WO1997015291A1 - Verfahren zur herstellung von festen arzneiformen - Google Patents

Verfahren zur herstellung von festen arzneiformen Download PDF

Info

Publication number
WO1997015291A1
WO1997015291A1 PCT/EP1996/004585 EP9604585W WO9715291A1 WO 1997015291 A1 WO1997015291 A1 WO 1997015291A1 EP 9604585 W EP9604585 W EP 9604585W WO 9715291 A1 WO9715291 A1 WO 9715291A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
mixture
pharmaceutical
melting
acid
Prior art date
Application number
PCT/EP1996/004585
Other languages
English (en)
French (fr)
Inventor
Jörg Breitenbach
Axel Paul HÄRTL
Joerg Rosenberg
Michael Schiessl
Hans Dieter Zettler
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Publication of WO1997015291A1 publication Critical patent/WO1997015291A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing

Definitions

  • the present invention relates to a method for producing solid pharmaceutical forms by mixing and melting a pharmacologically acceptable polymeric binder, at least one pharmaceutical active ingredient and, if appropriate, customary pharmaceutical additives in the absence of a solvent.
  • the classic processes for producing solid pharmaceutical forms, in particular tablets, are carried out batchwise and comprise several stages.
  • First, the ingredients of the dosage form are conveyed into a suitable container and mixed there with the addition of a solvent to form a kneadable dough.
  • the dough is then granulated, the granules are dried and shaped into the desired medicinal form, for example by compression into tablets.
  • Such methods are described in relevant textbooks and for example in DE-A-4141268 and EP-A-590963.
  • the disadvantage of these processes is the use of a solvent and the large number of stages and apparatuses required.
  • EP-A-337 256 Another disadvantage of the process described in EP-A-337 256 is the high outlay for distributing the powdered active substance during the mixing process in the plastic zone of the extruder in order to be able to achieve the necessary axial backmixing.
  • the coupling of the melting and mixing process in the extruder requires a relatively long residence time in a high-shear zone in order to achieve sufficient mixing. This can lead to local overheating and damage to the product, especially when using a shear and temperature-sensitive active ingredient.
  • WO-A-94/25008 describes the preparation of an active ingredient-containing solution based on polyvinylpyrrolidone low
  • esters as plasticizers.
  • the esters under consideration are clear viscous liquids, with triethyl citrate and glycerol triacetate being preferred.
  • the ester content in this combination is at least 50%.
  • polyvinylpyrrolidone and active ingredient are processed with heating to form a homogeneous solution.
  • the high proportion of plasticizer in the combination mentioned leads to the so-called cold flow of the solidified solvent system, which is therefore not stable in storage. It is therefore necessary to fill the solution in soft gelatin capsules. The process therefore requires a further step and is not suitable for the production of solid dosage forms.
  • the present invention is therefore based on the object of a simple and gentle method for producing solid
  • the present invention therefore relates to a process for the production of solid pharmaceutical forms by mixing and melting at least one pharmacologically acceptable polymeric binder, at least one pharmaceutical active ingredient and, where appropriate, customary pharmaceutical additives in the absence of a solvent to give a plastic mixture and forms of the mixture to the desired pharmaceutical form, which is characterized in that the mixing and melting steps are carried out discontinuously and separately from one another.
  • the mixing and melting are carried out discontinuously. It is preferred to mix the components first and then melt them. In the case of sensitive active ingredients in particular, it has proven to be expedient to first melt and optionally premix the polymeric binder, if appropriate together with customary pharmaceutical additives, and then to mix in the active ingredient or the active ingredients (homogenization).
  • Suitable devices are described, for example, in "Mixing during the manufacture and processing of plastics", H. Pahl, VDI-Ver ⁇ lag, 1986.
  • Particularly suitable mixing devices are single-shaft agitators with stripping devices, in particular so-called paste agitators, multi-shaft agitators, in particular PDSM mixers and preferably kneaders, such as double-bowl kneaders (trough mixers) and stamp kneaders (internal mixers).
  • a kneading unit is expediently used as a self-cleaning unit.
  • Such devices are preferably used for the process according to the invention, in which both the mixing stage and the melting stage can be carried out in succession (possibly in the same device). Kneaders are particularly suitable for this.
  • the speed in the kneader can be set in a temperature-controlled manner, ie you can work at a low speed in the mixing stage and then increase the speed when melting.
  • the mixing and / or melting can also be carried out in two or more discontinuously operating devices in parallel or alternately, in order to be able to operate the downstream shaping device continuously.
  • the individual starting components are present in storage containers and are fed discontinuously to the mixing device via scales.
  • all components can either be added and then mixed before starting up the mixing device, or the binder can be initially introduced, if appropriate together with conventional additives, melted and premixed. After melting, an active ingredient can then be mixed in (homogenization). This is particularly advantageous if the active substance is sensitive to shear and temperature, because the time during which it is exposed to the high shear forces and high temperatures prevailing in the melting stage is considerably shorter.
  • the effort for metering the components is reduced in the method according to the invention. Fluctuations in the product quality are avoided, that is to say the method according to the invention reliably delivers the desired dosage forms and with the desired specifications.
  • the mixture obtained by mixing and melting the binder, the active ingredient and optionally the additive or additives is pasty to viscous (thermoplastic) and therefore also extrudable.
  • the glass transition temperature of the mixture is below the decomposition temperature of all components contained in the mixture.
  • the binder should preferably be soluble or swellable in a physiological environment. Examples of suitable binders are:
  • Polyvinylpyrrolidone PVP
  • copolymers of N-vinylpyrrolidone (NVP) and vinyl esters in particular vinyl acetate, copolyme ⁇ risate of vinyl acetate and crotonic acid, partially saponified polyvinyl acetate, polyvinyl alcohol, polyhydroxyalkyl acrylates ;
  • the K values (according to H. Fikentscher, Cellulose-Chemie 13 (1932), pages 58 to 64 and 71 and 74) of the polymers are in the range from 10 to 100, preferably 12 to 70, in particular 12 to 35, for PVP> 17, especially 20 to 35.
  • Preferred polymeric binders are polyvinylpyrrolidone, copolymers of N-vinylpyrrolidone and vinyl esters, polyhydroxyalkyl acrylates, polyhydroxyalkyl methacrylates, polyacrylates, poly methacrylates, alkyl celluloses and hydroxyalkyl celluloses.
  • the polymeric binder In the total mixture of all components, the polymeric binder must soften or melt in the range from 50 to 180 ° C., preferably 60 to 130 ° C. The glass transition temperature of the mixture must therefore be below 180 ° C, preferably below 130 ° C. If necessary, it is replaced by usual, pharmacological acceptable softening auxiliaries reduced.
  • the amount of plasticizer is at most 30% by weight, based on the total weight of binder and plasticizer, so that storage-stable drug forms are formed which show no cold flow. However, the mixture preferably contains no plasticizer.
  • plasticizers examples include:
