WO1997001700A1 - External combustion engine - Google Patents

External combustion engine Download PDF

Info

Publication number
WO1997001700A1
WO1997001700A1 PCT/CH1996/000234 CH9600234W WO9701700A1 WO 1997001700 A1 WO1997001700 A1 WO 1997001700A1 CH 9600234 W CH9600234 W CH 9600234W WO 9701700 A1 WO9701700 A1 WO 9701700A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion
cylinder
intake
piston
external combustion
Prior art date
Application number
PCT/CH1996/000234
Other languages
French (fr)
Inventor
Pierre-Antoine Jeandupeux
Original Assignee
Jeandupeux Pierre Antoine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeandupeux Pierre Antoine filed Critical Jeandupeux Pierre Antoine
Priority to AU59950/96A priority Critical patent/AU5995096A/en
Publication of WO1997001700A1 publication Critical patent/WO1997001700A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons

Definitions

  • the present invention relates to an external combustion engine, and more particularly to a stationary external combustion engine with isentropic, isobaric and isochoric transformations.
  • the essential principle of external combustion engines is characterized by the fact that combustion takes place outside the cylinders and not inside the cylinders as is the case with internal combustion engines.
  • thermodynamic cycles based on the conservation of energy and on the concept of entropy, theoretical cycles aiming to approach a yield close to unity, have been known from the start the 1800s, for example the Carnot cycle, but most of these theoretical principles have so far been unable to be the subject of practical achievements, with the exception of the Stirling cycle for example.
  • the Stirling cycle has been the subject of numerous embodiments according to its particularity of recovery of the heat from the expansion fluids by a regenerator, but the known forms of execution of external combustion engines based on this principle have many disadvantages.
  • the cycle of Stirling has a displacement piston and a compression piston which, for example, are installed in opposition in two cylinder cylinders between which a regenerator is installed. The fluid between the cylinders therefore moves back and forth through the regenerator depending on the position of the pistons.
  • the volumetric differences of the cylinder, which allow the engine to operate, are obtained by the differences in positions, during a cycle, of the engine piston and the compressor piston.
  • the drawbacks are mainly constituted by the fact that the temperature of the regenerator varies as the heat transfer fluid passes, by the fact that the regenerator constitutes a resistance to transfers of the fluid which limits the number of cycles per unit of time, by the fact that the helium or hydrogen which must be used as fluids with this principle are either very expensive or dangerous, and consequently of these drawbacks by the fact that the engines produced according to the principle of the Stirling cycle provide a yield significantly lower compared to internal combustion engines. Despite this very limited yield from the known forms of execution based on the Stirling cycle, this principle continues to be the subject of much interest and research, but depending on the aforementioned drawbacks, industrial executions of wide circulation valid do not have not yet been completed.
  • the aims of the present invention therefore consist in remedying the aforementioned drawbacks and the aims are achieved according to the principle of the invention defined by claim 1.
  • the external combustion engine comprises an engine piston and a compressor piston which are phase shifted and mechanically connected and which are each mounted in a cylinder.
  • the two cylinders are interconnected by two pipes.
  • An intake manifold allowing the fluid to pass from the cylinder of the compressor piston to the cylinder of the engine piston and a manifold allowing the expansion fluid to pass from the cylinder of the engine piston to the cylinder of the compressor piston.
  • Two valves are mounted on the piston cylinder head compressor at the location of the two pipes so that, during the cycle, temporarily shut off either the intake manifold or the expansion manifold.
  • the two pipes have shapes so that they intersect between the two cylinders, a crossing point where they are connected to a regenerator, which is heated by the fluid which comes out, hot, from the engine cylinder, and which is intended to heat the fluid, cold, which comes from the compressor cylinder.
  • the principle of the invention has many advantages. It makes it possible to guarantee a temperature stability of the regenerator which is very important in order to obtain an improvement in yield in a thermodynamic cycle. On the other hand, the fluid moves in pipes in a loop, which makes it easier to pass through and which makes it possible to envisage a significantly higher number of cycles per unit of time, thus making it possible to obtain an improvement in efficiency and power.
  • the principle of the invention also allows operation with a fluid which is simply air, which eliminates the need to use expensive or dangerous gases.
  • Figure 1 is a side sectional view of a piston ⁇ , cylinder ⁇ , connecting rod and regenerator of an external combustion engine.
  • Figure 2 is a sectional view of the motor in a starting position of a cycle.
  • Figure 3 is a sectional view of the motor in a phase of the isentrope transformation cycle.
  • Figure 4 is a sectional view of the motor in an isobaric transformation phase.
  • Figure 5 is a sectional view of the motor in an isochoric transformation phase.
  • Figure 6 is a sectional view of the motor at the start of an isobaric transformation phase.
  • Figure 7 is a sectional view of the motor in an isochoric transformation phase.
  • Figure 8 is a graph of the engine cycle.
  • Figure 9 is a sectional view of an embodiment of regenerator.
  • the external combustion engine comprises a driving piston 1 which is mounted in a driving cylinder 2.
  • the driving piston 1 comprises a rod 3 whose end 4 is connected to one of the ends a connecting rod 5.
  • the other end 6 of the connecting rod is connected to a crankshaft 7.
  • a stick 9 is mounted at the end 4 of the rod 3.
  • the stick 9 is slidably mounted in a guide cylinder 8.
  • a compression pedestal 10 is mounted in a compressor cylinder 11.
  • the compressor piston 10 comprises a rod 12 whose end 13 is connected to one end of a connecting rod 14.
  • the other end 15 of the connecting rod is connected to a crankshaft 16.
  • a stock 18 is mounted at the end 13 of the piston rod.
  • the stick 18 is slidably mounted in a guide cylinder 19.
  • the crankshafts 7 and 16 are arranged so that the pistons are out of phase with one another, for example by 90 °.
  • the two crankshafts are mechanically connected together, for example by a notched runner.
  • the crankshaft 16 includes an additional phase shift device 17 so that, in addition to the phase shift provided by the position of the two crankshafts, the two pistons move differently from each other during certain phases of the engine cycle.
  • the engine cylinder 2 has an intake opening 31 and an expansion opening 30.
  • the compressor cylinder 11 has an intake opening 32 and an expansion opening 33.
  • An intake valve 28 cooperates with the intake opening 32 of the compressor cylinder.
  • An expansion valve 29 cooperates with the expansion opening 33 of the compressor cylinder.
  • the intake openings of the engine and compressor cylinders are connected to each other by intake pipes 20 and 21.
  • the expansion openings of the engine and compressor cylinders are connected to each other by expansion pipes 22 and 23.
  • the intake pipes intake 20 and 21 and expansion 22 and 23 are connected to a regenerator 24.
  • the engine and compressor cylinders as well as the pipes are filled with a fluid 34, which may be air, for example.
  • the heating device can be fed or formed by any heating process, for example an oil or gas burner.
  • a cooling device 26, for example a water cooling device is mounted on the intake manifold 20 which is mounted on the compressor cylinder.
  • a cooling device 27, for example a water cooling device is mounted on the expansion pipe which is mounted on the compressor cylinder.
  • the cooling devices can be constituted, for example, by water circulation pipes cooled by radiators.
  • the relatively cold fluid which is contained in the compressor cylinder is compressed by the displacement of the compressor piston and is introduced into the intake manifold 20 as soon as the intake valve 28 opens.
  • the fluid cooled by the cooling device 26, is heated in the regenerator 24.
  • the regenerator 24 is heated by the hot fluid which comes, via the expansion pipe, from the engine cylinder.
  • the fluid is propelled into the engine cylinder in which it is heated by the heating device 25 which causes the transformation allowing one actuation of the engine piston.
  • the return of the engine piston causes the fluid to pass through the expansion pipes, a fluid which cannot rain through the intake pipes, the intake valve being closed, and heats the regenerator, the purpose of which is to heat the fluid coming from the cylinder. compressor.
  • the expansion valve 33 opens and the fluid, which can be cooled by the cooling device 27, returns to the compressor cylinder.
  • FIGS 2 to 8 show the different phases of the external combustion engine cycle according to the principle of the invention.
  • FIG. 2 shows the engine at the start of the cycle, with the compressor piston 10 in bottom dead center and the engine piston 1 in top dead center.
  • the two valves 28 and 29 are closed. This phase of the cycle corresponds to point 35 of the graph in FIG. 8.
  • FIG. 3 shows the motor in the isentrope transformation phase.
  • the two valves 28 and 29 are closed.
  • the compressor piston 10 moves and the fluid is compressed.
  • the engine piston 1 remains in top dead center. This phase corresponds to the isentrope transformation carried out between points 35 and 36 in FIG. 8.
  • FIG. 4 shows the engine in the isobaric phase.
  • the compressor piston 10 continues to move.
  • the intake valve 28 opens and the driving piston 1 remains in this starting phase of the isobaric transformation at top dead center.
  • the expansion valve 29 is closed. This phase corresponds to point 36 in FIG. 8.
  • FIG 5 shows a phase of the isochore transformation.
  • the two pistons 1 and 10 move together.
  • the inlet valve 28 is open and the expansion valve 29 is closed.
  • This phase corresponds to point 37 to 38 of Figure 8.
  • FIG. 6 shows a phase of the transformation at point 39 of FIG. 8 which corresponds to the transition from the isentropic transformation from 38 to 39 at the start of the isobaric transformation which corresponds to point 39.
  • the driving piston 1 continues to move towards bottom dead center and the compressor piston 10 is in top dead center.
  • the expansion valve 29 opens and the intake valve 28 is closed.
  • FIG. 7 shows the motor in the isochoric transformation phase.
  • this phase which corresponds to point 40 to 35 of FIG. 8
  • the two pistons 1 and 10 move together, the compressor piston 10 towards bottom dead center and the engine piston 1 towards top dead center.
  • the inlet valve 28 is closed and the expansion valve 29 is open.
  • the curves 41 and 42 correspond to the known curves obtained by a conventional Stirling principle.
  • the surface of the cycle obtained by the principle of the invention is smaller than the theoretical surface obtained with a Stirling principle.
  • the Stirling principle indeed provides isothermal transformations from points 35 to 37, and points 38 to 40, but these isothermal transformations are extremely difficult to carry out in a practical manner.
  • the object of the present invention therefore consists in obtaining a practically easily achievable cycle, which is obtained by modifying the isothermal transformations, so that the isothermal transformation is replaced by an isentropic transformation and an isobaric transformation.
  • the advantages are obtained by the particularity of the displacement of the pistons and of the valves described according to FIGS. 3 to 8, by the connection of the two cylinders which are connected together by intake and expansion pipes, and by the fact that the intake and expansion pipes are connected to a regenerator.
  • This crossing of the pipes makes it possible to obtain a temperature of the regenerator which is relatively constant because it is in equilibrium between the hot temperature of the expansion fluid and the cold temperature of the intake fluid.
  • This embodiment eliminates the disadvantages of the Stirling principle with which the regenerator changes temperature up or down depending on the phase of the cycle.
  • Figure 9 shows an embodiment of a regenerator which consists of plates which are stacked one on the other. other.
  • a plate 43 mounted on a plate 45 which is mounted at 90 ° relative to the plate 43.
  • the plates 43 and 45 consist of a plate which is curved at its ends so as to constitute an opening 44 for the plate 43 and 46 for the plate 45.
  • the intake manifolds 21 and 20 are connected to the regenerator and the intake fluid can flow through the openings 46, 46 'and 46''and through the other openings according to the number of plates which are mounted on each other.
  • the expansion fluid can flow through the openings 44, 44 'and 44''which are arranged at 90 ° relative to the intake openings.
  • the number of plates constituting the regenerator can vary depending on the size of the engine and the amount of fluid that must pass through the regenerator.
  • FIG. 1 to 7 shows an engine having cylinders arranged in opposition on the same axis.
  • the cylinders can also be arranged in a V at any angle.

Abstract

An external combustion engine comprising a drive piston (1), a drive cylinder (2), a compression piston (10) and a compression cylinder (11). The drive piston (1) is connected to one crankshaft (7) and the compression piston (10) is connected to another crankshaft (16). The crankshafts are mechanically interconnected with a phase offset. The compression (11) and drive (2) cylinders are interconnected via intake pipes (20, 21) and expansion pipes (22, 23). Said pipes (20, 21, 22, 23) are connected to a regenerator (24). The intake (21) and expansion (22) pipes as well as the drive cylinder are heated by a heating device (25), and the expansion (23) and intake (20) pipes are cooled by respective cooling devices (27, 26). Intake (28) and expansion (29) valves are mounted on the compression cylinder.

Description

MOTEUR A COMBUSTION EXTERNEEXTERNAL COMBUSTION ENGINE
La présente invention se rapporte à un moteur à combustion externe, et plus particulièrement à un moteur thermique à combustion externe stationnaire avec transformations isentrope, isobare et isochore.The present invention relates to an external combustion engine, and more particularly to a stationary external combustion engine with isentropic, isobaric and isochoric transformations.
Le principe essentiel des moteurs à combustion externe se caractérise par le fait que la combustion s'effectue à l'extérieur des cylindres et non pas à l'intérieur des cylindres comme c'est le cas des moteurs à explosion.The essential principle of external combustion engines is characterized by the fact that combustion takes place outside the cylinders and not inside the cylinders as is the case with internal combustion engines.
Les meilleurs développements de moteurs à explosion présentent toujours les mêmes inconvénients connus par le fait que leε explosions très rapides ne permettent pas d'obtenir une combustion complète ce qui se traduit par une perte d'énergie et par une pollution importante et par le fait que la quantité de chaleur libérée lors de l'échappement n'est pas recyclée.The best developments of internal combustion engines always have the same known drawbacks by the fact that very rapid explosions do not allow complete combustion to be obtained, which results in a loss of energy and in significant pollution and in the fact that the amount of heat released during the exhaust is not recycled.
Les avantages des moteurs à combustion externe sont constitués par le fait que l'énergie calorifique nécessaire peut être fournie par n'importe quelle source de chaleur, par combustion de bois, par du gaz naturel, et par de l'électricité, par exemple, en plus bien entendu du mazout de l'essence ou autres carburants connus. Un autre avantage est que la combustion est continue ce qui permet de réduire les quantités d1 imbrûlés et par conséquent de réduire la pollution.The advantages of external combustion engines are that the necessary heat energy can be supplied by any heat source, by burning wood, by natural gas, and by electricity, for example, in addition of course fuel oil or other known fuels. Another advantage is that the combustion is continuous thereby reduce the amount of unburned 1 and thus reduce pollution.
D'un point de vue théorique, des cycles thermodynamiques basés sur la conservation de l'énergie et sur le concept d'entropie, cycles théoriques ayant pour but de se rapprocher d'un rendement proche de l'unité, sont connus depuis le début des années 1800, à titre d'exemple le cycle de Carnot, mais la plupart de ces principes théoriques n'ont pas pu à ce jour faire l'objet de réalisations pratiques, à l'exception du cycle de Stirling par exemple.From a theoretical point of view, thermodynamic cycles based on the conservation of energy and on the concept of entropy, theoretical cycles aiming to approach a yield close to unity, have been known from the start the 1800s, for example the Carnot cycle, but most of these theoretical principles have so far been unable to be the subject of practical achievements, with the exception of the Stirling cycle for example.
Le cycle de Stirling a fait l'objet de nombreuses réalisations en fonction de sa particularité de récupération de la chaleur des fluides de détente par un régénérateur, mais les formes d'exécutions connues de moteurs à combustion externe basées sur ce principe présentent de nombreux inconvénients. Le cycle de Stirling comporte un piston moteur et un piston de compression qui sont déphasés et qui, par exemple, sont installés en opposition dans deux cylindres cylindre entre lesquels un régénérateur est installé. Le fluide qui se trouve entre les cylindres effectue donc des déplacements de va et vient à travers le régénérateur en fonction de la position des pistons. Les différences volumétriques du cylindre, qui permettent le fonctionnement du moteur, sont obtenues par les différences de positions, durant un cycle, du piston moteur et du piston compresseur. Les inconvénients sont principalement constitués par le fait que la température du régénérateur varie au fur et à mesure du passage du fluide caloporteur, par le fait que le régénérateur constitue une résistance au transferts du fluide ce qui limite le nombre de cycles par unité de temps, par le fait que l'hélium ou l'hydrogène qui doivent être utilisés comme fluides avec ce principe sont soit très coûteux ou dangereux, et en conséquence de ces inconvénients par le fait que les moteurs réalisés selon le principe du cycle de Stirling procurent un rendement nettement inférieur par rapport aux moteurs à combustion interne. Malgré ce rendement très limité des formes d'exécutions connues basées sur le cycle Stirling, ce principe continue de faire l'objet de beaucoup d'intérêt et de recherches, mais en fonction des inconvénients précités, des exécutions industrielles de grande diffusion valables n'ont pas encore pu être réalisées.The Stirling cycle has been the subject of numerous embodiments according to its particularity of recovery of the heat from the expansion fluids by a regenerator, but the known forms of execution of external combustion engines based on this principle have many disadvantages. . The cycle of Stirling has a displacement piston and a compression piston which, for example, are installed in opposition in two cylinder cylinders between which a regenerator is installed. The fluid between the cylinders therefore moves back and forth through the regenerator depending on the position of the pistons. The volumetric differences of the cylinder, which allow the engine to operate, are obtained by the differences in positions, during a cycle, of the engine piston and the compressor piston. The drawbacks are mainly constituted by the fact that the temperature of the regenerator varies as the heat transfer fluid passes, by the fact that the regenerator constitutes a resistance to transfers of the fluid which limits the number of cycles per unit of time, by the fact that the helium or hydrogen which must be used as fluids with this principle are either very expensive or dangerous, and consequently of these drawbacks by the fact that the engines produced according to the principle of the Stirling cycle provide a yield significantly lower compared to internal combustion engines. Despite this very limited yield from the known forms of execution based on the Stirling cycle, this principle continues to be the subject of much interest and research, but depending on the aforementioned drawbacks, industrial executions of wide circulation valid do not have not yet been completed.
Les buts de la présente invention consistent donc à remédier aux inconvénients précités et les buts sont atteints selon le principe de 1 ' invention défini par la revendication 1.The aims of the present invention therefore consist in remedying the aforementioned drawbacks and the aims are achieved according to the principle of the invention defined by claim 1.
Le moteur à combustion externe, selon le principe de l'invention, comporte un piston moteur et un piston compresseur qui sont déphasés et reliés mécaniquement et qui sont montés chacun dans un cylindre. Les deux cylindres sont reliés entre eux par deux tubulures. Une tubulure d'admission permettant au fluide de passer du cylindre du piston compresseur au cylindre du piston moteur et une tubulure permettant au fluide de détente de passer du cylindre du piston moteur au cylindre du piston compresseur. Deux soupapes sont montées sur la tête du cylindre du piston compresseur à l'endroit des deux tubulures de manière à, durant le cycle, obturer momentanément soit la tubulure d'admission, soit la tubulure de détente. Les deux tubulures présentent deε formes de manière à ce que qu'elles se croisent entre les deux cylindres, endroit de croisement où elles sont connectées à un régénérateur, qui eεt chauffé par le fluide qui sort, chaud, du cylindre moteur, et qui eεt destiné à réchauffer le fluide, froid, qui vient du cylindre compresseur.The external combustion engine, according to the principle of the invention, comprises an engine piston and a compressor piston which are phase shifted and mechanically connected and which are each mounted in a cylinder. The two cylinders are interconnected by two pipes. An intake manifold allowing the fluid to pass from the cylinder of the compressor piston to the cylinder of the engine piston and a manifold allowing the expansion fluid to pass from the cylinder of the engine piston to the cylinder of the compressor piston. Two valves are mounted on the piston cylinder head compressor at the location of the two pipes so that, during the cycle, temporarily shut off either the intake manifold or the expansion manifold. The two pipes have shapes so that they intersect between the two cylinders, a crossing point where they are connected to a regenerator, which is heated by the fluid which comes out, hot, from the engine cylinder, and which is intended to heat the fluid, cold, which comes from the compressor cylinder.
Le principe de l'invention présente de nombreux avantages. Il permet de garantir une stabilité de température du régénérateur qui est très importante pour obtenir une amélioration de rendement dans un cycle thermodynamique. D'autre part le fluide effectue un déplacement dans des tubulures selon une boucle, ce qui permet d'en faciliter le passage et ce qui permet d'envisager un nombre de cycles par unité de temps nettement εupérieur permettant ainsi d'obtenir une amélioration de rendement et de puissance. Le principe de l'invention permet de plus un fonctionnement avec un fluide qui est simplement de l'air, ce qui supprime la nécessité d'utiliser des gaz coûteux ou dangereux.The principle of the invention has many advantages. It makes it possible to guarantee a temperature stability of the regenerator which is very important in order to obtain an improvement in yield in a thermodynamic cycle. On the other hand, the fluid moves in pipes in a loop, which makes it easier to pass through and which makes it possible to envisage a significantly higher number of cycles per unit of time, thus making it possible to obtain an improvement in efficiency and power. The principle of the invention also allows operation with a fluid which is simply air, which eliminates the need to use expensive or dangerous gases.
Les dessins annexés illustrent schématiquement et à titre d'exemple les principes de l'invention.The accompanying drawings illustrate schematically and by way of example the principles of the invention.
La figure 1 est une vue en coupe de côté d'un ensemble pistonε, cylindreε, bielleε et régénérateur d'un moteur à combustion externe.Figure 1 is a side sectional view of a pistonε, cylinderε, connecting rod and regenerator of an external combustion engine.
La figure 2 est une vue en coupe du moteur dans une position de départ d'un cycle.Figure 2 is a sectional view of the motor in a starting position of a cycle.
La figure 3 est une vue en coupe du moteur dans une phase du cycle à transformation isentrope.Figure 3 is a sectional view of the motor in a phase of the isentrope transformation cycle.
La figure 4 est une vue en coupe du moteur dans une phase à transformation isobare.Figure 4 is a sectional view of the motor in an isobaric transformation phase.
La figure 5 est une vue en coupe du moteur dans une phase à transformation isochore.Figure 5 is a sectional view of the motor in an isochoric transformation phase.
La figure 6 est une vue en coupe du moteur au début d'une phase à transformation isobare.Figure 6 is a sectional view of the motor at the start of an isobaric transformation phase.
La figure 7 est une vue en coupe du moteur dans une phase à transformation isochore.Figure 7 is a sectional view of the motor in an isochoric transformation phase.
La figure 8 est un graphique du cycle du moteur. La figure 9 est une vue en coupe d'une forme d'exécution de régénérateur.Figure 8 is a graph of the engine cycle. Figure 9 is a sectional view of an embodiment of regenerator.
En référence tout d'abord a la figure 1 le moteur a combustion externe comporte un piston moteur 1 qui est monte dans un cylindre moteur 2. Le piston moteur 1 comporte une tige 3 dont l'extrémité 4 est reliée a l'une des extrémités d'une bielle moteur 5. L'autre extrémité 6 de la bielle est reliée a un vilebrequin 7. Une crosse 9 est montée a l'extrémité 4 de la tige 3. La crosse 9 est montée coulissante dans un cylindre de guidage 8. Un piεton compreεseur 10 eεt monte dans un cylindre compresseur 11. Le piston compresseur 10 comporte une tige 12 dont l'extrémité 13 eεt reliée a l'une des extrémités d'une bielle 14. L'autre extrémité 15 de la bielle est reliée a un vilebrequin 16. Une crosse 18 est montée a l'extrémité 13 de la tige du piston. La crosse 18 est montée coulissante dans un cylindre de guidage 19. Les vilebrequins 7 et 16 sont disposes de manière a ce que les pistons soient déphasés entre eux, par exemple de 90°. Les deux vilebrequins sont relies mécaniquement entre eux., par exemple par une courroir crantée. Le vilebrequin 16 comporte un dispositif de déphasage 17 supplémentaire de manière a ce que, en addition du déphasage prévu par la position des deux vilebrequins, les deux pistons se déplacent differement l'un de l'autre durant certaineε phases du cycle moteur. Le cylindre 2 moteur comporte une ouverture d'admission 31 et une ouverture de détente 30. Le cylindre compresseur 11 comporte une ouverture d'admission 32 et une ouverture de détente 33. Une soupape d'admission 28 coopère avec l'ouverture d'admission 32 du cylindre compresseur. Une soupape de détente 29 coopère avec l'ouverture de détente 33 du cylindre compresseur. Les ouvertures d'admission des cylindreε moteur et compresseur sont reliées entre elles par des tubulures d'admission 20 et 21. Les ouvertures de détente des cylindres moteur et compresseur sont reliées entre elles par des tubulures de détente 22 et 23. Les tubulures d'admission 20 et 21 et de détente 22 et 23 sont reliées a un régénérateur 24. Les cylindres moteur et compresseur ainsi que les tubulures sont remplis d'un fluide 34, qui peut être de l'air a titre d'exemple. Un dispositif de chauffage 25 eεt disposé autour du cylindre moteur ainsi que εur une portion des tubulures d'admission 21 et de détente 22, tubulures qui sont montées sur le cylindre moteur. Le dispoεitif de chauffage peut être alimenté ou conεtitué par n'importe quel procédé de chauffage, à titre d'exemple un brûleur à mazout ou à gaz. Un dispositif de refroidissement 26, par exemple un dispositif de refroidissement à eau, est monté sur la tubulure d'admission 20 qui est montée sur le cylindre compresseur. Un dispositif de refroidissement 27, par exemple un dispositif de refroidissement à eau, est monté sur la tubulure de détente qui est montée sur le cylindre compresseur. Les dispositifs de refroidissement peuvent être constitués, à titre d'exemple, par des conduits de circulation d'eau refroidis par des radiateurs.Referring firstly to FIG. 1, the external combustion engine comprises a driving piston 1 which is mounted in a driving cylinder 2. The driving piston 1 comprises a rod 3 whose end 4 is connected to one of the ends a connecting rod 5. The other end 6 of the connecting rod is connected to a crankshaft 7. A stick 9 is mounted at the end 4 of the rod 3. The stick 9 is slidably mounted in a guide cylinder 8. A compression pedestal 10 is mounted in a compressor cylinder 11. The compressor piston 10 comprises a rod 12 whose end 13 is connected to one end of a connecting rod 14. The other end 15 of the connecting rod is connected to a crankshaft 16. A stock 18 is mounted at the end 13 of the piston rod. The stick 18 is slidably mounted in a guide cylinder 19. The crankshafts 7 and 16 are arranged so that the pistons are out of phase with one another, for example by 90 °. The two crankshafts are mechanically connected together, for example by a notched runner. The crankshaft 16 includes an additional phase shift device 17 so that, in addition to the phase shift provided by the position of the two crankshafts, the two pistons move differently from each other during certain phases of the engine cycle. The engine cylinder 2 has an intake opening 31 and an expansion opening 30. The compressor cylinder 11 has an intake opening 32 and an expansion opening 33. An intake valve 28 cooperates with the intake opening 32 of the compressor cylinder. An expansion valve 29 cooperates with the expansion opening 33 of the compressor cylinder. The intake openings of the engine and compressor cylinders are connected to each other by intake pipes 20 and 21. The expansion openings of the engine and compressor cylinders are connected to each other by expansion pipes 22 and 23. The intake pipes intake 20 and 21 and expansion 22 and 23 are connected to a regenerator 24. The engine and compressor cylinders as well as the pipes are filled with a fluid 34, which may be air, for example. A heater 25 eεt disposed around the engine cylinder as well as εur a portion of the intake manifolds 21 and expansion 22, pipes which are mounted on the engine cylinder. The heating device can be fed or formed by any heating process, for example an oil or gas burner. A cooling device 26, for example a water cooling device, is mounted on the intake manifold 20 which is mounted on the compressor cylinder. A cooling device 27, for example a water cooling device, is mounted on the expansion pipe which is mounted on the compressor cylinder. The cooling devices can be constituted, for example, by water circulation pipes cooled by radiators.
Selon le principe de l'invention, le fluide relativement froid qui eεt contenu dans le cylindre compresseur, est compressé par le déplacement du piston compresseur et est introduit dans la tubulure d'admission 20 dès ouverture de la soupape d'admission 28. Le fluide, refroidi par le dispositif de refroidissement 26, est réchauffé dans le régénérateur 24. Le régénérateur 24 est chauffé par le fluide chaud qui vient, par la tubulure de détente, du cylindre moteur. Le fluide est propulsé dans le cylindre moteur dans lequel il est réchauffé par le dispositif de chauffage 25 ce qui provoque la transformation permettant 1 ' actionnement du piston moteur. Le retour du piston moteur fait passer le fluide dans les tubulures de détente, fluide qui ne peut pluε passer dans leε tubulures d'admission la soupape d'admisεion étant fermée, et réchauffe le régénérateur dont le but eεt de réchauffer le fluide provenant du cylindre compresseur. Dans la partie finale de la phase de détente la soupape de détente 33 s'ouvre et le fluide, qui peut être refroidi par le dispositif de refroidissement 27, retourne danε le cylindre compresseur.According to the principle of the invention, the relatively cold fluid which is contained in the compressor cylinder, is compressed by the displacement of the compressor piston and is introduced into the intake manifold 20 as soon as the intake valve 28 opens. The fluid , cooled by the cooling device 26, is heated in the regenerator 24. The regenerator 24 is heated by the hot fluid which comes, via the expansion pipe, from the engine cylinder. The fluid is propelled into the engine cylinder in which it is heated by the heating device 25 which causes the transformation allowing one actuation of the engine piston. The return of the engine piston causes the fluid to pass through the expansion pipes, a fluid which cannot rain through the intake pipes, the intake valve being closed, and heats the regenerator, the purpose of which is to heat the fluid coming from the cylinder. compressor. In the final part of the expansion phase, the expansion valve 33 opens and the fluid, which can be cooled by the cooling device 27, returns to the compressor cylinder.
Les figures 2 à 8 montrent les différentes phases du cycle du moteur à combustion externe selon le principe de l'invention.Figures 2 to 8 show the different phases of the external combustion engine cycle according to the principle of the invention.
La figure 2 montre le moteur en phase de départ du cycle, avec le piston compresseur 10 au point mort bas et le piston moteur 1 au point mort haut. Les deux soupapes 28 et 29 sont fermées. Cette phase du cycle correspond au point 35 du graphique de la figure 8.Figure 2 shows the engine at the start of the cycle, with the compressor piston 10 in bottom dead center and the engine piston 1 in top dead center. The two valves 28 and 29 are closed. This phase of the cycle corresponds to point 35 of the graph in FIG. 8.
La figure 3 montre le moteur danε la phase de transformation isentrope. Les deux soupapes 28 et 29 sont fermées. Le piston compresseur 10 se déplace et le fluide est compressé. Le piston moteur 1 reste au point mort haut. Cette phase correspond à la transformation isentrope effectuée entre les points 35 et 36 de la figure 8.Figure 3 shows the motor in the isentrope transformation phase. The two valves 28 and 29 are closed. The compressor piston 10 moves and the fluid is compressed. The engine piston 1 remains in top dead center. This phase corresponds to the isentrope transformation carried out between points 35 and 36 in FIG. 8.
La figure 4 montre le moteur dans la phaεe isobare. Le piston compresseur 10 continue à se déplacer. La soupape d'admission 28 s'ouvre et le piston moteur 1 reste dans cette phase de départ de la transformation isobare au point mort haut. La soupape de détente 29 est fermée. Cette phaεe correspond au point 36 de la figure 8.Figure 4 shows the engine in the isobaric phase. The compressor piston 10 continues to move. The intake valve 28 opens and the driving piston 1 remains in this starting phase of the isobaric transformation at top dead center. The expansion valve 29 is closed. This phase corresponds to point 36 in FIG. 8.
La figure 5 montre une phase de la transformation isochore. Dans cette phase les deux pistons 1 et 10 se déplacent ensemble. La soupape d'admission 28 est ouverte et la soupape de détente 29 est fermée. Cette phase correspond au point 37 à 38 de la figure 8.Figure 5 shows a phase of the isochore transformation. In this phase the two pistons 1 and 10 move together. The inlet valve 28 is open and the expansion valve 29 is closed. This phase corresponds to point 37 to 38 of Figure 8.
La figure 6 montre une phase de la transformation au point 39 de la figure 8 qui correspond au passage de la transformation isentrope de 38 à 39 au départ de la transformation isobare qui correspond au point 39. Dans cette position, le piston moteur 1 continue de se déplacer vers le point mort bas et le piston compresseur 10 est au point mort haut. Au point 39, la soupape de détente 29 s'ouvre et la soupape d'admission 28 est fermée.FIG. 6 shows a phase of the transformation at point 39 of FIG. 8 which corresponds to the transition from the isentropic transformation from 38 to 39 at the start of the isobaric transformation which corresponds to point 39. In this position, the driving piston 1 continues to move towards bottom dead center and the compressor piston 10 is in top dead center. At point 39, the expansion valve 29 opens and the intake valve 28 is closed.
La figure 7 montre le moteur dans la phase de transformation isochore. Dans cette phase, qui correspond au point 40 à 35 de la figure 8, les deux pistons 1 et 10 se déplacent ensemble, le piston compresseur 10 vers le point mort bas et le piston moteur 1 vers le point mort haut. La soupape d'admission 28 est fermée et la soupape de détente 29 est ouverte.Figure 7 shows the motor in the isochoric transformation phase. In this phase, which corresponds to point 40 to 35 of FIG. 8, the two pistons 1 and 10 move together, the compressor piston 10 towards bottom dead center and the engine piston 1 towards top dead center. The inlet valve 28 is closed and the expansion valve 29 is open.
Durant le cycle et en référence aux figures 2 à 8, des points 35 à 37, le piston moteur reste au point mort haut et le piston compresseur se déplace vers le point mort bas. Des points 37 à 38, les deux pistons se déplacent ensemble à la même vitesse, le piston moteur vers le point mort bas et le piston compresseur vers le point mort haut. Des points 38 à 39, le piston compresseur reste au point mort haut et le piston moteur se déplace vers le point mort bas. Des points 40 à 35, les deux pistons se déplacent ensemble, le piston moteur vers le point mort haut et le piston compresseur vers le point mort bas. La εoupape d'admission s'ouvre du point 36 au point 38. La soupape de détente s'ouvre du point 39 au point 35.During the cycle and with reference to FIGS. 2 to 8, from points 35 to 37, the engine piston remains in top dead center and the compressor piston moves towards bottom dead center. From points 37 to 38, the two pistons move together at the same speed, the engine piston towards bottom dead center and the compressor piston towards top dead center. From points 38 to 39, the compressor piston remains in top dead center and the engine piston moves towards bottom dead center. From points 40 to 35, the two pistons move together, the engine piston towards top dead center and the compressor piston towards bottom dead center. The intake valve opens from point 36 to point 38. The expansion valve opens from point 39 to point 35.
En référence à la figure 8, les courbes 41 et 42 correspondent aux courbes connues obtenues par un principe Stirling conventionnel .With reference to FIG. 8, the curves 41 and 42 correspond to the known curves obtained by a conventional Stirling principle.
En référence au graphique de la figure 8 on peut constater que la surface du cycle obtenue par le principe de l'invention est plus petite que la surface théorique obtenue avec un principe Stirling. Le principe Stirling prévoit en effet des transformations isothermes deε points 35 à 37, et des points 38 à 40, mais ces transformations isothermes sont extrêmement difficiles à réaliser d'une manière pratique. Le but de la présente invention consiste donc à obtenir un cycle facilement réalisable pratiquement, ce qui est obtenu en modifiant les transformations isothermes, de manière à ce que la transformation isotherme soit remplacée par une transformation isentrope et une transformation isobare.With reference to the graph in FIG. 8, it can be seen that the surface of the cycle obtained by the principle of the invention is smaller than the theoretical surface obtained with a Stirling principle. The Stirling principle indeed provides isothermal transformations from points 35 to 37, and points 38 to 40, but these isothermal transformations are extremely difficult to carry out in a practical manner. The object of the present invention therefore consists in obtaining a practically easily achievable cycle, which is obtained by modifying the isothermal transformations, so that the isothermal transformation is replaced by an isentropic transformation and an isobaric transformation.
Selon le principe l'invention, les avantages sont obtenus par la particularité du déplacement des pistons et des soupapes décrite selon les figures 3 à 8, par la liaison des deux cylindres qui sont reliés entre eux par des tubulures d'admission et de détente, et par le fait que les tubulures d'admission et de détente soient connectées à un régénérateur. Ce croisement des tubulures permet d'obtenir une température du régénérateur qui est relativement constante parce qu'elle est en équilibre entre la température chaude du fluide de détente et la température froide du fluide d'admission. Cette forme d'exécution permet du supprimer les désavantages du principe Stirling avec lequel le régénérateur change de température vers le haut ou vers le bas selon la phase du cycle.According to the principle of the invention, the advantages are obtained by the particularity of the displacement of the pistons and of the valves described according to FIGS. 3 to 8, by the connection of the two cylinders which are connected together by intake and expansion pipes, and by the fact that the intake and expansion pipes are connected to a regenerator. This crossing of the pipes makes it possible to obtain a temperature of the regenerator which is relatively constant because it is in equilibrium between the hot temperature of the expansion fluid and the cold temperature of the intake fluid. This embodiment eliminates the disadvantages of the Stirling principle with which the regenerator changes temperature up or down depending on the phase of the cycle.
La figure 9 montre une forme d'exécution d'un régénérateur qui est constitué par des plaques qui sont empilées les unes sur les autres. Une plaque 43 montée sur une plaque 45 qui est montée â 90° par rapport à la plaque 43. Et des plaques 43' et 45' , 43' ' et 45' ' et ainsi du suite. Les plaques 43 et 45 sont constituées par une plaque qui est recourbée à ses extrémités de manière consituer une ouverture 44 pour la plaque 43 et 46 pour la plaque 45. Sur la forme d'exécution montrée par la figure 9, leε tubulures d'admission 21 et 20 sont connectées au régénérateur et le fluide d'admission peut s'écouler par les ouvertures 46, 46' et 46 ' ' et par les autres ouvertures selon le nombre de plaques qui sont montées les unes sur les autreε. Le fluide de détente peut s'écouler par les ouvertures 44, 44 ' et 44 ' ' qui sont disposées à 90° par rapport aux ouvertures d'admission.Figure 9 shows an embodiment of a regenerator which consists of plates which are stacked one on the other. other. A plate 43 mounted on a plate 45 which is mounted at 90 ° relative to the plate 43. And plates 43 'and 45', 43 '' and 45 '' and so on. The plates 43 and 45 consist of a plate which is curved at its ends so as to constitute an opening 44 for the plate 43 and 46 for the plate 45. On the embodiment shown in FIG. 9, the intake manifolds 21 and 20 are connected to the regenerator and the intake fluid can flow through the openings 46, 46 'and 46''and through the other openings according to the number of plates which are mounted on each other. The expansion fluid can flow through the openings 44, 44 'and 44''which are arranged at 90 ° relative to the intake openings.
Le nombre des plaques consituant le régénérateur peut varier en fonction de la dimension du moteur et de la quantité de fluide qui doit passer dans le régénérateur.The number of plates constituting the regenerator can vary depending on the size of the engine and the amount of fluid that must pass through the regenerator.
La forme d'exécution montrée par les figures 1 à 7 montre un moteur comportant des cylindres disposés en opposition sur un même axe. Les cylindres peuvent également être disposés en V selon n'importe quel angle. The embodiment shown in Figures 1 to 7 shows an engine having cylinders arranged in opposition on the same axis. The cylinders can also be arranged in a V at any angle.

Claims

REVENDICATIONS
1. Moteur à combustion externe comportant un piston (1) et un cylindre (2) moteur et un piston (10) et un cylindre (11) compresseur, et comportant un fluide qui peut être de l'air et qui est contenu dans les cylindres, fluide qui eεt tranεféré à travers un régénérateur, durant le cycle moteur, du cylindre moteur au cylindre compresseur en étant réchauffé ou refroidi par des dispositifs de chauffage et de refroidissement et par un régénérateur, caractérisé par le fait que des tubulures d'admission (20 et 21) sont respectivement connectées à deε ouvertures d'admission (28) et détente (31) qui sont pratiquées respectivement dans le cylindre compresseur (11) et dans le cylindre moteur (2) et que des tubulures de détente (22 et 23) sont respectivement connectées à des ouvertures de détente (30) et d'admission (33) qui sont respectivement pratiquées dans le cylindre moteur et dans le cylindre compresseur, de manière à ce que le fluide contenu dans les cylindres puisse passer d'un cylindre à l'autre εelon la phase du cycle moteur, tubulures qui sont connectées à un régénérateur (24), et par le fait qu'une soupape de détente (29) est disposée à l'ouverture de détente (33) pratiquée dans le cylindre compresseur et qu'une soupape d'admission est disposée à l'ouverture d'admission (28) pratiquée dans le cylindre compresseur.1. External combustion engine comprising a piston (1) and a cylinder (2) engine and a piston (10) and a compressor cylinder (11), and comprising a fluid which may be air and which is contained in the cylinders, fluid which is transferred through a regenerator, during the engine cycle, from the engine cylinder to the compressor cylinder by being heated or cooled by heating and cooling devices and by a regenerator, characterized by the fact that intake manifolds (20 and 21) are respectively connected to inlet (28) and expansion (31) openings which are formed respectively in the compressor cylinder (11) and in the engine cylinder (2) and that expansion pipes (22 and 23) are respectively connected to expansion (30) and intake (33) openings which are respectively formed in the engine cylinder and in the compressor cylinder, so that the fluid contained in the cylinders can pass from one cylinder to another εelon the phase of the engine cycle, pipes which are connected to a regenerator (24), and by the fact that an expansion valve (29) is disposed at the expansion opening ( 33) formed in the compressor cylinder and that an intake valve is arranged at the intake opening (28) formed in the compressor cylinder.
2. Moteur à combustion externe selon la revendication 1, caractérisé par le fait que le piston moteur et le piston compresseur sont reliés à des vilebrequins qui sont reliés mécaniquement entre eux et qui sont dipsosés et constitués de manière à ce que les pistons soient déphasés entre eux durant certaines phases du cycle moteur.2. External combustion engine according to claim 1, characterized in that the driving piston and the compressor piston are connected to crankshafts which are mechanically connected to each other and which are arranged and formed so that the pistons are out of phase between them during certain phases of the engine cycle.
3. Moteur à combustion externe selon la revendication 1, caractérisé par le fait que durant les phases de transformation isentrope et isobare d'admission, le piston moteur reste en position point mort haut et le piston compresseur se déplace vers du point mort bas vers le point mort haut.3. External combustion engine according to claim 1, characterized in that during the isentropic and isobaric inlet transformation phases, the engine piston remains in the top dead center position and the compressor piston moves towards from bottom dead center to top dead center.
4. Moteur à combustion externe selon la revendication 1, caractérisé par le fait que durant les tranεformation iεentrope et isobare de détente le piston compresseur reste au point mort haut et le piston moteur se déplace vers le point mort bas.4. External combustion engine according to claim 1, characterized in that during the iεentrope and isobaric expansion tranεformation the compressor piston remains in top dead center and the engine piston moves towards bottom dead center.
5. Moteur à combustion externe selon la revendication 1, caractérisé par le fait que durant les deux transformations isochores les deux pistons se déplacent ensemble à la même vitesse, dans la première transformation isochore le piston compresseur vers le point mort haut et le piston moteur vers le point mort bas et inversement dans la deuxième transformation isochore.5. External combustion engine according to claim 1, characterized in that during the two isochoric transformations the two pistons move together at the same speed, in the first isochoric transformation the compressor piston towards top dead center and the engine piston towards the bottom dead center and vice versa in the second isochore transformation.
6. Moteur à combustion externe selon la revendication 1, caractérisé par le fait que la tubulure d'admission (20) qui est connectée à l'ouverture d'amission qui est pratiquée dans le cylindre compresseur, est refroidie par un dispositif de refroidissement (26) et par le fait que la tubulure de détente qui est connectée à l'ouverture de détente qui est pratiquée dans le cylindre compresseur est refroidie par un dispositif de refroidissement (27).6. External combustion engine according to claim 1, characterized in that the intake manifold (20) which is connected to the intake opening which is formed in the compressor cylinder, is cooled by a cooling device ( 26) and by the fact that the expansion tubing which is connected to the expansion opening which is formed in the compressor cylinder is cooled by a cooling device (27).
7. Moteur à combustion externe selon la revendication 1, caractérisé par le fait que les tubulures d'admission (21) et de détente (22) qui sont connectées, respectivement aux ouvertures d'admission (31) et de détente (30) qui sont pratiquées dans le cylindre moteur, et que le cylindre moteur, sont chauffés par un dispositif de chauffage (25).7. External combustion engine according to claim 1, characterized in that the intake (21) and expansion (22) pipes which are connected, respectively to the intake (31) and expansion (30) openings which are made in the engine cylinder, and the engine cylinder is heated by a heater (25).
8. Moteur à combustion externe selon la revendication 1, caractérisé par le fait que la soupape d'admission (28) s'ouvre à la fin de la transformation isentrope d'admission et se ferme au début de la transformation isentrope de détente, et par le fait que la soupape de détente (29) s'ouvre à la fin de la transformation isentrope de détente et se ferme au début de la transformation isentrope d'admission.8. External combustion engine according to claim 1, characterized in that the intake valve (28) opens at the end of the isentropic intake transformation and closes at the start of the isentropic expansion transformation, and by the fact that the expansion valve (29) opens at the end of the isentropic transformation of relaxation and closes at the beginning of the isentropic transformation of admission.
9. Moteur à combustion externe selon la revendication 1, caractérisé par le fait que le régénérateur (24) est constitué par des plaques qui sont montées les unes sur les autreε et qui sont disposées de manière à ce que chaque plaque soit disposée à 90° par rapport à la plaque supérieure ou inférieure, et par le fait que chaque plaque est repliée à ses extrémités de manière à constituer une ouverture de passage du fluide.9. external combustion engine according to claim 1, characterized in that the regenerator (24) consists of plates which are mounted on each other and which are arranged so that each plate is arranged at 90 ° relative to the upper or lower plate, and by the fact that each plate is folded at its ends so as to constitute an opening for passage of the fluid.
10. Moteur à combustion externe selon les revendicationε 1 et 9, caractérisé par le fait que les tubulures d'admission et de détente sont montées sur le régénérateur, à 90° entre elles de manière de manière à ce qu'elles soient connectées respectivement avec les ouvertures d'une plaque sur deux selon la disposition de chaque p1aque. 10. External combustion engine according to claims 1 and 9, characterized in that the intake and expansion pipes are mounted on the regenerator, at 90 ° between them so that they are connected respectively with the openings of one plate out of two depending on the layout of each plate.
PCT/CH1996/000234 1995-06-27 1996-06-21 External combustion engine WO1997001700A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU59950/96A AU5995096A (en) 1995-06-27 1996-06-21 External combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH187195 1995-06-27
CH1871/95-3 1995-06-27

Publications (1)

Publication Number Publication Date
WO1997001700A1 true WO1997001700A1 (en) 1997-01-16

Family

ID=4220550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1996/000234 WO1997001700A1 (en) 1995-06-27 1996-06-21 External combustion engine

Country Status (2)

Country Link
AU (1) AU5995096A (en)
WO (1) WO1997001700A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206316A (en) * 2012-04-01 2013-07-17 摩尔动力(北京)技术股份有限公司 Working unit thermomotor
FR3113422A1 (en) * 2020-08-15 2022-02-18 Roger Lahille Closed thermodynamic cycles of steady-state motors resembling the Ericsson and Joule cycles.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR351448A (en) * 1905-02-11 1905-07-17 Pierre Smal Hot air and cold air compressed and combined drive machine called "differential air machine"
FR1459453A (en) * 1965-11-17 1966-04-29 Thermal engine capable of operating at low temperature
US4984432A (en) * 1989-10-20 1991-01-15 Corey John A Ericsson cycle machine
WO1993007374A1 (en) * 1991-10-02 1993-04-15 Macomber Bennie D Rotary stirling cycle engine
DE4418895A1 (en) * 1994-05-31 1994-12-22 Raoul Dr Nakhmanson Stirling machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR351448A (en) * 1905-02-11 1905-07-17 Pierre Smal Hot air and cold air compressed and combined drive machine called "differential air machine"
FR1459453A (en) * 1965-11-17 1966-04-29 Thermal engine capable of operating at low temperature
US4984432A (en) * 1989-10-20 1991-01-15 Corey John A Ericsson cycle machine
WO1993007374A1 (en) * 1991-10-02 1993-04-15 Macomber Bennie D Rotary stirling cycle engine
DE4418895A1 (en) * 1994-05-31 1994-12-22 Raoul Dr Nakhmanson Stirling machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206316A (en) * 2012-04-01 2013-07-17 摩尔动力(北京)技术股份有限公司 Working unit thermomotor
FR3113422A1 (en) * 2020-08-15 2022-02-18 Roger Lahille Closed thermodynamic cycles of steady-state motors resembling the Ericsson and Joule cycles.

Also Published As

Publication number Publication date
AU5995096A (en) 1997-01-30

Similar Documents

Publication Publication Date Title
US5894729A (en) Afterburning ericsson cycle engine
US7273023B2 (en) Steam enhanced double piston cycle engine
OA11767A (en) Procédé et dispositif de réchauffage thermique additionnel pour véhicule équipé de moteur dépollué à injection d'air comprimé additionnel.
JP4275534B2 (en) Static regenerator, reciprocating reciprocating engine
EP3585993B1 (en) Regenerative cooling system
WO2009103871A2 (en) Thermodynamic machine, particularly of the carnot and/or stirling type
WO2011154622A1 (en) Heat-exchanging cylinder head
US6116222A (en) Two stroke regenerative engine
WO1997001700A1 (en) External combustion engine
JP2010285964A (en) Internal combustion stirling engine
US7044725B2 (en) Lever-mechanism motor or pump
FR2963643A1 (en) Mechanical or thermal device e.g. Stirling diesel engine, has main heat exchanger associated with combustion chamber, and thermal mechanism provided with open circuits that are obtained from opening of closed circuit at one point
KR20060071827A (en) An external combustion engine combined with cylinder, re-generator and cooler
RU21219U1 (en) STEAM ENGINE WITH EXTERNAL HEAT SUPPLY FOR DISPOSAL OF HEAT OF EXHAUST GAS ICE
FR3106859A1 (en) THERMODYNAMIC ENGINE
RU2007142388A (en) ADVANCED STEAM DOUBLE-PISTON ENGINE
FR2972481A1 (en) Alternative heat engine for driving e.g. two-stage variable displacement compressor, has control unit controlling opening and closing of flow channels according to predetermined operation cycle
BE433826A (en)
WO2012156629A2 (en) Heat engine including a rotary casing
FR2883036A1 (en) Rotating heat engine e.g. petrol engine, has rotor rotating in stator, where stator has air inlet orifice, exhaust gas evacuation orifice, and explosion chamber for explosion of air-petrol mixture which leads to rotating movement of rotor
BE410087A (en)
BE383421A (en)
GB2188681A (en) Regenerative heat engines and heat pumps
FR2587063A1 (en) Regeneration device for heat engines with reciprocating manoeuvres
FR2963642A1 (en) Mechanical device e.g. Carnot diesel engine, for transforming heat into mechanical energy, has heat exchanger provided with check valve associated in parallel to displacer that is connected to working volume

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA