WO1997013221A1 - Drawing device - Google Patents
Drawing device Download PDFInfo
- Publication number
- WO1997013221A1 WO1997013221A1 PCT/JP1995/001993 JP9501993W WO9713221A1 WO 1997013221 A1 WO1997013221 A1 WO 1997013221A1 JP 9501993 W JP9501993 W JP 9501993W WO 9713221 A1 WO9713221 A1 WO 9713221A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dimensional
- shape
- dimensional shape
- data
- unit
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/10—Geometric effects
- G06T15/20—Perspective computation
Definitions
- the present invention relates to a method and an apparatus for generating a component part, a component part, and an entire drawing (part drawing, part drawing, assembly drawing) of an apparatus.
- the shape of the three-dimensional device is handled as it is on the three-dimensional coordinate system
- the shape of the three-dimensional device is converted into a figure when viewed from a specific direction, It is handled on a two-dimensional coordinate system.
- one line segment of a device is a straight line with a start point of (1 : 0,0) and an end point of (0,1,0) in a three-dimensional space as shown in Fig. 2 (a).
- (1, 0, 0) indicates that the coordinate values of X yz are 1, 0, 0, respectively.
- the starting point is expressed as a straight line with (1, 0, 0) and the ending point is (0, 1, 0).
- the target shape is represented by a two-dimensional figure viewed from a certain direction.
- the starting point (1, 0) when viewed from a direction perpendicular to the xy plane, the starting point (1, 0) , It looks like a straight line of the end force (0, 1).
- (1, 0) means that the coordinate values of xy are 1 and 0, respectively. Any direction can be selected as the viewing direction, but in any case, the coordinates are expressed as two dimensions.
- a target shape is initially represented in a three-dimensional representation, and later converted to a two-dimensional representation.
- transformation of a shape expressed in a three-dimensional representation into a two-dimensional representation is called projection.
- Plan view direction (Which direction of the object to be shown in the drawing is front, top, or side)
- the shape feature be displayed in an easy-to-understand direction, so the operator had to judge and indicate the direction.
- the characteristics of the whole product The direction in which it is easy to understand is different from the direction in which the characteristics of each part and each part are easy to understand, so it was necessary to specify the drawing direction for the entire product, each part and each part.
- the target product may be close to a cube, a plate, or a bar. If these projections are simply placed on the drawing, margins may be created or multiple figures may overlap. To prevent this, it was necessary to indicate the location.
- the layout position when creating a drawing of an assembly, the appropriate layout of the entire product and the appropriate layout of each assembly and each part are different, so instructions are given for the entire product, each assembly and each part. Needed.
- the present invention relates to a drawing creating apparatus for creating a two-dimensional drawing in which the three-dimensional shape is projected on a plane based on the three-dimensional shape data, wherein the storage means for storing the three-dimensional shape data; Means for generating a coordinate direction that is a basis of a plane on which the three-dimensional shape is projected, based on the shape characteristic of the three-dimensional shape stored in the means; and a coordinate method generated by the means for generating the coordinate direction.
- Drawing creation means for projecting the three-dimensional shape onto a plane based on orientation to generate a two-dimensional drawing.
- the present invention also provides a drawing creating apparatus that creates a two-dimensional drawing by projecting the three-dimensional shape on a plane based on the three-dimensional shape data, wherein the storage means stores the three-dimensional shape data, and the storage means Means for generating an arrangement position of the shape on the two-dimensional drawing based on the three-dimensional shape characteristic stored in the storage device, and an arrangement position generated by the means for generating the arrangement position.
- a drawing creating means for generating a shape obtained by projecting the three-dimensional shape.
- a drawing can be created without setting a drawing for each target product by setting the drawing creation such as the projection direction from the feature of the three-dimensional shape.
- FIG. 1 is a configuration diagram of a preferred drawing creating apparatus according to the present invention
- FIG. 2 is an explanatory diagram of two-dimensional shape data and three-dimensional shape data
- FIG. 3 is an explanatory diagram of a target product.
- FIG. 4 is a diagram showing the shape data stored in the memory unit 103
- FIG. 5 is a diagram showing the component configuration data
- FIG. 6 is a diagram showing the designated data
- FIG. FIG. 7 is a diagram for explaining the processing of the target product extraction unit 102
- FIG. 8 is a diagram showing the target product data stored in the memory unit 103
- FIG. 9 is an example of an assembly product.
- FIG. 10 is a diagram showing a configuration diagram of the feature extraction unit 104
- FIG. 10 is a diagram showing a configuration diagram of the feature extraction unit 104
- FIG. 11 is a diagram showing extracted shape elements
- FIG. FIG. 13 is a diagram showing the statistics of elements
- FIG. 13 is a diagram showing an example of the direction of the component coordinate axis
- FIG. FIG. 15 is a diagram showing the feature data stored in the memory unit 103.
- FIG. 16 is a configuration diagram of the drawing setting unit 105. Is a configuration diagram of a plan view direction determining unit 1601
- FIG. 18 is a diagram showing directions of a side view and a plan view with respect to a front view
- FIG. FIG. 20 is a diagram showing the density with respect to the scale
- FIG. 21 is a diagram showing the configuration of the drawing size determination unit 1603
- FIG. FIG. 23 is a diagram showing the minimum value of the margin length
- FIG. 24 is a diagram showing the maximum value of the sum of the lengths of the drawing regions with respect to the drawing size.
- FIG. 25 is a configuration diagram of the arrangement position determination unit 1604, and
- FIG. 26 is a diagram showing the drawing setting data stored in the memory unit 103.
- FIG. 28 is a diagram showing data of a drawing memory stored in the memory section 103
- FIG. 28 is a diagram showing an example of an output drawing
- FIG. 29 is another block diagram related to the drawing creating apparatus.
- Figure 30 is another block diagram of the drawing creation device
- FIG. 31 is a block diagram according to a drawing creation method
- FIG. 32 is another block diagram according to a drawing creation method.
- FIG. 1 shows a configuration of a drawing creating apparatus according to one embodiment of the present invention.
- the input unit 101 consists of a device for inputting output data from another device such as a 3D CAD system, or an operating device such as a keyboard or mouse and a display device such as a display. Enter the configuration data and the specified data.
- a 3D CAD system or an operating device such as a keyboard or mouse
- a display device such as a display. Enter the configuration data and the specified data.
- the shape data, component configuration data, and designated data will be described in detail later.
- the target product extraction unit 102 extracts a product, a subassembly, and a component to be drawn from the component configuration data input at the input unit 101 and the designated data.
- the memory unit 103 stores the shape data input by the input unit 101, the target item data extracted by the target item extraction unit 102, the characteristic data, the drawing setting data, and the drawing data.
- the feature data is data such as the size of each drawing target product, the number of line segments that make up the shape, and the direction.
- the drawing setting data is data representing the drawing writing environment, such as the drawing direction, layout position, drawing size, and scale.
- the feature extraction unit 104 extracts feature data of each drawing target product from the shape data and target product data stored in the memory unit 103, and stores the feature data in the memory unit 103.
- the drawing setting unit 105 sets the drawing setting data for each drawing object from the characteristic data stored in the memory unit 103, and stores the drawing setting data in the memory unit 103. I say 13 ⁇ 4.
- the drawing creation unit 106 creates drawing data of each drawing creation target product from the shape data, target product data, and E-plane setting data stored in the memory unit 103, and stores the drawing data in the memory unit 103.
- the output unit 107 includes an output device such as a display or a plotter, and outputs drawing data stored in the memory unit 103 as a drawing.
- the drawing data created by the drawing setting unit 106 can be directly output as a drawing by the output unit 107.
- the input unit 101 inputs shape data, component configuration data, and designated data.
- FIG. 4 shows a part of the shape data stored in the memory unit 103.
- Reference numeral 401 denotes the name of the component of the shape
- 402 denotes the type of the component of the shape
- 4003 denotes the data of the component of the shape.
- the shape data consists of data such as line segments, vertices, and faces that make up the shape.
- a straight line segment consists of the coordinates of the start and end points
- a circular arc consists of the coordinates of the center, start point and end point, a radius, and an axis vector.
- Fig. 3 (b) shows the hierarchical structure of such parts and subassemblies.
- a part A, a part B, a part C, and a part D are assembled to create a subassembly P.
- the product P is created by assembling the component P and the components E, F, G, H, I, and J.
- the component configuration data is either product or Expressed in terms of parts and components that make up a component.
- Fig. 5 shows that product X is data 501 composed of component P, component H, component F, component G, component E, component I, and component J, and that component P is component (:, It represents data 502 composed of part B, part A, and part D.
- Drawings are required for each part, subassembly, and product because they are used for processing and assembly.
- the drawing target is part A, component B, component C, component D, component E, component F, as shown in Fig. 3 (c).
- drawings of all parts, assemblies and products are not necessarily required. This is because there are cases where a part already has a drawing that is the same as the part of a previously made product, and a case where a drawing of the part that is being designed is needed.
- the specified data is data that specifies the product, assembly, and parts to be drawn. If a product or assembly is specified, whether to create all drawings for the parts and assemblies that make up the specified product or assembly, or to create drawings only for the specified product or assembly Enter the selection.
- the designated data is, for example, as shown in FIG. This data represents the name of the specified product or assembly or part, and the choice of whether to create all the drawings for the parts and assemblies that make up the specified product or assembly. For example, in the component configuration shown in Fig. 3 (b), specify product X. If you select "all components and subassemblies", drawings are created. Parts A, B, and C , Part D, part E, part F, part G, part H, part J, part J, part P, and product X.
- the drawing will be created for the component A, part B, part C, part D, and assembled part P.
- the target product extraction unit 102 creates target product data from the component configuration data input at the input unit 101 and the designated data, and stores the target product data in the memory unit 103.
- the target item data is data representing the product, the assembled part, and the part for which the drawing is to be created.
- the process of the target product extraction unit 102 is, for example, as shown in FIG.
- Process 701 targets the specified product, assembly, or part. For example, if product X is specified in the component configuration shown in Fig. 3 (b), the specified product X is the target product.
- the process 703 determines whether the selection of the specified data is “all of the constituent parts and components”. If the selection of the specified data is “all of the components and components”, in process 704, the components and components that make up the specified product or component are obtained and set as the target products. For example, if product X is specified in the component configuration shown in Fig. 3 (b), components P, H, F, G, E, 1, J, and P that make up the product are configured. Parts A, B, C, and D are the target products. Then, in process 705, target product data is created from the target product obtained in processes 701 and 704. In processing 706, it is stored in the memory section 103. The target product data consists of the names of the target product, components, and products. FIG. 8 shows the target product data 803 stored in the memory section 103.
- the drawing is a three-view drawing consisting of a front view of the shape viewed from the front, a side view viewed from the side, and a plan view viewed from the top.
- the contents of the drawing setting data include the drawing direction, scale, drawing size, and arrangement position.
- the number of lines constituting the shape, the direction, the number of lengths or faces, the direction, the area, the size of the shape, and the like are used for setting the direction of the plan view.
- the statistics for each direction of the line segment or plane are obtained, and the coordinate axis direction is determined based on the statistics.
- the size of the shape is calculated based on the coordinate axis direction, and the projection directions of the front view, side view, and plan view are determined by comparing the sizes in the x, y, and z directions. In this embodiment, the case where the number and direction of line segments are used will be described in detail.
- the total number of line segments or the length of the shape and the size of the shape are used.
- the density of line segments is determined from the total number of line segments or the length of the shape and the size of the shape, and the size of the shape is determined based on the density.
- the shape size, drawing direction, and scale are used to set the drawing size. Since the size of the shape on the drawing can be known from the size of the shape, the drawing direction, and the scale, the drawing size is determined so that the shape fits in the drawing area and is not too large.
- the coordinates of the center of the shape, the size of the shape, the drawing direction, the scale, and the drawing size are used to set the placement position.
- the front view, side view, and plan view areas are divided based on the shape size, surface direction, scale, and drawing size, and the center of the shape is projected on each center.
- the feature extracting unit 104 has, for example, a configuration as shown in FIG.
- the shape element extraction unit 1001 extracts shape element data of each target product from the shape data stored in the memory unit 103 and the target product data.
- the line segment data is extracted.
- the line segment data is data representing the line segment. For example, a straight line is represented by the coordinates of the start and end points, and an arc is represented by the coordinates of the center, the start point and the end point, a radius, and an axis vector.
- FIG. 11 shows a part of the shape element of the part J extracted by the shape element extraction unit 1001. 1101 indicates the name of the target product, 1102 indicates the type of shape element data such as line segments and surfaces, and 1103 indicates the line segment data.
- the shape element totalizing unit 1002 aggregates the line data of the shape element data extracted by the shape element extracting unit 1001, and calculates the number of line segments, the number of each line segment in each direction, and the number of line segments. Obtain the total length.
- the direction of the line segment is the direction from the start point to the end point of the straight line and the axial direction of the arc. The opposite direction is treated as the same.
- Figure 12 shows the results of counting the direction of the line segment of part J.
- the vertical axis is the direction of the line segment, and the horizontal axis is the number of each line direction.
- the number of line segments Is 7 2 and the total length is 20.08.1.
- the total number and length of the obtained line segments are stored in the memory unit 103 as part of the feature data.
- the coordinate axis direction determining unit 1003 determines the coordinate axis direction from the counting result of the shape element counting unit 1002. First, the direction with the largest number of line segments is defined as the X direction. If there are two, if the two are orthogonal, the direction is the X direction and the y direction. If they are not orthogonal, the direction with the greater number of orthogonal directions is the X direction. Once the X direction is determined, the one that is most orthogonal to the X direction is the y direction. If there are two, if the two are orthogonal, the directions are the y and z directions. If they are not orthogonal, the direction with the greater number of orthogonal directions is the y direction.
- the cross product of the X and y directions is defined as the z direction.
- the most (0.31, 0, 0.95) is orthogonal to the X and X directions (0, 1, 0) and (—0.95, 0, 0.3). Since 1) is the next most common, we use the y and z directions respectively.
- the coordinate axis direction of the assembly is referred to as the assembly coordinate axis direction
- the coordinate axis direction obtained by the coordinate axis direction determination unit 1003 is referred to as the component coordinate axis direction.
- Fig. 13 shows the part coordinate axis direction of part J for part J.
- the obtained component coordinate axis direction is stored in the memory unit 103 as a part of the feature data.
- the direction and the number of line segments are used as shape features, but the present invention is not limited to this.
- the present invention includes the use of the length of a line segment, the direction of a surface, the area of a surface, and the like, and the use of combinations of these with the direction and number of line segments.
- the size calculation unit 1004 calculates the size of each target product from the shape data stored in the memory unit 103, the target product data, and the component coordinate axis direction determined by the coordinate axis direction determination unit 1003.
- the size is the size of the bounding box of each target product. It is the smallest rectangular parallelepiped that has sides parallel to the axis and circumscribes the shape.
- the pounding box is represented by the maximum and minimum coordinates of Xyz. If the origin in the component coordinate axis direction is set to the point where Xyz is the minimum shown in Fig. 14, the bounding box of the component J will be minimum (0, 0, 0) and maximum (2.0, 130.0, 2 2 3.6).
- the size of the shape is expressed in the form of a multiplication, such as (the length of the pounding box in the X direction) X (the length of the pounding box in the y direction) X (the length of the pounding box in the z direction).
- the size of part J is 2.0 X 1 30.0 .0 X 2 23.6.
- the obtained size is stored in the memory unit 103 as a part of the feature data.
- the center coordinate calculation unit 1005 calculates the center coordinates of each target product from the shape data stored in the memory unit 103, the target product data, and the component coordinate axis direction determined by the coordinate axis direction determination unit 1003. I do.
- the center coordinates are the coordinates of the center of the bounding box of each part or component.
- the coordinates of the center are (11.1.8, 65.0, 1.0) in the component coordinate axis direction. When this is converted to the direction of the assembly coordinate axis, it becomes (—17.6.6, 2.0, 17.8.9).
- These coordinate values are the center coordinates of the part J.
- the obtained center coordinates are stored in the memory unit 103 as a part of the feature data.
- FIG. 15 shows characteristic data of the part J stored in the memory unit 103.
- 1501 indicates the name of the target product
- 1502 indicates the type of characteristic data
- 1503 indicates the value of the characteristic data.
- the drawing setting unit 105 has a detailed configuration, for example, as shown in FIG.
