ν) is lower than the latitude of the hologram material). (A) It is necessary to determine the intensity ratio r such that ( a ) r R 2 has an appropriate intensity within the latitude of the hologram material and is within the range of r opt. .
そこで、 図 2に示すように、 参照光の強度 Rが、 所定の値に設定され (ステツ プ 101) 、 強度比 rを、 r opt内で変化させて、 (a) r R 2がホログラム材 のラテイチユード内に収まっているか否かを逐次判断する (ステップ 102、 1 03、 105) 。  Therefore, as shown in FIG. 2, the intensity R of the reference light is set to a predetermined value (step 101), and the intensity ratio r is changed within r opt, and (a) r R 2 is the hologram material. (Steps 102, 103, 105).
ここで、 強度比 rを r optの範囲内において変化させたとしても、 (a) r R 2 力 ホログラム 3のラテイチユード内の適切な強度にならない場合には (ステ ップ 105の判断 YES) 、 上記ステップ 101に再び移行して、 参照光の強度 Rの大きさを再設定した上で、 同様の処理を繰り返す。  Here, even if the intensity ratio r is changed within the range of r opt, (a) if the intensity does not become appropriate within the latitude of the r R 2 force hologram 3 (determination YES in step 105), The process returns to step 101 again, and the same processing is repeated after resetting the intensity R of the reference light.
そこで、 強度比 rが r optの範囲内に収まり、 (a) r R 2力;、 ホログラム 3 のラティチュード内の適切な強度になった場合には (ステップ 103の判断 YE S ) 、 そのときの強度比 rおよびステップ 1 0 1で最終的に設定された参照光の 強度 Rを最終的な値として決定する (ステップ 1 0 4 ) 。 Therefore, if the intensity ratio r falls within the range of r opt, and (a) r R 2 force; becomes an appropriate intensity within the latitude of the hologram 3, (determination YE in step 103) S), the intensity ratio r at that time and the intensity R of the reference light finally set in step 101 are determined as final values (step 104).
なお、 ステップ 1 0 1における参照光の強度 Rの再設定の仕方としては、 (α ) r R 2がホログラム 3のラティチュードよりもオーバーする強度のときは、 再設 定値 Rを小さく し、 アンダーする強度のときは、 再設定値 Rを大きくすることが 考えられる。 Note that the method of resetting the reference light intensity R in step 101 is as follows. When ( α ) r R 2 is an intensity that exceeds the latitude of the hologram 3, the reset value R is reduced and the value is set lower. In the case of strength, it is conceivable to increase the reset value R.
こうしてステップ 1 0 4で決定された強度比 rおよびステップ 1 0 1で最終的 に設定された参照光の強度 Rが、 得られるようにコントローラは、 レーザ発振器 9および 1ノ 2波長板 1 2を制御する。  In this way, the controller sets the laser oscillator 9 and the one- and two-wavelength plate 12 so that the intensity ratio r determined in step 104 and the intensity R of the reference light finally set in step 101 are obtained. Control.
なお、 以上の説明では、 参照光は平行光を想定しているが、 もちろん拡散光で あってもよレヽ。  In the above description, the reference light is assumed to be parallel light, but may be diffuse light.
また、 図 1の * 1、 * 2に示される位置にホログラム 3を配置してもよレ、。 さらに複数の物体光は、 平行光、 拡散光、 あるいはピンホールから出射される 光に限定されない。 例えば、 複数のスリット光、 レンズアレイによる複数のスポ ット光、 その他であってもよい。 産業上の利用可能性  Also, the hologram 3 may be arranged at the positions indicated by * 1 and * 2 in FIG. Further, the plurality of object lights are not limited to parallel light, diffused light, or light emitted from a pinhole. For example, a plurality of slit lights, a plurality of spot lights by a lens array, and others may be used. Industrial applicability
本発明は、 共焦点光学系を応用した 3次元形状計測装置のみならず、 ホログラ ムを使用した光学装置一般に適用することができる。  INDUSTRIAL APPLICABILITY The present invention can be applied not only to a three-dimensional shape measuring apparatus to which a confocal optical system is applied, but also to optical apparatuses using holograms.