  • aromatic carboxylic acid esters eg dialkyl acid phthalate, stere-terephthalic acid, trimellereic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trimellitic acid ester, trim
  • Common pharmaceutical auxiliaries the total amount of which can be up to 100% by weight, based on the polymer, are e.g.
  • Extenders or fillers such as silicates or silica, magnesium oxide, aluminum oxide, titanium oxide, stearic acid or their salts, e.g. the magnesium or calcium salt, methyl cellulose, sodium carboxyroethyl cellulose, talc, sucrose, lactose, corn or corn starch, potato flour, polyvinyl alcohol, in particular in a concentration of 0.02 to 50, preferably 0.20 to 20% by weight on the total weight of the mixture;
  • Lubricants such as aluminum and calcium stearate, talc and silicones, in a concentration of 0.1 to 5, preferably 0.1 to 3% by weight, based on the total weight of the mixture, are preferred.
  • Flow agents such as animal or vegetable fats, especially in hydrogenated form and those which are solid at room temperature. These fats preferably have a melting point of 50 * C or higher.
  • Triglycerides of C 12 , C 14 , C 16 and C 18 fatty acids are preferred.
  • Waxes such as carnauba wax can also be used. These fats and waxes can advantageously be admixed alone or together with mono- and / or diglycerides or phosphatides, in particular lecithin.
  • the mono- and diglycerides are preferably derived from the fatty acid types mentioned above.
  • the total amount of fats, waxes, mono-, diglycerides and / or lecithins is 0.1 to 30, preferably 0.1 to 5% by weight, based on the total weight of the mass for the respective layer;
  • Dyes such as azo dyes, organic or inorganic pigments or dyes of natural origin, inorganic pigments in a concentration of 0.001 to 10, preferably 0.5 to 3% by weight, based on the total weight of the mixture;
  • Stabilizers such as antioxidants, light stabilizers, hydroperoxide destroyers, radical scavengers, stabilizers against microbial attack.
  • wetting agents, preservatives, disintegrants, adsorbents, mold release agents and blowing agents can also be added (see, for example, H. Sucker et al. Pharmaceutical Technology, Thieme-Verlag, Stuttgart 1978).
  • auxiliaries are, for example, pentaerythritol and pentaerythritol tetraacetate, polymers such as polyethylene or polypropylene oxides and their block copolymers (poloxamers), phosphatides such as lecithin, homo- and copolymers of vinylpyrrolidone, surfactants such as polyoxyethylene 40 stearate and citric and succinic acids, bile acids , Sterols and others as described, for example, by JL Ford, Pharm. Acta Helv. 61, 69-88 (1986) give.
  • compositions in the sense of the invention are understood to mean all substances with a pharmaceutical effect and as few side effects as possible, provided that they do not decompose under the processing conditions.
  • the amount of active ingredient per dose unit and the concentration can vary within wide limits depending on the effectiveness and rate of release. The only requirement is that they are sufficient to achieve the desired effect.
  • the active substance concentration can thus be in the range from 0.1 to 95, preferably from 20 to 80, in particular 30 to 70% by weight. Combinations of active substances can also be used.
  • Active substances in the sense of the invention are also vitamins and minerals, as well as plant treatment agents and insecticides.
  • the vitamins include the vitamins of the A group and the B group, which in addition to B j , B 2 , B 6 and B 12 and nicotinic acid and nicotine amide also include compounds with vitamin B properties, such as adenine, choline , Pantothenic acid, biotin, adenyl acid, folic acid, orotic acid, pangamic acid, carnitine, p-aminobenzoic acid, myo-inositol and lipoic acid as well as vitamin C, vitamins of the D group, E group, F group, H group, I- and J group, K group and P group. Active substances in the sense of the invention also include peptide therapeutic agents.
  • the process according to the invention is suitable, for example, for processing the following active ingredients:
  • Preferred active substances are ibuprofen (as racemate, enantiomer or enriched enantiomer), ketoprofen, flurbiprofen, acetylsalicylic acid, verapamil, paracetamol, nifedipine or captopril.
  • solid solutions can be formed.
  • the term “solid solutions” is familiar to the person skilled in the art, for example from the literature cited at the beginning.
  • the active ingredient is molecularly dispersed in the polymer.
  • the mixture obtained is solvent-free, i.e. it contains neither water nor an organic solvent.
  • the mixture is shaped continuously or batchwise using customary methods. Common methods include: Hot granulation, which leads to lenticular pellets with a diameter of 1 to 10 mm;
  • Solid pharmaceutical forms which can be produced by the process according to the invention are, in particular, coated tablets, pellets, granules and tablets.
  • the forms obtained, in particular the granules can then also be ground into powder and used in this form, for example in hard gelatin capsules. Granules can also be compressed into tablets in the usual way.
  • the pharmaceutical forms obtained can also be provided in a conventional manner with film coatings which control the release of active ingredient or cover the taste.
  • Suitable materials for such coatings are polyacrylates, such as the Eudragit types, cellulose esters, such as the hydroxypropylmethylellulose phthalates, and cellulose ethers, such as ethyl cellulose, hydroxypropyl methyl cellulose or hydroxypropyl cellulose.
  • the method according to the invention thus also allows the production of pharmaceutical forms by conventional methods, such as pressing granules into tablets, but without the disadvantages of these conventional methods.
  • 500 g of polyvinylpyrrolidone with a K value of 30 and 300 g of sorbitol are heated to about 110 ° C. at 100 revolutions per minute in a kneader equipped with Sigroa blades and heated via a double jacket and having a capacity of 2 l and heated to about 110.degree Melted for 15 minutes.
  • 200 g of powdered ibuprofen are then added. The mixture is homogenized under a nitrogen pressure of 2 bar for 3 minutes at 50 revolutions per minute.
  • the highly viscous mass is then fed as a strand through a discharge screw into a calender with two shaping rollers and shaped, as described, for example, in EP-A-240 904.
  • Transparent oblong tablets are obtained in which the active ingredient is present as a solid solution and which release the active ingredient as a bolus dose.
  • the tablets have a release of more than 70% in 30 minutes, measured at pH 7.2, which corresponds to the requirements according to USP XXII.
  • Example 1 In the kneader described in Example 1, 500 g of vinyl pyrrolidone / vinyl acetate copolymer and 300 g of mannitol are first heated at 100 revolutions per minute from room temperature to about 100 ° C. and melted in 10 minutes. 200 g of powdered ibuprofen are then added. The total mass is homogenized under 2 bar nitrogen pressure for 3 minutes at 50 revolutions per minute.
  • the highly viscous mass is then shaped, as described in Example 1, into oblong tablets of 200 mg, which release the active ingredient as a bolus dose.
  • the tablets obtained show a release of> 70% in 30 minutes, measured at pH 7.2, which corresponds to the requirements according to USP XXII.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von festen Arzneiformen durch Vermischen und Aufschmelzen von mindestens einem pharmakologisch akzeptablen polymeren Bindemittel, mindestens einem pharmazeutischen Wirkstoff und gegebenenfalls üblichen pharmazeutischen Additiven in Abwesenheit eines Lösungsmittels zu einem plastischen Gemisch und Formen des Gemisches zu der gewünschten Arzneiform, wobei man das Vermischen und Aufschmelzen in voneinander getrennten Stufen vornimmt. Das erfindungsgemäße Verfahren erlaubt eine einfache und schonende Herstellung der Arzneiformen in hoher Produktqualität.

Description

VERFAHREN ZUR HERSTELLUNG VON FE8TEN ARZNEIFORMEN Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von festen Arzneiformen durch Vermischen und Aufschmelzen eines pharmakologisch akzeptablen polymeren Bindemittels, mindestens eines pharmazeutischen Wirkstoffes und gegebenenfalls üblicher pharmazeutischer Additive in Abwesenheit eines Lösungsmittels.
Die klassischen Verfahren zur Herstellung fester Arzneiformen, insbesondere Tabletten, werden diskontinuierlich durchgeführt und umfassen mehrere Stufen. Zunächst werden die Bestandteile der Arzneiform in einen geeigneten Behälter gefördert und dort unter Zusatz eines Lösungsmittels zu einem knetfähigen Teig vermischt. Anschließend granuliert man den Teig, trocknet das Granulat und formt es zu der gewünschten Arzneiform, beispielsweise durch Ver¬ pressen zu Tabletten. Derartige Verfahren sind in einschlägigen Lehrbüchern und beispielsweise in DE-A-4141268 und EP-A-590963 beschrieben. Der Nachteil dieser Verfahren liegt in der Verwen¬ dung eines Lösungsmittels und in der Vielzahl der erforderlichen Stufen und Apparaturen.
Seit einiger Zeit ist ein wesentlich einfacheres kontinuierliches Verfahren zur Herstellung fester Arzneiformen bekannt, bei dem man eine wirkstoffhaltige lösungsmittelfreie Schmelze aus einem polymeren Bindemittel extrudiert und den extrudierten Strang zu der gewünschten Arzneiform formt, beispielsweise in einem Kalan¬ der mit Formwalzen, siehe EP-A-240 904, EP-A-240 906 und EP-A-337 256. Ein Problem bei diesem kontinuierlichen Verfahren ist die für die Herstellung von Arzneimitteln erforderliche exakte Dosierung aller Einzelkomponenten. Es erschien nicht prak¬ tikabel, eine Vormischung der Komponenten herzustellen und diese Vormischung in den Extruder einzuspeisen, weil die Gefahr einer Entmischung der Komponenten und damit der Herstellung von Arznei¬ formen ungleichmäßiger Zusammensetzung zu groß ist. Gemäß der EP-A-337 256 wird zur Vermeidung dieses Problems vorgeschlagen, die einzelnen Komponenten kontinuierlich in den Trichter eines Extruders zu dosieren. Die Dosierung erfolgt mit Hilfe der sehr präzise arbeitenden Differentialdosierwaagen. Dennoch können DosierSchwankungen nicht vollständig vermieden werden, weil die Differentialdosierwaagen beim Befüllen volumetrisch betrieben werden müssen. Das hat zur Folge, daß zumindest ein Teil der erhaltenen Arzneiformen nicht den Anforderungen entspricht.
Ein weiterer Nachteil des in der EP-A-337 256 beschriebenen Verfahrens ist der hohe Aufwand zur Verteilung des pulverförmigen Wirkstoffs beim Mischvorgang in der plastischen Zone des Extru¬ ders, um die notwendige axiale Rückmischung realisieren zu kön¬ nen. Die Kopplung des Aufschmelz- und Mischvorgangs im Extruder erfordert, um eine ausreichende Vermischung zu bewirken, eine relativ lange Verweilzeit in einer Zone mit hoher Scherung. Dadurch kann es zu einer lokalen Überhitzung und Schädigung des Produktes, insbesondere bei Verwendung eines scher- und tempera¬ turempfindlichen Wirkstoffes kommen.
Die WO-A-94/25008 beschreibt die Herstellung einer wirkstoff- haltigen Lösung auf Basis von Polyvinylpyrrolidon niedrigen
K-Wertes in Kombination mit bestimmten Estern als Weichmacher. Bei den in Betracht gezogenen Estern handelt es sich um klare viskose Flüssigkeiten, wobei Triethylcitrat und Glycerintriacetat bevorzugt sind. Der Esteranteil in dieser Kombination beträgt mindestens 50 %. Für die Herstellung des Kapselinhaltes werden Polyvinylpyrrolidon und Wirkstoff unter Erhitzen zu einer homoge¬ nen Lösung verarbeitet. Der hohe Weichmacheranteil in der erwähn¬ ten Kombination führt zu dem sogenannten kalten Fluß des erstarr¬ ten Lösungsmittelsystems, das daher nicht lagerstabil ist. Es ist deshalb erforderlich, die Lösung in Weichgelatinekapseln abzufül¬ len. Das Verfahren erfordert daher einen weiteren Schritt und ist zur Herstellung fester Arzneiformen nicht geeignet.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein einfaches und schonendes Verfahren zur Herstellung von festen
Arzneiformen zur Verfügung zu stellen, das es erlaubt, die Arz- neiformen zuverlässig mit gleichbleibender Zusammensetzung herzu¬ stellen.
Überraschenderweise wurde nun gefunden, daß diese Aufgabe gelöst wird, wenn man das Vermischen und Aufschmelzen der Komponenten voneinander entkoppelt in einem separaten Schritt durchführt.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung von festen Arzneiformen durch Vermischen und Auf- schmelzen von mindestens einem pharmakologisch akzeptablen poly¬ meren Bindemittel, mindestens einem pharmazeutischen Wirkstoff und gegebenenfalls üblichen pharmazeutischen Additiven in Ab¬ wesenheit eines Lösungsmittels zu einem plastischen Gemisch und Formen des Gemisches zu der gewünschten Arzneiform, das dadurch gekennzeichnet ist, daß man die Schritte Vermischen und Aufschmelzen diskontinuierlich und voneinander getrennt vornimmt.
Erfindungsgemäß werden das Vermischen und Aufschmelzen diskon¬ tinuierlich vorgenommen. Es ist bevorzugt, zuerst die Komponenten zu vermischen und dann aufzuschmelzen. Insbesondere bei empfind¬ lichen Wirkstoffen hat es sich als zweckmäßig erwiesen, zuerst das polymere Bindemittel, gegebenenfalls zusammen mit üblichen pharmazeutischen Additiven, aufzuschmelzen und gegebenenfalls vorzuvermischen, und dann den Wirkstoff oder die Wirkstoffe ein- zumischen (Homogenisieren) .