- the plane direction determining unit 1601 determines the plane direction of each object from the size of each object and the component coordinate axis direction of the feature data stored in the memory unit 103, and sets the plane setting.
- Scale determination section 1602 determines the scale from the total length and the size of the line segments of the characteristic data stored in the memory section 103, and the memory section as part of the drawing setting data.
- the drawing size determination unit 1603 is used by the drawing direction and scale determination unit 1602 determined by the size of each target product of the special data stored in the memory unit 103 and the drawing direction determination unit 1601.
- the drawing size is determined from the determined scale and stored in the memory unit 103 as a part of the drawing setting data.
- the arrangement position determining unit 1604 is the drawing direction determined by the drawing direction determining unit 1601, the scale determined by the scale determining unit 1602, and the drawing determined by the drawing size determining unit 1603.
- the layout position of each plan is determined from the size and the size and center coordinates of each object in the feature data stored in the feature memory 107.
- the arrangement position is represented by, for example, the coordinates on the drawing of the center of the front view, side view, and plan view, and the center coordinates of the shape on the three-dimensional coordinates.
- the center coordinates of the shape on the three-dimensional coordinates may be projected onto the center coordinates of each view.
- the determined arrangement position is stored in the memory unit 103 as a part of the drawing setting data.
- the view direction determining unit 1601 has a configuration as shown in FIG. 17 in detail.
- the X yz direction size comparison unit 1701 compares the size of the target product of the characteristic data stored in the memory unit 103 in the X yz direction. In the case of part J, the order is z, y, and X in descending order.
- the front view direction determination unit 1702 determines the direction of the front view based on the result of the xyz direction size comparison unit 1 ⁇ 01. In the case of three views, it is easier to understand if the front view is the largest. Drawings are often written horizontally. Therefore, the direction with the largest size is the horizontal axis of the front view, and the second largest direction is the vertical axis of the front view.
- the horizontal axis of the front view is the z direction and the vertical axis is the y direction.
- the determined front view direction is stored in the memory unit 103 as a part of the drawing setting data.
- the side view direction determination unit 1703 is manufactured from the front view direction determined by the front view direction determination unit 1702. Determine the side view direction according to the drawing rules.
- FIG. 18 shows a side view direction and a plan view direction with respect to the front view direction. The direction of the side view will be determined according to the table in Figure 18.
- the horizontal axis in the front view is the z direction and the vertical axis is the y direction, so the horizontal axis in the side view is the X direction and the vertical axis is the y direction.
- the determined side view direction is stored in the memory section 103 as a part of the drawing setting data.
- the plan view direction determining unit 1704 determines the plan view direction from the front view direction determined by the front view direction determining unit 1702, similarly to the side view direction. In the plan view direction, it is determined according to the table in Fig. 18. In the case of part J, the horizontal axis in the front view is the z direction and the vertical axis is the y direction, so the horizontal axis in the side view is the z direction and the vertical axis is the X direction.
- the determined plan view direction is stored in the memory unit 103 as a part of the drawing setting data.
- the component coordinate axis direction reading unit 1705 stores the component coordinate axis direction of the feature data stored in the memory unit in the memory unit 103 as a part of the drawing setting data.
- the scale determining unit 1602 is configured in detail, for example, as shown in FIG.
- the density calculator 1901 calculates the density of each target product from the total length and the size of the line lengths of the feature data stored in the memory 103.
- the size for calculating the density can be the volume of the pounding box, the bottom area, the 2nd power of the bounding box, or the like. In the present embodiment, the largest bottom area of the pounding box is used.
- the density reference scale determination unit 1902 determines the scale from the density calculated by the density calculation unit 1901.
- the scale is determined according to the table in Figure 20.
- FIG. 20 shows a suitable scale for the density of features. For example, if the density is 1 ⁇
- a scale of 10 is appropriate.
- the determined scale is stored in the memory unit 103 as a part of the drawing setting data.
- the scale is set to 1.
- the drawing size determination unit 1603 has, for example, a configuration as shown in FIG. 21 in detail.
- the minimum margin determining unit 2101 determines the minimum margin on the drawing.
- FIG. 22 shows the distribution of drawings.
- the outermost line 2 2 0 1 is the edge of the paper.
- the thick line 2 2 0 2 is the drawing frame
- the dotted line 2 2 0 3 is the front drawing area
- the dotted line 2204 is the side drawing area
- the dotted line 2 2 0 5 Denotes an area for drawing a plan view.
- Arrows 220, 222, 222, 209 indicate the horizontal direction of the front view or plan view, the horizontal direction of the side view, the vertical direction of the front view or side view, and the plan view, respectively. Represents the vertical direction.
- the margin 2201 represents a margin between the edge 2201 in the horizontal direction and the frame 222 of the drawing.
- Margin 2 2 1 1 represents the margin between the horizontal drawing frame 2202 and the front 2 203.
- the margin 2 2 1 2 represents the margin between the horizontal front view 2 203 and the side view 2 204.
- the margin 2 2 13 represents the margin between the lateral side view 2 204 and the drawing frame 2 202.
- Margins 221 4 represents the margin between the frame 2 2 0 2 and the plane of the end 2 2 0 1 in the lateral direction of the drawing: Margin 2 2 1 5, the longitudinal direction of the paper end 2 2 0 1 and drawings Indicates the margin between the boxes 222.
- the minimum margin length can be specified by the user in advance. Also, it may be changed according to the type of drawing such as a part drawing and an assembly drawing. This is because there is a difference between the drawing area of the component drawing and the drawing area of the assembly drawing.
- the drawing area maximum value calculation unit 2102 calculates the maximum value of the sum of the lengths of the drawing areas from the minimum margin value determined by the minimum margin value determination unit 2101. The maximum sum of the lengths of the drawing areas can be obtained by subtracting the sum of the minimum margins from the length of the paper.
- the maximum value of the sum of the lengths of the drawing areas in the horizontal and vertical directions for each drawing size is calculated as shown in Fig. 24.
- FIG. 24 shows the maximum value of the sum of the lengths of the horizontal areas and the maximum value of the length of the vertical drawing areas for each drawing size.
- the drawing area calculation unit 2 103 includes the shape size of the feature data stored in the memory unit 103, the drawing direction determined by the drawing direction determination unit 1601, and the scale calculation unit 1602. Calculate the sum of the length of the drawing area in the horizontal and vertical directions from the scale calculated in.
- the sum of the lengths of the drawing areas in the vertical direction is obtained by applying a scale to the sum of the lengths of the vertical direction in the front view and the vertical direction in the plan view.
- X 1 1 32.0.
- the size reference drawing size determination unit 2104 calculates the maximum value of the sum of the drawing area lengths calculated by the drawing area maximum value calculation unit 2102 and the drawing calculated by the drawing area calculation unit 2103. Territory The drawing size is determined from the sum of the area lengths.
- the drawing size shall be the smallest size that does not exceed the maximum value in the horizontal and vertical directions. In the case of part J, the horizontal length 2 25.6 does not exceed the maximum value in A0 to A3.
- the drawing size is A3, the smallest of A0 to A3.
- the determined drawing size is stored in the memory unit 103 as a part of the drawing setting data.
- the arrangement position determining unit 1604 is configured in detail, for example, as shown in FIG.
- the margin size sum calculation unit 2501 is composed of the drawing direction determined by the drawing direction determination unit 1601, the scale determined by the scale determination unit 1602, and the drawing size determination unit 1.
- the sum of the horizontal and vertical margin sizes is determined from the drawing size determined in 603 and the size of each target product of the feature data stored in the feature memory 103.
- the sum of the margin sizes can be obtained by subtracting the sum of the drawing area lengths from the paper length.
- the sum of the lengths of the drawing areas is obtained by scaling the sum of the sizes of each target product.
- the margin size distribution unit 2502 determines the length of each of the margin 2210 to the margin 2219 from the sum of the margin lengths calculated by the margin size calculation unit 2501. .
- the arrangement position center coordinate calculation unit 2503 determines the arrangement position of the component based on the margin length determined by the margin size distribution unit 2502. The origin of the coordinates on the drawing is the lower left end of the paper.
- the horizontal coordinate value of the center of the front view is (margin 2 210 length) +
- the vertical coordinate value of the center of the front view is (the length of the margin 2 2 15) + (the length of the margin 2 2 16) + (the length of the vertical direction 2 208 of the front view) No. 2
- the horizontal coordinate value of the center of the side view is (the length of the margin 210) +
- the vertical coordinate value of the center of the side view is determined to be the same as the vertical coordinate value of the center of the front view.
- the horizontal coordinate value of the center of the plan is determined to be the same as the horizontal coordinate of the center of the front view.
- the vertical coordinate value of the center of the floor plan is (Margin
- the vertical coordinate value of the center of the side view is the same as the vertical coordinate value of the center of the front view.
- the horizontal coordinate value of the center of the floor plan is the same as the horizontal coordinate value of the center of the front view, and is determined to be 165.4.
- the center coordinates of the determined front view, side view, and plan view are stored in the memory unit 103 as a part of the drawing setting data.
- the center coordinate reading unit 2504 reads the center coordinates of the shape of the feature data stored in the memory unit, and stores it in the memory unit 103 as a part of the drawing setting data.
- FIG. 26 shows the drawing setting data of the part J stored in the memory section 103.
- 2601 represents the name of the target product.
- Reference numeral 2602 denotes the type of drawing setting data.
- Reference numeral 2603 denotes the value of the drawing setting data.
- the drawing creating unit 106 creates drawing data for each target product from the shape data, target product data, and drawing setting data stored in the memory unit 103, and stores the drawing data in the memory unit 103.
- Figure 27 shows part of the drawing data for part J. 2701 is the name of the target product, 2702 is the type of the plan, and 2703 is the data of elements such as line segments that make up the drawing. Drawing data is represented by data of elements such as lines constituting the drawing.
- the output unit 107 outputs the drawing data stored in the memory unit 103 as a figure.
- FIG. 280 shows the output diagram 280 1 of part J. Note that the output unit 107 may output the drawing data created by the drawing creating unit 106 directly as a drawing.
- FIG. 29 is a diagram showing another embodiment of the drawing creation apparatus of the present invention.
- the input unit 101 inputs shape data.
- the memory unit 103 stores the shape data, feature data, drawing setting data, and drawing data input by the input unit 101.
- the feature extracting unit 104 extracts feature data from the shape data stored in the memory unit 103 and stores the feature data in the memory unit 103.
- the drawing setting unit 105 sets drawing setting data from the feature data stored in the memory unit 103 and stores the drawing setting data in the memory unit 103.
- the drawing creation unit 106 creates drawing data from the shape data and the drawing setting data stored in the memory unit 103, and stores the drawing data in the memory unit 103.
- the output unit 107 outputs the drawing data stored in the memory unit 103 as a diagram.
- FIG. 30 shows another example of the configuration of the drawing creating apparatus according to the present invention.
- the input unit 101 inputs three-dimensional shape data, component configuration data, and designated data.
- the target product extraction unit 102 extracts target product data for products, assemblies, and components to be drawn from the component configuration data input at the input unit 101 and the designated data.
- the memory unit 103 stores the shape data input by the input unit 101, the target product data extracted by the target product extraction unit 102, the feature data, the drawing setting data, and the drawing data. .
- the feature extraction unit 104 extracts feature data of each drawing target product from the shape data and target product data stored in the memory unit 103, and stores the feature data in the memory unit 103.
- the drawing setting unit 105 sets the drawing setting data for each drawing object from the characteristic data stored in the memory unit 103, and stores the drawing setting data in the memory unit 103.
- the drawing creation unit 106 creates drawing data from the shape data, target product data, and drawing setting data stored in the memory unit 103, and stores the drawing data in the memory unit 103.
- the output unit 107 includes an output device such as a display or a plotter, and outputs drawing data stored in the memory unit 103 as a diagram.
- the drawing setting correction section 3108 stores the figure stored in the memory section 103.
- the correction of the surface setting data is input and stored in the memory unit 103. In this modification of the drawing setting data, not all the drawing setting data of all the target products, but only the values to be changed. If a figure other than the front view, side view, and plan view is required, it can be added.
- FIG. 31 shows an embodiment according to the drawing creating method of the present invention.
- the input step 3201 inputs the shape data, the component configuration data, and the designated data.
- the shape memory step 3202 records the shape data input in the input step 3201.
- the target product extraction step 3203 extracts target product data from the component configuration data and the designated data input in the input step 3201.
- the target product storage step 3204 stores the target product data extracted in the target product extraction step 3203.
- the feature extraction step 3205 extracts the feature data of each drawing creation target product from the shape data stored in the shape memory step 3202 and the target product data stored in the target product storage step 3204.
- the feature storage step 3206 stores the feature data of each drawing object extracted in the feature extraction step 3205.
- the drawing setting step 3207 is stored in the feature storage step 3206.
- the drawing setting data of each target product is set from the feature data obtained in the drawing setting storing step 3202 stores the drawing setting data set in the drawing setting step 322.
- Drawing creation step 3 2 Reference numeral 9 denotes each object based on the shape data stored in the shape storage step 3202, the target product data stored in the storage step 3204, and the drawing setting data stored in the drawing setting storage step 3208.
- the storage step 3210 stores the drawing data created in the drawing creation step 3209.
- the output step 3221 stores the drawing data stored in the drawing storage step 3210 as a diagram.
- the output step 3 2 1 1 directly outputs the drawing data created in the drawing creation step 3 2 9. It can also be output as a drawing. Steps 3203 and 3204 may be omitted as necessary.
- FIG. 32 shows another embodiment according to the drawing creating method of the present invention.
- the shape storage step 3202 stores the shape data input in the input step 3201.
- the target product extraction step 3 2 ⁇ 3 extracts target product data from the component configuration data and the designated data input in the input step 3 201.
- the target product storage step 3204 stores the target product data extracted in the target product extraction step 3203.
- the feature extraction step 3205 extracts feature data of each drawing creation target product from the shape data stored in the shape storage step 3202 and the target product data stored in the target product storage step 3204.
- the feature storage step 3206 stores the feature data of each drawing creation object extracted in the feature extraction step 3205.
- the drawing setting step 3207 sets the drawing setting data of each target product from the feature data stored in the feature storing step 3206.
- enter the correction of the drawing setting data set in the drawing setting step 3 2 07 t This correction of the drawing setting data will correct all the drawing setting data of all target products Instead, just modify the value you want to change. If a figure other than the front view, side view and plan view is required, it can be added.
- the drawing setting storage step 3208 stores the drawing setting data set in the drawing setting section 3207 and the drawing setting data corrected in the drawing setting correction step 3811.
- the drawing creation step 3209 was performed by storing the shape data stored in the shape memory step 3202, the target product data stored in the target product storage step 3204, and the drawing setting storage step 3208. Create drawing data for each target product from drawing setting data.
- the drawing memory step 3 2 10 is the drawing creation step 3 2 9 Store the drawing data created in.
- the output step 3221 outputs the drawing data stored in the drawing storage step 3210 as a drawing.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Geometry (AREA)
- Computer Graphics (AREA)
- General Physics & Mathematics (AREA)
- Processing Or Creating Images (AREA)
Abstract
Drawings of all parts and sub-assemblies to be drawn are made all at once without setting such drawing conditions as the direction of projection, etc. A drawing device is provided with a means which generates the directions of coordinates, which are the basis of a plane on which a three-dimensional shape is projected, based on the feature of the three-dimensional shape and a drawing means which makes two-dimensional drawings by projecting the three-dimensional shape upon the plane based on the generated directions of coordinates. Since the drawing condition such as the direction of projection is set based on the feature of the three-dimensional shape, the plans of objects can be drawn without setting the drawing condition for every object.