Claims

請 求 の 範 囲 The scope of the claims
1 . 複数の物体光と参照光との干渉縞を記録することによって当該複数 の物体光の波面をホログラムに記録するホログラムの記録方法において、 物体光と参照光とによる干渉縞が、 前記ホログラムのラティチュード内の適切 な第 1の強度となり、 かつ、  1. In a hologram recording method for recording the wavefronts of a plurality of object lights on a hologram by recording interference fringes between the plurality of object lights and the reference light, the interference fringes due to the object light and the reference light may include: A suitable first strength within the latitude, and
物体光の複数の波面同士による干渉縞の第 2の強度の、 前記第 1の強度に対す る比が所定値以下となり、 かつ、  The ratio of the second intensity of the interference fringes due to the plurality of wavefronts of the object light to the first intensity is equal to or less than a predetermined value, and
物体光の複数の波面同士の干渉縞によって再生される複次光と参照光とによる 干渉縞の第 3の強度の、 前記第 1の強度に対する比が所定値以下となるように、 ホロダラム記録時における参照光の強度と、 参照光の強度と物体光の強度との比 を、 決定するようにした、  At the time of Holodaram recording, the ratio of the third intensity of the interference fringe due to the secondary light and the reference light reproduced by the interference fringes of the plurality of wavefronts of the object light to the first intensity is equal to or less than a predetermined value. The ratio of the intensity of the reference light and the intensity of the reference light to the intensity of the object light at, is determined.
ホログラムの記録方法。  Hologram recording method.
2 . 複数の物体光と参照光との干渉縞を記録することによつて当該複数 の物体光の波面をホログラムに記録するホログラムの記録方法において、 参照光の強度を Rとし、 物体光の強度の参照光の強度に対する比を rとし、 物 体光の数を mとし、 物体光の複数の波面同士による干渉縞によって再生される複 次光の回折効率を aとしたとき、  2. A hologram recording method for recording the wavefronts of a plurality of object lights on a hologram by recording interference fringes between the plurality of object lights and the reference light, wherein the intensity of the reference light is R, Where r is the ratio of the intensity of the reference light to the intensity of the reference light, m is the number of object lights, and a is the diffraction efficiency of the secondary light reproduced by the interference fringes due to the multiple wavefronts of the object light.
物体光と参照光とによる干渉縞の強度 r R 2力;、 前記ホログラムのラティチュ —ド内の適切な第 1の強度となり、 かつ、  The intensity of the interference fringes due to the object light and the reference light r R 2 force; the first intensity within the latitude of the hologram is appropriate; and
物体光の複数の波面同士による干渉縞の第 2の強度 r 2 R 2/m 2力 前記第 1 の強度よりも小さく、 前記ホログラムのラテイチユード外の強度となり、 かつ、 物体光の複数の波面同士の干渉縞によって再生される複次光と参照光とによる 干渉縞の第 3の強度 a r 2 R 3/m 2力 前記第 1の強度よりも小さく、 前記ホロ グラムのラティチュード外の強度となるように、  The second intensity r 2 R 2 / m 2 of the interference fringes due to the plurality of wavefronts of the object light is smaller than the first intensity, the intensity is outside the latitude of the hologram, and the plurality of wavefronts of the object light are The third intensity ar 2 R 3 / m 2 force of the interference fringe due to the secondary light and the reference light reproduced by the interference fringe of the above is smaller than the first intensity and becomes an intensity outside the latitude of the hologram. To
ホログラム記録時における参照光の強度 Rと、 物体光の強度の参照光の強度に 対する比 rを、 決定するようにした、  The intensity R of the reference light during hologram recording and the ratio r of the intensity of the object light to the intensity of the reference light are determined.
ホログラムの記録方法 Hologram recording method
3 . 複数の物体光と参照光との干渉竊を記録することによつて当該複数 の物体光の波面をホログラムに記録するホログラムの記録装置において、 3. A hologram recording apparatus that records the wavefronts of the plurality of object lights on the hologram by recording the interference between the plurality of object lights and the reference light,
参照光の強度および参照光の強度と物体光の強度との比を調整する調整手段と、 物体光と参照光とによる干渉縞が、 前記ホログラムのラティチュード内の適切 な第 1の強度となり、 かつ、  Adjusting means for adjusting the intensity of the reference light and the ratio of the intensity of the reference light to the intensity of the object light; and an interference fringe formed by the object light and the reference light, having an appropriate first intensity within the latitude of the hologram, and ,
物体光の複数の波面同士による干渉縞の第 2の強度の、 前記第 1の強度に対す る比が所定値以下となり、 かつ、  The ratio of the second intensity of the interference fringes due to the plurality of wavefronts of the object light to the first intensity is equal to or less than a predetermined value, and
物体光の複数の波面同士の干渉縞によって再生される複次光と参照光とによる 干渉縞の第 3の強度の、 前記第 1の強度に対する比が所定値以下となるように、 ホログラム記録時において、 前記調整手段を制御する手段と  At the time of hologram recording, the ratio of the third intensity of the interference fringes due to the secondary light and the reference light reproduced by the interference fringes of the plurality of wavefronts of the object light to the first intensity is equal to or less than a predetermined value. A means for controlling the adjusting means;
を具えたホログラムの記録装置。  Hologram recording device equipped with
4 . レーザ発振器から出射される光を 2方向に分岐し、 その分岐比を調 節する光分岐比調節手段が具えられ、 前記ホログラムには、 前記光分岐比調節手 段によって分岐された一方の光が参照光として入射され、 同分岐された他方の光 が物体光として入射されるものであり、  4. The light emitted from the laser oscillator is branched in two directions, and a light branching ratio adjusting means for adjusting the branching ratio is provided. Light is incident as reference light, and the other light of the same branch is incident as object light,
前記光分岐比調節手段で光の分岐比を調節することによって、 参照光の強度と 物体光の強度との比を調整するとともに、  By adjusting the light splitting ratio by the light splitting ratio adjusting means, the ratio between the intensity of the reference light and the intensity of the object light is adjusted,
前記レーザ発振器で発振出力を調節することによって、 参照光の強度を調整す るようにした、  By adjusting the oscillation output by the laser oscillator, the intensity of the reference light is adjusted,
請求の範囲第 3項記載のホログラムの記録装置  The hologram recording device according to claim 3
PCT/JP1996/003024 1995-10-27 1996-10-18 Hologram recording method and apparatus WO1997015871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/280536 1995-10-27
JP28053695A JPH09127855A (en) 1995-10-27 1995-10-27 Recording method and recording device for hologram

Publications (1)

Publication Number Publication Date
WO1997015871A1 true WO1997015871A1 (en) 1997-05-01

Family

ID=17626457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003024 WO1997015871A1 (en) 1995-10-27 1996-10-18 Hologram recording method and apparatus

Country Status (3)

Country Link
JP (1) JPH09127855A (en)
TW (1) TW312757B (en)
WO (1) WO1997015871A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365195A (en) * 2012-03-29 2013-10-23 陈敬恒 Holographic imaging device and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936861B1 (en) * 2008-01-07 2010-01-14 조선대학교산학협력단 A measuring method of optical interference

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127588A (en) * 1979-03-26 1980-10-02 Matsushita Electric Ind Co Ltd Fourie transformation type hologram recording method
JPH02296278A (en) * 1989-05-11 1990-12-06 Ricoh Co Ltd Hologram forming device
JPH03103887A (en) * 1989-09-18 1991-04-30 Tokai Univ Beam splitter continuously variable distribution ratio used for holography
JPH03120579A (en) * 1989-10-04 1991-05-22 Nippon Telegr & Teleph Corp <Ntt> Multiple volume hologram element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127588A (en) * 1979-03-26 1980-10-02 Matsushita Electric Ind Co Ltd Fourie transformation type hologram recording method
JPH02296278A (en) * 1989-05-11 1990-12-06 Ricoh Co Ltd Hologram forming device
JPH03103887A (en) * 1989-09-18 1991-04-30 Tokai Univ Beam splitter continuously variable distribution ratio used for holography
JPH03120579A (en) * 1989-10-04 1991-05-22 Nippon Telegr & Teleph Corp <Ntt> Multiple volume hologram element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365195A (en) * 2012-03-29 2013-10-23 陈敬恒 Holographic imaging device and method thereof
CN103365195B (en) * 2012-03-29 2016-02-03 陈敬恒 Holographic imaging apparatus and method

Also Published As

Publication number Publication date
TW312757B (en) 1997-08-11
JPH09127855A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
US7372602B2 (en) Method for recording and reproducing holographic data and an apparatus therefor
US7742211B2 (en) Sensing and correcting angular orientation of holographic media in a holographic memory system by partial reflection, the system including a galvano mirror
US4810047A (en) In-line holographic lens arrangement
CA2016135A1 (en) Method and system for making a reflection hologram
US7460447B2 (en) Tilt detection apparatus, hologram apparatus, tilt correction method for medium, and tilt correction method for hologram medium
US20080309998A1 (en) Hologram element deflecting optical beam, hologram element fabricating apparatus, hologram element fabricating method, deflection optical unit, and information recording apparatus and information reconstructing apparatus using deflection optical unit
US4148549A (en) Diffraction gratings
EP1531462A1 (en) Holographic recording and reconstructing apparatus and mask for use therein
WO1997015871A1 (en) Hologram recording method and apparatus
JP2005122867A (en) Holographic optical information recorder by objective lens having two focal points in which optical axes of information light and reference light for recording are not separated from each other
US3970358A (en) Coherent, quasi-monochromatic light source
JP4232253B2 (en) Fine pattern manufacturing apparatus and holographic memory recording / reproducing apparatus
JP2529376B2 (en) Optical disc master making device
EP1607982A2 (en) Holographic data recording apparatus and method
CN117687136B (en) Spliced grating alignment precision detection method
US4932741A (en) Optical correlator system
US5109376A (en) Optical axis monitoring device
WO1997043678A1 (en) Telecentric optical device
JP3324141B2 (en) Hologram manufacturing method
JPH02128327A (en) Optical pickup device
JPS6233659B2 (en)
JP2768549B2 (en) Hologram manufacturing equipment
JP2650646B2 (en) Tracking error detection device
JPH0561397A (en) Hologram plotting device
CN117572735A (en) Static alignment system and method based on phase grating

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642