WO1997009781A1 - Dispositif de filtrage avec retour de decision, dans le domaine frequentiel - Google Patents

Dispositif de filtrage avec retour de decision, dans le domaine frequentiel Download PDF

Info

Publication number
WO1997009781A1
WO1997009781A1 PCT/FR1996/001377 FR9601377W WO9709781A1 WO 1997009781 A1 WO1997009781 A1 WO 1997009781A1 FR 9601377 W FR9601377 W FR 9601377W WO 9709781 A1 WO9709781 A1 WO 9709781A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
blocks
symbols
decisions
feedback
Prior art date
Application number
PCT/FR1996/001377
Other languages
English (en)
Inventor
Constantinos Berberidis
Jacques Palicot
Original Assignee
France Telecom
Telediffusion De France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom, Telediffusion De France filed Critical France Telecom
Priority to EP96931092A priority Critical patent/EP0848866B1/fr
Priority to DE69602962T priority patent/DE69602962T2/de
Priority to US09/043,142 priority patent/US6052702A/en
Publication of WO1997009781A1 publication Critical patent/WO1997009781A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0211Frequency selective networks using specific transformation algorithms, e.g. WALSH functions, Fermat transforms, Mersenne transforms, polynomial transforms, Hilbert transforms
    • H03H17/0213Frequency domain filters using Fourier transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03522Frequency domain

Definitions

  • the invention relates to a device for filtering a digital signal with decision feedback, in the frequency domain.
  • the invention finds an application for example in the cancellation of echoes generated by propagation in multiple paths, during a hertzian transmission, in particular of a digital signal.
  • a problem of great importance in terrestrial transmission systems is the signal distortion due to the phenomenon of multipath propagation.
  • the reflection of a signal transmitted on dwellings, on a relief or on different layers of the atmosphere induces the reception of multiple signals, or echoes, instead of a single signal.
  • the unwanted echoes received are generally out of phase, temporally offset and attenuated amplitudes compared to the original signal (all this in a time-varying manner depending on the path followed). These phenomena depending on their variation mainly from meteorological phenomena, they evolve slowly for a fixed reception system.
  • the echoes received induce distortion of the symbols received. This distortion results concretely by a phenomenon of overlapping of the symbols, also called interference between symbols. In order to ensure high quality reception, the resulting symbol interference should be eliminated or significantly reduced.
  • the impulse response of a multipath channel spans a typical time interval of a few tens of microseconds. This interval, which is a function of the frequency used, typically corresponds to a few hundred successive symbols in digital television broadcasting systems.
  • One of the symbols received corresponds to a symbol (x (n)) actually sent at the origin, and the other symbols (x (n + i), x (n - j)) are parasitic symbols ( or echoes) resulting from multipath propagation.
  • a processing solution involves the use of digital filters of high order, that is to say with a large number of corrective coefficients, in reception, in order to eliminate the parasitic symbols (and to produce, via a decision-making body, a sequence of decisions actually corresponding to the data sent).
  • the payoffs are generally complex.
  • the time delays t ⁇ are positive (so-called postcursor echoes) or negative (so-called precursor echoes).
  • the precursor echoes are temporally very close to the signal relating to the main path (typically at a temporal distance less than 1 microsecond) while the postcursor echoes are temporally fairly spread out (typically received with a temporal delay of 0 to 40 microseconds).
  • filters adaptive These adaptive filters in principle comprise a filter with variable coefficients and a calculating device supplying these coefficients to the filter as a function, on the one hand of the sequences of symbols received and produced by the filter, and on the other hand of the corresponding decision sequences .
  • the adaptation of the coefficients is usually carried out in a digital signal processing processor, or DSP (Digital Signal Processor), and the filter is normally carried out on a highly integrated integrated circuit or VLSI (Very Large Squale Integration).
  • DSP Digital Signal Processor
  • VLSI Very Large Squale Integration
  • a known solution is to use adaptation techniques known as by symbol blocks: the development of the coefficients is made from blocks of symbols. This results in faster convergence than in the case of step-by-step algorithms. Rapid linear filters are then used to perform the filtering operation, symbol by symbol in the time domain or by block of symbols in the frequency domain. Such a linear filtering, carried out in the frequency domain, allows compared to a filtering in the time domain to reduce the number of computations, by replacing a temporal convolution by a frequency multiplication.
  • this filtering structure does not make it possible, with affordable complexity, to make sufficient correction in the case of long echoes, in particular when the temporal spread of the echoes exceeds one hundred symbols
  • a more advantageous solution consists in using an adaptive filter known as with decision return, in the time domain.
  • a filter illustrated diagrammatically in FIG. 1, consists of two time filters, a direct filter FF and a feedback filter FB, each receiving at the input a series of different symbols.
  • the input of the direct filter FF receives symbols ⁇ x (n) ⁇ produced by sampling the received signals, and the input of the feedback filter receives decisions ⁇ d (n) ⁇ produced by a decision-making body DO , from the symbols ⁇ y (n) ⁇ produced after filtering by the direct filter FF.
  • the symbols ⁇ y (n) ⁇ are the outputs of the total filter.
  • the FB filter includes N weighting coefficients b-.
  • the filterings of the postcursor symbols x (n - j) and precursor x (n + i) are therefore uncorrelated.
  • the FF filter is used for the correction of the interference between symbols induced by the precursor symbols.
  • the FB feedback filter is used for the correction of the interference between symbols induced by the postcursor symbols.
  • the number M of corrective coefficients a- of the direct filter FF is much lower than the number N of corrective coefficients b .: of the feedback filter FB.
  • the number of coefficients for the FB feedback filter can optionally be reduced by using delay lines to move groups of mainly active coefficients to the estimated positions of the echoes. This solution is nevertheless difficult to achieve in practice, the circuit being overloaded with logical operations. Another solution is to use a reduced number of coefficients in the feedback filter. The downside of a such another solution is that the correction of the interference between symbols is therefore less good.
  • an object of the invention is to implement an improved filtering, in which the correction of 1 • interference between symbols can be carried out without reducing the number of corrective coefficients, while reducing the complexity of the filters .
  • the solution proposed by the invention is to implement filtering with decision feedback, in the frequency domain.
  • filtering in the frequency domain makes it possible to significantly reduce the number of operators required compared to processing in the time domain, which facilitates the implementation in VLSI of the filter.
  • the invention provides a filtering device with decision feedback comprising a direct filter and a feedback filter for producing from input symbols and output symbols corresponding decisions, the direct filter receiving as input input symbols, and the feedback filter receiving the input decisions, characterized in that the direct filter performs a filtering in the frequency domain of blocks of M input symbols, and in that the feedback filter reaction performs filtering in the frequency domain of blocks of L decisions, with L less than M.
  • FIG. 1 already commented on, diagrammatically represents a filtering device in the time domain, with decision feedback,
  • FIG. 2 represents the phenomenon of propagation in multiple paths and the correction provided by a filtering device in the time domain with decision feedback
  • FIG. 3 illustrates the phenomenon of propagation in multiple paths and the correction made by a filtering device according to the invention
  • FIG. 4 diagrammatically represents a filtering device according to the invention
  • FIG. 5 schematically represents a first filter of the device of FIG. 4,
  • FIG. 6 shows schematically a second filter of the device of Figure 4
  • FIG. 7 shows an adaptive filtering device in the frequency domain
  • FIG. 8 represents an adaptive filtering device comprising a coefficient calculation member produced with a decision feedback filter of the invention
  • FIG. 9 shows schematically an algorithm for updating the coefficients of a calculation unit.
  • FIGS 1 and 2 illustrate filtering with decision feedback in the time domain.
  • An object of the invention is to transpose into the frequency domain the filtering with time domain decision return, the symbols being processed by blocks of symbols, and the filtering in the filters. direct and feedback being carried out in the frequency domain.
  • L> 1 and assuming that we know the decisions prior to d (n)
  • FIG. 2 FIG.
  • the direct filter FF will in practice include a larger number M 'of coefficients, so that N + M' - 1 - t is equal to N + M - 1, so that for a given application (it is to say for a given number of postcursor symbols) the filtering of the postcursive part covers all the postcursive components.
  • the invention proposes to transpose this filtering in the frequency domain.
  • FIG. 4 illustrates a filter according to the invention.
  • the filter receives as input successive symbols x (n).
  • the symbols are grouped into blocks x M (n) of M successive samples (x (n) ... x (n - M + 1)), k representing the rank of the block.
  • this filter FF has a conventional structure of fast linear filter in the frequency domain.
  • After performing a discrete Fourier transform 11 of the input blocks they are multiplied in a multiplexer 12 by a block A 2M (k) of 2M weighting coefficients. Then, by inverse Fourier transformation 13, a block z M (n) of M symbols is produced at the output of the filter FF.
  • the outputs y (n) are calculated according to the output symbols of the FF filter and decisions d (n) produced by a decision organ DO from previous outputs, these decisions having been filtered by a feedback filter FB in the frequency domain of order 2N (corresponding to the transposition in the frequency domain of an order filter N in the time domain).
  • This feedback filter is composed of two sub-filters FB 1 and FB 2 in the frequency domain, illustrated respectively in FIGS. 5 and 6. From these symbols and these decisions d (n) we produce, by a addition 14 in the time domain, the outputs y (n) corresponding to the input symbols x (n).
  • the outputs y (n) are therefore obtained by adding three components.
  • a first component of relation (3) is produced by the direct filter FF. These are the output samples z (n) of this filter contained in the block z M (k).
  • a second component, u! (N), is produced by the sub-filter FB 1 which corresponds to the first 2M coefficients of the filter FB.
  • a third component, u 2 (n), is produced by the sub-filter FB 2 which corresponds to the last 2 (N - M) coefficients of the filter FB.
  • the difficulty to be resolved is to obtain for each block of outputs decisions necessary for calculating the outputs, these decisions corresponding to outputs of the same block. It is assumed that we know the decisions corresponding to the last outputs produced.
  • the circuits 15 provide as output blocks offset from each other by a time interval corresponding to L decisions.
  • P multipliers 17 carry out the products of the symbols of the P blocks by corresponding weighting coefficients grouped by blocks of 2L coefficients (B 2L 1: L (n), ..., B 2 ⁇ lp (n)).
  • the multipliers provide at output P blocks of 2L symbols which are then summed in parallel in an adder 18 whose output provides 2L symbols. These 26 symbols make it possible to produce, by an inverse discrete Fourier transformation 19, a block of L symbols u 1 (n) in the time domain.
  • the FBI sub-filter (similarly that the sub-filter FB2) is of the type described in patent application FR-A-2 702 612.
  • the sub-filter FB 2 corresponding to the last N - M filtering coefficients of feedback in the time domain, has a structure comparable to that of the sub-filter FB 1 .
  • it produces blocks of L symbols u 2 (n) summed, in the time domain, to the sub-blocks of L symbols of output of the direct filter to produce the corresponding outputs.
  • these symbols u 2 (n) are produced from decisions corresponding to the preceding block of symbols of the direct filter FF. In other words, it is used in a similar fashion to a time-domain decision feedback filter feedback filter.
  • the blocks of L decisions received from the decision-making body are grouped in a step 20 by groups of M, by parallel / parallel conversion.
  • the delay circuits 21 provide at the output de ⁇ blocks offset with respect to each other by a time interval corresponding to M decisions.
  • J - 1 multipliers 23 carry out the products of the symbols of the blocks by corresponding weighting coefficients grouped by blocks of 2M coefficients (B 2M 2 (k), ..., B 2M J (k)).
  • Multipliers 23 output J - 1 blocks of 2M symbols which are then summed in parallel in an adder 24 whose output provides 2M symbols. These symbols make it possible to produce, by inverse discrete Fourier transformation 25 and parallel / parallel conversion 26, P block of L symbols u 2 (n) in the time domain. These blocks u 2 (n) are used for the calculation of the outputs corresponding to the output symbols of the direct filter of the block following that from which they were produced.
  • the filter thus described has the advantages in terms of complexity of frequency-type applications and the advantages in terms of filtering performance with decision feedback.
  • the direct filter FF performs filtering on the precursor echoes, and on close postcursor echoes
  • the feedback filter FB filters on the decisions produced from the postcursor echoes, these decisions being supplied to the feedback filter with a delay of L time intervals, a time interval being the time delay between two successive symbols.
  • the direct filter operates a filtering on the postcursor echoes whose corresponding decisions are not filtered by the feedback filter, so that all of the postcursor and precursor echoes are taken into account globally by the total filter.
  • the weighting coefficients A 2M B 2L B 2M are preferably variable over time so as to adapt the response of the filter to variations in the transmission channel.
  • the calculation of the coefficients is decoupled from the filtering well said. This calculation, generally requiring a large number of operations, it is carried out most of the time in delayed time by a calculation unit of the signal processing processor (or DSP) type.
  • an adaptive filter is presented schematically in the form illustrated in FIG. 7.
  • the input symbols ⁇ x (n) ⁇ received are processed by a filter F producing in real time, from weighting coefficients (referenced a ⁇ and b •), outings and corresponding decisions.
  • the filter F will for example be the filter illustrated in FIG. 4.
  • the weighting coefficient is produced by a calculating organ OC. From the input symbols, it produces, using a preliminary filter FP, outputs and corresponding decisions. These are then used by a calculation filter FC to produce the weighting coefficients which are supplied to the filter F.
  • a calculation filter FC to produce the weighting coefficients which are supplied to the filter F.
  • the filter F being used in real time, it is essential that its processing speed is compatible with the symbol frequency. With regard to the filter FP of the calculation unit, this constraint is not present. It will therefore be possible to make a FP filter with high precision, without worrying about the production delay of outputs and decisions provided that the transmission channel is stationary during the duration of calculation of the coefficients.
  • One solution to achieve the OC calculator is to use a decision feedback filter in the time domain, as illustrated in FIG. 8.
  • LMS Least Mean Squares
  • LMS type filters are already known in the frequency domain (see for example ER Ferrara, "Frequency-domain Adaptive Filtering", Adaptives Filters, CFN Cowan and PM Grant, Ed ⁇ ., Englewood Cliffs, Prentice Hall, 1985, ch. 6 , pp. 145 - 179).
  • One solution for calculating the coefficients is to use a FP filter with decision return in the time domain, in steps at pa ⁇ , to store the outputs and decisions produced, and to perform an FC calculation algorithm in the frequency domain of LMS type. (in fact the calculation algorithm is then made up of two LMS type algorithms to respectively produce the coefficients of the direct filter and the feedback filter).
  • a M ⁇ n + 1 a M ( n ) + 2 M a -x M (n + M - t) .e (n)
  • b N (n + 1) b N (n) + 2 ⁇ b d N (n - L) .e (n).
  • the adaptation of the coefficients in the filter F is delayed by N time intervals (a time interval corresponding to the time difference between two successive symbols).
  • N time intervals a time interval corresponding to the time difference between two successive symbols.
  • X 2N (k) diag ⁇ FFT [x N (kl): x N (k)] T ⁇
  • the matrix are in practice blocks of 2N elements represented mathematically, for the sake of brevity, by diagonal matrices of dimension 2N.
  • M 2N A (k) and M 2N B (k) are produced such that:
  • M 2N A (k) 2 ⁇ a .diag ⁇ [P 1 - X (k), ..., P 2N ⁇ x (k)] T ⁇
  • P 2N x (k) ⁇ P 2N x (k - 1) + (1 - ⁇ ) X 2N H (k) .X 2N (k) l 2N P 2 N d W ⁇ P 2N d ⁇ k " ! + î 1 ⁇ ⁇ ) D 2N H W • D 2NW X 2N 1 2N ⁇ being a vector of dimension 2N having all se ⁇ elements at 1 to obtain a vector as a result, ⁇ being a forgetting factor less than one, H signifying the transpose, and diagP 1 -x (k) signifying the constitution of a diagonal matrix whose non-zero terms are le ⁇ inver ⁇ e ⁇ (hence the exponent -) of the components of the vector X 1 (k), ..., X 2 N (k), similarly for diagP ⁇ ⁇ -dfk) with the vector D 1 (k), ..., D 2N (k).
  • M 2N BD (k) M 2N A (k) .D 2N H (k) .E 2N .
  • the diagonal matrices M 2N AX (k) and M 2N BD (k) are then transposed in the time domain by inverse discrete Fourier transform 41 42.
  • two blocks of 2N elements are produced (formed from the diagonal elements of matrices A 2N (k + 1) and B 2N (k + 1)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Power Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

L'invention concerne un dispositif de filtrage avec retour de décision comprenant un filtre direct (FF) et un filtre de contre-réaction (FB) pour produire à partir de symboles d'entrée (x(n)) des décisions (d(n)) correspondantes, le filtre direct (FF) recevant en entrée les symboles d'entrée, et le filtre de contre-réaction (FB) recevant en entrée les décisions (d(n)). Le filtre direct (FF) opère un filtrage dans le domaine fréquentiel de blocs de M symboles d'entrée, et le filtre de contre-réaction (FB) opère un filtrage dans le domaine fréquentiel de blocs de L décisions, avec L inférieur à M. Un dispositif selon l'invention permet de corriger l'interférence entre symboles induite par la réception d'échos.

Description

DISPOSITIF DE FILTRAGE AVEC RETOUR DE DÉCISION, DANS LE DOMAINE FRÉQUENTIEL.
L'invention concerne un dispositif de filtrage d'un signal numérique avec retour de décision, dans le domaine fréquentiel. L'invention trouve une application par exemple dans l'annulation d'échos engendrés par la propagation en trajets multiples, lors d'une transmission hertzienne, notamment d'un signal numérique.
Un problème de grande importance dans les systèmes de transmission terrestres est la distorsion de signal due au phénomène de propagation en trajets multiples. La réflexion d'un signal transmis sur des habitations, sur un relief ou sur différentes couches de l'atmosphère, induit la réception de multiples signaux, ou échos, au lieu d'un seul signal. Les échos indésirables reçus sont généralement déphasés, temporellement décalés et d'amplitudes atténuées par rapport au signal d'origine (tout cela de manière variable dans le temps en fonction du trajet suivi) . Ces phénomènes dépendant quant à leur variation principalement des phénomènes météorologiques, ils évoluent lentement pour un système de réception fixe. En transmission numérique les échos reçus induisent une distorsion des symboles reçus. Cette distorsion se traduit concrètement par un phénomène de recouvrement des symboles, encore appelée interférence entre symboles. Afin d'assurer une réception de haute qualité, l'interférence entre symboles résultante doit être éliminée ou réduite de manière importante.
La réponse impulsionnelle d'un canal à trajets multiples s'étend sur un intervalle typique de temps de quelques dizaines de microsecondes. Cet intervalle, qui est fonction de la fréquence utilisée, correspond typiquement à quelques centaines de symboles successifs dans les systèmes de télédiffusion numérique. Un des symboles reçus (voir figure 2) correspond à un symbole (x(n)) effectivement émis à l'origine, et les autre symboles (x(n + i) , x(n - j)) sont des symboles parasites (ou échos) résultant de la propagation en trajets multiples. Une solution de traitement implique l'emploi de filtres numériques d'ordres élevés, c'est à dire à grand nombre de coefficients correctifs, en réception, afin d'éliminer les symboles parasites (et produire, via un organe de décision, une suite de décisions correspondant effectivement aux données émises) . La réponse impulsionnelle échantillonnée d'un canal à trajets multiples peut être mise sous la forme suivante : h(t) = <5(t) + ∑k αk <S(t - tk) , avec k indice entier de 1 à p, en considérant p trajets, αk et tk le gain effectif et le retard temporel respectifs du k- ième trajet, S (t) étant l'impulsion émise. Les gains sont généralement complexes. Les retards temporels t^ sont positifs (échos dits postcurseurs) ou négatifs (échos dits précurseurs) . En pratique les échos précurseurs sont temporellement très proches du signal relatif au trajet principal (typiquement à une distance temporelle inférieure à 1 microseconde) alors que les échos postcurseurs sont temporellement assez étalés (typiquement reçus avec un retard temporel de 0 à 40 microsecondes) .
Comme on l'a vu, le phénomène de propagation en trajets multiples évolue temporellement et il est donc nécessaire d'adapter temporellement les coefficients de filtrage. On utilise dans ce but des filtres dits adaptatifs. Ces filtres adaptatifs comprennent dans leur principe un filtre à coefficients variables et un organe de calcul fournissant ces coefficients au filtre en fonction, d'une part des suites de symboles reçus et produits par le filtre, et d'autre part des suites de décisions correspondantes. Les dispositifs d'adaptation des coefficients de filtrage et sont physiquement découplés dans le cas de fréquences d'échantillonnage élevées (par exemple supérieures à un mégahertz) . L'adaptation des coefficients est habituellement réalisée dans un processeur de traitement de signal numérique, ou DSP (Digital Signal Processor) , et le filtre est normalement réalisé sur un circuit intégré à haute intégration ou VLSI (Very Large Squale Intégration) . Une solution de ce type est par exemple décrite dans le document EP-A-0 641 102. Le traitement de type temporel y est classiquement effectué symbole par symbole.
En terme d'adaptation de coefficients, une solution connue est d'utiliser des techniques d'adaptation dite par blocs de symboles: l'élaboration des coefficients est faite à partir de blocs de symboles. On obtient ainsi une convergence plus rapide que dans le cas d'algorithmes en pas à pas. On utilise alors des filtres linéaires rapides pour effectuer l'opération de filtrage, symbole par symbole dans le domaine temporel ou par bloc de symboles dans le domaine fréquentiel. Un tel filtrage linéaire, réalisé dans le domaine fréquentiel, permet par rapport à un filtrage dans le domaine temporel de réduire le nombre de calculs, en remplaçant une convolution temporelle par une multiplication fréquentielle. Une telle solution est par exemple décrite dans l'article "On the convergence properties of a partitioned block frequency domain adaptive filter (PBFDAF) Signal Processing V: Théories and applications; Proceedings of EUSIPCO - 90, Fifth European Signal Processing Conférence, Barcelona, Sept 18-21, 1990, Vol.l, 18 September 90, Torres L. , Masgrau E. , Lagunas M.A. (EDS) , pages 201 204.
Néanmoins cette structure de filtrage ne permet pas d'aboutir, avec une complexité abordable, à une correction suffisante dans le cas des échos longs, notamment quand l'étalement temporel des échos dépasse la centaine de symboles
Afin d'améliorer la correction de l'interférence entre symboles, une solution plus avantageuse consiste à utiliser un filtre adaptatif dit à retour de décision, dans le domaine temporel. Un tel filtre, illustré schematiquement figure 1, est constitué de deux filtres temporels, un filtre direct FF et un filtre de contre-réaction FB, recevant chacun en entrée des séries de symboles différentes. L'entrée du filtre direct FF reçoit des symboles {x(n)} produits par échantillonnage des signaux reçus, et l'entrée du filtre de contre-réaction reçoit des décisions {d(n)} produites, par un organe de décision DO, à partir des symboles {y(n)} produits après filtrage par le filtre direct FF. Les symboles {y(n)} sont les sorties du filtre total.
Les sorties y(n) sont de la forme : y(n) = z(n) + u(n) (1) , où z(n) = Σ^ a^ x(n + i) , avec i variant de 0 à M - 1, représente les symboles produits par le filtre direct FF, celui-ci comprenant M coefficients a- de pondération, et où u(n) = Σ.Λ b- d(n - j), avec j variant de 1 à N, représente les symboles produits par le filtre de contre-réaction FB à partir des décisions d(n - 1) = f(y(n - 1)) à d(n - N) = f(y(n - N) ) , avec f une fonction de décision. Le filtre FB comprend N coefficients b- de pondération.
Les filtrages des symboles postcurseurs x(n - j) et précurseurs x(n + i) sont donc décorrélés. Le filtre FF est utilisé pour la correction de 1 ' interférence entre symboles induite par les symboles précurseurs. Le filtre de contre-réaction FB est utilisé pour la correction de l'interférence entre symboles induite par les symboles postcurseurs.
Les données d'entrée du filtre de contre-réaction FB étant issues d'un organe de décision, seules les sorties y(n) sont sensibles au bruit. Les filtres à retour de décision sont donc moins sensibles que les filtres linéaires sans rebouclage en présence de bruit.
Les symboles parasites apparaissant principalement dans la partie postcurseur, le nombre M de coefficients correctifs a- du filtre direct FF est beaucoup plus faible que le nombre N de coefficients correctifs b.: du filtre de contre-réaction FB. Typiquement ces nombres sont de l'ordre de M = 30 à 60 coefficients pour le filtre direct FF et de N = 250 à 500 coefficients pour le filtre de contre-réaction FB.
Un tel nombre N de coefficients rend difficile l'intégration des deux filtres sur un circuit intégré commun. On peut éventuellement réduire le nombre de coefficients pour le filtre de contre-réaction FB en utilisant des lignes à retard pour déplacer des groupes de coefficients principalement actifs aux positions estimées des échos. Cette solution est néanmoins difficilement réalisable en pratique, le circuit étant surchargé d'opérations logiques. Une autre solution consiste à utiliser un nombre réduit de coefficients dans le filtre de contre-réaction. L'inconvénient d'une telle autre solution est que la correction de l'interférence entre symboles est de ce fait moins bonne.
Au vu de ce qui précède, un but de l'invention est de mettre en oeuvre un filtrage amélioré, dans lequel la correction de 1•interférence entre symboles peut être réalisée sans diminution du nombre de coefficients correctifs, tout en diminuant la complexité des filtres. La solution proposée par 1 ' invention eεt de mettre en oeuvre un filtrage avec retour de décision, dans le domaine fréquentiel. Ainsi, on bénéficie à la fois de la faible complexité caractérisant le filtrage dans le domaine fréquentiel (le traitement des symboles étant réalisé par blocs de symboles) , tout en bénéficiant des avantages en terme de correction de l' interférence entre symboles du filtrage à retour de décision. En terme de complexité, le filtrage dans le domaine fréquentiel permet de réduire de manière significative le nombre d'opérateurs requis par rapport à un traitement dans le domaine temporel, ce qui facilite l'implantation en VLSI du filtre.
Ainsi, l'invention propose un dispositif de filtrage avec retour de décision comprenant un filtre direct et un filtre de contre-réaction pour produire à partir de symboles d'entrée et de symboles de sortie des décisions correspondantes, le filtre direct recevant en entrée les symboles d'entrée, et le filtre de contre-réaction recevant en entrée les décisions, caractérisé en ce que le filtre direct opère un filtrage dans le domaine fréquentiel de blocs de M symboles d'entrée, et en ce que le filtre de contre- réaction opère un filtrage dans le domaine fréquentiel de blocs de L décisions, avec L inférieur à M. D'autres particularités et avantages apparaîtront à la lecture de la description qui suit, à lire conjointement aux dessins annexés dans lesquels :
- la figure 1 déjà commentée représente schematiquement un dispositif de filtrage dans le domaine temporel, avec retour de décision,
- la figure 2 représente le phénomène de propagation en trajets multiples et la correction apportée par un dispositif de filtrage dans le domaine temporel avec retour de décision,
- la figure 3 illustre le phénomène de propagation en trajets multiples et la correction apportée par un dispositif de filtrage selon l'invention,
- la figure 4 représente schematiquement un dispositif de filtrage selon l'invention,
- la figure 5 représente schematiquement un premier filtre du dispositif de la figure 4,
- la figure 6 représente schematiquement un deuxième filtre du dispositif de la figure 4, - la figure 7 représente un dispositif de filtrage adaptatif dans le domaine fréquentiel,
- la figure 8 représente un dispositif de filtrage adaptatif comprenant un organe de calcul de coefficients réalisé avec un filtre à retour de décision de l'invention,
- la figure 9 représente schematiquement un algorithme de mise à jour des coefficients d'un organe de calcul.
Les figures 1 et 2 illustrent le filtrage avec retour de décision dans le domaine temporel.
Un but de l'invention est transposer dans le domaine fréquentiel le filtrage avec retour de décision du domaine temporel, les symboles étant traités par blocs de symboles, et le filtrage dans les filtres direct et de contre-réaction étant réalisé dans le domaine fréquentiel.
Supposons qu'on regroupe les symboles par blocs de M symboles x(n) à x(n + M - 1) , ceux ci étant filtrés simultanément afin de produire des blocs de sortie y(n) à y(n + M - 1) . La relation (1) définie ci-dessus n'est plus applicable. En effet, pour calculer y(n + 1), on a besoin de d(n) ce qui suppose que l'on connaisse y(n) . Il n'est donc pas possible de produire y(n) et y(n + 1) simultanément. Autrement dit, la transposition dans le domaine fréquentiel du filtrage avec retour de décision n'est pas triviale.
Pour résoudre ce problème, l'invention propose de modifier la relation (1) ci-dessus et d'utiliser la relation (2) suivante : y(n) = z(n) + u(n) (2), avec z(n) = Σ^ a^ x(n + i - t) , i variant de 0 à M - 1, u(n) = Σ-j b-j d(n - j - L) , j variant de 1 à N, t et L des entiers. En considérant L > 1, et en supposant qu'on connaisse les décisions antérieures à d(n) , alors on peut calculer les sorties y(n) à y(n + L) simultanément. On peut donc calculer les décisions d(n) à d(n + L) . A partir de ces décisions, on peut ensuite calculer les sorties y(n + L + 1) à y(n + 2L) et ainsi de suite.
En choisissant L tel que M = P * L avec P entier, et N tel que N = D * M, avec D un entier, alors le traitement d'un bloc (x(n)...x(n + M - 1) ) peut se faire en P étapes successives.
Les sorties y(n) sont produites à partir de trois composantes (voir figure 3) : y(n) = z(n) + u1(n) + u2(n) (3), avec z(n) = Σ^ a^ x(n + i - t) , i variant de 0 à M - 1, u1(n) = Σ.^ b-1 d(n - L - jl) , jl variant de 1 à M (sous-filtre de contre-réaction FB1) , u2 (n)
Figure imgf000011_0001
t>-2 d(n - L - j2) , j2 variant de M + 1 à N (sous-filtre de contre-réaction FB2) . Par rapport à la figure 2 , la figure 3 fait apparaître un décalage du filtrage de contre-réaction (formé des deux sous-filtres FB1 et FB2 dans la partie postcursive) . Autrement dit, les décisions sont fournies au filtre de contre-réaction avec un décalage de L intervalles de temps par rapport à la prise de décision. Le filtre direct est lui-même décalé. En pratique, on choisira t > L, afin de filtrer les symboles x(n - 1) à x(n - L) dans le filtre direct FF. Par ailleurs le filtre direct FF comprendra en pratique un nombre M' plus important de coefficients, de telle sorte que N + M' - 1 - t soit égal à N + M - 1, afin que pour une application donnée (c'est à dire pour un nombre de symboles postcurseurs donné) le filtrage de la partie postcursive couvre toutes les composantes postcursives.
La relation (3) peut se mettre sous forme matricielle, les indices indiquant les dimensions des vecteurs et l'exposant T signifiant transposé :
YM (n) = zM<n) + uM1(n) + uM2(n) (4) avec yM(n) ≈ [y(n) ...y(n + M - 1) ]T zM(n) = [z(n) ...z(n + M - 1) ]τ
Ujj^n) = [u1(n)...u1(n + M - 1) ]τ uM 2(n) = [u2(n) ...u2(n + M - 1) ]τ, et pour j de 0 à M - 1 : z(n + j) ≈ aM τ(n) xM(n + j + M - t)
Figure imgf000011_0002
u2(n + j) = bN-M 2T(n) dN-M<n " M + j - 1) y(n + j) ≈ z(n + j) + u1(n + j) + u2(n + j), avec xM(n + j + M - t) = [x(n + M - 1 - t + j)...x(n - t + j)]τ, dM(n + j - i) = [d(n - L - 1 + j) ...d(n - L - M + j) ] T
ΛM d NN-_MM(n - M + j - 1) = [d(n - L - M - 1 + j)...d(n - L - N + j)]τ. aM(n) ≈ [aM_
M-l* * an3 bMl(n) = [^...b^T
Ayant ainsi reformulé le filtrage avec retour de décision dans le domaine temporel de manière à permettre un traitement des symboles par blocs de symboles, l'invention propose de transposer ce filtrage dans le domaine fréquentiel.
La figure 4 illustre un filtre conforme à 1 ' invention.
Le filtre reçoit en entrée des symboles successifs x(n) . Par conversion série/parallèle 10, les symboles sont regroupés en blocs xM(n) de M échantillons successifs (x(n)...x(n - M + 1) ) , k représentant le rang du bloc.
Ces blocs traversent un filtre direct FF 1 d'ordre 2M (correspondant à la transposition en fréquence d'un filtre dans le domaine temporel d'ordre M) . Dans l'exemple illustré, ce filtre FF a une structure classique de filtre linéaire rapide dans le domaine fréquentiel. On utilisera par exemple un découpage de l'entrée selon la technique avec recouvrement partiel dite overlap-save, avec un taux de recouvrement de 50%. Après avoir effectué une transformée de Fourier discrète 11 des blocs d'entrée, on les multiplie dans un multiplexeur 12 par un bloc A2M(k) de 2M coefficients de pondération. Puis, par transformation de Fourier inverse 13 on produit en sortie du filtre FF un bloc zM(n) de M symboles.
Les sorties y(n) sont calculées en fonction des symboles de sortie du filtre FF et de décisions d(n) produites par un organe de décision DO à partir des sorties précédentes, ces décisions ayant été filtrées par un filtre de contre-réaction FB dans le domaine fréquentiel d'ordre 2N (correspondant à la transposition dans le domaine fréquentiel d'un filtre d'ordre N dans le domaine temporel). Ce filtre de contre-réaction est composé de deux sous-filtres FB1 et FB2 dans le domaine fréquentiel, illustrés respectivement sur les figure 5 et 6. A partir de ces symboles et de ces décisions d(n) on produit, par une addition 14 dans le domaine temporel, les sorties y(n) correspondantes aux symboles d'entrée x(n) .
Les sorties y(n) sont donc obtenues par addition de trois composantes.
Une première composante de la relation (3) est produite par le filtre direct FF. Il s'agit des échantillons de sorties z(n) de ce filtre contenus dans le bloc zM(k) . Une seconde composante, u!(n) , est produite par le sous-filtre FB1 qui correspond aux 2M premiers coefficients du filtre FB.
Une troisième composante, u2 (n) , est produite par le sous-filtre FB2 qui correspond aux 2 (N - M) derniers coefficients du filtre FB.
Comme on l'a vu, la difficulté à résoudre est d'obtenir pour chaque bloc de sorties des décisions nécessaires au calcul des sorties, ces décisions correspondant à des sorties du même bloc. On suppose que l'on connaît les décisions correspondant aux dernières sorties produites.
On partitionne les blocs de symboles de sortie zM(k) en sous-blocs de taille L avec L un entier tel que L = M/P, avec P un entier. A partir du sous-bloc correspondant aux L premiers symboles de sortie de FF, on produit, par sommation dans le domaine temporel, les L sorties correspondantes (voir relation (3)). A partir de ces sorties, on produit un bloc de L décisions correspondantes dans un organe de décision DO.
Ces décisions sont ensuite traités dans le sous- filtre FB1 correspondant à un filtre linéaire dans le domaine fréquentiel (en utilisant par exemple la technique de recouvrement dite overlap-save avec un taux de recouvrement de 50 %) .
Le sous-filtre FB1, figure 5, constitue, au moyen de P circuits de décalage tels que 15, P blocs successifs de 2L symboles (P * L = M) après transformation de Fourier discrète 16 des blocs de L décisions. Les circuits 15 fournissent en sortie des blocs décalés les uns par rapport aux autres d'un intervalle de temps correspondant à L décisions. P multiplieurs 17 effectuent les produits des symboles des P blocs par des coefficients de pondération correspondant regroupés par blocs de 2L coefficients (B2L 1:L(n) , ... ,B lp(n) ) . Les multiplieurs fournissent en sortie P blocs de 2L symboles qui sont ensuite sommés en parallèle dans un additionneur 18 dont la sortie fournit 2L symboles. Ces 26 symboles permettent de produire, par une transformation de Fourier discrète inverse 19, un bloc de L symboles u1(n) dans le domaine temporel.
On peut alors produire les L sorties suivantes, par addition en 14 dans le domaine temporel. En renouvelant P fois cette opération, on produit successivement toutes les sorties (et par suite les décisions) correspondant aux M symboles de sortie du filtre direct. Dans un exemple, le sous filtre FBI (de même que le sous filtre FB2) est du type décrit dans la demande de brevet FR-A-2 702 612. Le sous-filtre FBI, ou le filtre FB en entier, travaillent donc à une fréquence p fois supérieure à celle du filtre direct FF.
Le sous-filtre FB2, figure 6, correspondant aux N - M derniers coefficients de filtrage de contre-réaction dans le domaine temporel, a une structure comparable à celle du sous-filtre FB1. De même que le premier sous- filtre, il produit des blocs de L symboles u2 (n) sommés, dans le domaine temporel, aux sous-blocs de L symboles de sortie du filtre direct pour produire les sorties correspondantes. Pour un bloc de M symboles de sortie du filtre direct FF, et à la différence du premier sous-filtre, ces symboles u2 (n) sont produits à partir de décisions correspondant au bloc précédent de symboles du filtre direct FF. Autrement dit, il est utilisé de manière similaire à un filtre de contre- réaction de filtre à retour de décision dans le domaine temporel. Les blocs de L décisions reçus de l'organe de décision sont regroupées en une étape 20 par groupes de M, par conversion parallèle/parallèle. Le sous-filtre FB2 constitue, au moyen de circuits à décalage tels que 21, (J - 1) blocs successifs de 2M symboles (avec J tel que J * M = N) après transformation de Fourier 22 des blocs de M décisions. Les circuits à retard 21 fournissent en sortie deε blocs décalés les uns par rapport aux autres d'un intervalle de temps correspondant à M décisions. J - 1 multiplieurs 23 effectuent leε produits des symboles des blocs par des coefficients de pondération correspondants regroupés par blocs de 2M coefficients (B2M 2 (k) , ... , B2M J(k)). Les multiplieurs 23 fournissent en sortie J - 1 blocs de 2M symboles qui sont ensuite sommés en parallèle danε un additionneur 24 dont la εortie fournit 2M symboles. Ces symboles permettent de produire, par transformation de Fourier discrète inverse 25 et conversion parallèle/parallèle 26, P bloc de L symboles u2 (n) dans le domaine temporel. Ces blocs u2 (n) sont utilisés pour le calcul des sorties correspondant aux symboles de sortie du filtre direct du bloc suivant celui à partir duquel ils ont été produits.
Le filtre ainsi décrit présente les avantages en terme de complexité deε applicationε de type fréquentiel et leε avantageε en terme de performance du filtrage avec retour de déciεion.
Pour corriger 1 ' interférence entre εymboleε induite par la réception d'échoε, leε εymboles d'entrée (x(n)) étant accompagnés d'échos précurseurs x(n + i) et postcurseurs x(n - j), le filtre direct FF opère un filtrage sur les échos précurseurε, et sur des échos postcurseurs proches, et le filtre de contre-réaction FB opère un filtrage sur les décisions produites à partir des échos postcurεeurε, ces décisionε étant fournieε au filtre de contre-réaction avec un retard de L intervalles de temps, un intervalle de temps étant le délai temporel entre deux symboles successifs. De préférence, le filtre direct opère un filtrage sur les échos postcurseurs dont les décisions correspondantes ne sont pas filtrées par le filtre de contre-réaction, de sorte que l'ensemble des échos postcurseurs et précurseurs soit pris globalement en compte par le filtre total. Comme on l'a vu, les coefficients de pondération A2M B2L B2Msorvt de préférence variables dans le temps de manière à adapter la réponse du filtre aux variations du canal de transmission. En pratique, le calcul des coefficients est découplé du filtrage proprement dit. Ce calcul, nécessitant généralement un nombre important d'opérations, il eεt réaliεé la plupart du tempε en tempε différé par un organe de calcul de type processeur de traitement de signal (ou DSP) .
Concrètement, un filtre adaptatif se présente schematiquement sous la forme illustrée figure 7. Les symboles d'entrée {x(n) } reçus sont traités par un filtre F produisant en temps réel, à partir de coefficients de pondération (référencés a^ et b• ) , des sorties et décisions correspondantes. Le filtre F sera par exemple le filtre illustré sur la figure 4. Leε coefficientε de pondération εont produitε par un organe de calcul OC. A partir deε symboles d'entrée, il produit à l'aide d'un filtre préliminaire FP des sorties et décisions correspondantes. Celles ci sont ensuite utilisées par un filtre de calcul FC pour produire les coefficients de pondération qui sont fournis au filtre F. On peut très bien utiliεer deε typeε de filtreε différents pour réaliser les filtres F et FP. En pratique c'est εouvent le caε. Le filtre F étant utiliεé en tempε réel, il est indispensable que sa vitesse de traitement soit compatible avec la fréquence symbole. En ce qui concerne le filtre FP de l'organe de calcul, cette contrainte n'est pas préεente. On pourra donc réaliεer un filtre FP présentant une grande précision, sans εe soucier du délai de production deε sorties et décisions pourvu que le canal de transmission soit stationnaire pendant la durée de calcul des coefficients. On peut par exemple utiliser pour le filtre FP un filtre dans le domaine fréquentiel, un filtre danε le domaine temporel, ou un filtre à retour de décision. Une εolution pour réaliser l'organe de calcul OC est d'utiliser un filtre à retour de décision dans le domaine temporel, tel qu'il est illustré sur la figure 8. Un algorithme classique d'adaptation deε coefficientε danε le domaine temporel, en pas à pas, est celui dit des moindres carrés moyens ou LMS (de l'anglais Least Mean Squares) qui peut se mettre souε la forme : aM(n + 1) = aM(n) + 2μa.xM(n + M) .e(n), bN(n + 1) = bN(n) + 2μb.dN(n) .e(n) , avec e(n) = d(n) - y(n) et μa et μb des constantes (représentant un pas de convergence pour le filtre direct et le filtre de contre-réaction) . On connaît déjà des filtres de type LMS dans le domaine fréquentiel (voir par exemple E.R. Ferrara, "Frequency-domain Adaptive Filtering", Adaptives Filters , C.F.N. Cowan and P.M. Grant, Edε. , Englewood Cliffs, Prentice Hall, 1985, ch. 6, pp. 145 - 179) . Une solution pour calculer les coefficients est d'utiliser un filtre FP à retour de décision dans le domaine temporel, en pas à paε, de εtocker leε sorties et décisions produites, et de réaliser un algorithme de calcul FC dans le domaine fréquentiel de type LMS (en fait l'algorithme de calcul est alors constitué de deux algorithmes de type LMS pour produire respectivement les coefficients du filtre direct et du filtre de contre-réaction) .
L'utilisation d'un algorithme FC réalisé selon un perfectionnement de l'invention permet de réduire considérablement la complexité de l'organe de calcul OC. En effet, on peut alors réaliser une adaptation des coefficients dans le domaine fréquentiel, l'organe de calcul comprenant alors un filtre FP réalisé conformément à la figure 4, et un filtre de calcul FC réalisé conformément à la figure 9 à partir d'une nouvelle formulation des algorithmes d'adaptation de sorte que : aM^n + 1) = aM(n) + 2Ma-xM(n + M - t) .e(n), et bN(n + 1) = bN(n) + 2μb dN(n - L).e(n). On pourra, dans la partie adaptative, choisir de travailler sur des blocs de N symboleε. Autrement dit l'adaptation des coefficients dans le filtre F est retardé de N intervalles de temps (un intervalle de temps correspondant à l'écart temporel entre deux symboles successifs) . En pratique, on pourra même retarder l'adaptation des coefficients dans le filtre F de plusieurε blocs de N symboleε εi l'environnement eεt εupposé stationnaire pour quelques millisecondes (ce qui correspond dans deε applicationε claεsiques, à quelques dizaines de blocs de N symboles) .
On va maintenant décrire l'algorithme de calcul FC illustré sur la figure 9. Pour faciliter la compréhension du lecteur, on utilisera un formalisme mathématique. Concrètement, cet algorithme sera typiquement réalisé souε la forme d'un processeur de traitement de signal (ou DSP) .
Les symboles x(n), y(n) et d(n) sont regroupés dans des convertisseurs série parallèle 27-29, par blocs xN(k) = (x(kN + M - t) ...χ(kN + M - t + N - l)), yN(k) = (y(kN - L) ...y(kN - L + N - 1) ) et dN(k) = (d(kN - L)....d(kN - L + N - 1)) de N symboles et décision successifs. A partir des blocs yN(k) et dN(k) , on produit par un sommateur 30 un bloc d'erreurs eN(k) =
%(k) " YN(k) .
A partir des k-ième blocs x ^ et ^N(*0 on produit dans des concaténateurε 31-32 deε blocε de 2N élémentε par concaténation avec leε (k -l)-ièmeε blocε correspondants, le bloc eN(k) étant lui complété par N zéros dans un concaténateur 33.
On passe ensuite dans le domaine fréquentiel par des transformations 34-36 de Fourier discrèteε. On produit ainεi deε matriceε X2N(k) , D2N(k) et E2N(k) telleε que :
X2N(k) = diag{FFT[xN(k-l): xN(k)]T}
D2N(k) = diag{FFT[dN(k-l) : dN(k)]τ}
E2N(k) = FFT{ Q°TeN(k)} avec Q = [0N: IN] , 0N et IN étant reεpectivement leε matriceε carrée identiquement nulle et identité de dimension N; : signifiant une concaténation par juxtaposition; diag signifiant la matrice diagonale; et FFT signifiant l'opération de transformée de Fourier discrète. On remarquera que leε matriceε sont en pratique des blocs de 2N éléments représentés mathématiquement, par soucis de concision, par des matrices diagonales de dimension 2N.
On produit ensuite dans deε filtreε récurεifs 37 et 38 des matrices de dimenεion 2N notéeε M2N A(k) et M2N B(k) telles que :
M2N A(k) = 2μa.diag{[P1-X(k),..., P2N ~x(k)]T}
M2N B(k) ≈ 2μb.diag{[P1-d(k),..., P2N _d(k)]τ}, avec
P2N x(k) =λ P2N x(k - 1) + (1 - λ )X2N H(k).X2N(k)l2N P2NdW ^ P2Nd<k " !) + î1 ~ λ ) D2NHW • D2NW X2N 12N ^tant un vecteur de dimension 2N ayant tous seε éléments à 1 pour obtenir un vecteur en résultat, λ étant un facteur d'oubli inférieur à un, H signifiant la transposée, et diagP1 -x(k) signifiant la constitution d'une matrice diagonale dont les termes non nuls sont leε inverεeε (d'où l'expoεant -) deε composantes du vecteur X1(k), ... , X2N(k), de même pour diagP^^-dfk) avec le vecteur D1(k) , ... , D2N(k) .
En utilisant deux multiplieurs 39, 40, on produit enεuite leε matrices M2N AX(k) = M2
Figure imgf000021_0001
M2NBD(k) = M2NA(k) .D2NH(k).E2N.
Les matrices diagonales M2N AX(k) et M2N BD(k) εont ensuite transposées dans le domaine temporel par transformée de Fourier discrètes inverses 41 42.
On annule dans deε concaténateurε 43 44 leε 2N - M dernierε élémentε du bloc MOM AX(k) et leε N dernierε éléments de M2NBD(k) ce qui consiste, mathématiquement, calculer -M M2NAX(k) et >N
LM*M M*2N-M
Figure imgf000021_0002
Figure imgf000021_0003
et
LN*N JN*N
QN =
Figure imgf000021_0004
Les blocε sont ensuite transposés en 45 46 dans le domaine fréquentiel par transformation de Fourier discrète.
Il suffit, pour produire A:?κr(k + 1) et BpM(k + 1) , d'utiliεer deux additionneurε 47 48 et deux circuitε à retard 49 50 de sorte qu'on réalise le calcul suivant : A2N(k + 1) = A2N(k) + FFT(QM M2N AX(k)), B9N(k + 1) = BpM(k) + FFT(QN M BD(k)).
Concrètement, on produit deux blocs de 2N éléments (formés des éléments diagonaux deε matrices A2N(k + 1) et B2N(k + 1)).

Claims

REVENDICATIONS
1 - Dispositif de filtrage avec retour de décision comprenant un filtre direct (FF) et un filtre de contre-réaction (FB) pour produire à partir de symboles d'entrée (x(n)) des décisions (d(n)) correspondantes, le filtre direct (FF) recevant en entrée les symboles d'entrée, et le filtre de contre-réaction (FB) recevant en entrée les décisions (d(n)), caractérisé en ce que le filtre direct (FF) opère un filtrage dans le domaine fréquentiel de blocs de M symboleε d'entrée, et en ce que le filtre de contre-réaction (FB) opère un filtrage dans le domaine fréquentiel de blocε de L déciεionε, avec L inférieur à M.
2 - Diεpositif selon la revendication 1, caractérisé en ce que le filtre direct (FF) produit des blocs de M symboleε de sortie (z(n)), ces blocs étant convertis en souε-blocs de L symboles de sortie, ces sous-blocε étant combinés à deε blocε de L symboles (u1(n)), u2(n)) produits par le filtre de contre- réaction (FB) pour produire des εorties (y(n)) à partir desquelles sont produites les décisions (d(n)).
3 - Dispositif selon la revendication 2, caractérisé en ce que les sorties (y(n)) sont produites par addition dans le domaine temporel des sous-blocε de εymboles de sortie (z(n)) avec les blocs de symboleε produits par le filtre de contre-réaction (FB) .
4 - Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que le filtre de contre-réaction (FB) comprend un premier et un deuxième sous-filtres (FB1, FB2) , le premier sous-filtre (FB1) opérant un filtrage sur les blocs de L décisions, et le deuxième sous-filtre (FB2) opérant un filtrage sur des blocs de M décisions après conversion des blocs de L décisions en blocs de M déciεionε, leε εymboles (u2 (n) ) produits par ce deuxième sous-filtre étant convertis en blocs de L décisionε en εortie de ce sous-filtre.
5 - Procédé de correction de l' interférence entre symboles induite par la réception d'échos avec un dispositif de filtrage défini selon l'une deε revendicationε 1 à 4, leε symboles d'entrée (x(n)) étant accompagnés d'échos précurseurs (x(n + i) ) et postcurseurs (x(n + j)), caractérisé en ce que le filtre direct (FF) opère un filtrage sur les échos postcurεeurs et en ce que le filtre de contre-réaction (FB) opère un filtrage sur les décisions produites à partir deε échos poεtcurεeurε, ceε déciεionε étant fournieε au filtre de contre-réaction avec un retard de L intervalleε de tempε, un intervalle de tempε étant le délai temporel entre deux symboles successifs.
6 - Procédé selon la revendication 5, caractérisé en ce que le filtre direct opère un filtrage sur les échos poεtcurεeurε dont leε décisions correspondantes ne sont pas filtrées par le filtre de contre-réaction.
7 - Dispositif de filtrage adaptatif comprenant un organe de calcul (OC) pour produire des coefficients de pondération, l'organe de calcul comprenant un filtre préliminaire (FP) pour produire des sortieε et deε déciεionε à partir de εymboleε d'entrée, et un filtre de calcul (FC) pour produire leε coefficientε de pondération à partir de ceε donnéeε, caractérisé en ce que le filtre préliminaire est un dispoεitif de filtrage défini εelon l'une deε revendicationε 1 à 4. 8 - Diεpoεitif selon la revendication 7, caractérisé en ce que le filtre de calcul produit les coefficients de pondération danε le domaine fréquentiel selon la méthode des moindres carréε moyens.
PCT/FR1996/001377 1995-09-08 1996-09-09 Dispositif de filtrage avec retour de decision, dans le domaine frequentiel WO1997009781A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96931092A EP0848866B1 (fr) 1995-09-08 1996-09-09 Dispositif de filtrage avec retour de decision, dans le domaine frequentiel
DE69602962T DE69602962T2 (de) 1995-09-08 1996-09-09 Filteranordnung mit entscheidungsrückkopplung im frequenzbereich
US09/043,142 US6052702A (en) 1995-09-08 1996-09-09 Decision feedback filter device in the frequency domain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR95/10569 1995-09-08
FR9510569A FR2738694B1 (fr) 1995-09-08 1995-09-08 Dispositif de filtrage avec retour de decision, dans le domaine frequentiel

Publications (1)

Publication Number Publication Date
WO1997009781A1 true WO1997009781A1 (fr) 1997-03-13

Family

ID=9482399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/001377 WO1997009781A1 (fr) 1995-09-08 1996-09-09 Dispositif de filtrage avec retour de decision, dans le domaine frequentiel

Country Status (5)

Country Link
US (1) US6052702A (fr)
EP (1) EP0848866B1 (fr)
DE (1) DE69602962T2 (fr)
FR (1) FR2738694B1 (fr)
WO (1) WO1997009781A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058271A2 (fr) * 2001-01-19 2002-07-25 Raze Technologies, Inc. Systeme de communication sans fil faisant appel au filtrage par blocs et a l'egalisation-demodulation rapides et procede de fonctionnement
US9014030B2 (en) 2001-09-05 2015-04-21 Paul F. Struhsaker Time division duplex wireless network and associated method using connection modulation groups
US9130697B2 (en) 2001-01-19 2015-09-08 Paul F. Struhsaker Wireless access system using multiple modulation formats in TDD frames and method of operation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327314B1 (en) * 1998-04-01 2001-12-04 At&T Corp. Method and apparatus for channel estimation for multicarrier systems
US7010030B2 (en) * 2001-07-20 2006-03-07 Koninklijke Philips Electronics N.V. Software definable block adaptive decision feedback equalizer
CN100556012C (zh) * 2002-08-30 2009-10-28 皇家飞利浦电子股份有限公司 单载波信号的频域均衡
EP2302775B1 (fr) * 2009-09-28 2012-07-25 Nxp B.V. Agencement d'alimentation électrique pour noyau de circuit intégré
US11057067B1 (en) 2020-04-13 2021-07-06 Bae Systems Information And Electronic Systems Integration Inc. Self-interference signal cancellation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641102A2 (fr) * 1993-08-24 1995-03-01 Philips Electronics Uk Limited Récepteur pour accès multiple par multiplexage de code à séquence direct avec annuleur d'interférence pour utilisation multiples

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641102A2 (fr) * 1993-08-24 1995-03-01 Philips Electronics Uk Limited Récepteur pour accès multiple par multiplexage de code à séquence direct avec annuleur d'interférence pour utilisation multiples

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOMMEN P C W: "ON THE CONVERGENCE PROPERTIES OF A PARTITIONED BLOCK FREQUENCY DOMAIN ADAPTIVE FILTER (PBFDAF)", SIGNAL PROCESSING 5: THEORIES AND APPLICATIONS. PROCEEDINGS OF EUSIPCO-90 FIFTH EUROPEAN SIGNAL PROCESSING CONFERENCE, BARCELONA, SEPT. 18 - 21, 1990, vol. 1, 18 September 1990 (1990-09-18), TORRES L;MASGRAU E; LAGUNAS M A (EDS ), pages 201 - 204, XP000358079 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9515786B2 (en) 2000-11-15 2016-12-06 General Access Solutions, Ltd. Wireless access system using multiple modulation formats in TDD frames and method of operation
WO2002058271A2 (fr) * 2001-01-19 2002-07-25 Raze Technologies, Inc. Systeme de communication sans fil faisant appel au filtrage par blocs et a l'egalisation-demodulation rapides et procede de fonctionnement
WO2002058271A3 (fr) * 2001-01-19 2003-02-06 Raze Technologies Inc Systeme de communication sans fil faisant appel au filtrage par blocs et a l'egalisation-demodulation rapides et procede de fonctionnement
US7075967B2 (en) 2001-01-19 2006-07-11 Raze Technologies, Inc. Wireless communication system using block filtering and fast equalization-demodulation and method of operation
US9130697B2 (en) 2001-01-19 2015-09-08 Paul F. Struhsaker Wireless access system using multiple modulation formats in TDD frames and method of operation
US9306696B2 (en) 2001-01-19 2016-04-05 Access Solutions, Ltd. Time division duplex wireless network and associated method using connection modulation groups
US9363029B2 (en) 2001-01-19 2016-06-07 Access Solutions, Ltd. Time division duplex wireless network and associated method using modulation groups
US9014030B2 (en) 2001-09-05 2015-04-21 Paul F. Struhsaker Time division duplex wireless network and associated method using connection modulation groups

Also Published As

Publication number Publication date
EP0848866A1 (fr) 1998-06-24
DE69602962T2 (de) 1999-10-07
FR2738694A1 (fr) 1997-03-14
US6052702A (en) 2000-04-18
DE69602962D1 (de) 1999-07-22
EP0848866B1 (fr) 1999-06-16
FR2738694B1 (fr) 1997-10-31

Similar Documents

Publication Publication Date Title
EP0748555B1 (fr) Annuleur d&#39;echo acoustique avec filtrage en sous-bandes
JP2762836B2 (ja) 干渉波除去装置
US6426983B1 (en) Method and apparatus of using a bank of filters for excision of narrow band interference signal from CDMA signal
EP0083629A1 (fr) Dispositif d&#39;annulation d&#39;echo de signaux de donnees
US6522747B1 (en) Single-sided subband filters
JP2934110B2 (ja) フィルタ構造体
NL8701633A (nl) Digitale echocompensator.
EP0848866B1 (fr) Dispositif de filtrage avec retour de decision, dans le domaine frequentiel
US4321686A (en) Correction processor of self-adaptive filters
EP0044598B1 (fr) Dispositif d&#39;annulation d&#39;un signal d&#39;écho composite
US3764914A (en) High speed line equalizer
JP3517190B2 (ja) デジタルエコー除去装置
US4547889A (en) Auto-orthogonalizing system of equalization adapted to a range of discrete frequencies and equalizer which activates the system
EP3835811B1 (fr) Procédé de découplage de signaux dans des systèmes d&#39;émission/réception
WO2021181568A1 (fr) Dispositif de réception optique et procédé de réception optique
EP1438815B1 (fr) Annuleur d interferences entre symboles
JPH0435547A (ja) 干渉波除去装置
FR2738692A1 (fr) Procede de filtrage numerique adaptatif dans le domaine frequentiel
EP1478096B1 (fr) Dispositif et procédé de réjection d&#39;interférences auto-adaptatif
EP0824798B1 (fr) Filtrage adaptatif a sous-bandes
Sengar et al. Multirate Filtering for Digital Signal Processing and its Applications
EP0944211B1 (fr) Procédé et dispositif d&#39;égalisation autodidacte prédictive d&#39;un canal de transmission d&#39;un signal radioélectrique diffusé
Baghious et al. Realization of block adaptive filters using Fermat number transforms
KR20010009502A (ko) 디지털 에코 제거 장치
JPS5955618A (ja) トランスバ−サルフイルタ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996931092

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996931092

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09043142

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1996931092

Country of ref document: EP