Als Mischapparat sind solche Vorrichtungen brauchbar, die auch in der Kunststofftechnologie zum Mischen eingesetzt werden. Geeigne¬ te Vorrichtungen sind beispielsweise beschrieben in "Mischen beim Herstellen und Verarbeiten von Kunststoffen", H. Pahl, VDI-Ver¬ lag, 1986. Besonders geeignete Mischapparaturen sind einwellige Rührwerke mit AbstreifVorrichtungen, insbesondere sogenannte Pastenrührwerke, mehrwellige Rührwerke, insbesondere PDSM-Mischer sowie vorzugsweise Kneter, wie Doppelmuldenkneter (Trogmischer) und Stempelkneter (Innenmischer) . Als Kneter verwendet man zweck¬ mäßigerweise ein selbstreinigendes Aggregat. Vorzugsweise verwendet man solche Vorrichtungen für das erfin¬ dungsgemäβe Verfahren, in denen sowohl die Mischstufe als auch die Aufschmelzstufe hintereinander (ggf. in derselben Vorrichtung) durchgeführt werden können. Kneter sind hierfür besonders geeignet. Je nach Bedarf kann die Drehzahl im Kneter temperaturgeregelt eingestellt werden, d.h. man kann mit niedri¬ ger Drehzahl in der Mischstufe arbeiten und die Drehzahl dann beim Aufschmelzen erhöhen.
Das Mischen und/oder Aufschmelzen kann auch in zwei oder mehreren diskontinuierlich arbeitenden Vorrichtungen parallel oder im Wechsel erfolgen, um die nachgeschaltete Ausformvorrichtung kon¬ tinuierlich betreiben zu können.
Im allgemeinen liegen die einzelnen Ausgangskomponenten in Vor¬ ratsbehältern vor und werden über Waagen diskontinuierlich der Mischvorrichtung zugeführt. Wie schon erwähnt, können dabei entweder alle Komponenten vor Inbetriebnahme der MisehVorrichtung zugegeben und dann vermischt werden oder es kann zunächst das Bindemittel, gegebenenfalls zusammen mit üblichen Additiven, vorgelegt, aufgeschmolzen und vorvermischt werden. Nach dem Aufschmelzen kann dann ein Wirkstoff eingemischt werden (Homoge¬ nisieren) . Dies ist insbesondere von Vorteil, wenn es sich um einen scher- und tempereraturempfindlichen Wirkstoff handelt, weil dann die Zeit, während der er den in der Aufschmelzstufe herrschenden hohen Scherkräften und hohen Temperaturen ausgesetzt ist, wesentlich kürzer ist.
Im Vergleich zu dem Verfahren gemäß EP-A-337 256 ist beim erfin- dungsgemäßen Verfahren der Aufwand für die Dosierung der Kom¬ ponenten reduziert. Schwankungen in der Produktqualität werden vermieden, das heißt, das erfindungsgemäβe Verfahren liefert die gewünschten Arzneiformen zuverlässig und mit den gewünschten Spezifikationen. Das durch Vermischen und Aufschmelzen des Bindemittels, des Wirkstoffes und gegebenenfalls des Additivs oder der Additive erhaltene Gemisch ist teigig bis zähflüssig (thermoplastisch) und daher auch extrudierbar . Die Glasübergangstemperatur des Gemi- sches liegt unter der Zersetzungstemperatur aller in dem Gemisch enthaltenen Komponenten . Das Bindemittel soll vorzugsweise in physiologischer Umgebung löslich oder quellbar sein. Beispiele für geeignete Bindemittel sind:
Polyvinylpyrrolidon (PVP) , Copolymerisate von N-Vinylpyrro¬ lidon (NVP) und Vinylestern , insbesondere Vinylacetat, Copolyme¬ risate von Vinylacetat und Crotonsaure, teilverseiftes Polyvinyl¬ acetat , Polyvinylalkohol , Polyhydroxyalkylacrylate; Poi yhydroxy- alkylmethacrylate, Polyacrylate und Polymethacrylate (Eudragit- Typen) , Copolymerisate von Methylmethacrylat und Acrylsäure, Celluloseester, Celluloseether , insbesondere Methylcellulose und Ethylcellulose, Hydroxyalkylcellulosen, insbesondere Hydroxypro¬ pylcellulose , Hydroxyalkyl-Alkylcellulosen, insbesondere Hydroxypropyl-Ethylcellulose, Cellulosephthalate, insbesondere Celluloseacetatphthalat und Hydroxypropylmethylcellulosephthalat, und Mannane , insbesondere Galactomannane . Die K-Werte (nach H. Fikentscher , Cellulose-Chemie 13 ( 1932 ) , Seiten 58 bis 64 und 71 und 74 ) der Polymeren liegen im Bereich von 10 bis 100, vorzugs¬ weise 12 bis 70 , insbesondere 12 bis 35 , für PVP > 17 , insbeson- dere 20 bis 35.
Bevorzugte polymere Bindemittel sind Polyvinylpyrrolidon, Copoly¬ merisate von N-Vinylpyrrolidon und Vinylestern, Polyhydroxy- alkylacrylate, Polyhydroxyalkylmethacrylate, Polyacrylate, Poly- methacrylate, Alkylcellulosen und Hydroxyalkylcellulosen.
Das polymere Bindemittel muß in der Gesamtmischung aller Kom¬ ponenten im Bereich von 50 bis 180°C, vorzugsweise 60 bis 130°C erweichen oder schmelzen. Die Glasübergangstemperatur der Mi- schung muß daher unter 180°C, vorzugsweise unter 130°C liegen. Erforderlichenfalls wird sie durch übliche, pharmakologisch akzeptable weichmachende Hilfsstoffe herabgesetzt. Die Menge an Weichmacher beträgt höchstens 30 Gew.-%, bezogen auf das Gesamt¬ gewicht von Bindemittel und Weichmacher, damit lagerstabile Arz¬ neiformen gebildet werden, die keinen kalten Fluß zeigen. Vor- zugsweise aber enthält das Gemisch keinen Weichmacher.
Beispiele für derartige Weichmacher sind:
langkettige Alkohole, Ethylenglykol, Propylenglykol, Glycerin, Trimethylolpropan, Triethylenglykol, Butandiole, Pentanole, wie Pentaerythrit, Hexanole, Polyethylenglykole, Polypropylenglykole, Polyethylen-propylenglykole, Silicone, aromatische Carbonsäuree¬ ster (z.B. Dialkylphthalate, Trimellithsäureester,—Benzoesäuree- ster, Terephthalsäureester) oder aliphatische Dicarbonsaureester (z.B. Dialkyladipate, Sebacinsäureester, Azelainsäureester, Zitronen- und Weinsäureester) , Fettsäureester, wie Glycerinmono-, Glycerindi- oder Glycerintriacetat oder Natriumdiethylsulfosucci- nat. Die Konzentration an Weichmacher beträgt im allgemeinen 0,5 bis 15, vorzugsweise 0,5 bis 5 Gew.-%, bezogen auf das Gesamt- gewicht des Gemisches.
Übliche galenische Hilfsstoffe, deren Gesamtmenge bis zu 100 Gew.-% bezogen auf das Polymerisat, betragen kann, sind z.B.
Streckmittel bzw. Füllstoffe, wie Silikate oder Kieselerde, Magnesiumoxid, Aluminiumoxid, Titanoxid, Stearinsäure oder deren Salze, z.B. das Magnesium- oder Kalziumsalz, Methylcellulose, Natrium-Carboxyroethylcellulose, Talkum, Saccharose, Lactose, Getreide- oder Maisstärke, Kartoffelmehl, Polyvinylalkohol, insbesondere in einer Konzentration von 0,02 bis 50, vorzugsweise 0,20 bis 20 Gew.-%, bezogen auf das Gesamtgewicht des Gemisches;
Schmiermittel, wie Aluminium- und Calciumstearat, Talcum und Silicone, in einer Konzentration von 0,1 bis 5, vorzugsweise 0,1 bis 3 Gew.-%, bezogen auf das Gesamtgewicht des Gemisches bevor¬ zugt sind. Flieβmittel, wie tierische oder pflanzliche Fette, insbesondere in hydrierter Form und solche, die bei Raumtemperatur fest sind. Diese Fette haben vorzugsweise einen Schmelzpunkt von 50*C oder höher. Bevorzugt sind Triglyceride der C12-, C14-, C16- und C18- Fettsäuren. Auch Wachse, wie Carnaubawachs, sind brauchbar. Diese Fette und Wachse können vorteilhaft alleine oder zusammen mit Mono- und/oder Diglyceriden oder Phosphatiden, insbesondere Lecithin, zugemischt werden. Die Mono- und Diglyceride stammen vorzugsweise von den oben erwähnten Fettsäuretypen ab. Die Ge- samtmenge an Fetten, Wachsen, Mono-, Diglyceriden und/oder Leci- thinen beträgt 0,1 bis 30, vorzugsweise 0,1 bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Masse für die jeweilige Schicht;
Farbstoffe, wie Azofarbstoffe, organische oder anorganische Pigmente oder Farbstoffe natürlicher Herkunft, wobei anorganische Pigmente in einer Konzentration von 0,001 bis 10, vorzugsweise 0,5 bis 3 Gew.-%, bezogen auf das Gesamtgewicht des Gemisches;
Stabilisatoren, wie Antioxidanzien, Lichtstabilisatoren, Hydrope- roxid-Vernichter, Radikalfänger, Stabilisatoren gegen mikrobiel¬ len Befall.
Ferner können Netz-, Konservierungs-, Spreng-, Adsorptions-, Formentrenn- und Treibmittel zugesetzt werden (vgl. z.B. H. Sucker et al. Pharmazeutische Technologie, Thieme-Verlag, Stutt¬ gart 1978) .
Unter Hilfsstoffen im Sinne der Erfindung sind auch Substanzen zur Herstellung einer festen Lösung mit dem pharmazeutischen Wirkstoff zu verstehen. Diese Hilfsstoffe sind beispielsweise Pentaerythrit und Pentaerythrit-tetracaetat, Polymere wie z.B. Polyethylen- bzw. Polypropylenoxide und deren Blockcopolymere (Poloxamere) , Phosphatide wie Lecithin, Homo- und Copolymere des Vinylpyrrolidons, Tenside wie Polyoxyethylen-40-stearat sowie Zitronen- und Bernsteinsäure, Gallensäuren, Sterine und andere wie z.B. bei J. L. Ford, Pharm. Acta Helv. 61, 69-88 (1986) ange- geben.
Als pharmazeutische Hilfsstoffe gelten auch Zusätze von Basen und Säuren zur Steuerung der Löslichkeit eines Wirkstoffes (siehe beispielsweise K. Thoma et al., Pharm. Ind. 51, 98-101 (1989)).
Einzige Voraussetzung für die Eignung von Hilfsstoffen ist eine ausreichende Temperaturstabilität.
Unter pharmazeutischen Wirkstoffen im Sinne der Erfindung sind alle Stoffe mit einer pharmazeutischen Wirkung und möglichst geringen Nebenwirkungen zu verstehen, sofern sie sich unter den Verarbeitungsbedingur.gen nicht zersetzen. Die Wirkstoffmenge pro Dosiseinheit und die Konzentration können je nach Wirksamkeit und Freisetzungsgeschwindigkeit in weiten Grenzen variieren. Die einzige Bedingung ist, daß sie zur Erzielung der gewünschten Wirkung ausreichen. So kann die Wirkstoffkonzentration im Bereich von 0,1 bis 95, vorzugsweise von 20 bis 80, insbesondere 30 bis 70 Gew.-% liegen. Auch Wirkstoff-Kombinationen können eingesetzt werden. Wirkstoffe im Sinne der Erfindung sind auch Vitamine und Mineralstoffe, sowie Pflanzenbehandlungsmittel und Insektizide. Zu den Vitaminen gehören die Vitamine der A-Gruppe, der B-Gruppe, worunter neben Bj, B2, B6 und B12 sowie Nicotinsäure und Nicotin- amid auch Verbindungen mit Vitamin B-Eigenschaften verstanden werden, wie z.B. Adenin, Cholin, Pantothensäure, Biotin, Ade- nylsäure, Folsäure, Orotsäure, Pangamsäure, Carnitin, p- Aminobenzoesäure, myo-Inosit und Liponsäure sowie Vitamin C, Vitamine der D-Gruppe, E-Gruppe, F-Gruppe, H-Gruppe, I- und J- Gruppe, K-Gruppe und P-Gruppe. Zu Wirkstoffen im Sinne der Erfin- düng gehören auch Peptidtherapeutika.
Das erfindungsgemäße Verfahren ist beispielsweise zur Verarbei¬ tung folgender Wirkstoffe geeignet:
Acebutolol, Acetylcystein, Acetylsalicylsäure, Acyclovir, Al- brazolam, Alfacalcidol, Allantoin, Allopurinol, Ambroxol, Amika- ein, Amilorid, Aminoessigsäure, Amiodaron, Amitriptylin, Amlodi- pin, Amoxicillin, Ampicillin, Ascorbinsaure, Aspartam, Astemizol, Atenolol, Beclomethason, Benserazid, Benzalkonium-Hydrochlorid, Benzocain, Benzoesaure, Betamethason, Bezafibrat, Biotin, Biperi- den, Bisoprolol, Bromazepam, Bromhexin, Bromocriptin, Budesonid, Bufexamac, Buflomedil, Buspiron, Coffein, Campher, Captopril, Carbamazepin, Carbidopa, Carboplatin, Cefachlor, Cefalexin, Cefatroxil, Cefazolin, Cefixim, Cefotaxim, Ceftazidim, Ceftria- xon, Cefuroxim, Celedilin, Chloramphenicol, Chlorhexidin, Chlor- pheniramin, Chlortalidon, Cholin, Cyclosporin, Cilastatin, Cime- tidin, Ciprofloxacin, Cisapride, Cisplatin, Clarithroroycin, Clävulansäure, Clomibramin, Clonazepam, Clonidin, Clotrimazol, Codein, Cholestyramin, Cromoglycinsäure, Cyanocobalamin, Cyprote- ron, Desogestrel, Dexamethason, Dexpanthenol, Dextromethorphan, Dextropropoxiphen, Diazepam, Diclofenac, Digoxin, Dihydrocodein, Dihydroergotamin, Dihydroergotoxin, Diltiazem, Diphenhydramin, Dipyridamol, Dipyron, Disopyramid, Domperidon, Dopamin, doxoey- clin, Enalapril, Ephedrin, Epinephrin, Ergocalciferol, Ergotamin, Erythromycin, Estradiol, Ethinylestradiol, Etoposid, Eucalyptus Globulus, Famotidin, Felodipin, Fenofibrat, Fenoterol, Fentanyl, Flavin-Mononucleotid, Fluconazol, Flunarizin, Fluorouracil, Fluoxetin, Flurbiprofen, Furosemid, Gallopamil, Gemfibrozil, Gentamicin, Gingko Biloba, Glibenclamid, Glipizid, Clozapin, Glycyrrhiza glabra, Griseofulvin, Guaifenesin, Haloperidol, Heparin, Hyaluronsäure, Hydrochlorothiazid, Hydrocodon, Hydrocor¬ tison, Hydromorphon, Ipratropium-Hydroxid, Ibuprofen, Imipenem, Indomethacin, Iohexol, Iopamidol, Isosorbid-Dinitrat, Isosorbid- Mononitrat, Isotretinoin, Ketotifen, Ketoconazol, Ketoprofen, Ketorolac, Labatalon, Lactulose, Lecithin, Levocarnitin, Levodo- pa, Levoglutamid, Levonorgestrel, Levothyroxin, Lidocain, Lipase, Lipramin, Lisinopril, Loperamid, Lorazepam, Lovastatin, Medro- xyprogesteron, Menthol, Methotrexat, Methyldopa, Methylpredniso¬ lon, Metoclopramid, Metoprolol, Miconazol, Midazolam, Minocyclin, Minoxidil, Misoprostol, Morphin, Multivitamin-Mischungen bzw. - kombinationen und Mineralsalze, N-Methylephedrin, Naftidrofuryl, Naproxen, Neomycin, Nicardipin, Nicergolin, Nicotinamid, Nicotin, Nicotinsäure, Nifedipin, Nimodipin, Nitrazepam, Nitrendipin, Nizatidin, Norethisteron, Norfloxacin, Norgestrel, Nortriptylin, Nystatin, Ofloxacin, Omeprazol, Ondansetron, Pancreatin, Panthe¬ nol, Pantothensäure, Paracetamol, Penicillin G, Penicillin V, Phenobarbital, Phenoxifyllin, Phenoxymethylpenicillin, Phenyl- ephrin, Phenylpropanolamin, Phenytoin, Piroxicam, Polymyxin B, Povidon-Iod, Pravastatin, Prazepam, Prazosin, Prednisolon, Pred- nison, Promocriptin, Propafenon, Propranolol, Proxyphyllin, Pseudoephedrin, Pyridoxin, Quinidin, Ramipril, Ranitidin, Reser- pin, Retinol, Riboflavin, Rifampicin, Rutosid, Saccharin, Salbu¬ tamol, Salcatonin, Salicylsäure, Simvastatin, Somatropin, Sota- lol, Spironolacton, Sucralfat, Sulbactam, Sulfamethoxazol, Sulfa- salazin, Sulpirid, Tamoxifen, Tegafur, Teprenon, Terazosin, Terbutalin, Terfenadin, Tetracyclin, Theophyllin, Thiamin, Ticlo- pidin, Timolol, Tranexamsäure, Tretinoin, Triamcinolon-Acetonid, Triamteren, Trimethoprim, Troxerutin, Uracil, Valproinsäure, Vancomycin, Verapamil, Vitamin E, Volinsäure, Zidovudin.
Bevorzugte Wirkstoffe sind Ibuprofen (als Racemat, Enantiomer oder angereichertes Enantiomer) , Ketoprofen, Flurbiprofen, Ace- tylsalicylsäure, Verapamil, Paracetamol, Nifedipin oder Capto¬ pril.
Im einzelnen kann es zur Ausbildung von festen Lösungen kommen. Der Begriff "feste Lösungen" ist dem Fachmann geläufig, bei¬ spielsweise aus der eingangs zitierten Literatur. In festen Lösungen von pharmazeutischen Wirkstoffen in Polymeren liegt der Wirkstoff molekulardispers im Polymer vor.
Das erhaltene Gemisch ist lösungsmittelfrei, d.h. es enthält weder Wasser noch ein organisches Lösungsmittel.
Das Ausformen des Gemisches wird nach üblichen Methoden kontinu¬ ierlich oder diskontinuierlich durchgeführt. Übliche Methoden sind beispielsweise: Heißgranulierung, die zu linsenförmigen Pellets mit einem Durch¬ messer von l bis 10 mm führt;
Kaltgranulierung, die zu zylinderförmigen Produkten mit einem Verhältnis von Länge zu Durchmesser von 1 bis 10 und einem Durch¬ messer von 0,5 bis 10 mm führt;
Kalandrierung in einem Kalander mit zwei Formwalzen, wie bei¬ spielsweise in der EP-A-240 904 beschrieben;
Extrusion und Verformung des noch plastischen Stranges zwischen einem Band und einer Walze oder zwischen zwei Bändern oder zwi¬ schen zwei Walzen, wie in der EP-A-358 105 beschrieben.
Mit dem erfindungsgemäßen Verfahren herstellbare feste pharmazeu¬ tische Formen sind insbesondere Dragees, Pellets, Granulate und Tabletten. Die erhaltenen Formen, insbesondere die Granulate, können anschlieβend auch zu Pulver gemahlen und in dieser Form eingesetzt werden, beispielsweise in Hartgelatinekapseln. Granu- late können auch in üblicher Weise zu Tabletten verpreβt werden. Die erhaltenen Arzneiformen können abschließend auch in üblicher Weise mit Filmüberzügen versehen werden, welche die Wirkstoff- freisetzung kontrollieren oder den Geschmack abdecken. Geeignete Materialien für derartige Überzüge sind Polyacrylate, wie die Eudragit-Typen, Celluloseester, wie die Hydroxypropylmethyleellu- losephthalate, sowie Celluloseether, wie Ethylcellulose, Hydroxypropylmethylcellulose oder Hydroxypropylcellulose.
Das erfindungsgemäβe Verfahren erlaubt also auch die Herstellung von Arzneiformen nach konventionellen Methoden, wie Verpressen eines Granulates zu Tabletten, jedoch ohne die Nachteile dieser konventionellen Verfahren.
Die nachfolgenden Beispiele erläutern die Erfindung, ohne sie zu begrenzen. Beispiel 1
In einem mit Sigroa-Schaufeln bestückten, über einen Doppelmantel beheizbaren Kneter mit einem Fassungsvolumen von 2 1 werden zunächst 500 g Polyvinylpyrrolidon mit einem K-Wert von 30 und 300 g Sorbit bei 100 Umdrehungen pro Minute auf etwa 110°C er¬ hitzt und in 15 Minuten aufgeschmolzen. Anschließend werden 200 g pulverförmiges Ibuprofen zugegeben. Das Gemisch wird unter 2 Bar Stickstoffdruck 3 Minuten bei 50 Umdrehungen pro Minute homogenisiert.
Anschließend wird die hoch-viskose Masse über eine Austragsschnecke als Strang in einen Kalander mit zwei Formwalzen gefahren und ausgeformt, wie beispielsweise in der EP-A-240 904 beschrieben. Man erhält transparente Oblong-Tabletten, in denen der Wirkstoff als feste Lösung vorliegt und die den Wirkstoff als Bolus-Dosis freisetzen. Die Tabletten besitzen eine Freisetzung von mehr als 70 % in 30 Minuten, gemessen bei pH 7,2, was den Anforderungen gemäβ USP XXII entspricht.
Beispiel 2
In dem in Beispiel 1 beschriebenen Kneter werden zunächst 500 g Vinylpyrrolidon/Vinylacetat-Copolymer und 300 g Mannit bei 100 Umdrehungen pro Minute von Raumtemperatur auf etwa 100°C erhitzt und in 10 Minuten aufgeschmolzen. Anschlieβend werden 200 g pulverförmiges Ibuprofen zugegeben. Die Gesamtmasse wird unter 2 Bar Stickstoffdruck 3 Minuten bei 50 Umdrehungen pro Minute homogenisiert.
Anschlieβend wird die hoch-viskose Masse wie in Beispiel 1 be¬ schrieben, zu Oblong-Tabletten von 200 mg, die den Wirkstoff alε Bolus-Dosis freisetzen, ausgeformt. Die erhaltenen Tabletten zeigen eine Freisetzung von > 70 % in 30 Minuten, gemessen bei pH 7,2, was den Anforderungen gemäβ USP XXII entspricht.

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Herstellung von festen λrzneiformen durch Vermischen und Aufschmelzen von mindestens einem pharmakolo¬ gisch akzeptablen polymeren Bindemittel, mindestens einem pharmazeutischen Wirkstoff und gegebenenfalls üblichen phar¬ mazeutischen Additiven in Abwesenheit eines Lösungsmittels zu einem plastischen Gemisch und Formen des Gemisches zu der gewünschten Arzneiform,
d a d u r c h g e k e n n z e i c h n e t ,
daß man die Schritte Vermischen und Aufschmelzen diskontinu¬ ierlich und voneinander getrennt vornimmt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daβ das erwähnte Gemisch keinen Weichmacher enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daβ man ein Bindemittel verwendet, das ausgewählt ist unter
Polyvinylpyrrolidonen mit einem K-Wert von mehr als 17, Polyacrylaten, Polyroethacrylaten, Polyhydroxyacrylaten, Polyhydroxymethacrylaten, Alkylcellulosen und Hydroxyalkyl¬ cellulosen.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Vermischen in einem Kneter erfolgt.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man zunächst alle Komponenten vermischt und das Gemisch anschließend aufschmilzt.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekenn¬ zeichnet, daβ man zunächst das polymere Bindemittel und gegebenenfalls übliche pharmazeutische Additive aufschmilzt und anschlieβend den pharmazeutischen Wirkstoff zumischt.
7. Verfahren nach einem der vorhergehenden Anεprüche, dadurch gekennzeichnet, daβ das Mischen und Aufschmelzen in der gleichen Apparatur vorgenommen wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daβ man das Gemisch zu Dragees, Pellets, Tabletten oder Granulaten ausformt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man das Granulat zu Tabletten preßt.
PCT/EP1996/004585 1995-10-23 1996-10-22 Verfahren zur herstellung von festen arzneiformen WO1997015291A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1995139363 DE19539363A1 (de) 1995-10-23 1995-10-23 Verfahren zur Herstellung von festen Arzneiformen
DE19539363.5 1995-10-23

Publications (1)

Publication Number Publication Date
WO1997015291A1 true WO1997015291A1 (de) 1997-05-01

Family

ID=7775510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/004585 WO1997015291A1 (de) 1995-10-23 1996-10-22 Verfahren zur herstellung von festen arzneiformen

Country Status (2)

Country Link
DE (1) DE19539363A1 (de)
WO (1) WO1997015291A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350398B1 (en) 1998-09-03 2002-02-26 Basf Aktiengesellschaft Process for producing coated solid dosage forms
AU744982B2 (en) * 1997-08-29 2002-03-07 Pfizer Products Inc. Combination therapy comprising amlodipine and a statin compound
US6455574B1 (en) 1997-08-29 2002-09-24 Pfizer Inc. Therapeutic combination
US6669883B1 (en) 1999-01-15 2003-12-30 Abbott Laboratories Method and device for producing different solid dosage forms
WO2013087546A1 (en) * 2011-12-13 2013-06-20 F. Hoffmann-La Roche Ag Pharmaceutical composition with improved bioavailability for high melting hydrophobic compound
US8470347B2 (en) 2000-05-30 2013-06-25 AbbVie Deutschland GmbH and Co KG Self-emulsifying active substance formulation and use of this formulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069138A2 (en) * 2003-02-03 2004-08-19 Novartis Ag Pharmaceutical formulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204596A1 (de) * 1985-05-09 1986-12-10 Rhone-Poulenc Sante Zusammensetzungen für die Herstellung von Mikropartikeln durch Extrusion für verzögerte Abgabe von biologisch aktiven Substanzen und so erhaltene Mikropartikel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204596A1 (de) * 1985-05-09 1986-12-10 Rhone-Poulenc Sante Zusammensetzungen für die Herstellung von Mikropartikeln durch Extrusion für verzögerte Abgabe von biologisch aktiven Substanzen und so erhaltene Mikropartikel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU744982B2 (en) * 1997-08-29 2002-03-07 Pfizer Products Inc. Combination therapy comprising amlodipine and a statin compound
US6455574B1 (en) 1997-08-29 2002-09-24 Pfizer Inc. Therapeutic combination
US6350398B1 (en) 1998-09-03 2002-02-26 Basf Aktiengesellschaft Process for producing coated solid dosage forms
US6669883B1 (en) 1999-01-15 2003-12-30 Abbott Laboratories Method and device for producing different solid dosage forms
US8470347B2 (en) 2000-05-30 2013-06-25 AbbVie Deutschland GmbH and Co KG Self-emulsifying active substance formulation and use of this formulation
WO2013087546A1 (en) * 2011-12-13 2013-06-20 F. Hoffmann-La Roche Ag Pharmaceutical composition with improved bioavailability for high melting hydrophobic compound
KR20140096124A (ko) 2011-12-13 2014-08-04 에프. 호프만-라 로슈 아게 고융점 소수성 화합물을 위한, 개선된 생체이용률을 갖는 약학 조성물

Also Published As

Publication number Publication date
DE19539363A1 (de) 1997-04-24

Similar Documents

Publication Publication Date Title
EP0864324B1 (de) Verfahren zur Herstellung von festen Kombinationsarzneiformen
EP0993828B1 (de) Verfahren zur Herstellung von beschichteten festen Dosierungsformen
EP0864326B1 (de) Mehrphasige wirkstoffhaltige Zubereitungsformen
EP0930875B1 (de) Verfahren zur herstellung fester pharmazeutischer formen durch extrudierung
EP0998920B1 (de) Verfahren zur Herstellung von festen Dosierungsformen
EP1135092B1 (de) Teilbare feste dosierungsformen und verfahren zu ihrer herstellung
EP0857062B1 (de) Verfahren zur herstellung von mehrschichtigen, festen arzneiformen zur oralen oder rektalen verabreichung
EP1107739B1 (de) Verfahren zur herstellung von festen dosierungsformen
EP0820753A2 (de) Verfahren zur Herstellung von festen Arzneiformen
EP1158962B1 (de) Verfahren zur herstellung von festen cyclodextrinhaltigen dosierungsformen
EP0998918A2 (de) Feste Dosierungsform mit copolymerem Bindemittel
EP1475068B1 (de) Verfahren zur Herstellung unterschiedlicher fester Dosierungsformen
EP1556012B1 (de) Herstellung von festen dosierungsformen unter verwendung eines vernetzten nicht-thermoplastischen tr gers
EP1133271B1 (de) Verfahren zur herstellung von festen dosierungsformen
DE19753300A1 (de) Verfahren zur Herstellung von festen Dosierungsformen
WO1997015291A1 (de) Verfahren zur herstellung von festen arzneiformen
EP1748762B1 (de) Dosierungsform, erhältlich aus einer ein anorganisches pigment umfassenden pulvermischung
EP0931552A2 (de) Verfahren zur Herstellung von festen Dosierungsformen
EP0922463A2 (de) Verfahren zur Herstellung von festen Dosierungsformen
WO2008080773A1 (de) Verfahren zur herstellung von festen dosierungsformen enthaltend pfropfcopolymere
DE19539360A1 (de) Verfahren zur Herstellung von festen Arzneiformen
DE19637479A1 (de) Verfahren zur Herstellung fester pharmazeutischer Formen
EP0998919A2 (de) Feste Dosierungsform mit copolymerem Bindemittel
DE19539362A1 (de) Verfahren zur Herstellung von festen Arzneiformen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA