WO1997004934A1 - Discharge hydraulic pressure destroying method - Google Patents

Discharge hydraulic pressure destroying method Download PDF

Info

Publication number
WO1997004934A1
WO1997004934A1 PCT/JP1996/002140 JP9602140W WO9704934A1 WO 1997004934 A1 WO1997004934 A1 WO 1997004934A1 JP 9602140 W JP9602140 W JP 9602140W WO 9704934 A1 WO9704934 A1 WO 9704934A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
discharge
hydraulic pressure
free surface
holes
Prior art date
Application number
PCT/JP1996/002140
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Arai
Hidehiko Maehata
Tsuyoshi Kato
Original Assignee
Hitachi Zosen Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP19441195A external-priority patent/JPH0938951A/en
Priority claimed from JP07194412A external-priority patent/JP3103020B2/en
Priority claimed from JP07194413A external-priority patent/JP3103021B2/en
Application filed by Hitachi Zosen Corporation filed Critical Hitachi Zosen Corporation
Priority to RU98103872A priority Critical patent/RU2139990C1/en
Priority to EP96925129A priority patent/EP0885703A4/en
Publication of WO1997004934A1 publication Critical patent/WO1997004934A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C37/00Other methods or devices for dislodging with or without loading
    • E21C37/06Other methods or devices for dislodging with or without loading by making use of hydraulic or pneumatic pressure in a borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C37/00Other methods or devices for dislodging with or without loading
    • E21C37/18Other methods or devices for dislodging with or without loading by electricity

Definitions

  • the present invention relates to a discharge hydraulic fracturing method for destroying an object to be destroyed having one free surface, for example, a bedrock, a concrete structure, an underwater bedrock or a concrete structure of a tunnel or a residential land development site.
  • the destruction object to which the discharge hydraulic pressure method is adopted is a concrete lump or the like that normally has a free surface, and is applied to a destruction object with one free surface such as rock. There were few things. Disclosure of the invention
  • An object of the present invention is to provide a radio wave pressure destruction method capable of more effectively destroying an object having one free surface.
  • the discharge hydraulic rupture method of the present invention supplies the electric energy charged and stored in the capacitor to the metal wire in an extremely short time.
  • a discharge hydraulic pressure breaker that uses the impact force generated by the rapid vaporization and volume expansion of the thin metal wire and its surrounding liquid, the object to be destroyed has one free surface.
  • a leading hole is vertically drilled in this first free surface and its inner surface is made a second free surface, and a destruction hole is formed in one place of the first free surface around the leading hole,
  • a discharge hydraulic pressure rupture device is loaded into the rupture hole to discharge-break the object to be destroyed, and the rupture hole is expanded to expand the second free surface continuous with the preceding hole.
  • This method is characterized in that a discharge hole is formed and the discharge is destroyed by a discharge hydraulic pressure breaker, and this is repeated to expand the preceding hole.
  • the object to be destroyed can be effectively destroyed using the free surface and the second free surface formed by the preceding hole, and the second free surface that has been destroyed and expanded from the second time can be obtained.
  • the object to be broken can be more effectively destroyed.
  • the diameter of the leading hole: ⁇ A> the diameter of the breaking hole: ⁇ BS makes it possible to widen the direct breaking area and effectively use the breaking force of the discharge pressure breaking tool.
  • the depth of the preceding hole: DA ⁇ the depth of the breaking hole: DB the direct breaking area can be reliably connected between the breaking hole and the preceding hole, and the object to be destroyed in the direct breaking area can be surely connected.
  • the lump can be reliably cut out.
  • discharge hydraulic pressure destruction methods use metal energy by charging electrical energy stored in a capacitor in a very short time.
  • the free surface has one surface.
  • a preceding hole is drilled and its inner surface is used as a second free surface.
  • a plurality of breaking holes are formed around the preceding hole, and a discharge hydraulic pressure breaking tool is loaded in each of the breaking holes. It is characterized in that the electric energy of the power supply is sequentially supplied in the circumferential direction to the discharge hydraulic pressure rupture tool of each rupture hole to cause the discharge to break.
  • the object to be destroyed can be effectively destroyed using the free surface and the second free surface formed by the preceding hole, and the second free surface that has been destroyed and expanded from the second time can be obtained.
  • the object to be broken can be more effectively destroyed.
  • continuous destruction results in good work efficiency, and sequential discharge destruction allows the user to proceed to the next destruction work while grasping the work status in sequence.
  • the distance Y between adjacent breaking holes is such that Y> L, where L is the width of the direct breaking area by the discharge pressure breaker.
  • the discharge breakdown by the discharge hydraulic pressure destroyer can be smoothly performed without adversely affecting the adjacent breaking hole and the discharge hydraulic pressure breakdown tool which cause the discharge breakdown.
  • the diameter of the preceding hole in the above configuration is ⁇ A
  • the depth of the preceding hole is DA
  • the diameter of the fracture hole is ⁇
  • the depth of the fracture hole is DB
  • DA ⁇ DB It is characterized by being in the range.
  • the direct breaking area can be widened, and the breaking of the discharge hydraulic pressure breaking tool can be achieved. You can use the power effectively.
  • the depth of the preceding hole: DA ⁇ the depth of the breaking hole: DB the direct breaking area can be reliably connected between the breaking hole and the preceding hole, and the object to be destroyed in the direct breaking area can be surely connected. The lump can be reliably cut out.
  • the hydraulic destruction method generates electric energy by charging and accumulating electric energy in a capacitor to a thin metal wire in an extremely short time, causing rapid vaporization and volume expansion of the thin metal wire and the liquid around it.
  • a discharge hydraulic pressure rupture tool that utilizes the impact force that occurs
  • a leading hole is first drilled in the free surface, and the inner surface is made into the second free surface.
  • a plurality of destruction holes are formed around the preceding hole, and discharge fluid pressure destruction tools are loaded in each of the destruction holes. It is characterized in that it is simultaneously supplied to the tool and the discharge is destroyed.
  • the object to be destroyed can be effectively destroyed by utilizing the free surface and the second free surface formed by the preceding hole, and at the same time, the second free surface which is destroyed by discharge and expanded Can effectively destroy the object to be destroyed.
  • the efficiency of the destruction work can be improved.
  • the distance Y between centers between adjacent breaking holes is set to Y ⁇ 2XL, where L is the width of the direct breaking area by the discharge hydraulic pressure breaking tool.
  • the diameter of the preceding hole of the above configuration is ⁇ A
  • the depth of the preceding hole is DA
  • the diameter of the hole is ⁇
  • the depth of the fracture hole is D ⁇
  • it is characterized by ⁇ ⁇ > ⁇ ⁇ and DA ⁇ DB.
  • the direct breaking area can be widened and the breaking force of the discharge pressure breaking tool can be effectively used.
  • the depth of the preceding hole: DA ⁇ the depth of the breaking hole: DB the direct breaking area can be reliably connected between the breaking hole and the preceding hole, and the object to be destroyed in the direct breaking area can be surely connected. The lump can be reliably cut out.
  • the distance X between the center of the leading hole and the breaking hole is ⁇ ((A / 2) 2 + L 2], and assuming that the charging voltage of the capacitor supplied to the discharge fluid breaker is V c (port), the distance of the direct breakdown region is L c cm / IV c I / 12 It is characterized by being in the range of 0 ⁇ L ⁇ IV c I / 1200.
  • the required charging voltage can be reliably supplied to the predetermined direct breakdown region, and the required direct breakdown region can be reliably obtained.
  • the hydraulic destruction method generates electricity due to the rapid vaporization and volume expansion of the metal wire and the surrounding liquid by supplying the electrical energy charged and accumulated in the capacitor to the metal wire in a very short time.
  • the tip is first drilled at several locations around the perforated part, which is the center of destruction of the free surface.
  • An inclined fracture hole facing the center of the part is formed, a discharge hydraulic pressure destroyer is loaded in each of the inclined fracture holes, and electrical energy is simultaneously supplied from a capacitor to each of the discharge hydraulic pressure destroyers in a short time to cause damage.
  • the perforated part By puncturing the crushed object by electric discharge, the perforated part is cut out to form a second free surface, and a plurality of destruction holes are formed on the first free surface around the second free surface.
  • the object to be destroyed is discharged by a discharge hydraulic pressure breaker loaded in the breaking hole, thereby further enlarging the second free surface, and this is repeated to discharge and destroy the object to be destroyed.
  • a plurality of inclined breaking holes are formed in the circumferential direction in the perforated portion to be crushed on the first free surface so that the tips are close to each other.
  • the distance E between the centers of the openings of the inclined breaking holes adjacent in the circumferential direction is in the range of E ⁇ 2XL, where L is the width of the direct breaking area by the discharge hydraulic pressure breaking tool.
  • L is the width of the direct breaking area by the discharge hydraulic pressure breaking tool.
  • the distance between the distal ends of the farthest inclined breaking holes among the leading ends of the adjacent inclined breaking holes is set so that the direct breaking areas by both discharge hydraulic pressure breakers touch or overlap each other.
  • the feature is that the perforated part is hollowed out by directly connecting the fracture area directly at the bottom.
  • the direct breaking region at the opening of the inclined breaking hole formed in the circumferential direction can be made continuous, and the direct breaking region can be made continuous between the tip portions of the inclined breaking hole at the bottom. Even in a wide range where the direct fracture area is not continuous between the openings of the opposing inclined rupture holes, the perforated section can be connected between the openings by making the direct fracture area continuous at the bottom.
  • the crushed material can be taken out by cutting out in the circumferential direction, and the second free surface can be formed in a wide area.
  • the width L (cm) of the direct breakdown region is in the range of IVCIZISO ⁇ L ⁇ IVCI / ISOO. It is characterized in that
  • the charging voltage required to form the direct breakdown region can be reliably supplied, and the necessary direct breakdown region can be reliably obtained.
  • the electric energy charged and accumulated in a capacitor is supplied to the fine metal wire in a very short time, so that the impulse generated by rapid vaporization and volume expansion of the fine metal wire and the liquid around it.
  • the material to be destroyed is discharged and destroyed by electric discharge, so that the leading groove is cut out to form a second free surface, and a plurality of subsequent breaking holes are formed around the leading groove.
  • the discharge loaded in each breaking hole It is characterized in that the object to be destroyed is discharged by an electro-hydraulic breaker, the leading groove is enlarged, and the object to be destroyed is discharged.
  • the leading groove of the free surface is formed with inclined breaking holes formed so that the tips cross each other or approach each other along the two inclined breaking surfaces extending outward from the center. Discharge hydraulic pressure breaker By loading and discharging, the leading groove is effectively cut out and
  • the second free surface can be formed, and then the object to be destroyed can be effectively destroyed by using the second free surface.
  • a plurality of inclined breaking holes are formed at positions facing each other between the two inclined breaking surfaces, and formed so as to reach a tip of the inclined breaking hole or an intersection line of the inclined breaking surfaces, respectively.
  • a center-to-center distance XA in the opening portion of the inclined destroy holes adjacent inclined destroy surfaces on the respective distance between the centers XA 2 of the distal end portion of the inclined swash-breaking pores are a width of direct destroy region due to discharge pressure destroying tool If L, it is within the range of ⁇ 2 XL, XA 2 ⁇ 2 XL, and the distance YA 2 between the centers of the tips of the adjacent inclined fracture holes between both fracture surfaces must be within the range of YA 2 ⁇ 2 XL It is characterized by.
  • the leading groove is directly destroyed by discharge with a width wider than the destruction area, and the lump of the object to be destroyed is formed at the bottom. Can be reliably cut out from
  • the inclined fracture holes are formed at positions facing each other along the inclined fracture surface, and the distance XB 2 between the centers of the openings of the adjacent inclined fracture holes on the same fracture surface, and the inclined fracture distance XB 2 between the tip portion centers of the holes, and the width of the direct destroy region due to discharge pressure destroying tool and L, ⁇ 2 XL, in the range of XB 2 2 XL, also the tip of the inclined destroy holes facing
  • the distance YB 2 between the centers of the portions is characterized by being in the range of YB 2 ⁇ 2 XL cos (90 ° — ⁇ ), where is the inclination angle of the inclined fracture hole with respect to the first free surface.
  • the opening of the preceding groove is directly destroyed by discharge with a wider width than the rupture area.
  • the object to be destroyed can be reliably cut out from the bottom.
  • the charging voltage required to form the direct breakdown region can be reliably supplied, and the necessary direct breakdown region can be reliably obtained.
  • FIGS. 1A and 1B show first and second embodiments of the discharge hydraulic rupture method according to the present invention, wherein FIG. 1A is a plan view showing an initial broken state, and FIG.
  • FIG. 2 is an explanatory view showing a destruction state of the discharge hydraulic pressure destruction method.
  • FIG. 3 is a configuration diagram showing an electrostatic hydraulic destruction facility used in the discharge hydraulic destruction method.
  • FIG. 4 is a cross-sectional view showing a destruction state of an object to be destroyed by the electrostatic hydraulic pressure destruction equipment.
  • Fig. 5 is a graph showing the relationship between the discharge impact force and the charging voltage in the same discharge hydraulic breakdown method.
  • FIG. 6 is a graph showing the relationship between the direct breakdown region and the charging voltage in the discharge hydraulic breakdown method.
  • FIG. 7 are front views showing the leading hole and the breaking hole in the same discharge hydraulic breakdown method, respectively, and (a) is a direct breakdown when the leading hole is large and the breaking hole is small.
  • B Direct fracture area when the leading hole has a small diameter and the fracture hole has a large diameter.
  • A) and (b) in Fig. 8 are cross-sectional views showing the depths of the leading hole and the breaking hole in the discharge hydraulic breakdown method, respectively, and (a) shows the direct breaking area when the breaking hole is shallower than the leading hole.
  • B The direct fracture area when the leading hole is shallow and the fracture hole is deep.
  • FIG. 9 shows a third embodiment of the discharge hydraulic pressure breaking method according to the present invention, in which (a) is a plan view showing a broken state, and (b) is a sectional view of the same.
  • FIG. 10 is a cross-sectional side view of an object to be destroyed showing a fourth embodiment of the discharge hydraulic rupture method according to the present invention.
  • FIG. 11 is an explanatory view of a cross section of the object to be destroyed.
  • Fig. 12 shows a plan view of the object to be destroyed.
  • FIG. 13 is a sectional view showing a state where the bottom of the perforated portion of the object to be destroyed is not connected.
  • FIG. 14 is a partially cutaway perspective view showing a fifth embodiment of the discharge hydraulic rupture method according to the present invention.
  • Fig. 15 shows a cross-sectional view of the object.
  • Fig. 16 shows a perspective view of the preceding groove destroyed by the discharge hydraulic pressure breaking method.
  • FIG. 17 is a partially cutaway perspective view showing a sixth embodiment of the discharge hydraulic pressure breaking method according to the present invention.
  • Figure 18 shows a cross-sectional view of the object.
  • Fig. 19 is an explanatory view of the cross section of the object to be destroyed.
  • FIG. 20 is a perspective view of a preceding groove broken by the discharge hydraulic pressure breaking method.
  • the discharge probe 3 which is a discharge hydraulic pressure rupture tool inserted into the rupture hole 2 formed in the object 1, is made of synthetic rubber or waterproof paper filled with a rupture liquid 4 such as water.
  • a thin metal wire 8 connected between the distal ends of the wires.
  • An energy supply circuit 10 having a large-capacity capacitor 10a disposed apart from the object 1 to be destroyed and the electrode bar 7 are connected by a lead wire 9 having a discharge switch 9a.
  • the energy supply circuit 10 includes a DC high-voltage power supply 10b that charges and stores electric energy in the capacitor 10a, and the capacitor 10a and the DC high-voltage power supply 10b are connected by a connection line 10d. They are connected to each other, and a charging switch 10c is interposed on the connection line 10d.
  • the relationship between the charging voltage V c of the capacitor 10 a of the energy supply circuit 10 and the discharge impact force F of the discharge pull 3 is in a proportional relationship as shown in the graph of F—V c characteristic in FIG. .
  • the width (average width) L of the direct breakdown region 13 due to the discharge pull 3 is equal to the width L i of the internal direct breakdown region 13 i and the width L i of the surface direct breakdown region 13 a.
  • the width L a is different.
  • the relationship F between the discharge impact force F and the widths L i and La of the direct breakdown region 13 is expressed by the charging voltage V c (volts) and the width L ( cm).
  • both the direct destruction regions L a on the surface correspond to
  • the internal direct destruction areas L i correspond to IV c 1/200 in equation (2).
  • the object 1 to be destroyed by this method has one free surface F1 such as bedrock, concrete foundation and concrete floor.
  • a large-diameter precedence hole 11 is formed vertically on the first free surface F 1 of the object 1 to be destroyed using a drilling device or the like, and the inner surface of the precedence hole 1 1 is formed on the second free surface F 1. It is 2.
  • b-Disruption hole 1 2 is formed perpendicularly to the first free surface F 1 (parallel to the predecessor hole 11), where the discharge probe 3 is loaded and destroyed at one location around the preceding hole 1 1 .
  • This blast hole 1 is formed such that its diameter ⁇ B is smaller than the diameter ⁇ B of the preceding hole 11 and its depth DA is equal to or shallower than the depth DB of the preceding hole 11 ( ⁇ ⁇ > ⁇ ⁇ , DA ⁇ D ⁇ ).
  • the impact force due to discharge breakdown occurs around the thin metal wire 8 (break hole 1 2-!), And the width L of the direct break area 13 is The inner surface of the leading hole 11 which is the free surface F 2 of 2 is reached, and the direct breaking area 13 between the breaking hole 12 and the leading hole 11 is broken. Therefore, when ⁇ ⁇ ⁇ > ⁇ B, the volume of the direct destruction region 13 is larger and more advantageous, and when ⁇ ⁇ ⁇ ⁇ ⁇ , the volume of the direct destruction region 13 which is destroyed by discharge breakdown is smaller, and Because it ca n’t be fully demonstrated. You.
  • the second free surface extends to the depth of the preceding hole 11 which is F2, but there is no preceding hole 11 at a depth deeper, so the direct fracture area 13 may not be connected, and the crack It occurs but cannot be cut out as a lump.
  • the direct breakdown region 13 is satisfactorily continuous.
  • equation (1) can be applied to the width of the direct destruction area 13_].
  • a discharge probe 3 is inserted into the destruction hole 12 and the discharge switch 9a is turned on, and a high voltage is supplied from the capacitor 10a to the thin metal wire 8 of the electrode rod 7 in a very short time.
  • the thin metal wire 8 and the surrounding liquid for destruction 4 are instantaneously vaporized, and the impact force is transmitted to the surrounding object 1 to be destroyed, and the direct destruction region 13_i is destroyed.
  • the second free surface F2 is enlarged, and the next destruction is effectively performed.
  • d. Further bored the following breakdown holes 1 2. 2 were loaded in the same manner as in discharge pull part 3 the following breakdown region 1 3-2 is destroyed.
  • the discharge breakdown of the second to be done with respect to the second free surface F 2 which is enlarged by breaking previous direct breakdown region 1 3 2 to 1 3 -. 5 as shown in FIG. 2 Will spread.
  • the distance Y between the centers of the breaking holes 1 and 2 is limited by the width L of the direct breaking region 13 as in the later-described embodiment because the breaking hole 12 is formed in advance and the discharge probe 3 is not loaded. It will not be done.
  • Destroy holes 1 2 to 1 2 -.! 5 a is previously formed around the leading holes 1 1 discharge probe 3 is loaded. Then ⁇ 1 2 implosion respectively from capacitor 1 0 a.! ⁇ 1 2. 5 sequentially high voltage to the discharge Purupu 3 in the circumferential direction of the discharge breakdown is applied.
  • the object to be destroyed is sequentially and effectively destroyed by using the first free surface F 1 and the second free surface F 2 formed by the preceding hole 11.
  • work efficiency is high, and destruction work can be performed while grasping the work status in sequence.
  • Prior hole 2 1 a fracture around the hole 2 2 to 2 2 -. 4 is discharged pull portion 3 formed in advance is loaded respectively, destroying the capacitor 1 0 a hole 2 2 to 2 2 4 discharge pull Ichipu A high voltage is simultaneously applied to each of the three, causing discharge breakdown.
  • the object to be destroyed is effectively destroyed simultaneously using the first free surface F 1 and the second free surface F 2 formed by the preceding hole 21.
  • the second free surface expanded by discharge breakdown can effectively destroy an object to be destroyed by using F2.
  • the efficiency of the destruction work can be greatly improved.
  • Discharge probes 3 were loaded into the breaking holes 32, respectively, and discharge breakdown was performed sequentially and simultaneously at a charging voltage Vc: 400 V. As a result, a volume of about 300 cm 3 could be destroyed.
  • the object 1 to be destroyed by this method has one free surface F1 such as bedrock / concrete foundation, concrete floor, etc. as in the first to third embodiments.
  • the second free surface is not set as the inner surface of the preceding hole, and the substantially conical broken surface broken by the discharge probe 3 loaded in the plurality of breaking holes is formed as the second free surface F.
  • A. First, as shown in FIGS. 10 and 12, using a piercing device or the like, around the piercing portion 41, which becomes the breaking center on the first free surface F1, For example, eight oblique fracture holes 42 inclined at equal intervals toward the center of the perforated portion 41 are formed.
  • the distance E between the openings 4 2 a of the adjacent inclined breaking holes 42 is given by L (actually L a) where the width of the surface portion 13 a of the direct breaking region 13 by the discharge pull 3 is L. ,
  • the distance G between the farthest (opposing) tips between the tips 4 2 i of the adjacent inclined breaking holes 42 is the direct breakdown by the discharge probes 3 respectively loaded in the inclined breaking holes 42.
  • the width (actually, L i) of the inner portion 13 i of the region 13 is set so as to be in contact with or overlap with each other, so that the fracture region 13 is directly continuous at the bottom of the perforated portion 41.
  • the deep direct destruction region 13 i is continued at the bottom of the perforated portion 41, and the perforated portion 41 can be hollowed out. If G> 2 L cos (90 ° — 6>), as shown in Fig. 13, the perforated part 41 is cut out because the deep direct fracture area 13 i is not connected at the bottom. Cannot be pulled out.
  • Discharge probes 3 are loaded into the inclined breaking holes 4 2 respectively, and the discharge switch 9 a is turned on, and a high voltage is supplied from the capacitor 10 a to all the discharge probes 3 in a very short time and the thin metal wires 8 are supplied. Applied to As a result, the thin metal wire 8 and the breaking liquid 4 around it are instantaneously vaporized, and the impact force is transmitted to the surrounding object 1 to be destroyed, and the direct breaking area 13 is destroyed. As a result, the perforated portion 41 is hollowed out to form the second free surface F2.
  • the next break hole 4 2 ′ is formed according to the direct break area 13 of the discharge probe 3. It is formed at an arbitrary position and in an arbitrary direction, and a discharge pull 3 is loaded into each of the breaking holes 4 2 ′. Then, the discharge pull 3 is discharged or destroyed sequentially or simultaneously, and the object 1 is destroyed, and the perforated portion 41 is further enlarged. This is repeated to destroy the object 1 to be destroyed.
  • the destructible object 1 destroyed by this method has one free surface F1, such as bedrock, concrete foundation and concrete floor.
  • the to-be-destructed object 1 is hollowed out in a substantially conical shape to form the second automatic surface F 2, whereas the fifth triangular prism-shaped leading groove 51 is hollowed out. In some cases, it is removed to form a second free surface F2.
  • the first free surface F1 of the object to be destroyed 1 consists of two inclined fracture surfaces 51a and 51b inclined from the center back to both outer surfaces.
  • a plurality of transversely inclined fracture holes 52A and 52B along the inclined fracture surfaces 51a and 51b are viewed in plan using a drilling device or the like. The openings are formed in a staggered manner.
  • These inclined fracture holes 52 A and 52 B are formed so that the tips 52 i reach the intersection line P of the inclined fracture surfaces 51 a and 51 b, respectively.
  • 5 1 a, 5 1 b formed adjacent inclined obstruction holes 5 2 A, 52 B openings 52 a center distance XA, and tip end 52 2 i center distance XA 2 Is the width L (actually L a and L i) of the direct breakdown region 13 by the discharge pull 3
  • each is set to be twice or less the width L of the direct destruction region 13.
  • the width L of the direct destruction region 13 satisfies the range of the above formula (1).
  • Discharge probes 3 are loaded into the inclined breaking holes 52A and 52B, respectively, and the discharge switch 9a is turned on, and a high voltage is applied from the capacitor 10a to all the discharge probes 3 in a very short time.
  • the ⁇ supplied and applied to the thin metal wire 8 causes the instantaneous vaporization of the thin metal wire 8 and the surrounding liquid 4 for destruction, and the impact force is transmitted to the surrounding object 1 to be directly destroyed. 3 is destroyed. Thereby, the leading groove 51 is hollowed out to form the second free surface F2.
  • the next breaking hole 51 ' is formed at any position and in any direction according to the direct breaking area 13 of the discharge pull 3
  • the discharge pull 3 is loaded into the breaking hole 5 1 ′.
  • the object to be destroyed is destroyed sequentially or simultaneously, the leading groove 51 is enlarged, and this is repeated to destroy the object to be destroyed 1.
  • the preceding groove was formed by the discharge pull 3 of the destruction hole formed in the staggered position, whereas in the sixth embodiment, the destruction hole was formed. Are formed at opposing positions to form the preceding groove 61.
  • the first free surface F1 of the object to be destroyed 1 consists of two inclined fracture surfaces 61a and 61b inclined from the center back to both outer surfaces.
  • a plurality of inclined fracture holes 62A, 62B on a cross section along the inclined fracture surfaces 6la, 61b are facing each other using a drilling device etc. Formed in position.
  • the distance XB i between the base opening 62 a of the adjacent inclined fracture hole 62 a and 62 b on the same inclined fracture surface 61 a or 61 b and the distal end 62 i is the width L (actually L a and L i) of the direct breakdown region 13 due to the discharge pull 3,
  • each is set to less than twice L.
  • the width L of the direct destruction region 13 satisfies the range of the above formula (1).
  • Discharge probes 3 are loaded into the inclined breaking holes 62A and 62B, respectively.
  • the discharge switch 9a is turned on, and the high voltage is discharged from the capacitor 10a in a very short time. And applied to the thin metal wire 8.
  • the thin metal wire 8 and the surrounding liquid 4 are instantaneously vaporized, and the impact force is transmitted to the surrounding object 1 to be destroyed by discharge in a state where the rupture area 13 is directly connected. .
  • the inverted trapezoidal leading groove 21 is hollowed out to form the second free surface F2.
  • the entire opening surface of the leading groove 61 is completely destroyed, and the free surface is completely cut out of the leading groove 61 on one object 1 as shown in Fig. 20. Discharge breakdown.
  • a break hole 6 2 ′ is formed around the leading groove 61 in accordance with the direct break area 13 of the discharge probe 3, and the discharge probe 3 is loaded in the break hole 1.
  • the object to be destroyed is sequentially or simultaneously destroyed, and the leading groove 61 is enlarged. This is repeated, and the object to be destroyed 1 is destroyed.
  • leading grooves 51 and 61 are respectively linear, but may be curved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

To destroy an object (1) having a free surface by means of a discharge hydraulic pressure destroying tool (3), a preliminary hole (11) is first bored in the first free surface to make the inner surface a second free surface (F2), and a destroy hole (12-1) is bored in the first free surface (F1) near the preliminary hole. The discharge hydraulic pressure destroying tool (3) is put in the destroy hole and part of the object (1) is destroyed, enlarging the destroy hole (12-1) and the second free surface (F2) continuous with the preliminary hole (11). Next, another destroy hole (12-2) parallel to the preliminary hole (11) is bored near the preliminary hole (11), a discharge hydraulic pressure destroying tool (3) is put in the destroy hole (12-2), and part of the object (1) is destroyed. Repeating this procedure and enlarging the preliminary hole (11) stepwise, the object is destroyed effectively.

Description

明 細 書  Specification
放電液圧破壊工法  Discharge hydraulic pressure destruction method
発明の分野 Field of the invention
本発明は、 自由面が 1面である被破壊物、 たとえばトンネルや宅 地造成地の岩盤、 コンク リー ト構造物、 水中の岩盤やコンク リート 構造物を破壊するための放電液圧破壊工法に関する。 発明の背景  The present invention relates to a discharge hydraulic fracturing method for destroying an object to be destroyed having one free surface, for example, a bedrock, a concrete structure, an underwater bedrock or a concrete structure of a tunnel or a residential land development site. . Background of the Invention
従来、 コンデンサに充電蓄積された電気エネルギーを極めて短時 間に金属細線に放電供給し、 これにより金属細線自身および周囲の 破壊用液体の急激な気化による衝撃力で周囲の被破壊物を破壊する 放電液圧破壊工法がある。 この放電液圧破壊工法は周辺温度や装填 後の経過時間などに左右されず、 電圧を印加しないかぎり爆発しな いため、 極めて安全性が高く 、 かつ破壊力を容易に調節できるため 、 老朽化したビルなどのコンク リー卜構造物の破壊に利用されてい る。  Conventionally, electric energy charged and stored in a capacitor is discharged and supplied to a thin metal wire in a very short time, thereby destroying the object to be damaged by the impact force caused by rapid vaporization of the thin metal wire itself and the surrounding liquid for breaking. There is a discharge hydraulic pressure destruction method. This discharge hydraulic pressure destruction method does not depend on the ambient temperature, the elapsed time after loading, etc., does not explode unless voltage is applied, and is extremely safe. It is used to destroy concrete structures such as buildings.
従来に放電液圧破壊工法が採用される被破壊物は、 通常回りが全 て自由面であるコンク リート塊などであり、 岩盤などのように自由 面が 1面の被破壊物に適用されることが少なかった。 発明の開示  Conventionally, the destruction object to which the discharge hydraulic pressure method is adopted is a concrete lump or the like that normally has a free surface, and is applied to a destruction object with one free surface such as rock. There were few things. Disclosure of the invention
本発明は、 自由面が 1面の被破壊物をより効果的に破壊できる放 電波圧破壊工法を提供することを目的とする。  An object of the present invention is to provide a radio wave pressure destruction method capable of more effectively destroying an object having one free surface.
この目的をために、 本発明の放電液圧破壊工法は、 コンデンサに 充電蓄積した電気エネルギーを金属細線に極めて短時間に供給する ことにより、 金属細線およびその周囲の液体の急激な気化、 体積膨 張により発生する衝撃力を利用する放電液圧破壊具を使用して、 自 由面が 1面である被破壊物を破壊するに際し、 まずこの第 1 の自由 面に先行孔を垂直に穿設してその内面を第 2の自由面とし、 この先 行孔の周囲の第 1 の自由面 1か所に破壊孔を形成し、 この破壊孔内 に放電液圧破壊具を装填して被破壊物を放電破壊し、 破壊孔を広げ て先行孔に連続する第 2の自由面を拡大し、 さ らに先行孔の周囲に 次の破壊孔を形成して放電液圧破壊具により放電破壊し、 これを繰 り返して先行孔を広げることを特徴とする。 To this end, the discharge hydraulic rupture method of the present invention supplies the electric energy charged and stored in the capacitor to the metal wire in an extremely short time. By using a discharge hydraulic pressure breaker that uses the impact force generated by the rapid vaporization and volume expansion of the thin metal wire and its surrounding liquid, the object to be destroyed has one free surface. At this time, first, a leading hole is vertically drilled in this first free surface and its inner surface is made a second free surface, and a destruction hole is formed in one place of the first free surface around the leading hole, A discharge hydraulic pressure rupture device is loaded into the rupture hole to discharge-break the object to be destroyed, and the rupture hole is expanded to expand the second free surface continuous with the preceding hole. This method is characterized in that a discharge hole is formed and the discharge is destroyed by a discharge hydraulic pressure breaker, and this is repeated to expand the preceding hole.
上記構成によれば、 自由面と先行孔により形成した第 2の自由面 とを利用して効果的に被破壊物を破壊することができ、 2回目から 破壊拡大された第 2の自由面を逐次利用して、 次の破壊孔に装填し た放電液圧破壊具によりさらに効果的に被破壊物を破壊することが できる。  According to the above configuration, the object to be destroyed can be effectively destroyed using the free surface and the second free surface formed by the preceding hole, and the second free surface that has been destroyed and expanded from the second time can be obtained. By sequentially utilizing the discharge hydraulic pressure breaker loaded in the next break hole, the object to be broken can be more effectively destroyed.
また上記構成の先行孔の直径を Φ A , 先行孔の深さを D A、 破壊 孔の直径を Φ Β , 破壊孔の深さを D Bとすると、 φ Α > φ Β 、 D A ≥D Bの範囲であることを特徴とする。  When the diameter of the leading hole in the above configuration is Φ A, the depth of the leading hole is DA, the diameter of the breaking hole is Φ Β, and the depth of the breaking hole is DB, φ Α> φ 、 and DA ≥ DB There is a feature.
上記構成によれば、 先行孔の直径 : φ A >破壊孔の直径 : φ B S することにより、 直接破壊領域を広くできて放電液圧破壊具の破壊 力を有効に利用できる。 また先行孔の深さ : D A≥破壊孔の深さ : D Bとすることにより、 直接破壊領域を破壊孔と先行孔との間で確 実に連続させることができ、 直接破壊領域における被破壊物の塊を 確実にく り抜く ことができる。  According to the above configuration, the diameter of the leading hole: φA> the diameter of the breaking hole: φBS makes it possible to widen the direct breaking area and effectively use the breaking force of the discharge pressure breaking tool. By setting the depth of the preceding hole: DA ≥ the depth of the breaking hole: DB, the direct breaking area can be reliably connected between the breaking hole and the preceding hole, and the object to be destroyed in the direct breaking area can be surely connected. The lump can be reliably cut out.
また、 他の放電液圧破壊工法は、 コンデンサに充電蓄積した電気 エネルギーを金属細線に極めて短時間に供給することにより、 金属 細線およびその周囲の液体の急激な気化、 体積膨張により発生する 衝撃力を利用する放電液圧破壊具を使用して、 自由面が 1面である 被破壊物を破壊するに際し、 まず自由面に先行孔を穿設してその内 面を第 2の自由面とし、 この先行孔の周囲に破壊孔を複数本形成し て、 それぞれの破壊孔に放電液圧破壊具を装填しておき、 コンデン サの電気エネルギーを各破壊孔の放電液圧破壊具に周方向に順次供 給して放電破壊することを特徴とする。 In addition, other discharge hydraulic pressure destruction methods use metal energy by charging electrical energy stored in a capacitor in a very short time. When using a discharge hydraulic pressure breaker that makes use of the impact force generated by the rapid vaporization and volume expansion of the thin wire and its surroundings, the free surface has one surface. A preceding hole is drilled and its inner surface is used as a second free surface. A plurality of breaking holes are formed around the preceding hole, and a discharge hydraulic pressure breaking tool is loaded in each of the breaking holes. It is characterized in that the electric energy of the power supply is sequentially supplied in the circumferential direction to the discharge hydraulic pressure rupture tool of each rupture hole to cause the discharge to break.
上記構成によれば、 自由面と先行孔により形成した第 2の自由面 とを利用して効果的に被破壊物を破壊することができ、 2回目から 破壊拡大された第 2の自由面を逐次利用して、 次の破壊孔に装填し た放電液圧破壊具によりさらに効果的に被破壊物を破壊することが できる。 しかも連続して破壊するので、 作業の能率が良く、 また順 次放電破壊を行うので、 順次作業状況を把握しつつ次の破壊作業に 移ることができる。  According to the above configuration, the object to be destroyed can be effectively destroyed using the free surface and the second free surface formed by the preceding hole, and the second free surface that has been destroyed and expanded from the second time can be obtained. By sequentially utilizing the discharge hydraulic pressure breaker loaded in the next break hole, the object to be broken can be more effectively destroyed. In addition, continuous destruction results in good work efficiency, and sequential discharge destruction allows the user to proceed to the next destruction work while grasping the work status in sequence.
また上記構成において、 隣接する破壊孔間の距離 Yは、 放電液圧 破壊具による直接破壊領域の幅を Lとすると、 Y > Lとすることを 特徴とする。  Further, in the above configuration, the distance Y between adjacent breaking holes is such that Y> L, where L is the width of the direct breaking area by the discharge pressure breaker.
上記構成によれば、 放電液圧破壊具による先の放電破壊により、 五に放電破壊する隣接する破壊孔および放電液圧破壊具に悪影響を 及ぼすことがなく、 スムーズに破壊することができる。  According to the above configuration, the discharge breakdown by the discharge hydraulic pressure destroyer can be smoothly performed without adversely affecting the adjacent breaking hole and the discharge hydraulic pressure breakdown tool which cause the discharge breakdown.
さ らに上記構成の先行孔の直径を Ψ A , 先行孔の深さを D A、 破 壊孔の直径を Φ Β , 破壊孔の深さを D Bとすると、 φ Α > φ B、 D A≥D Bの範囲であることを特徴とする。  Furthermore, if the diameter of the preceding hole in the above configuration is ΨA, the depth of the preceding hole is DA, the diameter of the fracture hole is ΦΦ, and the depth of the fracture hole is DB, φΑ> φB, DA≥DB It is characterized by being in the range.
上記構成によれば、 先行孔の直径 : Φ A〉破壊孔の直径 : φ Bと することにより、 直接破壊領域を広くできて放電液圧破壊具の破壊 力を有効に利用できる。 また先行孔の深さ : D A≥破壊孔の深さ : D Bとすることにより、 直接破壊領域を破壊孔と先行孔との間で確 実に連続させることができ、 直接破壊領域における被破壊物の塊を 確実にく り抜く ことができる。 According to the above configuration, by setting the diameter of the preceding hole: ΦA> the diameter of the breaking hole: φB, the direct breaking area can be widened, and the breaking of the discharge hydraulic pressure breaking tool can be achieved. You can use the power effectively. By setting the depth of the preceding hole: DA ≥ the depth of the breaking hole: DB, the direct breaking area can be reliably connected between the breaking hole and the preceding hole, and the object to be destroyed in the direct breaking area can be surely connected. The lump can be reliably cut out.
他の方伝液圧破壊工法は、 コンデンサに充電蓄積した電気工ネル ギ一を金属細線に極めて短時間に供給することにより、 金属細線お よびその周囲の液体の急激な気化、 体積膨張により発生する衝撃力 を利用する放電液圧破壊具を使用して、 自由面が 1面である被破壊 物を破壊するに際し、 まず自由面に先行孔を穿設してその内面を第 2の自由面とし、 この先行孔の周囲に破壊孔を複数本形成して、 そ れぞれの破壊孔に放電液圧破壊具を装填しておき、 コンデンサの電 気エネルギーを各破壊孔の放電液圧破壊具に同時に供給して放電破 壊することを特徴とする。  On the other hand, the hydraulic destruction method generates electric energy by charging and accumulating electric energy in a capacitor to a thin metal wire in an extremely short time, causing rapid vaporization and volume expansion of the thin metal wire and the liquid around it. When destroying an object to be destroyed with one free surface using a discharge hydraulic pressure rupture tool that utilizes the impact force that occurs, a leading hole is first drilled in the free surface, and the inner surface is made into the second free surface. A plurality of destruction holes are formed around the preceding hole, and discharge fluid pressure destruction tools are loaded in each of the destruction holes. It is characterized in that it is simultaneously supplied to the tool and the discharge is destroyed.
上記構成によれば、 自由面と先行孔により形成した第 2の自由面 とを利用して効果的に被破壊物を破壊することができ、 同時に放電 破壊されて拡大される第 2の自由面がそう ごに干渉して効果的に被 破壊物を破壊することができる。 しかも同時に破壊するので、 破壊 作業の能率を向上することができる。  According to the above configuration, the object to be destroyed can be effectively destroyed by utilizing the free surface and the second free surface formed by the preceding hole, and at the same time, the second free surface which is destroyed by discharge and expanded Can effectively destroy the object to be destroyed. In addition, since they are destroyed at the same time, the efficiency of the destruction work can be improved.
また上記構成において、 隣接する破壊孔間の中心間距離 Yは、 放 電液圧破壊具による直接破壊領域の幅を Lとすると、 Y≤ 2 X Lと することを特徴とする。  Further, in the above configuration, the distance Y between centers between adjacent breaking holes is set to Y≤2XL, where L is the width of the direct breaking area by the discharge hydraulic pressure breaking tool.
上記構成によれば、 隣接する破壊孔の直接破壊領域同士を繋げて 確実に破壊塊をく り抜く ことができ、 またく り抜く体積も大きくで さる。  According to the above configuration, it is possible to reliably cut out the broken lump by connecting the direct breaking areas of the adjacent breaking holes, and to reduce the volume to be cut out.
また上記構成の先行孔の直径を φ A , 先行孔の深さを D A、 破壊 孔の直径を Φ Β , 破壊孔の深さを D Βとすると、 φ Α > φ Β、 D A ≥D Bの範囲であることを特徴とする。 In addition, the diameter of the preceding hole of the above configuration is φA, the depth of the preceding hole is DA, When the diameter of the hole is Φ, and the depth of the fracture hole is D Β, it is characterized by φ φ> φ Β and DA ≥ DB.
上記構成によれば、 先行孔の直径 : Φ A >破壊孔の直径 : φ B S することにより、 直接破壊領域を広くできて放電液圧破壊具の破壊 力を有効に利用できる。 また先行孔の深さ : D A≥破壊孔の深さ : D Bとすることにより、 直接破壊領域を破壊孔と先行孔との間で確 実に連続させることができ、 直接破壊領域における被破壊物の塊を 確実にく り抜く ことができる。  According to the above configuration, by setting the diameter of the preceding hole: Φ A> the diameter of the breaking hole: φ B S, the direct breaking area can be widened and the breaking force of the discharge pressure breaking tool can be effectively used. By setting the depth of the preceding hole: DA ≥ the depth of the breaking hole: DB, the direct breaking area can be reliably connected between the breaking hole and the preceding hole, and the object to be destroyed in the direct breaking area can be surely connected. The lump can be reliably cut out.
さらに上記各構成において放電液圧破壊具による直接破壊領域の 幅を L、 先行孔の直径を Φ Aとすると、 先行孔と破壊孔の中心間距 離 Xは、 Χ≤ 〔 ( A / 2 ) 2 + L 2 〕 の範囲にあり、 放電液圧 破壊具に供給されるコンデンサの充電電圧を V c (ポルト) とする と、 直接破壊領域の距離を L ( c m ) は、 I V c I / 1 2 0≥ L≥ I V c I / 1 2 0 0の範囲にあることを特徴とする。  Furthermore, assuming that the width of the direct breaking area by the discharge hydraulic pressure breaking tool is L and the diameter of the leading hole is ΦA in each of the above configurations, the distance X between the center of the leading hole and the breaking hole is Χ≤ ((A / 2) 2 + L 2], and assuming that the charging voltage of the capacitor supplied to the discharge fluid breaker is V c (port), the distance of the direct breakdown region is L c cm / IV c I / 12 It is characterized by being in the range of 0≥L≥IV c I / 1200.
上記構成によれば、 所定の直接破壊領域に必要とする充電電圧を 確実に供給することができ、 必要な直接破壊領域を確実に得ること ができる。  According to the above configuration, the required charging voltage can be reliably supplied to the predetermined direct breakdown region, and the required direct breakdown region can be reliably obtained.
他の方伝液圧破壊工法は、 コンデンサに充電蓄積した電気工ネル ギーを金属細線に極めて短時間に供給することにより、 金属細線お よびその周囲の液体の急激な気化、 体積膨張により発生する衝撃力 を利用する放電液圧破壊具を使用して、 自由面が 1面である被破壊 物を破壊するに際し、 まず自由面の破壊中心となる穿孔部の周囲複 数箇所に、 先端が穿孔部の中心に向く傾斜破壊孔を形成して、 この 傾斜破壊孔内にそれぞれ放電液圧破壊具を装填し、 コンデンサから 電気エネルギーを各放電液圧破壊具に短時間で同時に供給して被破 壊物を放電破壊することにより、 穿孔部をく り抜いて第 2の自由面 を形成し、 第 2の自由面の周囲の第 1 の自由面に複数の破壊孔を形 成して、 それぞれの破壊孔に装填された放電液圧破壊具により被破 壞物を放電破壊して第 2の自由面をさらに拡大し、 これを繰り返し て被破壊物を放電破壊することを特徴とする。 On the other hand, the hydraulic destruction method generates electricity due to the rapid vaporization and volume expansion of the metal wire and the surrounding liquid by supplying the electrical energy charged and accumulated in the capacitor to the metal wire in a very short time. When using a hydraulic fluid destruction tool that makes use of impact force to break an object that has only one free surface, the tip is first drilled at several locations around the perforated part, which is the center of destruction of the free surface. An inclined fracture hole facing the center of the part is formed, a discharge hydraulic pressure destroyer is loaded in each of the inclined fracture holes, and electrical energy is simultaneously supplied from a capacitor to each of the discharge hydraulic pressure destroyers in a short time to cause damage. By puncturing the crushed object by electric discharge, the perforated part is cut out to form a second free surface, and a plurality of destruction holes are formed on the first free surface around the second free surface. The object to be destroyed is discharged by a discharge hydraulic pressure breaker loaded in the breaking hole, thereby further enlarging the second free surface, and this is repeated to discharge and destroy the object to be destroyed.
上記構成によれば、 第 1 の自由面で破砕しょう とする穿孔部に、 先端部が互いに接近するように複数本の傾斜破壊孔を周方向に形成 し、 この傾斜破壊孔に放電液圧破壊具を装填して放電破壊すること により、 直接破壊領域が及ばない穿孔部を効果的にく り抜いて第 2 の自由面を形成することができる。 そしてこの第 2の自由面の周囲 に次の破壊孔を形成して放電液圧破壊具で放電破壊し、 これを繰り 返すことで第 2の自由面を拡大して効果的に被破壊物を破壊するこ とができる。  According to the above configuration, a plurality of inclined breaking holes are formed in the circumferential direction in the perforated portion to be crushed on the first free surface so that the tips are close to each other. By mounting the tool and performing the discharge breakdown, the second free surface can be formed by effectively cutting out the perforated portion that does not directly reach the breakdown region. Then, the next destruction hole is formed around the second free surface, the discharge is destroyed by the discharge hydraulic pressure breaker, and by repeating this process, the second free surface is enlarged to effectively destroy the object to be destroyed. It can be destroyed.
また上記構成において、 周方向に隣接する傾斜破壊孔の開口部中 心間の距離 Eは、 放電液圧破壊具による直接破壊領域の幅を Lとす ると、 E≤ 2 X Lの範囲にあり、 また隣接する傾斜破壊孔の先端部 間のうち、 最も離れている傾斜破壊孔の先端部間の距離を、 両放電 液圧破壊具による直接破壊領域が互いに接するかまたは重なるよう に設定して、 底部で直接破壊領域を連続させて穿孔部をく り抜く こ とを特徴とする。  In the above configuration, the distance E between the centers of the openings of the inclined breaking holes adjacent in the circumferential direction is in the range of E≤2XL, where L is the width of the direct breaking area by the discharge hydraulic pressure breaking tool. In addition, the distance between the distal ends of the farthest inclined breaking holes among the leading ends of the adjacent inclined breaking holes is set so that the direct breaking areas by both discharge hydraulic pressure breakers touch or overlap each other. The feature is that the perforated part is hollowed out by directly connecting the fracture area directly at the bottom.
上記構成によれば、 周方向に形成された傾斜破壊孔の開口部にお ける直接破壊領域を連続させるとともに、 底部の傾斜破壊孔の先端 部間で直接破壊領域を連続させることことができ、 対抗する傾斜破 壊孔の開口部間で直接破壊領域が連続しない広い範囲であっても、 底部で直接破壊領域を連続させることにより、 穿孔部を開口部間で 周方向にく り抜いて被破砕物の塊を取り出すことができ、 広範囲に 第 2の自由面を形成することができる。 According to the above configuration, the direct breaking region at the opening of the inclined breaking hole formed in the circumferential direction can be made continuous, and the direct breaking region can be made continuous between the tip portions of the inclined breaking hole at the bottom. Even in a wide range where the direct fracture area is not continuous between the openings of the opposing inclined rupture holes, the perforated section can be connected between the openings by making the direct fracture area continuous at the bottom. The crushed material can be taken out by cutting out in the circumferential direction, and the second free surface can be formed in a wide area.
さ らに上記構成において、 放電液圧破壊具に供給されるコンデン サの充電電圧を V c (ポルト) とすると、 直接破壊領域の幅 L ( c m) は、 I V C I Z I S O ^ L ^ I V C I / I S O Oの範囲にある ことを特徴とする。  Further, in the above configuration, assuming that the charging voltage of the capacitor supplied to the discharge hydraulic pressure destroyer is V c (port), the width L (cm) of the direct breakdown region is in the range of IVCIZISO ^ L ^ IVCI / ISOO. It is characterized in that
上記構成によれば、 直接破壊領域を形成するのに必要とする充電 電圧を確実に供給することができ、 必要な直接破壊領域を確実に得 ることができる。  According to the above configuration, the charging voltage required to form the direct breakdown region can be reliably supplied, and the necessary direct breakdown region can be reliably obtained.
また他の放電液圧破壊工法は、 コンデンサに充電蓄積した電気工 ネルギーを金属細線に極めて短時間に供給することにより、 金属細 線およびその周囲の液体の急激な気化、 体積膨張により発生する衝 擊カを利用する放電液圧破壊具を使用して、 自由面が 1面である被 破壊物を破壊するに際し、 まず第 1 の自由面に形成されて破壊中心 となる先行溝の、 奥部中心から外側に広がる傾斜破壊面に沿って、 複数箇所に傾斜破壊孔を形成し、 この破壊孔内にそれぞれ放電液圧 破壊具を装填し、 コンデンサから電気エネルギーを各放電液圧破壊 具に短時間で同時に供給して被破壊物を放電破壊することにより、 先行溝をく り抜いて第 2の自由面を形成し、 この先行溝の周囲に複 数の次の破壊孔を形成して、 それぞれの破壊孔に装填された放電液 圧破壊具により被破壊物を放電破壊して先行溝を拡大し被破壊物を 放電破壊することを特徴とする。  In another discharge hydraulic pressure destruction method, the electric energy charged and accumulated in a capacitor is supplied to the fine metal wire in a very short time, so that the impulse generated by rapid vaporization and volume expansion of the fine metal wire and the liquid around it. When the object to be destroyed, which has one free surface, is destroyed by using a discharge hydraulic pressure breaker that utilizes a lid, first, the inner part of the preceding groove that is formed on the first free surface and becomes the center of the fracture A plurality of inclined fracture holes are formed along the inclined fracture surface extending from the center to the outside, and discharge fluid pressure breakers are loaded in these fracture holes, respectively, and electric energy is shorted to each discharge fluid break device from the capacitor. At the same time, the material to be destroyed is discharged and destroyed by electric discharge, so that the leading groove is cut out to form a second free surface, and a plurality of subsequent breaking holes are formed around the leading groove. The discharge loaded in each breaking hole It is characterized in that the object to be destroyed is discharged by an electro-hydraulic breaker, the leading groove is enlarged, and the object to be destroyed is discharged.
上記方法によれば、 自由面の先行溝を、 中心から外側に広がる両 傾斜破壊面に沿って先端部が互いに交差または接近するように形成 された傾斜破壊孔を形成し、 これら傾斜破壊孔に放電液圧破壊具を 装填して放電破壊することにより、 先行溝を効果的にく り抜いて第According to the above method, the leading groove of the free surface is formed with inclined breaking holes formed so that the tips cross each other or approach each other along the two inclined breaking surfaces extending outward from the center. Discharge hydraulic pressure breaker By loading and discharging, the leading groove is effectively cut out and
2の自由面を形成することができ、 次いでこの第 2の自由面を利用 して効果的に被破壊物を破壊することができる。 The second free surface can be formed, and then the object to be destroyed can be effectively destroyed by using the second free surface.
また上記構成において、 複数の傾斜破壊孔を両傾斜破壊面間で互 いに対向する位置に形成し、 前記傾斜破壊孔の先端かそれぞれ前記 傾斜破壊面の交差線に達するように形成され、 同一の傾斜破壊面上 でそれぞれ隣接する傾斜破壊孔の開口部の中心間距離 X A と、 傾 斜破壊孔の先端部の中心間距離 X A 2 は、 放電液圧破壊具による直 接破壊領域の幅を Lとすると、 ≤ 2 X L , X A 2 ≤ 2 X Lの 範囲にあり、 また両破壊面間で隣接する傾斜破壊孔の先端部の中心 間距離 Y A 2 は、 Y A 2 ≤ 2 X Lの範囲にあることを特徴とする。 上記構成によれば、 傾斜破壊孔を傾斜破壊面に沿って平面視が千 鳥上に形成配置することにより、 先行溝を直接破壊領域より広い幅 で放電破壊して被破壊物の塊を底部から確実にく り抜く ことができ る。 In the above configuration, a plurality of inclined breaking holes are formed at positions facing each other between the two inclined breaking surfaces, and formed so as to reach a tip of the inclined breaking hole or an intersection line of the inclined breaking surfaces, respectively. a center-to-center distance XA in the opening portion of the inclined destroy holes adjacent inclined destroy surfaces on the respective distance between the centers XA 2 of the distal end portion of the inclined swash-breaking pores are a width of direct destroy region due to discharge pressure destroying tool If L, it is within the range of ≤ 2 XL, XA 2 ≤ 2 XL, and the distance YA 2 between the centers of the tips of the adjacent inclined fracture holes between both fracture surfaces must be within the range of YA 2 ≤ 2 XL It is characterized by. According to the above configuration, by forming the inclined fracture holes along the inclined fracture surface in a staggered manner in plan view, the leading groove is directly destroyed by discharge with a width wider than the destruction area, and the lump of the object to be destroyed is formed at the bottom. Can be reliably cut out from
さらに先の構成において、 傾斜破壊孔を傾斜破壊面に沿って互い に対向する位置に形成し、 同一破壊面上でそれぞれ隣接する傾斜破 壊孔の開口部中心間の距離 X B 2 と、 傾斜破壊孔の先端部中心間の 距離 X B 2 は、 放電液圧破壊具による直接破壊領域の幅を Lとする と、 ≤ 2 X L , X B 2 2 X Lの範囲にあり、 また対向する 傾斜破壊孔の先端部の中心間距離 Y B 2 は、 第 1 の自由面に対する 傾斜破壊孔の傾斜角を とすると、 Y B 2 ≤ 2 X L cos ( 9 0 ° — Θ ) の範囲にあることを特徴とする。 In the further configuration, the inclined fracture holes are formed at positions facing each other along the inclined fracture surface, and the distance XB 2 between the centers of the openings of the adjacent inclined fracture holes on the same fracture surface, and the inclined fracture distance XB 2 between the tip portion centers of the holes, and the width of the direct destroy region due to discharge pressure destroying tool and L, ≤ 2 XL, in the range of XB 2 2 XL, also the tip of the inclined destroy holes facing The distance YB 2 between the centers of the portions is characterized by being in the range of YB 2 ≤ 2 XL cos (90 ° — Θ), where is the inclination angle of the inclined fracture hole with respect to the first free surface.
上記構成によれば、 破壊孔を破壊面に沿って対抗して形成配置す ることにより、 先行溝の開口を直接破壊領域より広い幅で放電破壊 して被破壊物を底部から確実にく り抜く ことができる。 According to the above configuration, by forming and arranging the rupture holes in opposition along the rupture surface, the opening of the preceding groove is directly destroyed by discharge with a wider width than the rupture area. As a result, the object to be destroyed can be reliably cut out from the bottom.
また上記両構成おいて、 放電液圧破壊具に供給されるコンデンサ の充電電圧を V c (ボルト) とすると、 直接破壊領域の幅 L ( c m ) は、 | V c | / 1 2 0≥ L≥ | V c 1 / 1 2 0 0の範囲にあるこ とを特徴とする。  Also, in both of the above configurations, assuming that the charging voltage of the capacitor supplied to the discharge hydraulic pressure destroyer is V c (volt), the width L (cm) of the direct breakdown region is | V c | / 120 ≥ L ≥ | V c 1/1200 is characteristic.
上記構成によれば、 直接破壊領域を形成するのに必要とする充電 電圧を確実に供給することができ、 必要な直接破壊領域を確実に得 ることができる。  According to the above configuration, the charging voltage required to form the direct breakdown region can be reliably supplied, and the necessary direct breakdown region can be reliably obtained.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る放電液圧破壊工法の第 1および第 2の実施 例を示し、 ( a ) は最初の破壊状態を示す平面図、 ( b) は同断面 図ある。  FIGS. 1A and 1B show first and second embodiments of the discharge hydraulic rupture method according to the present invention, wherein FIG. 1A is a plan view showing an initial broken state, and FIG.
図 2は、 同放電液圧破壊工法の破壊状態を示す説明図である。 図 3は、 同放電液圧破壊工法に使用する静電液圧破壊設備を示す 構成図である。  FIG. 2 is an explanatory view showing a destruction state of the discharge hydraulic pressure destruction method. FIG. 3 is a configuration diagram showing an electrostatic hydraulic destruction facility used in the discharge hydraulic destruction method.
図 4は、 同静電液圧破壊設備による被破壊物の破壊状態を示す断 面図である。  FIG. 4 is a cross-sectional view showing a destruction state of an object to be destroyed by the electrostatic hydraulic pressure destruction equipment.
図 5は、 同放電液圧破壊工法における放電衝撃力と充電電圧の関 係を示すグラフである。  Fig. 5 is a graph showing the relationship between the discharge impact force and the charging voltage in the same discharge hydraulic breakdown method.
図 6は、 同放電液圧破壊工法における直接破壊領域と充電電圧の 関係を示すグラフである。  FIG. 6 is a graph showing the relationship between the direct breakdown region and the charging voltage in the discharge hydraulic breakdown method.
図 7の ( a) ( b ) は、 それぞれ同放電液圧破壊工法における先 行孔と破壊孔を示す正面図で、 ( a ) は先行孔が大径で破壊孔が小 径時の直接破壊領域を示し、 ( b) 先行孔が小径で破壊孔が大径時 の直接破壊領域を示す。 図 8の ( a ) ( b ) は、 それぞれ放電液圧破壊工法における先行 孔と破壊孔の深さを示す断面図で、 ( a ) は先行孔より破壊孔が浅 い時の直接破壊領域を示し、 ( b ) 先行孔が浅く破壊孔が深い時の 直接破壊領域を示す。 (A) and (b) in Fig. 7 are front views showing the leading hole and the breaking hole in the same discharge hydraulic breakdown method, respectively, and (a) is a direct breakdown when the leading hole is large and the breaking hole is small. (B) Direct fracture area when the leading hole has a small diameter and the fracture hole has a large diameter. (A) and (b) in Fig. 8 are cross-sectional views showing the depths of the leading hole and the breaking hole in the discharge hydraulic breakdown method, respectively, and (a) shows the direct breaking area when the breaking hole is shallower than the leading hole. (B) The direct fracture area when the leading hole is shallow and the fracture hole is deep.
図 9は本発明に係る放電液圧破壊工法の第 3の実施例を示し、 ( a ) は破壊状態を示す平面図、 ( b ) は同断面図である。  FIG. 9 shows a third embodiment of the discharge hydraulic pressure breaking method according to the present invention, in which (a) is a plan view showing a broken state, and (b) is a sectional view of the same.
図 1 0は本発明に係る放電液圧破壊工法の第 4の実施例を示す被 破壊物の側面断面図を示す。  FIG. 10 is a cross-sectional side view of an object to be destroyed showing a fourth embodiment of the discharge hydraulic rupture method according to the present invention.
図 1 1 は同被破壊物の断面の説明図を示す。  FIG. 11 is an explanatory view of a cross section of the object to be destroyed.
図 1 2は同被破壊物の平面図を示す。  Fig. 12 shows a plan view of the object to be destroyed.
図 1 3は同被破壊物の穿孔部の底部が繋がらない状態の断面図を 示す。  FIG. 13 is a sectional view showing a state where the bottom of the perforated portion of the object to be destroyed is not connected.
図 1 4は、 本発明に係る放電液圧破壊工法の第 5の実施例を示す 一部切欠き斜視図を示す。  FIG. 14 is a partially cutaway perspective view showing a fifth embodiment of the discharge hydraulic rupture method according to the present invention.
図 1 5は同被破壊物の横断面図を示す。  Fig. 15 shows a cross-sectional view of the object.
図 1 6は同放電液圧破壊工法により破壊された先行溝の斜視図を 示す。  Fig. 16 shows a perspective view of the preceding groove destroyed by the discharge hydraulic pressure breaking method.
図 1 7は、 本発明に係る放電液圧破壊工法の第 6の実施例を示す 一部切欠き斜視図を示す。  FIG. 17 is a partially cutaway perspective view showing a sixth embodiment of the discharge hydraulic pressure breaking method according to the present invention.
図 1 8は同被破壊物の横断面図を示す。  Figure 18 shows a cross-sectional view of the object.
図 1 9は同被破壊物断面の説明図で示す。  Fig. 19 is an explanatory view of the cross section of the object to be destroyed.
図 2 0は同放電液圧破壊工法による破壊された先行溝の斜視図で ある。  FIG. 20 is a perspective view of a preceding groove broken by the discharge hydraulic pressure breaking method.
実施例の説明 Description of the embodiment
まず、 放電液圧破壊工法の概略について説明する。 図 3に示すよ うに、 被破壊物 1 に穿設された破壊孔 2に装填される放電液圧破壊 具である放電プルーブ 3は、 たとえば水などからなる破壊用液 4が 充填された合成ゴムや防水処理紙製の破壊容器 5 と、 この破壊容器 5の天板 5 aを貫通して破壊用液 4中に延び、 スぺーサ 6により互 いに平行に保持された一対の電極棒 7 と、 電極棒 7の先端部間に連 結された金属細線 8とで構成される。 そして被破壊物 1から離れて 配置された大容量のコンデンサ 1 0 aを有するエネルギー供給回路 1 0と、 前記電極棒 7 とが、 放電スイッチ 9 aを有するリー ド線 9 により接続されている。 このエネルギー供給回路 1 0は、 コンデン サ 1 0 aに電気エネルギーを充電蓄積する直流高電圧電源 1 0 bを 備え、 コンデンサ 1 0 aと直流高電圧電源 1 0 bとが接続線 1 0 d により互いに接続され、 前記接続線 1 0 dに充電スィ ッチ 1 0 cが 介在されている。 First, the outline of the discharge hydraulic pressure destruction method will be described. As shown in Figure 3 As described above, the discharge probe 3, which is a discharge hydraulic pressure rupture tool inserted into the rupture hole 2 formed in the object 1, is made of synthetic rubber or waterproof paper filled with a rupture liquid 4 such as water. And a pair of electrode rods 7, which penetrate through the top plate 5 a of the destruction container 5, extend into the liquid for destruction 4, and are held in parallel with each other by spacers 6, and a pair of electrode rods 7. And a thin metal wire 8 connected between the distal ends of the wires. An energy supply circuit 10 having a large-capacity capacitor 10a disposed apart from the object 1 to be destroyed and the electrode bar 7 are connected by a lead wire 9 having a discharge switch 9a. The energy supply circuit 10 includes a DC high-voltage power supply 10b that charges and stores electric energy in the capacitor 10a, and the capacitor 10a and the DC high-voltage power supply 10b are connected by a connection line 10d. They are connected to each other, and a charging switch 10c is interposed on the connection line 10d.
このエネルギー供給回路 1 0のコンデンサ 1 0 aの充電電圧 V c と、 放電プル一ブ 3の放電衝撃力 Fの関係は、 図 5の F— V c特性 を示すグラフのように比例関係にある。 ところで、 この放電プル一 ブ 3による直接破壊領域 1 3の幅 (平均幅) Lは、 図 4に示すよう に、 内部直接破壊領域 1 3 i の幅 L i と表面直接破壊領域 1 3 aの 幅 L aとが異なる。 そして、 放電衝撃力 Fと直接破壊領域 1 3の幅 L i , L aの関係 Fは図 6および①式に示すように、 充電電圧 V c (ボルト) と直接破壊領域 1 3の幅 L ( c m) の比例関係として導 かれる。  The relationship between the charging voltage V c of the capacitor 10 a of the energy supply circuit 10 and the discharge impact force F of the discharge pull 3 is in a proportional relationship as shown in the graph of F—V c characteristic in FIG. . By the way, as shown in FIG. 4, the width (average width) L of the direct breakdown region 13 due to the discharge pull 3 is equal to the width L i of the internal direct breakdown region 13 i and the width L i of the surface direct breakdown region 13 a. The width L a is different. The relationship F between the discharge impact force F and the widths L i and La of the direct breakdown region 13 is expressed by the charging voltage V c (volts) and the width L ( cm).
I V c | / 1 2 0≥ L≥ | V c 1 / 1 2 0 0…①式  I V c | / 1 2 0 ≥ L ≥ | V c 1/1 2 0 0… ①
図 6で、 表面の直接破壊両域 L aは①式の | V c I Z 1 2 0に対応 し、 内部の直接破壊両域 L i は①式の I V c 1 / 1 2 0 0に対応す る。 In Fig. 6, both the direct destruction regions L a on the surface correspond to | V c IZ 120 in equation (1), and the internal direct destruction areas L i correspond to IV c 1/200 in equation (2). You.
したがって、 図 6および①式により、 被破砕物 1 の破壊に必要と する直接破壊領域 1 3の幅 L i , L aに対応するコンデンサ 1 0 a の充電電圧 V c を供給することにより、 必要な直接破壊領域 1 3の 幅し (L i , L a ) を確実に得ることができる。  Therefore, by supplying the charging voltage Vc of the capacitor 10a corresponding to the widths L i and La of the direct destruction area 13 required for destruction of the crushed object 1 according to FIG. The width (L i, L a) of the direct destruction region 13 can be reliably obtained.
次に放電液圧破壊工法の第 1 の実施例を図 1 , 図 2を参照して説 明する。  Next, a first embodiment of the discharge hydraulic pressure destruction method will be described with reference to FIGS.
この工法により破壊される被破壊物 1 は岩盤やコンク リー ト基礎 、 コンクリ一 卜床などの自由面 F 1が 1面のものである。  The object 1 to be destroyed by this method has one free surface F1 such as bedrock, concrete foundation and concrete floor.
a . まず、 穿孔装置等を使用して被破壊物 1 の第 1 の自由面 F 1 に大口径の先行孔 1 1が垂直に形成され、 先行孔 1 1 の内面が第 2 の自由面 F 2 とされる。  a. First, a large-diameter precedence hole 11 is formed vertically on the first free surface F 1 of the object 1 to be destroyed using a drilling device or the like, and the inner surface of the precedence hole 1 1 is formed on the second free surface F 1. It is 2.
b - この先行孔 1 1 の周囲 1か所に放電プルーブ 3が装填されて 破壊される破壊孔 1 2 が第 1 の自由面 F 1 に垂直に (先行孔 1 1 と平行に) 形成される。  b-Disruption hole 1 2 is formed perpendicularly to the first free surface F 1 (parallel to the predecessor hole 11), where the discharge probe 3 is loaded and destroyed at one location around the preceding hole 1 1 .
この破壌孔 1 は、 その直径 φ Bが先行孔 1 1 の直径 φ Bより 小さく、 かつその深さ D Aが先行孔 1 1 の深さ D Bと同じかまたは 浅くなるように形成される ( Φ Α〉 Φ Β、 D A≥ D Β ) 。  This blast hole 1 is formed such that its diameter φB is smaller than the diameter φB of the preceding hole 11 and its depth DA is equal to or shallower than the depth DB of the preceding hole 11 (Φ Α> Φ Β, DA ≥ D Β).
これは図 7 ( a ) ( b ) から明らかなように、 放電破壊による衝 撃力が金属細線 8 (破壊孔 1 2 -!) を中心として発生し、 直接破壊 領域 1 3の幅 Lが第 2の自由面 F 2である先行孔 1 1 の内面に達し 、 破壊孔 1 2 と先行孔 1 1 の間の直接破壊領域 1 3が破壊される。 したがって、 φ Α> φ Bのほうが直接破壊領域 1 3の容積が広く有 利であり、 Φ Α≤ Φ Βであると放電破壊により破壊される直接破壊 領域 1 3の容積が小さく、 破壊効果を充分に発揮できないためであ る。 As can be seen from Figs. 7 (a) and 7 (b), the impact force due to discharge breakdown occurs around the thin metal wire 8 (break hole 1 2-!), And the width L of the direct break area 13 is The inner surface of the leading hole 11 which is the free surface F 2 of 2 is reached, and the direct breaking area 13 between the breaking hole 12 and the leading hole 11 is broken. Therefore, when φ 破 壊> φB, the volume of the direct destruction region 13 is larger and more advantageous, and when Φ Α ≤ Φ Β, the volume of the direct destruction region 13 which is destroyed by discharge breakdown is smaller, and Because it ca n’t be fully demonstrated. You.
また先行孔 1 1 と破壊孔 1 2 の深さを検討して見ると、 図 8 ( a ) , ( b ) に示すように、 深さが D A<D Bの場合には、 第 2の 自由面 F 2である先行孔 1 1の奥部まで直接破壊領域 1 3の幅しが 及ぶが、 それ以深では先行孔 1 1が存在しないため、 直接破壊領域 1 3が繋がらない場合があり、 クラックは発生するが、 塊としてく り抜く ことができない。 これに対して D A≥ D Bの場合には良好に 直接破壊領域 1 3が連続するからである。  When examining the depths of the leading hole 11 and the fracture hole 12, when the depth is DA <DB, as shown in FIGS. 8 (a) and 8 (b), the second free surface The width of the direct fracture area 13 extends to the depth of the preceding hole 11 which is F2, but there is no preceding hole 11 at a depth deeper, so the direct fracture area 13 may not be connected, and the crack It occurs but cannot be cut out as a lump. On the other hand, in the case of D A ≥ DB, the direct breakdown region 13 is satisfactorily continuous.
また破壊孔 1 2 の位置は、 図 1 に示すように、 先行孔 1 1の中 心 OAと破壊孔 1 2 の中心 0 Bとの中心間距離 Xが、 先行孔 1 1 の半径 Φ Α/ 2と、 破壊孔 1 2 -!の中心〇 Bを通る先行孔 1 1の接 線の中心 0 Bと接点の距離 Mとで直角三角形を形成することから、 X = ^ 〔 ( Φ Α/ 2 ) 2 + M 2 ) の関係にあり、  As shown in FIG. 1, the distance X between the center OA of the leading hole 11 and the center 0 B of the breaking hole 12 is determined by the radius Φ Α / of the leading hole 11 as shown in FIG. 2 and the center 0 B of the tangent of the preceding hole 1 1 passing through the center 〇 B of the fracture hole 1 2-! And the distance M of the contact point, form a right triangle, so that X = ^ [(Φ Α / 2 ) 2 + M 2)
ここで直接破壊される直接破壊領域 1 3 の幅 L_!と接線の距離 Mとが等しいかまたは距離 Mがそれ以下 とする必要が ある。 すると、  Here, it is necessary that the width L_! Of the direct destruction area 13 to be directly destroyed and the distance M of the tangent are equal or the distance M is smaller. Then
Χ≤ " 〔 ( A/ 2 ) 2 + L.j2 〕 …②式  Χ≤ "[(A / 2) 2 + L.j2]… ②
となる。 もちろん、 直接破壊領域 1 3 _】の幅 ついては①式が適 用できる。 Becomes Of course, equation (1) can be applied to the width of the direct destruction area 13_].
c . この破壊孔 1 2 に放電プルーブ 3を装填して放電スィ ッチ 9 aがオンされ、 コンデンサ 1 0 aから高電圧が極めて短時間に電 極棒 7の金属細線 8に供給される。 これにより、 金属細線 8 とその 回りの破壊用液 4が瞬間的に気化されてその衝撃力が周囲の被破壊 物 1 に伝達され、 直接破壊領域 1 3 _iが破壊される。 これにより、 第 2の自由面 F 2が拡大されて次の破壊が効果的に行われる。 d . さらに次の破壊孔 1 2 .2を穿設し、 同様に放電プル一ブ 3を 装填して次の破壊領域 1 3 -2が破壊される。 c. A discharge probe 3 is inserted into the destruction hole 12 and the discharge switch 9a is turned on, and a high voltage is supplied from the capacitor 10a to the thin metal wire 8 of the electrode rod 7 in a very short time. As a result, the thin metal wire 8 and the surrounding liquid for destruction 4 are instantaneously vaporized, and the impact force is transmitted to the surrounding object 1 to be destroyed, and the direct destruction region 13_i is destroyed. Thereby, the second free surface F2 is enlarged, and the next destruction is effectively performed. d. Further bored the following breakdown holes 1 2. 2 were loaded in the same manner as in discharge pull part 3 the following breakdown region 1 3-2 is destroyed.
ここで、 2回目からの放電破壊は、 先の破壊により拡大された第 2の自由面 F 2に対して行われるため、 直接破壊領域 1 3 .2〜 1 3 -5は図 2に示すように広がることになる。 なお、 破壊孔 1 2の中心 間距離 Yは、 破壊孔 1 2が前もって形成されて放電プルーブ 3が装 填されていないので、 後述する実施例のように直接破壊領域 1 3の 幅 Lに制約されることはない。 Here, the discharge breakdown of the second, to be done with respect to the second free surface F 2 which is enlarged by breaking previous direct breakdown region 1 3 2 to 1 3 -. 5 as shown in FIG. 2 Will spread. The distance Y between the centers of the breaking holes 1 and 2 is limited by the width L of the direct breaking region 13 as in the later-described embodiment because the breaking hole 12 is formed in advance and the discharge probe 3 is not loaded. It will not be done.
e . これを所定回数 (図では 5回) 繰り返して先行孔 1 1の全周 囲が破壊される。  e. By repeating this process a predetermined number of times (5 times in the figure), the entire circumference of the preceding hole 11 is destroyed.
つぎに放電液圧破壊工法の第 2の実施例を図 2を参照して説明す る。  Next, a second embodiment of the discharge hydraulic pressure destruction method will be described with reference to FIG.
破壊孔 1 2 .!〜 1 2 -5を先行孔 1 1 の周囲に予め形成されて放電 プルーブ 3が装填される。 そしてコンデンサ 1 0 aからそれぞれ破 壊孔 1 2 .!〜 1 2 .5の放電プループ 3に周方向に順次高電圧が印加 されて放電破壊される。 Destroy holes 1 2 to 1 2 -.! 5 a is previously formed around the leading holes 1 1 discharge probe 3 is loaded. Then壊孔1 2 implosion respectively from capacitor 1 0 a.! ~ 1 2. 5 sequentially high voltage to the discharge Purupu 3 in the circumferential direction of the discharge breakdown is applied.
この第 2の実施例によれば、 第 1の自由面 F 1 と先行孔 1 1 によ り形成した第 2の自由面 F 2 とを利用して効果的に被破壊物を順次 破壊することができ、 2回目から破壊により逐次拡大される第 2の 自由面 F 2を利用して、 次の破壊孔 1 2 .2〜 1 2 -5に装填した放電 プルーブ 3によりさらに効果的に被破壊物 1 を破壊することができ る。 しかも連続して破壊するので、 作業の能率が良く、 また順次作 業状況を把握しつつ破壊作業を進めることもできる。 According to the second embodiment, the object to be destroyed is sequentially and effectively destroyed by using the first free surface F 1 and the second free surface F 2 formed by the preceding hole 11. can be, by utilizing the second free surface F 2 is sequentially enlarged by breaking of the second, next-breaking pores 1 2 2 to 1 2 -. more effectively be destroyed by a discharge probe 3 was charged to 5 Object 1 can be destroyed. In addition, because they are destroyed continuously, work efficiency is high, and destruction work can be performed while grasping the work status in sequence.
なお、 隣接する破壊孔 1 2の中心間距離 Yを、 直接破壊領域 1 3 の幅 L以下、 すなわち Y > L…③とすることで、 放電破壊により、 隣接する破壊孔 1 2およびそれに装填された放電プルーブ 3に悪影 響を及ぼすことがなく、 順次スムーズに放電破壊を行う ことができ る。 By setting the distance Y between the centers of the adjacent destruction holes 12 to be equal to or less than the width L of the direct destruction region 13, that is, Y> L. Discharge breakdown can be sequentially and smoothly performed without adversely affecting the adjacent destruction holes 12 and the discharge probe 3 loaded therein.
さらに放電液圧破壊工法の第 3の実施例を図 3を参照して説明す る。  Further, a third embodiment of the discharge hydraulic pressure breaking method will be described with reference to FIG.
先行孔 2 1 の周囲に破壊孔 2 2 〜 2 2 -4が予め形成されて放電 プル一ブ 3がそれぞれ装填され、 コンデンサ 1 0 aから破壊孔 2 2 〜 2 2 .4の放電プル一プ 3にそれぞれ同時に高電圧が印加されて 放電破壊される。 Prior hole 2 1 a fracture around the hole 2 2 to 2 2 -. 4 is discharged pull portion 3 formed in advance is loaded respectively, destroying the capacitor 1 0 a hole 2 2 to 2 2 4 discharge pull Ichipu A high voltage is simultaneously applied to each of the three, causing discharge breakdown.
ここで、 隣接する破壊孔 2 ^〜 2 -4間の距離 Yを直接破壊領 域 2 3 . 〜 2 3 .4の幅 Lの 2倍以下、 Here, the adjacent destroy holes 2 ^ - 2 -.. 4 between direct destroy area 2 3 distance Y ~ 2 3 2 times the fourth widths L or less,
Yく 2 X L…④とする。  Y then 2 X L… ④.
これにより、 隣接する破壊孔 2 2 .!〜 2 2 .4間の直接破壊領域 1 3 -】〜 1 3 .4を繋げて、 同時に多くの体積を破壊しく り抜く ことがで さる。 Thus, disruption hole 2 2 adjacent ~ 2 2 directly between 4 breakdown region 1 3 -.!..] ~ 1 3 4 by connecting, leaving in it unplugging Ri lay destroy many volumes simultaneously.
上記第 3の実施例によれば、 第 1 の自由面 F 1 と先行孔 2 1 によ り形成した第 2の自由面 F 2 とを利用して効果的に被破壊物を同時 に破壊することができ、 同時に放電破壊されて拡大された第 2の自 由面は F 2を利用して、 効果的に被破壊物を破壊することができる 。 しかも同時に破壊するので、 破壊作業の能率を大幅に向上するこ とができる。  According to the third embodiment, the object to be destroyed is effectively destroyed simultaneously using the first free surface F 1 and the second free surface F 2 formed by the preceding hole 21. At the same time, the second free surface expanded by discharge breakdown can effectively destroy an object to be destroyed by using F2. In addition, since they are destroyed at the same time, the efficiency of the destruction work can be greatly improved.
ここで上記放電液圧破壊工法の第 2および第 3の方法によりコン ク リートサンプルを破壊した実験結果を説明する。  Here, the results of an experiment in which a concrete sample was broken by the second and third methods of the discharge hydraulic pressure breaking method will be described.
l m X l m X O . 3 mの 2個のコンク リー トサンプルに、 直径 φ Α : 4 c m、 深さ D A : 2 0 c mの先行孔 3 1 を形成するとともに 、 直径 Φ Β : 1. 3 c m、 深さ D B : 1 5 c mの破壊孔 3 2を、 先 行孔 3 1 の中心から X : 1 5 c m離れた位置に等間隔 Y = 1 5 c m で 6か所形成し、 破壊孔 3 2にそれぞれ放電プルーブ 3を装填して 、 充電電圧 V c : 4 0 0 0 Vで順次および同時にそれぞれ放電破壊 を行った。 これにより、 約 3 0 0 0 c m 3 の体積を破壊することが できた。 lm X lm XO. Forming a leading hole 31 with diameter φΑ: 4 cm and depth DA: 20 cm in two concrete samples of 3 m. A fracture hole 32 with a diameter Φ DB: 1.3 cm and a depth DB: 15 cm is placed at a position X: 15 cm away from the center of the preceding hole 31 at an equal interval Y = 15 cm 6 Discharge probes 3 were loaded into the breaking holes 32, respectively, and discharge breakdown was performed sequentially and simultaneously at a charging voltage Vc: 400 V. As a result, a volume of about 300 cm 3 could be destroyed.
また充電電圧 V c : 6 0 0 0 Vでは、 先行孔 3 1の中心から破壊 孔までの距離 X= 3 0 c m、 Y - 3 0 c mが適当であった。  At a charging voltage V c of 600 V, the distance X from the center of the preceding hole 31 to the breaking hole was X = 30 cm and Y−30 cm was appropriate.
つぎに、 放電液圧破壊工法の第 4の実施例を図 1 0〜図 1 3を参 照して説明する。  Next, a fourth embodiment of the discharge hydraulic pressure breaking method will be described with reference to FIGS.
この工法により破壊される被破壊物 1は岩盤ゃコンクリート基礎 、 コンクリート床などの自由面 F 1が 1面であるのは第 1〜第 3の 実施例と同様である。 しかし、 第 4の実施例では、 第 2の自由面を 先行孔の内面とせず、 複数の破壊孔に装填した放電プルーブ 3によ り破壊した略円錐状の破壊面を第 2の自由面 F 2とするものである a . まず、 図 1 0, 図 1 2に示すように、 穿孔装置等を使用して 、 第 1の自由面 F 1で破壊中心となる穿孔部 4 1の周囲に、 等間隔 ごとに穿孔部 4 1の中心に向かって傾斜する傾斜破壊孔 4 2をたと えば 8本形成する。  The object 1 to be destroyed by this method has one free surface F1 such as bedrock / concrete foundation, concrete floor, etc. as in the first to third embodiments. However, in the fourth embodiment, the second free surface is not set as the inner surface of the preceding hole, and the substantially conical broken surface broken by the discharge probe 3 loaded in the plurality of breaking holes is formed as the second free surface F. A. First, as shown in FIGS. 10 and 12, using a piercing device or the like, around the piercing portion 41, which becomes the breaking center on the first free surface F1, For example, eight oblique fracture holes 42 inclined at equal intervals toward the center of the perforated portion 41 are formed.
ここで隣合う傾斜破壊孔 4 2の開口部 4 2 a間の距離 Eは、 放電 プル一ブ 3による直接破壊領域 1 3の表面部 1 3 aの幅を L (実際 は L a ) とすると、  Here, the distance E between the openings 4 2 a of the adjacent inclined breaking holes 42 is given by L (actually L a) where the width of the surface portion 13 a of the direct breaking region 13 by the discharge pull 3 is L. ,
E≤ 2 X L (L a) 、 すなわち Lの 2倍以下に設定される。 も ちろんこの直接破壊領域 1 3の幅 Lは、 前記①式の範囲を満足する ものである。 E≤ 2 XL (L a), ie less than twice L. Of course, the width L of the direct destruction area 13 satisfies the range of the above formula (1). Things.
また隣合う傾斜破壊孔 4 2の先端部 4 2 i 間のうち、 最も離れて いる (対向する) 先端部間の距離 Gは、 傾斜破壊孔 4 2にそれぞれ 装填された放電プルーブ 3による直接破壊領域 1 3の奥部 1 3 i の 幅 (実際は L i ) が互いに接するかまたは重なるように設定され 、 穿孔部 4 1 の底部で直接破壊領域 1 3が連続するように構成され る。  In addition, the distance G between the farthest (opposing) tips between the tips 4 2 i of the adjacent inclined breaking holes 42 is the direct breakdown by the discharge probes 3 respectively loaded in the inclined breaking holes 42. The width (actually, L i) of the inner portion 13 i of the region 13 is set so as to be in contact with or overlap with each other, so that the fracture region 13 is directly continuous at the bottom of the perforated portion 41.
すなわち、 傾斜破壊孔 4 2の第 1 の自由面 F 1 に対する傾斜角を 0 とすると、 図 1 1 の斜線の直角三角形において、  That is, assuming that the inclination angle of the inclined fracture hole 42 with respect to the first free surface F 1 is 0, in the oblique right triangle in FIG.
G / 2≤ L cos ( 9 0 ° - 0 )  G / 2≤ L cos (90 °-0)
G≤ 2 X L cos ( 9 0 ° — 0 ) に設定される。  G≤ 2 X L cos (90 ° — 0) is set.
これにより、 穿孔部 4 1 の底部で奥部直接破壊領域 1 3 i が連続 され、 穿孔部 4 1 をく り抜く ことができる。 もし、 G〉 2 L cos ( 9 0 ° — 6> ) であると、 図 1 3に示すように、 底部で奥部直接破壊 領域 1 3 i が繋がらないために、 穿孔部 4 1 をく り抜く ことができ ない。  As a result, the deep direct destruction region 13 i is continued at the bottom of the perforated portion 41, and the perforated portion 41 can be hollowed out. If G> 2 L cos (90 ° — 6>), as shown in Fig. 13, the perforated part 41 is cut out because the deep direct fracture area 13 i is not connected at the bottom. Cannot be pulled out.
b . この傾斜破壊孔 4 2にそれぞれ放電プルーブ 3が装填され、 放電スィ ツチ 9 aがオンされてコンデンサ 1 0 aから高電圧が極め て短時間に全ての放電プルーブ 3 に供給され金属細線 8に印加され る。 これにより、 金属細線 8 とその回りの破壊用液 4が瞬間的に気 化されてその衝撃力が周囲の被破壊物 1 に伝達され、 直接破壊領域 1 3が破壊される。 これにより穿孔部 4 1がく り抜かれて第 2の自 由面 F 2が形成される。  b. Discharge probes 3 are loaded into the inclined breaking holes 4 2 respectively, and the discharge switch 9 a is turned on, and a high voltage is supplied from the capacitor 10 a to all the discharge probes 3 in a very short time and the thin metal wires 8 are supplied. Applied to As a result, the thin metal wire 8 and the breaking liquid 4 around it are instantaneously vaporized, and the impact force is transmitted to the surrounding object 1 to be destroyed, and the direct breaking area 13 is destroyed. As a result, the perforated portion 41 is hollowed out to form the second free surface F2.
c . 穿孔部 4 1 の第 2の自由面 F 2の周囲の第 1 の自由面 F 1 に 、 放電プルーブ 3の直接破壊領域 1 3に応じて次の破壊孔 4 2 ' が 任意位置、 任意方向に形成され、 破壊孔 4 2 ' にそれぞれ放電プル —ブ 3が装填される。 そして順次または同時に放電プル一ブ 3が放 電破壊されて被破壊物 1が破壊され、 穿孔部 4 1 がさらに拡大され る。 これが繰り返されて被破壊物 1が破壊される。 c. On the first free surface F 1 around the second free surface F 2 of the perforated portion 4 1, the next break hole 4 2 ′ is formed according to the direct break area 13 of the discharge probe 3. It is formed at an arbitrary position and in an arbitrary direction, and a discharge pull 3 is loaded into each of the breaking holes 4 2 ′. Then, the discharge pull 3 is discharged or destroyed sequentially or simultaneously, and the object 1 is destroyed, and the perforated portion 41 is further enlarged. This is repeated to destroy the object 1 to be destroyed.
次に放電液圧破壊工法の第 5の実施例を図 1 4〜図 1 6を参照し て説明する。  Next, a fifth embodiment of the discharge hydraulic pressure destruction method will be described with reference to FIGS.
この工法により破壊される被破壊物 1 は岩盤やコンク リー ト基礎 、 コンク リート床などの自由面が 1面 F 1 のものである。 第 3の実 施例では、 略円錐形に被破壊物 1 をく り抜いて第 2の自凼面 F 2 を 形成したのに対して、 第 5の三角柱状の先行溝 5 1 をく り抜いて第 2の自由面 F 2を形成するものある。  The destructible object 1 destroyed by this method has one free surface F1, such as bedrock, concrete foundation and concrete floor. In the third embodiment, the to-be-destructed object 1 is hollowed out in a substantially conical shape to form the second automatic surface F 2, whereas the fifth triangular prism-shaped leading groove 51 is hollowed out. In some cases, it is removed to form a second free surface F2.
a . まず、 図 1 4に示すように、 被破壊物 1 の第 1 の自由面 F 1 に、 中心奥部から両外側表面に傾斜する 2つの傾斜破壊面 5 1 a , 5 1 bからなる先行溝 5 1 を形成するために、 穿孔装置等を使用し て、 傾斜破壊面 5 1 a , 5 1 bに沿う横断方向の複数本の傾斜破壊 孔 5 2 A, 5 2 Bを平面視で開口部が千鳥状になるように形成され る。 またこれら傾斜破壊孔 5 2 A, 5 2 Bは先端部 5 2 i がそれぞ れ傾斜破壊面 5 1 a , 5 1 bの交差線 Pに達するように形成される ここで同一の傾斜破壊面 5 1 a , 5 1 bに形成されて隣接する傾 斜破壊孔 5 2 A, 5 2 Bの開口部 5 2 aの中心間距離 X A , と、 先 端部 5 2 i の中心問距離 XA 2 は、 放電プル一ブ 3による直接破壊 領域 1 3の幅 L (実際は L a と L i ) とすると、  a. First, as shown in Fig. 14, the first free surface F1 of the object to be destroyed 1 consists of two inclined fracture surfaces 51a and 51b inclined from the center back to both outer surfaces. In order to form the leading groove 51, a plurality of transversely inclined fracture holes 52A and 52B along the inclined fracture surfaces 51a and 51b are viewed in plan using a drilling device or the like. The openings are formed in a staggered manner. These inclined fracture holes 52 A and 52 B are formed so that the tips 52 i reach the intersection line P of the inclined fracture surfaces 51 a and 51 b, respectively. 5 1 a, 5 1 b formed adjacent inclined obstruction holes 5 2 A, 52 B openings 52 a center distance XA, and tip end 52 2 i center distance XA 2 Is the width L (actually L a and L i) of the direct breakdown region 13 by the discharge pull 3
X A I ≤ 2 X L (L a )  X A I ≤ 2 X L (L a)
X A a ≤ 2 X L ( L i ) すなわち、 それぞれ直接破壊領域 1 3の幅 Lの 2倍以下に設定され る。 XA a ≤ 2 XL (L i) That is, each is set to be twice or less the width L of the direct destruction region 13.
またこの直接破壊領域 1 3の幅 Lは、 前記①式の範囲を満足する ものである。  Further, the width L of the direct destruction region 13 satisfies the range of the above formula (1).
b . この傾斜破壊孔 5 2 A , 5 2 Bにそれぞれ放電プルーブ 3を 装填し、 放電スィ ツチ 9 aがオンされてコンデンサ 1 0 aから高電 圧が極めて短時間に全ての放電プルーブ 3に供給され金属細線 8に 印加される ε これにより、 金属細線 8 とその回りの破壊用液 4が瞬 間的に気化されてその衝撃力が周囲の被破壊物 1 に伝達され直接破 壊領域 1 3が破壊される。 これにより、 先行溝 5 1がく り抜かれて 第 2の自由面 F 2が形成される。 b. Discharge probes 3 are loaded into the inclined breaking holes 52A and 52B, respectively, and the discharge switch 9a is turned on, and a high voltage is applied from the capacitor 10a to all the discharge probes 3 in a very short time. The ε supplied and applied to the thin metal wire 8 causes the instantaneous vaporization of the thin metal wire 8 and the surrounding liquid 4 for destruction, and the impact force is transmitted to the surrounding object 1 to be directly destroyed. 3 is destroyed. Thereby, the leading groove 51 is hollowed out to form the second free surface F2.
なお、 ここで対向する傾斜破壊面 5 1 a, 5 l bの間で最も近い 傾斜破壊孔 5 2 A, 5 2 Bの先端部 5 2 i の中心間距離 Y A 2 を、 Y A 2 ≤ 2 X L ( L a ) Here, the opposing inclined destroy surfaces 5 1 a, 5 nearest inclined destroyed lb between holes 5 2 A, 5 2 B of the distal end portion 5 2 i-center distance YA 2 of, YA 2 ≤ 2 XL ( L a)
と設定することにより、 図 1 6に示すように、 先行溝 5 1 の開口面 全体を完全に破壊して、 自由面が 1 つの被破壊物 1 の先行溝 5 1 を 完全にく り抜き状に放電破壊することができる。 As a result, as shown in Fig. 16, the entire opening surface of the leading groove 51 is completely destroyed and the free surface completely cuts out the leading groove 51 of one object 1 to be destroyed. Discharge breakdown.
c . 図 1 6 に示すように、 先行溝 5 1 の周囲に、 放電プル一ブ 3 の直接破壊領域 1 3 に応じて次の破壊孔 5 1 ' が任意位置、 任意方 向に形成され、 破壊孔 5 1 ' に放電プル一ブ 3が装填される。 そし て順次または同時に被破壊物が破壊されて先行溝 5 1 が拡大され、 これが繰り返されて被破壊物 1が破壊される。  c. As shown in Fig. 16, around the leading groove 51, the next breaking hole 51 'is formed at any position and in any direction according to the direct breaking area 13 of the discharge pull 3 The discharge pull 3 is loaded into the breaking hole 5 1 ′. Then, the object to be destroyed is destroyed sequentially or simultaneously, the leading groove 51 is enlarged, and this is repeated to destroy the object to be destroyed 1.
次に第 6の実施例を図 1 7〜図 1 9を参照して説明する。  Next, a sixth embodiment will be described with reference to FIGS.
上記第 5の実施例では千鳥状位置に形成した破壊孔の放電プル一 ブ 3 により先行溝を形成したのに対して、 第 6の実施例では破壊孔 を対抗位置に形成して先行溝 6 1 を形成するものである。 In the fifth embodiment, the preceding groove was formed by the discharge pull 3 of the destruction hole formed in the staggered position, whereas in the sixth embodiment, the destruction hole was formed. Are formed at opposing positions to form the preceding groove 61.
a . まず、 図 1 7に示すように、 被破壊物 1 の第 1 の自由面 F 1 に、 中心奥部から両外側表面に傾斜する 2つの傾斜破壊面 6 1 a , 6 1 bからなる先行溝 6 1 を形成するために、 穿孔装置等を使用し て、 傾斜破壊面 6 l a , 6 1 bに沿う横断面上の複数本の傾斜破壊 孔 6 2 A , 6 2 Bが互いに対向する位置に形成される。  a. First, as shown in Fig. 17, the first free surface F1 of the object to be destroyed 1 consists of two inclined fracture surfaces 61a and 61b inclined from the center back to both outer surfaces. In order to form the leading groove 61, a plurality of inclined fracture holes 62A, 62B on a cross section along the inclined fracture surfaces 6la, 61b are facing each other using a drilling device etc. Formed in position.
ここで同一の傾斜破壊面 6 1 a または 6 1 b上でそれぞれ隣接す る傾斜破壊孔 6 2 A, 6 2 Bの基端開口部 6 2 a間の距離 X B i と 、 先端部 6 2 i 間の距離 X B 2 は、 放電プル一ブ 3 による直接破壊 領域 1 3の幅 L (実際は L a と L i ) とすると、  Here, the distance XB i between the base opening 62 a of the adjacent inclined fracture hole 62 a and 62 b on the same inclined fracture surface 61 a or 61 b and the distal end 62 i The distance between XB 2 is the width L (actually L a and L i) of the direct breakdown region 13 due to the discharge pull 3,
X B 1 ≤ 2 X L (L a )  X B 1 ≤ 2 X L (L a)
X B 2 ≤ 2 X L (L i )  X B 2 ≤ 2 X L (L i)
すなわちそれぞれ Lの 2倍以下に設定される。 That is, each is set to less than twice L.
またこの直接破壊領域 1 3の幅 Lは、 前記①式の範囲を満足する ものである。  Further, the width L of the direct destruction region 13 satisfies the range of the above formula (1).
さらに同一の横断面上の傾斜破壊孔 6 2 A, 6 2 Bの先端部 6 2 i の中心間距離 Y B 2 は、 傾斜破壊孔 6 2 A, 6 2 Bにそれぞれ装 填された放電プルーブ 3 による直接破壊領域 1 3の幅 L (実際は L i ) が互いに接するか重なるように設定されて、 先行溝 6 1 の底部 で直接破壊領域 1 3が連続するように設定される。 Further tip 6 2 i-center distance YB 2 of the same slope-breaking pores 6 2 A on transverse section, 6 2 B is inclined destroy holes 6 2 A, 6 2 discharge probe 3 which are respectively instrumentation Hama to B Are set so that the widths L (actually, L i) of the direct destruction regions 13 are in contact with or overlap with each other, so that the direct destruction regions 13 are continuous at the bottom of the preceding groove 61.
すなわち、 傾斜破壊孔 6 2 A, 6 2 Bの第 1 の自由面 F 1 に対す る傾斜角を 0 とすると、 図 1 9の斜線の直角三角形において、  That is, assuming that the inclination angles of the inclined fracture holes 62A and 62B with respect to the first free surface F1 are 0, in the oblique right triangle shown in FIG.
Y B 2 / 2≤ L cos ( 9 0 ° — 0 ) Y B 2/2 ≤ L cos (90 ° — 0)
. Y B 2 ≤ 2 X L cos ( 9 0 ° — Θ ) に設定される。  Set to Y B 2 ≤ 2 X L cos (90 ° — Θ).
これにより、 先行溝 2 1 の底部で直接破壊領域 1 3が連続され、 先行溝 6 1 をく り抜く ことができる。 もし、 Y B 2 〉 2 L cos ( 9 0 ° - Θ ) であると、 底部で直接破壊領域 1 3が繋がらないために 、 先行溝 6 1 をく り抜く ことができない。 As a result, a direct destruction area 13 is continued at the bottom of the preceding groove 21, The leading groove 61 can be cut out. If YB 2 > 2 L cos (90 ° -Θ), the leading groove 61 cannot be hollowed out because the fracture region 13 is not directly connected at the bottom.
b . この傾斜破壊孔 6 2 A , 6 2 Bにそれぞれ放電プルーブ 3を 装填し、 放電スィ ッチ 9 aがオンされてコンデンサ 1 0 aから高電 圧が極めて短時間に全ての放電プルーブ 3に供給され金属細線 8に 印加される。 これにより、 金属細線 8 とその回りの破壊用液 4が瞬 間的に気化されてその衝撃力が周囲の被破壊物 1 に伝達され直接破 壊領域 1 3が繋がった状態で放電破壊される。 これにより、 逆台形 状の先行溝 2 1がく り抜かれて第 2の自由面 F 2が形成される。  b. Discharge probes 3 are loaded into the inclined breaking holes 62A and 62B, respectively. The discharge switch 9a is turned on, and the high voltage is discharged from the capacitor 10a in a very short time. And applied to the thin metal wire 8. As a result, the thin metal wire 8 and the surrounding liquid 4 are instantaneously vaporized, and the impact force is transmitted to the surrounding object 1 to be destroyed by discharge in a state where the rupture area 13 is directly connected. . Thus, the inverted trapezoidal leading groove 21 is hollowed out to form the second free surface F2.
なお、 ここで対向する対向する傾斜破壊孔 6 2 A , 6 2 Bの先端 部 6 2 i 間の距離 Y B 2 を、  Here, the distance Y B 2 between the tip portions 6 2 i of the opposed inclined breaking holes 62 A, 62 B facing each other is expressed as
Y B 2 ≤ 2 X L  Y B 2 ≤ 2 X L
と設定することにより、 図 2 0に示すように、 先行溝 6 1 の開口面 全体を完全に破壊して、 自由面が 1つの被破壊物 1 に先行溝 6 1 を 完全にく り抜き状に放電破壊することができる。 As shown in Fig. 20, the entire opening surface of the leading groove 61 is completely destroyed, and the free surface is completely cut out of the leading groove 61 on one object 1 as shown in Fig. 20. Discharge breakdown.
c . 図 2 0 に示すように、 先行溝 6 1 の周囲に、 放電プルーブ 3 の直接破壊領域 1 3 に応じて破壊孔 6 2 ' が形成され、 破壊孔 1 に 放電プルーブ 3が装填されて、 順次または同時に被破壊物が破壊さ れて先行溝 6 1が拡大され、 これが繰り返されて被破壊物 1 が破壊 される。  c. As shown in Fig. 20, a break hole 6 2 ′ is formed around the leading groove 61 in accordance with the direct break area 13 of the discharge probe 3, and the discharge probe 3 is loaded in the break hole 1. The object to be destroyed is sequentially or simultaneously destroyed, and the leading groove 61 is enlarged. This is repeated, and the object to be destroyed 1 is destroyed.
尚、 上記第 5および第 6の実施例で先行溝 5 1 , 6 1 をそれぞれ 直線状としたが、 曲線状であってもよい。  In the fifth and sixth embodiments, the leading grooves 51 and 61 are respectively linear, but may be curved.

Claims

99 97/04934 PCT/JP96/02140 請 求 の 範 囲 99 97/04934 PCT / JP96 / 02140 Scope of request
1. コンデンサ ( 1 0 a) に充電蓄積した電気エネルギーを金属細 線 (8) に極めて短時間に供給することにより、 金属細線 (8) お よびその周囲の液体 (4) の急激な気化、 体積膨張により発生する 衝擊カを利用する放電液圧破壊具 ( 3) を使用して、 自由面 (F 1 ) が 1面である被破壊物 ( 1 ) を破壊するに際し、  1. By supplying the electrical energy charged and stored in the capacitor (10a) to the metal wire (8) in a very short time, rapid vaporization of the metal wire (8) and the liquid (4) around it, When using a discharge hydraulic pressure rupture device (3) that utilizes an impulse generated by volume expansion to destroy the object (1) having one free surface (F1),
まず第 1の自由面 ( F 1 ) に垂直に先行孔 ( 1 1 ) を穿設してそ の内面を第 2の自由面 (F 2) とし、 この先行孔 ( 1 1 ) の周囲の 第 1の自由面 (F 1 ) 1か所に破壊孔 ( 1 2.!) を形成し、 この破 壊孔 ( 1 2 内に放電液圧破壊具 ( 3 ) を装填して被破壊物 ( 1 ) を放電破壊し、 破壊孔 ( 1 2- を広げて先行孔 ( 1 1 ) に連続 する第 2の自由面を拡大し、 さらに先行孔 ( 1 1 ) の周囲に次の破 壊孔 ( 1 2-2) を形成し、 この破壊孔 ( 1 2.2) に装填した放電液 圧破壊具 (3) により被破壊物 ( 1 ) を放電破壊し、 これを繰り返 して先行孔 ( 1 1 ) を順次広げることを特徴とする放電液圧破壊ェ 法。  First, a leading hole (11) is drilled perpendicularly to the first free surface (F1), and its inner surface is defined as a second free surface (F2). A free hole (1 2.!) Is formed in one free surface (F 1), and a discharge hydraulic pressure destroyer (3) is loaded in the hole (1 2). ) Is discharged, the rupture hole (12−) is expanded, the second free surface following the preceding hole (11) is enlarged, and the next rupture hole (1 1) is surrounded by the preceding hole (11). 2-2) is formed, and the object to be destroyed (1) is discharged and destroyed by the discharge hydraulic pressure rupture tool (3) loaded in the rupture hole (1 2.2). Discharge hydraulic pressure destruction method characterized by successively spreading.
2. 先行孔 ( 1 1 ) の直径を φΑ, 先行孔 ( 1 1 ) の深さを DA、 破壊孔 ( 1 2) の直径を Φ Β, 破壊孔 ( 1 2) の深さを DBとする と、 2. The diameter of the leading hole (1 1) is φΑ, the depth of the leading hole (1 1) is DA, the diameter of the breaking hole (1 2) is Φ Β, and the depth of the breaking hole (1 2) is DB. When,
ΦΑ〉Φ Β、 D A≥ D Β  ΦΑ> Φ Β, D A≥ D Β
の範囲であることを特徴とする請求項 2記載の放電液圧破壊工法。 The discharge hydraulic pressure destruction method according to claim 2, wherein the pressure is within the range.
3. コンデンサ ( 1 0 a) に充電蓄積した電気エネルギーを金属細 線 (8) に極めて短時間に供給することにより、 金属細線 (8) お よびその周囲の液体 ( 4 ) の急激な気化、 体積膨張により発生する 衝撃力を利用する放電液圧破壊具 ( 3 ) を使用して、 自由面 (F 1 ) が 1面である被破壊物 ( 1 ) を破壊するに際し、 3. By supplying the electrical energy charged and stored in the capacitor (10a) to the metal wire (8) in an extremely short time, the metal wire (8) Object that has one free surface (F 1) using a discharge hydraulic pressure breaker (3) that uses the impact force generated by rapid vaporization and volume expansion of the liquid (4) and its surroundings In destroying (1),
まず自由面 (F 1 ) に先行孔 ( 1 1 ) を穿設してその内面を第 2 の自由面とし、 この先行孔 ( 1 1 ) の周囲に破壊孔 ( 1 2.!〜 1 2 .5) を複数本形成して、 それぞれの破壊孔 ( 1 2 ) に放電液圧破壊 具 ( 3 ) を装填しておき、 コンデンサ ( 1 0 a ) の電気エネルギー を各破壊孔 ( 1 2 -!〜 1 2.5) の放電液圧破壊具 ( 3 ) に周方向に 順次供給して破壊物 ( 1 ) 放電破壊することを特徴とする放電液圧 破壊工法。 First, a leading hole (11) is formed in the free surface (F1) to make the inner surface thereof a second free surface. A break hole (12.! To 12.2) is formed around the leading hole (11). 5 ) are formed, and each of the breaking holes (12) is loaded with a discharge hydraulic pressure breaker (3), and the electric energy of the capacitor (10a) is transferred to each of the breaking holes (12-!). ~ 1 2. the discharge pressure destroying tool (3) circumferentially sequentially supplied to destruction of 5) (1) discharge pressure destroying method, characterized by discharge breakdown.
4. 隣接する破壊孔 ( l S ^ l Z .s) の中心間距離 Yは、 放電液 圧破壊具 ( 4 ) による直接破壊領域 ( 1 3 〜 1 3 -5) の幅をしと すると、 4. center distance Y between adjacent destroy holes (l S ^ l Z .s), the discharge pressure destroying tool (4) direct destruction area by (1 3 to 1 3 - 5) width was the the result,
Y> L  Y> L
とすることを特徴とする請求項 3に記載の放電液圧破壊工法。 The discharge hydraulic pressure breaking method according to claim 3, wherein:
5. 先行孔 ( 1 1 ) の直径を Φ Α, 先行孔 ( 1 1 ) の直径を D A、 破壊孔 ( 1 2 · 〜 1 2.5) の直径を Φ B , 破壊孔 ( 1 2 〜 1 2.5) の深さを D Bとすると、 5. diameter [Phi Alpha preceding hole (1 1), DA diameters of the preceding holes (1 1), the diameter of the fracture hole (1 2 · ~ 1 2. 5 ) Φ B, destroy holes (1 2 to 1 2. the depth of 5) and DB,
Φ Α> Φ Β、 D A≥ D Β  Φ Α> Φ Β, D A≥ D Β
の範囲であることを特徴とする請求項 4記載の放電液圧破壊工法。  5. The method according to claim 4, wherein the pressure is within the range.
6. コンデンサ ( 1 0 a ) に充電蓄積した電気エネルギーを金属細 線 ( 8 ) に極めて短時間に供給することにより、 金属細線 ( 8 ) お よびその周囲の液体 ( 4 ) の急激な気化、 体積膨張により発生する 衝擊カを利用する放電液圧破壊具 ( 3 ) を使用して、 自由面 ( F 1 ) が 1面である被破壊物 ( 1 ) を破壊するに際し、 6. By supplying the electric energy charged and stored in the capacitor (10a) to the metal wire (8) in a very short time, the metal wire (8) Object that has one free surface (F 1) using a discharge hydraulic pressure rupture device (3) that uses an impulse generated by rapid vaporization and volume expansion of the surrounding liquid (4) In destroying (1),
まず自由面 ( F 1 ) に先行孔 ( 2 1 ) を穿設してその内面を第 2 の自由面 ( F 2 ) とし、 この先行孔 ( 2 1 ) の周囲に破壊孔 ( 2 2 -ι〜 2 2 -4) を複数本形成して、 それぞれの破壊孔 ( 2 2 -!〜 2 2 -4) に放電液圧破壊具 ( 4 ) を装填しておき、 コンデンサ ( 1 0 a ) の 電気エネルギーを各破壊孔 ( 2 2 ·!〜 2 2.4) の放電液圧破壊具 ( 3 ) に同時に供給して放電破壊することを特徴とする放電液圧破壊工法 First, a leading hole (2 1) is formed in the free surface (F 1), and its inner surface is used as a second free surface (F 2). A break hole (2 2 -ι) is formed around the leading hole (2 1). and 4) a plurality of formation, each breaking holes (2 2 - - - 2 2! leave loaded ~ 2 2 -4) discharge fluid pressure destroying tool (4), the capacitor (1 0 a) discharge pressure destroying method, characterized in that the electrical energy each fracture holes (2 2-! ~ 2 2.4) of the discharge fluid pressure destroying tool (3) to be simultaneously supplied to discharge breakdown
7. 隣接する破壊孔 (? ? ^〜? ^) の中心間距離 Yは、 放電液 圧破壊具 ( 4 ) による直接破壊領域 ( 1 3 ) の幅を Lとすると、7. The center-to-center distance Y between adjacent rupture holes (?? ^ ~? ^) Is defined as L, where L is the width of the direct rupture area (13) by the discharge pressure rupture tool (4).
Y≤ 2 X L Y≤ 2 X L
とすることを特徴とする請求項 6記載の放電液圧破壊工法。 The discharge hydraulic pressure destruction method according to claim 6, wherein:
8. 先行孔 ( 2 1 ) の直径を φ Α, 先行孔 ( 2 1 ) の深さを D Α、 破壊孔の直径を Φ Β , 破壊孔の深さを D Βとすると、 8. If the diameter of the leading hole (2 1) is φ Α, the depth of the leading hole (2 1) is D Α, the diameter of the breaking hole is Φ Β, and the depth of the breaking hole is D 、,
φ Α> φ Β、 D A≥ D Β  φ Α> φ Β, D A≥ D Β
の範囲であることを特徴とする請求項 7記載の放電液圧破壊工法。 The discharge hydraulic pressure destruction method according to claim 7, wherein
9. 放電液圧破壊具 ( 3 ) による直接破壊領域 ( 1 3 ) の幅を L、 先行孔 ( 2 1 ) の直径を φ Aとすると、 先行孔 ( 2 1 ) と破壊孔 ( 2 2 -ι〜 2 2.4の中心間距離 Xは、 9. Assuming that the width of the direct breaking area (13) by the discharge hydraulic pressure breaker (3) is L and the diameter of the leading hole (21) is φA, the leading hole (21) and the breaking hole (22- center distance X of ι~ 2 2. 4 is
Χ≤^ 〔 ( A/ 2 ) 2 +し 2 〕 の範囲にあり、  Χ≤ ^ [(A / 2) 2 + shi 2]
放電液圧破壊具 ( 3 ) に供給されるコンデンサの充電電圧を V c (ボルト) とすると、 直接破壊領域 ( 1 3 ) の距離を L ( c m) は The charging voltage of the capacitor supplied to the discharge hydraulic pressure breaker (3) is V c (Bolts), the distance of the direct fracture area (13) is L (cm)
I V c | / 1 2 0≥ L≥ | V c 1 / 1 2 0 0 I V c | / 1 2 0≥ L≥ | V c 1/1 2 0 0
の範囲にあることを特徴とする請求項 2、 5, 8のいずれかに記載 の放電液圧破壊工法。 The method according to any one of claims 2, 5, and 8, wherein
1 0. コンデンサ ( 1 0 a ) に充電蓄積した電気エネルギーを金属 細線 ( 8 ) に極めて短時間に供給することにより、 金属細線 ( 8 ) およびその周囲の液体 ( 4 ) の急激な気化、 体積膨張により発生す る衝撃力を利用する放電液圧破壊具 ( 3 ) を使用して、 自由面 (F 1 ) が 1面である被破壊物 ( 1 ) を破壊するに際し、 10. By supplying the electrical energy charged and stored in the capacitor (10a) to the thin metal wire (8) in a very short time, the rapid vaporization and volume of the thin metal wire (8) and the liquid (4) around the thin metal wire (8). When the object to be destroyed (1) having one free surface (F1) is destroyed using a discharge hydraulic pressure destroyer (3) utilizing the impact force generated by the expansion,
まず自由面の破壊中心となる穿孔部 ( 4 1 ) の周囲複数箇所に、 先端が穿孔部 (4 1 ) の中心に向く傾斜破壊孔 ( 4 2 ) を形成して 、 この傾斜破壊孔 ( 4 2 ) 内にそれぞれ放電液圧破壊具 ( 3 ) を装 填し、 コンデンサ ( 1 0 a ) から電気エネルギーを各放電液圧破壊 具 ( 3 ) に短時間で同時に供給して被破壊物 ( 1 ) を放電破壊する ことにより、 穿孔部 ( 4 1 ) をく り抜いて第 2の自由面 (F 1 ) を 形成し、 第 2の自由面 (F 1 ) の周囲の第 1の自由面 (F 1 ) に複 数の破壊孔 ( 4 2 ' ) を形成して、 それぞれの破壊孔 ( 4 2 ' ) に 装填された放電液圧破壊具 ( 3 ) により被破壊物 ( 1 ) を放電破壊 して第 2の自由面 (F 2 ) をさらに拡大し、 これを繰り返して被破 壊物 ( 1 ) を放電破壊することを特徴とする放電液圧破壊工法。  First, an inclined fracture hole (4 2) whose tip is directed to the center of the perforated portion (41) is formed at a plurality of locations around the perforated portion (41) serving as the fracture center of the free surface. 2) Each of the discharge pressure rupture tools (3) is loaded into each of them, and electric energy is simultaneously supplied from the condenser (10a) to each discharge pressure rupture tool (3) in a short time, and the object to be destroyed (1) is discharged. ), The perforated portion (41) is hollowed out to form a second free surface (F1), and the first free surface (F1) surrounding the second free surface (F1) is formed. A plurality of fracture holes (4 2 ') are formed in F 1), and the object (1) is destroyed by the discharge hydraulic pressure breaker (3) loaded in each of the fracture holes (4 2'). And further expanding the second free surface (F 2), and repeating this to discharge-break the object to be destroyed (1).
1 1. 隣接する傾斜破壊孔 ( 4 2 ) の開口部 ( 4 2 a ) 中心間の距 離 Eは、 放電液圧破壊具 ( 3 ) による直接破壊領域 ( 1 3 ) の幅を Lとすると、 1 1. The distance E between the centers of the openings (42a) of the adjacent inclined breaking holes (42) is determined by the width of the direct breaking area (13) by the discharge hydraulic pressure breaking tool (3). L
E≤ 2 X Lの範囲にあり、  E≤ 2 X L
また隣接する傾斜破壊孔 ( 4 2 ) の先端部 ( 4 2 i ) 間のうち、 最 も離れている傾斜破壊孔 ( 4 2 ) の先端部 ( 4 2 i ) 間の距離 (G ) を、 両放電液圧破壊具 ( 3 ) による直接破壊領域 ( 1 3 i ) が互 いに接するかまたは重なるように設定して、 底部で直接破壊領域 ( 1 3 ) を連続させて穿孔部 (4 1 ) をく り抜く ことを特徴とする請 求項 1 0記載の放電液圧破壊工法。 The distance (G) between the tip (42i) of the furthest inclined fracture hole (42) among the tips (42i) of the adjacent inclined fracture holes (42) is defined as: The direct break areas (13i) by both discharge hydraulic pressure breakers (3) are set so as to be in contact with or overlap with each other, and the direct break areas (13) are continuously formed at the bottom, and the perforated section (4 1 ). The discharge hydraulic pressure destruction method according to claim 10, wherein the method is characterized by hollowing out.
1 2. 放電液圧破壊具 ( 3 ) に供給されるコンデンサ ( 1 0 a ) の 充電電圧を V c (ポルト) とすると、 直接破壊領域 ( 1 3 ) の幅 L ( c m) は、 1 2. Assuming that the charging voltage of the capacitor (10a) supplied to the discharge hydraulic pressure destroyer (3) is Vc (port), the width L (cm) of the direct breakdown area (13) is
I V c | / 1 2 0≥ L≥ | V c 1 / 1 2 0 0  I V c | / 1 2 0≥ L≥ | V c 1/1 2 0 0
の範囲にあることを特徴とする請求項 1 0または 1 1記載の放電液 圧破壊工法。 The discharge hydraulic rupture method according to claim 10 or 11, wherein
1 3. コンデンサ ( 1 0 a ) に充電蓄積した電気エネルギーを金属 細線 ( 8 ) に極めて短時間に供給することにより、 金属細線 ( 8 ) およびその周囲の液体 ( 4 ) の急激な気化、 体積膨張により発生す る衝撃力を利用する放電液圧破壊具 ( 3 ) を使用して、 自由面 (F 1 ) が 1面である被破壊物 ( 1 ) を破壊するに際し、 1 3. By supplying the electric energy charged and stored in the capacitor (10a) to the metal wire (8) in a very short time, the rapid vaporization and volume of the metal wire (8) and the liquid (4) around the metal wire (8). When the object to be destroyed (1) having one free surface (F1) is destroyed using a discharge hydraulic pressure destroyer (3) utilizing the impact force generated by the expansion,
まず第 1の自由面 (F 1 ) に形成されて破壊中心となる先行溝 ( 5 1, 6 1 ) の、 奥部中心から外側に広がる破壊面 ( 5 1 a , 5 1 b , 6 1 a , 6 1 ) に沿って、 複数箇所に傾斜破壊孔 ( 5 2 A. 5 2 B , 6 2 A, 6 2 B ) を形成し、 この破壊孔 ( 5 2 A . 5 2 B , 6 2 A, 6 2 B ) 内にそれぞれ放電液圧破壊具 ( 3 ) を装填し、 コンデンサ ( 1 0 a ) から電気エネルギーを各放電液圧破壊具 ( 3 ) に短時間で同時に供給して被破壊物 ( 1 ) を放電破壊すること により、 先行溝 ( 5 1 , 6 1 ) をく り抜いて第 2の自由面 (F 2 ) を形成し、 この先行溝 ( 5 1, 6 1 ) の周囲に複数の次の破壊孔 ( 5 2 ' , 6 2 ' ) を形成して、 それぞれの破壊孔 ( 5 2 ' , 6 2 ' ) に装填された放電液圧破壊具 ( 3 ) により被破壊物 ( 1 ) を放電 破壊して先行溝 ( 5 1, 6 1 ) を拡大し被破壊物 ( 1 ) を放電破壊 することを特徴とする放電液圧破壊工法。 First, the fracture surface (51a, 51b, 61a) of the preceding groove (51, 61) formed on the first free surface (F1) and serving as the fracture center extends outward from the depth center. , 61) are formed at a plurality of locations with inclined destruction holes (52 A. 52 B, 62 A, 62 B). , 62 A, 62 B), respectively, with a discharge hydraulic pressure breaker (3), and simultaneously supply electric energy from the capacitor (10a) to each discharge hydraulic pressure breaker (3) in a short time. By subjecting the object to be destroyed (1) to discharge breakdown, the leading groove (51, 61) is hollowed out to form a second free surface (F2), and the leading groove (51, 61) is formed. ), A plurality of next break holes (52 ′, 62 ′) are formed, and the discharge pressure breaker (3) loaded in each break hole (52 ′, 62 ′) A discharge hydraulic fracturing method characterized in that the object to be destroyed (1) is discharged and destroyed, the leading groove (51, 61) is enlarged, and the object to be destroyed (1) is discharged.
1 4. 複数の傾斜破壊孔 ( 5 2 A, 5 2 B ) は開口部 ( 5 2 a ) が 平面視で傾斜破壊面 ( 5 1 a , 5 1 ) に沿って千鳥状に形成配置 されるともに、 各傾斜破壊孔 ( 5 2 A, 5 2 B) の先端部 ( 5 2 i ) がそれぞれ傾斜破壊面 ( 5 1 a , 5 1 b) の交差線 (P) に達す るように形成され、 1 4. A plurality of inclined fracture holes (52A, 52B) are formed with openings (52a) staggered along the inclined fracture surfaces (51a, 51) in plan view. In both cases, the tip (52i) of each inclined fracture hole (52A, 52B) is formed so as to reach the intersection line (P) of the inclined fracture surface (51a, 51b). ,
同一の傾斜破壊面 ( 5 1 a , 5 1 b) 上でそれぞれ隣接する傾斜 破壊孔 ( 5 2 A, 5 2 B) の開口部 ( 5 2 a ) の中心間距離 X A ! と、 傾斜破壊孔 ( 5 2 A, 5 2 B) の先端部 ( 5 2 i ) の中心間距 離 XA 2 は、 放電液圧破壊具 ( 3 ) による直接破壊領域 ( 1 3 ) の 幅を Lとすると、 The distance XA between the centers of the openings (52a) of the adjacent inclined fracture holes (52A, 52B) on the same inclined fracture surface (51a, 51b). And the distance XA 2 between the centers of the tips (52 i) of the inclined fracture holes (52 A, 52 B) is determined by setting the width of the direct fracture area (13) by the discharge hydraulic pressure fracture tool (3) to L. Then
X A ! ≤ 2 X L , X A 2 ≤ 2 X Lの範囲にあり、  X A! ≤ 2 X L, X A 2 ≤ 2 X L
また両傾斜破壊面 ( 5 1 a, 5 1 b) 間で隣接する傾斜破壊孔 ( 5 2 A, 5 2 B) の先端部 ( 5 2 i ) の中心間距離 Y A 2 は、 In addition, the distance YA 2 between the centers of the tips (52i) of the adjacent inclined fracture holes (52A, 52B) between both inclined fracture surfaces (51a, 51b) is
Y A 2 ≤ 2 X L  Y A 2 ≤ 2 X L
の範囲にあることを特徴とする請求項 1 3記載の放電液圧破壊工法 14. The method according to claim 13, wherein the discharge pressure is within the range.
1 5. 複数の傾斜破壊孔 ( 6 2 A, 6 2 B) を両傾斜破壊面 ( 6 1 a , 6 1 b) 間で互いに対向する位置に形成し、 1 5. A plurality of inclined fracture holes (62A, 62B) are formed at positions facing each other between both inclined fracture surfaces (61a, 61b).
同一の傾斜破壊面 ( 6 1 a , 6 1 b) 上でそれぞれ隣接する傾斜 破壊孔 ( 6 2 A, 6 2 B ) の開口部 ( 6 2 a ) の中心間距離 X B ! と、 傾斜破壊孔 ( 6 2 A, 6 2 B ) の先端部 ( 6 2 i ) の中心間距 離 X B 2 は、 放電液圧破壊具 ( 3 ) による直接破壊領域 ( 1 3 ) の 幅を Lとすると、 The distance XB between the centers of the openings (62a) of the adjacent inclined fracture holes (62A, 62B) on the same inclined fracture surface (61a, 61b). If, between the centers distance XB 2 of the distal end portion of the inclined destroy holes (6 2 A, 6 2 B ) (6 2 i) is the width of the direct destroy region due to discharge pressure destroying tool (3) (1 3) L Then
X B ! ≤ 2 X L , X B 2 ≤ 2 X Lの範囲にあり、 XB! ≤ 2 XL, XB 2 ≤ 2 XL
また対向する傾斜破壊孔 ( 6 2 A, 6 2 B ) の先端部 ( 6 2 i ) の中心間距離 YB 2 は、 第 1の自由面 (F 1 ) に対する傾斜破壊孔 ( 6 2 A, 6 2 B ) の傾斜角を 0 とすると、 The distance YB 2 between the centers of the tips (62 i) of the opposing inclined fracture holes (62 A, 62 B) is equal to the inclined fracture holes (62 A, 6 B) with respect to the first free surface (F 1). Assuming that the inclination angle of 2 B) is 0,
Y B 2 ≤ 2 X L cos ( 9 0 ° — 6» )  Y B 2 ≤ 2 X L cos (90 ° — 6 »)
の範囲にあることを特徴とすることを特徴とする請求項 1 3記載の 放電液圧破壊工法。 14. The method according to claim 13, wherein the discharge pressure is within the range.
1 6. 放電液圧破壊具 ( 3 ) に供給されるコンデンサ ( 1 0 a ) の 充電電圧を V c (ポルト) とすると、 直接破壊領域 ( 1 3 ) の幅 L ( c m ) は、 1 6. Assuming that the charging voltage of the capacitor (10a) supplied to the discharge hydraulic pressure destroyer (3) is Vc (port), the width L (cm) of the direct breakdown area (13) is
I V c | / 1 2 0≥L≥ | V c 1 / 1 2 0 0  I V c | / 1 2 0≥L≥ | V c 1/1 2 0 0
の範囲にあることを特徴とする請求項 1 4または 1 5に記載の放電 液圧破壊工法。 The method according to claim 14 or 15, wherein the method is in the range of:
PCT/JP1996/002140 1995-07-31 1996-07-29 Discharge hydraulic pressure destroying method WO1997004934A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU98103872A RU2139990C1 (en) 1995-07-31 1996-07-29 Method for destruction of object by electric-discharge hydraulic pressure
EP96925129A EP0885703A4 (en) 1995-07-31 1996-07-29 Discharge hydraulic pressure destroying method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP7/194411 1995-07-31
JP19441195A JPH0938951A (en) 1995-07-31 1995-07-31 Discharge liquid pressure destruction method
JP07194412A JP3103020B2 (en) 1995-07-31 1995-07-31 Discharge hydraulic pressure breakdown method
JP07194413A JP3103021B2 (en) 1995-07-31 1995-07-31 Discharge hydraulic pressure breakdown method
JP7/194413 1995-07-31
JP7/194412 1995-07-31

Publications (1)

Publication Number Publication Date
WO1997004934A1 true WO1997004934A1 (en) 1997-02-13

Family

ID=27326932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002140 WO1997004934A1 (en) 1995-07-31 1996-07-29 Discharge hydraulic pressure destroying method

Country Status (5)

Country Link
EP (1) EP0885703A4 (en)
KR (1) KR19990029023A (en)
CN (1) CN1075430C (en)
RU (1) RU2139990C1 (en)
WO (1) WO1997004934A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112177626B (en) * 2020-08-25 2021-07-23 中国矿业大学 Method for tunneling roadway by electrode directional impact operation
CN112556523A (en) * 2020-11-23 2021-03-26 浙江科技学院 Double-sided symmetrical electric blasting energy-gathering rock breaking design method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145698A (en) * 1993-09-28 1995-06-06 Hitachi Zosen Corp Equipment and method of breaking article to be broken

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86104470A (en) * 1986-06-27 1988-01-06 Ceee公司 The method and apparatus of fragmenting substance by discharge of pulsed electrical energy
JP3538225B2 (en) * 1994-07-29 2004-06-14 電気興業株式会社 Method and apparatus for crushing bulk semiconductor material using thermal plasma

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145698A (en) * 1993-09-28 1995-06-06 Hitachi Zosen Corp Equipment and method of breaking article to be broken

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0885703A4 *

Also Published As

Publication number Publication date
RU2139990C1 (en) 1999-10-20
CN1075430C (en) 2001-11-28
EP0885703A4 (en) 2000-01-12
CN1191504A (en) 1998-08-26
EP0885703A1 (en) 1998-12-23
KR19990029023A (en) 1999-04-15

Similar Documents

Publication Publication Date Title
CN107869342B (en) Pipeline scale removal and rock stratum fracturing device based on liquid electric pulse shock wave
AU2006282060B2 (en) Portable electrocrushing drill
AU2007264977B2 (en) Portable and directional electrocrushing drill
CA2581701C (en) Pulsed electric rock drilling, fracturing, and crushing methods and apparatus
US10760239B2 (en) In-situ piling and anchor shaping using plasma blasting
CN111472780B (en) Rock pre-splitting method for mine rock roadway driving working face
WO1997004934A1 (en) Discharge hydraulic pressure destroying method
EP3234297B1 (en) Device and method for crushing rock by means of pulsed electric energy
JP4727256B2 (en) Electric discharge crushing method
CN111912309A (en) Hard rock pre-damage and fracture method based on high-voltage pulse electric explosion
JP3103021B2 (en) Discharge hydraulic pressure breakdown method
JP3103020B2 (en) Discharge hydraulic pressure breakdown method
CN112044569B (en) Combined multi-electrode high-voltage pulse discharge hard rock breaking device and breaking method
CN208220779U (en) Squeeze crack device
JP3897558B2 (en) Discharge shock destruction method
RU2375573C2 (en) Method for breaking of rocks
CN110397438A (en) Hydraulic auxiliary cleaving device and hydraulic splitting method for catalase
JPH0938951A (en) Discharge liquid pressure destruction method
CN219262282U (en) Drilling tool, working system and working machine
KR100243952B1 (en) Method of construction using plasma rock fragmentaion apparatus
JP3192929B2 (en) Discharge hydraulic pressure destruction method
RU2002503C1 (en) Method for crushing metal oversizes
WO2023057791A1 (en) A hydraulic plasma stone blaster probe
JPH0416677A (en) Concrete breaking method using extra-high voltage impact impulse
CN111457801A (en) Secondary breaking method for stone blocks

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96195794.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019980700326

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996925129

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996925129

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980700326

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996925129

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019980700326

Country of ref document: KR