Description
明 細 書 Specification
図面作成装置 技術分野 Technical drawing drawing equipment
本発明は、 機器の部品, 部組品, 全体の図面 (部品図, 部組図, 組立 図) を生成する方法及び装置に関する。 背景技術 The present invention relates to a method and an apparatus for generating a component part, a component part, and an entire drawing (part drawing, part drawing, assembly drawing) of an apparatus. Background art
機器の形状を計算機中で扱うには、 3次元表現と 2次元表現の 2種類 がある。 3次元表現は、 3次元の機器の形状をそのまま 3次元の座標系 上で扱うものであり、 2次元表現は、 3次元の機器の形状を特定の方向 から見たときの図に変換し、 2次元の座標系上で扱うものである。 例え ば機器の一つの線分が 3次元空間上で第 2図 ( a ) のように始点が ( 1 : 0 , 0 ) , 終点が ( 0 , 1, 0 ) の直線であったとする。 ここで ( 1, 0, 0 ) は X y zの座標値がそれぞれ順に 1, 0, 0であるということ を表わしている。 このとき、 3次元表現ではそのまま始点が( 1, 0, 0 ) , 終点が ( 0, 1 , 0 ) の直線として表現する。 一方、 2次元表現 では、 対象形状をある方向から見た 2次元の図で表現し、 たとえば x y 平面に垂直な方向から見ると、 第 2図 ( b ) のように始点カ ( 1 , 0 ), 終点力 ( 0 , 1 ) の直線に見える。 ここで ( 1 , 0 ) は x yの座標値が それぞれ順に 1, 0であるということを表わしている。 見る方向は、 任 意の方向を選択することができるが、 いずれにしても座標は 2次元とし て表わす。 There are two types of three-dimensional and two-dimensional representations for handling device shapes in computers. In the three-dimensional representation, the shape of the three-dimensional device is handled as it is on the three-dimensional coordinate system, and in the two-dimensional representation, the shape of the three-dimensional device is converted into a figure when viewed from a specific direction, It is handled on a two-dimensional coordinate system. For example, suppose that one line segment of a device is a straight line with a start point of (1 : 0,0) and an end point of (0,1,0) in a three-dimensional space as shown in Fig. 2 (a). Here, (1, 0, 0) indicates that the coordinate values of X yz are 1, 0, 0, respectively. At this time, in the three-dimensional expression, the starting point is expressed as a straight line with (1, 0, 0) and the ending point is (0, 1, 0). On the other hand, in the two-dimensional representation, the target shape is represented by a two-dimensional figure viewed from a certain direction. For example, when viewed from a direction perpendicular to the xy plane, the starting point (1, 0) , It looks like a straight line of the end force (0, 1). Here (1, 0) means that the coordinate values of xy are 1 and 0, respectively. Any direction can be selected as the viewing direction, but in any case, the coordinates are expressed as two dimensions.
設計支援装置等の図面作成装置では、 当初対象形状を 3次元表現で表 わしておき、 後で 2次元表現に変換することが良く行われる。 このよう
に 3次元表現で表わした形状を、 2次元表現に変換することを、 投影と いう。 また、 3次元表現で表わした同一の形状を、 複数の方向から見た 図に投影し、 それを並べて 1 枚の紙の上へ配置して図面を作成すること が良く行われる。 このとき、 互いに垂直な 3方向から見た図、 たとえば 上から見た図, 前から見た図, 横から見た図、 を作成するのが標準的で ある。 In a drawing creation device such as a design support device, it is often the case that a target shape is initially represented in a three-dimensional representation, and later converted to a two-dimensional representation. like this Transformation of a shape expressed in a three-dimensional representation into a two-dimensional representation is called projection. In addition, it is common to project the same shape represented by a three-dimensional representation on a diagram viewed from multiple directions and arrange them on a piece of paper to create a drawing. At this time, it is standard to create a diagram viewed from three directions perpendicular to each other, for example, a diagram viewed from above, a diagram viewed from the front, and a diagram viewed from the side.
従来の装置では、 3次元表現を 2次元表現に変換して図面を作成する 際に、 以下のような指示を操作者が行う必要があった。 In a conventional device, when converting a three-dimensional representation to a two-dimensional representation and creating a drawing, the operator had to give the following instructions.
( 1 ) 面図方向 (図面に表わすべき対象品のどの方向を前, 上, 横とす るか) (1) Plan view direction (Which direction of the object to be shown in the drawing is front, top, or side)
図面に表わすときには、 形状的な特徴の分かりやすい方向で表示する のが好ましいので、 その方向を操作者が判断して指示する必要があった 特に組立品の図面を作成する場合、 製品全体の特徴の分かりやすい方向 と、 各部組品, 各部品の特徴の分かりやすい方向はそれぞれ異なるので、 製品全体, 各部組品, 各部品ごとに面図方向を指示する必要があった。 When showing in a drawing, it is preferable that the shape feature be displayed in an easy-to-understand direction, so the operator had to judge and indicate the direction. Especially when creating a drawing of an assembly, the characteristics of the whole product The direction in which it is easy to understand is different from the direction in which the characteristics of each part and each part are easy to understand, so it was necessary to specify the drawing direction for the entire product, each part and each part.
( 2 ) 配置位置 (図面上のどの位置に線図を配置するか) (2) Location (where to place the diagram in the drawing)
対象品の形状によって、 立方体に近いもの, 板状のもの, 棒状のもの 等があり、 単純にそれらの投影図を図面上に配置すると、 余白ができた り、 複数の図が重なったりする。 これを防ぐために、 配置位置の指示が 必要であった。 配置位置についても、 組立品の図面を作成する場合、 製 品全体の適切な配置と、 各部組品, 各部品の適切な配置は異なるので、 製品全体, 各部組品, 各部品ごとに指示する必要があった。 Depending on the shape of the target product, it may be close to a cube, a plate, or a bar. If these projections are simply placed on the drawing, margins may be created or multiple figures may overlap. To prevent this, it was necessary to indicate the location. Regarding the layout position, when creating a drawing of an assembly, the appropriate layout of the entire product and the appropriate layout of each assembly and each part are different, so instructions are given for the entire product, each assembly and each part. Needed.
これら ( 1 ) 及び ( 2 ) の各指示は、 省略することも可能であった。 ただしその場合、 従来の装置ではあらかじめ定めた一定値が採用される ので、 適切な図面とはならず、 あとで修正する必要があった-
また、 設計においては、 最終的には製品全体, すべての部組品, すべ ての部品の図面が必要である。 しかし、 製品または部組品を図面出力の 対象とする場合、 図面を作成する対象の指示は、 対象とする部組品また は部品すベてを個別に指示する必要があった。 これは、 先に述べたよう に面図方向, 配置位置を適切に決定する手段が従来なかったため、 まと めて図面を作成しても適切な図面が出力できなかったからである。 発明の開示 These instructions (1) and (2) could be omitted. However, in that case, since the predetermined value is adopted in the conventional device, it is not an appropriate drawing, and it needs to be corrected later. Finally, in designing, drawings of the entire product, all parts, and all parts are required. However, when a product or an assembly was to be output as a drawing, it was necessary to individually indicate all of the target assembly or part in order to create the drawing. This is because, as described above, there has been no means for appropriately determining the plan view direction and arrangement position, and therefore, even if the drawings were created, an appropriate drawing could not be output. Disclosure of the invention
本発明は、 3次元形状データに基づいて該 3次元形状を平面に投影し た 2次元の図面を作成する図面作成装置において、 前記 3次元の形状デ 一タを記憶する記憶手段と、 前記記憶手段に記憶された 3次元形状の形 状特徴に基づいて、 該 3次元形状を投影する平面の基礎となる座標方向 を生成する手段と、 前記座標方向を生成する手段にて生成された座標方 向に基づく平面に前記 3次元形状を投影して 2次元の図面を生成する図 面作成手段とを有することを特徴とする。 The present invention relates to a drawing creating apparatus for creating a two-dimensional drawing in which the three-dimensional shape is projected on a plane based on the three-dimensional shape data, wherein the storage means for storing the three-dimensional shape data; Means for generating a coordinate direction that is a basis of a plane on which the three-dimensional shape is projected, based on the shape characteristic of the three-dimensional shape stored in the means; and a coordinate method generated by the means for generating the coordinate direction. Drawing creation means for projecting the three-dimensional shape onto a plane based on orientation to generate a two-dimensional drawing.
また、 本発明は、 3次元形状データに基づいて該 3次元形状を平面に 投影した 2次元の図面を作成する図面作成装置において、 前記 3次元の 形状データを記憶する記憶手段と、 前記記憶手段に記憶された 3次元形 状の形状特徴に基づいて、 前記 2次元の図面上における前記形状の配置 位置を生成する手段と、 前記配置位置を生成する手段にて生成された配 置位置に前記 3次元形状を投影した形状を生成する図面作成手段とを有 することを特徴とする。 The present invention also provides a drawing creating apparatus that creates a two-dimensional drawing by projecting the three-dimensional shape on a plane based on the three-dimensional shape data, wherein the storage means stores the three-dimensional shape data, and the storage means Means for generating an arrangement position of the shape on the two-dimensional drawing based on the three-dimensional shape characteristic stored in the storage device, and an arrangement position generated by the means for generating the arrangement position. A drawing creating means for generating a shape obtained by projecting the three-dimensional shape.
本発明は、 投影方向等の図面作成の設定を 3次元形状の特徴から行う ことにより、 対象品ごとに図面設定を行うことなく図面作成ができる。
図面の簡単な説明 According to the present invention, a drawing can be created without setting a drawing for each target product by setting the drawing creation such as the projection direction from the feature of the three-dimensional shape. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明に係る好ましい図面作成装置の構成図であり、 第 2 図は、 2次元形状データおよび 3次元形状データ説明図であり、 第 3図 は、 対象品の説明図であり、 第 4図は、 メモリ部 1 0 3に記憶した形状 データを示す図であり、 第 5図は、 部品構成データ を示す図であり、 第 6図は、 指定データを示す図であり、 第 7図は、 対象品抽出部 1 0 2の 処理説明図であり、 第 8図は、 メモリ部 1 0 3に記憶した対象品データ を表わす図であり、 第 9図は、 組立品の例を表わす図であり、 第 1 0図 は、 特徴抽出部 1 0 4の構成図を表わす図であり、 第 1 1 図は、 抽出し た形状要素を表わす図であり、 第 1 2図は、 構成要素の統計を表わす図 であり、 第 1 3図は、 部品座標軸の方向の例を表わす図であり、 第 1 4 図は、 部品座標軸の方向原点を表わす図であり、 第 1 5図は、 メモリ部 1 0 3に記憶した特徴データを表わす図であり、 第 1 6図は、 図面設定 部 1 0 5の構成図であり、 第 1 7図は、 面図方向決定部 1 6 0 1 の構成 図であり、 第 1 8図は、 正面図に対する側面図, 平面図の方向を表わす 図であり、 第 1 9図は、 スケール決定部 1 6 0 2の構成図であり、 第 2 0図は、 スケールに対する密度を表わす図であり、 第 2 1 図は、 図面 サイズ決定部 1 6 0 3の構成図であり、 第 2 2図は、 図面領域の説明図 であり、 第 2 3図は、 余白の長さの最小値を表わす図であり、 第 2 4図 は、 図面サイズに対する図面領域の長さの和の最大値を表わす図であり , 第 2 5図は、 配置位置決定部 1 6 0 4の構成図であり、 第 2 6図は、 メ モリ部 1 0 3に記憶した図面設定データを表わす図であり、 第 2 7図は メモリ部 1 0 3に記憶した図面メモリのデータ を表わす図であり、 第 2 8図は、 出力図面の例を表わす図であり、 第 2 9図は、 図面作成装置 に係る別の構成図であり、 第 3 0図は、 図面作成装置に係る別の構成図
であり、 第 3 1 図は、 図面作成方法に係る構成図であり、 第 3 2図は、 図面作成方法に係る別の構成図である。 発明を実施するための最良の形態 FIG. 1 is a configuration diagram of a preferred drawing creating apparatus according to the present invention, FIG. 2 is an explanatory diagram of two-dimensional shape data and three-dimensional shape data, and FIG. 3 is an explanatory diagram of a target product. FIG. 4 is a diagram showing the shape data stored in the memory unit 103, FIG. 5 is a diagram showing the component configuration data, FIG. 6 is a diagram showing the designated data, and FIG. FIG. 7 is a diagram for explaining the processing of the target product extraction unit 102, FIG. 8 is a diagram showing the target product data stored in the memory unit 103, and FIG. 9 is an example of an assembly product. FIG. 10 is a diagram showing a configuration diagram of the feature extraction unit 104, FIG. 11 is a diagram showing extracted shape elements, and FIG. FIG. 13 is a diagram showing the statistics of elements, FIG. 13 is a diagram showing an example of the direction of the component coordinate axis, and FIG. FIG. 15 is a diagram showing the feature data stored in the memory unit 103. FIG. 16 is a configuration diagram of the drawing setting unit 105. Is a configuration diagram of a plan view direction determining unit 1601, FIG. 18 is a diagram showing directions of a side view and a plan view with respect to a front view, and FIG. FIG. 20 is a diagram showing the density with respect to the scale, FIG. 21 is a diagram showing the configuration of the drawing size determination unit 1603, and FIG. FIG. 23 is a diagram showing the minimum value of the margin length, and FIG. 24 is a diagram showing the maximum value of the sum of the lengths of the drawing regions with respect to the drawing size. , FIG. 25 is a configuration diagram of the arrangement position determination unit 1604, and FIG. 26 is a diagram showing the drawing setting data stored in the memory unit 103. FIG. 28 is a diagram showing data of a drawing memory stored in the memory section 103, FIG. 28 is a diagram showing an example of an output drawing, and FIG. 29 is another block diagram related to the drawing creating apparatus. Yes, Figure 30 is another block diagram of the drawing creation device FIG. 31 is a block diagram according to a drawing creation method, and FIG. 32 is another block diagram according to a drawing creation method. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従って、 これを説 明する。 The present invention will be described in more detail with reference to the accompanying drawings.
第 1 図は本発明の一実施例に係る図面作成装置の構成を示すものであ る。 FIG. 1 shows a configuration of a drawing creating apparatus according to one embodiment of the present invention.
入力部 1 0 1 は、 3次元 C A Dシステム等の別の装置の出力データを 入力する装置、 またはキーボー ド, マウス等の操作装置とディスプレイ 等の表示装置からなり、 3次元の形状データと、 部品構成データと、 指 定データとを入力する。 形状データと部品構成データ と指定データにつ いては、 後で詳しく述べる。 The input unit 101 consists of a device for inputting output data from another device such as a 3D CAD system, or an operating device such as a keyboard or mouse and a display device such as a display. Enter the configuration data and the specified data. The shape data, component configuration data, and designated data will be described in detail later.
対象品抽出部 1 0 2は、 入力部 1 0 1 で入力した部品構成データと、 指定データとから図面化の対象となる製品および部組品および部品を抽 出する。 The target product extraction unit 102 extracts a product, a subassembly, and a component to be drawn from the component configuration data input at the input unit 101 and the designated data.
メモリ部 1 0 3は、 入力部 1 0 1 で入力した形状データ と、 対象品抽 出部 1 0 2で抽出した対象品データ と、 特徴データと、 図面設定データ と、 図面データとを記憶する。 特徴データは、 各図面作成対象品のサイ ズ, 形状を構成する線分の数, 方向等のデータである。 図面設定データ は、 面図方向, 配置位置, 図面サイズ, スケールといった図面を書く環 境を表わすデータである。 The memory unit 103 stores the shape data input by the input unit 101, the target item data extracted by the target item extraction unit 102, the characteristic data, the drawing setting data, and the drawing data. . The feature data is data such as the size of each drawing target product, the number of line segments that make up the shape, and the direction. The drawing setting data is data representing the drawing writing environment, such as the drawing direction, layout position, drawing size, and scale.
特徴抽出部 1 0 4は、 メモリ部 1 0 3に記憶した形状データと対象品 データ とから各図面作成対象品の特徴データ を抽出し、 メモリ部 1 0 3 に記憶する。 図面設定部 1 0 5は、 メモリ部 1 0 3に記憶した特徴デー タから各図面作成対象品の図面設定データ を設定し、 メモリ部 1 0 3に
言己 1¾する。 The feature extraction unit 104 extracts feature data of each drawing target product from the shape data and target product data stored in the memory unit 103, and stores the feature data in the memory unit 103. The drawing setting unit 105 sets the drawing setting data for each drawing object from the characteristic data stored in the memory unit 103, and stores the drawing setting data in the memory unit 103. I say 1¾.
図面作成部 1 0 6は、 メモリ部 1 0 3に記憶した形状データと対象品 データと E面設定データとから各図面作成対象品の図面データを作成し、 メモリ部 1 0 3に記憶する。 The drawing creation unit 106 creates drawing data of each drawing creation target product from the shape data, target product data, and E-plane setting data stored in the memory unit 103, and stores the drawing data in the memory unit 103.
出力部 1 0 7は、 ディスプレイ, プロッタ等の出力装置からなり、 メ モリ部 1 0 3に記憶した図面データを図として出力する。 なお、 図面設 定部 1 0 6で作成した図面データを直接出力部 1 0 7で図と して出力す ることもできる。 The output unit 107 includes an output device such as a display or a plotter, and outputs drawing data stored in the memory unit 103 as a drawing. The drawing data created by the drawing setting unit 106 can be directly output as a drawing by the output unit 107.
以下、 第 3図 ( a ) のク リーナを図面に表わす場合を例にとって本装 置の詳細を説明する。 Hereinafter, the details of the present apparatus will be described by taking, as an example, a case where the cleaner in FIG. 3 (a) is shown in the drawing.
入力部 1 0 1 は、 形状データ と部品構成データと指定データの入力を 行う。 第 4図は、 メモリ部 1 0 3に記憶した形状データの一部である。 The input unit 101 inputs shape data, component configuration data, and designated data. FIG. 4 shows a part of the shape data stored in the memory unit 103.
4 0 1 は形状の部品の名称、 4 0 2は形状の構成要素の種類、 4 0 3は 形状の構成要素のデータ を表わしている。 形状データは、 形状を構成す る線分, 頂点, 面等のデータで構成する。 例えば線分の直線ならば、 始 点と終点の座標, 円弧ならば中心と始点と終点の座標と半径と軸べク 卜 ルで構成する。 Reference numeral 401 denotes the name of the component of the shape, 402 denotes the type of the component of the shape, and 4003 denotes the data of the component of the shape. The shape data consists of data such as line segments, vertices, and faces that make up the shape. For example, a straight line segment consists of the coordinates of the start and end points, and a circular arc consists of the coordinates of the center, start point and end point, a radius, and an axis vector.
次に部品構成データについて説明する。 機械製品は、 部品一つずつを 順々に組み付けていくことはほとんどなく、 複数の部品をまず先に組み 立てて部組品とする。 そして、 部組品と部品、 あるいは部組品同士を組 み立てていって製品を組み立てる。 このような部品と部組品の階層構造 を表わすのが第 3図 ( b ) のような部品構成である。 第 3図 ( b ) の場 合、 まず部品 A, 部品 B , 部品 C, 部品 Dを組み立てて部組品 Pを作成 する。 そして部組品 Pと部品 E, 部品 F, 部品 G, 部品 H , 部品 I , 部 品 J を組み立てて製品 Xを作成する。 部品構成データは、 製品あるいは
部組品を構成する部品および部組品で表現する。 第 3図 ( b ) のような 部品構成の部品構成データは、 第 5図のようになる。 第 5図は、 製品 X は、 部組品 P, 部品 H, 部品 F, 部品 G, 部品 E, 部品 I , 部品 Jで構 成するデータ 5 0 1 、 部組品 Pは、 部品(:, 部品 B, 部品 A , 部品 Dで 構成するデータ 5 0 2 を表わしている。 Next, the component configuration data will be described. In mechanical products, it is rare to assemble parts one by one in order, and multiple parts are assembled first to form a subassembly. Then, assemble the product by assembling the assembled parts and parts or the assembled parts. Fig. 3 (b) shows the hierarchical structure of such parts and subassemblies. In the case of Fig. 3 (b), first, a part A, a part B, a part C, and a part D are assembled to create a subassembly P. Then, the product P is created by assembling the component P and the components E, F, G, H, I, and J. The component configuration data is either product or Expressed in terms of parts and components that make up a component. The component configuration data of the component configuration as shown in Fig. 3 (b) is as shown in Fig. 5. Fig. 5 shows that product X is data 501 composed of component P, component H, component F, component G, component E, component I, and component J, and that component P is component (:, It represents data 502 composed of part B, part A, and part D.
次に指定データについて説明する。 図面は、 加工, 組立等に用いるた め各部品および部組品および製品ごとに必要となる。 第 3図 ( b ) のよ うな部品構成を持つ製品の場合、 図面作成の対象は、 第 3図 ( c ) のよ うに部品 A, 部品 B, 部品 C, 部品 D, 部品 E, 部品 F, 部品 G, 部品 H, 部品 I , 部品 J , 部組品 P , 製品 Xとなる。 ただし、 図面を作成す る場合、 すべての部品および部組品および製品の図面が必要とはかぎら ない。 ある部品は、 前に作った製品の部品と同じで既に図面が存在する ケースや、 設計の途中である部品の図面が必要になるケースがあるから である。 指定データは、 図面化する製品および部組品および部品を指定 するデータである。 製品あるいは部組品を指定した場合には、 指定した 製品あるいは部組品を構成する部品および部組の図面すベてを作成する か、 指定した製品および部組品だけの図面を作成するかの選択も入力す る。 指定データは、 例えば第 6図の 6 0 1 のようになる。 このデータは 指定した製品あるいは部組品あるいは部品の名称と、 指定した製品ある いは部組品を構成する部品および部組の図面すベてを作成するかの選択 を表わしている。 例えば、 第 3図 ( b ) の部品構成で、 製品 Xを指定し. 「構成する部品および部組品すベて」 を選択すれば、 図面作成の対象は. 部品 A, 部品 B, 部品 C, 部品 D , 部品 E , 部品 F , 部品 G, 部品 H, 部品 ェ , 部品 J , 部組品 P, 製品 Xとなる。 部組品 Pを指定し、 「構成 する部品および部組品すベて」 を選択すれば、 図面作成の対象は、 部品
A, 部品 B, 部品 C, 部品 D , 部組品 Pとなる。 また、 入力を省略した 場合の指定される製品および部組品および部品、 および指定した製品あ るいは部組品を構成する部品および部組の図面すベてを作成するかその 製品および部組品だけの図面を作成するかの選択を決めておけば、 指定 データの入力は省略できる。 例えば、 入力を省略した場合は製品が指定 され、 「構成する部品および部組品すベて」 が選択されるように決めて おく。 そうすると第 3図 ( a ) のク リーナで指定データの入力を省略し た場合には、 製品 Xを指定し、 「構成する部品および部組品すベて」 を 選択したことになる。 Next, the specified data will be described. Drawings are required for each part, subassembly, and product because they are used for processing and assembly. In the case of a product with a component configuration as shown in Fig. 3 (b), the drawing target is part A, component B, component C, component D, component E, component F, as shown in Fig. 3 (c). Part G, part H, part I, part J, assembly P, and product X. However, when creating drawings, drawings of all parts, assemblies and products are not necessarily required. This is because there are cases where a part already has a drawing that is the same as the part of a previously made product, and a case where a drawing of the part that is being designed is needed. The specified data is data that specifies the product, assembly, and parts to be drawn. If a product or assembly is specified, whether to create all drawings for the parts and assemblies that make up the specified product or assembly, or to create drawings only for the specified product or assembly Enter the selection. The designated data is, for example, as shown in FIG. This data represents the name of the specified product or assembly or part, and the choice of whether to create all the drawings for the parts and assemblies that make up the specified product or assembly. For example, in the component configuration shown in Fig. 3 (b), specify product X. If you select "all components and subassemblies", drawings are created. Parts A, B, and C , Part D, part E, part F, part G, part H, part J, part J, part P, and product X. If you specify the component P and select "All components and components", the drawing will be created for the component A, part B, part C, part D, and assembled part P. In addition, create all the drawings of the specified products and components and parts when the input is omitted, and the specified products or the parts and groups that make up the components, or create the products and the components. If you decide whether to create a drawing only for the product, you can omit the specification data entry. For example, if the input is omitted, the product is specified, and it is determined that "all the components and parts" are selected. Then, if the input of the specified data is omitted in the cleaner of Fig. 3 (a), the product X is specified and "all the components and parts to be constructed" is selected.
対象品抽出部 1 0 2は、 入力部 1 0 1 で入力した部品構成データ と指 定データとから対象品データを作成し、 メモリ部 1 0 3に記憶する。 対 象品データ とは、 図面作成対象となる製品および部組品および部品を表 わすデータである。 対象品抽出部 1 0 2の処理は例えば第 7図のように なる。 処理 7 0 1 は、 指定した製品または部組品または部品を対象品と する。 例えば第 3図 ( b ) の部品構成で製品 Xを指定した場合、 指定し た製品 Xを対象品とする。 処理 7 0 2は、 指定データの指定が製品ある いは部組品かどうかを判定する。 指定データの指定が製品あるいは部組 品ならば、 処理 7 0 3は、 指定データの選択が 「構成する部品及び部組 品すベて」 かどうか判定する。 指定データの選択が 「構成する部品及び 部組品すベて」 ならば処理 7 0 4で、 指定した製品あるいは部組品を構 成する部品および部組品を求めて、 対象品とする。 例えば第 3図 ( b ) の部品構成で製品 Xを指定した場合、 製品を構成する部組品 P, 部品 H , 部品 F, 部品 G, 部品 E, 部品 1 , 部品 J および部組 Pを構成する部品 A, 部品 B , 部品 C , 部品 Dを対象品とする。 そして、 処理 7 0 5で、 処理 7 0 1 および処理 7 0 4で求めた対象品から対象品データ を作成し
処理 7 0 6でメモリ部 1 0 3に記憶する。 対象品データは、 対象品およ び部組品および製品の名前で構成する。 第 8図は、 メモリ部 1 0 3に記 憶した対象品データ 8 0 3である。 The target product extraction unit 102 creates target product data from the component configuration data input at the input unit 101 and the designated data, and stores the target product data in the memory unit 103. The target item data is data representing the product, the assembled part, and the part for which the drawing is to be created. The process of the target product extraction unit 102 is, for example, as shown in FIG. Process 701 targets the specified product, assembly, or part. For example, if product X is specified in the component configuration shown in Fig. 3 (b), the specified product X is the target product. In the process 720, it is determined whether the designation of the designated data is a product or a component. If the specification of the specified data is a product or a component, the process 703 determines whether the selection of the specified data is “all of the constituent parts and components”. If the selection of the specified data is “all of the components and components”, in process 704, the components and components that make up the specified product or component are obtained and set as the target products. For example, if product X is specified in the component configuration shown in Fig. 3 (b), components P, H, F, G, E, 1, J, and P that make up the product are configured. Parts A, B, C, and D are the target products. Then, in process 705, target product data is created from the target product obtained in processes 701 and 704. In processing 706, it is stored in the memory section 103. The target product data consists of the names of the target product, components, and products. FIG. 8 shows the target product data 803 stored in the memory section 103.
以下第 9図で示す部品 J を例に特徴抽出部 1 0 4, 図面設定部 1 0 5 , 図面作成部 1 0 6, 出力部 1 0 7について説明する。 なお、 本実施例で は、 図面は、 形状を正面から見た正面図と、 横から見た側面図と、 上か ら見た平面図との三つの図で構成する三面図とする。 Hereinafter, the feature extraction unit 104, the drawing setting unit 105, the drawing creation unit 106, and the output unit 107 will be described using the part J shown in FIG. 9 as an example. In the present embodiment, the drawing is a three-view drawing consisting of a front view of the shape viewed from the front, a side view viewed from the side, and a plan view viewed from the top.
図面設定データの内容として面図方向, スケール, 図面サイズ, 配置 位置等が挙げられる。 The contents of the drawing setting data include the drawing direction, scale, drawing size, and arrangement position.
これらの図面の設定を決定する形状の特徴および他の図面設定データ として例えば以下のような項目が挙げられる。 For example, the following items can be cited as the shape characteristics and other drawing setting data that determine the setting of these drawings.
( 1 ) 面図方向の設定 (1) Set the direction of the drawing
面図方向の設定には、 例えば形状を構成する線分の数, 方向, 長さあ るいは面の数, 方向, 面積, 形状のサイズ等を用いる。 For example, the number of lines constituting the shape, the direction, the number of lengths or faces, the direction, the area, the size of the shape, and the like are used for setting the direction of the plan view.
線分あるいは面の方向ごとの統計を取り、 それをもとに座標軸方向を 決める。 その座標軸方向をもとにして形状のサイズを計算し、 x y z方 向のサイズの比較から正面図, 側面図, 平面図の投影方向を決める。 本実施例では線分の数, 方向を用いた場合を詳述する。 The statistics for each direction of the line segment or plane are obtained, and the coordinate axis direction is determined based on the statistics. The size of the shape is calculated based on the coordinate axis direction, and the projection directions of the front view, side view, and plan view are determined by comparing the sizes in the x, y, and z directions. In this embodiment, the case where the number and direction of line segments are used will be described in detail.
( 2 ) スケールの設定 (2) Scale setting
スケールの設定には形状を構成する線分の数あるいは長さの総計, 形 状のサイズを用いる。 In setting the scale, the total number of line segments or the length of the shape and the size of the shape are used.
形状を構成する線分の数あるいは長さの総計と形状のサイズとから線 分の密度を求め、 密度をもとに形状のサイズを決める。 The density of line segments is determined from the total number of line segments or the length of the shape and the size of the shape, and the size of the shape is determined based on the density.
( 3 ) 図面サイズの設定 (3) Setting the drawing size
図面サイズの設定には形状のサイズ, 面図方向, スケールを用いる。
形状のサイズと面図方向とスケールとから、 図面上での形状の図の大 きさが分かるので図面の領域に形状が収まリ、 かつ大きすぎないように 図面サイズを決める。 The shape size, drawing direction, and scale are used to set the drawing size. Since the size of the shape on the drawing can be known from the size of the shape, the drawing direction, and the scale, the drawing size is determined so that the shape fits in the drawing area and is not too large.
( 4 ) 配置位置の設定 (4) Setting the placement position
配置位置の設定には形状の中心の座標, 形状のサイズ, 面図方向, ス ケール, 図面サイズを用いる。 The coordinates of the center of the shape, the size of the shape, the drawing direction, the scale, and the drawing size are used to set the placement position.
形状のサイズと面図方向とスケールと図面サイズとから正面図, 側面 図, 平面図の領域を分け、 それぞれの中心に形状の中心を投影するよう にする。 The front view, side view, and plan view areas are divided based on the shape size, surface direction, scale, and drawing size, and the center of the shape is projected on each center.
特徴抽出部 1 0 4は、 例えば第 1 0図のような構成にする。 The feature extracting unit 104 has, for example, a configuration as shown in FIG.
形状要素抽出部 1 0 0 1 は、 メモリ部 1 0 3に記憶した形状データ と 対象品データとから、 各対象品の形状要素データを抽出する。 本実施例 では、 線分のデータ を基に図面設定データを作成するので、 線分のデー タを抽出する。 線分のデータは、 線分を表わすデータである。 例えば直 線ならば始点と終点の座標, 円弧ならば中心と始点と終点の座標と半径 と軸べク トルで表わす。 第 1 1 図は形状要素抽出部 1 0 0 1 で抽出した 部品 J の形状要素の一部を表わしている。 1 1 0 1 は対象品の名称、 1 1 0 2は線分, 面等の形状要素データの種類、 1 1 0 3は線分のデー タ を表わしている。 The shape element extraction unit 1001 extracts shape element data of each target product from the shape data stored in the memory unit 103 and the target product data. In this embodiment, since the drawing setting data is created based on the line segment data, the line segment data is extracted. The line segment data is data representing the line segment. For example, a straight line is represented by the coordinates of the start and end points, and an arc is represented by the coordinates of the center, the start point and the end point, a radius, and an axis vector. FIG. 11 shows a part of the shape element of the part J extracted by the shape element extraction unit 1001. 1101 indicates the name of the target product, 1102 indicates the type of shape element data such as line segments and surfaces, and 1103 indicates the line segment data.
形状要素集計部 1 0 0 2は、 形状要素抽出部 1 0 0 1 で抽出した形状 要素データの線分のデータ を集計して、 線分の数, 線分の方向ごとの数, 線分の長さの総計を求める。 本実施例では、 線分の方向は直線の始点か ら終点の方向と、 円弧の軸方向とする。 なお、 逆の方向は同じとして扱 う。 第 1 2図は、 部品 J の線分の方向の集計結果である。 縦軸は線分の 方向、 横軸は線分の方向ごとの数である。 またこの例の場合、 線分の数
は 7 2、 長さの総計は 2 0 0 8. 1 となる。 求めた線分の数, 長さの総 計は特徴データの一部としてメモリ部 1 0 3に記憶する。 The shape element totalizing unit 1002 aggregates the line data of the shape element data extracted by the shape element extracting unit 1001, and calculates the number of line segments, the number of each line segment in each direction, and the number of line segments. Obtain the total length. In this embodiment, the direction of the line segment is the direction from the start point to the end point of the straight line and the axial direction of the arc. The opposite direction is treated as the same. Figure 12 shows the results of counting the direction of the line segment of part J. The vertical axis is the direction of the line segment, and the horizontal axis is the number of each line direction. In this example, the number of line segments Is 7 2 and the total length is 20.08.1. The total number and length of the obtained line segments are stored in the memory unit 103 as part of the feature data.
座標軸方向決定部 1 0 0 3は、 形状要素集計部 1 0 0 2の集計結果か ら座標軸方向を決定する。 まず、 線分の方向の中で数が一番多いものを X方向とする。 二つある場合には、 その二つが直交していれば X方向と y方向とする。 直交していなければ、 直交する方向の数が多いほうを X 方向とする。 X方向が決まったら、 X方向と直交する中で一番多いもの を y方向とする。 二つある場合には、 その二つが直交していれば y方向 と z方向とする。 直交していなければ、 直交する方向の数が多いほうを y方向とする。 X方向と y方向が決まったら、 X方向と y方向の外積を z方向とする。 部品 Jの場合、 一番多い ( 0. 3 1, 0, 0. 9 5 ) が X 方向, X方向と直交する( 0, 1, 0)と(— 0. 9 5, 0 , 0. 3 1 )が次 いで多いのでそれぞれを y方向, z方向とする。 以後、 混乱を避けるた めに組立品の座標軸方向を組立座標軸方向, 座標軸方向決定部 1 0 0 3 で求めた座標軸方向を部品座標軸方向という。 第 1 3図に部品 J の部品 座標軸方向 1 3 0 1 を示す。 求めた部品座標軸方向は特徴データの一部 としてメモリ部 1 0 3に記憶する。 The coordinate axis direction determining unit 1003 determines the coordinate axis direction from the counting result of the shape element counting unit 1002. First, the direction with the largest number of line segments is defined as the X direction. If there are two, if the two are orthogonal, the direction is the X direction and the y direction. If they are not orthogonal, the direction with the greater number of orthogonal directions is the X direction. Once the X direction is determined, the one that is most orthogonal to the X direction is the y direction. If there are two, if the two are orthogonal, the directions are the y and z directions. If they are not orthogonal, the direction with the greater number of orthogonal directions is the y direction. Once the X and y directions are determined, the cross product of the X and y directions is defined as the z direction. In the case of part J, the most (0.31, 0, 0.95) is orthogonal to the X and X directions (0, 1, 0) and (—0.95, 0, 0.3). Since 1) is the next most common, we use the y and z directions respectively. Hereinafter, in order to avoid confusion, the coordinate axis direction of the assembly is referred to as the assembly coordinate axis direction, and the coordinate axis direction obtained by the coordinate axis direction determination unit 1003 is referred to as the component coordinate axis direction. Fig. 13 shows the part coordinate axis direction of part J for part J. The obtained component coordinate axis direction is stored in the memory unit 103 as a part of the feature data.
以上述べたように、 本実施例では形状特徴として線分の方向, 数を利 用したが、 本発明はこれに限定するものではない。 たとえば線分の長さ , 面の方向, 面の面積等の利用、 またこれらと線分の方向, 数の組み合わ せ等を利用するのも本発明に包含される。 As described above, in the present embodiment, the direction and the number of line segments are used as shape features, but the present invention is not limited to this. For example, the present invention includes the use of the length of a line segment, the direction of a surface, the area of a surface, and the like, and the use of combinations of these with the direction and number of line segments.
サイズ計算部 1 0 0 4は、 メモリ部 1 0 3に記憶した形状データ と対 象品データと座標軸方向決定部 1 0 0 3で決めた部品座標軸方向から各 対象品のサイズを計算する。 サイズは、 本実施例では各対象品のバウン デイ ングボックスのサイズとする: パウンデイ ングボックスとは、 座標
軸に平行辺を持ち形状に外接する最も小さな直方体である。 バウンディ ングボックスを求める際には、 部品座標軸方向を用いる。 パウンデイ ン グボックスは X y zの最大, 最小の座標で表わす。 部品座標軸方向の原 点を第 1 4図に示す X y zが最小になる点にすると部品 Jのバウンディ ングボックスは最小( 0, 0, 0 ) , 最大( 2. 0 , 1 3 0. 0, 2 2 3. 6 ) となる。 形状のサイズは(パウンデイ ングボックスの X方向の長さ) X (パウンデイ ングボックスの y方向の長さ) X (パウンデイ ングボッ クスの z方向の長さ) というように掛け算の形で表わす。 部品 J のサイ ズは、 2. 0 X 1 3 0. 0 X 2 2 3. 6 となる。 求めたサイズは、 特徴デ ータの一部としてメモリ部 1 0 3に記憶する。 The size calculation unit 1004 calculates the size of each target product from the shape data stored in the memory unit 103, the target product data, and the component coordinate axis direction determined by the coordinate axis direction determination unit 1003. In this embodiment, the size is the size of the bounding box of each target product. It is the smallest rectangular parallelepiped that has sides parallel to the axis and circumscribes the shape. When finding the bounding box, use the component coordinate axis direction. The pounding box is represented by the maximum and minimum coordinates of Xyz. If the origin in the component coordinate axis direction is set to the point where Xyz is the minimum shown in Fig. 14, the bounding box of the component J will be minimum (0, 0, 0) and maximum (2.0, 130.0, 2 2 3.6). The size of the shape is expressed in the form of a multiplication, such as (the length of the pounding box in the X direction) X (the length of the pounding box in the y direction) X (the length of the pounding box in the z direction). The size of part J is 2.0 X 1 30.0 .0 X 2 23.6. The obtained size is stored in the memory unit 103 as a part of the feature data.
中心座標計算部 1 0 0 5は、 メモリ部 1 0 3に記憶した形状データと 対象品デ一タ と座標軸方向決定部 1 0 0 3で決めた部品座標軸方向から 各対象品の中心座標を計算する。 中心座標は、 本実施例では各部品およ び部組品のバウンディ ングボックスの中心の座標とする。 中心の座標は、 部品座標軸方向で ( 1 1 1. 8 , 6 5. 0 , 1. 0 ) となる。 これを組立 座標軸方向に変換すると (— 1 7 6. 6, 2. 0 , 1 7 8. 9 ) となる。 この座標値が部品 J の中心座標である。 求めた中心座標は、 特徴データ の一部としてメモリ部 1 0 3に記憶する。 The center coordinate calculation unit 1005 calculates the center coordinates of each target product from the shape data stored in the memory unit 103, the target product data, and the component coordinate axis direction determined by the coordinate axis direction determination unit 1003. I do. In this embodiment, the center coordinates are the coordinates of the center of the bounding box of each part or component. The coordinates of the center are (11.1.8, 65.0, 1.0) in the component coordinate axis direction. When this is converted to the direction of the assembly coordinate axis, it becomes (—17.6.6, 2.0, 17.8.9). These coordinate values are the center coordinates of the part J. The obtained center coordinates are stored in the memory unit 103 as a part of the feature data.
第 1 5図はメモリ部 1 0 3に記憶した部品 Jの特徴データである。 1 5 0 1 は対象品の名称、 1 5 0 2は特徴データの種類、 1 5 0 3は特 徴データの値を表わす。 FIG. 15 shows characteristic data of the part J stored in the memory unit 103. 1501 indicates the name of the target product, 1502 indicates the type of characteristic data, and 1503 indicates the value of the characteristic data.
図面設定部 1 0 5は詳細には例えば第 1 6図のような構成とする。 面 図方向決定部 1 6 0 1 は、 メモリ部 1 0 3に記憶した特徴デ一タの各対 象品のサイズと部品座標軸方向とから各対象品の面図方向を決定し、 図 面設定データの一部と してメモリ部 1 0 3に記憶する: スケール決定部
1 6 0 2はメモリ部 1 0 3に記憶した特徴データの線分長さの総計とサ ィズとからスケールを決定し、 図面設定データの一部としてメモリ部The drawing setting unit 105 has a detailed configuration, for example, as shown in FIG. The plane direction determining unit 1601 determines the plane direction of each object from the size of each object and the component coordinate axis direction of the feature data stored in the memory unit 103, and sets the plane setting. Store as a part of data in memory section 103: Scale determination section 1602 determines the scale from the total length and the size of the line segments of the characteristic data stored in the memory section 103, and the memory section as part of the drawing setting data.
1 0 3に記憶する。 図面サイズ決定部 1 6 0 3はメモリ部 1 0 3に記憶 した特徵データの各対象品のサイズと面図方向決定部 1 6 0 1 で決めた 面図方向とスケール決定部 1 6 0 2で決めたスケールとから図面サイズ を決定し、 図面設定データの一部としてメモリ部 1 0 3に記憶する。 配 置位置決定部 1 6 0 4は、 面図方向決定部 1 6 0 1 で決めた面図方向と, スケール決定部 1 6 0 2で決めたスケールと、 図面サイズ決定部 1603で 決めた図面サイズと、 特徴メモリ 1 0 7に記憶した特徴データの各対象 品のサイズと中心座標とから各面図の配置位置を決める。 配置位置は、 例えば正面図, 側面図, 平面図の中心の図面上の座標と、 3次元座標上 の形状の中心座標で表わす。 3次元座標上の形状の中心座標を、 各面図 の中心座標に投影すればよい。 決定した配置位置は、 図面設定データの 一部としてメモリ部 1 0 3に記憶する。 Store it in 103. The drawing size determination unit 1603 is used by the drawing direction and scale determination unit 1602 determined by the size of each target product of the special data stored in the memory unit 103 and the drawing direction determination unit 1601. The drawing size is determined from the determined scale and stored in the memory unit 103 as a part of the drawing setting data. The arrangement position determining unit 1604 is the drawing direction determined by the drawing direction determining unit 1601, the scale determined by the scale determining unit 1602, and the drawing determined by the drawing size determining unit 1603. The layout position of each plan is determined from the size and the size and center coordinates of each object in the feature data stored in the feature memory 107. The arrangement position is represented by, for example, the coordinates on the drawing of the center of the front view, side view, and plan view, and the center coordinates of the shape on the three-dimensional coordinates. The center coordinates of the shape on the three-dimensional coordinates may be projected onto the center coordinates of each view. The determined arrangement position is stored in the memory unit 103 as a part of the drawing setting data.
面図方向決定部 1 6 0 1 は詳細には例えば第 1 7図のような構成とす る。 X y z方向サイズ比較部 1 7 0 1 は、 メモリ部 1 0 3に記憶した特 徴データの対象品のサイズの X y z方向の比較を行う。 部品 J の場合、 大きい順に z方向, y方向, X方向となる。 正面図方向決定部 1 7 0 2 は、 x y z方向サイズ比較部 1 Ί 0 1 の結果から正面図の方向を決定す る。 三面図の場合、 正面図を一番大きくすると分かりやすい。 また図面 は横置きに書く ことが多い。 よって、 サイズの一番大きい方向を正面図 の横軸、 二番目に大きい方向を正面図の縦軸とする。 部品 Jの場合、 正 面図の横軸が z方向, 縦軸が y方向となる。 決定した正面図方向は、 図 面設定データの一部としてメモリ部 1 0 3に記憶する。 側面図方向決定 部 1 7 0 3は、 正面図方向決定部 1 7 0 2で決まった正面図方向から製
図規則に従って側面図方向を決定する。 第 1 8図は、 正面図方向に対す る側面図方向および平面図方向を表わしている。 側面図方向は、 第 1 8 図の表にしたがって決定する。 部品 Jの場合、 正面図の横軸が z方向、 縦軸が y方向なので、 側面図の横軸を X方向, 縦軸を y方向とする。 決 定した側面図方向は、 図面設定データの一部としてメモリ部 1 0 3に記 憶する。 平面図方向決定部 1 7 0 4は、 側面図方向と同様に、 正面図方 向決定部 1 7 0 2で決まった正面図方向から平面図方向を決定する。 平 面図方向ば、 第 1 8図の表にしたがって決定する。 部品 Jの場合、 正面 図の横軸が z方向, 縦軸が y方向なので、 側面図の横軸を z方向, 縦軸 を X方向とする。 決定した平面図方向は、 図面設定データの一部として メモリ部 1 0 3に記憶する。 部品座標軸方向読み込み部 1 7 0 5は、 メ モリ部に記憶した特徴データの部品座標軸方向を図面設定データの一部 としてメモリ部 1 0 3に記憶する。 The view direction determining unit 1601 has a configuration as shown in FIG. 17 in detail. The X yz direction size comparison unit 1701 compares the size of the target product of the characteristic data stored in the memory unit 103 in the X yz direction. In the case of part J, the order is z, y, and X in descending order. The front view direction determination unit 1702 determines the direction of the front view based on the result of the xyz direction size comparison unit 1Ί01. In the case of three views, it is easier to understand if the front view is the largest. Drawings are often written horizontally. Therefore, the direction with the largest size is the horizontal axis of the front view, and the second largest direction is the vertical axis of the front view. In the case of part J, the horizontal axis of the front view is the z direction and the vertical axis is the y direction. The determined front view direction is stored in the memory unit 103 as a part of the drawing setting data. The side view direction determination unit 1703 is manufactured from the front view direction determined by the front view direction determination unit 1702. Determine the side view direction according to the drawing rules. FIG. 18 shows a side view direction and a plan view direction with respect to the front view direction. The direction of the side view will be determined according to the table in Figure 18. In the case of part J, the horizontal axis in the front view is the z direction and the vertical axis is the y direction, so the horizontal axis in the side view is the X direction and the vertical axis is the y direction. The determined side view direction is stored in the memory section 103 as a part of the drawing setting data. The plan view direction determining unit 1704 determines the plan view direction from the front view direction determined by the front view direction determining unit 1702, similarly to the side view direction. In the plan view direction, it is determined according to the table in Fig. 18. In the case of part J, the horizontal axis in the front view is the z direction and the vertical axis is the y direction, so the horizontal axis in the side view is the z direction and the vertical axis is the X direction. The determined plan view direction is stored in the memory unit 103 as a part of the drawing setting data. The component coordinate axis direction reading unit 1705 stores the component coordinate axis direction of the feature data stored in the memory unit in the memory unit 103 as a part of the drawing setting data.
スケール決定部 1 6 0 2は詳細には例えば第 1 9図のような構成とす る。 密度計算部 1 9 0 1 は、 メモリ部 1 0 3に記憶した特徴データの線 分長さの総計とサイズとから各対象品の密度を計算する。 密度を求める 際のサイズは、 パウンデイ ングボックスの体積、 あるいは底面積, バウ ンデイ ングボックスの 2 Z 3乗等が考えられる。 本実施例ではパウンデ ィ ングボックスの最も大きい底面積とする。 部品 Jの密度は 2008. 1 ( 2 2 3 . 6 X 1 3 0 . 0 ) = 0 . 0 6 9 0 8 3 となる。 密度参照スケール 決定部 1 9 0 2は、 密度計算部 1 9 0 1 で計算した密度からスケールを 決定する。 スケールは第 2 0図の表にしたがって決める。 第 2 0図は、 形状の密度に対する適したスケールを表わしている。 例えば密度が 1 〜 The scale determining unit 1602 is configured in detail, for example, as shown in FIG. The density calculator 1901 calculates the density of each target product from the total length and the size of the line lengths of the feature data stored in the memory 103. The size for calculating the density can be the volume of the pounding box, the bottom area, the 2nd power of the bounding box, or the like. In the present embodiment, the largest bottom area of the pounding box is used. The density of part J is 2008.1 (23.6 x 130.0) = 0.0690983. The density reference scale determination unit 1902 determines the scale from the density calculated by the density calculation unit 1901. The scale is determined according to the table in Figure 20. FIG. 20 shows a suitable scale for the density of features. For example, if the density is 1 ~
0 . 5 ならばスケールは 1 0が適している。 決定したスケールは、 図 面設定データの一部としてメモリ部 1 0 3に記憶する。 部品 J の場合、
密度が 0 . 1 〜 0 . 0 5なのでスケールを 1 とする。 If 0.5, a scale of 10 is appropriate. The determined scale is stored in the memory unit 103 as a part of the drawing setting data. For part J, Since the density is 0.1 to 0.05, the scale is set to 1.
図面サイズ決定部 1 6 0 3は、 詳細には例えば第 2 1 図のような構成 とする。 余白最小値決定部 2 1 0 1 は、 図面上の余白の最小値を決定す る。 第 2 2図は図面の配分を表わす。 一番外側の線 2 2 0 1 は紙面の端. 太線 2 2 0 2は図面の枠、 点線 2 2 0 3は正面図を書く領域、 点線 2204 は側面図を書く領域、 点線 2 2 0 5は平面図を書く領域を表わす。 矢印 2 2 0 6 , 2 2 0 7 , 2 2 0 8 , 2 2 0 9は、 それぞれ正面図あるいは 平面図の横方向, 側面図の横方向, 正面図あるいは側面図の縦方向, 平 面図の縦方向を表わす。 正面図, 側面図, 平面図を書く領域以外の領域 が余白である。 余白 2 2 1 0は、 横方向の紙面の端 2 2 0 1 と図面の枠 2 2 0 2の間の余白を表わす。 余白 2 2 1 1 は、 横方向の図面の枠 2202 と正面 2 2 0 3の間の余白を表わす。 余白 2 2 1 2は、 横方向の正面図 2 2 0 3 と側面図 2 2 0 4の間の余白を表わす。 余白 2 2 1 3は、 横方 向の側面図 2 2 0 4 と図面の枠 2 2 0 2の間の余白を表わす。 余白 221 4 は、 横方向の図面の枠 2 2 0 2 と紙面の端 2 2 0 1 の間の余白を表わす : 余白 2 2 1 5は、 縦方向の紙面の端 2 2 0 1 と図面の枠 2 2 0 2の間の 余白を表わす。 余白 2 2 1 6は、 縦方向の図面の枠 2 2 0 2 と正面図 2 2 0 3の間の余白を表わす。 余白 2 2 1 7は、 縦方向の正面図 2203と 平面図 2 2 0 4の間の余白を表わす。 余白 2 2 1 8は、 縦方向の平面図 2 2 0 4 と図面の枠 2 2 0 2の間の余白を表わす。 余白 2 2 1 9は、 縦 方向の図面の枠 2 2 0 2 と紙面の端 2 2 0 1 の間の余白を表わす。 余白 は、 寸法, 注記, 部品表の記入のために必要である。 余白の長さの最小 値は、 寸法, 注記, 部品表を記入することを考慮してユーザの判断によ り決定する。 本実施例では図面のサイズに関係なく余白の長さの最小値 は一定で、 第 2 3図の表のような値と決定した。
第 2 3図は、 余白 2 2 1 0〜余白 2 2 1 9それぞれの最小値を表わす。 余白の長さの最小値は、 あらかじめユーザが指定可能にするのが好まし い。 また、 部品図と組立図等のような図面の種類に応じて変更してもよ い。 それは、 部品図だと寸法線を描く領域が広くなる、 組立図だと部品 表を描く領域が広くなる、 等の違いがあるからである。 図面領域最大値 計算部 2 1 0 2は、 余白最小値決定部 2 1 0 1 で決定した余白最小値か ら図面領域の長さの和の最大値を計算する。 図面領域の長さの和の最大 値は、 紙面の長さから余白の最小値の和を引けばよい。 図面サイズが A 0の場合、 横方向の長さは 1 1 8 8であるので、 横方向の図面領域の長 さの和の最大値は、 1 1 8 8— ( 1 0 + 2 0 + 4 0 + 2 0 + 1 0 ) = 1 0 8 8 となる。 同様に各図面サイズで横方向および縦方向の図面領域 の長さの和の最大値を計算すると第 2 4図のようになる。 The drawing size determination unit 1603 has, for example, a configuration as shown in FIG. 21 in detail. The minimum margin determining unit 2101 determines the minimum margin on the drawing. FIG. 22 shows the distribution of drawings. The outermost line 2 2 0 1 is the edge of the paper. The thick line 2 2 0 2 is the drawing frame, the dotted line 2 2 0 3 is the front drawing area, the dotted line 2204 is the side drawing area, and the dotted line 2 2 0 5 Denotes an area for drawing a plan view. Arrows 220, 222, 222, 209 indicate the horizontal direction of the front view or plan view, the horizontal direction of the side view, the vertical direction of the front view or side view, and the plan view, respectively. Represents the vertical direction. The area other than the area where the front view, side view, and plan view are written is blank. The margin 2201 represents a margin between the edge 2201 in the horizontal direction and the frame 222 of the drawing. Margin 2 2 1 1 represents the margin between the horizontal drawing frame 2202 and the front 2 203. The margin 2 2 1 2 represents the margin between the horizontal front view 2 203 and the side view 2 204. The margin 2 2 13 represents the margin between the lateral side view 2 204 and the drawing frame 2 202. Margins 221 4 represents the margin between the frame 2 2 0 2 and the plane of the end 2 2 0 1 in the lateral direction of the drawing: Margin 2 2 1 5, the longitudinal direction of the paper end 2 2 0 1 and drawings Indicates the margin between the boxes 222. The margin 2 2 16 represents a margin between the frame 2 222 of the vertical drawing and the front view 2 203. The margin 2 2 17 represents the margin between the vertical front view 2203 and the top view 2 204. The margin 2 218 represents the margin between the vertical plan view 222 and the drawing frame 222. The margin 2 219 represents the margin between the frame 222 of the vertical drawing and the edge 222 of the paper. Margins are required for dimensions, notes, and bill of materials entry. The minimum value of the margin length is determined by the user in consideration of the dimensions, notes and BOM. In the present embodiment, the minimum value of the margin length is constant irrespective of the size of the drawing, and is determined as shown in the table of FIG. FIG. 23 shows the minimum value of each of the margin 2201 to the margin 2219. It is preferable that the minimum margin length can be specified by the user in advance. Also, it may be changed according to the type of drawing such as a part drawing and an assembly drawing. This is because there is a difference between the drawing area of the component drawing and the drawing area of the assembly drawing. The drawing area maximum value calculation unit 2102 calculates the maximum value of the sum of the lengths of the drawing areas from the minimum margin value determined by the minimum margin value determination unit 2101. The maximum sum of the lengths of the drawing areas can be obtained by subtracting the sum of the minimum margins from the length of the paper. If the drawing size is A0, the horizontal length is 1188, so the maximum value of the sum of the horizontal drawing area lengths is 1188-(10 + 20 + 4) 0 + 2 0 + 1 0) = 1 0 8 8. Similarly, the maximum value of the sum of the lengths of the drawing areas in the horizontal and vertical directions for each drawing size is calculated as shown in Fig. 24.
第 2 4図は、 各図面サイズに対する横方向領域の長さの和の最大値お よび縦方向の図面領域の長さの和の最大値を表わす。 図面領域計算部 2 1 0 3は、 メモリ部 1 0 3に記憶した特徴データの形状のサイズと、 面図方向決定部 1 6 0 1 で決めた面図方向と、 スケール計算部 1 6 0 2 で計算したスケールとから横方向, 縦方向の図面領域の長さの和を計算 にする。 横方向の図面領域の長さの和は、 正面図の横方向 2 2 0 6の長 さと、 側面図の横方向 2 2 0 7の長さの和にスケールをかけたものであ る。 部品 J の場合、 ( 2 2 3. 6 + 2. 0) Χ 1 = 2 2 5. 6 となる。 縦方 向の図面領域の長さの和は、 正面図の縦方向 2 2 0 8の長さと、 平面図 の縱方向 2 2 0 9の長さの和にスケールをかけたものである。 部品 J の 場合、 ( 1 3 0. 0 + 2. 0 ) X 1 = 1 3 2. 0となる。 サイズ参照図面サ ィズ決定部 2 1 04は、 図面領域最大値計算部 2 1 0 2で計算した図面 領域の長さの和の最大値と、 図面領域計算部 2 1 0 3で計算した図面領
域の長さの和とから、 図面サイズを決定する。 図面サイズは、 横方向, 縦方向とも最大値を越えない最も小さなサイズとする。 部品 Jの場合、 横方向の長さ 2 2 5. 6 が最大値を越えないのは A 0〜A 3である。 縦 方向の長さ 1 3 2. 0 が最大値を越えないのは A 0〜A 3である。 よつ て、 図面サイズは、 A 0〜A 3で一番小さい A 3 とする。 決定した図面 サイズは、 図面設定データの一部としてメモリ部 1 0 3に記憶する。 配置位置決定部 1 6 0 4は、 詳細には例えば第 2 5図のような構成に する。 余白サイズの和計算部 2 5 0 1 は、 面図方向決定部 1 6 0 1 で決 めた面図方向と、 スケール決定部 1 6 0 2で決めたスケールと、 図面サ ィズ決定部 1 6 0 3で決めた図面サイズと、 特徴メモリ 1 0 3に記憶し た特徴データの各対象品のサイズとから横方向, 縦方向の余白のサイズ の和を決定する。 余白のサイズの和は、 紙面の長さから、 図面領域の長 さの和を引けばよい。 図面領域の長さの和は、 各対象品のサイズの和に スケールをかけることにより得る。 部品 Jの場合、 図面サイズは A 3な ので横方向の紙面の長さは 4 2 0、 縦方向の紙面の長さは 2 9 7である, 図面領域の長さの和は横方向が 2 2 5. 6 , 縦方向が 1 3 2. 0である。 よって、 余白のサイズの和は、 横方向が 4 2 0— 2 2 5. 6 = 1 9 4.4, 縦方向が 2 9 7 — 1 3 2 = 1 6 5である。 余白サイズ分配部 2 5 0 2は, 余白サイズの和計算部 2 5 0 1 で計算した余白の長さの和から、 余白 2 2 1 0〜余白 2 2 1 9のそれぞれの長さを決定する。 決定方法には、 比率を決めて計算を行う、 あるいはある余白は長さを固定にして残りの 余白は比率を決めて計算するといつた方法がある。 本実施例では、 余白 2 2 1 0 , 余白 2 2 1 4, 余白 2 2 1 5, 余白 2 2 1 9の長さは 1 0で 固定して、 余白 2 2 1 1 : 余白 2 2 1 2 : 余白 2 2 1 3 = 1 : 2 : 1 、 および余白 2 2 1 6 : 余白 2 2 1 7 : 余白 2 2 1 8 = 1 : 2 : 1 となる
ようにして決定する。 部品 Jの場合、 横方向の余白サイズの和が 194.4 なので余白 2 2 1 1 および余白 2 2 1 3の長さは、 ( 1 9 4. 4 — 1 0 X 2 ) X ( 1 4 ) = 4 3. 6 となり、 余白 2 2 1 2の長さは、 ( 1 9 4 , 4 - 1 0 2 ) ( 2 4 ) = 8 7. 2 となる。 一方、 縦方向の余白サイズの 和が 1 6 5なので余白 2 2 1 6および余白 2 2 1 8の長さは、 ( 1 6 5 — 1 0 Χ 2 ) Χ ( 1 Ζ 4 ) = 3 6. 2 5 となり、 余白 2 2 1 7の長さは、 ( 1 6 5 - 1 0 Χ 2 ) Χ ( 2 /4 ) = 7 2. 5 となる。 配置位置中心座標計 算部 2 5 0 3は、 余白サイズ分配部 2 5 0 2で決めた余白の長さから、 部品の配置位置を決定する。 図面上の座標の原点は、 紙面の左下の端と する。 正面図の中心の横方向の座標値は、 (余白 2 2 1 0の長さ) +FIG. 24 shows the maximum value of the sum of the lengths of the horizontal areas and the maximum value of the length of the vertical drawing areas for each drawing size. The drawing area calculation unit 2 103 includes the shape size of the feature data stored in the memory unit 103, the drawing direction determined by the drawing direction determination unit 1601, and the scale calculation unit 1602. Calculate the sum of the length of the drawing area in the horizontal and vertical directions from the scale calculated in. The sum of the lengths of the drawing areas in the horizontal direction is obtained by scaling the sum of the length of the horizontal direction 2206 in the front view and the length of the horizontal direction 2207 in the side view. In the case of part J, (2 23.6 + 2.0) Χ 1 = 2 25.6. The sum of the lengths of the drawing areas in the vertical direction is obtained by applying a scale to the sum of the lengths of the vertical direction in the front view and the vertical direction in the plan view. In the case of part J, (1 30.0 + 2.0) X 1 = 1 32.0. The size reference drawing size determination unit 2104 calculates the maximum value of the sum of the drawing area lengths calculated by the drawing area maximum value calculation unit 2102 and the drawing calculated by the drawing area calculation unit 2103. Territory The drawing size is determined from the sum of the area lengths. The drawing size shall be the smallest size that does not exceed the maximum value in the horizontal and vertical directions. In the case of part J, the horizontal length 2 25.6 does not exceed the maximum value in A0 to A3. It is A0 to A3 that the vertical length 1 32.0 does not exceed the maximum value. Therefore, the drawing size is A3, the smallest of A0 to A3. The determined drawing size is stored in the memory unit 103 as a part of the drawing setting data. The arrangement position determining unit 1604 is configured in detail, for example, as shown in FIG. The margin size sum calculation unit 2501 is composed of the drawing direction determined by the drawing direction determination unit 1601, the scale determined by the scale determination unit 1602, and the drawing size determination unit 1. The sum of the horizontal and vertical margin sizes is determined from the drawing size determined in 603 and the size of each target product of the feature data stored in the feature memory 103. The sum of the margin sizes can be obtained by subtracting the sum of the drawing area lengths from the paper length. The sum of the lengths of the drawing areas is obtained by scaling the sum of the sizes of each target product. For part J, the drawing size is A3, so the length of the paper in the horizontal direction is 420, the length of the paper in the vertical direction is 297, and the sum of the lengths of the drawing areas is 2 in the horizontal direction. 25.6, the vertical direction is 132.0. Therefore, the sum of the margin sizes is 4 2 0-2 25.6 = 1 94.4 in the horizontal direction and 2 9 7-1 3 2 = 1 6 5 in the vertical direction. The margin size distribution unit 2502 determines the length of each of the margin 2210 to the margin 2219 from the sum of the margin lengths calculated by the margin size calculation unit 2501. . There is a method of determining the ratio by calculating the ratio, or by calculating a certain margin with a fixed length and the remaining margin by determining the ratio. In this embodiment, the length of the margin 2 2 1 0, the margin 2 2 14, the margin 2 2 15, and the margin 2 2 19 are fixed at 10 and the margin 2 2 1 1: the margin 2 2 1 2 : Margin 2 2 1 3 = 1: 2: 1 and Margin 2 2 16: Margin 2 2 1 7: Margin 2 2 1 8 = 1: 2: 1 Is determined in this way. In the case of part J, the sum of the margins in the horizontal direction is 194.4, so the lengths of margin 2 2 1 1 and margin 2 2 13 are (19.4.4 — 10X2) X (14) = 4 It becomes 3.6, and the length of the margin 2 2 12 is (194, 4-102) (24) = 87.2. On the other hand, since the sum of the vertical margin sizes is 16 5, the lengths of the margin 2 2 16 and the margin 2 2 18 are (1 65-1 0 Χ 2) Χ (1 Ζ 4) = 3 6. 2 5, and the length of the margin 2 2 17 is (1 65-1 0 Χ 2) Χ (2/4) = 72.5. The arrangement position center coordinate calculation unit 2503 determines the arrangement position of the component based on the margin length determined by the margin size distribution unit 2502. The origin of the coordinates on the drawing is the lower left end of the paper. The horizontal coordinate value of the center of the front view is (margin 2 210 length) +
(余白 2 2 1 1 の長さ) + (正面図の横方向 2 2 0 6の長さ) / 2 と決 める。 一方、 正面図の中心の縦方向の座標値は、 (余白 2 2 1 5の長さ) + (余白 2 2 1 6の長さ) + (正面図の縦方向 2 2 0 8の長さ) ノ 2 と 決める。 側面図の中心の横方向の座標値は、 (余白 2 2 1 0の長さ) +(Length of the margin 2 2 1 1) + (Length of the horizontal direction 2 206 in the front view) / 2. On the other hand, the vertical coordinate value of the center of the front view is (the length of the margin 2 2 15) + (the length of the margin 2 2 16) + (the length of the vertical direction 2 208 of the front view) No. 2 The horizontal coordinate value of the center of the side view is (the length of the margin 2 210) +
(余白 2 2 1 1 の長さ) + (正面図の横方向 〗 9 0 6の長さ) + (余白 2 2 1 2の長さ) + (側面図の横方向 2 2 0 7の長さ) ノ 2 と決める。 側面図の中心の縦方向の座標値は、 正面図の中心の縦方向の座標値と同 じと決める。 平面図の中心の横方向の座標値は、 正面図の中心の横方向 の座標値と同じと決める。 平面図の中心の縦方向の座標値は、 (余白(Length of the margin 2 2 1 1) + (Length of the horizontal direction of the front view〗 9 06) + (Length of the margin 2 2 1 2) + (Length of the lateral direction 2 2 0 7 of the side view) No. 2 The vertical coordinate value of the center of the side view is determined to be the same as the vertical coordinate value of the center of the front view. The horizontal coordinate value of the center of the plan is determined to be the same as the horizontal coordinate of the center of the front view. The vertical coordinate value of the center of the floor plan is (Margin
2 2 1 5の長さ) + (余白 2 2 1 6の長さ) + (正面図の縦方向 1 9 0 8の 長さ) + (余白 2 2 1 7の長さ) + (平面図の縦方向 2 2 0 9の長さ) 2 と決める。 これらの式によって正面図, 側面図, 平面図の中心の座 標を求め、 3次元上の中心座標と共に図面設定データの一部としてメモ リ部 1 0 3に記憶する。 部品 J の場合、 正面図の中心の横方向の座標値 は、 1 0 + 4 3. 6 + 2 2 3. 6 / 2 = 1 6 5. 4 と決める c 正面図の中
心の縦方向の座標値は、 1 0 + 3 6. 2 5 + 1 3 0 / 2 = 1 1 1 . 2 5 と 決める。 側面図の中心の横方向の座標値は、 1 0 + 4 3. 6 + 2 2 3. 6 + 8 7. 2 + 2 / 2 = 2 6 5.4 と決める。 側面図の中心の縦方向の座標 値は、 正面図の中心の縦方向の座標値と同じで 1 1 1. 2 5 と決める。 平面図の中心の横方向の座標値は、 正面図の中心の横方向の座標値と同 じで 1 6 5.4 と決める。 平面図の中心の縦方向の座標値は、 1 0 + 3 6. 2 5 + 1 3 0 + 7 2. 5 + 2 / 2 = 2 4 9. 7 5 と決める。 決定し た正面図, 側面図, 平面図の中心座標は、 図面設定データの一部と して メモリ部 1 0 3に記憶する。 中心座標読み込み部 2 5 0 4は、 メモリ部 に記憶した特徴データの形状の中心座標を読み込み、 図面設定データの 一部としてメモリ部 1 0 3に記憶する。 (2 2 15 length) + (Margin 2 2 16 length) + (Vertical 1 908 length in front view) + (Margin 2 2 17 length) + (Plan view length) Length in the vertical direction 2 209) 2 The coordinates of the center of the front view, side view, and plan view are obtained using these equations, and stored in the memory unit 103 together with the three-dimensional center coordinates as part of the drawing setting data. For parts J, lateral coordinate values of the center of the front view, in the c front view decide 1 0 + 4 3.6 + 2 2 3.6 / 2 = 1 6 5.4 The vertical coordinate value of the heart is determined as 10 + 3 6.25 + 13 0/2 = 1 1.1.25. The horizontal coordinate value of the center of the side view is determined as 10 + 43.6 + 2 23.6 + 87.2 + 2/2 = 265.4. The vertical coordinate value of the center of the side view is the same as the vertical coordinate value of the center of the front view. The horizontal coordinate value of the center of the floor plan is the same as the horizontal coordinate value of the center of the front view, and is determined to be 165.4. The vertical coordinate value of the center of the plan is determined as 10 + 36.25 + 13.0 + 72.5 + 2/2 = 24.99.7. The center coordinates of the determined front view, side view, and plan view are stored in the memory unit 103 as a part of the drawing setting data. The center coordinate reading unit 2504 reads the center coordinates of the shape of the feature data stored in the memory unit, and stores it in the memory unit 103 as a part of the drawing setting data.
第 2 6図は、 メモリ部 1 0 3に記憶した部品 Jの図面設定データであ る。 2 6 0 1 は対象品の名称を表わす。 2 6 0 2は図面設定データの種 類を表わす。 2 6 0 3は図面設定データの値を表わす。 FIG. 26 shows the drawing setting data of the part J stored in the memory section 103. 2601 represents the name of the target product. Reference numeral 2602 denotes the type of drawing setting data. Reference numeral 2603 denotes the value of the drawing setting data.
図面作成部 1 0 6は、 メモリ部 1 0 3に記憶した形状データ と対象品 デ一タと図面設定データとから各対象品の図面デ一タを作成し、 メモリ 部 1 0 3に記憶する。 第 2 7図は部品 J の図面データの一部である。 2 7 0 1 は対象品の名称、 2 7 0 2は面図の種類、 2 7 0 3は図面を構 成する線分等の要素のデータである。 図面データは、 図面を構成する線 分等の要素のデータで表わする。 The drawing creating unit 106 creates drawing data for each target product from the shape data, target product data, and drawing setting data stored in the memory unit 103, and stores the drawing data in the memory unit 103. . Figure 27 shows part of the drawing data for part J. 2701 is the name of the target product, 2702 is the type of the plan, and 2703 is the data of elements such as line segments that make up the drawing. Drawing data is represented by data of elements such as lines constituting the drawing.
出力部 1 0 7 は、 メモリ部 1 0 3に記憶した図面データを図として出 力する。 第 2 8図は、 部品 Jの出力図 2 8 0 1 を表わす。 なお、 出力部 1 0 7は、 図面作成部 1 0 6で作成した図面データ を直接図として出力 することもある。 The output unit 107 outputs the drawing data stored in the memory unit 103 as a figure. FIG. 280 shows the output diagram 280 1 of part J. Note that the output unit 107 may output the drawing data created by the drawing creating unit 106 directly as a drawing.
また、 第 2 9図は本発明の図面作成装置に係る別の実施例を示す構成
図である。 入力部 1 0 1 は、 形状データの入力を行う。 メモリ部 1 0 3 は、 入力部 1 0 1 で入力した形状データと、 特徴データと図面設定デー タと図面データを記憶する。 特徴抽出部 1 0 4は、 メモリ部 1 0 3に記 憶した形状データから特徴データを抽出して、 メモリ部 1 0 3に記憶す る。 図面設定部 1 0 5は、 メモリ部 1 0 3に記憶した特徴データから図 面設定データを設定して、 メモリ部 1 0 3に記憶する。 図面作成部 1 06 は、 メモリ部 1 0 3に記憶した形状データと図面設定データとから図面 データを作成して、 メモリ部 1 0 3に記憶する。 出力部 1 0 7は、 メモ リ部 1 0 3に記憶した図面データ を図として出力する。 FIG. 29 is a diagram showing another embodiment of the drawing creation apparatus of the present invention. FIG. The input unit 101 inputs shape data. The memory unit 103 stores the shape data, feature data, drawing setting data, and drawing data input by the input unit 101. The feature extracting unit 104 extracts feature data from the shape data stored in the memory unit 103 and stores the feature data in the memory unit 103. The drawing setting unit 105 sets drawing setting data from the feature data stored in the memory unit 103 and stores the drawing setting data in the memory unit 103. The drawing creation unit 106 creates drawing data from the shape data and the drawing setting data stored in the memory unit 103, and stores the drawing data in the memory unit 103. The output unit 107 outputs the drawing data stored in the memory unit 103 as a diagram.
また、 第 3 0図は本発明に係る図面作成装置の別の構成例を示すもの である。 入力部 1 0 1 は、 3次元の形状データと、 部品構成データと、 指定データとを入力する。 対象品抽出部 1 0 2は、 入力部 1 0 1 で入力 した部品構成データと、 指定データ とから図面化の対象となる製品およ び部組品および部品を旌対象品データを抽出する。 メモリ部 1 0 3は、 入力部 1 0 1 で入力した形状データ と、 対象品抽出部 1 0 2で抽出した 対象品データと、 特徴データと、 図面設定データと、 図面データ とを記 憶する。 特徴抽出部 1 0 4は、 メモリ部 1 0 3に記憶した形状データ と 対象品データとから各図面作成対象品の特徴データを抽出し、 メモリ部 1 0 3に記憶する。 図面設定部 1 0 5は、 メモリ部 1 0 3に記憶した特 徴データから各図面作成対象品の図面設定データを設定し、 メモリ部 1 0 3に記憶する。 図面作成部 1 0 6は、 メモリ部 1 0 3に記憶した形 状データ と対象品データ と図面設定データ とから図面データ を作成し、 メモリ部 1 0 3に記憶する。 出力部 1 0 7は、 ディスプレイ, プロッタ 等の出力装置からなり、 メモリ部 1 0 3に記憶した図面データ を図と し て出力する。 図面設定修正部 3 1 0 8は、 メモリ部 1 0 3に記憶した図
面設定データの修正を入力し、 メモリ部 1 0 3に記憶する。 この図面設 定データの修正は、 すべての対象品のすべての図面設定データの修正は せず、 変更したい値だけ修正すればよい。 また、 正面図, 側面図, 平面 図以外に図が必要な場合は追加することができる。 FIG. 30 shows another example of the configuration of the drawing creating apparatus according to the present invention. The input unit 101 inputs three-dimensional shape data, component configuration data, and designated data. The target product extraction unit 102 extracts target product data for products, assemblies, and components to be drawn from the component configuration data input at the input unit 101 and the designated data. The memory unit 103 stores the shape data input by the input unit 101, the target product data extracted by the target product extraction unit 102, the feature data, the drawing setting data, and the drawing data. . The feature extraction unit 104 extracts feature data of each drawing target product from the shape data and target product data stored in the memory unit 103, and stores the feature data in the memory unit 103. The drawing setting unit 105 sets the drawing setting data for each drawing object from the characteristic data stored in the memory unit 103, and stores the drawing setting data in the memory unit 103. The drawing creation unit 106 creates drawing data from the shape data, target product data, and drawing setting data stored in the memory unit 103, and stores the drawing data in the memory unit 103. The output unit 107 includes an output device such as a display or a plotter, and outputs drawing data stored in the memory unit 103 as a diagram. The drawing setting correction section 3108 stores the figure stored in the memory section 103. The correction of the surface setting data is input and stored in the memory unit 103. In this modification of the drawing setting data, not all the drawing setting data of all the target products, but only the values to be changed. If a figure other than the front view, side view, and plan view is required, it can be added.
第 3 1 図は本発明の図面作成方法に係る実施例である。 入力ステップ 3 2 0 1 は、 形状データ と部品構成データと指定データ とを入力する。 形状記憶ステツプ 3 2 0 2は、 入力ステップ 3 2 0 1 で入力した形状デ ータ を記' する。 対象品抽出ステップ 3 2 0 3は、 入力ステップ 320 1で 入力した部品構成データと指定データとから対象品データを抽出する。 対象品記憶ステツプ 3 2 0 4は、 対象品抽出ステツプ 3 2 0 3で抽出し た対象品データを記憶する。 特徴抽出ステップ 3 2 0 5は、 形状記憶ス テツプ 3 2 0 2に記憶した形状データと対象品記憶ステップ 3 2 0 4に 記憶した対象品データとから各図面作成対象品の特徴データを抽出する ( 特徴記憶ステップ 3 2 0 6は、 特徴抽出ステップ 3 2 0 5で抽出した各 図面作成対象品の特徴データを記憶する。 図面設定ステップ 3 2 0 7は, 特徴記憶ステップ 3 2 0 6に記憶した特徴データから各対象品の図面設 定データを設定する。 図面設定記憶ステップ 3 2 0 8は、 図面設定ステ ップ 3 2 0 7で設定した図面設定データを記憶する。 図面作成ステップ 3 2 0 9は、 形状記憶ステップ 3 2 0 2に記憶した形状データ と対象品 記憶ステツプ 3 2 0 4に記憶した対象品データ と図面設定記憶ステツプ 3 2 0 8に記憶した図面設定データとから各対象品の図面データを作成 する。 図面記憶ステップ 3 2 1 0は、 図面作成ステップ 3 2 0 9で作成 した図面データを記憶する。 出力ステップ 3 2 1 1 は、 図面記憶ステツ プ 3 2 1 0に記憶した図面データを図と して出力する。 なお、 出力ステ ップ 3 2 1 1 は、 図面作成ステップ 3 2 0 9で作成した図面データ を直
接図として出力することもできる。 またステップ 3 2 0 3及び 3 2 0 4 は必要に応じて省略してもよい。 FIG. 31 shows an embodiment according to the drawing creating method of the present invention. The input step 3201 inputs the shape data, the component configuration data, and the designated data. The shape memory step 3202 records the shape data input in the input step 3201. The target product extraction step 3203 extracts target product data from the component configuration data and the designated data input in the input step 3201. The target product storage step 3204 stores the target product data extracted in the target product extraction step 3203. The feature extraction step 3205 extracts the feature data of each drawing creation target product from the shape data stored in the shape memory step 3202 and the target product data stored in the target product storage step 3204. (The feature storage step 3206 stores the feature data of each drawing object extracted in the feature extraction step 3205. The drawing setting step 3207 is stored in the feature storage step 3206. The drawing setting data of each target product is set from the feature data obtained in the drawing setting storing step 3202 stores the drawing setting data set in the drawing setting step 322. Drawing creation step 3 2 Reference numeral 9 denotes each object based on the shape data stored in the shape storage step 3202, the target product data stored in the storage step 3204, and the drawing setting data stored in the drawing setting storage step 3208. Create drawing data for the product. The storage step 3210 stores the drawing data created in the drawing creation step 3209. The output step 3221 stores the drawing data stored in the drawing storage step 3210 as a diagram. The output step 3 2 1 1 directly outputs the drawing data created in the drawing creation step 3 2 9. It can also be output as a drawing. Steps 3203 and 3204 may be omitted as necessary.
また、 第 3 2図は本発明の図面作成方法に係る別の実施例である。 入 力ステップ 3 2 0 1 は、 形状データと部品構成データと指定データとを 入力する。 形状記憶ステップ 3 2 0 2は、 入力ステップ 3 2 0 1 で入力 した形状データを記憶する。 対象品抽出ステップ 3 2 ◦ 3は、 入力ステ ップ 3 2 0 1 で入力した部品構成データ と指定データとから対象品デー タ を抽出する。 対象品記憶ステップ 3 2 0 4は、 対象品抽出ステップ 3 2 0 3で抽出した対象品デ一タ を記憶する。 特徴抽出ステツプ 3205は, 形状記憶ステップ 3 2 0 2に記憶した形状データと対象品記憶ステップ 3 2 0 4に記憶した対象品データとから各図面作成対象品の特徴データ を抽出する。 特徴記憶ステツプ 3 2 0 6は、 特徴抽出ステツプ 3 2 0 5 で抽出した各図面作成対象品の特徴データを記憶する。 図面設定ステツ プ 3 2 0 7は、 特徴記憶ステップ 3 2 0 6に記憶した特徴データから各 対象品の図面設定データを設定する。 図面設定修正ステップ 3 5 1 2は, 図面設定ステップ 3 2 0 7で設定した図面設定データの修正を入力する t この図面設定データの修正は、 すべての対象品のすべての図面設定デー タの修正はせず、 変更したい値だけ修正すればよい。 また、 正面図, 側 面図, 平面図以外に図が必要な場合は追加することができる。 図面設定 記憶ステップ 3 2 0 8は、 図面設定部 3 2 0 7で設定および図面設定修 正ステップ 3 8 1 1 で修正した図面設定データ を記憶する。 図面作成ス テツプ 3 2 0 9は、 形状記憶ステツプ 3 2 0 2に記憶した形状データと 対象品記憶ステップ 3 2 0 4に記憶した対象品データと図面設定記憶ス テツプ 3 2 0 8に記憶した図面設定データ とから各対象品の図面データ を作成する。 図面記憶ステツプ 3 2 1 0は、 図面作成ステツプ 3 2 0 9
で作成した図面データを記憶する。 出力ステップ 3 2 1 1 は、 図面記憶 ステップ 3 2 1 0に記憶した図面データを図として出力する。 FIG. 32 shows another embodiment according to the drawing creating method of the present invention. In the input step 3201, shape data, component configuration data, and designated data are input. The shape storage step 3202 stores the shape data input in the input step 3201. The target product extraction step 3 2 ◦ 3 extracts target product data from the component configuration data and the designated data input in the input step 3 201. The target product storage step 3204 stores the target product data extracted in the target product extraction step 3203. The feature extraction step 3205 extracts feature data of each drawing creation target product from the shape data stored in the shape storage step 3202 and the target product data stored in the target product storage step 3204. The feature storage step 3206 stores the feature data of each drawing creation object extracted in the feature extraction step 3205. The drawing setting step 3207 sets the drawing setting data of each target product from the feature data stored in the feature storing step 3206. In the drawing setting correction step 3 5 1 2, enter the correction of the drawing setting data set in the drawing setting step 3 2 07 t This correction of the drawing setting data will correct all the drawing setting data of all target products Instead, just modify the value you want to change. If a figure other than the front view, side view and plan view is required, it can be added. The drawing setting storage step 3208 stores the drawing setting data set in the drawing setting section 3207 and the drawing setting data corrected in the drawing setting correction step 3811. The drawing creation step 3209 was performed by storing the shape data stored in the shape memory step 3202, the target product data stored in the target product storage step 3204, and the drawing setting storage step 3208. Create drawing data for each target product from drawing setting data. The drawing memory step 3 2 10 is the drawing creation step 3 2 9 Store the drawing data created in. The output step 3221 outputs the drawing data stored in the drawing storage step 3210 as a drawing.
形状の特徴データから図面設定データを作成することによリ、 各対象 品単位の図面設定データの入力無しに一括して全対象品の図面を作成す ることができる。 また、 完全に希望する配置の図面ができなくても、 一 部の図面設定データを変更するだけで希望する配置の図面を得ることが できる. By creating the drawing setting data from the feature data of the shape, it is possible to create drawings for all target products at once without inputting drawing setting data for each target product. In addition, even if the drawing of the desired layout cannot be made completely, the drawing of the desired layout can be obtained only by changing a part of the drawing setting data.
特に組立品のデータを対象とする場合、 複数の部品図, 複数の部組品 図, 全体組立図を図面設定データの入力無しに一括して作成することが できる。
In particular, when targeting assembly data, multiple part drawings, multiple assembly drawings, and whole assembly drawings can be created collectively without inputting drawing setting data.
Claims
1 . 3次元形状データに基づいて該 3次元形状を平面に投影した 2次元 の図面を作成する図面作成装置において、 1. In a drawing creating apparatus for creating a two-dimensional drawing in which the three-dimensional shape is projected on a plane based on the three-dimensional shape data,
前記 3次元の形状データを記憶する記憶手段と、 Storage means for storing the three-dimensional shape data;
前記記憶手段に記憶された 3次元形状の形状特徴に基づいて、 該 3次 元形状を投影する平面の基礎となる座標方向を生成する手段と、 前記座標方向を生成する手段にて生成された座標方向に基づく平面に 前記 3次^形状を投影して 2次元の図面を生成する図面作成手段とを有 することを特徴とする図面作成装置。 Means for generating a coordinate direction serving as a basis for a plane on which the three-dimensional shape is projected, based on the shape characteristics of the three-dimensional shape stored in the storage means; and means for generating the coordinate direction. A drawing creation device, comprising: drawing creation means for projecting the cubic shape onto a plane based on a coordinate direction to generate a two-dimensional drawing.
2 . 前記座標方向を生成する手段は、 前記 3次元形状の直線線分方向及 び円弧の軸方向のうちの少なく とも何れか一つの方向の集計結果に基づ いて、 前記座標方向を生成することを特徴とする特許請求の範囲第 1項 記載の図面作成装置。 2. The means for generating the coordinate direction generates the coordinate direction based on a result of aggregation of at least one of the direction of the straight line segment of the three-dimensional shape and the axial direction of the arc. The drawing creation device according to claim 1, characterized in that:
3 . 前記座標方向を生成する手段にて生成された座標方向に基づく平面 に前記 3次元形状を投影して 2次元の図面を生成する図面作成手段は、 前記座標方向における X Y Zのそれぞれの方向の 3次元形状が持つ長さ を比較する手段を有し、 当該比較結果に基づいて正面図の投影方向を決 定して 2次元の図面を生成することを特徴とする請求項 2記載の図面作 成装置。 3. The drawing creating means for projecting the three-dimensional shape onto a plane based on the coordinate direction generated by the means for generating the coordinate direction to generate a two-dimensional drawing includes: 3. The drawing creation method according to claim 2, further comprising means for comparing lengths of the three-dimensional shape, and determining a projection direction of the front view based on the comparison result to generate a two-dimensional drawing. Equipment.
4 . 3次元形状データに基づいて該 3次元形状を平面に投影した 2次元 の図面を作成する図面作成装置において、 4. A drawing creation apparatus that creates a two-dimensional drawing by projecting the three-dimensional shape onto a plane based on the three-dimensional shape data,
製品の 3次元の形状データを記憶する記憶手段と、 Storage means for storing three-dimensional shape data of the product;
前記製品の製品全体, 部組品及び部品の単位で図面作成の対象を指定 する指定手段と、 Designation means for designating a drawing target in units of the whole product, a subassembly and a part of the product;
前記指定手段で指定された製品全体, 部組品及び部品の単位ごとに、
前記記憶手段に記憶された 3次元形状から、 製品全体, 部組品及び部品 の単位の形状特徴を抽出して、 既形状特徵に基づいて 3次元形状を投影 する平面の基礎となる座標方向を指定された製品全体, 部組品または部 品の単位ごとに生成する手段と、 For each unit of the whole product, assembly and parts specified by the specification means, From the three-dimensional shape stored in the storage means, the shape characteristics of the whole product, assembly, and unit are extracted, and the coordinate direction as the basis of the plane on which the three-dimensional shape is projected based on the existing shape characteristics is determined. Means for generating for each specified product, unit, or unit of component;
前記座標方向を生成する手段にて生成された座標方向に基づく平面に 前記 3次元形状を投影して、 指定された製品全体, 部組品または部品の 単位ごとに 2次元の図面を生成する図面作成手段とを有することを特徴 とする図面作成装置。 A drawing for projecting the three-dimensional shape onto a plane based on the coordinate direction generated by the coordinate direction generating means and generating a two-dimensional drawing for each specified product, unit, or unit of a component A drawing creation device, comprising: a creation means.
5 . 3次元形状データに基づいて該 3次元形状を平面に投影した 2次元 の図面を作成する図面作成装置において、 5. A drawing creating apparatus that creates a two-dimensional drawing by projecting the three-dimensional shape onto a plane based on the three-dimensional shape data,
前記 3次元の形状データを記憶する記憶手段と、 Storage means for storing the three-dimensional shape data;
前記記憶手段に記憶された 3次元形状の形状特徴に基づいて、 前記 2 次元の図面上における前記形状の配置位置を生成する手段と、 Means for generating an arrangement position of the shape on the two-dimensional drawing based on the shape characteristic of the three-dimensional shape stored in the storage means;
前記配置位置を生成する手段にて生成された配置位置に前記 3次元形 状を投影した形状を生成する図面作成手段とを有することを特徴とする 図面作成装置。 A drawing creation device, comprising: a drawing creation unit that creates a shape obtained by projecting the three-dimensional shape onto the placement position generated by the placement position generation unit.
6 . 3次元形状デ一タに基づいて該 3次元形状を平面に投影した 2次元 の図面を作成する図面作成方法において、 6. A drawing creation method for creating a two-dimensional drawing by projecting the three-dimensional shape onto a plane based on the three-dimensional shape data,
前記 3次元の形状データを記憶し、 Storing the three-dimensional shape data,
記憶した 3次元形状の形状特徴を抽出し、 抽出した形状特徴に基づい て、 該 3次元形状を投影する平面の基礎となる座標方向を生成し、 前記座標方向に基づく平面に前記 3次元形状を投影して 2次元の図面 を生成することを特徴とする図面作成方法。 A shape feature of the stored three-dimensional shape is extracted, a coordinate direction serving as a basis of a plane on which the three-dimensional shape is projected is generated based on the extracted shape feature, and the three-dimensional shape is formed on a plane based on the coordinate direction. A drawing creation method, comprising: projecting to generate a two-dimensional drawing.
7 . 前記座標方向を生成する際に、 前記 3次元形状の直線線分方向及び 円弧の軸方向のうちの少なく とも何れか一つの方向の集計結果を前記形
状特徴として抽出して、 前記座標方向を生成することを特徴とする特許 請求の範囲第 6項記載の図面作成方法。 7. When generating the coordinate direction, the aggregation result of at least one of the straight line segment direction and the arc axis direction of the three-dimensional shape is calculated in the form 7. The drawing creation method according to claim 6, wherein the coordinate direction is generated by extracting the coordinate direction.
8 . 前記座標方向を生成した後、 さらに、 前記座標方向における X Y Z のそれぞれの方向の 3次元形状が持つ長さを比較し、 当該比較結果に基 づいて正面図の投影方向を決定して 2次元の図面を生成することを特徴 とする請求項 7記載の図面作成方法。 8. After generating the coordinate directions, further, compare the lengths of the three-dimensional shapes in the respective XYZ directions in the coordinate directions, and determine the projection direction of the front view based on the comparison result. The drawing creation method according to claim 7, wherein a two-dimensional drawing is generated.
9 . 3次元形状データに基づいて該 3次元形状を平面に投影した 2次元 の図面を作成する図面作成方法において、 9. A drawing creation method for creating a two-dimensional drawing in which the three-dimensional shape is projected on a plane based on the three-dimensional shape data,
製品の 3次元の形状データ を記憶し、 Stores 3D shape data of products,
前記製品の製品全体, 部組品及び部品の単位で図面作成の対象を指定 し、 Designate the target of drawing creation for the whole product, assembly and parts of the product,
指定された製品全体, 部組品及び部品の単位ごとに、 前記記憶手段に 記憶された 3次元形状から、 製品全体, 部組品及び部品の単位の形状特 徴を抽出し、 既形状特徴に基づいて 3次元形状を投影する平面の基礎と なる座標方向を指定された製品全体、 部組品または部品の単位ごとに生 成し、 For each specified unit of the entire product, assembly, and part, the shape characteristics of the entire product, assembly, and unit are extracted from the three-dimensional shape stored in the storage unit, and the extracted features are converted into the existing shape features. Generates the coordinate direction that is the basis of the plane that projects the three-dimensional shape based on the specified product as a whole, unit, or unit,
生成された座標方向に基づく平面に前記 3次元形状を投影して、 指定 された製品全体、 部組品または部品の単位ごとに 2次元の図面を生成す ることを有することを特徴とする図面作成方法。 Projecting the three-dimensional shape onto a plane based on the generated coordinate direction, and generating a two-dimensional drawing for each specified product, unit, or unit of parts. How to make.
1 0 . 3次元形状データに基づいて該 3次元形状を平面に投影した 2次 元の図面を作成する図面作成方法において、 10. In a drawing creation method for creating a two-dimensional drawing in which the three-dimensional shape is projected on a plane based on the three-dimensional shape data,
前記 3次元の形状データを記憶し、 Storing the three-dimensional shape data,
記憶された 3次元形状の形状特徴を抽出し、 抽出した形状特徴に基づ いて、 前記 2次元の図面上における前記形状の配置位置を生成し、 生成した配置位置に前記 3次元形状を投影した形状を配置することを
特徴とする図面作成装置。
The shape features of the stored three-dimensional shape are extracted, the arrangement position of the shape on the two-dimensional drawing is generated based on the extracted shape features, and the three-dimensional shape is projected on the generated arrangement position. To place the shape Characteristic drawing creation device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1995/001993 WO1997013221A1 (en) | 1995-09-29 | 1995-09-29 | Drawing device |
JP51412997A JP3533222B2 (en) | 1995-09-29 | 1995-09-29 | Drawing creation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1995/001993 WO1997013221A1 (en) | 1995-09-29 | 1995-09-29 | Drawing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997013221A1 true WO1997013221A1 (en) | 1997-04-10 |
Family
ID=14126338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1995/001993 WO1997013221A1 (en) | 1995-09-29 | 1995-09-29 | Drawing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3533222B2 (en) |
WO (1) | WO1997013221A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002366967A (en) * | 2001-06-06 | 2002-12-20 | Ichiro Morita | Method for providing three-dimensional raw material image, providing system and providing program and storage medium with providing program stored therein |
JP2008065586A (en) * | 2006-09-07 | 2008-03-21 | Ricoh Co Ltd | Parts identification image creation device, program, and storage medium |
CN110020490A (en) * | 2019-04-16 | 2019-07-16 | 北京磁浮交通发展有限公司 | A kind of section of track drawing practice and device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5899087A (en) * | 1981-12-09 | 1983-06-13 | Matsushita Electric Ind Co Ltd | Picture generating device |
JPH01114990A (en) * | 1987-10-28 | 1989-05-08 | Daikin Ind Ltd | Texture mapping device |
JPH0431971A (en) * | 1990-05-29 | 1992-02-04 | Nec Corp | Three-dimensional shape display system |
-
1995
- 1995-09-29 JP JP51412997A patent/JP3533222B2/en not_active Expired - Fee Related
- 1995-09-29 WO PCT/JP1995/001993 patent/WO1997013221A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5899087A (en) * | 1981-12-09 | 1983-06-13 | Matsushita Electric Ind Co Ltd | Picture generating device |
JPH01114990A (en) * | 1987-10-28 | 1989-05-08 | Daikin Ind Ltd | Texture mapping device |
JPH0431971A (en) * | 1990-05-29 | 1992-02-04 | Nec Corp | Three-dimensional shape display system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002366967A (en) * | 2001-06-06 | 2002-12-20 | Ichiro Morita | Method for providing three-dimensional raw material image, providing system and providing program and storage medium with providing program stored therein |
JP4671213B2 (en) * | 2001-06-06 | 2011-04-13 | 一郎 森田 | 3D material image providing method, providing system, providing program, and storage medium storing provided program |
JP2008065586A (en) * | 2006-09-07 | 2008-03-21 | Ricoh Co Ltd | Parts identification image creation device, program, and storage medium |
CN110020490A (en) * | 2019-04-16 | 2019-07-16 | 北京磁浮交通发展有限公司 | A kind of section of track drawing practice and device |
CN110020490B (en) * | 2019-04-16 | 2022-12-16 | 北京磁浮交通发展有限公司 | Track panel drawing method and device |
Also Published As
Publication number | Publication date |
---|---|
JP3533222B2 (en) | 2004-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Younes | Shapes and diffeomorphisms | |
JP5349127B2 (en) | Layout design support system, control method thereof, and control program | |
EP2381421A2 (en) | Automatic generation of 3D models from packaged goods product images | |
Poranne et al. | Provably good planar mappings | |
US8477133B2 (en) | Method and apparatus for generating three-dimensional finite element mesh | |
CN114820979B (en) | Processing method and device of three-dimensional grid model and storage medium | |
US20090189899A1 (en) | Image processing apparatus, image processing method, and storage medium storing a program for causing an image processing apparatus to execute an image processing method | |
JP2008117113A (en) | Image forming device and method, and image forming program | |
JPH0561962A (en) | Environmental model generating device for product evaluation | |
WO1997013221A1 (en) | Drawing device | |
JP3812547B2 (en) | Drawing creation device | |
EP4046004A1 (en) | Generating a 3d model of a plant layout | |
WO2004053741A1 (en) | Method of calculating intersecions between triangle and line segment and progam therefor | |
Angelidis et al. | Space deformations and their application to shape modeling | |
Ono et al. | Free-form deformation with automatically generated multiresolution lattices | |
US20010013867A1 (en) | Object search method and object search system | |
JP3254276B2 (en) | Pasting shape calculation device | |
CN116433877B (en) | Method for determining object model placement surface, electronic device and storage medium | |
JP2005514675A (en) | Method and apparatus for generating Mth order shapes in N-dimensional space | |
JP3723875B2 (en) | Model image replacement method on a two-dimensional image, model image replacement apparatus therefor, and computer-readable program recording medium | |
JP3099620B2 (en) | How to draw 3D drawings | |
Rodrigues et al. | ECLES: A general method for local editing of parameters with linear constraints | |
JP3285241B2 (en) | Storage shape generation device | |
JPH11144093A (en) | Method and device for analytic mesh generation | |
JP2755398B2 (en) | Point inside / outside judgment processing method for solid model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |